梯度功能材料
梯度功能材料

31
激光熔覆
• 把材料A放到基底B表面上,用激光将其与B基体中 表面薄层一起熔化,在B表面形成B合金化的A层。 • 重复操作,在B表面产生B含量逐渐减少的梯度。 • 梯度变化可通过控制初始A层的数量、厚度及熔区深 度来获得。
激光熔覆将材料A合金化到材料B制备FGM示意图
32
梯度功能材料的应用
33
• 功能梯度材料作为一个规范化正式概念,于1984年 由日本国立宇航实差达到1000K以上, 普通的金属材料难以满足这种苛刻的使用环境。
12
• 1987年,日本平井敏雄、新野正之和渡边龙三人提出 使金属/陶瓷复合材料的组分、结构和性能呈连续变 化的热防护梯度功能材料的概念。 • 1990年,日本召开第一届梯度功能材料国际研讨会。
自蔓延高温合成
自蔓延合成材料
28
• 燃烧合成FGM中,整体的宏观梯度通常被保留在 样品中,局部发现在FGM内部存在有限的物质传 输,这种传输使初始存在于反应物粉末压块中的 较陡峭的成分分布在反应后被较平缓的梯度所代 替。 • 日本采用连续成型的电磁加压自蔓延技术合成 TiB2/Cu、TiC/Ni等梯度功能材料。
17
• 金属-陶瓷构成的热应力缓和梯度功能材料,对高 温侧壁采用耐热性好的陶瓷材料,低温侧壁使用 导热和强度好的金属材料。
材料从陶瓷过渡到金属的过程中,耐热性逐渐降低,机 械强度逐渐升高。 热应力在材料两端均很小,在材料中部过渡区达到峰值 (比突变界面的应力峰值小得多),
具有缓和热应力的功能。
飞机的左翼上有两条清晰的裂纹
35
• 按照基体/陶瓷比率设计具有梯度的金属基/碳基 复合结构可解决上述问题。
设计梯度热防护功能材料
36
• 日本开发了为小动力火箭燃烧器和热遮蔽材料用的 梯 度 功 能 材 料 , 目 前 已 研 制 出 能 耐 1700℃ 的 ZrO2/Ni梯度功能材料,用作马赫数大于20的并可 重复使用的航天飞机机身材料。
功能梯度材料

功能梯度材料功能梯度材料(FGM)是一种具有逐渐变化化学成分或结构的材料,其性能在空间上呈现出递增或递减的特点。
这种材料在工程领域中具有广泛的应用,可以有效地解决材料之间的界面问题,提高材料的性能和稳定性。
本文将介绍功能梯度材料的基本概念、制备方法和应用领域。
功能梯度材料的基本概念是指材料的成分或结构在空间上呈现出逐渐变化的特点。
这种逐渐变化可以是化学成分的递增或递减,也可以是结构特征的递增或递减。
通过这种逐渐变化,功能梯度材料可以在不同位置具有不同的性能,从而满足复杂工程环境的需求。
功能梯度材料的制备方法主要包括激光熔覆、沉积成形、化学气相沉积等技术。
其中,激光熔覆是一种常用的制备方法,通过控制激光熔覆过程中的参数,可以实现材料成分和结构的逐渐变化。
沉积成形技术则是利用3D打印等技术,将不同材料逐渐沉积在一起,形成功能梯度结构。
化学气相沉积则是通过控制反应条件和沉积速率,实现材料成分的逐渐变化。
这些制备方法可以灵活地调控功能梯度材料的性能和结构,满足不同工程应用的需求。
功能梯度材料在工程领域中具有广泛的应用。
例如,在航空航天领域,功能梯度材料可以用于制造航天器的热防护结构,提高其耐热性能和抗氧化性能。
在机械制造领域,功能梯度材料可以用于制造高强度、耐磨损的零部件,提高机械设备的使用寿命和稳定性。
在电子器件领域,功能梯度材料可以用于制造高效能、高稳定性的电子元件,提高电子设备的性能和可靠性。
这些应用领域都充分展示了功能梯度材料在工程领域中的重要作用。
总的来说,功能梯度材料是一种具有逐渐变化化学成分或结构的材料,其性能在空间上呈现出递增或递减的特点。
通过灵活的制备方法和广泛的应用领域,功能梯度材料可以有效地解决工程领域中的复杂问题,提高材料的性能和稳定性。
相信随着科学技术的不断进步,功能梯度材料将在更多领域展现出其独特的优势,为人类社会的发展做出更大的贡献。
功能梯度材料组份

功能梯度材料组份功能梯度材料(Functionally Graded Materials,简称FGMs)是一类具有不同成分和性质的材料,其成分和性质随着空间位置的改变而逐渐变化。
这种材料在近年来得到了广泛的研究和应用,其独特的特性使其在多个领域有着重要的应用前景。
一、功能梯度材料的组份功能梯度材料的组份包括两个或多个不同的材料,这些材料在空间分布上呈现出一定的规律。
常见的功能梯度材料的组份有以下几种:1. 金属-陶瓷组份:金属和陶瓷是功能梯度材料中常见的组份。
金属具有良好的导电性和导热性,而陶瓷具有优异的抗磨损性和耐高温性。
将金属和陶瓷组合在一起,可以制造出具有导热性和抗磨损性的材料,广泛应用于航空航天、汽车制造等领域。
2. 陶瓷-陶瓷组份:陶瓷材料具有优异的绝缘性能和耐腐蚀性能,但其韧性较差。
通过将不同种类的陶瓷材料组合在一起,可以实现材料性能的优化。
例如,将高韧性的陶瓷材料与高强度的陶瓷材料组合,可以制造出具有较好韧性和强度的材料,被广泛应用于医疗领域。
3. 金属-高分子材料组份:金属和高分子材料具有不同的性质,通过将它们组合在一起,可以制造出具有金属的导电性和高分子材料的机械性能的材料。
这种材料在电子领域有着重要的应用,如柔性电子器件的制备。
4. 陶瓷-高分子材料组份:陶瓷和高分子材料组合在一起,可以实现材料性能的多样化。
陶瓷具有优异的耐磨损性和耐高温性,而高分子材料具有良好的可塑性和韧性。
将它们组合在一起,可以制造出具有耐磨损性和可塑性的材料,被广泛应用于汽车制造、航空航天等领域。
5. 金属-陶瓷-高分子材料组份:将金属、陶瓷和高分子材料三者组合在一起,可以实现材料性能的多样化。
这种材料在医疗领域有着广泛的应用,如人工关节等。
二、功能梯度材料的应用功能梯度材料由于其独特的组份和性质分布,被广泛应用于各个领域。
以下是功能梯度材料的一些应用示例:1. 高温结构材料:功能梯度材料在高温环境下具有良好的耐热性能和机械性能,被广泛应用于航空航天、能源等领域。
梯度功能材料

梯度功能材料梯度功能材料是指具有渐变性质的功能材料,其物理、化学、结构等性能在空间上呈现出渐变变化的特点。
梯度功能材料是近年来发展起来的一种新型材料,它具有各种优异的性能,可以在许多领域发挥重要作用。
首先,梯度功能材料在力学性能方面具有显著的优势。
由于其物理结构和化学成分在空间上的渐变,梯度功能材料可以实现从硬到软、从脆到韧的过渡。
这对于一些领域,如材料设计、结构工程等非常有意义。
例如,在航天航空领域中,梯度功能材料可以用于制造轻巧但又具有很高抗压、抗弯性能的航天器件。
其次,梯度功能材料在热传导方面也具有独特的优势。
相对于传统材料,梯度功能材料可以实现热导率的逐渐变化。
这对于一些需要控制热传导的应用非常重要。
举个例子,梯度功能材料可以应用于热电子学器件中,以实现热管理和能量转换的最优化。
此外,梯度功能材料在生物医学领域也有广泛的应用。
例如,在组织工程和再生医学中,梯度功能材料可以模拟人体组织的力学性能和结构特点,从而更好地促进生物材料与人体组织的相容性和生物交互性。
此外,梯度功能材料还可以用于医学影像学领域,通过改变材料的渐变特性,实现对特定组织的显影效果。
最后,梯度功能材料还具有其他许多应用潜力。
例如,在能源领域,梯度功能材料可以用于提高储能设备的性能,如电池和超级电容器。
在环境领域,梯度功能材料可以用于制造高效的吸附材料,以去除有害气体和废水中的污染物等。
总而言之,梯度功能材料的出现为各领域的科研和工程应用带来了许多机会。
它的独特性能可以被广泛地应用于力学、热传导、生物医学、能源、环境等领域,为材料科学和工程技术的发展提供了新的思路和方法。
随着研究的深入和进一步的应用开发,相信梯度功能材料将发挥更加巨大的作用。
功能梯度材料

功能梯度材料功能梯度材料(Functionally Graded Materials,FGMs)是一种独特的组织结构,具有不同材料性能的连续变化。
这种材料可以根据需求在不同区域具备不同的性能,具有广泛的应用潜力。
功能梯度材料的核心思想是利用不同材料的优势,通过逐渐过渡的方式将它们结合起来。
这样,在材料内部形成了一种材料性能随位置变化的梯度。
一般情况下,FGMs通过改变材料成分、晶格结构或孔隙分布来实现性能梯度的变化。
功能梯度材料的主要优势之一是优化材料的性能。
由于不同区域的性能可以根据需求进行调节,所以功能梯度材料可以在同一件材料中实现多种性能要求。
例如,可以在一个功能梯度材料中将刚性材料和韧性材料结合起来,以提高整体的强度和韧性。
另一个优势是优化材料的适应性和可靠性。
功能梯度材料的性能梯度可以使材料更好地适应不同环境的要求。
例如,可以在外部表面附近使用耐腐蚀材料,而在内部使用高强度材料。
这样可以增强材料的耐久性和可靠性。
功能梯度材料还具有优化材料的权衡性能的能力。
例如,对于某些应用,需要同时具备高温耐久性、热导率和机械性能。
通过在材料内部形成性能梯度,可以在不同区域平衡这些性能要求,达到最佳的综合性能。
此外,功能梯度材料还可以实现一些特殊功能。
例如,通过调整电子、热子、声子或离子的传输特性,可以实现功能梯度材料在导电、绝缘、热传导或声学传导方面的特殊性能。
这为多种应用提供了新的可能性,如光电子器件、传感器和能量转换器件等。
尽管功能梯度材料具有广泛的应用潜力,但其设计和制备仍然面临挑战。
目前,多数功能梯度材料的制备方法仍然较为复杂和昂贵,限制了其在大规模应用中的应用。
同时,材料性能梯度的设计和优化也需要更深入的理论和实验研究。
综上所述,功能梯度材料是一种具有多种优势和潜力的材料。
它可以实现性能的优化、适应性和可靠性的提高,同时提供了平衡和特殊功能的能力。
随着制备技术和理论研究的不断发展,功能梯度材料将在诸多领域中得到更广泛的应用。
8.梯度功能材料

三、梯度功能材料的研究方法 材料合成
7. 电沉积法:低温下制备FGM的化学方法。 利用电镀的原理,将所选材料的悬浮液置于两电 极间的外场中,通过注入另一相的悬浮液使之混合, 并通过控制镀液流速、电流密度或粒子浓度得到 FGM膜或材料.
电镀—在电场的作用下,在电解质溶液(镀液)中由阳极和 阴极构成回路,使溶液中的金属离子沉积到阴极镀件表面上 的过程。
性评价三部分组成。
21
三、梯度功能材料的研究方法 材料设计
FGM的设计:根据实际使用要求,对材料的组成和结
构梯度分布进行设计。
FGM设计主要构成要素:
1)确定结构形状,热力学边界条件和成分分布函数;
2)确定各种物性数据和复合材料热物性参数模型;
3)采用适当的数学—力学计算方法, 计算FGM的应
6
一、梯度功能材料的介绍
如果将陶瓷涂敷在耐高温金属的表面制成的复合
材料。
——存在明显的界面, 材料的热膨胀系数、导热
率等性能发生突变。两侧的温差过大,界面处 产生很大的热应力,导致深层裂缝,剥落,使材料 失效。 梯度功能材料发展
7
一、梯度功能材料的介绍
1984 年,日本学者首先提出了FGM 的概 念,其设计思想:
非晶态合金的结构特点
(1)结构长程无序(2)短程有序(3)结构成分均匀性(4) 结 构处于热力学上的非平衡态, 总有进一步转变为稳定晶 态的倾向。
2
主要内容
梯度功能材料的介绍 梯度功能材料的特点及分类 梯度功能材料的研究方法 梯度功能材料的应用
3
一、梯度功能材料的介绍
梯度功能材料( Functionally Graded Materials ,简称FGM)的提出是由于航空航天
梯度功能材料

报告人:张倩 专 业:动力工程及工程热物理
2015-10-28
目 录
1 2 3 4 概述 梯度折射率材料
热防护梯度功能材料
梯度功能材料的应用
概述
梯度功能材料(functionally gradient materials,缩写 FGM)是两种或多种材料复合成组分和结构呈连续 梯度变化的一种新型复合材料,是应现代航天航空 工业等高技术领域的需要,为满足在极限环境下能 反复地正常工作而发展起来的一种新型功能材料。 随着梯度功能材料的研究和发展,其应用不再局 限于宇航工业,已经扩展到核能源、电子材料、光 学工程、化学工业和生物医学工程等领域。
概述
梯度功能材料的主要特征:
1.材料的组分和结构呈连续梯度变化 2.材料内部没有明显的界面 3.材料的性质也相应呈连续梯度变化
材料组合方式:
1.金属/陶瓷 2.金属/非金属 3.陶瓷/陶瓷 4.陶瓷/非金属 5.非金属/塑料
梯度折射率材料
梯度折射率材料是一种非匀质材料,它的组分和 结构在材料内部按一定规律连续变化,从而使折射 率也相应地持续变化。 无机材料(如:玻璃梯折材料) 梯度折射率材料
热防护梯度功能材料
热防护梯度功能材料的设计
使金属和陶瓷的组分和结构呈连续变化,从而物性 参数也呈连续变化的复合材料。
热防护梯度功能材料
过程:
热力学边界条件
热防护梯度功能材料的设计
选择材料组合体系、制备方法
材料体系物理参数
温度分布模拟和热应力模拟
结果提交材料合成部门
热防护梯度功能材料
热防护梯度功能材料的种类
梯度功能材料的应用
2.作梯度折射光学材料
梯度折射率透镜
大大减小组件总数 和非球面组件总数、 简化结构
梯度功能材料

注意: 梯度材料与合金材料、复合材料的区别
材料 设计思想 组织结构 结合方式 微观组织 宏观组织 功能 混杂材料 复合材料 梯度材料
分子、原子级水 组分优点的复 特殊功能为目 平合金化 合 标 0.1nm-0.1m 0.1m-1m 10nm-10mm 分子间力/物 理键/化学键 均质/非均质 非均质 梯度化 化学键、物理键 分子间力 均质/非均质 均质 一致 非均质 均质 一致
• 下列梯度功能材料是什么组合方式?
枪
萤 火 一 号
柴油机的活塞头
• 2)组成变化上分: • (1)梯度功能整体型(从一侧到另一侧组成梯度 变化) • (2)梯度功能涂履型(涂层的组成梯度变化) • (3)梯度功能连接型(粘接接缝的组成梯度变化) • 3)功能上分: • (1)热防护梯度功能材料 • (2)折射率梯度 • 时间很早很早~~~~~~~~~不解释
不用或没用好的后果:很严重
哥 伦 比 亚 号
梯度功能材料的特点与分类
• 梯度功能材料的特点 • 1)组分、结构和性能均呈连续梯度变化 。 • 2)内部无明显的界面。
• 梯度功能材料分类 • 1) 组合方式上分: • 金属/金属 • 金属/陶瓷、 • 金属/非金属、 • 陶瓷/陶瓷、 • 陶瓷/非金属 • 非金属/塑料
通信二班
刘文龙
1004220227
序:
梯度功能材料: 是两种或多种材料复合成组分和结构呈梯 变化的一种新型复合材料;它要求功能、 性能随内部位置的变化而变化,实现功能 梯度的材料。
实际应用:
• 厨房用刀
匕首
航天:
可怜的萤火一号
12.1 梯度功能材料及其特点
梯度功能材料的提出
功能梯度材料(Functionally Graded Materials, 以下简称FGM)的概念是由日本材料学家新野 正之、平井敏雄和渡边龙三等于1987(pay attention!!!)年提出。FGM就是为了适应新材料 在高技术领域的需要,满足在极限温度环境(超高 温、大温度落差)下不断反复正常工作而开发的 一种新型复合材料。如图所示,在金属底层与热 障工作层之间引入成分过渡层,消除涂层中的宏 观界面,合成一种非均一的复合材料,其机械、 物理、化学特性是连续变化的,没有突出,缓和 了涂层中的热应力等,成为可以应用于高温环境 的新一代功能材料。
梯度功能材料

梯度功能材料梯度功能材料State:1. 此⽂在是从中英⽂⽂献中的“简单总结”,没列出相应的参考⽂献2. 是为允诺⼀位朋友⽽做,也可以算作⾃⼰的读书⼩笔记,仅此⽽已背景梯度功能材料( Functionally Gradient Materials ,简称FGM)是由于航空航天技术的发展⽽提出的新概念。
航天飞机在⼤⽓层中长时间飞⾏,机头尖端和发动机燃烧室内壁的温度⾼达2100 K 以上,因此材料必须承受很⼤的⾼温以及内外的温度差别,服役的环境很恶劣。
1984 年,⽇本学者Masyuhi NINO,Toshio HIRA,和Ryuzo WATANBE等⼈⾸先提出了FGM 的概念,其设计思想⼀是采⽤耐热性及隔热性的陶瓷材料以适应⼏千度⾼温⽓体的环境,⼆是采⽤热传导和机械强度⾼的⾦属材料,通过控制材料的组成、组织和显微⽓孔率,使之沿厚度⽅向连续变化,即可得到陶瓷⾦属的FGM。
所谓梯度功能材料(FGM), 即在材料制备过程中,使组成、结构及孔隙率等要素在材料的某个⽅向上连续变化或阶梯变化, 从⽽使材料的性质和功能也呈连续变化或阶梯变化的⼀种⾮均质复合材料。
功能梯度材料的研究开发最早始于1987 年⽇本科学技术厅的⼀项“关于开发缓和热应⼒的功能梯度材料的基础技术研究”计划。
该项⽬于1992 年完成,随后将⼯作重⼼转向模拟件的试制及其在超⾼温、⾼温度梯度落差及⾼温燃⽓⾼速冲刷等条件下的实际性能测试评价上,并于1993 年开始研究具有梯度结构的能量转换材料。
第⼀届国际FGM 研讨会于1990 年在⽇本仙台召开,之后每两年举办⼀届。
中国于2002 年在北京主办过第七届FGM国际研讨会。
特点功能梯度材料的关键特点是控制界⾯的成分和组织连续变化,使材料的热应⼒⼤为缓和。
从材料的组成⽅式看,功能梯度材料可分为⾦属/陶瓷、⾦属/⾮⾦属、陶瓷/陶瓷、陶瓷/⾮⾦属和⾮⾦属/聚合物等多种结合⽅式。
从组成变化可划分为:功能梯度整体型(组成从⼀侧到另⼀侧呈梯度渐变的结构材料),功能梯度涂覆型(在基体材料上形成组成渐变的涂层)和功能梯度连接型(粘结两个基体间的接缝呈梯度变化)。
功能梯度材料

功能梯度材料功能梯度材料(FGM)是一种具有梯度性质的复合材料,其性能在材料内部呈现出逐渐变化的特点。
这种材料的设计灵感来源于自然界中许多生物体的结构,比如贝壳、骨骼等,它们都具有类似的梯度性质,能够有效地抵抗外部环境的影响,具有很高的韧性和强度。
功能梯度材料的设计理念是将不同性能的材料通过一定的方式结合起来,使得整体材料的性能在空间上呈现出梯度变化。
这种设计能够充分发挥各种材料的优势,同时弥补它们的缺陷,从而实现材料性能的最优化。
在实际应用中,功能梯度材料已经被广泛应用于航空航天、汽车制造、医疗器械等领域,取得了显著的效果。
功能梯度材料的制备方法多种多样,包括堆砌法、激光熔覆法、沉积法等。
其中,堆砌法是一种比较常见的制备方法,它通过层层堆砌不同性能的材料,然后进行烧结或热压,最终形成具有梯度性质的复合材料。
激光熔覆法则是利用激光熔化金属粉末,将不同成分的金属粉末逐层熔覆在基底上,形成梯度材料。
沉积法则是通过化学气相沉积、物理气相沉积等方法,在基底上沉积不同性能的材料,形成梯度材料。
功能梯度材料的应用前景广阔,它可以为工程领域提供更多的可能性。
比如,在航空航天领域,功能梯度材料可以用于制造航天器的热防护层,提高其对高温和高速气流的抵抗能力;在汽车制造领域,功能梯度材料可以用于制造车身结构件,提高汽车的安全性和舒适性;在医疗器械领域,功能梯度材料可以用于制造人工关节和骨科植入物,提高其与人体组织的相容性和稳定性。
总的来说,功能梯度材料是一种具有巨大潜力的新型材料,它将为人类社会的发展带来新的机遇和挑战。
随着科学技术的不断进步,功能梯度材料必将在更多领域展现出其独特的价值和魅力,为人类社会的可持续发展做出更大的贡献。
梯度功能材料技术介绍

THANKS
感谢观看
应用领域
01
02
03
航空航天
梯度功能材料在航空航天 领域中广泛应用于制造高 性能的航空器和航天器。
汽车工业
在汽车工业中,梯度功能 材料被用于制造高性能的 汽车零部件,提高汽车的 安全性和可靠性。
医疗器械
在医疗器械领域,梯度功 能材料被用于制造高性能 的医疗设备和器械,提高 医疗效果和安全性。
03
航天器结构
在航天器中,梯度功能材料用于制造 结构件,如卫星天线和太阳能电池板 ,以抵抗空间环境中的极端条件。
在汽车工业领域的应用
发动机部件
梯度功能材料用于制造汽车发动机部件,如气缸套和活塞环,以提高发动机效率和耐久性。
轻量化设计
在汽车设计中,梯度功能材料用于制造轻量化零部件,如刹车盘和轮毂,以提高燃油经济性和车辆性 能。
梯度功能材料在力学、热学、光学和生物医学等领域展现出优异的性能,为解决传统材料面临的挑战 提供了新的解决方案。
通过先进的制备技术和结构设计,实现了梯度功能材料性能的可调控性,为个性化需求提供了广阔的应 用前景。
梯度功能材料在能源、环保和可持续发展等领域具有巨大的潜力,为推动社会进步和经济发展做出了重 要贡献。
其他制备方法
• 其他制备方法包括电泳沉积法、喷涂法、溶胶-凝胶 法等。这些方法在梯度功能材料的制备中也有一定 的应用,但相对于上述三种方法而言,其应用范围 和效果有限。
04
梯度功能材料的应用案例
在航空航天领域的应用
航空发动机叶片
梯度功能材料用于制造航空发动机叶 片,能够承受极高的温度和压力,提 高发动机性能和效率。
气相沉积法
气相沉积法是一种利用气态物质在基材上沉积成膜的制备方 法。在梯度功能材料的制备中,可以通过调节沉积过程中的 各种参数,如温度、压力、反应气体流量等,使不同材料在 不同位置以不同的速率沉积,从而形成梯度结构。
功能材料 梯度功能材料

神州号
杨利为
聂海胜、 聂海胜、费俊龙
背景: 背景:航空方面
每秒3.2公里,10倍音速 每秒3.2公里,10倍音速 3.2公里
W:T=3680K, 19.3; MO:T=2890K,10.2
设计
氧化物陶瓷熔点均在2000K以上, 氧化物陶瓷熔点均在2000K以上,密 2000K以上 度:Al2O3=4.0;TiB2=4.5;SiC= Al2O3=4.0;TiB2=4.5;SiC= 3.12等 3.12等 虚线-压应力区; 虚线-压应力区;0-无应力区 比较发现: 比较发现: 成分突变会导致应力集中( 1. 成分突变会导致应力集中(解决 不好,哥伦比亚号坠毁,见图) 不好,哥伦比亚号坠毁,见图)
功能梯度材料
一、主要内容: 1.功能梯度材料概述 2.功能梯度材料制备 3.功能梯度材料应用 二、要求: 1.了解功能梯度材料的产生背景及其定义; 2.了解功能梯度材料的特点及其分类; 3.了解功能梯度材料的常用制备工艺; 4.功能梯度材料的应用重点和难点: 三、难点:功能梯度材料的制备原理
功能梯度材料概述 功能梯度材料 (Functionally Graded Materials,以下简称 以下简称FGM) 以下简称 ) 的概念是由日本材料学家 新野正之、 新野正之、平井敏雄和渡 边龙三等于1987年提出。 年提出。 边龙三等于 年提出 FGM就是为了适应新材料 就是为了适应新材料 在高技术领域的需要,满足 在高技术领域的需要 满足 在极 限温度环境(超高温、大温度落差 下不断反复正常工作而开发 限温度环境 超高温、大温度落差)下不断反复正常工作而开发 超高温 的一种新型复合材料。如图所示, 的一种新型复合材料。如图所示,在金属底层与热障工作层之 间引入成分过渡层,消除涂层中的宏观界面, 间引入成分过渡层,消除涂层中的宏观界面,合成一种非均一 的复合材料,其机械、物理、化学特性是连续变化的, 的复合材料,其机械、物理、化学特性是连续变化的,没有突 缓和了涂层中的热应力等, 出,缓和了涂层中的热应力等,成为可以应用于高温环境的新 一代功能材料。 一代功能材料。
功能梯度材料

功能梯度材料
功能梯度材料是指在一个材料中,在特定的方向上具有连续变化的组分、组织结构或化学性质的材料。
功能梯度材料具有以下特性:
1. 组分梯度:功能梯度材料可以在微观尺度上具有连续变化的成分,例如从金属到陶瓷的过渡,或者从一个化学成分到另一个化学成分的过渡。
2. 结构梯度:功能梯度材料可以在微观尺度上具有连续变化的组织结构,在不同的区域具有不同的晶体结构、晶胞参数或晶体生长方向。
3. 性能梯度:功能梯度材料可以在微观尺度上具有连续变化的性能,例如热导率、机械性能、磁性能等。
功能梯度材料的设计能够优化材料的性能和功能,增加材料的适应性和可靠性。
例如,一个具有热梯度的材料可以在高温端具有良好的耐热性能,在低温端具有良好的导热性能,从而提高整体的热效应。
在材料制备方面,常用的方法包括梯度浇注、热力学梯度炉、梯度合金化等。
梯度材料的制备方法需要考虑到材料
的相容性、界面的性质以及材料的加工性能等方面的问题。
功能梯度材料广泛应用于航空航天、能源、电子、医疗器
械等领域。
例如,在飞行器热防护方面,通过使用具有热
梯度的材料,可以有效地减轻材料的热膨胀应力,提高飞
行器的耐热性能。
功能梯度材料讲义

传统制备方法的缺陷
快速原型制备方法
应用实例和发展前景
功能梯度材料 (FGM)定义
指一类组成结构和性能在材料厚度或长度方向连续或准连续变化的 非均质复合材料 (Funcitionally Graded Materials) 从组成变化来看,梯度功能材料可以分为3类:梯度功能整体型;梯 度功能涂覆型,梯度功能连接型。按应用领域来分:耐热功能梯度 材料、生物功能梯度材料、化学工程功能梯度材料和电子工程功能 梯度材料。
功能梯度材料的传统应用
功能梯度材料制备方法
FGM制备方法和设备存在的问题总结:
1. 设备针对性强,一种设备只能制备一种形状和结构的梯度材料
2. 只能制备形状和结构简单的梯度材料块、板和环,不能直接成型形 状结构复杂的零件
3. 不同材料组分只是一种自然状态下的简单混合,不能精确控制每种 材料组分相在构建中位置,不能正确反映设计者的意图,从而影响 了材料的性能。 4. 设备复杂,制备成本高
如图, 1700℃的ZrO2/Ni 梯度功能材料,其耐热材 料到金属的梯度渐变,消 除了材料组分相界,从而 克服由于材料热力学性能 不匹配而导致的零件失效 经验证,R0处的应力分 布为复合材料在界面处的 1/3---1/4
功能梯度材料的应用发展
当前的研究重点之一就是FGM模型在计算机内的表达问题
输出带几何信息和材料信息的二维接口文件
以航天飞机为例具体阐述功能梯度材料的应用
航天飞机推进系统中的超音速燃烧冲压式发动机中,燃烧气体温度通 常超过2000℃,对燃烧壁会产生强烈的热冲击,而燃烧壁另一侧受液 氢的冷却左右,温度为-200 ℃。金属的耐低温性和陶瓷的耐高温性结 合,但传统技术将金属和陶瓷结合起来,在极大的热应力下界面会受 到破坏。2003年“哥伦比亚”航天飞机失事的主要原因就是绝缘材料 脱落撞击到飞机左翼。
等几何功能梯度材料

等几何功能梯度材料
等几何功能梯度材料(Functional Gradient Materials,简称FGM)是指材料的组成和结构从某一方位向另一方位连续地变化,使材料的性能和功能也呈现梯度变化的一种新型的功能性材料。
根据材料的组合方式,FGM可以分为金属/陶瓷,陶瓷/陶瓷,陶瓷/塑料等多种组合方式的材料。
根据其组成变化,FGM可以分为梯度功能整体型(组成从一侧到另一侧呈梯度渐变的结构材料),梯度功能涂敷型(在基体材料上形成组成渐变的涂层),梯度功能连接型(连接两个基体间的界面层呈梯度变化)。
此外,根据不同的梯度性质变化,FGM可以分为密度FGM,成分FGM,光学FGM,精细FGM等。
目前,制备等几何功能梯度材料的方法包括自蔓延燃烧合成(SHS)和烧结(SPS)等。
其中,利用类似于SHS电场激活作用的SPS技术,对陶瓷、复合材料和梯度材料的合成和致密化同时进行,可得到65nm的纳米晶,比SHS少了一道致密化工序。
目前SPS制备的尺寸较大的FGM体系是ZrO2(3Y)/不锈钢圆盘,尺寸已达到100mm×17mm。
用普通烧结和热压WC粉末时必须加入添加剂,而SPS使烧结纯WC成为可能。
以上内容仅供参考,建议查阅关于等几何功能梯度材料的资料、文献,或者咨询材料科学专家,以获取更准确的信息。
梯度功能材料

梯度功能材料
梯度功能材料是一种具有非均匀性能分布的材料,其性能随着空间位置的变化而变化。
这种材料在各种工程领域中具有广泛的应用,包括电子器件、能源存储、传感器等。
梯度功能材料的设计和制备对于提高材料的性能和实现特定功能具有重要意义。
首先,梯度功能材料的设计需要充分考虑材料的性能需求和实际应用场景。
在电子器件中,需要设计具有不同导电性能的材料,以实现对电子流的精确控制。
在能源存储领域,需要设计具有不同电化学性能的材料,以提高电池的能量密度和循环寿命。
因此,梯度功能材料的设计需要结合具体的应用需求,确定材料的性能分布和变化规律。
其次,梯度功能材料的制备需要选择合适的制备方法和工艺参数。
常见的制备方法包括溶液法、气相沉积、激光烧结等。
这些方法可以实现对材料成分、结构和形貌的精确控制,从而实现材料性能的梯度分布。
在制备过程中,需要合理选择工艺参数,如温度、压力、溶剂浓度等,以实现对材料性能的精确调控。
最后,梯度功能材料的应用需要充分考虑材料的性能稳定性和可靠性。
在实际应用中,梯度功能材料可能会受到温度、湿度、光照等环境因素的影响,从而导致材料性能的变化。
因此,需要对梯度功能材料进行性能评估和稳定性测试,以确保其在不同环境条件下的可靠性和稳定性。
综上所述,梯度功能材料的设计、制备和应用是一个复杂而又具有挑战性的过程。
通过合理设计和精密制备,梯度功能材料可以实现对材料性能的精确调控,从而实现特定功能和应用需求。
随着材料科学和工程技术的不断发展,梯度功能材料将在更多领域展现出其巨大的应用潜力。
《梯度功能材料》课件

• 梯度功能材料的概述 • 梯度功能材料的制备方法 • 梯度功能材料的性能研究 • 梯度功能材料的发展趋势与展望 • 案例分析:梯度功能材料在航空
航天领域的应用
目录
01
梯度功能材料的概述
定义与特性
定义
梯度功能材料(Gradient Function Materials,GFM)是一种新型材料 ,其性能在空间上呈连续变化,从而 在材料内部实现了一种特殊的梯度结 构。
航空航天
用于制造高性能的航空发动机和 航天器部件,提高其耐高温、抗 腐蚀和减轻重量的性能。
生物医疗
用于制造人工关节、牙科种植体 等医疗器械,提高其生物相容性 和耐久性。
能源环保
用于制造高效能电池、燃料电池 等能源器件,提高其能量密度和 使用寿命。同时,在环保领域可 用于治理污染和修复生态。
02
梯度功能材料的制备方法
总结词
高强度、低密度、抗辐射
详细描述
卫星结构材料需要承受发射过程中的巨大应力和振动,同时在轨运行时还要承受太空中 的各种恶劣环境,如高真空、强辐射等。梯度功能材料通过优化材料成分和结构,实现 了高强度、低密度和抗辐射等多重性能的完美结合,为卫星结构提供了更加可靠和高效
的材料选择。
感谢观看
THANKS
01
通过优化材料组成和结构设计,开发具有优异性能的复合材料
,以满足各种工程应用的需求。
智能材料
02
研究和发展能够感知外部刺激并作出响应的材料,如形状记忆
合金、压电陶瓷等,用于制造智能传感器和执行器。
多功能材料
03
探索和开发具有多种功能的材料,如导电、导热、磁性、光学
等,以实现单一材料的多重应用。
梯度功能材料

梯度功能材料
梯度功能材料是一种具有不同特性、性能或结构的材料。
它可以被设计成具有不同的物理、化学和力学性质,以满足特定应用的要求。
梯度功能材料的研究和应用已经在众多领域中取得了重要的突破,如电子器件、光学器件、医学器械等。
首先,梯度功能材料在电子器件领域有着广泛的应用。
传统的材料在电子器件中往往具有均匀的结构和性能,然而,在某些情况下,需要在同一材料中实现不同的电学性质。
梯度功能材料的研究可以实现局部性能的控制,从而在电子器件的制作中提供更好的功能性和性能。
其次,梯度功能材料在光学器件中也具有重要的应用价值。
光学器件的设计和制造往往依赖于不同材料之间的界面效应,而梯度功能材料可以提供更好的界面适配性和光学性能。
例如,在光学透镜中,通过调控梯度功能材料的光学性质,可以实现对光束的聚焦和分散,从而实现更好的成像效果。
此外,梯度功能材料在医学器械领域也有着广泛的应用。
随着医学技术的不断发展,对材料在医学器械中的要求也越来越高。
梯度功能材料可以在同一材料中实现多种性质,例如生物相容性、机械强度等,从而提高医学器械的性能和可靠性。
例如,在人工骨骼和关节假体的制作中,梯度功能材料可以实现与真实骨骼和关节更好的兼容性,减少植入体对人体的不良反应。
总的来说,梯度功能材料在各个领域中都具有重要的应用价值。
它可以实现在同一材料中多种性质的控制,提高材料的功能性
和性能。
随着科学技术的不断发展,相信梯度功能材料将在更多领域中得到应用,为人们的生活带来更多的便利和创新。
End。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Functionally Gradient Materials
1
梯度的概念
•梯度流速
•梯度温度
•梯度浓度
•梯度体积
•梯度体积
•梯度体积
•梯度性格
•梯度经济
梯度功能材料
主要内容
梯度功能材料的发展
梯度功能材料的结构特征及其分类
梯度功能材料的原理及特点
梯度功能材料的设计 梯度功能材料的制备 梯度功能材料的应用
具有缓和热应力的功能。
金属和陶瓷构成的材料特性 (a)无梯度;(b)有梯度
38
比较发现:
• 成分突变会导致应力集中
• 成分逐步过渡,应力集中 大大降低,有梯度时集中 区压应力仅为无梯度时的 1/3-1/4
• 无梯度样品冷却时开裂, 有梯度样品有近400MPa 不锈钢-陶瓷(Si3N4)界面上应力分布 结合强度
PVD镀膜器件
45
46
• 等离子喷涂适合形状复杂表面的梯度涂覆加工。
• 在基板上喷涂单层 NiCr 合金粉末;再用 10%ZrO2 粉和 90 % NiCr 合金粉末喷涂;在配料中逐步减少 合金粉末;最后用100%ZrO2粉末喷涂,此技术已 用于飞机喷气发动机和相关材料的表面改性,材 料表面能承受 1100-1300℃ 的高温,内外侧温差达 到500-600℃。
23
• 1900年,美国用明胶作成光 折射率沿径向连续变化的圆 柱棒,称为梯度折射材料。 由于制作工艺没有解决,未 能得到实际应用。 • 1969年,日本板玻璃公司的 北野等人制成梯度折射棒材 和光纤,达到了实用水平, 梯度折射率材料的研究迅速 发展起来。
中国剑
梯度折射玻璃
24
航天飞机飞行时预想的表面温度
• 日本采用等离子喷涂技术喷涂 ZrO2/Y2O 陶瓷粉末 和Ni-Cr-Al-Y合金粉末,形成梯度涂层,明显提高 基体金属的隔热性和耐热疲劳性。
47
48
•过程: 将金属粉末和陶瓷粉末按梯度化充填,加压压实 ,从成形体的一端点火燃烧,反应自行向另一端传播,利 用化学反应产生的热量和反应的自传播性,使材料烧结和 合成。 •应用: •1)电磁加压+自蔓延:TiB2/Cu; •2)自蔓延+热等静压相结合:TiC/TiC+10%Ni/ TiC+20%Ni/TiC+30%Ni; 3)爆炸压实生坯+自蔓延:A12O3/Ti密度从82%到94%
50
• 燃烧合成 FGM 中,整体的宏观梯度通常被保留在 样品中,局部发现在 FGM 内部存在有限的物质传 输,这种传输使初始存在于反应物粉末压块中的 较陡峭的成分分布在反应后被较平缓的梯度所代 替。 • 日本采用连续成型的电磁加压自蔓延技术合成 TiB2/Cu、TiC/Ni等梯度功能材料。
• 我国采用爆炸压实自蔓延高温合成技术制备了 Al2O3/Ti系梯度功能材料,组织结构呈梯度变化, 理论密度提高到94%,显微硬度Hv达到461.8。
梯度功能材料制备的耐磨轴承,外表为陶瓷, 内表面为金属
19
梯度功能材料的发展
20
• 梯度功能材料早就出现在自然界中。
• 竹子是一种典型的梯度功能材料,人类和动物身体中 的骨骼也是一种梯度材料,其特点是结构中的最强单 元承受最高的应力。 • 生物的梯度结构与人造梯度结构之间存在很大差异。 有生命的FGMs是“有智能的”,它们能感受所处环境 的变化(包括局部应力集中),产生相应的结构修改,而 人造梯度材料至少在目前还缺乏这种功能。
• 功能梯度材料作为一个规范化正式概念,于 1984 年 由日本国立宇航实验室提出。
• 航天飞机中,燃烧室内外表面温差达到1000K以上, 普通的金属材料难以满足这种苛刻的使用环境。
25
• 1987年,日本平井敏雄、新野正之和渡边龙三人提出 使金属 / 陶瓷复合材料的组分、结构和性能呈连续变 化的热防护梯度功能材料的概念。 • 1990年,日本召开第一届梯度功能材料国际研讨会。
51
颗粒梯度排列法
• 将金属、陶瓷等粉末按一定 梯度分布直接填充到模具中 加压烧结;也可将不同组分 粉末压成薄膜/片后进行叠 层烧结。
• 控制各组分混合比,使粉坯 梯度层间任一组分浓度变化 较小,梯度层间接合紧密。 • 调节粉末粒度分布和烧结工 艺,可得具有良好热应力缓 和的梯度功能材料。
通过粉末混合烧结形成的 FGM结构示意图
发现号航天飞机的陶瓷热防护 瓦
57
• 2003 年 2 月,“哥伦比亚”号航天飞机爆炸,原因 就是航天飞机的左翼在起飞时遭到从燃料箱上脱落 的泡沫绝缘材料的撞击,造成机体表面隔热保护层 出现大面积松动和破损,形成可让“热气进入的空 洞”,返航途中因超高温空气的进入而彻底解体。
起飞时燃料箱上的脱落物击中机翼
特殊功能为目标
分子间力/化学键/物 理键 均质/非均质
宏观组织
功能
均质
一致
非均质(连续变化)
梯度化
36
• 梯度功能材料主要通过连续控制材料的微观要素 (包括组成、结构),使界面的成分和组织呈连续 性变化,主要特征有: 材料的组分和结构呈连续性梯度变化;
材料内部没有明显的界面; 材料的性质也呈连续性梯度变化。
•ZrO2-CrNi合金FGM横 截面,白色的陶瓷粉末与 黑色的合金粉末含量呈连 续性梯度变化,没有明显 的界面,
37
• 金属 -陶瓷构成的热应力缓和梯度功能材料,对高 温侧壁采用耐热性好的陶瓷材料,低温侧壁使用 导热和强度好的金属材料。
材料从陶瓷过渡到金属的过程中,耐热性逐渐降低,机 械强度逐渐升高。 热应力在材料两端均很小,在材料中部过渡区达到峰值 (比突变界面的应力峰值小得多),
12
• 许多结构件会遇到各种服役条 件,因此要求材料的性能应随 构件位置不同而不同。
刀具只需刃部坚硬,其它部位需 要具有高强度和韧性;
齿轮轮体必须有好的韧性,表面 必须坚硬和耐磨; 涡轮叶片的主体必须具有高强度 、高韧性和抗蠕变,而它的外表 面必须耐热和抗氧化。
中国刀
• 诸如此类,工程应用的许多材 料都属于这个范畴。
热防护梯度
梯度复合管
26
• 1993年,美国国家标准技术研究所开始以开发超高温耐 氧化保护涂层为目标的大型梯度功能材料研究。 • 1995年德国发起一项六年国家协调计划,主要研究功能 梯度材料的制备。 • 最近,通过改变复合两相的配制,在复合材料内部形成 精细的构造梯度(将预先存在的不同相进行人为组合)。 • 功能梯度材料已发展为当前结构材料和功能材料研究领 域中的重要主题之一。
飞机的左翼上有两条清晰的裂纹
58
• 按照基体 / 陶瓷比率设计具有梯度的金属基 / 碳基 复合结构可解决上述问题。
设计梯度热防护功能材料
59
• 日本开发了为小动力火箭燃烧器和热遮蔽材料用的 梯 度 功 能 材 料 , 目 前 已 研 制 出 能 耐 1700℃ 的 ZrO2/Ni 梯度功能材料,用作马赫数大于 20 的并可 重复使用的航天飞机机身材料。
涡轮叶片
13
• 构件中材料成分和性能的突然变化常常会导致明显的 局部应力集中。如果一种材料过渡到另一种材料是逐 步进行的,这些应力集中就会大大地降低。 • 为减少材料的应力集中,提高材料性能,人们发展了 新型的功能梯度材料(简称FGM) 。
• 日本、美国、德国、俄罗斯、英国、法国、瑞士等许 多国家都开展FGM的研究,其应用已扩展到宇航、能 源、交通、光学、化学、生物医学工程等各领域。
摩擦温升后,梯度材料变化较 小,普通材料则变成兰紫色
27
28
29
30
31
33
34
梯度功能材料的原理及特点
35
• 梯度功能材料由几种性质不同的材料组成,但与 复合材料之间有明显区别。
梯度功能材料与复合材料比较
材料 复合材料 梯度材料
设计思想
结合方式 微观组织
材料优点的相互 复合
化学键/物理键 界面处非均质
航天工业
化工工业
交通工业
14
• 功能梯度材料的概念最早是由日 本科学家平井敏雄于 1984 年首 先提出的,目的是要解决如航空 、航天等高技术领域出现的苛刻 条件下使用的材料问题。
• 如航天飞机推进系统中超音速燃
烧冲压式发动机, 其燃烧室壁一侧接触高达2000℃
的燃烧气体,承受超高温,而另一侧则接触 -200℃
的液氢燃料,承受超低温,而产生的极大热应力。
一般材料显然满足不了这一要求。
它是指一类组成结构和性能在材料厚度或长度方 向连续或准连续变化的非均质复合材料。
16
• 金属 -陶瓷构成的功能梯度材料可有效解决上述极大热 应力问题。高温侧用耐热性好的陶瓷材料,低温侧用导 热和强度好的金属材料。
•耐热性
•热传导率 •热膨胀系数
•陶瓷 •陶瓷 •陶瓷 •金属 •陶瓷 •金属
•均匀材料
•有界面的复合材料
•FGM
• 材料从陶瓷到金属,其耐热 性逐渐降低,强度缓慢升高
.热应力在材料两端很小,
在材料中部达到峰值,因而
•陶瓷 •金属
有效地缓和了热应力。
耐 超 热 性 能
• 力 学 性 能 •
•
热应力缓和作用
• 梯度功能材料是一种集各种组分 (如金属、陶瓷、 纤维、聚合物等 )于一体的新型材料,其微观结构 和物理、化学、生物等单一或综合性能都呈连续 变化,以适应不同环境,实现某一特殊功能。
56
航天工业
• 航天飞机在往返大气层的过程中,机头前端和机翼 前沿服役温度约2000K,冷表面的温度低于1000K。
• 把 直 径 为 1~1.5m 的 高 纯 石 英 纤 维 加 压 成 型 , 1290℃ 烧成后再按要求切成外形不同、大小不等的 “砖块”,粘贴到航天飞机蒙皮上。这种复合材料 防热系统的重复使用性、可靠性等存在较大问题。