算法设计:深度优先遍历和广度优先遍历

合集下载

深度优先算法和广度优先算法的时间复杂度

深度优先算法和广度优先算法的时间复杂度

深度优先算法和广度优先算法的时间复杂度深度优先算法和广度优先算法是在图论中常见的两种搜索算法,它们在解决各种问题时都有很重要的作用。

本文将以深入浅出的方式从时间复杂度的角度对这两种算法进行全面评估,并探讨它们在实际应用中的优劣势。

1. 深度优先算法的时间复杂度深度优先算法是一种用于遍历或搜索树或图的算法。

它从图中的某个顶点出发,沿着一条路径一直走到底,直到不能再前进为止,然后回溯到上一个节点,尝试走其他的路径,直到所有路径都被走过为止。

深度优先算法的时间复杂度与图的深度有关。

在最坏情况下,深度优先算法的时间复杂度为O(V+E),其中V表示顶点的数量,E表示边的数量。

2. 广度优先算法的时间复杂度广度优先算法也是一种用于遍历或搜索树或图的算法。

与深度优先算法不同的是,广度优先算法是从图的某个顶点出发,首先访问这个顶点的所有邻接节点,然后再依次访问这些节点的邻接节点,依次类推。

广度优先算法的时间复杂度与图中边的数量有关。

在最坏情况下,广度优先算法的时间复杂度为O(V+E)。

3. 深度优先算法与广度优先算法的比较从时间复杂度的角度来看,深度优先算法和广度优先算法在最坏情况下都是O(V+E),并没有明显的差异。

但从实际运行情况来看,深度优先算法和广度优先算法的性能差异是显而易见的。

在一般情况下,广度优先算法要比深度优先算法快,因为广度优先算法的搜索速度更快,且能够更快地找到最短路径。

4. 个人观点和理解在实际应用中,选择深度优先算法还是广度优先算法取决于具体的问题。

如果要找到两个节点之间的最短路径,那么广度优先算法是更好的选择;而如果要搜索整个图,那么深度优先算法可能是更好的选择。

要根据具体的问题来选择合适的算法。

5. 总结和回顾本文从时间复杂度的角度对深度优先算法和广度优先算法进行了全面评估,探讨了它们的优劣势和实际应用中的选择。

通过对两种算法的时间复杂度进行比较,可以更全面、深刻和灵活地理解深度优先算法和广度优先算法的特点和适用场景。

第7章图的深度和广度优先搜索遍历算法

第7章图的深度和广度优先搜索遍历算法
7.3 图的遍历
和树的遍历类似,我们希望从图中某顶点出发对图中每个顶点访问一次,而且只访问 一次,这一过程称为图的遍历(traversing graph)。 本节介绍两种遍历图的规则:深度优先搜索和广度优先搜索。 这两种方法既适用于无向图,也适用于有向图。
7.3.1 深度优先搜索遍历 一.思路: 从图中某一点(如A)开始,先访问这一点,然后任选它的一个邻点(如V0) 访问,访问完该点后,再任选这个点V0的一个邻点 ( 如 W )访问,如此向 纵深方向访问。直到某个点没有其他未访问的邻点为止,则返回到前一个点。 再任选它的另一个未访问过的邻点 ( 如X )继续重复上述过程的访问,直到全 部点访问完为止。 图(a)的遍历的结果:V1V2V4V8V5V3V6V7 或V1V3V7V6V2V5V8V4
p
v0 w x v 1
V
0
v 2
V
0
typedef struct {VEXNODE adjlist[MAXLEN]; // 邻接链表表头向量 int vexnum, arcnum; // 顶点数和边数 int kind; // 图的类型 }ADJGRAPH;
W W
X
X
7.3.2 广度优先搜索遍历 一.思路:
V
0
A V
0
W W
XXΒιβλιοθήκη 二.深度优先搜索算法的文字描述: 算法中设一数组visited,表示顶点是否访问过的标志。数组长度为 图的顶点数,初值均置为0,表示顶点均未被访问,当Vi被访问过,即 将visitsd对应分量置为1。将该数组设为全局变量。 { 确定从G中某一顶点V0出发,访问V0; visited[V0] = 1; 找出G中V0的第一个邻接顶点->w; while (w存在) do { if visited[w] == 0 继续进行深度优先搜索; 找出G中V0的下一个邻接顶点->w;} }

深度优先算法和广度优先算法的时间复杂度

深度优先算法和广度优先算法的时间复杂度

深度优先算法和广度优先算法都是图搜索中常见的算法,它们具有不同的特点和适用场景。

在进行全面评估之前,让我们先来了解一下深度优先算法和广度优先算法的基本概念和原理。

### 1. 深度优先算法(Depth-First Search, DFS)深度优先算法是一种用于遍历或搜索树或图的算法。

其核心思想是从起始顶点出发,沿着一条路径直到末端,然后回溯,继续搜索下一条路径,直到所有路径都被探索。

在实际应用中,深度优先算法常常通过递归或栈来实现。

### 2. 广度优先算法(Breadth-First Search, BFS)广度优先算法也是一种用于遍历或搜索树或图的算法。

其核心思想是从起始顶点出发,依次遍历该顶点的所有相邻顶点,然后再以这些相邻顶点作为起点,继续遍历它们的相邻顶点,以此类推,直到所有顶点都被遍历。

在实际应用中,广度优先算法通常通过队列来实现。

### 3. 深度优先算法和广度优先算法的时间复杂度在实际应用中,我们经常需要对算法的时间复杂度进行分析。

针对深度优先算法和广度优先算法,它们的时间复杂度并不相同。

- 深度优先算法的时间复杂度:O(V + E),其中V为顶点数,E为边数。

在最坏的情况下,如果采用邻接矩阵来表示图的话,深度优先算法的时间复杂度为O(V^2);如果采用邻接表来表示图的话,时间复杂度为O(V + E)。

- 广度优先算法的时间复杂度:O(V + E),其中V为顶点数,E为边数。

无论采用邻接矩阵还是邻接表表示图,广度优先算法的时间复杂度都是O(V + E)。

### 4. 个人理解和观点在实际应用中,我们在选择使用深度优先算法还是广度优先算法时,需要根据具体的问题场景来进行选择。

如果要寻找图中的一条路径,或者判断两个节点之间是否存在路径,通常会选择使用深度优先算法;如果要寻找最短路径或者进行层次遍历,通常会选择使用广度优先算法。

深度优先算法和广度优先算法都是非常重要的图搜索算法,它们各自适用于不同的场景,并且具有不同的时间复杂度。

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。

对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。

由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。

⽐⽅堆了。

所以。

对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。

四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。

求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。

然后在訪问左⼦树和右⼦树。

所以。

对于随意结点node。

第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。

若为空。

则须要訪问右⼦树。

注意。

在訪问过左孩⼦之后。

数据结构课设——有向图的深度、广度优先遍历及拓扑排序

数据结构课设——有向图的深度、广度优先遍历及拓扑排序

数据结构课设——有向图的深度、⼴度优先遍历及拓扑排序任务:给定⼀个有向图,实现图的深度优先, ⼴度优先遍历算法,拓扑有序序列,并输出相关结果。

功能要求:输⼊图的基本信息,并建⽴图存储结构(有相应提⽰),输出遍历序列,然后进⾏拓扑排序,并测试该图是否为有向⽆环图,并输出拓扑序列。

按照惯例,先上代码,注释超详细:#include<stdio.h>#include<stdlib.h>#include<malloc.h>#pragma warning(disable:4996)#define Max 20//定义数组元素最⼤个数(顶点最⼤个数)typedef struct node//边表结点{int adjvex;//该边所指向结点对应的下标struct node* next;//该边所指向下⼀个结点的指针}eNode;typedef struct headnode//顶点表结点{int in;//顶点⼊度char vertex;//顶点数据eNode* firstedge;//指向第⼀条边的指针,边表头指针}hNode;typedef struct//邻接表(图){hNode adjlist[Max];//以数组的形式存储int n, e;//顶点数,边数}linkG;//以邻接表的存储结构创建图linkG* creat(linkG* g){int i, k;eNode* s;//边表结点int n1, e1;char ch;g = (linkG*)malloc(sizeof(linkG));//申请结点空间printf("请输⼊顶点数和边数:");scanf("%d%d", &n1, &e1);g->n = n1;g->e = e1;printf("顶点数:%d 边数:%d\n", g->n, g->e);printf("请输⼊顶点信息(字母):");getchar();//因为接下来要输⼊字符串,所以getchar⽤于承接上⼀条命令的结束符for (i = 0; i < n1; i++){scanf("%c", &ch);g->adjlist[i].vertex = ch;//获得该顶点数据g->adjlist[i].firstedge = NULL;//第⼀条边设为空}printf("\n打印顶点下标及顶点数据:\n");for (i = 0; i < g->n; i++)//循环打印顶点下标及顶点数据{printf("顶点下标:%d 顶点数据:%c\n", i, g->adjlist[i].vertex);}getchar();int i1, j1;//相连接的两个顶点序号for (k = 0; k < e1; k++)//建⽴边表{printf("请输⼊对<i,j>(空格分隔):");scanf("%d%d", &i1, &j1);s = (eNode*)malloc(sizeof(eNode));//申请边结点空间s->adjvex = j1;//边所指向结点的位置,下标为j1s->next = g->adjlist[i1].firstedge;//将当前s的指针指向当前顶点上指向的结点g->adjlist[i1].firstedge = s;//将当前顶点的指针指向s}return g;//返回指针g}int visited[Max];//标记是否访问void DFS(linkG* g, int i)//深度优先遍历{eNode* p;printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已访问过的顶点visited值改为1p = g->adjlist[i].firstedge;//p指向顶点i的第⼀条边while (p)//p不为NULL时(边存在){if (visited[p->adjvex] != 1)//如果没有被访问DFS(g, p->adjvex);//递归}p = p->next;//p指向下⼀个结点}}void DFSTravel(linkG* g)//遍历⾮连通图{int i;printf("深度优先遍历;\n");//printf("%d\n",g->n);for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问{DFS(g, i);//调⽤DFS函数}}}void BFS(linkG* g, int i)//⼴度优先遍历{int j;eNode* p;int q[Max], front = 0, rear = 0;//建⽴顺序队列⽤来存储,并初始化printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已经访问过的改成1rear = (rear + 1) % Max;//普通顺序队列的话,这⾥是rear++q[rear] = i;//当前顶点(下标)队尾进队while (front != rear)//队列⾮空{front = (front + 1) % Max;//循环队列,顶点出队j = q[front];p = g->adjlist[j].firstedge;//p指向出队顶点j的第⼀条边while (p != NULL){if (visited[p->adjvex] == 0)//如果未被访问{printf("%c ", g->adjlist[p->adjvex].vertex);visited[p->adjvex] = 1;//将该顶点标记数组值改为1rear = (rear + 1) % Max;//循环队列q[rear] = p->adjvex;//该顶点进队}p = p->next;//指向下⼀个结点}}}void BFSTravel(linkG* g)//遍历⾮连通图{int i;printf("⼴度优先遍历:\n");for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问过{BFS(g, i);//调⽤BFS函数}}}//因为拓扑排序要求⼊度为0,所以需要先求出每个顶点的⼊度void inDegree(linkG* g)//求图顶点⼊度{eNode* p;int i;for (i = 0; i < g->n; i++)//循环将顶点⼊度初始化为0{g->adjlist[i].in = 0;}for (i = 0; i < g->n; i++)//循环每个顶点{p = g->adjlist[i].firstedge;//获取第i个链表第1个边结点指针while (p != NULL)///当p不为空(边存在){g->adjlist[p->adjvex].in++;//该边终点结点⼊度+1p = p->next;//p指向下⼀个边结点}printf("顶点%c的⼊度为:%d\n", g->adjlist[i].vertex, g->adjlist[i].in);}void topo_sort(linkG *g)//拓扑排序{eNode* p;int i, k, gettop;int top = 0;//⽤于栈指针的下标索引int count = 0;//⽤于统计输出顶点的个数int* stack=(int *)malloc(g->n*sizeof(int));//⽤于存储⼊度为0的顶点for (i=0;i<g->n;i++)//第⼀次搜索⼊度为0的顶点{if (g->adjlist[i].in==0){stack[++top] = i;//将⼊度为0的顶点进栈}}while (top!=0)//当栈不为空时{gettop = stack[top--];//出栈,并保存栈顶元素(下标)printf("%c ",g->adjlist[gettop].vertex);count++;//统计顶点//接下来是将邻接点的⼊度减⼀,并判断该点⼊度是否为0p = g->adjlist[gettop].firstedge;//p指向该顶点的第⼀条边的指针while (p)//当p不为空时{k = p->adjvex;//相连接的顶点(下标)g->adjlist[k].in--;//该顶点⼊度减⼀if (g->adjlist[k].in==0){stack[++top] = k;//如果⼊度为0,则进栈}p = p->next;//指向下⼀条边}}if (count<g->n)//如果输出的顶点数少于总顶点数,则表⽰有环{printf("\n有回路!\n");}free(stack);//释放空间}void menu()//菜单{system("cls");//清屏函数printf("************************************************\n");printf("* 1.建⽴图 *\n");printf("* 2.深度优先遍历 *\n");printf("* 3.⼴度优先遍历 *\n");printf("* 4.求出顶点⼊度 *\n");printf("* 5.拓扑排序 *\n");printf("* 6.退出 *\n");printf("************************************************\n");}int main(){linkG* g = NULL;int c;while (1){menu();printf("请选择:");scanf("%d", &c);switch (c){case1:g = creat(g); system("pause");break;case2:DFSTravel(g); system("pause");break;case3:BFSTravel(g); system("pause");break;case4:inDegree(g); system("pause");break;case5:topo_sort(g); system("pause");break;case6:exit(0);break;}}return0;}实验⽤图:运⾏结果:关于深度优先遍历 a.从图中某个顶点v 出发,访问v 。

算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历

算法设计:深度优先遍历和广度优先遍历实现深度优先遍历过程1、图的遍历和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。

它是许多图的算法的基础。

深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。

它们对无向图和有向图均适用。

注意:以下假定遍历过程中访问顶点的操作是简单地输出顶点。

2、布尔向量visited[0..n-1]的设置图中任一顶点都可能和其它顶点相邻接。

在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。

为了避免重复访问同一个顶点,必须记住每个已访问的顶点。

为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。

--------------------------深度优先遍历(Depth-First Traversal)1.图的深度优先遍历的递归定义假设给定图G的初态是所有顶点均未曾访问过。

在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。

若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。

若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。

图的深度优先遍历类似于树的前序遍历。

采用的搜索方法的特点是尽可能先对纵深方向进行搜索。

这种搜索方法称为深度优先搜索(Depth-First Search)。

相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。

2、深度优先搜索的过程设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。

若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。

【算法】广度优先算法和深度优先算法

【算法】广度优先算法和深度优先算法

【算法】⼴度优先算法和深度优先算法⼴度(BFS)和深度(DFS)优先算法这俩个算法是图论⾥⾯⾮常重要的两个遍历的⽅法。

下⾯⼀个例⼦迷宫计算,如下图解释:所谓⼴度,就是⼀层⼀层的,向下遍历,层层堵截,看下⾯这幅图,我们如果要是⼴度优先遍历的话,我们的结果是V1 V2 V3 V4 V5 V6 V7 V8。

⼴度优先搜索的思想: ①访问顶点vi ; ②访问vi 的所有未被访问的邻接点w1 ,w2 , …wk ; ③依次从这些邻接点(在步骤②中访问的顶点)出发,访问它们的所有未被访问的邻接点; 依此类推,直到图中所有访问过的顶点的邻接点都被访问; 说明: 为实现③,需要保存在步骤②中访问的顶点,⽽且访问这些顶点的邻接点的顺序为:先保存的顶点,其邻接点先被访问。

这⾥我们就想到了⽤标准模板库中的queue队列来实现这种先进现出的服务。

步骤:  1.将V1加⼊队列,取出V1,并标记为true(即已经访问),将其邻接点加进⼊队列,则 <—[V2 V3]  2.取出V2,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V3 V4 V5]3.取出V3,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V4 V5 V6 V7]4.取出V4,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V5 V6 V7 V8]5.取出V5,并标记为true(即已经访问),因为其邻接点已经加⼊队列,则 <—[V6 V7 V8]6.取出V6,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V7 V8]7.取出V7,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V8]8.取出V8,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[]区别:深度优先遍历:对每⼀个可能的分⽀路径深⼊到不能再深⼊为⽌,⽽且每个结点只能访问⼀次。

浅析深度优先和广度优先遍历实现过程、区别及使用场景

浅析深度优先和广度优先遍历实现过程、区别及使用场景

浅析深度优先和⼴度优先遍历实现过程、区别及使⽤场景⼀、什么是深度/⼴度优先遍历? 深度优先遍历简称DFS(Depth First Search),⼴度优先遍历简称BFS(Breadth First Search),它们是遍历图当中所有顶点的两种⽅式。

这两种遍历⽅式有什么不同呢?我们来举个栗⼦: 我们来到⼀个游乐场,游乐场⾥有11个景点。

我们从景点0开始,要玩遍游乐场的所有景点,可以有什么样的游玩次序呢?1、深度优先遍历 第⼀种是⼀头扎到底的玩法。

我们选择⼀条⽀路,尽可能不断地深⼊,如果遇到死路就往回退,回退过程中如果遇到没探索过的⽀路,就进⼊该⽀路继续深⼊。

在图中,我们⾸先选择景点1的这条路,继续深⼊到景点7、景点8,终于发现⾛不动了: 于是,我们退回到景点7,然后探索景点10,⼜⾛到了死胡同。

于是,退回到景点1,探索景点9: 按照这个思路,我们再退回到景点0,后续依次探索景点2、3、5、4、发现相邻的都玩过了,再回退到3,再接着玩6,终于玩遍了整个游乐场: 具体次序如下图,景点旁边的数字代表探索次序。

当然还可以有别的排法。

像这样先深⼊探索,⾛到头再回退寻找其他出路的遍历⽅式,就叫做深度优先遍历(DFS)。

这⽅式看起来很像⼆叉树的前序遍历。

没错,其实⼆叉树的前序、中序、后序遍历,本质上也可以认为是深度优先遍历。

2、⼴度优先遍历 除了像深度优先遍历这样⼀头扎到底的玩法以外,我们还有另⼀种玩法:⾸先把起点相邻的⼏个景点玩遍,然后去玩距离起点稍远⼀些(隔⼀层)的景点,然后再去玩距离起点更远⼀些(隔两层)的景点… 在图中,我们⾸先探索景点0的相邻景点1、2、3、4: 接着,我们探索与景点0相隔⼀层的景点7、9、5、6: 最后,我们探索与景点0相隔两层的景点8、10: 像这样⼀层⼀层由内⽽外的遍历⽅式,就叫做⼴度优先遍历(BFS)。

这⽅式看起来很像⼆叉树的层序遍历。

没错,其实⼆叉树的层序遍历,本质上也可以认为是⼴度优先遍历。

深度优先和广度优先算法

深度优先和广度优先算法

深度优先和广度优先算法深度优先和广度优先算法深度优先遍历和广度优先遍历是两种常用的图遍历算法。

它们的策略不同,各有优缺点,可以在不同的场景中使用。

一、深度优先遍历深度优先遍历(Depth First Search,DFS)是一种搜索算法,它从一个顶点开始遍历,尽可能深地搜索图中的每一个可能的路径,直到找到所有的路径。

该算法使用栈来实现。

1. 算法描述深度优先遍历的过程可以描述为:- 访问起始顶点v,并标记为已访问; - 从v的未被访问的邻接顶点开始深度优先遍历,直到所有的邻接顶点都被访问过或不存在未访问的邻接顶点; - 如果图中还有未被访问的顶点,则从这些顶点中任选一个,重复步骤1。

2. 算法实现深度优先遍历算法可以使用递归或者栈来实现。

以下是使用栈实现深度优先遍历的示例代码:``` void DFS(Graph g, int v, bool[] visited) { visited[v] = true; printf("%d ", v);for (int w : g.adj(v)) { if(!visited[w]) { DFS(g, w,visited); } } } ```3. 算法分析深度优先遍历的时间复杂度为O(V+E),其中V是顶点数,E是边数。

由于该算法使用栈来实现,因此空间复杂度为O(V)。

二、广度优先遍历广度优先遍历(Breadth First Search,BFS)是一种搜索算法,它从一个顶点开始遍历,逐步扩展到它的邻接顶点,直到找到所有的路径。

该算法使用队列来实现。

1. 算法描述广度优先遍历的过程可以描述为:- 访问起始顶点v,并标记为已访问; - 将v的所有未被访问的邻接顶点加入队列中; - 从队列头取出一个顶点w,并标记为已访问; - 将w的所有未被访问的邻接顶点加入队列中; - 如果队列不为空,则重复步骤3。

2. 算法实现广度优先遍历算法可以使用队列来实现。

深度优先算法与广度优先算法的比较

深度优先算法与广度优先算法的比较

深度优先算法与广度优先算法的比较深度优先算法以深度为优先,从一个节点开始,逐个遍历其邻居节点直至最深处,然后回溯到上一个节点,再继续遍历其他分支。

它是通过栈来实现的,先进后出的特性决定了深度优先算法是一个递归算法。

深度优先算法在过程中,不需要记住所有的路径,只需要记住当前路径上的节点即可。

对于树而言,深度优先算法通常沿着左子树一直深入,直到最深的叶节点,然后再回溯到前一个节点继续右子树的遍历。

广度优先算法以广度为优先,从一个节点开始,逐层遍历其所有邻居节点,然后再遍历下一层的节点,直至遍历完所有节点。

它是通过队列来实现的,先进先出的特性决定了广度优先算法是一个非递归算法。

广度优先算法在过程中,需要记住每一层的节点,并且按照先进先出的顺序进行遍历。

对于树而言,广度优先算法会先遍历根节点,然后是根节点的子节点,再然后是子节点的子节点,按照层次逐层遍历。

以下是深度优先算法和广度优先算法的比较:1.方式:深度优先算法通过一条路径一直遍历到最深处,然后回溯到上一个节点,再继续遍历其他分支。

广度优先算法逐层遍历,先遍历当前层的节点,再遍历下一层的节点。

2.存储结构:深度优先算法使用栈进行遍历,而广度优先算法使用队列进行遍历。

3.内存占用:深度优先算法只需要记住当前路径上的节点,所以内存占用较小。

而广度优先算法需要记住每一层的节点,所以内存占用较大。

4.时间效率:深度优先算法通常适用于解决单个解或路径的问题,因为它首先深入其中一个分支,整个分支再回溯,因此它可能会浪费一些时间在不必要的路径上。

而广度优先算法通常适用于解决最短路径或最小步数的问题,因为它遍历一层后再遍历下一层,所以找到的解很可能是最优解。

5.应用场景:深度优先算法适用于解决迷宫问题、拓扑排序和连通性等问题。

广度优先算法适用于解决最短路径、社交网络中的人际关系、图的遍历和等问题。

总结起来,深度优先算法和广度优先算法都有各自的特点和适用场景。

深度优先算法适合解决单个解或路径的问题,而广度优先算法适合解决最短路径或最小步数的问题。

图的遍历深度优先遍历和广度优先遍历

图的遍历深度优先遍历和广度优先遍历
visited
4
5
f
^
对应的邻接表
终点2作为下次的始点, 由于1点已访问过,跳过, 找到4,记标识,送输出, 4有作为新的始点重复上 述过程
1 2 4
5
输出数组 resu
3.邻接表深度优先遍历的实现
template <class TElem, class TEdgeElem>long DFS2(TGraphNodeAL<TElem, TEdgeElem> *nodes,long n,long v0, char *visited, long *resu,long &top) {//深度优先遍历用邻接表表示的图。nodes是邻接表的头数组,n 为结点个数(编号为0~n)。 //v0为遍历的起点。返回实际遍历到的结点的数目。 //visited是访问标志数组,调用本函数前,应为其分配空间并初 始化为全0(未访问) //resu为一维数组,用于存放所遍历到的结点的编号,调用本函 数前,应为其分配空间 long nNodes, i; TGraphEdgeAL<TEdgeElem> *p; nNodes=1;
1 2
4
图 20-1有向图
5
3
1 2 3 4 5
1 0 1 0 1 0
2 1 0 0 0 0
3 0 0 0 0 0
4 0 1 0 0 0
5 1 0 1 0 0
1 2 3 4 5
1 1 0 1 1
1 2 4 5
所示图的邻接矩阵g
访问标识数组 visited
输出数组 resu
例如从1点深度优先遍历,先把1设置访问标志,并置入输出数组resu,然后从邻接 矩阵的第一行,扫描各列,找到最近的邻接点2,将其设置访问标志,并进入输出数 组,接着从邻接矩阵的2行扫描,找到第一个构成边的点是1,检查访问标识数组, 发现1已经访问过,跳过,找第二个构成边 的点4,设置访问标识,进入输出数组, 再从邻接矩阵的第4行扫描,寻找构成边的点,除1外在无其他点,返回2行,继续 寻找,也无新点,返回1,找到5,将5置访问标志,进入输出数组,1行再无其他新 点,遍历结束,返回遍历元素个数为4 。

广度优先和深度优先算法

广度优先和深度优先算法

广度优先和深度优先算法
广度优先算法和深度优先算法是常见的图遍历算法。

广度优先算法又称为宽度优先搜索,它从起点开始,逐层遍历图,直到找到目标节点为止。

在遍历过程中,每一层的节点按照从左到右的顺序依次被访问,因此也称为层次遍历。

广度优先算法通常借助队列来实现。

深度优先算法则是从起点开始,沿着一条路径一直走到底,直到不能再走为止,然后回退到上一个节点,继续探索下一条路径。

深度优先算法采用栈结构实现,因为需要回溯,所以每次访问完一个节点后,需要将该节点从栈中弹出。

广度优先算法和深度优先算法各有优缺点。

广度优先算法能够保证找到的解一定是最优解,但在搜索深度较大的图时,需要维护大量的节点,因此空间复杂度较高。

而深度优先算法则不需要维护过多的节点,但不能保证找到的解一定是最优解。

在选择算法时,需要根据实际情况进行权衡。

- 1 -。

深度优先搜索和广度优先搜索

深度优先搜索和广度优先搜索

深度优先搜索和广度优先搜索深度优先搜索(DFS)和广度优先搜索(BFS)是图论中常用的两种搜索算法。

它们是解决许多与图相关的问题的重要工具。

本文将着重介绍深度优先搜索和广度优先搜索的原理、应用场景以及优缺点。

一、深度优先搜索(DFS)深度优先搜索是一种先序遍历二叉树的思想。

从图的一个顶点出发,递归地访问与该顶点相邻的顶点,直到无法再继续前进为止,然后回溯到前一个顶点,继续访问其未被访问的邻接顶点,直到遍历完整个图。

深度优先搜索的基本思想可用以下步骤总结:1. 选择一个初始顶点;2. 访问该顶点,并标记为已访问;3. 递归访问该顶点的邻接顶点,直到所有邻接顶点均被访问过。

深度优先搜索的应用场景较为广泛。

在寻找连通分量、解决迷宫问题、查找拓扑排序等问题中,深度优先搜索都能够发挥重要作用。

它的主要优点是容易实现,缺点是可能进入无限循环。

二、广度优先搜索(BFS)广度优先搜索是一种逐层访问的思想。

从图的一个顶点出发,先访问该顶点,然后依次访问与该顶点邻接且未被访问的顶点,直到遍历完整个图。

广度优先搜索的基本思想可用以下步骤总结:1. 选择一个初始顶点;2. 访问该顶点,并标记为已访问;3. 将该顶点的所有邻接顶点加入一个队列;4. 从队列中依次取出一个顶点,并访问该顶点的邻接顶点,标记为已访问;5. 重复步骤4,直到队列为空。

广度优先搜索的应用场景也非常广泛。

在求最短路径、社交网络分析、网络爬虫等方面都可以使用广度优先搜索算法。

它的主要优点是可以找到最短路径,缺点是需要使用队列数据结构。

三、DFS与BFS的比较深度优先搜索和广度优先搜索各自有着不同的优缺点,适用于不同的场景。

深度优先搜索的优点是在空间复杂度较低的情况下找到解,但可能陷入无限循环,搜索路径不一定是最短的。

广度优先搜索能找到最短路径,但需要保存所有搜索过的节点,空间复杂度较高。

需要根据实际问题选择合适的搜索算法,例如在求最短路径问题中,广度优先搜索更加合适;而在解决连通分量问题时,深度优先搜索更为适用。

深度优先遍历算法和广度优先遍历算法实验小结

深度优先遍历算法和广度优先遍历算法实验小结

深度优先遍历算法和广度优先遍历算法实验小结一、引言在计算机科学领域,图的遍历是一种基本的算法操作。

深度优先遍历算法(Depth First Search,DFS)和广度优先遍历算法(Breadth First Search,BFS)是两种常用的图遍历算法。

它们在解决图的连通性和可达性等问题上具有重要的应用价值。

本文将从理论基础、算法原理、实验设计和实验结果等方面对深度优先遍历算法和广度优先遍历算法进行实验小结。

二、深度优先遍历算法深度优先遍历算法是一种用于遍历或搜索树或图的算法。

该算法从图的某个顶点开始遍历,沿着一条路径一直向前直到不能再继续前进为止,然后退回到上一个节点,尝试下一个节点,直到遍历完整个图。

深度优先遍历算法通常使用栈来实现。

以下是深度优先遍历算法的伪代码:1. 创建一个栈并将起始节点压入栈中2. 将起始节点标记为已访问3. 当栈不为空时,执行以下步骤:a. 弹出栈顶节点,并访问该节点b. 将该节点尚未访问的邻居节点压入栈中,并标记为已访问4. 重复步骤3,直到栈为空三、广度优先遍历算法广度优先遍历算法是一种用于遍历或搜索树或图的算法。

该算法从图的某个顶点开始遍历,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,依次类推,直到遍历完整个图。

广度优先遍历算法通常使用队列来实现。

以下是广度优先遍历算法的伪代码:1. 创建一个队列并将起始节点入队2. 将起始节点标记为已访问3. 当队列不为空时,执行以下步骤:a. 出队一个节点,并访问该节点b. 将该节点尚未访问的邻居节点入队,并标记为已访问4. 重复步骤3,直到队列为空四、实验设计本次实验旨在通过编程实现深度优先遍历算法和广度优先遍历算法,并通过对比它们在不同图结构下的遍历效果,验证其算法的正确性和有效性。

具体实验设计如下:1. 实验工具:使用Python编程语言实现深度优先遍历算法和广度优先遍历算法2. 实验数据:设计多组图结构数据,包括树、稠密图、稀疏图等3. 实验环境:在相同的硬件环境下运行实验程序,确保实验结果的可比性4. 实验步骤:编写程序实现深度优先遍历算法和广度优先遍历算法,进行多次实验并记录实验结果5. 实验指标:记录每种算法的遍历路径、遍历时间和空间复杂度等指标,进行对比分析五、实验结果在不同图结构下,经过多次实验,分别记录了深度优先遍历算法和广度优先遍历算法的实验结果。

数据结构与算法(13):深度优先搜索和广度优先搜索

数据结构与算法(13):深度优先搜索和广度优先搜索
因此访问顺序是:A => C => D => F => B => G => E
2.2.2 有向图的广广度优先搜索
下面面以“有向图”为例例,来对广广度优先搜索进行行行演示。还是以上面面的图G2为例例进行行行说明。
第1步:访问A。 第2步:访问B。 第3步:依次访问C,E,F。 在访问了了B之后,接下来访问B的出边的另一一个顶点,即C,E,F。前 面面已经说过,在本文文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访 问E,F。 第4步:依次访问D,G。 在访问完C,E,F之后,再依次访问它们的出边的另一一个顶点。还是按 照C,E,F的顺序访问,C的已经全部访问过了了,那么就只剩下E,F;先访问E的邻接点D,再访 问F的邻接点G。
if(mVexs[i]==ch)
return i;
return -1;
}
/* * 读取一一个输入入字符
*/
private char readChar() {
char ch='0';
do {
try {
ch = (char)System.in.read();
} catch (IOException e) {
数据结构与算法(13):深度优先搜索和 广广度优先搜索
BFS和DFS是两种十十分重要的搜索算法,BFS适合查找最优解,DFS适合查找是否存在解(或者说 能找到任意一一个可行行行解)。用用这两种算法即可以解决大大部分树和图的问题。
一一、深度优先搜索(DFS)
1.1 介绍
图的深度优先搜索(Depth First Search),和树的先序遍历比比较类似。 它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点V出发,首首先访问该顶点, 然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至至图中所有和V有路路径相通 的顶点都被访问到。若此时尚有其他顶点未被访问到,则另选一一个未被访问的顶点作起始点,重 复上述过程,直至至图中所有顶点都被访问到为止止。 显然,深度优先搜索是一一个递归的过程。

深度优先搜索和广度优先搜索的比较和应用场景

深度优先搜索和广度优先搜索的比较和应用场景

深度优先搜索和广度优先搜索的比较和应用场景在计算机科学中,深度优先搜索(DFS)和广度优先搜索(BFS)是两种常用的图搜索算法。

它们在解决许多问题时都能够发挥重要作用,但在不同的情况下具有不同的优势和适用性。

本文将对深度优先搜索和广度优先搜索进行比较和分析,并讨论它们在不同应用场景中的使用。

一、深度优先搜索(DFS)深度优先搜索是一种通过遍历图的深度节点来查找目标节点的算法。

它的基本思想是从起始节点开始,依次遍历该节点的相邻节点,直到到达目标节点或者无法继续搜索为止。

如果当前节点有未被访问的相邻节点,则选择其中一个作为下一个节点继续进行深度搜索;如果当前节点没有未被访问的相邻节点,则回溯到上一个节点,并选择其未被访问的相邻节点进行搜索。

深度优先搜索的主要优势是其在搜索树的深度方向上进行,能够快速达到目标节点。

它通常使用递归或栈数据结构来实现,代码实现相对简单。

深度优先搜索适用于以下情况:1. 图中的路径问题:深度优先搜索能够在图中找到一条路径是否存在。

2. 拓扑排序问题:深度优先搜索能够对有向无环图进行拓扑排序,找到图中节点的一个线性排序。

3. 连通性问题:深度优先搜索能够判断图中的连通分量数量以及它们的具体节点组合。

二、广度优先搜索(BFS)广度优先搜索是一种通过遍历图的广度节点来查找目标节点的算法。

它的基本思想是从起始节点开始,先遍历起始节点的所有相邻节点,然后再遍历相邻节点的相邻节点,以此类推,直到到达目标节点或者无法继续搜索为止。

广度优先搜索通常使用队列数据结构来实现。

广度优先搜索的主要优势是其在搜索树的广度方向上进行,能够逐层地搜索目标节点所在的路径。

它逐层扩展搜索,直到找到目标节点或者遍历完整个图。

广度优先搜索适用于以下情况:1. 最短路径问题:广度优先搜索能够在无权图中找到起始节点到目标节点的最短路径。

2. 网络分析问题:广度优先搜索能够在图中查找节点的邻居节点、度数或者群组。

三、深度优先搜索和广度优先搜索的比较深度优先搜索和广度优先搜索在以下方面有所不同:1. 搜索顺序:深度优先搜索按照深度优先的顺序进行搜索,而广度优先搜索按照广度优先的顺序进行搜索。

深度优先算法与广度优先算法

深度优先算法与广度优先算法

深度优先算法与广度优先算法
深度优先算法和广度优先算法是两种常用的图遍历算法。

它们都是基
于图的遍历来搜索图中的所有节点,并且都是基于图中节点之间的关
联性来进行搜索操作的。

首先来说深度优先算法。

深度优先算法即从一条边开始遍历,如果遇
到死路则返回上一个节点,继续从它的下一条边继续遍历。

整个搜索
的过程是以深度为优先,直到遍历所有的节点为止。

深度优先算法使
用的是栈数据结构,先访问的节点会被后访问的节点所覆盖,直到遍
历到最深处,然后回死路走回上一个节点,继续访问它的下一个节点。

深度优先算法一般用于寻找迷宫或图中的某条路径等应用场景。

接下来是广度优先算法。

广度优先算法即在图中按照一层一层的方式
遍历所有的节点,直到遍历完为止。

广度优先算法使用的是队列数据
结构,先访问的节点会先被访问到,后访问的节点会被后访问的节点
所覆盖,确保按层次进行遍历。

广度优先算法一般用于求出图中所有
节点的最短路径等应用场景。

总结起来,深度优先算法和广度优先算法都有各自的优点和应用场景。

深度优先算法主要是在有解的情况下寻找具体的解,而广度优先算法
则是在寻找最短路径的情况下使用。

在具体应用时,可以根据实际情
况选择使用哪一种算法,或者结合两种算法的优点进行优化,以达到更好的搜索效果。

因此,深度优先算法和广度优先算法都是图遍历中经典而又经典的算法,能够应用于很多具体的场景中,为寻找路径和搜索解决方案等问题提供了很好的方法和实现手段。

数据结构之的遍历深度优先搜索和广度优先搜索的实现和应用

数据结构之的遍历深度优先搜索和广度优先搜索的实现和应用

数据结构之的遍历深度优先搜索和广度优先搜索的实现和应用深度优先搜索和广度优先搜索是数据结构中重要的遍历算法,它们在解决各种问题时起着关键作用。

本文将介绍深度优先搜索和广度优先搜索的实现方法以及它们的应用。

一、深度优先搜索的实现和应用深度优先搜索(Depth First Search,DFS)是一种用于图或树的遍历算法。

它的基本思想是从起始节点开始,一直沿着某一分支深入直到不能再深入为止,然后回溯到前一个节点,再沿另一分支深入,直到遍历完所有节点。

深度优先搜索可以通过递归或者栈来实现。

在实现深度优先搜索时,可以采用递归的方式。

具体的实现步骤如下:1. 创建一个访问数组,用于标记节点是否已经被访问过。

2. 从起始节点开始,将其标记为已访问。

3. 遍历当前节点的邻接节点,对于每个邻接节点,如果该节点未被访问过,则递归调用深度优先搜索函数。

4. 重复步骤3,直到所有节点都被访问过。

深度优先搜索的应用非常广泛,以下是几个常见的应用场景:1. 图的连通性判断:深度优先搜索可以用于判断图中的两个节点是否连通。

2. 拓扑排序:深度优先搜索可以用于对有向无环图进行拓扑排序,即按照一种特定的线性顺序对节点进行排序。

3. 岛屿数量计算:深度优先搜索可以用于计算给定矩阵中岛屿的数量,其中岛屿由相邻的陆地单元组成。

二、广度优先搜索的实现和应用广度优先搜索(Breadth First Search,BFS)是一种用于图或树的遍历算法。

它的基本思想是从起始节点开始,逐层遍历,先访问当前节点的所有邻接节点,然后再依次访问下一层的节点,直到遍历完所有节点。

广度优先搜索可以通过队列来实现。

在实现广度优先搜索时,可以采用队列的方式。

具体的实现步骤如下:1. 创建一个访问数组,用于标记节点是否已经被访问过。

2. 创建一个空队列,并将起始节点入队。

3. 当队列不为空时,取出队首节点,并标记为已访问。

4. 遍历当前节点的邻接节点,对于每个邻接节点,如果该节点未被访问过,则将其入队。

四叉树八叉树遍历方法

四叉树八叉树遍历方法

四叉树八叉树遍历方法四叉树和八叉树是常用于空间索引、地理信息、计算机图形学等领域的数据结构。

在进行相关算法设计和实现时,树的遍历是一个基本操作。

下面介绍四叉树和八叉树的遍历方法。

四叉树遍历方法:1. 深度优先遍历(DFS):从根节点出发,依次访问每个子节点,直到到达叶子节点。

然后回溯到父节点,继续访问其他子节点。

2. 广度优先遍历(BFS):从根节点出发,依次访问同一层的所有节点,然后再访问下一层的所有节点,直到遍历完整棵树。

3. 前序遍历:先访问根节点,再依次访问左子树和右子树。

4. 中序遍历:先访问左子树,再访问根节点,最后访问右子树。

5. 后序遍历:先访问左子树,再访问右子树,最后访问根节点。

八叉树遍历方法:八叉树的遍历方法和四叉树类似,只是多了几个子节点。

下面列出八叉树的遍历方法:1. 深度优先遍历(DFS):从根节点出发,依次访问每个子节点,直到到达叶子节点。

然后回溯到父节点,继续访问其他子节点。

2. 广度优先遍历(BFS):从根节点出发,依次访问同一层的所有节点,然后再访问下一层的所有节点,直到遍历完整棵树。

3. 前序遍历:先访问根节点,再依次访问左前上、左前下、左后上、左后下、右前上、右前下、右后上和右后下子树。

4. 中序遍历:先访问左前上、左前下、左后上、左后下,然后访问根节点,最后访问右前上、右前下、右后上和右后下子树。

5. 后序遍历:先访问左前上、左前下、左后上、左后下、右前上、右前下、右后上和右后下子树,最后访问根节点。

以上就是四叉树和八叉树的遍历方法,不同的遍历顺序可以满足不同的算法需求。

在实际应用中,需要根据具体的问题选择合适的遍历方法。

的基本概念与遍历算法

的基本概念与遍历算法

的基本概念与遍历算法图的基本概念与遍历算法图是计算机科学中常用的数据结构,它由顶点集合和边集合组成。

顶点表示实体,边表示实体间的关系或连接。

图可以用于描述各种各样的问题,比如社交网络、网络路由、城市交通等。

在本文中,我们将介绍图的基本概念以及两种常见的遍历算法:深度优先搜索(DFS)和广度优先搜索(BFS)。

1. 图的基本概念图由两个基本元素组成:顶点和边。

顶点用于表示实体,可以是一个人、一座城市、一本书等等。

边用于表示顶点之间的关系或连接,可以是朋友关系、公路连接、书的引用关系等等。

图可以分为有向图和无向图。

有向图的边有方向,表示从一个顶点到另一个顶点的单向关系;无向图的边没有方向,表示两个顶点之间的双向关系。

图还可以分为带权图和无权图。

带权图的边上有权重或者距离,表示顶点之间的权值;无权图的边没有权重或距离,只表示顶点之间的关系或连接。

2. 深度优先搜索(DFS)深度优先搜索是一种用于遍历图的算法。

该算法从一个顶点开始,沿着一条边不断深入,直到无法继续深入为止,然后回溯到前一个顶点,选择另一条未遍历过的边继续深入。

该过程一直重复,直到遍历完图中所有的顶点。

深度优先搜索通常使用递归或者栈来实现。

在遍历过程中,我们需要对已经访问过的顶点进行标记,以防止重复遍历。

深度优先搜索的应用非常广泛,比如在迷宫问题中可以用来寻找出口的路径,在网页爬取中可以用来发现新的链接等等。

3. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法。

该算法从一个顶点开始,首先访问它的所有邻接顶点,然后再依次访问每个邻接顶点的邻接顶点,依次类推,直到遍历完图中的所有顶点。

广度优先搜索通常使用队列来实现。

在遍历过程中,我们需要对已经访问过的顶点进行标记,以防止重复遍历。

广度优先搜索也有许多应用,比如在社交网络中可以用来查找两个人之间的最短路径,在地图导航中可以用来寻找最短的驾车路线等等。

4. 总结图是一种重要的数据结构,可以用于解决各种各样的问题。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法设计:深度优先遍历和广度优先遍历实现深度优先遍历过程1、图的遍历和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。

它是许多图的算法的基础。

深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。

它们对无向图和有向图均适用。

以下假定遍历过程中访问顶点的操作是简单地输出顶点。

2、布尔向量visited[0 ..n-1] 的设置图中任一顶点都可能和其它顶点相邻接。

在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。

为了避免重复访问同一个顶点,必须记住每个已访问的顶点。

为此,可设一布尔向量visited[0 ..n-1] ,其初值为假,一旦访问了顶点Vi 之后,便将visited[i] 置为真。

深度优先遍历(Depth-First Traversal)1.图的深度优先遍历的递归定义假设给定图G的初态是所有顶点均未曾访问过。

在G中任选一顶点V为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点V ,并将其标记为已访问过;然后依次从V出发搜索V的每个邻接点W。

若W未曾访问过,则以W为新的出发点继续进行深度优先遍历,直至图中所有和源点V 有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。

若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。

图的深度优先遍历类似于树的前序遍历。

采用的搜索方法的特点是尽可能先对纵深方向进行搜索。

这种搜索方法称为深度优先搜索(Depth-First Search) 。

相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。

2、深度优先搜索的过程设x 是当前被访问顶点,在对x 做过访问标记后,选择一条从x 出发的未检测过的边(X , y)。

若发现顶点y已访问过,则重新选择另一条从X出发的未检测过的边,否则沿边(X,y)到达未曾访问过的y ,对y访问并将其标记为已访问过;然后从y开始搜索, 直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点X,并且再选择一条从X出发的未检测过的边。

上述过程直至从X出发的所有边都已检测过为止。

此时,若X不是源点,则回溯到在X之前被访问过的顶点;否则图中所有和源点有路径相通的顶点(即从源点可达的所有顶点)都已被访问过,若图G 是连通图,则遍历过程结束,否则继续选择一个尚未被访问的顶点作为新源点,进行新的搜索过程。

3、深度优先遍历的递归算法(1)深度优先遍历算法typedef enum{FALSE ,TRUE}Boolean ;//FALSE 为0,TRUE 为1Boolean visited[MaXVerteXNum] ;// 访问标志向量是全局量void DFSTraverse(ALGraph *G){ //深度优先遍历以邻接表表示的图G,而以邻接矩阵表示G时,算法完全与此相同int i ;for(i=0;i<G->n;i++)visited[i]=FALSE ;// 标志向量初始化for(i=0;i<G->n ;i++)if(!visited[i]) //vi 未访问过DFS(G,i) ;Il以Vi为源点开始DFS搜索}//DFSTraverse(2)邻接表表示的深度优先搜索算法Void DFS(ALGraph *G ,int i){Il以Vi为出发点对邻接表表示的图G进行深度优先搜索EdgeNode *p ;printf("Visit VerteX :%c",G->adjlist[i].VerteX) ;II 访问顶点ViVisited[i]=TRUE ;II 标记Vi 已访问p=G->adjlist[i].firstedge ;II 取Vi 边表的头指针While(P){// 依次搜索Vi的邻接点Vj ,这里j=p->adjvexif (!Visited[p->adjVeX])II 若Vi 尚未被访问DFS(G ,p->adjVeX);// 则以Vj 为出发点向纵深搜索p=p->neXt ;// 找Vi 的下一邻接点}}//DFS3)邻接矩阵表示的深度优先搜索算法void DFSM(MGraph *G ,int i){ Zz以Vi为出发点对邻接矩阵表示的图G进行DFS搜索,设邻接矩阵是0,1矩阵int j ;Printf("visit VerteX :% c", G->vexs[i]) ; ZZ 访问顶点ViVisited[i]=TRUE ;for(j=0 ;j<G->n ;j++) ZZ 依次搜索vi 的邻接点if(G->edges[i][j]==1&&!visited[j])DFSM(G , j)ZZ(vi , Vj) ∈E,且Vj未访问过,故Vj为新出发点}ZZDFSM遍历操作不会修改图G的内容,故上述算法中可将G定义为ALGraPh或MGraPh 类型的参数,而不一定要定义为ALGraPh 和MGraPh 的指针类型。

但基于效率上的考虑,选择指针类型的参数为宜。

4、深度优先遍历序列对图进行深度优先遍历时,按访问顶点的先后次序得到的顶点序列称为该图的深度优先遍历序列,或简称为DFS序列。

(1)一个图的DFS序列不一定惟一当从某顶点X出发搜索时,若X的邻接点有多个尚未访问过,则我们可任选一个访问之。

(2)源点和存储结构的内容均已确定的图的DFS序列惟一①邻接矩阵表示的图确定源点后,DFS序列惟一DFSM算法中,当从Vi出发搜索时,是在邻接矩阵的第i行上从左至右选择下一个未曾访问过的邻接点作为新的出发点,若这样的邻接点多于一个,则选中的总是序号较小的那一个。

②只有给出了邻接表的内容及初始出发点,才能惟一确定其DFS序列邻接表作为给定图的存储结构时,其表示不惟一。

因为邻接表上边表里的邻接点域的内容与建表时的输入次序相关。

因此,只有给出了邻接表的内容及初始出发点,才能惟一确定其DFS序列。

3)栈在深度优先遍历算法中的作用深度优先遍历过程中,后访问的顶点其邻接点被先访问,故在递归调用过程中使用栈(系统运行时刻栈)来保存已访问的顶点。

5、算法分析对于具有n 个顶点和 e 条边的无向图或有向图,遍历算法DFSTraVerse 对图中每顶点至多调用一次DFS或DFSM O从DFSTraVerSe中调用DFS(或DFSM)及DFS(或DFSM) 内部递归调用自己的总次数为n当访问某顶点Vi时,DFS(或DFSM)的时间主要耗费在从该顶点出发搜索它的所有邻接点上。

用邻接矩阵表示图时,其搜索时间为O(n) ;用邻接表表示图时,需搜索第i个边表上的所有结点。

因此,对所有n个顶点访问,在邻接矩阵上共需检查n2个矩阵元素,在邻接表上需将边表中所有O(e) 个结点检查一遍。

所以,DFSTraVerSe的时间复杂度为0(n2)(调用DFSM)或0(n+e)(调用DFS)1、广度优先遍历的递归定义设图G的初态是所有顶点均未访问过。

在G中任选一顶点V为源点,则广度优先遍历可以定义为:首先访问出发点V,接着依次访问V的所有邻接点w1 , w2 ,…,Wt ,然后再依次访问与wl, w2 ,…,Wt邻接的所有未曾访问过的顶点。

依此类推,直至图中所有和源点V有路径相通的顶点都已访问到为止。

此时从V开始的搜索过程结束。

若G是连通图,则遍历完成;否则,在图C中另选一个尚未访问的顶点作为新源点继续上述的搜索过程,直至G中所有顶点均已被访问为止。

广度优先遍历类似于树的按层次遍历。

采用的搜索方法的特点是尽可能先对横向进行搜索,故称其为广度优先搜索(Breadth-FirstSearch) 。

相应的遍历也就自然地称为广度优先遍历。

2、广度优先搜索过程在广度优先搜索过程中,设X和y是两个相继要被访问的未访问过的顶点。

它们的邻接点分别记为x1 , x2, …, xs 和y1 , y2, …, yt。

为确保先访问的顶点其邻接点亦先被访问,在搜索过程中使用FIFO 队列来保存已访问过的顶点。

当访问X和y时,这两个顶点相继入队。

此后,当X和y相继出队时,我们分别从X和y出发搜索其邻接点x1 , x2,…,XS和y1 , y2,…,yt ,对其中未访者进行访问并将其人队。

这种方法是将每个已访问的顶点人队,故保证了每个顶点至多只有一次人队。

3、广度优先搜索算法(1) 邻接表表示图的广度优先搜索算法Void BFS(ALGraph*G ,int k){//以Vk为源点对用邻接表表示的图G进行广度优先搜索int i ;CirQueue Q ;// 须将队列定义中DataType 改为intEdgeNode *p ;InitQueue(&Q) ;// 队列初始化// 访问源点vkprintf("visit vertex :%e",G->adjlist[k].vertex) ;visited[k]=TRUE ;EnQueue(&Q ,k);//vk 已访问,将其人队。

(实际上是将其序号人队)while(!QueueEmpty(&Q)){// 队非空则执行i=DeQueue(&Q) ;// 相当于vi 出队p=G->adjlist[i].firstedge ;// 取vi 的边表头指针while(p){// 依次搜索vi 的邻接点vj( 令p->adjvex=j) if(!visited[p->adivex]){ // 若vj 未访问过printf("visitvertex :%c" ,C->adjlistlp->adjvex].vertex) ;// 访问vjvisited[p->adjvex]=TRUE ;EnQueue(&Q ,p->adjvex) ;// 访问过的vj 人队}//endif p=p->next ;// 找vi 的下一邻接点}//endwhile}//endwhile}//end of BFS2)邻接矩阵表示的图的广度优先搜索算法void BFSM(MGraph *G ,int k){以Vk为源点对用邻接矩阵表示的图G进行广度优先搜索int i ,j;CirQueue Q ;InitQueue(&Q) ;printf("Visit Vertex :%c",G->Vexs[k]) ;// 访问源点Vk Visited[k]=TRUE ;EnQueue(&Q ,k) ;while(!QueueEmpty(&Q)){ i=DeQueue(&Q) ;//Vi 出队for(j=0;j<G->n;j++)// 依次搜索Vi 的邻接点Vj if(G->edges[i][j]==1&&!Visited[j]){//Vi 未访问printf("Visit Vertex :%c",G->Vexs[j]) ;// 访问ViVisited[j]=TRUE ;EnQueue(&Q ,j) ;//访问过的Vi人队}}//endwhile}//BFSM(3)广度优先遍历算法类似于DFSTraverse 。

相关文档
最新文档