河南师范大学附属中学等新乡市名校联考2019-2020学年九年级上学期期末数学试题
最新版2019-2020年河南省新乡市九年级上学期期末模拟考试数学试题及答案-精编试题
上学期期末调研试卷九年级数学一、选择题(每小题3分,共30分)(下列各小题均有四个答案,其中只有一个是正确的)1.二次根式 有意义,则x的取值范围是( )A. B. C. D.2.下列说法正确的是( )A.随机抛掷一枚均匀的硬币,落地后反面一定朝上B.从1,2,3,4,5中随机取一个数,取得奇数的可能性较大C.某彩票中奖率为36%,说明买100张彩票,有36张中奖D.打开电视,中央一套一定正在播放新闻联播3.如图,香港特别行政区区徽中的紫荆花图案,该图案绕中心旋转n 后能与原来的图案互相重合,则n的最小值为( )A. 45B. 60C. 72D. 1084.如图,△OAB与△OCD是以点0为位似中心的位似图形,相似比为1:2,∠OCD=90 ,CO=CD.若B(2,0),则点C的坐标为( )A.(2,2) B.(1,2)C.( ,2 )D.(2,1)5.宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:如图,作正方形ABCD,分别取AD,BC的中点E,F,连接EF,DF,作∠DFC,的平分线,交AD的延长线于点H,作HG⊥BC,交I3C的延长线于点G,则下列矩形是黄金矩形的是( )A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH6.抛物线 可以由抛物线 平移得到,则下列平移过程正确的是( ) A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位.C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位7.二次函数 的图象如图,若一元二次方程 有实数解,则k的最小值为( )A.-4 B.-6 C.-8 D.08.如图,CD是⊙O的直径,弦AB⊥CD于点E,连接BC、BD,下列结论中不一定正确的是( )A.AE=BEB.=C.OE=DE D.∠DBC=909.如图,⊙O的半径为lcm,正六边形ABCDEF内接于⊙O,则图中阴影部分的面积为( ).(结果保留 )A.B. C.D.10.小明用如图所示的扇形纸片折叠成一个圆锥的侧面,已知圆锥的母线长为5cm,扇形的弧长是6cm,那么这个圆锥的高是()A. 4cmB. 6cmC.8cmD. 3cm二、填空题(每小题3分,共15分)11.已知 是关于x的方程 的一个根,并且等腰三角形ABC的腰和底边长恰好是这个方程的两个根,则△ABC的周长为.12,如图,小明在测量学校旗杆高度时,将3米长标杆插在离旗杆8米的地方,已知旗杆高度为6米,小明眼部以下距地面1.5米,这时小明应站在离旗杆米处,可以看到标杆顶端与旗杆顶端重合.13.为应对金融危机,拉动内需,吉祥旅行社3月底组织赴风凰古城、张家界风景区旅游的价格为每人1000元,为了吸引更多的人赴凤凰古城、张家界旅游,在4月底.、5月底进行了两次降价,两次降价后的价格为每人810元,那么这两次降价的平均降低率为____.14.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降l米时,水面的宽度为米.15.如图,∠ACB=60 ,半径为lcm的⊙0切BC于点C,若将⊙0在CB上向右滚动,则当滚动到⊙0与CA也相切时,圆心0移动的水平距离是cm.三、解答题(本题共8小题,共75分)16,计算下列各题.(每小题5分,共1 5分)(1)(2)(3)一般地,当a、b为任意角时,sin(a+b)与sin(a-b)的值可以用下面的公式求得:; .例如.请你试着求一求sin15 的值.17.用适当方法解下列方程.(每小题5分,共10分)(1) (2)18.(8分)在某班“讲故事”比赛中有一个抽奖活动,活动规则是:只有进入最后决赛的甲、乙、丙三位同学,每人才能获得一次抽奖机会.在如图所示的翻奖牌正面的4个数字中任选一个数字,.选中后就可以得到该数字后面的相应奖品,前面的人选中的数字,后面的人就不能再选择该数字了.(1)请用树状图(或列表)的方法求甲、乙二人得到的奖品都是计算器的概率.(2)有同学认为,如果甲先翻奖牌,那么他抽到篮球的概率会大些,这种说法正确吗?请说明理由.19.(8分)如图,为了测量出楼房AC的高度,从距离楼底C处60 米的点D(点D与楼底C在同一水平上)出发,沿斜面坡度为i=l: 的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53 ,求楼房AC的高度(参考数据:sin53=, cos53=, tan53=, ≈1.732,结果精确到0.1米)20.(8分)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B、C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF.(2)当点E移动到BC的中点时,求证:FE平分∠DFC.21.(8分)己知AB是⊙0的直径,AP是⊙0的切线,A是切点,BP与⊙0交于点C.(1)如图①,若AB=2,∠P=30 ,求AP的长.(结果保留根号)(2)如图②,若D为AP的中点,∠P=30 ,求证:直线CD是⊙O的切线.22.(9分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?23.(9分)如图①,已知抛物线 经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).九年级数学参考答案一、选择题(每小题3分,共30分)1-5 DBCAC 6-10 BACDA二、填空题(每小题3分,共15分)11.1412.1213.10%14.15.三、解答题(本题共8小题,共75分)16.(1)解:原式(2)解:原式( )( )(3)解:由题意得:sin15=sin(45-30)=sin45 ·cos30-cos45 ·sin3017.(1) (2)解: 解:。
2019-2020学年度第一学期九年级数学期末试卷试题(含答案)
2019~2020学年度第一学期期末检测九年级数学评分标准(其他解法参照给分)一、选择题(本大题共8小题,每小题3分,共24分.)二、填空题(本大题共10小题,每小题3分,共30分)9.12; 10.1:4; 11.2; 12.>; 13.110;14.不具有; 15. 16.4; 17.16; 18.2+三、解答题(本大题共10小题,共86分.)19.(本题共2小题,每题5分,共10分)(1)(1)计算:1032sin302020-+︒-解:原式11=2132+⨯-…………………………………………………3分 1113=+-……………………………………………………4分 13=…………………………………………………………5分 (2)解方程:2340x x +-=(解法不唯一)解:()()410x x +-=,……………………………………………………7分40x +=,10x -=…………………………………………………9分 1241x x =-=,………………………………………………………10分20.(本小题7分)解:………………………………………………………………………………………5分 P (两次取球得分的总分不小于5分)=13…………………………………………7分21.(本小题7分)(1)816%=50÷,5010148612m =----=;…………………………2分(2)本次抽查的学生文章阅读篇数的中位数为5,众数为4;………………4分(3)14120033650⨯=,………………………………………………………6分 答:估计该校学生在这一周内文章阅读的篇数为4篇的人数为336人.………7分22.(本小题8分)(1)△ABC 的面积是 12 ;…2分(2)如图所示………6分(3)若P (a ,b )为线段BC 上的任一 点,则变换后点P 的对应点'P 的坐标为 (,)22a b .………8分23.(本小题8分)解:设市政府从2017年到2019年对校舍建设投入资金的年平均增长率为x .…1分 根据题意得,28(1)11.52x +=.…………………………………………………4分解这个方程,得 1220% 2.2x x ==-,(不合题意,舍去)……………………7分答:市政府从2017年到2019年对校舍建设投入资金的年平均增长率为20%…8分24.(本小题8分)解:(1)分别过点E 作EF ⊥AC ,EG ⊥AO,垂足为F 、G.∵至DE 处,测得顶点A 的仰角为75°, ∴∠AEG=75°……………1分∵在BC 处测得直立于地面的AO 顶点A 的仰角为30°,∴∠ACE=30°, ……2分 ∴∠CAE=∠AEG -∠ACE=45°……………………………………………3分(2)在Rt △CFE 中,CE=40,∴1sin 3040202EF CE =︒=⨯=………4分 在Rt △AFE 中,∠CAE =45°,AF=FE=20………5分∴sin 452EF AE ===︒…………………………………………6分(第24题)(3)20AC AF CF =+=在Rt △AFE 中,1sin 3020272AG AC =︒=⨯≈()……7分 ∴27 1.529AO AG OG =+=+≈……………………………8分25.(本小题9分)26.(本小题9分)m.…1分解:(1)设矩形生物园的长为xm,则宽为(8-x)m,小兔的活动范围的面积为y227.(本小题10分)(1)证明:如图1中,AE AD ⊥ ,90DAE ∴∠=︒,90E ADE ∠=︒-∠,…………1分AD 平分BAC ∠,12BAD BAC ∴∠=∠,同理12ABD ABC ∠=∠,…………………2分 ADE BAD DBA ∠=∠+∠ ,180BAC ABC C ∠+∠=︒-∠,11()9022ADE ABC BAC C ∴∠=∠+∠=︒-∠,(2)延长AD 交BC 于点F .AB AE = ,ABE E ∴∠=∠,BE 平分ABC ∠,ABE EBC ∴∠=∠,………………………4分E CBE ∴∠=∠,//AE BC ∴,……………………………………5分90AFB EAD ∴∠=∠=︒,BF BD AF DE=, :2:3BD DE = ,(3)ABC 与ADE 相似,90DAE ∠=︒,ABC ∴∠中必有一个内角为90︒ABC ∠ 是锐角,90ABC ∴∠≠︒.………………………………………………………7分 ①当90BAC DAE ∠=∠=︒时,12E C ∠=∠ , 12ABC E C ∴∠=∠=∠, 90ABC C ∠+∠=︒ ,30ABC ∴∠=︒,此时2ABC ADES S =V V .………………………………………8分 ②当90C DAE ∠=∠=︒时,1452E C ∠=∠=︒, 45EDA ∴∠=︒,ABC 与ADE 相似,45ABC ∴∠=︒,此时ABC ADE S S =V V .………………………………………9分28.(本小题10分) 解:(1)由抛物线2y ax bx c =++交x 轴于A 、B 两点,OA =1,OB =3,得点A 坐标为(1,0)-,点B 的坐标为(3,0);…………………………………2分 Q。
河南省2020届九年级上学期期末考试数学试题
河南省2019—2020学年第一学期期末教学质量检测九年级数学(A )注意事项:1.本试卷共6页,三个大题,满分120,考试时间100分钟.请用蓝、黑色水笔或圆珠笔直接答在试卷上. 2.答卷前请将密封线内的项目填写清楚.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内.1.如图,该几何体的主视图是( )A .B .C .D .2.一元二次方程22350x x --=的根的情况是( ) A .有两个不相等实数根 B .有两个相等实数根C 没有实数根D .无法确定3.已知一扇形的圆心角为60︒,半径为5,则以此扇形为侧面的圆锥的底面圆的周长为( ) A .53π B .10πC .56π D .16π 4.如图,反比例函数11k y x=和正比例函数22y k x =的图象交于A ,B 两点,已知A 点坐标为()1,3--若12y y <,则x 的取值范围是( )A .10x -<<B .11x -<<C .1x <-或01x <<D .10x -<<或1x >5.如图,AB 是O 的直径,EF ,EB 是O 的弦,且EF EB =,EF 与AB 交于点C ,连接OF ,若40AOF ∠=︒,则F ∠的度数是( )A .20︒B .35︒C .40︒D .55︒6.在平面直角坐标系中,将()1,4A -关于x 轴的对称点B 绕原点逆时针旋转90︒得到B ',则点B '的坐标是( ) A .()1,4--B .()4,1-C .()4,1-D .()4,1--7.如图,ABC ∆中,点D ,E 分别是边AB ,AC 上的点,//DE BC ,点H 是边BC 上的一点,连接AH 交线段DE 于点G ,且12BHDE ==,8DG =,12ADG S ∆=则BCED S =四边形( )A .24B .22.5C .20D .258.已知二次函数22()4y x m =--+,当2x <-时,y 随x 增大而增大,当0x >时,y 随x 增大而减小,且m 满足2230m m --=,则当0x =时,y 的值为( )A .2B .4C .1+D .1±9.如图,某中学计划靠墙围建一个面积为280m 的矩形花圃(墙长为12m ),围栏总长度为28m ,则与墙垂直的边x 为( )A .4m 或10mB .4mC .10mD .8m10.如图,在平面直角坐标系中,点()2,5P 、(),Q a b ()2a >在函数ky x=()0x >的图象上,过点P 分别作x 轴、y 轴的垂线,垂足为A 、B ;过点Q 分别作x 轴、y 轴的垂线,垂足为C 、D .QD 交PA 于点E ,随着a 的增大,四边形ACQE 的面积( )A .增大B .减小C .先减小后增大D .先增大后减小二、填空题(每小题3分,共15分)11.若方程222340x x a -+-=有两个不相等的实数根,则|3|a -的值等于__________________.12.已知抛物线22y ax ax c =++与x 轴的一个交点坐标为()2,0,则一元二次方程220ax ax c ++=的根为______________.13.如图,正方形ABCD 内接于O ,正方形的边长为2cm ,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是_____________.14.如图,在菱形ABCD 中,点E 是BC 上的点,AE BC ⊥,若3sin 5B =,3EC =,P 是AB 边上的一个动点,则线段PE 最小时,BP 长为___________.15.如图,平行四边形ABCD 的顶点C 在y 轴正半轴上,CD 平行于x 轴,直线AC 交x 轴于点E ,BC AC ⊥,连接BE ,反比例函数ky x=()0x >的图象经过点D .已知3BCE S ∆=,则k 的值是________.三、解答题(本大题共8个小题,满分75分)16.如图,在ABCD 中,过点A 作AE DC ⊥于点E ,连接BE ,F 为BE 上一点,且AFE D ∠=∠.(1)求证:~ABF BEC ∆∆; (2)若5AD =,8AB =,4sin 5D =,求AF 的长. 17.随着经济快速发展,环境问题越来越受到人们的关注.某校为了了解节能减排、垃圾分类等知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将结果绘制成以下两幅不完整的统计图,请根据统计图回答下列问题:(1)本次调查的学生共有___________人,估计该校2000名学生中“不了解”的人数是__________人; (2)将条形统计图补充完整;(3)“非常了解”的4人中有1A ,2A 两名男生,1B ,2B 两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图或列表的方法,求恰好抽到2名男生的概率. 18.如图,Rt ABC ∆中,90ABC ∠=︒,以AB 为直径作半圆O 交AC 于点D ,点E 为BC 的中点,连接DE .(1)求证:DE 是半圆O 的切线;(2)若60ACB ∠=︒,2DE =,求AD 的长.19.如图1,将边长为2的正方形OABC 如图放置在直角坐标系中.图1 图2 图3 (1)如图2,若将正方形OABC 绕点O 顺时针旋转30︒时,求点A 的坐标; (2)如图3,若将正方形OABC 绕点O 顺时针旋转75︒时,求点B 的坐标.20.为了测量竖直旗杆AB 的高度,某数学兴趣小组在地面上的D 点处竖直放了一根标杆CD ,并在地面上放置一块平面镜E ,已知旗杆底端B 点、E 点、D 点在同一条直线上.该兴趣小组在标杆顶端C 点恰好通过平面镜E 观测到旗杆顶点A ,在C 点观测旗杆顶点A 的仰角为30︒.观测点E 的俯角为45︒,已知标杆CD 的长度为1米,问旗杆AB 的高度为多少米?(结果保留根号)21.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率.(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?22.如图,Rt ABO ∆的顶点A 是双曲线ky x=与直线()1y x k =--+在第二象限的交点.AB x ⊥轴于B ,且32ABO S ∆=.(1)求反比例函数的解析式;(2)直线与双曲线交点为A 、C ,记AOC ∆的面积为1S ,AOB ∆的面积为2S ,求12:S S23.如图,抛物线2y x bx c =++与x 轴交于A ,B 两点,与y 轴交于点C ,已知点()1,0A -,且对称轴为直线1x =.图1 图2 (1)求该抛物线的解析式;(2)点M 是第四象限内抛物线上的一点,当BCM ∆的面积最大时,求点M 的坐标;(3)如图2,点P 是抛物线上的一个动点,过点P 作PQ x ⊥轴,垂足为Q .当:3:4PQ AB =时,直接写出点P 的坐标.河南省2019—2020学年第一学期期末教学质量检测九年级数学(A )参考答案1-5:CAADB 6-10:CBACB 11.1 12.12x =,24x =-13.2π14.48515.616.解:(1)证明:四边形ABCD 是平行四边形,//AB CD ∴,//AD BC ,180D C ∴∠+∠=︒,ABF BEC ∠=∠,180AFB AFE ∠+∠=︒,AFE D ∠=∠,C AFB ∴∠=∠,ABFBEC ∴∆∆.(2)AE DC ⊥,//AB DC ,90AED BAE ∴∠=∠=︒,在Rt ADE ∆中,4sin 545AE AD D =⋅=⨯=,在Rt ABE ∆中,根据勾股定理得:BE ===5BC AD ==,由(1)得:~ABF BEC ∆∆,AF ABBC BE ∴=,即5AF =,解得:AF =17.解:(1)本次调查的学生总人数为48%50÷=人;“不了解”的学生所占百分比为100%40%22%8%30%---=,∴估计该校2000名学生中“不了解”的人数约有200030%600⨯=(2)略(3)列表如下,由表可知共有12种可能的结果,恰好抽到2名男生的结果有2个,P ∴(恰好抽到2名男生)21126==18.解:(1)证明:如图,连接OD 、BD AB 是半圆O 的直径90ADB CDB ∴∠=∠=︒,点E 是BC 的中点BE DE CE ∴==DBE BDE∴∠=∠OB OD =OBD ODB ∴∠=∠OBD DBE ODB BDE ∴∠+∠=∠+∠即90ABC ODE ∠=∠=︒ OD DE∴⊥OD 是半圆O 的半径DE ∴是半圆O 的切线.(2)由(1)可知,90ADB CDB ∠=∠=︒,2BE DE CE ===4BC ∴=易求得:2CD =,BD =Rt ABD ∆中,易求得30BAD ∠=︒,6AD =.19.解:(1)如图1作AD x ⊥轴于点D ,则30AOD ∠=︒,2AO =1AD ∴=,3OD =∴点A 的坐标为)1-.图1(2)如图2连接OB ,过点B 作BE x ⊥轴于点E ,则75AOE ∠=︒,45BOA ∠=︒30BOE ∴∠=︒在Rt BOA ∆中,OB =Rt BOE ∆中,易求得BE =,OE =点B 的坐标为.图220.解:如图作//CF BD 交AB 于点F ,则30ACF ∠=︒,45ECF CED ∠=∠=︒ 在直角三角形CDE 中,易求得1CD DE ==由光的反射规律易得45AEB CED ∠=∠=︒,在直角三角形ABE 中,易求得AB BE =设AB x =,则BE x =,1BD CF x ==+,1AF x =-在直角三角形ACF 中,tan AFACF CF∠=,即131x x -=+,解得:2x =+即旗杆AB 的高度为2.21.解:(1)设这两年藏书的年均增长率是x ,25(1)7.2x +=,解得,10.2x =,2 2.2x =-(舍去),所以这两年藏书的年均增长率是20%. (2)在这两年新增加的图书中,中外古典名著有(7.25)20%0.44-⨯=(万册),到2018年底中外古典名著的册数占藏书总量的百分比是:5 5.6%0.44100%10%7.2⨯+⨯=,即到2018年底中外古典名著的册数占藏书总量的10%. 22.解:(1)由32ABO S ∆=易求得3k =双曲线在二、四象限3k ∴=-∴反比例函数的解析式为3y x=- (2)由(1)可得一次函数的解析式为2y x =-+,解32x x-+=-,得11x =-,23x =易求得点A 为()1,3-,点C 为()3,1-记直线AC 与x 轴的交点为D ,易求得D 点坐标为()2,0111422C S OD AB OD y =⋅+⋅=,23S 2=,12S :S 8:3∴=.23.解:(1)由对称性可知抛物线与x 轴的另一个交点B 为()3,0 把点A ,B 坐标代入,10930b c b c -+=⎧⎨++=⎩,解得23b c =-⎧⎨=-⎩抛物线的解析式为223y x x =--.(2)如图作MD x ⊥轴交直线BC 于点D 易求得直线BC 为3y x =- 设点M 为()2,23m m m --则点D 为(),3m m -()223233MD m m m m m ∴=----=-+()()()111222BCM B M M C B C S MD x x MD x x MD x x ∆=⋅-+⋅-=⋅-()222139332733222228m m m m m ⎛⎫=-+⋅=-+=--+ ⎪⎝⎭ ∴当32m =时,BCM ∆的面积最大,此时点M 坐标为315,24⎛⎫- ⎪⎝⎭(3)()1P 或()1-或()0,3-或()2,3-.。
河南省2019-2020学年九年级上学期期末数学试题(解析版)
A. 或 B. C. D.
【答案】C
【解析】
【分析】
设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.
【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,
【详解】解:∵比例函数 和正比例函数 的图象交于 , 两点,
∴B的坐标为(1,3)
观察函数图像可得 ,则 的取值范围为 或 .
故答案为:D
【点睛】本题考查反比例函数的图像和性质.
5.如图, 是 的直径, , 是 的弦,且 , 与 交于点 ,连接 ,若 ,则 的度数是()
A. B. C. D.
【答案】B
∴方程 有两个不相等的实数根.
故选:A.
【点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的实数根”是解题的关键.
3.已知一扇形的圆心角为 ,半径为 ,则以此扇形为侧面的圆锥的底面圆的周长为()
A. B. C. D.
【答案】A
【解析】
【分析】
利用弧长公式计算出扇形的弧长,以此扇形为侧面的圆锥的底面圆的周长即是扇形的弧长.
∴GE=4
∵
∴△ADG∽△ABH,△AGE∽△AHC
∴
ห้องสมุดไป่ตู้即 ,
解得:HC=6
∵DG:GE=2:1
∴S△ADG:S△AGE=2:1
∵S△ADG=12
∴S△AGE=6,S△ADE= S△ADG+S△AGE=18
∵
∴△ADE∽△ABC
∴S△ADE:S△ABC=DE2:BC2
解得:S△ABC=40.5
河南省新乡市19-20学年九年级上学期期末数学试卷 及答案解析
河南省新乡市19-20学年九年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列事件是不可能事件的是()A. 若a,b,c都是实数,则a(bc)=(ab)cB. 一天内某电话被呼叫的次数为0C. 没有水分,种子发芽D. 电影院某天的上座率超讨50%2.在反比例函数y=k−3x图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是()A. k>3B. k>0C. k<3D. k<03.如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同一侧,且∠ACD=∠B,CD=2,E是线段BC延长线上的一个动点,当△DCE和△ABC相似时,线段CE长为()A. 3或4B. 3或43C. 4或5 D. 13或44.如图,A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB的度数为()A. 20°B. 22°C. 25°D. 30°5.二次函数y=(x+1)2与x轴交点坐标为()A. (−1,0)B. (1,0)C. (0,−1)D. (0,1)6.如图,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B,将△AOB以坐标原点O为位似中心在第一象限缩小原图的12得到△COD,则点C的坐标是()A. (2,1)B. (1,2)C. (4,8)D. (8,4)7.半径为r的圆的内接正三角形的边长是()A. 2rB. √3rC. √2rD. 3r28.若点A(−5,y1),B(−3,y2),C(2,y3)在反比例函数y=6x的图象上,则y1,y2,y3的大小关系是()A. y1<y2<y3B. y2<y3<y1C. y3<y2<y1D. y2<y1<y39.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上,则CE:CF=()A. 34B. 45C. 56D. 6710.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A. 6B. 2√13+1C. 9D. 322二、填空题(本大题共5小题,共15.0分)11.在比例尺为1:200000的地图上量得甲乙两地的距离为5cm,则甲、乙两地的实际距离为______千米.12.不透明的袋子中装有8个球,其中有3个红球,3个黄球,2个绿球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是______.13.等腰三角形的边长是方程x2−6x+8=0的解,则这个三角形的周长是_____14.如图,AC⊥BC,AC=BC=2,以BC为直径作半圆,圆心为O,以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是______.15.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是_______________.三、解答题(本大题共8小题,共64.0分)16.若关于x的方程(a−1)x2+3x−2=0有实数根,求a的取值范围.17.在同一平面直角坐标系中,设一次函数y1=mx+n(m,n为常数,且m≠0,m≠−n)与反比例.(1)若y1与y2的图象有交点(1,5),且n=4m;函数y2=m+nx①求:m,n的值;②当y1≥5时,y2的取值范围;(2)若y1与y2的图象有且只有一个交点,求m的值.n18.把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.19.如图:已知在等边三角形ABC中,点D、E分别是AB、BC延长线上的点,且BD=CE,直线CD与AE相交于点F.(1)求证:DC=AE;(2)求证:AD2=DC⋅DF.20.如图,AB是⊙O的直径,CD切⊙O于点C,AD交⊙O于点E,AC平分∠BAD,连接BE.(Ⅰ)求证:ED⊥CD;(Ⅱ)若CD=4,AE=2,求⊙O的半径.21.已知:如图,一次函数y=kx+b与反比例函y=3的图象有两个交点A(1,m)和B,过点A作AD⊥xx抽,垂足为点D;过点B作BC⊥y轴,垂足为点C,且BC=2,连接CD.(1)求m,k,b的值;(2)求四边形ABCD的面积.22.问题发现:如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是____;②线段AC,CD,CE之间的数量关系是____.拓展探究:(2)如图2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由;解决问题:(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC=90°,请直接写出线段AD的长度.23.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x−2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求△ABC的面积;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.-------- 答案与解析 --------1.答案:C解析:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.依据定义即可判断.解:A是必然事件,B是随机事件,C是不可能事件,D是随机事件.故选C.2.答案:A图象的每一支曲线上,y都随x的增大而减小,根据反比例函数的性质,解析:解:在y=k−3x得k−3>0,k>3.故选:A.利用反比例函数的性质可得出k−3>0,解不等式即可得出k的取值范围.(k≠0)的性质:本题考查了反比例函数y=kx①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.3.答案:B解析:本题考查的是相似三角形的性质有关知识,根据题目中的条件和三角形的相似,可以求得CE的长,本题得以解决.解:∵△DCE和△ABC相似,∠ACD=∠ABC,AC=6,AB=4,CD=2,∴∠A=∠DCE,∴ABCD =ACCE或ABCE=ACCD,即42=6CE或4CE=62,解得:CE=3或CE=43.故选B.4.答案:A解析:本题主要考查了圆周角定理以及推论,根据圆周角定理即可得到结论.解:∵∠BAC=12∠BOC,∴∠BOC=80°,∵∠BOC=2∠AOB,∴∠AOB=40°,∴∠ACB=12∠AOB=20°.故选A.5.答案:A解析:本题考查了函数图象上的点的坐标与函数解析式的关系,以及坐标轴上点的特征.根据二次函数y= (x+1)2与x轴交点纵坐标为0,把y=0代入函数解析式求得x=−1,从而求得与x轴的交点坐标.【解得】解:∵二次函数y=(x+1)2与x轴交点纵坐标为0,∴把y=0代入得(x+1)2=0,解得x=−1,∴交点坐标为(−1,0).故选A.6.答案:B解析:此题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键. 直接利用位似图形的性质以及结合A 点坐标直接得出点C 的坐标.解:∵点A(2,4),过点A 作AB ⊥x 轴于点B.将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,∴C(1,2).故选B .7.答案:B解析:本题主要考查了正多边形和圆,正三角形的性质,熟练掌握等边三角形的性质是解题的关键,根据圆的内接正三角形的特点,求出内心到每个顶点的距离,可求出内接正三角形的边长.解:∵圆的内接正三角形的内心到每个顶点的距离是等边三角形高的23,从而等边三角形的高为32r , ∴等边三角形的边长为√3r ,故选B .8.答案:D解析:解:∵点A(−5,y 1),B(−3,y 2),C(2,y 3)在反比例函数y =6x 的图象上,k =6>0, ∴该函数在每个象限内,y 随x 的增大而减小,函数图象在第一、三象限,∵−5<−3,0<2,∴y 2<y 1<0<y 3,即y 2<y 1<y 3,故选:D .根据反比例函数的性质可以判断y 1,y 2,y 3的大小,从而可以解答本题.本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.解析:本题主要考查了等边三角形的性质、翻转折叠、相似三角形的判定及性质,熟练掌握等边三角形的性质、翻转折叠、相似三角形的判定及性质是解题的关键,首先根据翻转折叠的性质以及相似三角形的判定得出△ADE∽△BFD,然后得出DEDF =AEBD=ADBF,设AD=x,CE=DE=a,CF=DF=b,得到相应关系,即可求解.解∵△EFC与△EFD关于EF对称,∴∠EDF=∠ECF=60°,EC=ED,FC=FD,∵∠BDF+∠EDF=∠BDE=∠A+∠DEA,∵∠EDF=∠A=60°,∴∠BDF=∠DEA,∴△ADE∽△BFD,∴DEDF =AEBD=ADBF,设AD=x,CE=DE=a,CF=DF=b,∵AD:BD=1:2,∴DB=2x,∴AB=3x=AC=BC,∴AE=3x−a,BF=3x−b,∴ab =3x−a2x=x3x−b,由前两项得,2ax=b(3x−a),由后两项得,(3x−a)(3x−b)=2x2,即:3x(3x−a)−b(3x−a)=2x2,∴3x(3x−a)−2ax=2x2,∴a=75x,∴ab =3x−a2x=45,∴CE:CF=4:5=45,故选B.解析:本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型,如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1−OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1−OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,∵∠OP1B=90°,∴OP1//AC∵AO=OB,∴P1C=P1B,AC=4,∴OP1=12∴P1Q1最小值为OP1−OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是9.11.答案:10解析:解:根据比例尺=图上距离:实际距离,得甲、乙两地的实际距离为5×200000=1000000(cm),1000000cm=10千米.故答案为:10.比例尺=图上距离:实际距离,根据比例尺关系即可直接得出实际的距离.此题考查了比例线段.能够根据比例尺正确进行计算,注意单位的转换.12.答案:38解析:解:∵袋子中共有8个小球,其中红球有3个,∴从袋子中随机取出1个球,则它是红球的概率是3,8.故答案为:38根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m.种结果,那么事件A的概率P(A)=mn13.答案:6或10或12解析:此题考查了等腰三角形的性质,一元二次方程的解法.解题的关键是注意分类讨论思想的应用.解一元二次方程,因式分解等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.由等腰三角形的底和腰是方程x2−6x+8=0的两根,解此一元二次方程即可求得等腰三角形的腰与底边的长,注意需要分当2是等腰三角形的腰时与当4是等腰三角形的腰时讨论,然后根据三角形周长的求解方法求解即可.解:∵x2−6x+8=0,∴(x−2)(x−4)=0,解得:x=2或x=4,∵等腰三角形的底和腰是方程x2−6x+8=0的两根,∴当2是等腰三角形的腰时,2+2=4,不能组成三角形,舍去;当4是等腰三角形的腰时,2+4>4,则这个三角形的周长为2+4+4=10.当边长为2的等边三角形,得出这个三角形的周长为2+2+2=6.当边长为4的等边三角形,得出这个三角形的周长为4+4+4=12.∴这个三角形的周长为10或6或12.故答案为6或10或12.14.答案:512π−√32解析:解:连接CE,如图,∵AC⊥BC,∴∠ACB=90°,∵AC//OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=√22−12=√3,cos∠OCE=12,∴∠OCE=60°,∴S阴影部分=S扇形BCE−S△OCE−S扇形BOD=60⋅π⋅22360−12⋅1⋅√3−90⋅π⋅12360=512π−√32.故答案为512π−√32.连接CE,如图,利用平行线的性质得∠COE=∠EOB=90°,再利用勾股定理计算出OE=√3,利用余弦的定义得到∠OCE=60°,然后根据扇形面积公式,利用S阴影部分=S扇形BCE−S△OCE−S扇形BOD 进行计算即可.本题考查了扇形面积的计算:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.15.答案:6√2解析:本题考查了旋转的性质、正方形的性质以及等腰直角三角形的性质.此题难度适中,注意连接B′C构造等腰Rt△OB′C是解题的关键,注意旋转中的对应关系.由边长为3的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,利用勾股定理的知识求出B′C的长,再根据等腰直角三角形的性质,勾股定理可求B′O,OD,从而可求四边形AB′OD的周长.解:连接BC′,∵旋转角∠BAD′=45°,∠BAB′=45°,∴B在对角线AC′上,∵AB=AB′=2,在Rt△AB′C′中,AC′=√AB′2+B′C′2=3√2,∴BC′=3√2−3,在等腰Rt△OBC′中,OB=BC′=3√2−3,在直角三角形OBC′中,OC′=√2(3√2−3)=6−3√2,∴OD′=3−OC′=3√2−3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3√2−3+3√2−3=6√2,故答案为6√2.16.答案:解:∵关于x的方程(a−1)x2+3x−2=0有实数根,分两种情况:当a−1≠0时,∴△=9−4×(a−1)×(−2)≥0且a−1≠0,且a≠1.解得,a≥−18当a−1=0时,即a=1,方程为3x−2=0,方程有实数根,综上所述,a≥−18.解析:本题考查的是一元二次方程的根的判别式.分两种情况讨论:当a−1≠0时,由△=9−4×(a−1)×(−2)≥0且a−1≠0,求解;当a−1=0时,即a=1,方程为一元一次方程,仍符合题意.从而可得出答案.17.答案:解:(1)①把(1,5)代入y1=mx+n,得m+n=5,又∵n=4m,∴m=1,n=4.②由①知:y1=x+4,y2=5x.∴当y1≥5时,x≥1.此时,0<y2≤5.(2)令m+nx=mx+n,得mx2+nx−(m+n)=0.由题意得,Δ=n2+4m(m+n)=(n+2m)2=0,∴n+2m=0,∴mn =−12.解析:本题主要考查了一次函数解析式,反比例函数解析式,一元一次不等式的求解,函数交点的求法.(1)解答本题的关键是由函数交点得到关于m,n的关系式,再由n=4m即得m与n的值,由此即可得出一次函数和反比例函数的解析式,再求出当y1≥5时的x的取值范围,最后得到此时y2的取值范围即可;(2)联立两函数解析式即可得到关于x的一元二次方程式,两函数只有一个交点即该方程只有一个解,即Δ=0,由此即可求得mn的值.18.答案:解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率=49.解析:画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.19.答案:证明:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,BC=CA∴∠DBC=∠ECA=180°−60°=120°在△DBC与△ECA中{DB=EC∠DBC=∠ECA BC=CA∴△DBC≌△ECA(SAS)∴DC=AE;(2)∵△DBC≌△ECA,∴∠DCB=∠EAC 又∠ACB=∠BAC∴∠DCA=∠DAF 又∠D=∠D∴△DCA∽△DAF∴DCAD=ADDF∴AD2=DC⋅DF.解析:(1)利用“SAS”证明△DBC≌△ECA即可;(2)由△DBC≌△ECA可知∠DCB=∠EAC,可得∠DCA=∠DAF,可证△DCA∽△DAF,利用相似比得出结论.本题考查了全等三角形、相似三角形的判定与性质.关键是根据等边三角形的性质找角相等的条件.20.答案:(Ⅰ)证明:连接OC,交BE于F,由DC是切线得OC⊥DC;又∵OA=OC,∴∠OAC=∠OCA,∵∠DAC=∠OAC.∴∠OCA=∠DAC,∴OC//AD,∴∠D+∠OCD=180°,∴∠D=90°,即ED⊥CD.(Ⅱ)解:∵AB是⊙O的直径,∴∠AEB=90°,∵∠D=90°,∴∠AEB=∠D,∴BE//CD,∵OC⊥CD,∴OC⊥BE,∴EF=BF,∵OC//ED,∴四边形EFCD是矩形,∴EF=CD=4,∴BE=8,∴AB=√AE2+BE2=√22+82=2√17,∴⊙O的半径为√17.解析:(Ⅰ)连接OC ,易证OC ⊥DC ,由OA =OC ,得出∠OAC =∠OCA ,则可证明∠OCA =∠DAC ,证得OC//AD ,根据平行线的性质即可证明;(Ⅱ)根据圆周角定理证得∠AEB =90°,根据垂径定理证得EF =BF ,进而证得四边形EFCD 是矩形,从而证得BE =8,然后根据勾股定理求得AB ,即可求得半径.本题考查了圆的切线的性质,圆周角定理,垂径定理以及勾股定理的应用.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题. 21.答案:解:(1)如图所示,∵反比例函数y =3x 的图象经过点A(1,m),∴m =31=3,∴A(1,3),∵BC =2,∴x B =−2, 又∵点B 在双曲线y =3x 上,∴y B =3−2=−32,即B(−2,−32);∵一次函数y =kx +b 的图象经过A(1,3),B(−2,−32)∴{k +b =3−2k +b =−32 ,解之,得{k =32b =32. 综上所述,m =3,k =32 ,b =32 ;(2)延长AD 、BC ,AD 、BC 相交于点E ,∵AD ⊥x 轴,BC ⊥y 轴,且x 轴⊥y 轴,∴AE ⊥BE ,又由(1)可知,A(1,3),B(−2,−32),则C(0,−32),D(1,0),E(1,−32),解析:本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是掌握:反比例函数与一次函数交点坐标同时满足反比例函数与一次函数解析式.(1)根据反比例函y =3x 的图象有两个交点A(1,m),即可得到点A 的坐标,再根据一次函数y =kx +b 的图象经过A(1,3),即可得到k 的值;(2)先求得AE 、BE 、CE 、DE 的长度,根据进行计算即可. 22.答案:解:(1)∵在△ABC 中,AB =AC ,∠BAC =60°,∴∠BAC =∠DAE =60°,∴∠BAC −∠DAC =∠DAE −∠DAC ,即∠BAD =∠CAE ,在△BAD 和△CAE 中,{AB =AC∠BAD =∠CAE AD =AE, ∴△BAD≌△CAE(SAS),∴∠ACE =∠B =60°,BD =CE ,∴BC =BD +CD =EC +CD ,∴AC =BC =EC +CD ;故答案为:60°,AC =DC +EC ;(2)BD2+CD2=2AD2,理由如下:由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)如图3,作AE⊥CD于E,连接AD,∵在Rt△DBC中,DB=3,DC=5,∠BDC=90°,∴BC=√9+25=√34,∵∠BAC=90°,AB=AC,∴AB=AC=√17,∠ABC=∠ACB=45°,∵∠BDC=∠BAC=90°,∴点B,C,A,D四点共圆,∴∠ADE=45°,∴△ADE 是等腰直角三角形,∴AE =DE ,∴CE =5−DE ,∵AE 2+CE 2=AC 2,∴AE 2+(5−AE)2=17,∴AE =1,AE =4,AD =√2AE ,∴AD =√2或AD =4√2.解析:本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.(1)证明△BAD≌△CAE ,根据全等三角形的性质解答;(2)根据全等三角形的性质得到BD =CE ,∠ACE =∠B ,得到∠DCE =90°,根据勾股定理计算即可;(3)如图3,作AE ⊥CD 于E ,连接AD ,根据勾股定理得到BC =√3+25=√34,推出点B ,C ,A ,D 四点共圆,根据圆周角定理得到∠ADE =45°,求得△ADE 是等腰直角三角形,得到AE =DE ,根据勾股定理即可得到结论.23.答案:解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y =a(x −1)2+1,又抛物线过原点,∴0=a(0−1)2+1,解得a =−1,∴抛物线解析式为y =−(x −1)2+1,即y =−x 2+2x ,联立抛物线和直线解析式可得{y =−x 2+2y =x −2, 解得{x =2y =0或{x =−1y =−3, ∴B(2,0),C(−1,−3);(2)设直线AC 的解析式为y =kx +b ,与x 轴交于D ,把A(1,1),C(−1,−3)的坐标代入得{1=k +b −3=−k +b, 解得:{k =2b =−1, ∴y =2x −1,当y =0,即2x −1=0,解得:x =12,∴D(12,0), ∴BD =2−12=32 ∴△ABC 的面积=S △ABD +S △BCD =12×32×1+12×32×3=3;(可以利用勾股定理的逆定理证明∠ABC =90°).(3)假设存在满足条件的点N ,设N(x,0),则M(x,−x 2+2x),∴ON =|x|,MN =|−x 2+2x|,由(2)知,AB =√2,BC =3√2,∵MN ⊥x 轴于点N ,∴∠ABC =∠MNO =90°,∴当△ABC 和△MNO 相似时,有MN AB =ON BC 或MN BC =ON AB , ①当MN AB =ON BC 时, ∴2√2=3√2,即|x||−x +2|=13|x|, ∵当x =0时M 、O 、N 不能构成三角形,∴x ≠0,∴|−x +2|=13,∴−x +2=±13,解得x =53或x =73, 此时N 点坐标为(53,0)或(73,0);②当或MN BC =ON AB ,23√2时, ∴232=2,即|x||−x+2|=3|x|,∴|−x+2|=3,∴−x+2=±3,解得x=5或x=−1,此时N点坐标为(−1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(53,0)或(73,0)或(−1,0)或(5,0).解析:(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C 点坐标;(2)设直线AC的解析式为y=kx+b,与x轴交于D,得到y=2x−1,求得BD=2−12=32于是得到结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得MNAB =ONBC或MNBC=ONAB,可求得N点的坐标.本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M 的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.。
河南省19-20学年九年级上学期期末数学试卷(A卷) 及答案解析
河南省19-20学年九年级上学期期末数学试卷(A卷)一、选择题(本大题共10小题,共30.0分)1.如图所示的几何体的主视图是()A. B. C. D.2.一元二次方程x2−4x+5=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根3.如图,有一圆心角为120°,半径长为6的扇形,若将OA、OB重合后围成一圆锥侧面,那么圆锥的高是()A. 4√2B. 2√3C. 2√2D. 4√34.如图,正比例函数y1=k1x的图象与反比例函数y2=k2的图象相交于xA,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A. x<−2或x>2B. x<−2或0<x<2C. −2<x<0或0<x<2D. −2<x<0或x>25.如图,已知∠OBA=20°,且OC=AC,则∠BOC的度数是()A. 70°B. 80°C. 40°D. 60°6.以坐标原点为旋转中心,把点A(3,6)逆时针旋转90°,得到点B,则点B关于y轴对称的点的坐标为()A. (6,3)B. (−3,−6)C. (6,−3)D. (−6,3)7.如图,D,E分别是△ABC的边AB,AC上的点,DE//BC,若DE:BC=1:3,则S△AED:S△BCA的值为().A. 13B. 14C. 19D. 1168.已知二次函数y=−(x+ℎ)2,当x<−3时,y随x增大而增大,当x>0时,y随x增大而减小,且h满足ℎ2−2ℎ−3=0,则当x=0时,y的值为()A. −1B. 1C. −9D. 99.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若苗圃园的面积为72平方米,则x为()A. 12B. 10C. 15D. 810.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=kx(k>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A、B;过点Q分别作x轴、y轴的垂线,垂足为点C、D,QD交PA于点E,随着m的增大,四边形ACQE的面积()A. 增大B. 减小C. 先减小后增大D. 先增大后减小二、填空题(本大题共5小题,共15.0分)11.如果关于x的方程x2−4x+2m=0有实数根,则m的取值范围是________。
2019-2020学年新乡市九年级上期末数学试卷含答案解析
2019-2020学年新乡市九年级上期末数学试卷含答案解析一、选择题:每小题3分,共24分。
下列各小题均有四个答案,其中只有一个是正确的。
1.一元二次方程x2+2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=22.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.3.下列事件中,属于必然事件的是()A.打开电视,它正在播广告B.掷两枚质地均匀的骰子,点数之和一定大于6C.某射击运动员射击一次,命中靶心D.早晨的太阳从东方升起4.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x﹣3)2=14C.(x+6)2=D.以上答案都不对5.如图,直线AB、AD分别与⊙O切于点B、D,C为⊙O上一点,且∠BCD=132°,则∠A的度数是()A.48° B.84°C.90°D.96°6.同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大7.某果园年水果产量为100吨,年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1448.已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a﹣b+c<0,则正确的结论是()A.①②③④B.②④⑤C.②③④D.①④⑤二、填空题:每小题3分,共21分。
9.若a是方程x2﹣2x﹣5=0的根,则1﹣4a+2a2=.10.在平面直角坐标系中,将抛物线y=﹣x2+2先向右平移1个单位,再向下平移3个单位,得到的抛物线的解析式为.11.关于x的一元二次方程x2+x+k=0有两个实数根,则k的取值范围是.12.某校准备组织师生观看奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是.13.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,则m的取值范围是.14.若一个圆锥的侧面展开图是半径为18cm,圆心角为210°的扇形,则这个圆锥的底面半径是cm.15.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶片状”阴影图案的面积为.三、解答题:本大题共8个小题,满分75分。
河南省新乡市2019-2020学年九年级上学期期末数学试题(解析版)
2019-2020学年度第一学期期末考试卷九年级数学(RJ)一、选择题(每小题3分,共30分)1.下列事件中,是必然事件的是()A. 任意买一张电影票,座位号是2的倍数B. 13个人中至少有两个人生肖相同C. 车辆随机到达一个路口,遇到红灯D. 明天一定会下雨【答案】B【解析】【分析】必然事件就是一定发生的事件,结合不可能事件、随机事件的定义依据必然事件的定义逐项进行判断即可.【详解】A、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误,故选B、【点睛】本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.在反比例函数y=k1x的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A. k>1B. k>0C. k≥1D. k<1【答案】A【解析】【分析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k-1>0,解可得k的取值范围.【详解】解:根据题意,在反比例函数y =k 1x-图象的每一支曲线上,y 都随x 的增大而减小, 即可得k -1>0,解得k >1.故选A. 【点睛】本题考查了反比例函数的性质:①当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②当k >0时,在同一个象限内,y 随x 的增大而减小;当k <0时,在同一个象限,y 随x 的增大而增大.3.如图,以,,A B C 为顶点的三角形与以,,D E F 为顶点的三角形相似,则这两个三角形的相似比为( )A. 2:1B. 3:1C. 4:3D. 3:2【答案】A【解析】【分析】 通过观察图形可知∠C 和∠F 是对应角,所以AB 和DE 是对应边;BC 和EF 是对应边,即可得出结论.【详解】解:观察图形可知∠C 和∠F 是对应角,所以AB 和DE 是对应边;BC 和EF 是对应边,∵BC =12,EF =6,∴2:1BC EF=. 故选A.【点睛】此题重点考察学生对相似三角形性质理解,掌握相似三角形性质是解题的关键. 4.如图,点A 、B 、C 在⊙O 上,∠A =50°,则∠BOC 的度数为( )A. 130°B. 50°C. 65°D. 100°【答案】D【解析】【分析】根据圆周角定理求解即可.【详解】解:∵∠A =50°,∴∠BOC =2∠A =100°.故选D .【点睛】考查了圆周角定理的运用.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.二次函数y=3(x–2)2–5与y 轴交点坐标为( )A (0,2) B. (0,–5) C. (0,7) D. (0,3)【答案】C【解析】【分析】由题意使x=0,求出相应的y 的值即可求解.【详解】∵y=3(x ﹣2)2﹣5, ∴当x=0时,y=7, ∴二次函数y=3(x ﹣2)2﹣5与y 轴交点坐标为(0,7). 故选C. 【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.6.如图所示,在平面直角坐标系中,已知点A (2,4),过点A 作AB⊥x 轴于点B .将⊥AOB 以坐标原点O 为位似中心缩小为原图形的12,得到⊥COD ,则CD 的长度是( )A. 2B. 1C. 4D.【答案】A【解析】 【分析】直接利用位似图形的性质结合A 点坐标可直接得出点C 的坐标,即可得出答案..【详解】∵点A、2、4),过点A 作AB ⊥x 轴于点B ,将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD、 ∴C、1、2),则CD 的长度是2、故选A、【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.7.已知圆内接正三角形的面积为 )A. 2B. 1 D. 2【答案】B【解析】【分析】根据题意画出图形,连接AO 并延长交BC 于点D ,则AD ⊥BC ,设OD =x ,由三角形重心的性质得AD =3x , 利用锐角三角函数表示出BD 的长,由垂径定理表示出BC 的长,然后根据面积法解答即可.【详解】如图,连接AO 并延长交BC 于点D ,则AD ⊥BC ,设OD =x ,则AD =3x ,∵tan ∠BAD =BD AD,∴BD = tan30°·AD ,∴BC =2BD ,∵12BC AD ⋅=,∴12××3x , ∴x =1所以该圆的内接正三边形的边心距为1,【点睛】本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距.8.若点()1,6A x -,2(,2)B x -,()3,2C x 在反比例函数21m y x+=(m 为常数)的图象上,则1x ,2x ,3x 的大小关系是( )A. 123x x x <<B. 321x x x <<C. 231x x x <<D. 213x x x <<【答案】D【解析】【分析】根据反比例函数的性质,可以判断出x 1,x 2,x 3的大小关系,本题得以解决. 【详解】解:∵反比例函数21m y x+=(m 为常数),m 2+1>0, ∴在每个象限内,y 随x 的增大而减小,∵点A (x 1,-6),B (x 2,-2),C (x 3,2)在反比例函数21m y x+=(m 为常数)的图象上,∵6202-<-<<, ∴x 2<x 1<x 3,故选:D.【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.9.如图,D 是等边△ABC 边AB 上的一点,且AD :DB =1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上,则CE :CF =( )A. 34B. 45C. 56D. 67【答案】B【解析】借助翻折变换的性质得到DE=CE ;设AB=3k ,CE=x ,则AE=3k -x ;根据相似三角形的判定与性质即可解决问题.【详解】设AD =k ,则DB =2k ,∵△ABC 为等边三角形,∴AB =AC =3k ,∠A =∠B =∠C =∠EDF =60°,∴∠EDA +∠FDB =120°,又∠FDB +∠AED =120°,∴∠FDB =∠AED ,∴△AED ∽△BDF , ∴ED FD =AD BF =AE BD, 设CE =x ,则ED =x ,AE =3k -x ,设CF =y ,则DF =y ,F B =3k -y , ∴x y =3k k y -=32k x k -,∴(3)2(3)ky x k y kx y k x =-⎧⎨=-⎩, ∴x y =45,∴CE :CF =4:5, 故选B.10.如图,在ABC ∆中,10 , 8 , 6AB AC BC === ,以边AB 的中点O 为圆心,作半圆与AC 相切,点, P Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A. 6B. 1C. 9D. 323【答案】C【解析】【分析】如图,设⊙O 与AC 相切于点E ,连接OE ,作OP 1⊥BC 垂足为P 1交⊙O 于Q 1,此时垂线段OP 1最短,P 1Q 1最小值为OP 1-OQ 1,求出OP 1,如图当Q 2在AB 边上时,P2与B 重合时,P 2Q 2最大值=5+3=8,由此不难解【详解】解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,∵∠OP1B=90°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=12AC=4,∴P1Q1最小值为OP1-OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是9.故选:C.【点睛】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.二、填空题(每小题3分,共15分)11.在比例尺为1:1000000的地图上,量得甲、乙两地的距离是2.6cm,则甲、乙两地的实际距离为_______千米.【答案】26【解析】【分析】根据比例尺=图上距离、实际距离.根据比例尺关系即可直接得出实际的距离、【详解】根据比例尺=图上距离、实际距离、得、A、B两地的实际距离为2.6×1000000、2600000、cm、、26(千米)、故答案为26、【点睛】本题考查了线段的比.能够根据比例尺正确进行计算、注意单位的转换、12.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.【答案】3 7【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是37,故答案为37.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为_____.【答案】15【解析】【分析】先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.【详解】解:x2﹣3x﹣10=0,(x﹣5)(x+2)=0,即x﹣5=0或x+2=0,∴x1=5,x2=﹣2.因为方程x2﹣3x﹣10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为15.【点睛】本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.14.如图所示,半圆O 的直径AB=4,以点B 为圆心,O 于点C ,交直径AB 于点D ,则图中阴影部分的面积是_____________.3π【解析】解:连接OC ,CB ,过O 作OE ⊥BC 于E ,∴BE =12BC =12⨯∵OB =12AB =2,∴OE =1,∴∠B =30°,∴∠COA =60°,=()DOC OBC AOC AOC DBC S S S S S S ∆-=--阴影扇形扇形扇形 =260211)3602π⨯-⨯ =2(3ππ- 3π3π.15.如图,在正方形ABCD 中,1AD =,将ABD ∆绕点B 顺时针旋转45︒得到A BD ''∆,此时A D ''与CD 交于点E ,则DE 的长度为___________.【答案】2-【解析】【分析】利用正方形和旋转的性质得出A ′D=A ′E ,进而利用勾股定理得出BD 的长,进而利用锐角三角函数关系得出DE 的长即可.【详解】解:由题意可得出:∠BDC=45°,∠DA ′E=90°,∴∠DEA ′=45°,∴A ′D=A ′E ,∵在正方形ABCD 中,AD=1,∴AB=A ′B=1,∴,∴A ′1,∴在Rt △DA ′E 中,DE='2sin 45DA =︒故答案为:2【点睛】此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A ′D 的长是解题关键.三、解答题(共8题,共75分)16.已知关于x 的一元二次方程x 2+x +m ﹣1=0.(1)当m =0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m 的取值范围.【答案】(1)x 1=12-+,x 2=12-(2)m <54 【解析】【分析】(1)令m =0,用公式法求出一元二次方程的根即可;(2)根据方程有两个不相等的实数根,计算根的判别式得关于m 的不等式,求解不等式即可.【详解】(1)当m =0时,方程为x 2+x ﹣1=0.△=12﹣4×1×(﹣1)=5>0,∴x =,∴x 1=x 2= (2)∵方程有两个不相等的实数根,∴△>0,即12﹣4×1×(m ﹣1)=1﹣4m +4=5﹣4m >0,∴m 54<. 【点睛】本题考查了一元二次方程的解法、根的判别式.一元二次方程根的判别式△=b 2﹣4ac . 17.已知正比例函数y =x 的图象与反比例函数y =kx (k 为常数,且k ≠0)的图象有一个交点的纵坐标是2.(Ⅰ)当x =4时,求反比例函数y =kx的值; (Ⅱ)当﹣2<x <﹣1时,求反比例函数y =kx的取值范围.【答案】(Ⅰ)1;(Ⅱ)﹣4<y <﹣2. 【解析】 【分析】(Ⅰ)首先把y =2代入直线的解析式,求得交点坐标,然后利用待定系数法求得反比例函数的解析式,最后把x =4代入求解;(Ⅱ)首先求得当x =﹣2和x =﹣1时y 的值,然后根据反比例函数的性质求解. 【详解】解:(Ⅰ)在y =x 中,当y =2时,x =2,则交点坐标是(2,2),把(2,2)代入y =kx,得:k =4, 所以反比例函数解析式为y =4x,当x =4,y =4k=1;(Ⅱ)当x =﹣2时,y =2k-=﹣2;当x =﹣1时,y =1k-=﹣4,则当﹣2<x <﹣1时,反比例函数y =kx的范围是:﹣4<y <﹣2. 【点睛】此题考查了反比例函数与一次函数的交点问题,以及反比例函数的增减性,两函数的交点即为同时满足两函数解析式的点,其中用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.18.有3张看上去无差别的卡片,上面分别写着1、2、3.随机抽取1张后,放回并混在一起,再随机抽取1张.(I )请你用画树状图法(或列表法)列出两次抽取卡片出现的所有可能结果; (Ⅱ)求两次抽取的卡片上数字之和为偶数的概率. 【答案】(I )9;(Ⅱ)59. 【解析】 【分析】(Ⅰ)直接用树状图或列表法等方法列出各种可能出现的结果;(Ⅱ)由(Ⅰ)可知所有9种等可能的结果数,再找出两次抽到的卡片上的数字之和为偶数的有5种.然后的根据概率公式求解即可. 【详解】解:(Ⅰ)画树状图得:共有9种等可能结果数;(Ⅱ)由(Ⅰ)可知:共有9种等可能的结果数,两次抽取的卡片上数字之和为偶数的有5种, 所以两次抽到的卡片上的数字之和为偶数的概率为:59. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.19.如图,△ABC 是等边三角形,点D ,E 分别在BC ,AC 上,且BD =CE ,AD 与BE 相交于点F , (1)证明:△ABD ≌△BCE ; (2)证明:△ABE ∽△FAE ;(3)若AF =7,DF =1,求BD 的长.【答案】(1)证明见解析;(2)证明见解析;(3)BD =. 【解析】 【分析】(1)根据等边三角形的性质,利用SAS 证得△ABD ≌△BCE ;(2)由△ABD ≌△BCE 得∠BAD=∠CBE ,又∠ABC=∠BAC ,可证∠ABE=∠EAF ,又∠AEF=∠BEA ,由此可以证明△AEF ∽△BEA ;(3)由△ABD ≌△BCE 得:∠BAD=∠FBD ,又∠BDF=∠ADB ,由此可以证明△BDF ∽△ADB ,然后可以得到AD BD=BC DF,即BD 2=AD•DF=(AF+DF )•DF. 【详解】解:(1)∵△ABC 是等边三角形, ∴AB =BC ,∠ABD =∠BCE , 在△ABD 与△BCE 中的∵ABC=BAC=C BD=CE AB BC =⎧⎪∠∠∠⎨⎪⎩, ∴△ABD ≌△BCE (SAS ); (2)由(1)得:∠BAD =∠CBE , 又∵∠ABC =∠BAC , ∴∠ABE =∠EAF , 又∵∠AEF =∠BEA , ∴△AEF ∽△BEA ;(3)∵∠BAD =∠CBE ,∠BDA =∠FDB , ∴△ABD ∽△BDF , ∴=AD BDBC DF, ∴BD 2=AD•DF=(AF+DF )•DF=8, ∴BD =.【点睛】本题考查的知识点是相似三角形的判定与性质, 全等三角形的判定, 等边三角形的性质,解题的关键是熟练的掌握相似三角形的判定与性质, 全等三角形的判定, 等边三角形的性质.20.如图,AB 是O e 的直径,CD 切O e 于点C ,AD 交O e 于点E ,AC 平分BAD ∠,连接BE .(1)求证:CD ED ⊥;(2)若4CD =,2AE =,求O e 的半径. 【答案】(1)见解析;(2. 【解析】【分析】(1)连接OC ,则OC DC ⊥,由角平分线的性质和OA OC =,得到OC AD ∥,即可得到结论成立; (2)由AB 是直径,得到∠AEB=90°,则四边形DEFC 是矩形,由三角形中位线定理,得到BE=2CD=8,由勾股定理,即可求出答案.【详解】(1)证明:连接OC ,交BE 于F ,由DC 是切线得OC DC ⊥;又∵OA OC =, ∴OAC OCA ∠=∠, ∵DAC OAC ∠=∠, ∴OCA DAC ∠=∠, ∴OC AD ∥,∴90D OCD ∠=∠=︒, 即CD ED ⊥.(2)解:、AB 是O e 的直径, 、90AEB =︒∠, ∵90D ∠=︒, ∴AEB D ∠=∠, ∴BE CD ∥, ∵OC CD ⊥, ∴OC BE ⊥, ∴EF BF =, ∵OC ED P ,∴四边形EFCD 是矩形, ∴4EF CD ==, ∴8BE =,∴AB =∴O e.【点睛】本题考查了圆的切线的性质,矩形的判定和性质,角平分线性质,三角形的中位线定理,以及勾股定理,解题的关键是掌握所学知识进行求解,正确得到AB 的长度. 21.已知:如图,一次函数y kx b =+与反比例函数3y x=的图象有两个交点(1,)A m 和B ,过点A 作AD x ⊥轴,垂足为点D ;过点B 作BC y ⊥轴,垂足为点C ,且2BC =,连接CD .(1)求m ,k ,b 的值; (2)求四边形ABCD 的面积.【答案】(1)3m =,32k =,32b =.(2)6【解析】 【分析】(1)用代入法可求解,用待定系数法求解;(2)延长AD ,BC 交于点E ,则90E ∠=︒.根据ABE CDE ABCD S S S ∆∆=-四边形求解.【详解】解:(1)∵点(1,)A m 在3y x=上, ∴3m =, ∵点B 在3y x=上,且2BC =, ∴3(2,)2B --.∵y kx b =+过A ,B 两点,∴3322k b k b +=⎧⎪⎨-+=-⎪⎩,解得3232k b ⎧=⎪⎪⎨⎪=⎪⎩,∴3m =,32k =,32b =.(2)如图,延长AD ,BC 交于点E ,则90E ∠=︒. ∵BC y ⊥轴,AD x ⊥轴, ∴(1,0)D ,3(0,)2C -, ∴92AE =,3BE =, ∴ABE CDE ABCD S S S ∆∆=-四边形1122AE BE CE DE =⋅⋅-⋅⋅ 1913312222=⨯⨯-⨯⨯ 6=.∴四边形ABCD 的面积为6.【点睛】考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键. 22.在ABC ∆中,90BAC ∠=︒,AB AC =.(Ⅰ)如图Ⅰ,D BC 边上一点(不与点,B C 重合),将线段AD 绕点A 逆时针旋转90︒得到AE ,连接EC .求证:(1)BAD CAE ∆∆≌; (2)BC DC EC =+.(Ⅱ)如图Ⅱ,D 为ABC ∆外一点,且45ADC ∠=︒,仍将线段AD 绕点A 逆时针旋转90︒得到AE ,连接EC ,ED .(1)BAD CAE ∆∆≌的结论是否仍然成立?并请你说明理由; (2)若9BD =,3CD =,求AD 的长.【答案】(Ⅰ)(1)见解析;(2)见解析;(Ⅱ)(1)仍然成立,见解析;(2)6. 【解析】 【分析】(、)(1)根据旋转的性质,得到AD=AE ,∠BAD=∠CAE ,然后根据SAS 证明全等即可; (2)由全等的性质,得到BD=CE ,然后即可得到结论; (、)(1)与(、)同理,即可得到BAD CAE ∆∆≌;(2)根据全等的性质,得到9BD CE ==,然后利用勾股定理求出DE ,根据特殊角的三角函数值,即可求出答案.【详解】解:(Ⅰ)(1)∵90BAC DAE ∠=∠=︒,∴BAC DAC DAE DAC ∠-∠=∠-∠,即BAD CAE ∠=∠,在BAD ∆和CAE ∆中,AB ACBAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()BAD CAE SAS ∆∆≌; (2)∵BAD CAE ∆∆≌,∴BD CE =,∴BC BD CD EC CD =+=+;(Ⅱ)(1)BAD CAE ∆∆≌的结论仍然成立, 理由:∵将线段AD 绕点A 逆时针旋转90︒得到AE , ∴ADE ∆是等腰直角三角形, ∴AE AD =,∵BAC CAD DAE CAD ∠+∠=∠+∠, 即BAD CAE ∠=∠,在BAD ∆与CAE ∆中,AD ACBAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()BAD CAE SAS ∆∆≌; (2)∵BAD CAE ∆∆≌, ∴9BD CE ==,∵45ADC ∠=︒,45EDA ∠=︒, ∴90EDC ∠=︒,∴DE == ∵90DAE ∠=︒,∴62AD AE DE ===. 【点睛】本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.如图,在平面直角坐标系中,已知抛物线经过原点O ,顶点为()1,1A ,且与直线2y x =-相交于,B C 两点.(1)求抛物线的解析式;(2)求B 、C 两点的坐标;(3)若点N 为x 轴上的一个动点,过点N 作MN x ⊥轴与抛物线交于点M ,则是否存在以,,O M N 为顶点的三角形与ABC ∆相似?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)22y x x =-+;(2)()2,0B ,()1,3C --;(3);坐标为5,03⎛⎫ ⎪⎝⎭或7,03⎛⎫ ⎪⎝⎭或()1,0-或()5,0.【解析】 【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式, (2)联立直线与抛物线解析式,可求得C 点坐标;(3)设出N 点坐标,可表示出M 点坐标,从而可表示出MN 、ON 的长度,当△MON 和△ABC 相似时,利用三角形相似的性质可得MN ON AB BC =或MN ONBC AB=,可求得N 点的坐标 【详解】解:(1)∵顶点坐标为()11,, ∴设抛物线解析式为()211y a x =-+, 又抛物线过原点,∴()20011a =-+, 解得:1a =-,∴抛物线解析式为:()211y x =--+, 即22y x x =-+.(2)联立抛物线和直线解析式可得222y x xy x ⎧=-+⎨=-⎩,解得:20x y =⎧⎨=⎩或13x y =-⎧⎨=-⎩,∴()2,0B ,()1,3C --;(3)存在;坐标为5,03⎛⎫ ⎪⎝⎭或7,03⎛⎫ ⎪⎝⎭或()1,0-或()5,0. 理由:假设存在满足条件的点N , 设(),0N x ,则()2,2M x x x -+,∴||ON x =,2|2|MN x x =-+,由(2)知,AB =BC =∵MN x ⊥轴于点N , ∴90ABC MNO ∠=∠=︒, ∴当ABC ∆和MNO ∆相似时,有MN ON AB BC =或MN ONBC AB=, ①当MN ONAB BC=时, 2=,即1|||2|||3x x x ⋅-+=,∵当0x =时M 、O 、N 不能构成三角形, ∴0x ≠,∴1|2|3x -+=, ∴123x -+=±,解得:53x =或73x =,此时N 点坐标为:5,03⎛⎫ ⎪⎝⎭或7,03⎛⎫ ⎪⎝⎭; ②当MN ONBC AB=时, 2=即|||2|3||x x x ⋅-+=, ∴|2|3x -+=, ∴23x -+=±, 解得:5x =或1x =-,此时N 点坐标为:()1,0-或()5,0,综上可知,在满足条件的N 点,其坐标为:5,03⎛⎫ ⎪⎝⎭或7,03⎛⎫ ⎪⎝⎭或()1,0-或()5,0.【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N 、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.。
华师大版2019-2020学年河南省新乡市辉县市九年级(上)期末数学试卷
2019-2020学年河南省新乡市辉县市九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)若在实数范围内有意义,则x的取值范围是()A.B.x<2C.D.x≥02.(3分)方程x(x﹣4)+x﹣4=0的解是()A.4B.﹣4C.﹣1D.4或﹣13.(3分)如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.C.8sin20°D.8cos20°4.(3分)如图,△ABC中,D是AB的中点,DE∥BC,连接BE.若AE=6,DE=5,∠BEC=90°,则△BCE 的周长是()A.12B.24C.36D.485.(3分)抛物线y=x2+6x+7可由抛物线y=x2如何平移得到的()A.先向左平移3个单位,再向下平移2个单位B.先向左平移6个单位,再向上平移7个单位C.先向上平移2个单位,再向左平移3个单位D.先向右平移3个单位,再向上平移2个单位6.(3分)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2B.1:4C.1:5D.1:67.(3分)二次函数y=x2﹣ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当b=﹣4时,顶点的坐标为(2,﹣8)C.当x=﹣1时,b>﹣5D.当x>3时,y随x的增大而增大8.(3分)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5cm B.4cm C.4.5cm D.5cm9.(3分)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.B.2C.D.10.(3分)如图,在Rt△ABC中,点D为AC边中点,动点P从点D出发,沿着D→A→B的路径以每秒1个单位长度的速度运动到B点,在此过程中线段CP的长度y随着运动时间x的函数关系如图2所示,则BC的长为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)计算﹣6的结果是.12.(3分)抛物线y=(k+1)x2+k2﹣9开口向下,且经过原点,则k=.13.(3分)在一个不透明的袋子中有1个红球和3个白球,这些球除颜色外都相同,在袋子中再放入x个白球后,从袋子中随机摸出1个球,记录下颜色后放回袋子中并搅匀,经大量试验,发现摸到白球的频率稳定在0.95左右,则x=.14.(3分)如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是.15.(3分)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:,其中x=2cos30°+tan45°.17.关于x的一元二次方程x2﹣3x+k=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m﹣1)x2+x+m﹣3=0与方程x2﹣3x+k=0有一个相同的根,求此时m的值.18.如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC.(1)求证:BC是⊙O的切线;(2)已知∠BAO=25°,点Q是上的一点.①求∠AQB的度数;②若OA=18,求的长.19.某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE=30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)20.(75分)为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.分数段频数频率74.5~79.520.0579.5~84.5m0.284.5~89.5120.389.5~94.514n94.5~99.540.1(1)表中m=,n=;(2)请在图中补全频数直方图;(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在分数段内;(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.21.某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.22.(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB 的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.23.已知抛物线y=ax2+bx+3与x轴分别交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点.①如图1,设k=,当k为何值时,CF=AD?②如图2,以A,F,O为顶点的三角形是否与△ABC相似?若相似,求出点F的坐标;若不相似,请说明理由.2019-2020学年河南省新乡市辉县市九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:由题意得,1﹣2x>0,解得,x<,故选:A.2.【解答】解:∵x(x﹣4)+(x﹣4)=0,∴(x﹣4)(x+1)=0,则x﹣4=0或x+1=0,解得x=4或x=﹣1,故选:D.3.【解答】解:由已知图形可得:tan20°=,木桩上升的高度h=8tan20°.故选:A.4.【解答】解:∵D是AB的中点,DE∥BC,∴DE是△ABC的中位线.∴点E是AC中点,∴CE=AE=6.∵DE=5,∴BC=10.∵∠BEC=90°,∴△BCE是直角三角形,∴根据勾股定理得,BE=8,∴△BCE的周长为BC+CE+BE=10+6+8=24.故选:B.5.【解答】解:因为y=x2+6x+7=(x+3)2﹣2.所以将抛物线y=x2先向左平移3个单位,再向下平移2个单位即可得到抛物线y=x2+6x+7.故选:A.6.【解答】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选:B.7.【解答】解:∵二次函数y=x2﹣ax+b∴对称轴为直线x==2∴a=4,故A选项正确;当b=﹣4时,y=x2﹣4x﹣4=(x﹣2)2﹣8∴顶点的坐标为(2,﹣8),故B选项正确;当x=﹣1时,由图象知此时y<0即1+4+b<0∴b<﹣5,故C选项不正确;∵对称轴为直线x=2且图象开口向上∴当x>3时,y随x的增大而增大,故D选项正确;故选:C.8.【解答】解:设AB=xcm,则DE=(6﹣x)cm,根据题意,得=π(6﹣x),解得x=4.故选:B.9.【解答】解:作直径CD,在Rt△OCD中,CD=6,OC=2,则OD==4,tan∠CDO==,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故选:C.10.【解答】解:当x=0时,y=PC=PD=2,则AC=4,当x=2+,PC⊥AB,则AP=x﹣AD=2﹣2=,cos A==,则tan A=,∴BC=AC•tan A=4×=,故选:C.二、填空题(每小题3分,共15分)11.【解答】解:原式=3﹣6×=3﹣2=故答案为:12.【解答】解:把原点(0,0)代入y=(k+1)x2+k2﹣9中,得k2﹣9=0,解得k=±3又因为开口向下,即k+1<0,k<﹣1所以k=﹣3.13.【解答】解:根据题意可得:=0.95,解得:x=16,经检验x=16是原方程的解,所有x的值为16;故答案为:16.14.【解答】解:如图,连接BD.∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD的高为,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF﹣S△ABD=﹣×2×=﹣.故答案是:﹣.15.【解答】解:∵四边形ABCD为矩形,∴∠BAD=90°,∴BD==10,当PD=DA=8时,BP=BD﹣PD=2,∵△PBE∽△DBC,∴=,即=,解得,PE=,当P′D=P′A时,点P′为BD的中点,∴P′E′=CD=3,故答案为:或3.三、解答题(本大题共8个小题,满分75分)16.【解答】解:原式=•=﹣,当x=2×+1=+1时,原式=.17.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)k的最大整数为2,方程x2﹣3x+k=0变形为x2﹣3x+2=0,解得x1=1,x2=2,∵一元二次方程(m﹣1)x2+x+m﹣3=0与方程x2﹣3x+k=0有一个相同的根,∴当x=1时,m﹣1+1+m﹣3=0,解得m=;当x=2时,4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,∴m的值为.18.【解答】(1)证明:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵PC=CB,∴∠CPB=∠PBC,∵∠APO=∠CPB,∴∠APO=∠CBP,∵OC⊥OA,∴∠AOP=90°,∴∠OAP+∠APO=90°,∴∠CBP+∠ABO=90°,∴∠CBO=90°,∴BC是⊙O的切线;(2)解:①∵∠BAO=25°,∴∠ABO=25°,∠APO=65°,∴∠POB=∠APO﹣∠ABO=40°,∴∠AQB=(∠AOP+∠POB)=130°=65°;②∵∠AQB=65°,∴∠AOB=130°,∴的长=的长==23π.19.【解答】解:设OE=OB=2x,∴OD=DE+OE=190+2x,∵∠ADE=30°,∴OC=OD=95+x,∴BC=OC﹣OB=95+x﹣2x=95﹣x,∵tan∠BAD=,∴2.14=,解得:x≈9.4,∴OB=2x≈19.20.【解答】解:(1)m=40×0.2=8,n=14÷40=0.35,故答案为:8,0.35;(2)补全图形如下:(3)由于40个数据的中位数是第20、21个数据的平均数,而第20、21个数据均落在84.5~89.5,∴测他的成绩落在分数段84.5~89.5内,故答案为:84.5~89.5.(4)选手有4人,2名是男生,2名是女生.,恰好是一名男生和一名女生的概率为=.21.【解答】解:(1)当6≤x≤10时,设y与x的关系式为y=kx+b(k≠0)根据题意得,解得∴y=﹣200x+2200当10<x≤12时,y=200故y与x的函数解析式为:y=(2)由已知得:W=(x﹣6)y当6≤x≤10时,W=(x﹣6)(﹣200x+2200)=﹣200(x﹣)2+1250∵﹣200<0,抛物线的开口向下∴x=时,取最大值,∴W=1250当10<x≤12时,W=(x﹣6)•200=200x﹣1200∵y随x的增大而增大∴x=12时取得最大值,W=200×12﹣1200=1200综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.22.【解答】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==.又∵AO=,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=4.故答案为:75;4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴==.∵BO:OD=1:3,∴==.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD=4.23.【解答】解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴,解得:,∴抛物线解析式为y=﹣x2﹣2x+3;∵y=﹣x2﹣2x+3=﹣(x+1)2+4∴顶点D的坐标为(﹣1,4);(2)①∵在Rt△AOC中,OA=3,OC=3,∴AC2=OA2+OC2=18,∵D(﹣1,4),C(0,3),A(﹣3,0),∴CD2=12+12=2∴AD2=22+42=20∴AC2+CD2=AD2∴△ACD为直角三角形,且∠ACD=90°.∵,∴F为AD的中点,∴,∴.②在Rt△ACD中,tan∠CAD=,在Rt△OBC中,tan,∴∠ACD=∠OCB,∵OA=OC,∴∠OAC=∠OCA=45°,∴∠F AO=∠ACB,若以A,F,O为顶点的三角形与△ABC相似,则可分两种情况考虑:当∠AOF=∠ABC时,△AOF∽△CBA,∴OF∥BC,设直线BC的解析式为y=kx+b,∴,解得:,∴直线BC的解析式为y=﹣3x+3,∴直线OF的解析式为y=﹣3x,设直线AD的解析式为y=mx+n,∴,解得:,∴直线AD的解析式为y=2x+6,∴,解得:,∴F(﹣).当∠AOF=∠CAB=45°时,△AOF∽△CAB,∵∠CAB=45°,∴OF⊥AC,∴直线OF的解析式为y=﹣x,∴,解得:,∴F(﹣2,2).综合以上可得F点的坐标为(﹣)或(﹣2,2).。
河南省师范大学附属中学新乡学院附中联考2022-2023学年九年级上学期期末数学试题及解析
河南省师范大学附属中学新乡学院附中联考2022-2023学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D . 2.COD △是AOB 绕点O 顺时针方向旋转30︒后所得的图形,点C 恰好在AB 上,则A ∠的度数为( )A .30︒B .60︒C .70︒D .75︒3.如图,在△ABC 中,△ACD =△B ,若AD =2,BD =3,则AC 长为( )A B C D .64.下列语句中:△平分弦的直径垂直于弦;△相等的圆心角所对的弧相等;△长度相等的两条弧是等弧;△圆是轴对称图形,任何一条直径都是它的对称轴;△圆内接四边形的对角互补;△在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等,不正确的有( )A .5个B .4个C .3个D .2个5.某市2018年底森林覆盖率为63%.为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力开展植树造林活动,2020年底森林覆盖率达到68%,如果这两年森林覆盖率的年平均增长率为x ,那么,符合题意的方程是( )A .()0.6310.68x +=B .()20.6310.68x += C .()0.63120.68x +=D .()20.63120.68x += 6.下列说法正确的是( )A .若你在上一个路口遇到绿灯,则在下一路口必遇到红灯B .某篮球运动员2次罚球,投中一个,则可断定他罚球命中的概率一定为50%C .若某种彩票中奖的概率是1%,则买100张该种彩票一定会中奖D .“明天我市会下雨”是随机事件7.如图,菱形ABCD 的顶点B ,C ,D 均在△A 上,点E 在弧BD 上,则△BED 的度数为( )A .90°B .120°C .135°D .150°8.如图,在平面直角坐标系中,菱形ABCD 的边AD y ⊥轴,垂足为E ,顶点A 在第二象限,顶点B 在y 轴正半轴上,反比例函数(0k y k x=≠,0)x >的图象同时经过顶点C D 、.若点C 的横坐标为5,2BE DE =,则k 的值为( )A .403B .52C .54D .2039.如图所示是抛物线()20y ax bx c a =++≠的部分图象,其顶点坐标为()1,n ,且与x轴的一个交点在点()3,0和()4,0之间,则下列结论:其中正确的结论个数是( )△0a b c -+>;△30a c +>;△()24b a c n =-;△一元二次方程21ax bx c n ++=+没有实数根.A .1个B .2个C .3个D .4个10.如图,已知点A 、B 在反比例函数y k x=(k >0,x >0)的图象上,点P 沿C →A →B →O 的路线(图中“→”所示路线)匀速运动,过点P 作PM ⊥x 轴于点M ,设点P 的运动时间为t ,△POM 的面积为S ,则S 关于t 的函数图象大致为( )A .B .C .D .二、填空题11.已知扇形的圆心角为150°,弧长为20πcm ,则扇形的面积 _______cm 2.12.若关于x 的方程(k ﹣1)x 2+2kx +k =0有两个不相等的实数根,则实数k 的取值范围是 _____.13.如图,已知△ABC和△A'B'C是以点C为位似中心的位似图形,且△ABC和△A'B'C 的周长之比为1:2,点C的坐标为(﹣1,0),若点B的对应点B'的横坐标为5,则点B的横坐标为_____.14.如图,△ABC的顶点A,B分别在x轴,y轴上,∠ABC=90°,OA=OB=1,BC=ABC绕点O顺时针旋转,每次旋转90°,则第2021次旋转结束时,点C 的坐标为_____.15.如图,在平面直角坐标系中,点P,A的坐标分别为(1,0),(2,4),点B是y 轴上一动点,过点A作AC⊥AB交x轴于点C,点M为线段BC的中点,则PM的最小值为_____.三、解答题16.解方程:(1)x2﹣6x﹣4=0;(2)3x(x+1)=3x+3.17.已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC向下平移4个单位,再向左平移1个单位得到的△A1B1C1,并直接写出C1点的坐标;(2)画出△ABC绕点A顺时针方向旋转90°后得到的△A2B2C2,并直接写出C2点的坐标;(3)请求出(2)中△ABC旋转过程中所扫过的面积为.18.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求两次摸到的球的颜色不同的概率.19.如图,在△ABC中,AB=AC,以AB为直径的△O交BC于D,交AC于E,连接OE,过点D作DF△AC于F.(1)求证:DF与△O相切;(2)填空:△若△CDF 的面积为3,则△CDE 的面积为 .△当△CDF 的度数为 时,OE ∥BC ,此时四边形ODCE 的形状是: .20.小红经营的网店以销售文具为主,其中一款笔记本进价为10元/本,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:本)与线下售价x (单位:元/本,1216x ≤≤,且x 为整数)满足一次函数的关系,部分数据如下表:(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每本便宜1元,且线上的月销量固定为40件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.21.如图,在直角梯形OABC 中,BC △AO ,△AOC =90°,点A ,B 的坐标分别为(5,0),(2,6),点D 为AB 上一点,且BD =2AD ,双曲线y =k x (k >0)经过点D ,交BC 于点E .(1)求双曲线的解析式;(2)求四边形ODBE 的面积.参考答案:1.A【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【详解】解:A .既是中心对称图形,也是轴对称图形,故此选项符合题意;B .不是中心对称图形,也不是轴对称图形,故此选项不合题意;C .不是中心对称图形,是轴对称图形,故此选项不合题意;D .是中心对称图形,不是轴对称图形,故此选项不合题意;故选:A .【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.D【分析】根据旋转的性质可得30AOC ∠=︒,OA OC =,利用等边对等角以及三角形内角和定理即可求解.【详解】解:△COD △是AOB 绕点O 顺时针方向旋转30︒后所得的图形,△30AOC ∠=︒,OA OC =, △180752AOC A ︒-∠∠==︒, 故选:D .【点睛】本题考查旋转的性质,掌握旋转的性质是解题的关键.3.C【分析】根据相似三角形的对应边成比例得出AC :AB =AD :AC ,即AC 2=AB •AD ,将数值代入计算即可求出AC 的长.【详解】解:在△ADC 和△ACB 中,△△ACD =△B ,△A =△A ,△△ADC △△ACB (两角对应相等,两三角形相似);△AC :AB =AD :AC ,△AC 2=AB •AD .△AD =2,AB =AD +BD =2+3=5,△AC 2=5×2=10,△AC =.故选C .【点睛】本题考查了相似三角形的判定与性质,用到的知识点为:△如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(简叙为两角对应相等,两三角形相似);△相似三角形的对应边成比例.4.A【分析】根据垂径定理、圆周角定理、圆内接四边形的性质、圆心角,弧,弦之间的关系,等弧的定义等知识进行判断即可.【详解】解:△平分弦(不是直径)的直径垂直于弦,△错误;△同圆或者等圆中相等的圆心角所对的弧相等,△错误;△必须是完全重合的两条弧是等弧,△错误;△圆是轴对称图形,任何一条直径所在直线都是它的对称轴,△错误;△圆内接四边形的对角互补,正确;△在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等或互补,△错误; 故选:A .【点睛】本题考查垂径定理、圆周角定理、圆内接四边形的性质、圆心角,弧,弦之间的关系,等弧的定义等知识,解题的关键是了解圆的有关定义及性质.5.B【分析】设年平均增长率为x ,根据2020年底森林覆盖率=2018年底森林覆盖率乘()21x +,据此即可列方程求解.【详解】解:设年平均增长率为x ,由题意得:()20.6310.68x +=, 故选:B .【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,列出方程即可.6.D【分析】根据概率的定义进行判断即可.【详解】A 若你在上一个路口遇到绿灯,则在下一路口不一定遇到红灯,故本选项错误;B. 某篮球运动员2次罚球,投中一个,这是一个随机事件,不能断定他罚球命中的概率一定为50%,故本选项错误;C. 若某种彩票中奖的概率是1%,则买100张该种彩票不一定会中奖,故本选项错误;D. “明天我市会下雨”是随机事件,故本选项正确;故选D【点睛】本题考查了概率的定义,注意区分必然事件、可能事件、随机事件的区别.7.B【分析】连接AC ,根据菱形的性质得到△ABC 、△ACD 是等边三角形,求出△BCD =120°,再根据圆周角定理即可求解.【详解】如图,连接AC△AC =AB =AD△四边形ABCD 是菱形△AB =BC =AD =CD =AC△△ABC 、△ACD 是等边三角形△△ACB =△ACD =60°△△BCD =120°△优弧BD BD =△△BED =△BCD =120°故选B .【点睛】此题主要考查圆内角度求解,解题的关键是熟知菱形的性质及圆周角定理.8.A【分析】由题意易得5,AB BC CD AD AD//BC ====,则设DE =x ,BE =2x ,然后可由勾股定理得()225425x x -+=,求解x ,进而可得点5,5k C ⎛⎫ ⎪⎝⎭,则2,45k D ⎛⎫+ ⎪⎝⎭,最后根据反比例函数的性质可求解.【详解】解:△四边形ABCD 是菱形,△,AB BC CD AD AD//BC ===,△AD y ⊥轴,△90DEB AEB ∠=∠=︒,△90DEB CBO ∠=∠=︒,△点C 的横坐标为5,△点5,5k C ⎛⎫ ⎪⎝⎭,5AB BC CD AD ====, △2BE DE =,△设DE =x ,BE =2x ,则5AE x =-,△在Rt △AEB 中,由勾股定理得:()225425x x -+=,解得:122,0x x ==(舍去),△2,4DE BE ==, △点2,45k D ⎛⎫+ ⎪⎝⎭, △245k k ⎛⎫⨯+= ⎪⎝⎭, 解得:403k =; 故选A .【点睛】本题主要考查菱形的性质及反比例函数与几何的综合,熟练掌握菱形的性质及反比例函数与几何的综合是解题的关键.9.D【分析】根据图象开口向下,对称轴为直线1x =可得抛物线与x 轴另一交点坐标在(1,0)-,(2,0)-之间,从而判断△.由对称轴为直线1x =可得b 与a 的关系,将2b a =-代入函数解析式根据图象可判断△由2ax bx c n ++=有两个相等实数根可得△24()0b a c n =--=,从而判断△.由函数最大值为y n =可判断△. 【详解】解:抛物线顶点坐标为(1,)n ,∴抛物线对称轴为直线1x =,图象与x 轴的一个交点在(3,0),(4,0)之间,∴图象与x 轴另一交点在(1,0)-,(2,0)-之间,1x ∴=-时,0y >,即0a b c -+>,故△正确,符合题意. 抛物线对称轴为直线12b x a=-=, 2b a ∴=-,22y ax ax c ∴=-+,1x ∴=-时,30y a c =+>,故△正确,符合题意.抛物线顶点坐标为(1,)n ,2ax bx c n ∴++=有两个相等实数根,∴△24()0b a c n =--=,24()b a c n ∴=-,故△正确,符合题意.2y ax bx c =++的最大函数值为y n =,21ax bx c n ∴++=+没有实数根,故△正确,符合题意.故选:D .【点睛】本题考查二次函数的性质,解题关键是掌握二次函数与方程及不等式的关系.10.D【分析】分别求当点P 在C →A 路线上运动时;当A →B 路线上运动时;当点P 在B →O 路线上运动时,S 关于t 的函数的解析式,即可求解.【详解】解:当点P 在C →A 路线上运动时,设点P 运动速度为a , △1122S OM PM OA at =⋅=⋅ , △a 、OA 为常数,△S 是关于t 的一次函数,图象为自左向右上升的线段;当A →B 路线上运动时,122k S OM PM =⋅=,保持不变,△本段图象为平行于x 轴的线段;当点P 在B →O 路线上运动时,随着t 的增大,点P 从点B 运动至点O ,OM 的长在减小,△OPM 的高PM 也随之减小到0, 即12S OM PM =⋅的图象为开口向下的抛物线的一部分. 故选:D【点睛】本题主要考查了动点问题的函数图象,明确题意,得到每一段的函数解析式是解题的关键.11.240π【分析】先求解扇形所在圆的半径,再利用扇形的面积公式求解扇形的面积即可. 【详解】解: 扇形的圆心角为150°,弧长为20π, 15020,180r24,r215024240.360S故答案为:240π【点睛】本题考查的是扇形的弧长,扇形的面积,掌握“利用扇形的公式求解扇形的面积”是解题的关键.12.0k > 且1k ≠【分析】利用一元二次方程根的判别式,即可求解.【详解】解:△关于x 的方程(k ﹣1)x 2+2kx +k =0有两个不相等的实数根,∴()()22410k k k -->且10k -≠ ,解得:0k > 且1k ≠ .故答案为:0k > 且1k ≠【点睛】本题考查了一元二次方程的定义,一元二次方程根的判别式,熟练掌握二次函数()20y ax bx c a =++≠ ,当240b ac ∆=-> 时,方程有两个不相等的实数根;当240b ac ∆=-= 时,方程有两个相等的实数根;当24<0b ac ∆=- 时,方程没有实数根是解题的关键.13.-4【分析】过点B 作BD △x 轴于点D ,过点B ′作B ′H △x 于点H ,则BD △B ′H ,可得△BCD △△B ′CH ,从而CD BC CH B C =',再由相似三角形的周长之比等于相似比,可得12BC B C =',继而得到12CD CH =,即可求解.【详解】解:如图,过点B 作BD △x 轴于点D ,过点B ′作B ′H △x 于点H ,则BD △B ′H ,△△DBC =△HB′C ,△BDC =△B′HC ,△△BCD △△B ′CH , △CD BC CH B C=', △△ABC 和△A ′B ′C ′的周长之比为1△2, △12BC B C =', △12CD CH =, △点C 的坐标为(-1,0),点B 的对应点B ′的横坐标为5,△OC =1,OH =5,△CH =6, △12CD CH ==3, △OD =OC +CD =1+3=4,△点B 的横坐标为-4.故答案为:4-【点睛】本题主要考查了位似图形,相似三角形的判定和性质,熟练掌握位似图形,相似三角形的判定和性质定理是解题的关键.14.()3,2-【分析】过点C 作CD y ⊥ 轴于点D ,根据 OA =OB =1,∠AOB =90°,可得△ABO =45°,从而得到∠CBD =45°,进而得到BD =CD =2,,可得到点()2,3C ,再由将△ABC 绕点O 顺时针旋转,第一次旋转90°后,点()3,2C -,将△ABC 绕点O 顺时针旋转,第二次旋转90°后,点()2,3C --,将△ABC 绕点O 顺时针旋转,第三次旋转90°后,点()3,2C -,将△ABC 绕点O 顺时针旋转,第四次旋转90°后,点()2,3C ,由此发现,△ABC 绕点O 顺时针旋转四次一个循环,即可求解.【详解】解:如图,过点C 作CD y ⊥ 轴于点D ,△OA =OB =1,∠AOB =90°,△△ABO =45°,△∠ABC =90°,∴∠CBD =45°,∴∠BCD =45°,∴BD =CD ,∵BC =∴(2222BD CD BC +== ,∴BD =CD =2,∴OD =OB +BD =3,∴点()2,3C ,将△ABC 绕点O 顺时针旋转,第一次旋转90°后,点()3,2C -,将△ABC 绕点O 顺时针旋转,第二次旋转90°后,点()2,3C --,将△ABC 绕点O 顺时针旋转,第三次旋转90°后,点()3,2C -,将△ABC 绕点O 顺时针旋转,第四次旋转90°后,点()2,3C ,由此发现,△ABC 绕点O 顺时针旋转四次一个循环,∵20214551÷= ,∴第2021次旋转结束时,点C 的坐标为()3,2-.故答案为:()3,2-【点睛】本题主要考查了勾股定理,坐标与图形,图形的旋转,明确题意,准确得到规律是解题的关键.15【分析】连接AM ,OM ,根据直角三角形斜边中线等于斜边一半可得:AM OM =,则点M在线段AO 的垂直平分线上,作线段AO 的垂直平分线交x 轴,y 轴于点E ,D 则当PM DE⊥时,PM 最小,再利用相似三角形的判定和性质,结合勾股定理解答即可.【详解】如图:过点A 作AF y ⊥于点F ,连接AM ,OM90BAC BOC ∠=∠=︒,M 为BC 中点,∴AM OM =∴点M 在线段AO 的垂直平分线上作线段AO 的垂直平分线交y 轴,x 轴于点D ,E ,当PM DE ⊥,PM 最小连接AD ,则AD OD = A (2,4)2AF ∴=,4OF =设OD AD t ==,则4FD t =-,222FD AF AD +=()22242t t ∴-+=52t ∴= 52OD ∴=90FOA AOE ∠+∠=︒,90AOE OED ∠+∠=︒FOA OED ∴∠=∠90AFO DOE ∠=∠=︒FAO ODE ∴△∽△AF OF OD OE∴=,即AF OE OD OF =, 5OE ∴= P (1,0)4PE ∴=在Rt AFO △中OA =当PM DE ⊥时, PM 最小90PME AFO ∴∠=∠=︒PME AFO △∽△PM PE AF OA∴=2PM ∴=PM ∴=【点睛】本题考查了线段垂直平分线的判定和性质,直角三角形的性质,相似三角形的判定和性质,点到直线的距离,勾股定理等知识,能够综合熟练运用这些性质和判定是解题关键.16.(1)x 1,x 2=(2)x 1=-1,x 2=1【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】(1)x 2﹣6x ﹣4=0x 2﹣6x +9=13(x -3)2=13x-△x1,x2=(2)3x(x+1)=3x+33x(x+1)-3(x+1)=03(x+1)(x-1)=0△x+1=0或x-1=0△x1=-1,x2=1.【点睛】此题主要考查解一元二次方程,解题的关键是熟知配方法与因式分解法的运用.17.(1)见解析,C1(1,-2);(2)见解析,C2(-1,1);(3)52π+52【分析】(1)将A、B、C分别向下平移4个单位,再向左平移1个单位,顺次连接即可得出△A1B1C1,即可得出写出C1点的坐标;(2)根据旋转的性质,找到各点的对应点,顺次连接可得出△A2B2C2,即可写出C2点的坐标;(3)根据扇形和三角形的面积公式即可得到结论.【详解】解:(1)△A1B1C1如图1所示,C1(1,-2);(2)△A2B2C2如图2所示,C2(-1,1);(3)△AB =AC BC△AC 2+BC 2=AB 2,△△ABC 是等腰直角三角形,扇形AOB 2△S △ABC =1252, △△ABC 旋转过程中所扫过的面积=2AOB S +扇形 S △ABC=290?360π⨯+52=52π+52. 故答案为:52π+52. 【点睛】本题考查了旋转作图及平移作图的知识,解答此类题目的关键是就是寻找对应点,要求掌握旋转三要素、平移的特点.18.(1)详见解析;(2)23.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案.【详解】解:(1)如图:,所有可能的结果为(白1,白2)、(白1,红)、(白2,白1)、(白2,红)、(红,白1)、(红,白2);(2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为42 63 .19.(1)见解析(2)△6△30;菱形【分析】(1)由等腰三角形的性质得△ABC=△C,由OB=OD,得△ABC=△ODB,则△ODB =△C,得出OD∥AC,再由DF△AC,得出OD△DF,即可得出结论;(2)△由圆周角定理和平角性质得△ABC+△AED=180°,△DEC+△AED=180°,推出△ABC =△DEC,△C=△DEC,得出DE=DC,由等腰三角形的性质得CE=2CF,则S△CDE=2S△CDF,即可得出结果;△利用平行线的性质证明OE是△ABC的中位线,得出BC=2OE=AB=AC,则△ABC为等边三角形,得△C=60°,证明△CDE为等边三角形,得出△CDE=60°,由等腰三角形的性质得△CDF=12△CDE=30°,由OE∥CD,OD∥CE,得四边形ODCE为平行四边形,再由OD=OE,得出平行四边形ODCE为菱形.【详解】解:(1)证明:△AB=AC,△△ABC=△C,连接OD,△OB=OD,△△ABC=△ODB,△△ODB=△C,△OD∥AC,△DF△AC,△OD△DF,△DF与△O相切;(2)解:△△△ABC+△AED=180°,△DEC+△AED=180°,△△ABC=△DEC,△△ABC=△C,△△C=△DEC,△DE=DC,△DF△AC,△CE=2CF,△S△CDE=2S△CDF=2×3=6,故答案为:6;△△OE∥BC△AO AE OB EC△O点是AB中点△E点是AC中点△OE是△ABC的中位线,△BC=2OE=AB=AC,△△ABC为等边三角形,△△C=60°,△DE=DC,△△CDE为等边三角形,△△CDE=60°,△DF△AC,△△CDF=12△CDE=12×60°=30°,△OE∥CD,OD∥CE,△四边形ODCE为平行四边形,△OD =OE ,△平行四边形ODCE 为菱形,故答案为:30;菱形.【点睛】本题是圆综合题,主要考查了圆周角定理、切线的判定、平行线的性质与性质、三角形中位线定理、等腰三角形的判定与性质、等边三角形的判定与性质、平行四边形的判定、菱形的判定、三角形面积计算等知识;熟练掌握切线的判定和等腰三角形的判定与性质、等边三角形的判定与性质是解题的关键.20.(1)10240y x =-+;(2)当16x =元/件时,线上和线下月利润总和达到最大,此时的最大利润为680元.【分析】(1)根据线下的月销量y (单位:本)与线下售价x (满足一次函数的关系,将表格中任意两对数值代入一次函数,计算求解即可.(2)先算线下利润=线下月销售量y×每本笔记本利润(x -10),再算线上利润=线上的月销量固定为40件×每本笔记本利润(110)x --,可求线上和线下月利润总和为w 元,其结果可表示成以x 为自变量的二次函数,运用求二次函数最大值的方法运算求解.【详解】解:(1)△y 与x 满足一次函数的关系,△设y kx b =+,将12,120x y ==;13,110x y ==代入得:1201211013k b k b =+⎧⎨=+⎩, 解得:10240k b =-⎧⎨=⎩, △y 与x 的函数关系式为:10240y x =-+;(2)设线上和线下月利润总和为w 元,则(10)40(110)w y x x =-+--,(10240)(10)40440x x x =-+-+-,2103802840x x =-+-,210(19)770x =--+ ,△100a =-<,抛物线开口向下,抛物线的对称轴为直线19x =,△当1216x ≤≤,且x 为整数,在对称轴左侧,W 随x 的增大而增大,△当16x =元/件时,线上和线下月利润总和达到最大,此时的最大利润为-10×9+770=680元.【点睛】本题考查一次函数、二次函数在销售中求最大值,找出题中的数量关系,掌握二次函数求最值的方法是解题关键.21.(1)y=8x;(2)12 【详解】(1)作BM △x 轴于M ,作BN △x 轴于N ,利用点A ,B 的坐标得到BC =OM =5,BM =OC =6,AM =3,再证明△ADN △△ABM ,利用相似比可计算出DN =2,AN =1,则ON =OA ﹣AN =4,得到D 点坐标为(4,2),然后把D 点坐标代入y=k x 中求出k 的值,即可得到反比例函数解析式;(2)根据反比例函数k 的几何意义和OCE OAD ODBE OABC S S SS =--四边形梯形进行计算.解:(1)作BM △x 轴于M ,作DN △x 轴于N ,如图,△点A ,B 的坐标分别为(5,0),(2,6),△263BC OM BM OC AM =====,,,△DN BM ∥, ADNABM ∴ , △DN BM =AN AM =AD AB , 即6DN =3AN =13, 21DN AN ∴==,,△4ON OA AN ==﹣,△D 点坐标为()4,2,把D (4,2)代入y=k x得 248k =⨯=,△反比例函数解析式为y=8x;(2)OCE OAD ODBE OABC S S S S =--四边形梯形=1 2×(2+5)×6﹣12×|8|﹣12×5×2=12.【点睛】本题考查了反比例函数图像上点的坐标特征、反比例函数k的几何意义,相似三角形的判定和性质,割补法求面积;理解反比例函数图像的特征,会运用相似比计算线段的长度是解题的关键.。
河南师范大学附属中学2020届九年级上学期第一次月考数学试题
2019-2020学年第一学期九年级第一次月考《数学》试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面四个手机应用图标中,属于中心对称图形的是( )A .B .C .D .2.将函数2x y =的图像用下列方法平移后,所得的图象不经过点)41(,A 的方法是( ) A .向左平移1个单位 B .向右平移3个单位 C .向上平移3个单位 D .向下平移1个单位 3.对于函数2)(2m x y --=的图象,下列说法不正确的是( ) A .开口向下 B .对称轴是直线 m x = C .最大值为 0 D .与y 轴不相交4.若抛物线12+=ax y 的图象经过点)0,2(-,则关于x 的方程01)2(2=+-x a 的实数根为( ) A .01=x ,42=x B .21-=x ,62=x C .231=x ,252=x D .41-=x ,02=x 5.如图,将ABC Rt ∆绕直角顶点C 顺时针旋转,得到C B A '''∆,连接A A ',若25=∠BAC ,则A BA '∠的度数是( )A . 55B .60 C . 65 D .706.二次函数c bx ax y ++=2(a ,b ,c 是常数,且0≠a )的图象如图所示,则下列结论错误的是( )A .24b ac < B .0<abc C .a c b 3>+ D .b a >27.在同一平面直角坐标系中,函数bx ax y +=2与a bx y +=的图象可能是( )A .B .C .D .8.如图,将ABC ∆绕点B 沿顺时针旋转得到C B A ''∆,使点A '落在AC 上,已知40=∠C ,AC 平行于C B ',则BC A '∠的度数为( )A .30 B .55 C .65 D .709.用长度为8米的铝合金条制成如图所示的矩形窗框,那么这个窗框的最大透光面积为( )A .2625m B .238m C .22m D .24m10.二次函数)0(4)4(2≠--=a x a y 的图象在32<<x 这一段位于x 轴的下方,在76<<x 这一段位于x 轴的上方,则a 的值为( )A .1B .1-C .2D .2-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)11.若2)1(2-+=-kkx k y 是关于x 的二次函数,则k 的值为 .12.如图,直线n mx y +=与抛物线c bx ax y ++=2交于)1(p A ,-,)4(q B ,两点,则关于x 的不等式c bx ax n mx ++>+2的解集是 .13.已知点是点)1(-,a A 是点)2(b B ,关于原点O 的对称点,则=a ,=b . 14.已知二次函数自变量的部分的取值和对应的函数值如下表:则在实数范围内能使得05>-y 成立的取值范围是 .15.如图,在平面直角坐标系中,点A 在抛物线222+-=x x y 上运动,过点A 作x AC ⊥轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.16.解方程(1)1422-=-x x (2))3(3)3(2-=-x x x17. 已知抛物线m x m x y +-+-=)1(2与y 轴交于)3,0( (1)求m 的值(2)求抛物线与x 轴的交点坐标及顶点坐标(3)请直接写出抛物线在x 轴上方时x 的取值范围 . (4)请直接写出y 随x 的增大而增大时的x 取值范围 .18. 在平面直角坐标系中,ABC ∆三个顶点的坐标分别为)32(,A ,)11(,B ,)1,5(C (1)ABC ∆平移后,其中点A 移到点)5,4(1A ,画出平移后得到的111C B A ∆(2)把111C B A ∆绕点1A 按逆时针方向旋转90,画出旋转后的222C B A ∆,并写出点2B 的对应点的坐标 (3)请判断以1A 、2B 、2C 为顶点的三角形的形状(无需说明理由)19. 已知抛物线m m x m x y -+--=22)12( (1)求证:此抛物线与x 轴必有两个不同的交点(2)若此抛物线与33+-=m x y 直线的一个交点在y 轴上,求m 的值20. 如图,等腰直角ABC ∆中,90=∠ABC ,点D 在AC 上,将ABD ∆绕顶点B 沿顺时针方向旋转90后得到CBE ∆(1)直接写出DCE ∠的度数(2)当4=AB ,31::=DC AD 时,求DB 的长21. 某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (个)与销售单价x (元)有如下关系:)6030(60≤≤+-=x x y ,设这种双肩包每天的销售利润为w 元。
河南省新乡市九年级上学期数学期末考试试卷
河南省新乡市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·江岸模拟) 下列事件中,是确定事件的是()A . 度量三角形的内角和,结果是B . 买一张电影票,座位号是奇数C . 打开电视机,它正在播放花样滑冰D . 明天晚上会看到月亮2. (2分)(2016·陕西) 如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A . 3B . 4C . 5D . 63. (2分)反比例函数的图象在()A . 第一、三象限B . 第二、四象限C . 第一、二象限D . 第三、四象限4. (2分) (2018九上·衢州期中) 如图,⊙A过点O(0,0),C( ,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A . 15°B . 30°C . 45°D . 60°5. (2分)(2016·连云港) 如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A . 2 <r<B . <r<3C . <r<5D . 5<r<6. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论正确的有()个.①abc<0,②2a+b=0,③a-b+c>0,④4a+2b+c>0,⑤b>-2c.A . 2B . 3C . 4D . 57. (2分)如图,四边形ABCD为梯形,AD∥BC,∠ABC=30°,∠BCD=60°,AD=4,AB=,则下底BC的长为()A . 6B . 8C . 10D . 128. (2分)(2016·武侯模拟) 如图,正比例函数y=﹣x与反比例函数y=﹣的图象相交于A、B两点,分别过A、B两点作y轴的垂线,垂足分别为C、D,连接AD,BC,则四边形ACBD的面积为()A . 2B . 4C . 6D . 89. (2分) (2017九上·东莞开学考) 如图,已知正三角形ABC的边长为1,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数的图象大致是()A .B .C .D .10. (2分) (2020九上·宽城期末) 如图,在平面直角坐标系中,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p)B(2,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是()A . x<-1B . x>2C . -1<x<2D . x<-1或x>2二、填空题 (共5题;共5分)11. (1分)(2018·嘉兴模拟) 把抛物线先向左平移1个单位,再向下平移2个单位,平移后抛物线的表达式是________.12. (1分)在一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球,记下颜色后,再放回暗箱,通过大量的重复试验后发现,摸到红球的频率稳定在25%.那么估计a大约有________ 个.13. (1分)(2017·花都模拟) 如图,一个空间几何体的主视图和左视图都是边长为2的正三角形,俯视图是一个圆,那么这个几何体的侧面积是________.14. (1分) (2017八下·启东期中) 如图,在△ABC中,∠ACB=90°,点D,E,F分别是AB,BC,CA的中点,若CD=2,则线段EF的长是________.15. (1分) (2017八下·江阴期中) 如图,菱形ABCD中,AB=4,∠B=60°,E,F分别是BC,DC上的点,∠EAF=60°,连接EF,则△AEF的面积最小值是________.三、解答题 (共9题;共64分)16. (1分) (2018八上·达州期中) 某机器零件的横截面如图所示,按要求线段和的延长线相交成直角才算合格.一工人测得,,,请你帮他判断该零件是否合格________(填“合格”或“不合格”).17. (6分) (2019八下·广东月考) 已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明)18. (2分)(2018·灌南模拟) 甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打笫一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.19. (2分)(2018·射阳模拟) 小明在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形,已知吊车吊臂支点O距离地面的高OO′=1.5米,吊臂OA长度为6米,当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,并且从O点观测到点A的仰角为45°,从O点观测到点A′的仰角为60°.(1)求此重物在水平方向移动的距离BC;(2)求此重物在竖直方向移动的距离B′C.20. (10分) (2019七下·高安期中) 在平面直角坐标系中,有点A(1,2a+1),B(﹣a,a﹣3).(1)当点A在第一象限的角平分线上时,求a的值;(2)当点B在到x轴的距离是到y轴的距离2倍时,求点B所在的象限位置;(3)若线段AB∥x轴,求三角形AOB的面积.21. (8分) (2019九上·宜兴期中) 如图(1)如图1,网格中每个小正方形的边长为1,点A,B均在格点上.则线段AB的长为________.请借助网格,仅用无刻度的直尺在AB上作出点P,使AP= .(2)⊙O为△ABC的外接圆,请仅用无刻度的直尺,依下列条件分别在图2,图3的圆中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法,请下结论注明你所画的弦).①如图2,AC=BC;②如图3,P为圆上一点,直线l⊥OP且l∥BC.22. (10分)(2019·常德) 在等腰三角形中,,作交AB于点M ,交AC于点N .(1)在图1中,求证:;(2)在图2中的线段CB上取一动点P,过P作交CM于点E,作交BN于点F,求证:;(3)在图3中动点P在线段CB的延长线上,类似(2)过P作交CM的延长线于点E,作交NB的延长线于点F,求证:.23. (15分) (2016九上·溧水期末) 某批发商以40元/千克的价格购入了某种水果500千克.据市场预测,该种水果的售价y(元/千克)与保存时间x(天)的函数关系为y=60+2x,但保存这批水果平均每天将损耗10千克,且最多能保存8天.另外,批发商保存该批水果每天还需40元的费用.(1)若批发商保存1天后将该批水果一次性卖出,则卖出时水果的售价为________(元/千克),获得的总利润为________(元);(2)设批发商将这批水果保存x天后一次性卖出,试求批发商所获得的总利润w(元)与保存时间x(天)之间的函数关系式;(3)求批发商经营这批水果所能获得的最大利润.24. (10分) (2016八上·高邮期末) 如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共64分)16-1、17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。
河南省新乡市2020年九年级上学期数学期末考试试卷(I)卷
河南省新乡市2020年九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单项选择题(共10个小题,每小题3分,满分30分) (共10题;共30分)1. (3分) (2020八上·右玉期末) 下列图形中,不属于轴对称图形的是()A .B .C .D .2. (3分)下列事件是随机事件的是()A . 在一个仅装着白球和黑球的袋中摸球,摸出红球B . 在一个标准大气压下,加热到100℃,水沸腾C . 有一名运动员奔跑的速度是30米/秒D . 购买一张福利彩票,中奖3. (3分) (2017八下·萧山期中) 下列方程是关于x的一元二次方程的是()A . x2+ =0B . ax2+bx+c=0C . (x+1)(x﹣2)=1D . 3x2﹣2xy﹣5y2=04. (3分) (2019九上·台江期中) 要得到抛物线y=2(x﹣4)2+1,可以将抛物线y=2x2()A . 向左平移4个单位长度,再向上平移1个单位长度B . 向左平移4个单位长度,再向下平移1个单位长度C . 向右平移4个单位长度,再向上平移1个单位长度D . 向右平移4个单位长度,再向下平移1个单位长度5. (3分)青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞 20 只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出 40 只青蛙,其中有标记的青蛙有 4 只,请你估计一下这个池塘里有多少只青蛙?()A . 100只B . 150只C . 180只D . 200只6. (3分)一元二次方程x2+x﹣1=0 的根的情况为()A . 有两个相等的实数根B . 有两个不相等的实数根C . 只有一个实数根D . 没有实数根7. (3分)无论x取什么数,下列不等式总成立的是()A . x+6>0B . x+6<0C . ﹣(x﹣6)2<0D . (x﹣6)2≥08. (3分)(2019·大渡口模拟) 如图,己知等腰,以为直径的圆交于点,过点的⊙ 的切线交于点,若,则⊙ 的半径是()A .B . 5C . 6D .9. (3分) (2017七下·泰兴期末) 如图,AD是△ABC的中线,DE是△ADC的高线,AB=3,AC=5,DE=2,点D 到AB的距离是()A . 2B .C .D .10. (3分)已知抛物线y=x2﹣(4m+1)x+2m﹣1与x轴交于两点,如果有一个交点的横坐标大于2,另一个交点的横坐标小于2,并且抛物线与y轴的交点在点(0,-)的下方,那么m的取值范围是()A . <m<B . m>C . m>D . 全体实数二、填空题(共7个小题,每小题4分,满分28分) (共7题;共26分)11. (2分)某菱形的两条对角线长都是方程x2-6x+8=0的根,则该菱形的周长为________12. (4分) (2016九上·淅川期中) 已知a,b是方程x2﹣x﹣3=0的两个根,则代数式a2﹣(a+b)+b2的值为________.13. (4分)(2019·九龙坡模拟) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同,现有两辆汽车经过这个十字路口,则这两辆汽车都向左转的概率为________.14. (4分) (2018八上·长春开学考) 一个正五角星绕着它的中心点O进行旋转,那么至少旋转________度,才能与自身重合.15. (4分) (2019九上·桐梓期中) 如图,△ABC中,∠C=90°,∠B=60°,在AC边上取点O画圆,使⊙O 经过A、B两点,下列结论中:①AO=BC;②AO=2CO;③延长BC交⊙O与D,则A、B、D是⊙O的三等分点;④以O为圆心,以OC为半径的圆与AB相切.正确的序号是________.16. (4分) (2017九上·禹州期末) 一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面的函数关系式;h=﹣5t2+10t+1,则小球距离地面的最大高度是________.17. (4分) (2018九下·绍兴模拟) 如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为________.三、解答题(一)(共3个小题,每小题6分,满分18分) (共3题;共14分)18. (2分)(2020·鹿城模拟) 解一元二次方程19. (6分) (2019八上·新兴期中) 在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1 ,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2 ,并写出点C2的坐标。
新乡市2020版九年级上学期数学期末考试试卷B卷
新乡市2020版九年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分) (2019九上·马山月考) 已知一元二次方程有一个根为2,则另一根为()A . 2B . 3C . 4D . 82. (2分)(2020·吉林模拟) 二次函数y=-2(x+1)²-3的最大值为()A . -1B . -2C . -3D . -43. (2分) (2017七下·岱岳期中) 下列说法中不正确的是()A . 抛掷一枚硬币,硬币落地时正面朝上是随机事件B . 把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C . 任意打开七年级下册数学教科书,正好是97页是确定事件D . 一个盒子中有白球3个,红球6个,(每个球除了颜色外都相同),如果从中任取一个球,取得红球的可能性大4. (2分)已知在R t △ABC中,∠C = 90°,∠A =,AB = 2,那么BC的长等于A .B .C .D .5. (2分)已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为()A . x1=-1,x2=3B . x1=-2,x2=3C . x1=1,x2=3D . x1=-3,x2=16. (2分)(2018·邵阳) 如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是()A . 2B . 1C . 4D . 27. (2分)如图,梯形ABCD中,AB//DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D 两点,且∠AOD=90°,则圆心O到弦AD的距离是A . cmB . cmC . cmD . cm8. (2分) (2018·通城模拟) 如图,⊙O的半径为3,四边形ABCD内接于⊙O,若2∠BAD=∠BCD,则弧BD 的长为()A . πB .C . 2πD . 3π9. (2分)如图,在直角梯形ABCD中,AB=2,BC=4,AD=6,M是CD的中点,点P在直角梯形的边上沿A→B→C→M 运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示是()A .B .C .D .二、填空题 (共5题;共5分)10. (1分)若关于x的一元二次方程x2﹣4x+2k=0有两个实数根,则k的取值范围为________ .11. (1分)已知二次函数y有最大值4,且图象与x轴两交点间的距离是8,对称轴为x=﹣3,此二次函数的解析式为________12. (1分) (2019九上·荔湾期末) 如图,已知AB是⊙O的直径,PB是⊙O的切线,PA交⊙O于C,AB=3cm,PB=4cm,则BC=________cm.13. (1分) (2017九上·温江期末) 小新的身高是1m,他的影子长为2m,同一时刻水塔的影长是32m,则水塔的高度是________ m.14. (1分) (2016九下·邵阳开学考) 如图,正方形ABCD的边长为1,点E为AB的中点,以E为圆心,1为半径作圆,分别交AD、BC于M、N两点,与DC切于点P,则图中阴影部分的面积是________。
河南省新乡市牧野区河南师范大学附属中学2022-2023学年九年级上学期期末数学试题
河南省新乡市牧野区河南师范大学附属中学2022-2023学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________ A.B.C.D.A.B.C.D.34π8有()A.2个B.3个C.4个D.5个二、填空题5(1)分别求出直线AB 及反比例函数的解析式;(2)求OCD V的面积; (3)利用图像直接写出:当x 在什么范围内取值时12y y >.20.某校安装了红外线体温检测仪(如图1),该设备通过探测人体红外辐射能量对进入测温区域的人员进行快速测温,其红外线探测点O 可以在垂直于地面的支杆OP 上下调节(如图2),探测最大角(OBC ∠)为58°,探测最小角(OAC ∠)为26.6°,已知该设备在支杆OP 上下调节时,探测最大角及最小角始终保持不变.(结果精确到0.01米,参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈,sin26.60.45︒≈,cos26.60.89︒≈,tan 26.60.50︒≈)(1)若该设备的安装高度OC 为1.6米时,求测温区域的宽度AB ;(2)若要求测温区域的宽度AB 为2.53米,请你帮助学校确定该设备的安装高度OC . 21.卡塔尔世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于45元,且获利不高于50%.试销售期间发现,当销售单价定为45元时,每天可售出310本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为y 本,销售单价为x 元.(1)请直接写出y 与x 之间的函数关系式和自变量x 的取值范围;(2)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?(3)当每本足球纪念册销售单价是多少元时,商店每天获利2600元?22.△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?23.综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动,(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,,.连接PM BM根据以上操作,如图1,当点M在EF上时,写出下图中一个30 的角:______.(2)迁移探究小华将矩形纸片换成正方形纸片ABCD,且边长为10cm,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,求FQ的长:∥,交AD于G,交BC于H,当点P ②当点M不在EF上,经过点M的直线GH CD恰好为边AD的中点时,DG的长为______cm;当点P恰好为边AD的三等分点时(靠近点A),DG的长为______cm.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年第一学期九年级《数学》期末试卷
一、选择题(每题3分,共30分).
1.下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是( )
A. B. C. D.
2.将抛物线2
21y x =-向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ) A. ()2
222y x =++ B. ()2
222y x =-+ C. ()2
222y x =--
D. ()2
222y x =+-
3.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是( ). A. 3个都是黑球 B. 2个黑球1个白球 C. 2个白球1个黑球
D. 至少有1个黑球
4.如图,已知正五边形 ABCDE 内接于O e ,连结BD ,则ABD ∠的度数是( )
A. 60︒
B. 70︒
C. 72︒
D. 144︒
5.如图,以点O 为位似中心,把ABC V 放大为原图形的2倍得到A B C '''V ,以下说法中错误的是( )
A. ABC A B C '''∽△△·
B. 点C 、点O 、点C '三点在同一直线上
C. :1:2AO AA '=
D. AB A B ''P
6.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根
D. 无法确定
7.如图,半径为3的⊙A 经过原点O 和点C (0,2)
,B 是y 轴左侧⊙A 优弧上一点,则tan∠OBC 为( )
A.
1
3
B.
C.
4
D.
3
8.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( ). A. 20%;
B. 40%;
C. 18%;
D. 36%. 9.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB
长为( )
A.
9
5sin α
米
B.
9
5cos α
米
C.
5
9sin α
米
D.
5
9cos α
米
10.我们定义一种新函数:形如2
2
(a 0b 4a 0)y ax bx c =++≠->,
函数叫做“鹊桥”函数.小丽同学画
出了“鹊桥”函数2
23y x x =--的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为
()1,0-,()30,
和()03,;①图象具有对称性,对称轴是直线1x =;①当-1x 1≤≤或3x ≥时,函数值y 随x 值的增大而增大;①当1x =-或3x =时,函数的最小值是0;①当1x =时,函数的最大值是4,其中正确结论的个数是( )
的
A. 4
B. 3
C. 2
D. 1
二、填空题(每题3分,共15分)
11.若扇形的圆心角为90︒,半径为6,则该扇形的弧长为__________.
12.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠,若ADC ∆的面积为
3,则ABD ∆的面积为__________.
13.如图,在平面直角坐标系中,点A 的坐标为()42-,
,反比例函数()0k
y x x
=<的图象经过线段OA 的中点B ,则k =_____.
14.如图将矩形ABCD 绕点B 顺时针旋转90︒得矩形BEFG ,若3AB =,2BC =,则图中阴影部分的面积为__________.
15.如图,
在菱形ABCD 中,0
60,2,B AB M ∠==为边AB 的中点,N 为边BC 上一动点(不与B 重合),将BMN ∆沿直线MN 折叠,使点B 落在点E 处,连接DE ,CE ,当CDE ∆为等腰三角形时,BN 的长为____________.
三、解答题(共75分)
16.(1)计算:
21cos30tan 302cos 45sin 60-︒
+︒-︒︒
(2)解方程:2523x x +=
17.为了响应市政府号召,某校开展了“六城同创与我同行”活动周,活动周设置了“A :文明礼仪,B :生态环境,C :交通安全,D :卫生保洁”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.
(1)本次随机调查学生人数是______人;
(2)请你补全条形统计图;
(3)在扇形统计图中,“B ”①①①①①①①①①①______度;
(4)小明和小华各自随机参加其中的一个主题活动,请用画树状图或列表的方式求他们恰好选中同一个主题活动的概率.
18.如图,已知点P 是O e 外一点,直线PA 与O e 相切于点B ,直线PO 分别交O e 于点C 、D ,
PAO PDB ∠=∠,OA 交BD 于点E .
(1)求证://OA BC ;
(2)当O e 的半径为10,8BC =时,求AE 的长.
的
19.如图,为了测量上坡上一棵树PQ 的高度,小明在点A 利用测角仪测得树顶P 的仰角为45︒,然后他沿着正对树PQ 的方向前进10m 到达点B 处,此时测得树顶P 和树底Q 的仰角分别是60︒和30°.设
PQ AB ⊥,且垂足为C .求树PQ 的高度(结果精确到0.1m 1.7≈).
20.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为()1,0,点()44D ,
在反比例函数k
y x
=(0x >)的图象上,直线2
3
y x b =
+经过点C ,与y 轴交于点E ,连接AC ,AE .
(1)求k ,b 的值;(2)求ACE ∆的面积.
21.“互联网+”时代,网上购物备受消费者青睐,某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可售价100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x 元(x 为正整数),每月的销售量为y 条. (1)直接写出y 与x 的函数关系式; (2)设该网店每月获得
利润为w 元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生,为了保证捐款后每月利润不
低于3800元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价? 22.实验探究:
如图,ABC ∆和ADE ∆是有公共顶点的等腰直角三角形,90BAC DAE ∠=∠=︒,交于BD 、CE 点P .
【问题发现】
(1)把ABC ∆绕点A 旋转到图1,BD 、CE 的关系是_________(“相等”或“不相等”),请直接写出答案; 【类比探究】
(2)若3AB =,5AD =,把ABC ∆绕点A 旋转,当90EAC ∠=︒时,在图中作出旋转后图形,并求出
此时PD 的长; 【拓展延伸】
(3)在(2)的条件下,请直接写出旋转过程中线段PD 的最小值为_________.
23.如图,抛物线2
y 2ax x c =++经过(1,0)A -,B 两点,且与y 轴交于点(0,3)C ,抛物线与直线1y x =--交于A ,E 两点. (1)求抛物线的解析式;
(2)坐标轴上是否存在一点Q ,使得AQE ∆是以AE 为底边的等腰三角形?若存在,请直接写出点Q 的坐标;若不存在,说明理由.
(3)P 点在x 轴上且位于点B 的左侧,若以P ,B ,C 为顶点的三角形与ABE ∆相似,求点P 的坐标.
的。