(经典)2019-2020高考数学二轮复习 专题七 系列4选讲 第一讲 坐标系与参数方程教案 理

合集下载

选修4-4.1.1坐标系(平面直角坐标系)

选修4-4.1.1坐标系(平面直角坐标系)

得|PC|=|PB|,故P在BC的垂直平分线PO上,
PO的方程为y=-x,因A点比B点晚4s听到爆炸声,
y
故|PA|- |PB|=340×4=1360
PC
由双曲线定义P点在以A, B为焦点的双曲线
x2 a2

y2 b2
1上
B
a=680, c=1020, b2=c2-a2=10202-6802=5×3402.
在此基础上,将纵坐标变为原来的3倍,
就得到正弦曲线y=3sin2x.
O
x
即在正弦曲线y=sinx上任取一点P(x,y),
若设点P(x,y)经变换得到点为Pʹ(xʹ, yʹ),坐 标对应关系为平面直角坐标系中的一个坐标伸缩变换.
2019/5/23
Cy
观测点 P
观测点 信息中心 观测点
B
O
A
x
2019/5/23
v:pzyandong
2
以接报中心为原点O,以BA方向为x轴,建立直角坐标系.设A、B、 C分别是西、东、北观测点,则 A(1020, 0), B(-1020, 0),C(0, 1020)
设P(x, y)为巨响为生点,由B、C同时听到巨响声,
CF上的中线,建立适当的平面直角坐标系探究BE与CF的位置关系。
解:以△ABC的顶点A为原点O,边AB所在的
直线x轴,建立直角坐标系,由已知,点A、B、 y
F的坐标分别为A(0,0), B(c,0), F( c ,0)
2
设C点坐标为(x,y),则点E的坐标为
(
x 2
,
y 2
)

C E
由b2+c2=5a2,|AC|2+|AB|2=5|BC|2,

高考数学二轮复习第2部分专题篇素养提升文理专题7选修部分第1讲选修44坐标系与参数方程课件新人教版

高考数学二轮复习第2部分专题篇素养提升文理专题7选修部分第1讲选修44坐标系与参数方程课件新人教版
34
典例3 (2020·南平三模)在平面直角坐标系 xOy 中,以原点
O 为极点,以 x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为
ρ=1-c2os
θ,直线
l1
的参数方程为xy==ttcsions
α α
(t 为参数),π2<α<π,点 A
为直线 l1 与曲线 C 在第二象限的交点,过 O 点的直线 l2 与直线 l1 互相垂 直,点 B 为直线 l2 与曲线 C 在第三象限的交点.
19
1.(2020·中原区校级模拟)在平面直角坐标系 xOy 中,以坐标原点为 极点,x 轴正半轴为极轴建立极坐标系,曲线 C1:ρ=4sin θ,曲线 C2:ρ =4cos θ.
(1)求曲线 C1 与 C2 的直角坐标方程; (2)若直线 C3 的极坐标方程为 θ=π3(ρ∈R),设 C3 与 C1 和 C2 的交点 分别为 M,N,求|MN|.
25
典例2 (2020·河南模拟)在平面直角坐标系 xOy 中,曲线 C






x=2cos α y= 3sin α

为参数),直线
l 的参数方程为
x=1+tcos α y=tsin α
(t 为参数).
(1)求曲线 C 和直线 l 的一般方程;
(2)已知点 P(1,0),直线 l 和曲线 C 交于 A,B 两点,若|PA|·|PB|=152,
14
典例1 (2020·沙坪坝区校级模拟)在平面直角坐标系 xOy 中, 以原点 O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线 C1 的极坐标
方程为
ρ=2acosθ,曲线
C2
的极坐标方程为

2020高考化学江苏专用提分大二轮复习(课件+讲义+训练):专题七 大题题型突破(二)

2020高考化学江苏专用提分大二轮复习(课件+讲义+训练):专题七 大题题型突破(二)

_X_,__催__化__剂__Y_积__碳__反__应__的__活__化__能__大__,__积__碳__反__应__的__速__率__小__;__而__消__碳__反__应__活__化__能__相__对__小__,__
_消__碳__反__应__速__率__大___。
解析 活化能越小,越容易进行。对于积碳反应,催化剂X更易进行,而消碳时, 催化剂X不易进行,所以催化剂X没有催化剂Y好。
C(s)+
1 2
O2(g)===CO(g)
ΔH3=-111 kJ·mol-1
①催化重整反应CH4(g)+CO2(g)===2CO(g)+2H2(g)的ΔH=_+__2_4_7___kJ·mol-1。
解析 依据盖斯定律知,按“③×2-①-②”得所求反应的焓变。
12345
②反应中催化剂活性会因积碳反应而降低,同时存在的消碳反应则使积碳量减少。
解析 从图示看,阳离子应移向阴极,所以铁作阳极,铁失去电子生成Fe2+。A处 酸性条件下,亚硝酸根可以氧化Fe2+生成Fe3+,生成的无色气体应为N2,根据Fe和 N得失电子守恒可以配平反应。
12345
(4)工业上以钛基氧化物涂层材料为阳极、碳纳米管修饰的石墨为阴极,电解硝酸钠
和硫酸钠混合溶液,可使 NO-3 变为 NH+ 4 。电极(电催化剂)所处的环境对其催化活性
专题七 大题题型突破(二)
1.(2019·无锡高三期末)二氧化碳、氮氧化物和二氧化硫等物质的转化和综合利用既
有利于节约资源,又有利于保护环境。
(1)CH4—CO2催化重整对温室气体的减排具有重要意义。已知:
C(s)+2H2(g)===CH4(g) ΔH1=-75 kJ·mol-1
C(s)+O2(g)===CO2(g) ΔH2=-394 kJ·mol-1

数学二轮专题7选考部分第1讲坐标系与参数方程

数学二轮专题7选考部分第1讲坐标系与参数方程

高考二轮专题复习
返回目录
命题角 度
素养清单
真题示例
2019·全国卷
极坐 标、极
Ⅱ,22 2019·全国卷
坐标方 逻辑推理 Ⅲ,22 程的求 数学运算 2018·全国卷
解及其 应用
Ⅰ,22 2017·全国卷
Ⅱ,22
典例回顾
(1)求C2的直角坐标 方程; (2)若C1与C2有且仅 有三个公共点,求C1 的方程.
所以θ的取值范围是π4,π2. 所以P点轨迹的极坐标方程为ρ=4cos θ,θ∈π4,π2.
高考二轮专题复习
返回目录
2.(2017·全国卷Ⅱ)在直角坐标系xOy中,以坐标原
点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1
的极坐标方程为ρcos θ=4.
(1)M为曲线C1上的动点,点P在线段OM上,且满足
为xy= =a1+ -4t t, (t为参数). (1)若a=-1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为 17,求a.
高考二轮专题复习
返回目录
解析 (1)曲线C的普通方程为x92+y2=1.
当a=-1时,直线l的普通方程为x+4y-3=0.
x+4y-3=0, 由x92+y2=1,
高考二轮专题复习
返回目录
在Rt△OPQ中,ρcosθ-π3=|OP|=2, 经检验,点P2,π3在曲线ρcosθ-π3=2上, 所以l的极坐标方程为ρcosθ-π3=2.
高考二轮专题复习
返回目录
(2)设P(ρ,θ),在Rt△OAP中,|OP|=|OA|cos θ= 4cos θ,即 ρ=4cos θ.因为P在线段OM上,且AP⊥OM,
高考二轮专题复习
返回目录

2019高考数学二轮复习专题七概率与统计2.7.3正态分布、统计与统计案例课件理

2019高考数学二轮复习专题七概率与统计2.7.3正态分布、统计与统计案例课件理

2.正态分布 X~N(μ,σ2)的三个常用数据 (1)P(μ-σ<X≤μ+σ)=0.6826; (2)P(μ-2σ<X≤μ+2σ)=0.9544; (3)P(μ-3σ<X≤μ+3σ)=0.9974.
[解题指导]
[解]
(1)抽取的一个零件的尺寸在(μ-3σ, μ+3σ)之内的概率
为 0.9974, 从而零件的尺寸在(μ-3σ, μ+3σ)之外的概率为 0.0026, 故 X~B(16,0.0026). 因此 P(X≥1)=1-P(X=0)=1-0.997416≈0.0408. X 的数学期望为 E(X)=16×0.0026=0.0416.
[对点训练]
2 1.(2018· 兰州检测)设 X~N(μ1,σ2 1),Y~N(μ2,σ2),这两个
正态分布密度曲线如图所示,下列结论中正确的是(
)
A. P(Y≥μ2)≥P(Y≥μ1) B.P(X≤σ2)≤P(X≤σ1) C.对任意正数 t,P(X≥t)≥P(Y≥t) D.对任意正数 t,P(X≤t)≥P(Y≤t)
3.方差公式 1 - - - s = [(x1- x )2+(x2- x )2+…+(xn- x )2] n
2
[对点训练] 1.(2018· 安徽皖南八校联考)某校为了解 1000 名高一新生的 健康状况, 用系统抽样法(按等距的规则)抽取 40 名同学进行检查, 将学生从 1~1000 进行编号,现已知第 18 组抽取的号码为 443, 则第一组用简单随机抽样抽取的号码为( A.16 B.17 C.18 D.19 )
[答案]
C
2. 某校组织了“2017 年第 15 届希望杯数学竞赛(第一试)”, 已知此次选拔赛的数学成绩 X 服从正态分布 N(72,121)(单位: 分), 此次考生共有 500 人,估计数学成绩在 72 分到 83 分之间的人数 约为(参数数据:P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)= 0.9544.)( A.238 ) B.170 C.340 D.477

2.1坐标法课件-2024-2025学年高二上学期数学人教B版(2019)选择性必修第一册

2.1坐标法课件-2024-2025学年高二上学期数学人教B版(2019)选择性必修第一册
原点建立平面直角坐标系,设梯形下底长|AB|=2a,上底长|CD|=2b,高为h,则
A(-a,0),B(a,0),C(b,h),D(-b,h).由两点之间的距离公式,得
|AC|= (--)2 + (0-ℎ)2 =
|BD|= [-(-)]2 + (0-ℎ)2 =
所以|AC|=|BD|.
( + )2 + ℎ2 ,
A.8
B.-8
C.±8
解析:由已知,得 2 + 152 =17,a2=64,故 a=±8.
答案:C
3.若点A(3,6),点P在x轴上,且|PA|=10,则点P的坐标

答案:(-5,0)或(11,0)
.
)
D.± 2
4.(多选题)x轴上的点到A(2,1),B(-2,2)两点的距离之和不可能为(
A.3
2 2
.又F为
.又G为
CD的中点,故D(19,3).
故以A,B,C为顶点的平行四边形的第四个顶点D的坐标为(-11,1)或(-9,11)或
(19,3).
中点坐标公式常用于求与线段中点、三角形的中线、平行四边形的对角
线等有关的问题,解题时一般先根据几何概念,找出“中点关系”,再用中点
坐标公式求解.
【变式训练2】 在△ABC中,已知A(0,2),B(-1,-1),C(2,2),求边AC上中线的长.
角形,用坐标法证明:|AE|=|CD|.
证明:如图,以点B为坐标原点,AC所在的直线为x轴,建立平面直角坐标系,

3

3
设△ABD 和△BCE 的边长分别为 a 和 c,则 A(-a,0),C(c,0),D - 2 , 2 ,E 2 , 2 ,

高考化学二轮复习专题七化学反应与热能课件

高考化学二轮复习专题七化学反应与热能课件
2H2(g)+O2(g) ==2H2O(g)
ΔH=-482 kJ·mol-1,B正确。
对点演练
2-1.(2021湖北荆门月考)下列说法或表示方法正确的是(
)
A.CO(g)的燃烧热ΔH=-283.0 kJ·mol-1,则表示CO(g)的燃烧热的热化学方程
式为2CO(g)+O2(g) ==2CO2(g)
2022
第一编
专题七 化学反应与热能




01ቤተ መጻሕፍቲ ባይዱ
考点一
化学反应的热效应
02
考点二
盖斯定律的应用
03
专项模块
素养培优
五年高考 命题研究
高频考点
五年考向
命题角度再思考
考向1.反应热图像和反应机 考向1.命题可能结合化学键、
理分析:[2021湖南卷,14]
1.化学反
应的热效

氧化还原反应配平、化学反
[2020全国Ⅰ卷,10][2019全国 应速率和化学平衡综合考查
(kJ·mol-1 )
H2(g)
C(石墨,s)
C6H6(l)
-285.8
-393.5
-3 267.5
则25 ℃时H2(g)和C(石墨,s)生成C6H6(l)的热化学方程式为

答案 3H2(g)+6C(石墨,s) ==C6H6(l)
ΔH=+49.1 kJ·mol-1
解析 根据H2(g)、C(石墨,s)和C6H6(l)的燃烧热,写出其热化学方程式分别
的H2S和Hg的协同脱除,部分反应机理如图(吸附在催化剂表面的物种用*
标注)。有关该过程的叙述错误的是(
A.产生清洁燃料H2

2020高考终极训练试题 专题7 第1讲 坐标系与参数方程(大题)

2020高考终极训练试题  专题7 第1讲 坐标系与参数方程(大题)

第1讲坐标系与参数方程(大题)热点一极坐标与简单曲线的极坐标方程1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且在两种坐标系中取相同的长度单位.如图,设M是平面内的任意一点,它的直角坐标、极坐标分别为(x,y)和(ρ,θ),则⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0). 2.在与曲线的直角坐标方程进行互化时,一定要注意变量的范围,要注意转化的等价性. 例1 (2019·全国Ⅱ)在极坐标系中,O 为极点,点M (ρ0,θ0)(ρ0>0)在曲线C :ρ=4sin θ上,直线l 过点A (4,0)且与OM 垂直,垂足为P . (1)当θ0=π3时,求ρ0及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.跟踪演练1 在平面直角坐标系xOy 中,已知直线l :x +3y =53,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin θ.(1)求直线l 的极坐标方程和圆C 的直角坐标方程;(2)射线OP :θ=π6(ρ≥0)与圆C 的交点为O ,A ,与直线l 的交点为B ,求线段AB 的长.热点二 简单曲线的参数方程 1.直线的参数方程过定点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).2.圆的参数方程圆心为点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).3.圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数).(2)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).4.(1)参数方程的实质是将曲线上每一点的横、纵坐标分别用同一个参数表示出来,所以有时处理曲线上与点的坐标有关的问题时,用参数方程求解非常方便;(2)充分利用直线、圆、椭圆等参数方程中参数的几何意义,在解题时能够事半功倍.例2 (2019·聊城模拟)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数),倾斜角为α的直线l 经过点P (0,2). (1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 有两个不同的交点M ,N ,求|PM |+|PN |的最大值.跟踪演练2 (2018·全国Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.热点三 极坐标方程与参数方程的综合应用解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上动点有关的问题,如最值、范围等.例3 (2019·衡阳调研)在直角坐标系xOy 中,设P 为⊙O :x 2+y 2=9上的动点,点D 为P 在x 轴上的投影,动点M 满足2DM →=MP →,点M 的轨迹为曲线C .以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin ⎝⎛⎭⎫θ+π6=23,点A (ρ1,0),B ⎝⎛⎭⎫ρ2,π2为直线l 上两点.(1)求曲线C 的参数方程;(2)是否存在M ,使得△MAB 的面积为8?若存在,有几个这样的点?若不存在,请说明理由.|AB |=ρ21+ρ22=8. S △MAB =12|AB |d ≥43,∵8>43,故存在符合题意的点M ,且存在两个这样的点.跟踪演练3 (2019·烟台模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =1-32t ,y =-3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=222-cos 2θ.(1)求直线l 的普通方程及曲线C 的直角坐标方程;(2)设点P (1,-3),直线l 与曲线C 相交于A ,B 两点,求1|P A |+1|PB |的值.真题体验(2019·全国Ⅰ,理,22)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1-t 21+t 2,y =4t1+t2(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcos θ+3ρsin θ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.押题预测在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ-2ρsin θ+1=0,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).(1)求曲线C 上的点到直线l 的距离的最大值;(2)直线l 与曲线C 交于A ,B 两点,已知点M (1,1),求|MA |·|MB |的值.A 组 专题通关1.(2019·贵州普通高等学校招生考试)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≥0),在以O 为原点,x 轴正半轴为极轴的极坐标系中,曲线C 2,C 3的极坐标方程为ρ2-2ρcos θ-45=0,ρ(cos θ+sin θ)=75.(1)判断C 2,C 3的位置关系,并说明理由;(2)若tan α=34(0≤α≤π),C 1分别与C 2,C 3交于M ,N 两点,求|MN |.2.(2019·全国Ⅲ)如图,在极坐标系Ox 中,A (2,0),B ⎝⎛⎭⎫2,π4,C ⎝⎛⎭⎫2,3π4,D (2,π),弧»»»AB C BC D ,,所在圆的圆心分别是(1,0),⎝⎛⎭⎫1,π2,(1,π),曲线M 1是弧»AB ,曲线M 2是弧»BC ,曲线M 3是弧».CD(1)分别写出M 1,M 2,M 3的极坐标方程;(2)曲线M 由M 1,M 2,M 3构成,若点P 在M 上,且|OP |=3,求P 的极坐标.3.(2019·陕西八校联考)已知曲线C 的极坐标方程为ρ=4cos θsin 2θ,直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =1+t sin α(t 为参数,0≤α<π). (1)把曲线C 的极坐标方程化为直角坐标方程,并说明曲线C 的形状; (2)若直线l 经过点(1,0),求直线l 被曲线C 截得的线段AB 的长.B 组 能力提高4.(2019·六安模拟)已知曲线E 的极坐标方程为ρ=4tan θcos θ,倾斜角为α的直线l 过点P (2,2).(1)求曲线E 的直角坐标方程和直线l 的参数方程;(2)设l 1,l 2是过点P 且关于直线x =2对称的两条直线,l 1与E 交于A ,B 两点,l 2与E 交于C ,D 两点.求证:|P A |∶|PD |=|PC |∶|PB |.5.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =3sin α(α为参数,α∈[0,π]).以O为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2=61-sin 2θ+3cos 2θ.(1)求曲线C 1的极坐标方程;(2)设C 1与C 2的交点为M ,N ,求∠MON .数学核心素养练习一、数学抽象、直观想象素养1 数学抽象例1 (2019·全国Ⅱ)设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x -1).若对任意x ∈(-∞,m ],都有f (x )≥-89,则m 的取值范围是( )A.⎝⎛⎦⎤-∞,94 B.⎝⎛⎦⎤-∞,73 C.⎝⎛⎦⎤-∞,52 D.⎝⎛⎦⎤-∞,831.如图表示的是一位骑自行车和一位骑摩托车的旅行者在相距80 km 的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上了骑自行车者;④骑摩托车者在出发1.5 h后与骑自行车者速度一样.其中,正确信息的序号是________.素养2直观想象例2(2019·全国Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线2.(2018·北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4二、逻辑推理、数学运算素养3逻辑推理例3(2019·全国Ⅱ)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙3.(2018·全国Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |等于( ) A.32B.3C.2 3D.4 素养4 数学运算例4 (2019·全国Ⅰ)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π64.(2018·全国Ⅲ)设a=log0.20.3,b=log20.3,则()A.a+b<ab<0B.ab<a+b<0C.a+b<0<abD.ab<0<a+b三、数学建模、数据分析素养5数学建模例5(2019·全国Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12⎝⎛⎭⎪⎫5-12≈0.618,称为黄金分割比例,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是()A.165 cmB.175 cmC.185 cmD.190 cm5.(2019·北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元,每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.素养6数据分析例6(2019·全国Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).6.某市一水电站的年发电量y (单位:亿千瓦时)与该市的年降雨量x (单位:毫米)有如下统计数据:(1)若从统计的5年中任取2年,求这2年的发电量都高于7.5 亿千瓦时的概率;(2)由表中数据求得线性回归方程为y ^=0.004x +a ^,该水电站计划2019年的发电量不低于8.6 亿千瓦时,现由气象部门获悉2019年的降雨量约为1 800 毫米,请你预测2019年能否完成发电任务?回扣2复数、程序框图与平面向量1.复数的相关概念及运算法则(1)复数z=a+b i(a,b∈R)的分类①z是实数⇔b=0;②z是虚数⇔b≠0;③z是纯虚数⇔a=0且b≠0.(2)共轭复数复数z=a+b i(a,b∈R)的共轭复数z=a-b i.(3)复数的模复数z=a+b i(a,b∈R)的模|z|=a2+b2.(4)复数相等的充要条件a+b i=c+d i⇔a=c且b=d(a,b,c,d∈R).特别地,a +b i =0⇔a =0且b =0(a ,b ∈R ). (5)复数的运算法则加减法:(a +b i)±(c +d i)=(a ±c )+(b ±d )i ; 乘法:(a +b i)(c +d i)=(ac -bd )+(ad +bc )i ; 除法:(a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -adc 2+d2i(c +d i ≠0).()其中a ,b ,c ,d ∈R2.复数的几个常见结论 (1)(1±i)2=±2i. (2)1+i 1-i =i ,1-i1+i=-i. (3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0(n ∈Z ). 3.程序框图的三种基本逻辑结构 (1)顺序结构. (2)条件结构. (3)循环结构. 4.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.我们把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 5.向量a 与b 的夹角已知两个非零向量a 和b .作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向.如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b . 6.平面向量的数量积(1)若a ,b 为非零向量,夹角为θ,则a·b =|a||b |cos θ. (2)设a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.(3)a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 7.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. 8.利用数量积求长度(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2. 9.利用数量积求夹角设a ,b 为非零向量,若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.10.三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,角A ,B ,C 所对的边长分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A. (2)O 为△ABC 的重心⇔OA →+OB →+OC →=0. (3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →. (4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0.1.复数z为纯虚数的充要条件是a=0且b≠0(z=a+b i,a,b∈R).还要注意巧妙运用参数问题和合理消参的技巧.2.复数的运算与多项式运算类似,要注意利用i2=-1化简合并同类项.3.在解决含有循环结构的框图时,要弄清停止循环的条件.注意理解循环条件中“≥”与“>”的区别.4.解决程序框图问题时,要注意流程线的指向与其上文字“是”“否”的对应.5.在循环结构中,易错误判定循环体结束的条件,导致错求输出的结果.6.a·b>0是〈a,b〉为锐角的必要不充分条件;a·b<0是〈a,b〉为钝角的必要不充分条件.数学的核心素养引领复习一、数学抽象、直观想象素养1数学抽象通过由具体的实例概括一般性结论,看我们能否在综合的情境中学会抽象出数学问题,并在得到数学结论的基础上形成新的命题,以此考查数学抽象素养.例1(2019·全国Ⅱ)设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x -1).若对任意x∈(-∞,m],都有f(x)≥-89,则m的取值范围是()A.⎝⎛⎦⎤-∞,94 B.⎝⎛⎦⎤-∞,73C.⎝⎛⎦⎤-∞,52 D.⎝⎛⎦⎤-∞,83答案B解析当-1<x≤0时,0<x+1≤1,则f(x)=12f(x+1)=12(x+1)x;当1<x≤2时,0<x-1≤1,则f(x)=2f(x-1)=2(x-1)(x-2);当2<x≤3时,0<x-2≤1,则f(x)=2f(x-1)=22f(x-2)=22(x-2)(x-3),…,由此可得f(x)=⎩⎪⎨⎪⎧…,12(x+1)x,-1<x≤0,x(x-1),0<x≤1,2(x-1)(x-2),1<x≤2,22(x-2)(x-3),2<x≤3,由此作出函数f(x)的图象,如图所示.由图可知当2<x≤3时,令22(x-2)·(x-3)=-89,整理,得(3x-7)(3x-8)=0,解得x=73或x=83,将这两个值标注在图中.要使对任意x∈(-∞,m]都有f(x)≥-89,必有m≤73,即实数m的取值范围是⎝⎛⎦⎤-∞,73,故选B.1.如图表示的是一位骑自行车和一位骑摩托车的旅行者在相距80 km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上了骑自行车者;④骑摩托车者在出发1.5 h后与骑自行车者速度一样.其中,正确信息的序号是________.答案①②③解析看时间轴易知①正确;骑摩托车者行驶的路程与时间的函数图象是直线,所以是匀速运动,而骑自行车者行驶的路程与时间的函数图象是折线,所以是变速运动,因此②正确;两条曲线的交点的横坐标对应着4.5,故③正确,④错误.素养2直观想象通过空间图形与平面图形的观察以及图形与数量关系的分析,通过想象对复杂的数学问题进行直观表达,看我们能否运用图形和空间想象思考问题,感悟事物的本质,形成解决问题的思路,以此考查直观想象素养.例2(2019·全国Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线答案B解析取CD的中点O,连接ON,EO,因为△ECD为正三角形,所以EO⊥CD,又平面ECD⊥平面ABCD,平面ECD∩平面ABCD=CD,所以EO⊥平面ABCD.设正方形ABCD的边长为2,则EO=3,ON=1,所以EN2=EO2+ON2=4,得EN=2.过M作CD的垂线,垂足为P,连接BP,则MP=32,CP=32,所以BM2=MP2+BP2=⎝⎛⎭⎫322+⎝⎛⎭⎫322+22=7,得BM=7,所以BM≠EN.连接BD,BE,因为四边形ABCD为正方形,所以N为BD的中点,即EN,MB均在平面BDE内,所以直线BM,EN是相交直线.2.(2018·北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4答案C解析由三视图得到空间几何体,如图所示,则P A⊥平面ABCD,平面ABCD为直角梯形,P A=AB=AD=2,BC=1,所以P A⊥AD,P A⊥AB,P A⊥BC.又BC⊥AB,AB∩P A=A,AB,P A⊂平面P AB,所以BC⊥平面P AB.又PB⊂平面P AB,所以BC⊥PB.在△PCD中,PD=22,PC=3,CD=5,所以△PCD为锐角三角形.所以侧面中的直角三角形为△P AB,△P AD,△PBC,共3个.故选C.二、逻辑推理、数学运算素养3逻辑推理通过提出问题和论证命题的过程,看我们能否选择合适的论证方法和途径予以证明,并能用准确、严谨的数学语言表述论证过程,以此考查逻辑推理素养.例3(2019·全国Ⅱ)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙答案 A解析 由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,再假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.3.(2018·全国Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |等于( ) A.32 B.3 C.2 3 D.4 答案 B解析 由已知得双曲线的两条渐近线方程为y =±13x . 设两渐近线的夹角为2α,则有tan α=13=33, 所以α=30°.所以∠MON =2α=60°.又△OMN 为直角三角形,由于双曲线具有对称性,不妨设MN ⊥ON ,如图所示. 在Rt △ONF 中,|OF |=2, 则|ON |= 3.则在Rt △OMN 中,|MN |=|ON |·tan 2α=3·tan 60°=3.素养4 数学运算通过各类数学问题特别是综合性问题的处理,看我们能否做到明确运算对象,分析运算条件,选择运算法则,把握运算方向,设计运算程序,获取运算结果,以此考查数学运算素养.例4 (2019·全国Ⅰ)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 B解析 设a 与b 的夹角为α,∵(a -b )⊥b ,∴(a -b )·b =0,∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |,∴cos α=12,∵α∈[0,π],∴α=π3,故选B.4.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A.a +b <ab <0 B.ab <a +b <0 C.a +b <0<ab D.ab <0<a +b答案 B解析 ∵a =log 0.20.3>log 0.21=0, b =log 20.3<log 21=0,∴ab <0.∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4, ∴1=log 0.30.3>log 0.30.4>log 0.31=0, ∴0<a +b ab<1,∴ab <a +b <0.三、数学建模、数据分析素养5数学建模通过实际应用问题的处理,看我们是否能够运用数学语言清晰、准确地表达数学建模的过程和结果,以此考查数学建模素养.例5(2019·全国Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12⎝⎛⎭⎪⎫5-12≈0.618,称为黄金分割比例,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是()A.165 cmB.175 cmC.185 cmD.190 cm答案B解析若头顶至咽喉的长度为26 cm,则身高为26+26÷0.618+(26+26÷0.618) ÷0.618≈178(cm),此人头顶至脖子下端的长度为26 cm,即头顶至咽喉的长度小于26 cm,所以其身高小于178 cm,同理其身高也大于105÷0.618≈170(cm),故其身高可能是175 cm,故选B.5.(2019·北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元,每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为________. 答案 130 15解析 (1)顾客一次购买草莓和西瓜各1盒,总价为60+80=140(元),又140>120,所以优惠10元,顾客实际需要付款130元.(2)设顾客一次购买的水果总价为m 元,由题意知,当0<m <120时,x =0,当m ≥120时,(m -x )×80%≥m ×70%,得x ≤m 8对任意m ≥120恒成立,又m8≥15,所以x 的最大值为15.素养6 数据分析通过对概率与统计问题中大量数据的分析和加工,看我们能否获得数据提供的信息及其所呈现的规律,进而分析随机现象的本质特征,发现随机现象的统计规律,以此考查数据分析素养.例6 (2019·全国Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.(1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 解 (1)由已知得0.70=a +0.20+0.15,故a =0.35.b =1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.6.某市一水电站的年发电量y (单位:亿千瓦时)与该市的年降雨量x (单位:毫米)有如下统计数据:2013年 2014年 2015年 2016年 2017年 降雨量x (毫米) 1 500 1 400 1 900 1 600 2 100 发电量y (亿千瓦时)7.47.09.27.910.0(1)若从统计的5年中任取2年,求这2年的发电量都高于7.5 亿千瓦时的概率;(2)由表中数据求得线性回归方程为y ^=0.004x +a ^,该水电站计划2019年的发电量不低于8.6 亿千瓦时,现由气象部门获悉2019年的降雨量约为1 800 毫米,请你预测2019年能否完成发电任务?解 (1)从统计的5年发电量中任取2年,基本事件为{7.4,7.0},{7.4,9.2},{7.4,7.9},{7.4,10.0},{7.0,9.2},{7.0,7.9},{7.0,10.0},{9.2,7.9},{9.2,10.0},{7.9,10.0},共10个;其中这2年的发电量都高于7.5 亿千瓦时的基本事件为{9.2,7.9},{9.2,10.0},{7.9,10.0},共3个.所以这2年发电量都高于7.5 亿千瓦时的概率为P =310.(2)因为x =1 500+1 400+1 900+1 600+2 1005=8 5005=1 700, y =7.4+7.0+9.2+7.9+10.05=41.55=8.3. 又直线y ^=0.004x +a ^过点(x ,y ),所以8.3=0.004×1 700+a ^, 解得a ^=1.5, 所以y ^=0.004x +1.5.当x =1 800时,y ^=0.004×1 800+1.5=8.7>8.6, 所以预测该水电站2019年能完成发电任务.。

高考二轮总复习课件(适用于老高考旧教材)数学(理)专题七 选做大题

高考二轮总复习课件(适用于老高考旧教材)数学(理)专题七 选做大题
ρcos θ- 3ρsin θ=4- 3或 ρcos θ+ 3ρsin θ=4+ 3.
解题心得
1.无论是将参数方程化为极坐标方程,还是将极坐标方程化为参数方程,都
要先化为普通方程,再由普通方程化为需要的方程.
2.求解与极坐标方程有关的问题时,可以转化为熟悉的普通方程求解.若最
终结果要求用极坐标表示,则需将普通方程转化为极坐标.
两圆的圆心分别为( 2,0),(3- 2,0),半径分别为 2和 2,两圆心的距离是 3-2 2,
半径之差为 2- 2,显然 3-2 2<2- 2,所以两圆没有公共点.
知识精要
1.极坐标与直角坐标的互化
(1)互化的前提:①直角坐标系的原点与极点重合;②x轴的正半轴与极轴重
合;③在两种坐标系中取相同的长度单位.
对点练1(2022·河南焦作一模)在直角坐标系xOy中,直线l的参数方程是
= -,
(t为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,圆O
= 2-
的极坐标方程为ρ2-8=2ρ(cos θ+sin θ).
(1)求直线l的普通方程和圆O的直角坐标方程;
(2)当θ∈[
π
,π]时,求直线l与圆O的公共点的极坐标.
极坐标系,求这两条切线的极坐标方程.
= 2 + cos,
解 (1)☉C 的参数方程为
(θ 为参数).
= 1 + sin
(2)☉C的直角坐标方程为(x-2)2+(y-1)2=1.
①当直线斜率不存在时,直线方程为x=4,此时圆心到直线的距离d=2,有
d>r(r为圆C的半径),不合题意,舍去;
和(1,2),C3 与 C2 的交点为(-1,-2)和

2019届高三数学(理)二轮复习精品同步:第1部分 基础送分题:教师用书:题型专题(4) 不等式(通用版)

2019届高三数学(理)二轮复习精品同步:第1部分 基础送分题:教师用书:题型专题(4) 不等式(通用版)

题型专题(四) 不等式(1)一元二次不等式ax 2+bx +c >0(或<0)(a ≠0,Δ=b 2-4ac >0),如果a 与ax 2+bx +c 同号,则其解集在两根之外;如果a 与ax 2+bx +c 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.(2)解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.[题组练透]1.(2019·河北五校联考)如图,已知R 是实数集,集合A ={x |log 12(x -1)>0},B =⎩⎨⎧⎭⎬⎫x |2x -3x <0,则阴影部分表示的集合是( )A .[0,1]B .[0,1)C .(0,1)D .(0,1]解析:选D 由题意可知A ={x |1<x <2},B =⎩⎨⎧⎭⎬⎫x |0<x <32,且图中阴影部分表示的是B ∩(∁R A )={x |0<x ≤1},故选D.2.已知函数f (x )=(ax -1)(x +b ),若不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( )A.⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫12,+∞B.⎝⎛⎭⎫-32,12C.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫32,+∞D.⎝⎛⎭⎫-12,32 解析:选A 由f (x )>0,得ax 2+(ab -1)x -b >0,又其解集是(-1,3), ∴a <0,且⎩⎨⎧1-aba =2,-ba =-3,解得a =-1或13(舍去),∴a =-1,b =-3, ∴f (x )=-x 2+2x +3, ∴f (-2x )=-4x 2-4x +3,由-4x 2-4x +3<0,得4x 2+4x -3>0, 解得x >12或x <-32,故选A.3.(2019·泉州质检)设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,则使得f (x )≤1成立的x 的取值范围是________.解析:由⎩⎨⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎨⎧x <0,-x 3≤1得-1≤x <0,故f (x )≤1的解集为[-1,9].答案:[-1,9] [技法融会]1.求解一元二次不等式的3步:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集.2.(易错提醒)解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.基本不等式:a +b2≥ab(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)应用:两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.[题组练透]1.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( ) A .1 B.32 C .2 D.52解析:选B 2x +2x -a =2(x -a )+2x -a+2a ≥22(x -a )·2x -a+2a =4+2a ,由题意可知4+2a ≥7,解得a ≥32,即实数a 的最小值为32,故选B.2.(2019·湖北七市联考)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是( )A .9 B.92 C .4 D.52解析:选B 将圆的一般方程化为标准方程为(x -1)2+(y -2)2=5,圆心坐标为(1,2),半径r =5,故直线过圆心,即a +2b =6,∴a +2b =6≥2a ·2b ,可得ab ≤92,当且仅当a =2b=3时等号成立,即ab 的最大值是92,故选B.3.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元解析:选C 设该容器的总造价为y 元,长方体的底面矩形的长为x m ,因为无盖长方体的容积为4 m 3,高为1 m ,所以长方体的底面矩形的宽为4xm ,依题意,得y =20×4+10⎝⎛⎭⎫2x +2×4x=80+20⎝⎛⎭⎫x +4x ≥80+20×2 x ·4x=160⎝⎛⎭⎫当且仅当x =4x ,即x =2时取等号. 所以该容器的最低总造价为160元.4.(2019·江西两市联考)已知x ,y ∈R +,且x +y +1x +1y =5,则x +y 的最大值是( )A .3 B.72 C .4 D.92解析:选C 由x +y +1x +1y =5,得5=x +y +x +y xy ,∵x >0,y >0,∴5≥x +y +x +y ⎝⎛⎭⎫x +y 22=x+y +4x +y,∴(x +y )2-5(x +y )+4≤0,解得1≤x +y ≤4,∴x +y 的最大值是4.[技法融会]1.利用不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值.2.(易错提醒)利用基本不等式求最值时要注意“一正、二定、三相等”,三个条件缺一不可.解决线性规划问题的一般步骤(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平面直线系中的任意一条直线l .(2)平移——将l 平行移动,以确定最优解所对应的点的位置.有时需要对目标函数l 和可行域边界的斜率的大小进行比较.(3)求值——解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. [题组练透]1.(2019·河南六市联考)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =( )A .6B .5C .4D .3解析:选B 画出不等式组所表示的可行域如图中阴影部分所示,作直线l :y =x ,平移l可知,当直线l 经过A 时,z =x -y 取得最小值-1,联立⎩⎨⎧y =2x -1,x -y =-1,得⎩⎨⎧x =2,y =3,即A (2,3),又A (2,3)在直线x +y =m 上,∴m =5,故选B.2.(2019·福建质检)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,y +2≥0,x +y +2≥0,则(x +2)2+(y +3)2的最小值为( )A .1 B.92C .5D .9解析:选B 不等式组表示的可行域为如图所示的阴影部分,由题意可知点P (-2, -3)到直线x +y +2=0的距离为|-2-3+2|2=32,所以(x +2)2+(y +3)2的最小值为⎝⎛⎭⎫322=92,故选B.3.(2019·全国甲卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析:不等式组⎩⎨⎧x -y +1≥0,x +y -3≥0,x -3≤0表示的可行域如图中阴影部分所示.由z =x -2y 得y =12x -12z .平移直线y =12x ,易知经过点A (3,4)时,z 有最小值,最小值为z =3-2×4=-5.答案:-54.(2019·山西质检)设实数x ,y 满足⎩⎪⎨⎪⎧2x +y -2≤0,x -y +1≥0,x -2y -1≤0,则y -1x -1的最小值是________.解析:画出不等式组所表示的可行域,如图所示,而y -1x -1表示区域内一点(x ,y )与点D (1,1)连线的斜率,∴当x =13,y =43时,y -1x -1有最小值为-12.答案:-125.(2019·全国乙卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900 元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设生产产品A x 件,产品B y 件,由已知可得约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N . 目标函数为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分.作直线2 100x +900y =0,即7x +3y =0,当直线经过点B 时,z 取得最大值,联立⎩⎨⎧10x +3y =900,5x +3y =600,解得B (60,100). 则z max =2 100×60+900×100=216 000(元). 答案:216 000 [技法融会]1.线性目标函数z =ax +by 最值的确定方法线性目标函数z =ax +by 中的z 不是直线ax +by =z 在y 轴上的截距,把目标函数化为y =-a b x +z b ,可知zb 是直线ax +by =z 在y 轴上的截距,要根据b 的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.2.(易错提醒)解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.1.不等式的可乘性(1)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (2)a >b >0,c >d >0⇒ac >bd .2.不等式的性质在近几年高考中未单独考查,但在一些题的某一点可能考查,在今后复习中应引起关注.[题组练透]1.(2019·河南六市联考)若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |解析:选D 由题可知b <a <0,所以A ,B ,C 正确,而|a |+|b |=-a -b =|a +b |,故D 错误,选D.2.已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2 B .若a c >bc,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b解析:选C 当c =0时,可知A 不正确;当c <0时,可知B 不正确;对于C ,由a 3>b 3且ab <0知a >0且b <0,所以1a >1b成立,C 正确;当a <0且b <0时,可知D 不正确.[技法融会]1.判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除.2.利用不等式性质解决问题的注意事项(1)不等式两边都乘以一个代数式时,考察所乘的代数式是正数、负数或0;(2)不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变; (3)不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变等.一、选择题1.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( ) A .2 B .-2 C .-12 D.12解析:选B 根据不等式与对应方程的关系知-1,-12是一元二次方程ax 2+x (a -1)-1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2,故选B. 2.(2019·北京高考)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( )A .-1B .3C .7D .8解析:选C 作出线段AB ,如图所示.作直线2x -y =0并将其向下平移至直线过点B(4,1)时,2x -y 取最大值为2×4-1=7. 3.(2019·福建四地六校联考)已知函数f (x )=x +ax +2的值域为(-∞,0]∪[4,+∞),则a的值是( )A.12B.32C .1D .2 解析:选C 由题意可得a >0,①当x >0时,f (x )=x +ax +2≥2a +2,当且仅当x =a 时取等号;②当x <0时,f (x )=x +ax+2≤-2a +2,当且仅当x =-a 时取等号.所以⎩⎨⎧2-2a =0,2a +2=4,解得a =1,故选C. 4.已知函数f (x )=(x -2)(ax +b)为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( )A .{ x | x >2或x <-2}B .{ x |-2< x <2}C .{ x | x <0或x >4}D .{ x |0< x <4}解析:选C 由题意可知f (-x )=f (x ),即(-x -2)·(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立,故2a -b =0,即b =2a ,则f (x )=a (x -2)( x +2).又函数在(0,+∞)单调递增,所以a >0.f (2-x )>0即ax (x -4)>0,解得x <0或x >4.故选C. 5.(2019·赣中南五校联考)对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,且c ≠0,则a >b ; ②若a > b ,c>d ,则a +c >b +d ; ③若a > b ,c> d ,则ac >bd ; ④若a > b ,则1a >1b .其中正确的有( )A .1个B .2个C .3个D .4个解析:选B ①ac 2>bc 2,且c ≠0,则a >b ,①正确;②由不等式的同向可加性可知②正确;③需满足a ,b ,c ,d 均为正数才成立;④错误,比如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B.6.(2019·安徽江南十校联考)若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎡⎦⎤-12,2 C .[-1,2] D.⎣⎡⎦⎤-12,1 解析:选B 作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2 x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.7.(2019·河北五校联考)若对任意正实数x ,不等式1x 2+1≤ax 恒成立,则实数a 的最小值为( )A .1 B. 2 C.12 D.22解析:选C 因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x ≤12(当且仅当x =1时取等号),所以a ≥12.故选C.8.(2019·河南八市联考)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =3x +2y 的最小值为1,则a =( )A.14B.12C.34D .1 解析:选B 根据约束条件作出可行域(如图中阴影部分所示),把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2,随z 变化的一族平行直线,当直线z =3x +2y 经过点B 时,截距z2最小,即z 最小,又B 点坐标为(1,-2a ),代入3x +2y =1,得3-4a =1,得a =12,故选B.9.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元B .C .17万元D .18万元解析:选D 设该企业每天生产甲产品x 吨,乙产品y 吨,每天获得的利润为z 万元, 则有z =3x +4y ,由题意得x ,y 满足⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出可行域如图中阴影部分所示,根据线性规划的有关知识,知当直线3x +4y -z =0过点B (2,3)时,z 取最大值18,故该企业每天可获得最大利润为18万元.故选D.10.(2019·湖北七市联考)设向量a =(1,k ),b =(x ,y ),记a 与b 的夹角为θ.若对所有满足不等式|x -2|≤y ≤1的x ,y ,都有θ∈⎝⎛⎭⎫0,π2,则实数k 的取值范围是( )A .(-1,+∞)B .(-1,0)∪(0,+∞)C .(1,+∞)D .(-1,0)∪(1,+∞)解析:选D 首先画出不等式|x -2|≤y ≤1所表示的区域,如图中阴影部分所示,令z =a ·b =x +ky ,∴问题等价于当可行域为△ABC 时,z >0恒成立,且a 与b 方向不相同,将△ABC 的三个端点值代入,即⎩⎨⎧k +1>0,k +3>0,2+0·k >0,解得k >-1,当a 与b 方向相同时,1·y =x ·k ,则k =y x∈[0,1],∴实数k 的取值范围是(-1,0)∪(1,+∞),故选D. 11.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)解析:选B 由题可知,1=1x +4y ≥24xy =4xy,即xy ≥4,于是有m 2-3m >x +y 4≥xy ≥4,故m 2-3m >4,化简得(m +1)(m -4)>0,即实数m 的取值范围为(-∞,-1)∪(4,+∞).12.设二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ).若∀x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a 2+2c 2的最大值为( ) A.6+2 B.6-2C .22+2D .22-2解析:选B 由题意得f ′(x )=2ax +b ,由f (x )≥f ′(x )在R 上恒成立,得ax 2+(b -2a )x +c -b ≥0在R 上恒成立,则a >0且Δ≤0,可得b 2≤4ac -4a 2,则b 2a 2+2c 2≤4ac -4a 2a 2+2c 2=4⎝⎛⎭⎫c a -12⎝⎛⎭⎫c a 2+1,又4ac -4a 2≥0,∴4·c a -4≥0,∴c a -1≥0,令t =c a -1,则t ≥0.当t >0时,b 2a 2+2c 2≤4t 2t 2+4t +3=42t +3t+4≤426+4=6-2(当且仅当t =62时等号成立),当t =0时,b 2a 2+2c 2=0,故b 2a 2+2c 2的最大值为6-2,故选B.二、填空题13.(2019·湖北华师一附中联考)若2x +4y =4,则x +2y 的最大值是________.解析:因为4=2x +4y =2x +22y ≥22x ×22y =22x +2y ,所以2x +2y ≤4=22,即x +2y ≤2,当且仅当2x =22y =2,即x =2y =1时,x +2y 取得最大值2.答案:214.(2019·河北三市联考)如果实数x ,y 满足条件⎩⎪⎨⎪⎧x +y -2≥0,x -1≤0,y -2≤0,且z =y x +a 的最小值为12,则正数a 的值为________.解析:根据约束条件画出可行域如图中阴影部分所示,经分析可知当x =1,y =1时,z取最小值12,即11+a =12,所以a =1.答案:115.(2019·江西两市联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是________.解析:设z =x +2y +3x +1=x +1+2(y +1)x +1=1+2·y +1x +1,设z ′=y +1x +1,则z ′的几何意义为动点P (x ,y )到定点D (-1,-1)的斜率.画出可行域如图中阴影部分所示,则易得z ′∈[k DA ,k DB ],易得z ′∈[1,5],∴z =1+2·z ′∈[3,11].答案:[3,11]16.(2019·湖南东部六校联考)对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2),解关于x 的不等式ax 2-bx +c >0”,给出如下一种解法:解:由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1),即关于x 的不等式ax 2-bx +c >0的解集为(-2,1).参考上述解法,若关于x 的不等式k x +a +x +b x +c<0的解集为⎝⎛⎭⎫-1,-13∪⎝⎛⎭⎫12,1,则关于x 的不等式kx ax +1+bx +1cx +1<0的解集为________.解析:不等式kxax+1+bx+1cx+1<0,可化为ka+1x+b+1xc+1x<0,故得-1<1x<-13或12<1x<1,解得-3<x<-1或1<x<2,故kxax+1+bx+1cx+1<0的解集为(-3,-1)∪(1,2).答案:(-3,-1)∪(1,2)。

2020高考化学江苏专用提分大二轮复习(课件+讲义+训练):专题七 大题题型突破(一)

2020高考化学江苏专用提分大二轮复习(课件+讲义+训练):专题七 大题题型突破(一)
12345
解析
液态产品中含有
NO

2

NO

3







Ca2 + , 然 后 再 除 去
NO

2


(NH4)2Fe(SO4)2 与 NO- 3 反应,过量的(NH4)2Fe(SO4)2 与 K2Cr2O7 反应,根据 K2Cr2O7 的消耗 量可以计算出过量的(NH4)2Fe(SO4)2,然后得出与 NO- 3 反应的(NH4)2Fe(SO4)2,进而得出 NO- 3 的物质的量。提醒要注意的是从 250 mL 溶液中只取出 10 mL 进行滴定实验,计算时 需要统一在一个标准下进行。
解析 由已知信息知,[Fe(C2O4)3]3-与SCN-反应的平衡常数很小,所以用KSCN不 易检验出[Fe(C2O4)3]3-中的Fe3+。
12345
(4)某研究小组通过如下实验步骤测定晶体A的化学式。 步骤1:准确称取A样品4.910 0 g,干燥脱水至恒重,残留物质量为4.370 0 g。 步骤2:准确称取A样品4.910 0 g置于锥形瓶中,加入足量的3.000 mol·L-1H2SO4溶液 和适量蒸馏水,用0.500 0 mol·L-1 KMnO4溶液滴定,当MnO-4恰好完全被还原为Mn2+ 时,消耗KMnO4溶液的体积为24.00 mL。 步骤3:将步骤1所得固体溶于水,加入铁粉0.280 0 g,恰好完全反应。 通过计算确定晶体A的化学式(写出计算过程)。
12345
2.(2019·常州高三期末)用硫酸亚铁铵[(NH4)2SO4·FeSO4·6H2O]为原料通过下列流程可以制备 晶体A。
已知:25 ℃时,[Fe(C2O4)3]3-(aq)+SCN-(aq) [Fe(SCN)]2+(aq)+3C2O24-(aq),K=10-16。

高考数学二轮复习时间计划

高考数学二轮复习时间计划

高考数学二轮复习时间计划复习规划为了达成更好回顾效果而制定的周密详尽可操作性强的任务时间表,叫做复习计划。

下面一起来了解高考数学二轮复习时间计划。

高三二轮复习计划2月17日~4月27日:专题复习;4月28日~5月18日;综合演练;5月19日~5月31日:自由复习。

专题一:集合、函数、导数与不等式。

此专题函数和导数以及应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。

每年高考中导数所占的比重都非常大,一般情况是在客观题中考查导数的几何意义和导数的计算,属于容易题;二是在解答题中进行综合考查,主要考查用导数研究函数的性质,用函数的单调性证明不等式等,此题具有很高的综合性,并且与思想方法紧密结合。

专题二:数列、推理与证明。

数列由旧高考中的压轴题变成了新高考中的中档题,主要考查等差等比数列的通项与求和,与不等式的简单综合问题是近年来的热门问题。

专题三:三角函数、平面向量和解三角形。

平面向量和三角函数的图像与性质、恒等变换是重点。

近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题、一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点。

平面向量具有几何与代数形式的双重性,是一个重要的知识交汇点,它与三角函数、解析几何都可以整合。

专题四:立体几何。

注重几何体的三视图、空间点线面的关系及空间角的计算,用空间向量解决点线面的问题是重点。

专题五:解析几何。

直线与圆锥曲线的位置关系、轨迹方程的探求以及最值范围、定点定值、对称问题是命题的主旋律。

近几年高考中圆锥曲线问题具有两大特色:一是融综合性、开放性、探索性为一体;二是向量关系的引入、三角变换的渗透和导数工具的使用。

我们在注重基础的同时,要兼顾直线与圆锥曲线综合问题的强化训练,尤其是推理、运算变形能力的训练。

专题六:概率与统计、算法与复数。

要求具有较高的阅读理解和分析问题、解决问题的能力。

25第一部分 板块二 专题七 系列4选讲 第1讲 坐标系与参数方程(大题)

25第一部分 板块二 专题七 系列4选讲 第1讲 坐标系与参数方程(大题)
解 设P的极坐标为(ρ,θ)(ρ>0),M的极坐标为(ρ1,θ)(ρ1>0), 由题设知|OP|=ρ,|OM|=ρ1=4cos θ. 所以4ρcos θ=20, 即C2的极坐标方程为ρcos θ=5(ρ>0), 所以C2的直角坐标方程为x=5.
(2)设 C2 与 x 轴交于点 D,过点 D 且倾斜角为56π的直线 l 与 C1 相交于 A,B 两点, 求|DA|·|DB|的值.
则 d=|2k1++2kk2|= 1|4+k|k2=455, 解得 k=±12.
(2)求线段AB中点E的轨迹方程.
解 设直线 l 的参数方程为xy= =- tsin2+θ tcos θ, (t 为参数),θ∈-π6,π6,
代入圆C:(x-2)2+y2=4,得t2-8tcos θ+12=0. 设 A,B,E 对应的参数分别为 tA,tB,tE,则 tE=tA+2 tB,
由 t 的几何意义,得|MA|·|MB|=-t1t2=2156.
本课结束
圆心为点
M(x0,y0),半径为
r
的圆的参数方程为 y=y0+rsin
θ
(θ 为参数).
3.圆锥曲线的参数方程
(1)椭圆ax22+by22=1(a>b>0)的参数方程为xy= =abcsions
θ, θ
(θ 为参数).
x=2pt2,
(2)抛物线 y2=2px(p>0)的参数方程为
(t 为参数).
y=2pt
(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.
解 设P(ρ,θ),在Rt△OAP中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ. 因为 P 在线段 OM 上,且 AP⊥OM,故 θ 的取值范围是π4,π2. 所以,P 点轨迹的极坐标方程为 ρ=4cos θ,θ∈π4,π2.

高考数学二轮复习7大专题、62个高频考点

高考数学二轮复习7大专题、62个高频考点

高考数学二轮复习7大专题、62个高频考点七大专题专题一函数与不等式以函数为主线,不等式和函数综合题型是考点。

函数的性质:着重掌握函数的单调性、奇偶性、周期性、对称性。

这些性质通常会综合起来一起考查,并且有时会考查具体函数的这些性质,有时会考查抽象函数的这些性质。

一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向、与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间、极值及最值的目的。

不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。

当然关于不等式的解法、均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。

专题二:数列以等差、等比数列为载体,考查等差、等比数列的通项公式、求和公式、通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法。

这些知识点需要掌握。

专题三:三角函数,平面向量,解三角形三角函数是每年必考的知识点,难度较小。

选择、填空、解答题中都有涉及。

有时候考查三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考查三角函数与解三角形,向量的综合性问题,当然正弦、余弦定理是很好的工具。

向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。

专题四:立体几何立体几何中,三视图是每年必考点,主要出现在选择,填空题中。

大题中的立体几何主要考查建立空间直角坐标系,通过向量这一手段求空间距离、线面角、二面角等。

另外,需要掌握棱锥、棱柱的性质。

在棱锥中,着重掌握三棱锥、四棱锥;棱柱中,应该掌握三棱柱、长方体。

空间直线与平面的位置关系应以证明垂直为重点,当然常考查的方法为间接证明。

专题五:解析几何直线与圆锥曲线的位置关系,动点轨迹的探讨,求定值、定点、最值这些为近年来考的热点问题。

2020年高考数学二轮复习70分解答题专项特训-专题7坐标系与参数方程(含答案解析)

2020年高考数学二轮复习70分解答题专项特训-专题7坐标系与参数方程(含答案解析)

2020年高考数学二轮复习70分解答题专项特训-专题7坐标系与参数方程1.已知在平面直角坐标系xOy 中,直线l 的参数方程是⎩⎨⎧x =22t ,y =22t +42(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos ⎝⎛⎭⎫θ+π4. (1)判断直线l 与曲线C 的位置关系;(2)设M 为曲线C 上任意一点,求x +y 的取值范围.解(1)由⎩⎨⎧x =22t ,y =22t +42,消去t ,得直线l 的普通方程为y =x +4 2. 由ρ=2cos ⎝⎛⎭⎫θ+π4, 得ρ=2cos θcos π4-2sin θsin π4=2cos θ-2sin θ.∴ρ2=2ρcos θ-2ρsin θ, 即x 2-2x +y 2+2y =0. 化为标准方程得⎝⎛⎭⎫x -222+⎝⎛⎭⎫y +222=1. ∴圆心坐标为⎝⎛⎭⎫22,-22,半径为1. ∵圆心到直线l :x -y +42=0的距离d =⎪⎪⎪⎪22+22+422=5>1,∴直线l 与曲线C 相离.(2)由M (x ,y )为曲线C 上任意一点,可设⎩⎨⎧x =22+cos α,y =-22+sin α(α为参数,0≤α<2π),则x +y =sin α+cos α=2sin ⎝⎛⎭⎫α+π4, ∵0≤α<2π, ∴π4≤α+π4<9π4, ∴-2≤2sin ⎝⎛⎭⎫α+π4≤2, ∴x +y 的取值范围是[-2,2].2.(2019·辽南协作体模拟)在平面直角坐标系中,直线l 过原点且倾斜角为π4;曲线C 1的参数方程为⎩⎪⎨⎪⎧x =33cos α,y =sin α(α为参数);曲线C 2的参数方程为⎩⎨⎧x =3+13cos α,y =2+13sin α(α为参数).(1)求直线l 的极坐标方程,曲线C 1和曲线C 2的普通方程;(2)若直线l 与曲线C 1和曲线C 2在第一象限的交点分别为M ,N ,求M ,N 之间的距离. 解 (1)直线l 的极坐标方程为θ=π4(ρ∈R );曲线C 1 的普通方程为x 213+y 2=1;曲线C 2的普通方程为(x -3)2+(y -2)2=13. (2)曲线C 1的极坐标方程为ρ2=11+2cos 2θ,曲线C 2的极坐标方程为ρ=6cos θ+4sin θ, ∴|ON |=6cos π4+4sin π4=52,|OM |=11+2×⎝⎛⎭⎫222=22, 可得|MN |=|ON |-|OM |=52-22=922. 3.在平面直角坐标系xOy 中,曲线C 1过点P (m,2),其参数方程为⎩⎨⎧x =m +t ,y =2-t(t 为参数,m∈R ),以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+8cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若已知曲线C 1和曲线C 2交于A ,B 两点,且|P A |=2|PB |,求实数m 的值.解 (1)C 1的参数方程⎩⎨⎧x =m +t ,y =2-t(t 为参数,m ∈R ),消参得普通方程为x +y -m -2=0.C 2的极坐标方程化为ρ(2cos 2θ-1)+8cos θ-ρ=0,两边同乘ρ得2ρ2cos 2θ+8ρcos θ-2ρ2=0,即y 2=4x .即C 2的直角坐标方程为y 2=4x .(2)将曲线C 1的参数方程标准化为⎩⎨⎧x =m -22t ,y =2+22t (t 为参数,m ∈R ),代入曲线C 2:y 2=4x ,得12t 2+42t +4-4m =0, 由Δ=(42)2-4×12×(4-4m )>0,得m >-3,设A ,B 对应的参数为t 1,t 2,由题意得|t 1|=2|t 2|,即t 1=2t 2或t 1=-2t 2,当t 1=2t 2时,⎩⎨⎧t 1=2t 2,t 1+t 2=-82,t 1·t 2=2(4-4m ),解得m =-239,满足m >-3;当t 1=-2t 2时,⎩⎨⎧t 1=-2t 2,t 1+t 2=-82,t 1·t 2=2(4-4m )解得m =33,满足m >-3. 综上,m =-239或33.4.(2019·昆明质检)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2+3cos α,y =3sin α(α为参数),直线l 的参数方程为⎩⎨⎧x =t cos β,y =t sin β(t 为参数,0≤β<π),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)已知直线l 与曲线C 相交于A ,B 两点,且|OA |-|OB |=2,求β. 解 (1)由曲线C 的参数方程可得普通方程为(x -2)2+y 2=3,即x 2+y 2-4x +1=0,所以曲线C 的极坐标方程为ρ2-4ρcos θ+1=0.(2)由直线l 的参数方程可得直线的极坐标方程为θ=β(ρ∈R,0≤β<π), 因为直线l 与曲线C 相交于A ,B 两点, 所以设A (ρ1,β),B (ρ2,β),联立⎩⎨⎧ρ2-4ρcos θ+1=0,θ=β,可得ρ2-4ρcos β+1=0,因为Δ=16cos 2β-4>0,即cos 2β>14,所以|OA |-|OB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2 =16cos 2β-4=2, 解得cos β=±22, 又0≤β<π, 所以β=π4或3π4.5.(2019·保山模拟)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.⊙O 的极坐标方程为ρ=2,直线l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α(t 为参数),直线l 与⊙O 交于A ,B 两个不同的点. (1)求倾斜角α的取值范围;(2)求线段AB 中点P 的轨迹的参数方程. 解 (1)直线l 的倾斜角为α,当α=π2时,直线l (即y 轴)与⊙O 交于A ,B 两个不同的点,符合题目要求;当α≠π2时,记k =tan α,直线l 的参数方程⎩⎨⎧x =t cos α,y =-2+t sin α化为普通方程为kx -y -2=0,圆心O 到直线l 的距离d =21+k 2. 因为直线l 与⊙O 交于不同的两点, 所以21+k 2<2, 解得k >1或k <-1.当k <-1时,直线l 的倾斜角α的取值范围是⎝⎛⎭⎫π2,3π4;当k >1时,α的取值范围是⎝⎛⎭⎫π4,π2,综上,直线l 的倾斜角α的取值范围是⎝⎛⎭⎫π4,3π4.(2)⊙O 的极坐标方程为ρ=2,其直角坐标方程为x 2+y 2=2,因直线l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α(t 为参数),代入x 2+y 2=2中得,t 2-4t sin α+2=0, 故可设A (t 1cos α,-2+t 1sin α), B (t 2cos α,-2+t 2sin α),注意到t 1 ,t 2为方程的根,故t 1+t 2=4sin α, 点P 的坐标为⎝⎛⎭⎫t 1+t 22cos α,-2+t 1+t 22sin α,即(sin 2α,-1-cos 2α), 所以点P 的轨迹的参数方程为⎩⎨⎧x =sin 2α,y =-1-cos 2α(α为参数).。

高中数学专题:极坐标与参数方程

高中数学专题:极坐标与参数方程

综上,所求C1的方程为y=-43|x|+2.
第7页
栏目导航
2.(2018·全国卷Ⅱ)在直角坐标系xOy中,曲线C的参数方程为
x=2cos y=4sin
θ, θ
(θ为
参数),直线l的参数方程为xy= =12+ +ttcsions
α, α
(t为参数).
(1)求C和l的直角坐标方程;
(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.
x=
2 2 sin
2α,
y=-
22-
2 2 cos

α为参数,π4<α<34π.
第28页
栏目导航
2.(2019·西安模拟)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.
(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(2)直线l的参数方程是xy= =ttcsions
α, α
(t为参数),l与C交于A,B两点,|AB|=
10,
求l的斜率.
第29页
栏目导航
解:(1)由x=ρcos θ,y=ρsin θ可得,圆C的极坐标方程为ρ2+12ρcos θ+11=0.
(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).
设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+ 12ρcos α+11=0.
第一部分 高考层级专题突破 层级二 7个保分专题 师生共研
第1页
栏目导航
专题七 选修系列(4) 第一讲 极坐标与参数方程
第2页
栏目导航
栏 目 导 航
第3页
栏目导航
感悟真题 考点突破 课时跟踪检测

2019-2020年全国通用2017年高考数学大二轮专题复习第二编专题整合突破专题七概率与统计第一讲计数原理二项

2019-2020年全国通用2017年高考数学大二轮专题复习第二编专题整合突破专题七概率与统计第一讲计数原理二项
解法二:按要求涂色至少需要 3 种颜色,故分两类:一 是 4 种颜色都用,这时 A 有 4 种涂法,B 有 3 种涂法,C 有 2 种涂法,D 有 1 种涂法,共有 4×3×2×1=24(种)涂法; 二是用 3 种颜色,这时 A、B、C 的涂法有 4×3×2=24(种), D 只要不与 C 同色即可,故 D 有 2 种涂法.所以不同的涂 法共有 24+24×2=72(种).
(2)满足 a,b∈{-1,0,1,2},且关于 x 的方程 ax2+2x+b
=0 有实数解的有序数对(a,b)的个数为( )
A.14
B.13
C.12
D.10
[解析] 方程 ax2+2x+b=0 有实数解的情况应分类讨
论.当 a=0 时,关于 x 的方程为 2x+b=0,此时有序数对
(0,-1),(0,0),(0,1),(0,2)均满足要求;当 a≠0 时,Δ=
2.[2015·天津五区县一模] 如图,用四种不同的颜色给 图中的 A,B,C,D,E,F 六个点涂色,要求每个点涂一 种颜色,且图中每条线段的两个端点涂不同颜色,则不同的 涂色方法有( )
A.288 种 C.240 种
B.264 种 D.168 种
解析 解法一:先涂 A,D,E 三个点,共有 4×3×2 =24(种)涂法,然后再按 B,C,F 的顺序涂色,分为两类:
4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),
(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-
1),(2,0).综上,满足要求的有序数对共有 4+9=13(个),
故选 B.
应用两个计数原理解题的方法 (1)在应用分类计数原理和分步计数原理时,一般先分类 再分步,每一步当中又可能用到分类计数原理. (2)对于复杂的两个原理综合使用的问题,可恰当列出示 意图或表格,使问题形象化、直观化.

高考数学中的坐标系与几何知识点

高考数学中的坐标系与几何知识点

高考数学中的坐标系与几何知识点坐标系与几何是高考数学中的重要组成部分,主要考查考生对坐标系的理解与应用,以及平面几何、空间几何的基本知识。

以下是该知识点的主要内容:一、坐标系1. 直角坐标系直角坐标系是由两条互相垂直的坐标轴(横轴和纵轴)所围成的平面区域。

在直角坐标系中,每个点都可以用一对有序实数(横坐标,纵坐标)来表示。

2. 参数方程参数方程是另一种描述曲线的方法,它将曲线上的点与一个参数(通常为角度或弧长)联系起来。

参数方程通常分为两种:极坐标方程和参数方程。

3. 极坐标系极坐标系是由原点、半径和角度三个参数来描述一个点的位置。

在极坐标系中,一个点的坐标可以表示为(r,θ),其中r是点与原点的距离,θ是点与正半轴的夹角。

4. 空间坐标系空间坐标系是由三个互相垂直的坐标轴(x轴、y轴、z轴)所围成的空间区域。

在空间坐标系中,每个点都可以用三个有序实数(x坐标,y坐标,z坐标)来表示。

二、平面几何1. 点、线、面点、线、面是平面几何最基本的概念。

点是没有长度、宽度、高度的实体;线是由无数个点连成的,有方向但没有宽度的实体;面是由无数个线连成的,有长度和宽度的实体。

2. 直线方程直线方程是描述直线位置关系的一组式子。

在平面直角坐标系中,直线方程通常分为两种:点斜式和一般式。

3. 圆圆是由平面上所有与给定点(圆心)距离相等的点组成的。

圆的标准方程为(x−a)2+(y−b)2=r2,其中(a,b)是圆心的坐标,r是圆的半径。

4. 三角形三角形是由三个顶点、三条边和三个内角组成的。

三角形的性质包括:两边之和大于第三边,两边之差小于第三边;三角形的内角和为180度。

三、空间几何1. 点、线、面与平面几何类似,空间几何中的点、线、面也有类似的概念。

在空间几何中,点是没有长度、宽度、高度的实体;线是由无数个点连成的,有方向但没有宽度的实体;面是由无数个线连成的,有长度和宽度的实体。

2. 空间直线方程空间直线方程是描述空间直线位置关系的一组式子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲坐标系与参数方程极坐标方程及应用授课提示:对应学生用书第75页[悟通——方法结论]1.圆的极坐标方程若圆心为M(ρ0,θ0),半径为r,则圆的方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20-r2=0. 几个特殊位置的圆的极坐标方程:(1)当圆心位于极点,半径为r:ρ=r;(2)当圆心位于M(a,0),半径为a:ρ=2a cos θ;(3)当圆心位于M ⎝⎛⎭⎪⎫a ,π2,半径为a :ρ=2a sin θ.2.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴与此直线所成的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程: (1)直线过极点:θ=θ0和θ=π+θ0; (2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ;(3)直线过M ⎝⎛⎭⎪⎫b ,π2且平行于极轴:ρsin θ=b . [全练——快速解答]1.(2018·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的方程为y =k |x |+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程.解析:(1)由x =ρcos θ,y =ρsin θ得C 2的直角坐标方程为(x +1)2+y 2=4. (2)由(1)知C 2是圆心为A (-1,0),半径为2的圆.由题设知,C 1是过点B (0,2)且关于y 轴对称的两条射线.记y 轴右边的射线为l 1,y 轴左边的射线为l 2. 由于点B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点.当l 1与C 2只有一个公共点时,点A 到l 1所在直线的距离为2,所以|-k +2|k 2+1=2,故k =-43或k =0.经检验,当k =0时,l 1与C 2没有公共点;当k =-43时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点.当l 2与C 2只有一个公共点时,点A 到l 2所在直线的距离为2,所以|k +2|k 2+1=2,故k =0或k =43.经检验,当k =0时,l 1与C 2没有公共点; 当k =43时,l 2与C 2没有公共点.综上,所求C 1的方程为y =-43|x |+2.2.(2017·高考全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.解析:(1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0), 由题设知|OA |=2,ρB =4cos α,于是△OAB 面积S =12|OA |·ρB ·sin∠AOB=4cos α·|sin ⎝ ⎛⎭⎪⎫α-π3| =2|sin ⎝ ⎛⎭⎪⎫2α-π3-32|≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3.3.(2018·长春二模)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)设M ,N 的中点为P ,求直线OP 的极坐标方程. 解析:(1)∵ρcos ⎝⎛⎭⎪⎫θ-π3=1,∴ρcos θ·cos π3+ρsin θ·sin π3=1.又⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,∴12x +32y =1, 即曲线C 的直角坐标方程为x +3y -2=0, 令y =0,则x =2;令x =0,则y =233.∴M (2,0),N ⎝⎛⎭⎪⎫0,233.∴M 的极坐标为(2,0),N 的极坐标为⎝⎛⎭⎪⎫233,π2. (2)∵M ,N 连线的中点P 的直角坐标为⎝⎛⎭⎪⎫1,33,∴P 的极角为θ=π6,∴直线OP 的极坐标方程为θ=π6(ρ∈R ).1.极坐标方程与普通方程互化技巧(1)巧用极坐标方程两边同乘以ρ或同时平方技巧,将极坐标方程构造成含有ρcos θ,ρsin θ,ρ2的形式,然后利用公式代入化简得到普通方程.(2)巧借两角和差公式,转化ρsin(θ±α)或ρcos(θ±α)的结构形式,进而利用互化公式得到普通方程. (3)将直角坐标方程中的x 转化为ρcos θ,将y 换成ρsin θ,即可得到其极坐标方程. 2.求解与极坐标有关的问题的主要方法(1)直接利用极坐标系求解,可与数形结合思想配合使用.(2)转化为直角坐标系,用直角坐标求解.若结果要求的是极坐标,还应将直角坐标化为极坐标.参数方程授课提示:对应学生用书第76页[悟通——方法结论] 几种常见曲线的参数方程(1)圆以O ′(a ,b )为圆心,r 为半径的圆的参数方程是⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α,其中α是参数.当圆心在(0,0)时,方程为⎩⎪⎨⎪⎧x =r cos α,y =r sin α,其中α是参数.(2)椭圆椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ,其中φ是参数.椭圆x 2b 2+y 2a 2=1(a >b >0)的参数方程是⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ,其中φ是参数.(3)直线经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α,其中t 是参数.[全练——快速解答]1.(2018·高考全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 解析:(1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tan α·x +2-tan α, 当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2. 2.(2017·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 解析:(1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1,解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎪⎨⎪⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝ ⎛⎭⎪⎫-2125,2425.(2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917.由题设得a +917=17,解得a =8;当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,解得a =-16.综上,a =8或a =-16.3.(2018·惠州模拟)已知曲线C 的极坐标方程是ρ=4cos θ.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数).(1)将曲线C 的极坐标方程化为直角坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|AB |=14,求直线l 的倾斜角α的值. 解析:(1)由ρ=4cos θ得ρ2=4ρcos θ. ∵x 2+y 2=ρ2,x =ρcos θ,y =ρsin θ,∴曲线C 的直角坐标方程为x 2+y 2-4x =0,即(x -2)2+y 2=4.(2)将⎩⎪⎨⎪⎧x =1+t cos αy =t sin α代入曲线C 的方程得(tcos α-1)2+(tsin α)2=4,化简得t 2-2tcos α-3=0.设A ,B 两点对应的参数分别为t 1,t 2,则⎩⎪⎨⎪⎧t 1+t 2=2cos αt 1t 2=-3.∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4cos 2α+12=14, ∴4cos 2α=2,cos α=±22,α=π4或3π4.1.有关参数方程问题的2个关键点(1)参数方程化为普通方程的关键是消参数,要根据参数的特点进行转化. (2)利用参数方程解决问题,关键是选准参数,理解参数的几何意义. 2.利用直线的参数方程中参数的几何意义求解问题 经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α,(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=t 1+t 22;(2)|PM |=|t 0|=⎪⎪⎪⎪⎪⎪t 1+t 22;(3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|.极坐标方程与参数方程的综合应用授课提示:对应学生用书第77页(2017·高考全国卷Ⅲ)(10分)在直角坐标系xOy中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt(t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =mk(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.[规范解答] (1)消去参数t 得l 1的普通方程l 1:y =k (x -2); 消去参数m 得l 2的普通方程l 2:y =1k(x +2).(2分)设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k(x +2),消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(4分)(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎨⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0(6分)得cos θ-sin θ=2(cos θ+sin θ). 故tan θ=-13,从而cos 2θ=910,sin 2θ=110.(8分)代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5, 所以交点M 的极径为 5.(10分)解决极坐标方程与参数方程综合问题的方法(1)对于参数方程或极坐标方程应用不够熟练的情况下,我们可以先化成直角坐标的普通方程,这样思路可能更加清晰.(2)对于一些运算比较复杂的问题,用参数方程计算会比较简捷. (3)利用极坐标方程解决问题时,要注意题目所给的限制条件及隐含条件.[练通——即学即用]1.(2018·惠州模拟)已知曲线C :⎩⎨⎧x =2cos α,y =3sin α(α为参数)和定点A (0,3),F 1,F 2是此曲线的左、右焦点,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系.(1)求直线AF 2的极坐标方程;(2)经过点F 1且与直线AF 2垂直的直线l 交曲线C 于M ,N 两点,求||MF 1|-|NF 1||的值.解析:(1)曲线C :⎩⎨⎧x =2cos α,y =3sin α可化为x 24+y 23=1,故曲线C 为椭圆,则焦点F 1(-1,0),F 2(1,0).所以经过点A (0,3)和F 2(1,0)的直线AF 2的方程为x +y3=1,即3x +y -3=0,所以直线AF 2的极坐标方程为3ρcos θ+ρsin θ= 3.(2)由(1)知,直线AF 2的斜率为-3,因为l ⊥AF 2,所以直线l 的斜率为33,即倾斜角为30˚,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+32t ,y =12t(t 为参数),代入椭圆C 的方程中,得13t 2-123t -36=0.2.(2018·长郡中学模拟)在直角坐标系中,已知曲线M 的参数方程为⎩⎨⎧x =1+22cos β,y =1+22sin β(β为参数),在极坐标系中,直线l 1的方程为α1=θ,直线l 2的方程为α2=θ+π2.(1)写出曲线M 的普通方程,并指出它是什么曲线;(2)设l 1与曲线M 交于A ,C 两点,l 2与曲线M 交于B ,D 两点,求四边形ABCD 面积的取值范围.解析:(1)由⎩⎨⎧x =1+2 2 cos β,y =1+2 2 sin β,(β为参数),消去参数β,得曲线M 的普通方程为(x -1)2+(y-1)2=8,∴曲线M 是以(1,1)为圆心,22为半径的圆. (2)设|OA |=ρ1,|OC |=ρ2,∵O ,A ,C 三点共线,则|AC |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2(*), 将曲线M 的方程化成极坐标方程,得ρ2-2ρ(sin θ+cos θ)-6=0,∴⎩⎪⎨⎪⎧ρ1+ρ2=2(sin θ+cos θ),ρ1ρ2=-6,代入(*)式得|AC |=28+4sin 2θ.用θ+π2代替θ,得|BD |=28-4 sin 2θ,又l 1⊥l 2,∴S 四边形ABCD =12|AC |·|BD |,∴S 四边形ABCD =12(28+4sin 2θ)(28-4 sin 2θ)=249-sin 22θ,∵sin 22θ∈[0,1],∴S 四边形ABCD ∈[83,14].授课提示:对应学生用书第159页1.已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin(θ+π3),直线l 的直角坐标方程为y =33x .(1)求曲线C 1和直线l 的极坐标方程;(2)已知直线l 分别与曲线C 1、曲线C 2相交于异于极点的A ,B 两点,若A ,B 的极径分别为ρ1,ρ2,求|ρ2-ρ1|的值.解析:(1)曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ(θ为参数),其普通方程为x 2+(y -1)2=1,极坐标方程为ρ=2sin θ. ∵直线l 的直角坐标方程为y =33x , 故直线l 的极坐标方程为θ=π6(ρ∈R ).(2)曲线C 1的极坐标方程为ρ=2sin θ, 直线l 的极坐标方程为θ=π6, 将θ=π6代入C 1的极坐标方程得ρ1=1,将θ=π6代入C 2的极坐标方程得ρ2=4,∴|ρ2-ρ1|=3.2.(2018·开封模拟)在直角坐标系xOy 中,直线C 1的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),圆C 2:(x -2)2+y 2=4,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程和交点A 的坐标(非坐标原点);(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为B (非坐标原点),求△OAB 的最大面积.解析:(1)由⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数)得曲线C 1的普通方程为y =x tan α,故曲线C 1的极坐标方程为θ=α(ρ∈R ).将x =ρcos θ,y =ρsin θ代入(x -2)2+y 2=4,得C 2的极坐标方程为ρ=4cos θ.故交点A 的坐标为(4cos α,α).(2)由题意知,B 的极坐标为(22,π4). ∴S △OAB =|12×22×4cos α×sin(π4-α)|=|22sin(2α-π4)-2|,故△OAB 的最大面积是22+2.3.(2018·长春模拟)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为(1,2),点C 的极坐标为(3,π2),若直线l 过点P ,且倾斜角为π6,圆C 以点C 为圆心,3为半径.(1)求直线l 的参数方程和圆C 的极坐标方程; (2)设直线l 与圆C 相交于A ,B 两点,求|PA |·|PB |.经典教育资源经典教育资源(一) 解析:(1)由题意得直线l 的参数方程为⎩⎪⎨⎪⎧ x =1+32t ,y =2+12t (t 为参数),圆C 的极坐标方程为ρ=6sin θ. (2)由(1)易知圆C 的直角坐标方程为x 2+(y -3)2=9,把⎩⎪⎨⎪⎧ x =1+32t ,y =2+12t 代入x 2+(y -3)2=9,得t 2+(3-1)t -7=0, 设点A ,B 对应的参数分别为t 1,t 2,∴t 1t 2=-7,又|PA |=|t 1|,|PB |=|t 2|,∴|PA |·|PB |=7.4.(2018·唐山模拟)极坐标系的极点为直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系的长度单位相同.已知圆C 1的极坐标方程为ρ=4(cos θ+sin θ),P 是C 1上一动点,点Q 在射线OP 上且满足|OQ |=12|OP |,点Q 的轨迹为C 2. (1)求曲线C 2的极坐标方程,并化为直角坐标方程;(2)已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =2+t cos φ,y =t sin φ(t 为参数,0≤φ<π),l 与曲线C 2有且只有一个公共点,求φ的值.解析:(1)设点P ,Q 的极坐标分别为(ρ0,θ),(ρ,θ),则ρ=12ρ0=12·4(cos θ+sin θ)=2(cos θ+sin θ), 点Q 的轨迹C 2的极坐标方程为ρ=2(cos θ+sin θ),两边同乘以ρ,得ρ2=2(ρcos θ+ρsin θ), C 2的直角坐标方程为x 2+y 2=2x +2y ,即(x -1)2+(y -1)2=2.(2)将l 的参数方程代入曲线C 2的直角坐标方程,得(tcos φ+1)2+(tsin φ-1)2=2,即t 2+2(cos φ-sin φ)t =0,t 1=0,t 2=2(sin φ-cos φ), 由直线l 与曲线C 2有且只有一个公共点,得sin φ-cos φ=0,因为0≤φ<π,所以φ=π4.。

相关文档
最新文档