2019年八年级数学上册 4.3 一次函数的图象教案 (新版)北师大版 .doc
八年级数学上册4.3一次函数的图象第1课时正比例函数的图象和性质教学设计 (新版北师大版)
八年级数学上册4.3一次函数的图象第1课时正比例函数的图象和性质教学设计(新版北师大版)一. 教材分析《八年级数学上册4.3一次函数的图象》这一节,主要介绍了一次函数的图象和性质。
其中,正比例函数是特殊的一次函数,它的图象是一条通过原点的直线。
本节内容是学生学习一次函数的基础,对于学生理解和掌握一次函数的图象和性质,以及后续学习其他类型的函数具有重要意义。
二. 学情分析八年级的学生已经学习了代数基础知识,对于函数的概念有一定的理解。
但是,对于函数的图象和性质,特别是正比例函数的图象和性质,可能还比较陌生。
因此,在教学过程中,需要引导学生通过实际操作,观察和分析正比例函数的图象和性质,从而加深对一次函数的理解。
三. 教学目标1.理解正比例函数的图象是一条通过原点的直线。
2.掌握正比例函数的性质,即当x增大或减小时,y的值也按比例增大或减小。
3.能够通过观察图象,分析正比例函数的性质。
四. 教学重难点1.重难点:正比例函数的图象和性质。
2.难点:如何引导学生通过观察图象,分析正比例函数的性质。
五. 教学方法采用问题驱动的教学方法,引导学生通过观察和操作,发现正比例函数的图象和性质。
同时,结合小组合作学习,让学生在讨论中加深对一次函数的理解。
六. 教学准备1.准备正比例函数的图象和性质的相关教学材料。
2.准备计算机和投影仪,用于展示图象和讲解。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出正比例函数的概念,并提出问题:“正比例函数的图象是什么样的?”2.呈现(10分钟)利用计算机和投影仪,展示正比例函数的图象,并引导学生观察和分析。
3.操练(10分钟)让学生分组进行实际操作,通过改变x的值,观察y的变化,从而深入理解正比例函数的性质。
4.巩固(5分钟)通过一些练习题,让学生巩固对正比例函数图象和性质的理解。
5.拓展(5分钟)引导学生思考:除了正比例函数,还有其他类型的函数图象和性质是什么?6.小结(5分钟)对本节课的内容进行小结,强调正比例函数的图象是一条通过原点的直线,性质是当x增大或减小时,y的值也按比例增大或减小。
北师大版八年级数学上册:4.3《一次函数的图象》教案
北师大版八年级数学上册:4.3《一次函数的图象》教案一. 教材分析《一次函数的图象》是北师大版八年级数学上册第4.3节的内容。
本节主要让学生了解一次函数的图象特点,学会如何绘制一次函数的图象,并能够分析一次函数图象与系数之间的关系。
通过本节的学习,为学生后续学习二次函数、指数函数等函数图象打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了函数的概念、一次函数的定义和性质。
但学生对函数图象的认识不足,对如何绘制一次函数图象以及分析图象与系数之间的关系还不够清晰。
因此,在教学过程中,需要引导学生通过实践操作,加深对一次函数图象的理解。
三. 教学目标1.让学生了解一次函数图象的特点,学会绘制一次函数图象。
2.引导学生分析一次函数图象与系数之间的关系。
3.培养学生的动手操作能力和观察分析能力。
四. 教学重难点1.一次函数图象的绘制方法。
2.分析一次函数图象与系数之间的关系。
五. 教学方法采用讲解法、示范法、实践操作法、讨论法等教学方法,引导学生通过自主学习、合作交流,掌握一次函数图象的特点和绘制方法。
六. 教学准备1.准备多媒体教学设备,如投影仪、计算机等。
2.准备一次函数图象的示例图片和相关素材。
3.准备练习题和作业。
七. 教学过程1.导入(5分钟)利用投影仪展示一次函数图象的示例图片,引导学生观察并总结一次函数图象的特点。
教师简要讲解一次函数图象的绘制方法,激发学生的学习兴趣。
2.呈现(10分钟)教师通过讲解和示范,详细介绍一次函数图象的绘制方法。
引导学生动手操作,尝试绘制一次函数图象。
在绘制过程中,注意引导学生观察图象与系数之间的关系。
3.操练(10分钟)学生分组进行实践操作,绘制不同系数的一次函数图象。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师挑选几组学生的作品,进行分析讨论。
引导学生总结一次函数图象与系数之间的关系。
同时,让学生回答课后练习题,巩固所学知识。
5.拓展(10分钟)教师提出一些拓展问题,如:如何判断一次函数图象与坐标轴的交点?如何求解一次函数图象上的点?引导学生进行思考和讨论。
《 一次函数的图象》示范公开课教学设计【北师大版八年级数学上册】第2课时
第四章一次函数4.3 一次函数的图象第2课时教学设计一、教学目标1.经历一次函数图象的画图过程,初步了解画函数图象的一般步骤;经历一次函数图象变化情况的探索过程,发展数形结合的意识和能力.2.能熟练画出一次函数的图象;掌握一次函数及其图象的简单性质.二、教学重点及难点重点:用“两点法”画出一次函数图象是研究一次函数的性质的基础.难点:直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响.三、教学用具多媒体课件.四、相关资源《正比例函数y=-2x+1的图象的画法》动画或图片,《两点法画图象》的动画,《一次函数y=2x+3,y=-x,y=-x+3和y=5x-2的图象的画法》动画或图片.五、教学过程【复习导入】师:1.什么叫函数?在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.2.函数的表示方法有哪几种?(1)解析法(2)列表法(3)图象法3.同学们,上节课我们学习了正比例函数的图象,请画出正比例函数y=-2x的图象。
【探究新知】1.师:正比例函数y=-2x的图象是过原点的一条直线,那你们知道一次函数y=-2x+1 的图象是什么形状吗?那就让我们一起做一做,看一看,如何作出一次函数?要回答这个问题,必须弄清楚以下几点:(1)函数的图象是由无数个点构成的.(2)这些点在坐标系中是一对一对的有序实数.(3)此解析式实际上是一个二元一次方程,它的一对一对的x、y值可看作是图象上的点的坐标.(4)要找出它的某个点,实际上就是求出这个二元一次方程的一组解.(5)把x的值作为横坐标,y的值作为纵坐标.(6)把函数作图问题转化为求方程的解的问题.例画出一次函数y =-2x +1的图象。
解:列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描出对应的点。
连线:把这些点依次连接起来,得到y=-2x+1的图象,它是一条直线。
北师大版数学八年级上册第四章《一次函数》第3节《一次函数的图像》第一课时
教学设计4.3 一次函数的图象(第1课时)教材的地位和作用《一次函数的图象》是义务教育课程标准北师大版八年级(上)第四章《一次函数》的第三节.在学习本节课之前,学生已学习了平面直角坐标系、变量与函数、以及一次函数与正比例函数的概念等相关的知识。
学生能在平面直角坐标系中熟练的表示一个点,为画图像做好的充分铺垫作用。
本节课也是后续学习反比例函数、二次函数图像和性质的重要基础。
数形结合的思想是本节课的主要数学思想。
教学目标知识与技能:了解正比例函数的图象是一条直线,能熟练画出正比例函数的图像。
理解正比例函数表达式与图象之间的一一对应关系。
过程与方法:经历正比例函数图像画法的探索过程,体会“数”“形”结合的数学思想在问题解决中的作用,并能运用图像及数形结合的思想解决相关函数问题。
情感态度与价值观:在动手画图过程中,培养学生的合作意识和大胆猜想、乐于探索的学习意志。
体验“数”与“形”的转化过程,让学生感受函数图像的美妙,激发学生学数学的兴趣。
教学重、难点:重点:初步了解作函数图象的一般步骤:列表、描点、连线.会画出正比例函数的图像,正比例函数的图像是一条直线。
难点:理解一次函数的代数表达式与图象之间的一一对应关系,正比例函数的性质以及|k|的大小对正比例函数的影响。
教学过程:一、温故知新1、一次函数和正比例函数的定义是什么?2、表示函数的方法有哪几种?二、探究新知1、函数的图像(1)用图象表示的函数关系举例:摩天轮上一点的高度h与旋转时间t之间函数关系的图像。
(2)函数的图像定义把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象。
(3)举例正比例函数y=2x当自变量x=1时,相应的函数值y=2,我们把1作为点的横坐标,相应y 的值2作为纵坐标,从而得到一个点(1,2)再取一组,当自变量x=2时,相应的函数值y=4,我们把2作为点的横坐标,相应y的值4作为纵坐标,从而得到另一个点(2,4)……这样我们能得到很多的点,所有这些点组成的图形就叫做该函数的图象。
北师大版数学八年级上册3《一次函数的图象》教学设计5
北师大版数学八年级上册3《一次函数的图象》教学设计5一. 教材分析《一次函数的图象》是北师大版数学八年级上册第3节的内容,本节主要让学生掌握一次函数的图象特征,学会用图象来分析和解决问题。
内容主要包括一次函数的图象是一条直线,直线的斜率表示倾斜程度,截距表示与y轴的交点等。
二. 学情分析学生在学习本节内容前,已经学习了函数的概念、一次函数的定义和性质,对本节内容有一定的认知基础。
但学生对函数图象的理解和运用还不够熟练,需要通过本节内容的学习来进一步掌握。
三. 教学目标1.让学生理解一次函数的图象是一条直线,掌握直线的斜率和截距的含义。
2.学会用图象来分析和解决问题,提高学生的直观思维能力。
3.培养学生的合作交流能力和数学思维习惯。
四. 教学重难点1.一次函数图象的特征和性质。
2.斜率和截距的含义和运用。
3.用图象来分析和解决问题。
五. 教学方法采用问题驱动法、案例分析法、合作交流法等,引导学生通过观察、思考、操作、交流等活动,掌握一次函数的图象特征和运用。
六. 教学准备1.PPT课件2.教学素材(函数图象的实例)3.黑板、粉笔七. 教学过程1.导入(5分钟)通过复习一次函数的定义和性质,引出本节课的主题——一次函数的图象。
2.呈现(10分钟)展示几个一次函数的图象,让学生观察并描述出图象的特征。
3.操练(10分钟)让学生分组合作,通过观察和分析,找出一次函数图象的斜率和截距,并解释其含义。
4.巩固(10分钟)让学生自主完成一些练习题,巩固对一次函数图象的理解。
5.拓展(10分钟)让学生运用一次函数图象的知识,解决一些实际问题,培养学生的应用能力。
6.小结(5分钟)对本节课的内容进行总结,强调一次函数图象的特征和斜率、截距的含义。
7.家庭作业(5分钟)布置一些练习题,让学生回家巩固所学知识。
8.板书(5分钟)总结本节课的主要内容和知识点。
本节课通过问题驱动、案例分析、合作交流等方式,让学生掌握了一次函数的图象特征和斜率、截距的含义。
北师大版八年级数学上册:4.3《一次函数的图象》教学设计
北师大版八年级数学上册:4.3《一次函数的图象》教学设计一. 教材分析《一次函数的图象》是北师大版八年级数学上册第4.3节的内容,本节课主要让学生了解一次函数的图象特征,学会如何绘制一次函数的图象,并能够分析一次函数图象与系数的关系。
教材通过具体的例子引导学生探究一次函数图象的性质,为学生提供丰富的操作、思考、交流的活动机会,从而提高他们的数学素养。
二. 学情分析学生在七年级已经学习了直线、射线、线段等基础知识,对图形的性质有一定的了解。
但他们对一次函数图象的认识还比较模糊,需要通过具体的活动和实例来加深理解。
此外,学生需要进一步掌握如何利用函数图象解决实际问题,提高他们的应用能力。
三. 教学目标1.理解一次函数图象的性质,能够绘制一次函数的图象。
2.学会分析一次函数图象与系数的关系。
3.培养学生的观察能力、操作能力、思考能力及合作交流能力。
4.提高学生解决实际问题的能力。
四. 教学重难点1.一次函数图象的性质。
2.一次函数图象与系数的关系。
3.利用一次函数图象解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生探究一次函数图象的性质。
2.利用数形结合法,让学生直观地理解一次函数图象与系数的关系。
3.采用实例分析法,培养学生解决实际问题的能力。
4.小组讨论,提高学生的合作交流能力。
六. 教学准备1.准备相关的一次函数图象素材,用于引导学生观察和分析。
2.准备一次函数图象的软件工具,如GeoGebra等,让学生实际操作。
3.准备一些实际问题,让学生尝试解决。
七. 教学过程1.导入(5分钟)利用一个实际问题,如“某商店进行打折活动,原价100元的商品打8折后售价是多少?”引导学生思考如何用数学知识解决这个问题。
2.呈现(10分钟)呈现一次函数的图象,让学生观察并描述图象的性质。
引导学生发现一次函数图象是一条直线,且具有斜率和截距等特征。
3.操练(10分钟)让学生利用软件工具,如GeoGebra,自己绘制一次函数的图象,并观察图象与系数的关系。
4.3 一次函数的图象(第1课时)正比例函数的图象和性质课件(31张PPT) 北师大版八年级数学上册
y = -3x
y
4
3
2
1
-5 -4 -3 -2 -1 O
-1
-2
-3
-4
y = 2x
这两个函数图
象有什么共同
特征?
1 2 3 4 5 x
归纳总结
y = kx (k 是常数,k≠0)的图象是一条经过原点的直线
y = kx (k≠0)
经过的象限
k>0
第一、三象限
k<0
两点
作图法
第二、四象限
15 x
,即
解:
(1) y 5
100
(2)列表 x
0
y
0
描点
连线
(3)当 x = 220 时,
.
4
3
y/元
6
5
4
3
2
1
(元). O
1 2 34 56 7
答:该汽车行驶 220 km 所需油费是 165 元.
x/km
画正比例函数图象的一般
步骤:列表、描点、连线
正比例函
数的图象
和性质
图象:经过原点的直线.
(x2,y2),若 x1<x2 ,则 y1 > y2.
2. 正比例函数 y = k1x 和 y = k2x 的图象如图,则 k1 和 k2
y y = k1x
的大小关系是( A )
y = k2x
A. k1>k2
B. k1 = k2
o
x
C. k1<k2
D. 不能确定
例3 已知正比例函数 y = mx 的图象经过点 (m,4),且
y 的值随着 x 值的增大而减小,求 m 的值.
解:∵正比例函数 y = mx 的图象经过点(m,4),
一次函数的图像(2)
《4.3一次函数的图象(2)》教学设计宝氮子校王桂林教学内容分析:《4.3一次函数的图象(2)》是北师大版数学教材八年级上册中第四章“一次函数”的第四课时,主要是认识一次函数图象的性质、正比例函数图像及性质。
本节内容是在七年级学习了“变量之间的关系”和八年级上册第三章学习了“位置的确定”基础上学习和认识的,学生已经有了一定的变量、函数、平面直角坐标系、以及一次函数的概念等有关的知识基础。
同时,本节内容也是继续学习反比例函数、二次函数的图象和性质的重要基础,也是学习高中代数、解析几何及其他数学分支的重要基础,也是学习高中代数、解析几何及其他数学分支的重要基础。
数形结合的思想、化归思想及解析法思想是本节内容所包含的主要数学思想。
学情分析:学生已有学习“函数”、“一次函数图像的画法”的基础,具有一定的动手操作能力和观察分析能力。
本节课,学生在此基础上进一步认识一次函数图像的简单性质和正比例函数及函数图象的性质,并利用动手操作,体会k值、b值对函数图像的影响,进一步增强学生数学学习中“数”“形”结合的意识。
教学目标:知识技能:会用两点法画出一次函数的图像;能结合图像说出一次函数的性质;掌握一次函数的性质;数学思考:经历一次函数图象画法与性质的探索过程,体会“数”“形”结合的数学思想解决问题:体会数形结合的数学思想在问题解决中的作用,并能运用性质、图象及数形结合思想解决相关函数问题情感态度:在动手操作过程中,培养学生的合作意识和大胆猜想、乐于探究的良好品质;体验“数”与“形”的转化过程,感受函数图象的简洁美;激发学生学数学的兴趣。
教学重点:通过图象理解一次函数的性质教学难点:结合图像理解归纳一次函数的性质的过程教学方法:自主探究、合作交流动。
在导学过程中,坚持诱导式教学,以谈话法、小组合作学习为主。
充分调动学生学习积极性和主动性,突出学生的主体地位,通过自学、讨论、归纳、辨析等方法对学生进行学法指导,培养他们动手、动口、动脑的能力,达到“不但使学生学会,而且使学生会学”的目的。
八年级数学上册 一次函数的图象(第一课时)教案 北师大版【精品教案】
一次函数的图象教学设计(第一课时)一、教学设计思想本节课共两课时,第1课时本节交代了函数图象的概念和作图的一般步骤,目的是为后继学习反比例函数、二次函数的图像作必要的知识准备。
根据教学目标,结合学生心理特点,这节课采用在教师引导下,学生主动探索发现的教学方法.即教师创设问题情景,引导学生观察、比较、自学、思考并展开讨论,使学生作为学习主体参与知识发生、发展的全过程,体验揭示规律,发现真理的乐趣,从而产生巨大的内驱力,提高课堂教学效率,充分发挥教师主导作用和学生的主体作用.二、教学目标知识与技能1.总结作一次函数图像的一般步骤,能熟练作出一次函数图像.2.总结归纳出一次函数的性质———k>0或k<0时图像变化的情况.过程与方法经历作图过程,归纳总结作作函数图像的一般步骤,发展总结概括能力,培养数形结合的意识.情感态度与价值观加强新旧知识的联系,促进新的认知结构的建构.三、教学重点1.能熟练地作出一次函数的图象.2.归纳作函数图象的一般步骤.3.理解一次函数的代数表达式与图象之间的对应关系.四、教学难点理解一次函数的代数表达式与图象之间的对应关系.五、教学方法讲、议结合法.六、教具准备投影片两张:第一张:补充练习(§6.3.1 A );第二张:补充练习(§6.3.1 B).七、教学过程Ⅰ.导入新课[师]上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x 与y 的函数关系式,本节课我们来研究一下一次函数的图象及性质.Ⅱ.讲授新课 一、函数图象的概念[师]要研究一次函数的图象,首先应知道什么叫图象?把一个函数的自变量x 与对应的因变量y 的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph ). 假设在代数表达式y =2x 中,自变量x 取1时,对应的因变量y =2,则我们可在直角坐标系内或描出表示(1,2)的点,再给x 的另一个值,对应又一个y ,又可知直角坐标系内描出一个点,所有这些点组成的图形叫该函数y =2x 的图象.由此看来,函数图象是满足函数表达式的所有点的集合.那么应如何作函数的图象呢? 二、作一次函数的图象 [例1]作出一次函数y =21x +1的图象. [师]根据图象的定义,需要先找点.所以要先列表,找满足条件的点,再描点,连线. 解:列表描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点. 连线:把这些点依次连接起来,得到y =21x +1的图象如下,它是一条直线.[师]从刚才我们作图的情况来总结一下,作一次函数的图象有哪些步骤呢?[生]①列表;②描点;③连线.三、做一做(1)作出一次函数y=-2x+5的图象.(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5.[生]列表描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线.图象如下:在图象上找点A(3,-1),B(4,-3)当x=3时,y=-2×3+5=-1.当x=4时,y=-2×4+5=-3.∴(3,-1),(4,-3)满足关系式y=-2x+5.四、议一议(1)满足关系式y=-2x+5的x、y所对应的点(x,y)都在一次函数y=-2x+5的图象上吗?(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5吗?(3)一次函数y=kx+b的图象有什么特点?[师]请大家分组讨论,然后回答.[生]满足关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y=-2x+5的图象上.(2)一次函数y =-2x +5的图象上的点(x ,y )都满足关系式y =-2x +5.[师]由此看来,满足函数关系式y =-2x +5的x ,y 所对应的点(x ,y )都在一次函数y = -2x +5的图象上;反过来,一次函数y =-2x +5的图象上的点(x ,y )都满足关系式y =-2x +5.所以,一次函数的代数表达式与图象是一一对应的.即满足一次函数的代数表达式的点在图象上,图象上的每一点的横坐标x ,纵坐标y 都满足一次函数的代数表达式.(3)[生]一次函数的图象是一条直线. [师]非常正确.一次函数的图象是一条直线.由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y =kx +b 的图象也称为直线y =kx +b .Ⅲ.课堂练习 分别作出一次函数y =31x 与y =-3x +9的图象. [师]根据刚才的讨论可知,我们在画一次函数的图象时,只要确定两个点就可以了. [生]作函数y =31x 的图象时,找点(3,1),(6,2)图象如下.作函数y =-3x +9的图象时,找点(1,6),(2,3) 图象如下:补充练习投影片(§6.3.1A )[生](1)作一次函数y =-x +21的图象时,取点(0, 21)和(1,-21),然后过这两点作直线即可.图象如下:(2)在图象上取点A (23,-1),B (-1,23) 当x =23时,y =-23+ 21=-1 当x =-1时,y =1+21=23∴A 、B 两点的坐标都满足关系式y =-x +21. 投影片(§6.3.1 B )[生]解:(1)作一次函数y =4x +3的图象时,找点(0,3),(1,7),然后过这两点作直线即可.图象如下:(2)当x =0时,y =4×0+3=3; 当x =-1时,y =4×(-1)+3=-1; 当x =21时,y =4×21+3=5; 当x =1时,y =4×1+3=7; 当x =-23时,y =4×(-23)+3=-3. ∴每对数都满足关系式y =4x +3.由前面的议一议可知,以这些数对为坐标的点在所作的函数图象上. Ⅳ.课时小结本节课主要学习了以下内容: 1.函数图象的概念;2.作一次函数图象的步骤以及熟练地作出一次函数的图象,并能验证某些数对是否在函数图象上.3.明确一次函数的图象是一条直线,因此在作一次函数的图象时,不需要列表,只要确定两点就可以了.Ⅴ.课后作业 习题6.3 Ⅵ.活动与探究1.已知函数y =(m -2)x 552+-m m+m -4,问当m 为何值时,它是一次函数?解:根据一次函数的定义,有⎩⎨⎧≠-=+-021552m m m解得⎩⎨⎧≠==241m m m 或∴m =1或m =42.如果y +3与x +2成正比例,且x =3时,y =7. ①写出y 与x 之间的函数关系式; ②求当x =-1时,y 的值; ③求当y =0时,x 的值.分析:①y +3与x +2成正比例,就是y +3=k ·(x +2),根据x =3时,y =7,求k 的值,从而确定y 与x 之间的函数关系式.②把x =-1代入所求函数关系式,求出y 的值. ③把y =0代入函数关系式,求出x 的值. 解:①∵y +3与x +2成正比例 ∴y +3=k (x +2)把x =3,y =7代入得:7+3=k (3+2) ∴k =2,∴y =2x +1②把x =-1代入y =2x +1中,得y =-2+1=-1③把y =0代入y =2x +1中,得 0=2x +1,∴x =-21. 说明:若y 与x 成一次函数关系式,那么函数关系式要写成y =kx +b (k ≠0)的形式. 3.如果y =mx 82-m是正比例函数,而且对于它的每一组非零的对应值(x ,y )有xy <0,求m 的值.分析:按正比例函数y =kx (k ≠0)中对于k 及x 的指数的要求决定m 的值. 解:根据题意得,y =mx 82-m 是正比例函数,故有:m 2-8=1且m ≠0即m =3或m =-3又∵xy <0,∴x ,y 是异号.∴m =xy<0 ∴m =3不合题意,舍去. ∴m =-3.常见错误:忽略m ≠0的要求,在解题过程不写这一条件. 4.已知y +b 与x +a (a ,b 是常数)成正比例. 求证:y 是x 的一次函数.分析:由y +b 与x +a 成正比例,设立解析式,分析此解析式为x 的一次函数. 解:∵y +b 与x +a 成正比例 ∴可设y +b =k (x +a )(k ≠0) 整理,得y =kx +ka -b =kx +(ka -b ) ∵k ,a ,b 都是常数. ∴ka -b 也是常数. 又∵k ≠0∴y 是x 的一次函数.常见错误:整理得到y =kx +ka -b 时不会把ka -b 看作一个整式.说明:在叙述函数的,一定要说清楚谁是谁的什么名称函数,否则容易发生混淆现象.如本题中,y +b 是x +a 的正比例这个说法是正确的,同时,y 是x 的一次函数的说法也是正确的.八、板书设计。
北师大版八年级数学上册:4.3《一次函数的图象》教学设计2
北师大版八年级数学上册:4.3《一次函数的图象》教学设计2一. 教材分析《一次函数的图象》是北师大版八年级数学上册第4.3节的内容,本节课主要让学生掌握一次函数的图象特点,学会利用图象解决一些实际问题。
教材通过引入直线来表示函数关系,使学生对函数有更直观的认识。
学生通过观察、分析、归纳一次函数图象的性质,进一步理解函数与自变量、因变量之间的关系。
二. 学情分析八年级的学生已经学习了函数的概念、一次函数和正比例函数,对函数有一定的认识。
但学生在理解函数图象方面可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知基础,引导学生通过观察、实践、探究来加深对一次函数图象的理解。
三. 教学目标1.知识与技能:让学生掌握一次函数的图象特点,学会利用图象解决一些实际问题。
2.过程与方法:通过观察、分析、归纳一次函数图象的性质,培养学生的观察能力、分析能力及归纳能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生合作交流、积极探究的精神。
四. 教学重难点1.重点:一次函数的图象特点及性质。
2.难点:如何运用一次函数图象解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例引入一次函数图象,让学生感受到数学与生活的联系。
2.启发式教学法:引导学生观察、分析、归纳一次函数图象的性质,激发学生的思维。
3.合作学习法:学生进行小组讨论,培养学生的团队协作能力。
六. 教学准备1.准备一些实际问题,用于导入和巩固环节。
2.制作一次函数图象的PPT,用于展示和讲解。
3.准备一些练习题,用于课后巩固。
七. 教学过程1.导入(5分钟)利用生活中的实例,如身高与年龄的关系,引出一次函数图象的概念。
让学生观察身高与年龄的对应关系,体会一次函数图象的直观性。
2.呈现(10分钟)通过PPT展示一次函数图象,引导学生观察、分析一次函数图象的性质。
如:斜率、截距、图象的形状等。
同时,讲解一次函数图象与实际问题的联系。
2019年北师大版八年级上册数学教案:4.3一次函数的图象
在今天的课堂中,我们探讨了一次函数的图象,我发现学生们对这个概念的理解参差不齐。有些学生能够迅速抓住斜率和截距的概念,并能熟练地绘制一次函数的图象。然而,也有一部分学生在理解上存在困难,特别是在将实际问题抽象成一次函数模型时感到困惑。
我意识到,在讲授理论部分时,我应该更加注重从直观到抽象的过渡。通过更多的实际例子和图形展示,可以帮助学生更好地理解一次函数图象的几何意义。此外,我应该鼓励学生多动手操作,比如在小组讨论后,可以让每个小组的学生上来讲台展示他们的讨论成果和绘制的一次函数图象,这样可以增加他们的参与感和对知识的掌握。
2019年北师大版八年级上册数学教案:4.3一次函数的图象
一、教学内容
本节课选自2019年北师大版八年级上册数学教材第四章第三节,主要内容包括:
1.一次函数的定义及其图象特点;
2.一次函数图象的斜率和截距;
3.绘制一次函数图象的方法;
4.一次函数图象在坐标平面内的位置关系及其意义;
5.实际问题中一次函数图象的应用。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数图象的基本概念。一次函数图象是表示一次函数y=kx+b(k≠0,k、b为常数)在坐标平面内的几何图形,它是一条直线。这条直线可以反映变量之间的线性关系,是解决实际问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过一次函数图象来分析物品价格与数量之间的关系,以及如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数图象的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一次函数图象的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
北师大版数学八年级上册4.3一次函数的图像(第1课时)教学设计
4.导入新课:通过以上环节,自然地导入本节课的主题——一次函数的图像。
(二)讲授新知
在这一环节中,我将详细讲解一次函数的定义、图像特点及其增减性。
1.一次函数定义:讲解一次函数的一般形式y=kx+b(k≠0,k、b是常数),并解释k、b的含义。
4.培养学生运用描点法绘制一次函数图像的方法,培养学生数形结合的数学思想。
(三)情感态度与价值观
1.培养学生对数学的兴趣和爱好,激发学生的学习积极性,使学生树立学习数学的信心高学生对数学价值的认识。
3.通过一次函数图像的学习,培养学生勇于探索、善于发现的精神,增强学生的创新意识。
1.分组:将学生分成若干小组,确保每个小组成员在数学水平上具有一定的互补性。
2.讨论任务:让各小组讨论一次函数图像的绘制方法、增减性及其在实际问题中的应用。
3.交流分享:在各小组讨论的基础上,组织学生进行班级分享,互相学习、取长补短。
4.教师点评:对各小组的讨论成果进行点评,强调重点、难点,并解答学生在讨论过程中遇到的问题。
北师大版数学八年级上册4.3一次函数的图像(第1课时)教学设计
一、教学目标
(一)知识与技能
1.理解一次函数的定义,掌握一次函数的一般形式:y=kx+b(k≠0,k、b是常数),并能够识别实际问题中的一次函数关系。
2.能够通过描点法绘制一次函数的图像,了解一次函数图像的特点,即直线图形。
3.能够根据一次函数的图像,判断函数的增减性,理解当k>0时,函数图像呈现上升趋势;当k<0时,函数图像呈现下降趋势。
1.基础巩固题:
(1)请同学们回顾一次函数的定义,并用自己的话简要解释一次函数中k和b的含义。
北师大版数学八年级上册3《一次函数的图象》教学设计3
北师大版数学八年级上册3《一次函数的图象》教学设计3一. 教材分析《一次函数的图象》是北师大版数学八年级上册第三章的内容。
本节内容是在学生已经掌握了函数的概念、一次函数的定义和性质的基础上进行学习的。
通过本节内容的学习,使学生能够掌握一次函数的图象的特点,能够根据一次函数的图象判断一次函数的性质,为以后学习其他函数的图象打下基础。
二. 学情分析学生在学习本节内容之前,已经学习了函数的概念、一次函数的定义和性质,对函数有了初步的认识。
但是,对于一次函数的图象的特点,以及如何根据一次函数的图象判断一次函数的性质,可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生通过观察、思考、操作、交流等途径,自主探索一次函数的图象的特点,提高学生的动手操作能力和思维能力。
三. 教学目标1.知识与技能:使学生掌握一次函数的图象的特点,能够根据一次函数的图象判断一次函数的性质。
2.过程与方法:培养学生观察、思考、操作、交流的能力,提高学生的动手操作能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极向上的学习态度。
四. 教学重难点1.重点:一次函数的图象的特点,一次函数的图象与一次函数的性质之间的关系。
2.难点:如何引导学生通过观察、思考、操作、交流等途径,自主探索一次函数的图象的特点。
五. 教学方法1.引导发现法:教师引导学生通过观察、思考、操作、交流等途径,自主探索一次函数的图象的特点。
2.讲解法:教师对一次函数的图象的特点进行讲解,帮助学生理解和掌握。
3.实践操作法:学生通过动手操作,观察一次函数的图象,加深对一次函数图象特点的理解。
六. 教学准备1.教具:黑板、粉笔、多媒体设备。
2.学具:每人一份一次函数图象的素材,如直线、折线等。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾一次函数的定义和性质,为新课的学习做好铺垫。
呈现(10分钟)教师通过多媒体展示一次函数的图象,如y=2x+1,y=3x-2等,让学生观察并思考以下问题:1.这些图象有什么共同的特点?2.如何根据图象判断一次函数的性质?学生在观察和思考的基础上,总结出一次函数的图象是一条直线,且斜率k决定了直线的倾斜程度,截距b决定了直线与y轴的交点位置。
八年级数学上册第四章一次函数:一次函数的图象2一次函数的图象与性质说课稿新版北师大版
八年级数学上册说课稿新版北师大版:4.3.2 一次函数的图象与性质各位评委,老师大家好,今天我要说课内容是新课标人教版八年级上册《一次函数的图象和性质》从以下五个方面来说:教材分析教法分析学法分析程序设计评价说明教材分析:地位和作用本节教材是一次函数的图象和性质的第一课时,它是紧接一次函数的概念教学内容之后学习的。
从知识的掌握来看,它是对前面所学知识的深化和运用。
从对后继内容的学习来看,它为研究二次函数等较为复杂函数提供了研究的方向和方法.再有结合近年中考命题,一次函数往往是考察的重点和热点知识。
所以本节内容有着十分重要的地位教学目标:[认知目标]:1、理解直线y=kx+b与y=kx之间的位置关系;2、会利用两个合适的点画出一次函数的图象;3、掌握一次函数的性质.[能力目标]:(1)主要是培养学生的看图、识图.动手实践能力。
(2)通过对一次函数的图象和性质的探究,培养学生数形结合数学思想方法。
[情感目标]:通过对一次函数的图象和性质的自主探究,让学生获得亲自参与研究探索的情感体验,从而增强学习数学的热情。
[ 教学重点 ]一次函数的图象和性质。
[教学难点]一次函数的图象性质的发现.[教法分析]1. 数形结合:整节课贯穿数形结合方法由数点的坐标描点得到一次函数形状,由一次函数的图象形状观察分析得出性质规律,通过典型习题的练习加深对数形结合方法的应用。
2.由特殊到一般的方法:图象和性质的学习探究都是通过此方法。
3.类比法:由于本节课是在正比例函数图象性质之后学习的,通过类比的方式,由正比例函数图象性质类比出一次函数图象性质,解决了本节课重难点,进而总结正比例函数图象性质与一次函数图象性质这两者之间的关系。
4.使用多媒体课件应用于课堂,增强知识的直观性,增大课堂容量。
[学法分析]1、应用自主探究、互助合作的学习方法。
培养学生独立思考能力,自主探究的学习习惯以及同学间的合作精神。
一次函数图象采用动手操作方式,是学生主动学习的过程,经历画图象进而感悟它的形状与正比例函数图象异同,为后面发现规律作了准备,这样学生所获更多,印象更深。
4.3 一次函数的图象(第2课时) 八年级上册北师大版
解: 列表
描点
连线
y
12
10
8
x
... -1 0 ...
y=-6x ... 6 0 ...
y=-6x+5 ... 11 5 ...
6 4
2
-2 -1 O 1 2 3 x
探究新知
观察与比较:
比较上面两个函数图象的相同点与不同点.填出你的观
察结果并与同伴交流.
这两个函数的图象形状都 是一条直线,并且倾斜程度相同 .函 数y=-6x的图象经过原点,函数 y=-6x+5的图象与y轴交于点(0,5), 即它可以看作由直线y=-6x向 上 平 移 5 个单位长度得到.
-2
-3
y=-2x+1
探究新知 归纳小结
一次函数y=kx+b的图象也称为直线y=kx+b.
与x轴的交点 坐标
y=kx+b
y
(
-
b k
, 0)
(0, b)
O
x
与y轴的交点 坐标
由于两点确定一条直线,画一次函数图象时
我们只需描点(0,b)和点
b k
,
0
或
(1,k+b),连线即可.
探究新知 探究一 画出函数y=-6x与y=-6x+5的图象.
的两点,下列判断中,正确的是( D )
A.y1>y2 B. y1<y2
C.当x1<x2时,y1<y2 D.当x1<x2时,y1>y2
提示:反过来也成立:y越大,x就越小.
巩固练习
变式训练
1.在直线y=3x+6上,对于点A(x1,y1)和B(x2,y2)若x1>x2,
则y1 > y2.(填写大小关系)
4.3.1一次函数的图像教学设计2023-2024学年北师大版八年级数学上册
2.拓展建议
-学生可以利用网络资源,如教育网站、数学论坛等,查找一次函数图像的相关资料,拓宽知识面。
-学生可以阅读一些数学书籍,如数学故事集、数学游戏book,以提高对一次函数图像的理解和兴趣。
教学反思
本节课是关于一次函数图像的教学,我尽力让学生们理解和掌握一次函数图像的性质和特点,以及如何绘制和分析一次函数图像。在教学过程中,我注意到了一些问题和需要改进的地方。
首先,我意识到学生们对于一次函数图像的实际应用还不够理解。虽然我通过举例和实际问题来解释一次函数图像的意义,但学生们对于如何将一次函数图像应用于解决实际问题还不够清晰。因此,我计划在今后的教学中,更多地引入实际问题,让学生们亲手操作,体验一次函数图像在解决实际问题中的应用。
-学生可以参加数学竞赛或数学俱乐部,与其他对数学感兴趣的学生交流和分享一次函数图像的学习经验和心得。
-学生可以尝试解决一些与一次函数图像相关的实际问题,如数据分析、优化问题等,提高解决实际问题的能力。
教学评价与反馈
1.课堂表现:观察学生在课堂上的参与程度、提问回答、互动交流等情况,评价学生在课堂上的学习态度和积极性。
-总结:老师对本节课的主要内容和知识点进行总结,强调一次函数图像的重要性和应用。
-拓展思考:老师提出一些拓展问题,引导学生思考一次函数图像在其他领域的应用,激发学生的创新思维和探索精神。
总用时:40分钟
教学过程设计要注重创新和实际学情,通过导入环节激发学生的学习兴趣,通过讲授新课使学生理解和掌握一次函数图像的性质和特点,通过巩固练习巩固学生的理解,通过课堂提问促进学生的思考和互动,通过总结与拓展对学生的学习进行巩固和拓展。
八年级数学上册4.4.3一次函数的应用教案(新版)北师大版
课题:4.4.3一次函数的应用教学目标:1.提高学生的读图能力,解决与两个一次函数相关的图象信息题.2.进一步培养学生数形结合思想,以及分析、解决问题的能力,提高思维能力.3.通过小组合作学习,培养学生探究意识.教学重点与难点:重点:读懂图象,并从图象中获取已知条件解决问题.难点:同一坐标的两个函数的联系.课前准备:多媒体课件.教学过程:一、创设情境,引入新课课前小练(课件展示)一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)试求降价前y与x之间的关系?(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?处理方式:学生独立完成,教师巡视,了解学生对知识的掌握情况,同时关注:学生在练习中的反映的问题,有针对性的讲解.设计意图:通过与上一课时相似的问题,回顾旧知,导入新知学习,为进一步研究一次函数图象和性质的应用做好铺垫.二、小组合作,共同探索如图,l1反映了某公司产品的销售收入与销售量的关系,l2反映了该公司产品的销售量的关系,根据图象填空.①当销售量为2吨时,销售收入=_______元,销售成本=_____元;②当销售量为6吨时,销售收入=________元,销售成本=_____元;③当销售量等于______时,销售收入等于销售成本;④当销售量________时,该公司赢利(收入大于成本);当销售量_______时,该公亏损(收入小于成本);⑤l1对应的函数表达式是_______;L2对应的函数表达式是________________.处理方式:学生观察函数图象,先独立思考,再小组合作完成.教师利用动画展示解题过程,教师适时指导,培养学生对某个问题作出正确判断、合理决策的能力.师强调:当涉及两个函数问题时,要注意横纵轴对于每个函数的不同意义.1.横轴、纵轴表示的意义:横轴表示的是,纵轴表示的是.2.直线与坐标轴的交点表示的意义:⑴l1与坐标轴的交点坐标是,表示的意义是.⑵l2与坐标轴的交点坐标是,表示的意义是.解:(1)当销售量为2吨时,销售收入=2000元,销售成本为3000元(2)当销售量为6吨时,销售收入=6000元,销售成本=5000元;(3)当销售量等于4吨时,销售收入等于销售成本;(4)当销售量大于4号时,该公司赢利,当销售量小于4吨时,该公司亏损.(5)l1经过原点和(4,4000),设表达式为y=kx,把(4,4000)代入,得4000=4k,所以k=1000.所以l1的表达式为y=1000x,l 2经过点(0,2000)和(4,4000),设表达式为y=kx+b.根据题意,得b=2000 ①4k+b=4000 ②把①代入②,得4k+2000=4000,所以k=500所以l 2的表达式为y=500x+2000想一想上题中,l1对应的一次函数y=k1x+b1中,k1和b1实际意义各是什么?l1对应的一次函数y=k1x+b1中,k1和b1实际意义各是什么?处理方式:学生对应一次函数关系式观察函数图象,先独立思考,再小组合作完成.教师适时指导,培养学生对某个问题作出正确判断、合理决策的能力. 教师根据学生回答的结果适时纠错,并展示结果.k1的实际意义是:每销售1吨产品的销售收入,b1的实际意义是:未销售时,销售收入为0;k2的实际意义是:每销售1吨产品的销售成本,b2的实际意义是:未销售时,销售成本为2000元.设计意图:培养学生的识图能力和探究能力,调动学生学习的自主意识.利用该函数图象的特征解决这个问题.在此过程中渗透数形结合的思想方法,发展学生的数学应用能力.三、学以致用,解决问题(投影例题)例3:我边防局接到情报,近海外有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶,如下图:在下图中,l1,l2分别表示两船相对于海岸的距离S(海里)与追赶时间t(分)之间的关系.根据图象回答下列问题:(1)哪条线表示B 到海岸的距离与追赶时间之间的关系?(2)A 、B 哪个速度快? (3)15分内B 能否追上A ? (4)如果一直追下去,那么B 能否追上A ?(5)当A 逃到离海岸12海里的公海时,B 将无法对其进行检查.照此速度,B 能否在A 逃入公海前将其拦截?(6)l 1与l 2对应的两个一次函数y =k 1x +b 1与y =k 2x +b 2中,k 1,k 2的实际意义各是什么?可疑船只A 与快艇B 的速度各是多少?处理方式:学生先独立思考,然后在小组内交流合作.各组长巡视了解本组成员的意见,对于本组不会写与识图的学生实行“一帮一”互助,然后各派一名代表到黑板写出答案.教师观察小组内的合作交流情况,聆听学生的发言,适时给予点拨.每个组代表到黑板写出答案过程中,其他同学发现错误直接上来圈出并修改.解:(1)观察图象,得当0t =时,B 距海岸 0海里,即0S =,故1l 表示B 到海岸的距离与追赶时间之间的关系. 解:(2)从0增加到10时,l 2的纵坐标增加了2,而1l 的纵坐标增加了5,即10分内,A 行了2海里,B 行驶了5海里,所以B 的速度快.解:(3)延长1l l 2可以看出,当t =15时,1l 上对应点在l 2上对应点的下方,所以,15分时尚未追上A .l,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.解:(4)如图1l与l2交点P的纵坐标小于12,这说明在A逃入公海前,解:(5)从图中可以看出,1我边防快艇B能够追上A.解:(6)k1 表示的是快艇B的速度,k2表示的是可疑船只A的速度,可疑船只A的速度是0.2n mile/min,快艇B的速度是0.5n mile/min.设计意图:通过学生对问题串的展示、老师几个简单的提问、重音的强调使学生从视觉、听觉等多方位感知到直线与坐标轴交点的意义、两直线交点及表达式中k、b的实际意义、利用图象比较函数值的方法,使学生在教师的引导下逐步形成了良好的识图能力,进一步体会数与形的关系,建立良好的知识联系.随堂练习:小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为36 km/h,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km /h .(1)当小聪追上小慧时,他们是否已经过了“草甸”? (2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少km ?处理方式:教师点拨:当小聪追上小慧时,说明他们两个人的什么量是相同的?是否已经过了“草甸”该用什么量来表示?你会选择用哪种方式来解决?图象法?还是解析法?然后学生独立做题,小组之间纠错,教师展示结果.解:设经过t 时,小聪与小慧离“古刹”的路程分别为S 1、S 2,由题意得:S 1=36t , S 2=26t +10将这两个函数解析式画在同一个直角坐标系上,观察图象,得⑴两条直线S 1=36t ,S 2=26t +10的交点坐标为(1,36)这说明当小聪追上小慧时,S 1= S 2=36 km ,即离“古刹”36 km ,已超过35 km ,也就是说,他们已经过了“草甸”⑵当小聪到达“飞瀑”时,即S 1=45 km ,此时S 2=42.5 km . 所以小慧离“飞瀑”还有45-42.5=2.5(km ).设计意图:设计本题,主要了解学生对知识的掌握情况和对知识的应用能力,以便查缺补漏,使教师的教和学生的学更具有针对性.本练习设计注意了问题的开放性,发散了学生思维.在学生争先恐后的抢答中,将本节课的教学推向高潮.对同学的回答,教师要及时给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心.四、回顾课堂,盘点收获请同学们自我小结本节课所学的知识和方法,和大家一起分享吧!处理方式:留给学生充分的时间进行交流,让学生畅谈自己的收获.教师要注重对学生的引导、评价,教学生学会反思,学会总结;教师展示本节课的知识点.设计意图:引导学生自己小结运用一次函数解决实际问题的主要方法;让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结.五、快乐套餐,深化提高1.如右图,表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象,根据图象下列结论错误的是( )A .轮船的速度为20千米/时B .轮船比快艇先出发2小时C .快艇的速度为40千米/时D .快艇不能赶上轮船2.今年春运会上,甲、乙两名同学同时参加了一项短跑比赛,路程 s (米)与时间 t (秒)的关系如右图所示,那么: (1)这是一次 m 赛跑;(2)甲、乙两人中 先到达终点; (3)乙在这次赛跑中的速度为 . 3.观察甲、乙两图,解答下列问题:(1)填空:两图中的( )图比较符合传统寓言故事《龟免赛跑》中所描述的情节.(2)根据1中所填答案的图象填写下表:(3)根据1中所填答案的图象求:①龟免赛跑过程中的函数关系式(要注明各函数的自变量的取值范围); ②乌龟经过多长时间追上了免子,追及地距起点有多远的路程?处理方式:留给学生5~6分钟的时间独立做题,教师巡视,对于不甚明白知识点的学生给予帮助,同时批改完成同学的的检测题,及时收集具有代表性的错误,和好的解题方法.设计意图:练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心.六、布置作业,课堂延伸必做题:习题4.7 第1、2题;选做题:习题4.7 第3题;拓展题:地到乙地行驶过程的函数图象,两地相距80千米,请根据图象解决下列问题:⑴l1是行驶过程的函数图象,l2是行驶过程的函数图象.⑵哪一个人出发早?早多长时间?哪一个人早到达目的地?早多长时间?⑶求出两个人在途中行驶的速度是多少?⑷分别求出表示自行车和摩托车行驶过程的函数解析式,并求出自变量x的取值范围.板书设计:。
北师大版数学八年级上册3《一次函数的图象》教案3
北师大版数学八年级上册3《一次函数的图象》教案3一. 教材分析《一次函数的图象》是北师大版数学八年级上册第三章的内容。
本节课主要让学生了解一次函数的图象特点,学会如何绘制一次函数的图象,并能够分析一次函数图象与系数的关系。
通过本节课的学习,学生能够掌握一次函数图象的基本性质,为后续学习其他函数图象打下基础。
二. 学情分析学生在七年级已经学习了函数的概念和一次函数的性质,对函数有一定的认识。
但是,对于一次函数的图象,学生可能还比较陌生。
因此,在教学过程中,需要引导学生从实际问题中抽象出一次函数的图象,让学生通过观察、操作、思考,自主探索一次函数图象的特点。
三. 教学目标1.了解一次函数的图象特点,学会绘制一次函数的图象。
2.能够分析一次函数图象与系数的关系。
3.培养学生的观察能力、操作能力、思考能力。
四. 教学重难点1.一次函数的图象特点。
2.一次函数图象与系数的关系。
五. 教学方法采用问题驱动法、案例教学法、小组合作法等多种教学方法,引导学生从实际问题中抽象出一次函数的图象,让学生通过观察、操作、思考,自主探索一次函数图象的特点。
六. 教学准备1.PPT课件。
2.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出一次函数的图象。
例如:某商店进行打折活动,原价100元的商品打8折后,售价为80元。
引导学生思考,如何用数学语言描述这个问题。
2.呈现(10分钟)通过PPT课件,展示一次函数的图象。
让学生观察并描述一次函数图象的特点。
引导学生发现,一次函数图象是一条直线,且斜率为正。
3.操练(10分钟)让学生自主绘制一次函数的图象。
可以让学生分组进行,每组选择一个一次函数,根据函数的系数,绘制出函数的图象。
引导学生通过操作,加深对一次函数图象的理解。
4.巩固(10分钟)通过一些练习题,让学生巩固一次函数图象的知识。
可以设置一些选择题、填空题,让学生回答。
5.拓展(10分钟)引导学生思考,一次函数图象与系数之间的关系。
4.3一次函数的图象与性质(教案)北师大版数学八年级上册
环节2 探究新知1.画出下面正比例函数y=2x+1的图象.列表描点连线探究一次函数的性质。
2.在同一直角坐标系中画出一次函数y=2x+3、y=2x3、y=2x、y=2x2、y=2x+5的图象,探究一次函数的性质。
1.小组合作 1.一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点,再过这两点画直线就可以了。
2.一次函数y=kx+b 的图象一定过两个点,它们坐标分别是(0,b)(kb,0)3.k>0,图象过第一、三象限;k<0,图象过第二、四象限;b>0,图象过y轴正半轴;b<0,图象过y轴负半轴.一次函数y=kx+b的图象经过点(0,b).当k >0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.4.一次函数y=kx+b它可看作是由直线y=kx平移|b|个单位长度得到,当b>0时,向上平移,当b<0时,向下平移。
1=K2时,y1∥y2预设:部分学生不能够正确的讨论出来。
补救:学生解释,老师补充。
环节3 当堂练习1.函数y=0.8x6中,y的值随着x值的增大而1.学生独立完成。
2.小组交流讨论1.展示学生实践结果。
预设:部分学生在做的过程中遇到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年八年级数学上册 4.3 一次函数的图象教案(新版)北师大
版
4.3.一次函数的图象(一)
一、教学目标
1、理解函数图象的概念。
2、经历作图过程,初步了解作函数图象的一般步骤。
3、理解一次函数的代数表达式与图象之间的对应关系。
4、能较熟练作出一次函数的图象。
二、能力目标
1、已知解析式作函数的图象,培养学生数形结合的意识和能力。
2、在探究活动中发展学生的合作意识和能力。
三、情感目标
1、经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力。
2、加强新旧知识的联系,促进学生新的认知结构的建构。
四、教学重点
1、能熟练地作出一次函数的图象。
2、归纳作函数图象的一般步骤。
3、理解一次函数的代数表达式与图象之间的对应关系。
五、教学过程
1、新课导入
上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x与y的函数关系式,本节课我们研究一下一次函数的图象及性质。
2、讲授新课
(1)函数图象的概念
把一个函数的自变量x与对应的因变量y的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
假设在代数表达式y=2x中,自变量x取1时,对应的因变量y=2,则我们可在直角坐标系内描出表示(1,2)的点,再给x的另一个值,对应又一个y,又可知道直角坐标系内描出另一个点,所有这些点组成的图形叫该函数y=2x的图象,由此看来,函数图象是满足函数表达式的所有点的集合。
(2)作一次函数的图象
例1:作出一次函数y=2x+1的图象
描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。
连线:把这些点依次连接起来,得到y=2x+1的图象(如图6-4),它是一条直线。
小结:从刚才作图的情况来总结一下作一次函数图象有哪些步骤:(1)列表;(2)描点;(3)连线。
做一做
(1)作出一次函数y=-2x+5的图象,
(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5。
描点:以表中各组对应值作为点的坐标,在直角坐标第内描出相应的点。
连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线。
图象如下:
在图象上找点A (3,-1)B (4,-3),当x=3时,y=-2×3+5=-1;当x=4时,y=-2×4+5=-3。
(3,-1),(4,-3)满足关系式y=-2x+5。
3、议一议
(1)满足关系式y=-2x+5的x 、y 所对应的点(x,y )都在一次函数y=-2x+5的图象上吗? (2)一次函数y=-2x+5的图象上的点(x,y )都满足关系式y=-2x+5吗? (3)一次函数y=kx+b 的图象有什么特点? 请大家分组讨论,然后回答。
(1)满足关系式y=-2x+5的x ,y 所对应的点(x ,y )都在一次函数y=-2x+5的图象上。
(2)一次函数y=-2x+5的图象上的点(x,y )都满足关系式y=-2x+5。
由此看来,满足函数关系式y=-2x+5的x,y 所对应的点(x,y )都在一次函数y=-2x+5的图象上;反过来,一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5。
所以,一次函数的代数表达式与图象是一一对应的,即满足一次函数的代数表达式的点在图象上,图象上的每一点的横坐标x ,纵坐标y 都满足一次函数的代数表达式。
小结:一次函数的图象是一条直线,由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y=kx+b 的图象也称为直线y-kx+b 。
4、课堂练习 分别作出一次函数y=
3
1
x 与y=-3x+9的图象。
六、课后小结
1、函数图象的概念。
2、作一次函数的步骤。
3、明确一次函数的图象是一条直线,因此在作图时,不需要列表,只要确定两点就可以了。
七、课后作业 P 163习题6.3 教后感:经历作图过程,初步了解作函数图象的一般步骤。
归纳总结作函数图象的一般步骤,发展学生的总结概括能力,培养学生数形结合的意识和能力。
在探究活动中发展学生的合作意识和能力。
§4.3.一次函数的图象(二) 一、教学目标
1、了解正比例函数y=kx 的图象的特点。
2、会作正比例函数的图象。
3、理解一次函数及其图象的有关性质。
4、能熟练地作出一次函数的图象。
二、能力目标
1、进一步培养学生数形结合的意识和能力。
2、通过议一议,培养学生的探索精神和合作交流意识。
三、情感目标
让学生全身心地投入教学活动中,能积极与同伴合作交流,并能进行探索的活动,发展实践能力与创新精神。
四、教学重点
1、正比例函数的图象的特点。
2、一次函数的图象的性质。
五、教学过程 1、新课导入
上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。
经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。
本节课我们进一步来研究一次函数的图象的其他性质。
2、讲授新课
(1)首先我们来研究一次函数的特例——正比例函数有关性质。
请大家在同一坐标系内作出正比例函数y=
2
1
x ,y=x ,y=3x ,y=-2x 的图象。
3、议一议
(1)正比例函数y=kx 的图象有什么特点?(都经过原点) (2)你作正比例函数y=kx 的图象时描了几个点?(至少两点) (3)直线y=
2
1
x ,y=x ,y=3x 中,哪一个与x 轴正方向所成的锐角最大?哪一与x 轴正方向所成的锐角最小?
4、小结:正比例函数的图象有以下特点: (1)正比例函数的图象都经过坐标原点。
(2)作正比例函数y=kx 的图象时,除原点外,还需找一点,一般找(1,k )点。
(3)在正比例函数y=kx 图象中,当k>0时,k 的值越大,函数图象与x 轴正方向所成的锐角越大。
(4)在正比例函数y=kx 的图象中,当k>0时,y 的值随x 值的增大而增大;当k<0时,y 的值随x 值的增大而减小。
5、做一做
在同一直角坐标系内作出一次函数y=2x+6,y=-x,y=-x+6,y=5x 的图象。
一次函数y=kx+b 的图象的特点:分析:在函数y=2x+6中,k>0,y 的值随x 值的增大而增大;在函数y=-x+6中,y 的值随x 值的增大而减小。
由上可知,一次函数y=kx+b 中,y 的值随x 的变化而变化的情况跟正比例函数的图象的性质相同。
对照正比例函数图象的性质,可知一次函数的图象不过原点,但是和两 个坐标轴相交。
在作一次函数的图象时,也需要描两个点。
一般选取(0,b ),(-k
b
,0)比较简单。
6、想一想
(1)x 从0开始逐渐增大时,y=2x+6和y=5x 哪一个值先达到20?这说明了什么?(y=5x 的函数值先达到20,这说明随着x 的增加,y=5x 的函数值比y=2x+6的函数值增加得快) (2)直线y=-x 与y=-x+6的位置关系如何?(平行,一次函数k 相同就平行) (3)直线y=2x+6与y=-x+6的位置关系如何?(相交) 7、课堂练习
1、下列一次函数中,y 的值随x 值的增大而增大的是( ) A 、y=-5x+3 B 、y=-x-7 C 、y=x 3-5 D 、y=-x 7+4
2、下列一次函数中,y 的值随x 值的增大而减小的是( ) A 、y=
3
2
x-8 B 、y=-x+3 C 、y=2x+5 D 、y=7x-6 六、课后小结
1、正比例函数y=kx 的图象的特点。
2、一次函数y=kx+b 的图象的特点。
七、作业
P 165习题6.4
教后感:通过议一议,培养学生的探索精神和合作交流意识。
让学生全身心地投入教学活动中,能积极与同伴合作交流,并能进行探索的活动,发展实践能力与创新精神。