Mineralization of aniline and 4-chlorophenol in acidic solution by ozonation catalyzed with Fe2+ and
高级氧化技术中羟基自由基产生的机理
高级氧化技术中羟基自由基产生的机理环境10-2班张航7号摘要:本文综述了羟基自由基(-OH)的特点和反应性质,以及O3/UV,O3/H2O2, H2O2/UV,UV/O3/H2O2,H2O2/Fe2+(Fenton’s reagent),H2O2/Fe2+/UV,电解Fenton法和非均光催化氧化等各种高级氧化技术(AOP)产生羟基自由基的机理。
关键字:高级氧化技术(AOP);羟基自由基(OH);水处理;有机污染物1、AOP的介绍高级氧化技术(Advanced Oxidation Processes简称AOP)是在对传统水处理技术中经典化学氧化法改革的基础上而产生的一种新技术,是以产生羟基自由基(-OH)为标志,水理高级氧化技术其本质是利用羟基自由基氧化降解水相中的各种污染物的化学反应。
各种高级氧化技术(AOP)的共同点是反应过程中产生活性极高的羟基自由基(-OH),-OH具有以下特点:(1)氧化能力强,羟基自由基(-OH)的标准电极电势(2.80V)仅次于F2(2.87V),是一种氧化能力极强的氧化剂;(2)反应速率常数大,羟基自由基(-OH)非常活泼与大多数有机物反应的速率常数在106~1010 mol-1.L.S-1[1];(3)选择性小,与反应物浓度无关;(4)寿命短,羟基自由基(-OH)寿命极短,在不同的环境介质中,其存在时间有一定的差别,一般小于10-4s[2](5)处理效率高,不产生二次污染,同时,羟基自由基(-OH)还具有杀灭细菌~防腐保鲜的功效。
自由基中的一个未成对电子具有配对的倾向,所以大多数自由基都很活泼,反应性极强,容易生成稳定的分子,羟基自由基(-OH)作为反应的中间产物,引发诱导产生链反应,-OH主要通过电子转移~亲电加成~脱氢反应等途径无选择地直接与各种有机化合物作用而其降解为CO2、H2O和其它无害物质,且-OH氧化是一种物理化学过程,反应条件温和,比较容易控制,设备相对比较简单等优点,是一种有效降解废水中有机污染物的方法[1,3,4]。
海洋沉积物微量元素地球化学特征对天然气水合物勘探的指示意义
海洋沉积物微量元素地球化学特征对天然气水合物勘探的指示意义于 哲,邓义楠,陈 晨,曹 ,方允鑫,蒋雪筱,黄 毅Trace elements geochemistry of marine sediments and its implications for gas hydrate explorationYU Zhe, DENG Yinan, CHEN Chen, CAO Jun, FANG Yunxin, JIANG Xuexiao, and HUANG Yi在线阅读 View online: https:///10.16562/ki.0256-1492.2021040101您可能感兴趣的其他文章Articles you may be interested in海洋天然气水合物储层特性及其资源量评价方法Characteristics of marine gas hydrate reservoir and its resource evaluation methods海洋地质与第四纪地质. 2021, 41(5): 44海洋天然气水合物储层蠕变行为的主控因素与研究展望Controlling factors and research prospect on creeping behaviors of marine natural gas hydrate-bearing-strata海洋地质与第四纪地质. 2021, 41(5): 3南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示Pore water geochemistry of shallow surface sediments in the southern South China Sea and its implications for methane seepage activities海洋地质与第四纪地质. 2021, 41(5): 112基于ERT技术的含水合物沉积物可视化探测模拟实验An experimental study on visual detection of hydrate-bearing sediments based on ERT海洋地质与第四纪地质. 2021, 41(6): 206东海陆坡—冲绳海槽水体剖面地球化学特征与指示意义Geochemistry of the water profiles at the slope of East China Sea and Okinawa Trough and its implications海洋地质与第四纪地质. 2021, 41(6): 102海洋沉积物中金属依赖型甲烷厌氧氧化作用研究进展及展望Research progress and prospects of metal-dependent anaerobic methane oxidation in marine sediments海洋地质与第四纪地质. 2021, 41(5): 58关注微信公众号,获得更多资讯信息于哲,邓义楠,陈晨,等. 海洋沉积物微量元素地球化学特征对天然气水合物勘探的指示意义[J]. 海洋地质与第四纪地质,2022,42(1): 111-122.YU Zhe ,DENG Yinan ,CHEN Chen ,et al. Trace elements geochemistry of marine sediments and its implications for gas hydrate exploration [J].Marine Geology & Quaternary Geology ,2022,42(1):111-122.海洋沉积物微量元素地球化学特征对天然气水合物勘探的指示意义于哲1,2,邓义楠1,2,陈晨2,曹珺1,2,方允鑫2,蒋雪筱2,黄毅21. 南方海洋科学与工程广东省实验室(广州),广州 5114582. 自然资源部海底矿产资源重点实验室,中国地质调查局广州海洋地质调查局,广州 510075摘要:天然气水合物与资源和全球环境变化等重大科学问题密切相关。
乙酸蒸汽催化重整制氢的研究进展
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2017年第36卷第5期·1658·化 工 进展乙酸蒸汽催化重整制氢的研究进展王东旭1,肖显斌2,李文艳1(1华北电力大学能源动力与机械工程学院,北京 102206;2华北电力大学生物质发电成套设备国家工程实验室,北京 102206)摘要:通过生物油蒸汽重整制备氢气可以减少环境污染,降低对化石燃料的依赖,是一种极具潜力的制氢途径。
乙酸是生物油的主要成分之一,常作为模型化合物进行研究。
镍基催化剂是乙酸蒸汽重整过程中常用的催化剂,但容易因积炭失去活性,降低了制氢过程的经济性。
本文首先分析了影响乙酸蒸汽重整制氢过程的各种因素,阐述了在这一过程中镍基催化剂的积炭原理,讨论了优化镍基催化剂的方法,包括优化催化剂的预处理过程、添加助剂和选择合适的载体,最后对乙酸蒸汽重整制氢的热力学分析研究进展进行了总结。
未来应重点研究多种助剂复合使用时对镍基催化剂积炭与活性的影响,分析多种助剂的协同作用机理,得到一种高活性、高抗积炭能力的用于生物油蒸汽重整制氢的镍基催化剂。
关键词:生物油;乙酸;制氢;催化剂;热力学中图分类号:TK6 文献标志码:A 文章编号:1000–6613(2017)05–1658–08 DOI :10.16085/j.issn.1000-6613.2017.05.014A review of literatures on catalytic steam reforming of acetic acid forhydrogen productionWANG Dongxu 1,XIAO Xianbin 2,LI Wenyan 1(1 School of Energy ,Power and Mechanical Engineering ,North China Electric Power University ,Beijing 102206,China ;2 National Engineering Laboratory for Biomass Power Generation Equipment ,North China Electric PowerUniversity ,Beijing 102206,China )Abstract :Hydrogen production via steam reforming of bio-oil ,a potential way to produce hydrogen , can reduce environmental pollution and dependence on fossil fuels. Acetic acid is one of the main components of bio-oil and is often selected as a model compound. Nickel-based catalyst is widely used in the steam reforming of acetic acid ,but it deactivates fast due to the carbon deposition. In this paper ,the affecting factors for the steam reforming of acetic acid are analyzed. The coking mechanism of nickel-based catalyst in this process is illustrated. Optimization methods for nickel-baed catalyst are discussed ,including optimizing the pretreatment process ,adding promoters ,and choosing appropriate catalyst supports. Research progresses in the thermodynamics analyses for steaming reforming of acetic acid are summarized. Further studies should be focused on the effects of a combination of a variety of promoters on carbon deposition. Catalytic activity and the synergy mechanism should be analyzed to produce a novel nickel-based catalyst with high activity ,high resistance to caborn deposition for hydrogen production via steam reforming of bio-oil. Key words :bio-oil ;acetic acid ;hydrogen production ;catalyst ;thermodynamics第一作者:王东旭(1994—),男,硕士研究生,从事生物质能利用技术研究。
纳米铁酸铜催化剂活化过一硫酸盐降解苯胺废水
纳米铁酸铜催化剂活化过一硫酸盐降解苯胺废水王霁;董正玉;吴丽颖;黄湾;张倩;洪俊明;苏树明【摘要】使用溶胶凝胶法制备纳米铁酸铜催化剂,并用于活化过一硫酸盐催化降解苯胺废水.探究了纳米铁酸铜投加量、过一硫酸盐投加量和pH对苯胺降解率的影响.结果表明,在纳米铁酸铜投加量为2.0 g/L、过一硫酸盐投加量为0.2 g/L、pH=7.0的条件下,纳米铁酸铜活化过一硫酸盐催化降解苯胺废水的效果最好,反应60 min,100 mL质量浓度为10 mg/L的苯胺降解率可达99%.纳米铁酸铜在反应过程中的总铁溶出量仅为0.87 mg/L,总铜溶出量仅为0.03 mg/L.苯胺的降解途径;一是苯胺中的氨基被自由基攻击,生成亚硝基苯,继续氧化生成硝基苯,然后开环矿化为CO2和H2O;二是氨基对位苯环上的氢原子被羟基取代生成对羟基苯胺,对羟基苯胺被自由基攻击生成亚氨基苯醌,进一步反应生成对苯醌,然后开环矿化为CO2和H2O.【期刊名称】《环境污染与防治》【年(卷),期】2019(041)003【总页数】5页(P334-338)【关键词】纳米铁酸铜;过一硫酸盐;苯胺【作者】王霁;董正玉;吴丽颖;黄湾;张倩;洪俊明;苏树明【作者单位】华侨大学化工学院,福建厦门361021;福建省工业废水生化处理工程技术研究中心,福建厦门361021;华侨大学化工学院,福建厦门361021;福建省工业废水生化处理工程技术研究中心,福建厦门361021;华侨大学化工学院,福建厦门361021;福建省工业废水生化处理工程技术研究中心,福建厦门361021;华侨大学化工学院,福建厦门361021;福建省工业废水生化处理工程技术研究中心,福建厦门361021;华侨大学化工学院,福建厦门361021;福建省工业废水生化处理工程技术研究中心,福建厦门361021;华侨大学化工学院,福建厦门361021;福建省工业废水生化处理工程技术研究中心,福建厦门361021;厦门和健卫生技术服务有限公司,福建厦门361006【正文语种】中文过硫酸盐高级氧化技术是处理难降解有机污染物的新型技术,通过热、催化剂或紫外光照射等方式活化过硫酸盐,产生硫酸根自由基和·OH,氧化降解有机污染物[1]。
深海滑坡研究进展
深海滑坡研究进展宋晓帅,孙志文,朱超祁,范智涵,朱 娜,贾永刚,于开宁A review on deepwater landslideSONG Xiaoshuai, SUN Zhiwen, ZHU Chaoqi, FAN Zhihan, ZHU Na, JIA Yonggang, and YU Kaining在线阅读 View online: https:///10.16562/ki.0256-1492.2021062701您可能感兴趣的其他文章Articles you may be interested in海洋环境中甲烷好氧氧化过程的研究进展A review on microbial aerobic methane oxidation in marine environment海洋地质与第四纪地质. 2021, 41(5): 67海洋沉积物中金属依赖型甲烷厌氧氧化作用研究进展及展望Research progress and prospects of metal-dependent anaerobic methane oxidation in marine sediments海洋地质与第四纪地质. 2021, 41(5): 58西南印度洋中脊岩石地球化学特征及其岩浆作用研究A review of studies on the magmatism at Southwest Indian Ridge from petrological and geochemical perspectives海洋地质与第四纪地质. 2021, 41(5): 126西太平洋弧后盆地的热液系统及其岩浆环境研究Seafloor hydrothermal system and its magmatic setting in the western Pacific back-arc basins海洋地质与第四纪地质. 2021, 41(5): 12东海南部陆架水体2011年夏季温盐结构及其对台湾暖流和黑潮入侵的指示The summer thermohaline structure of 2011 of the southern East China Sea shelf and its implications for the intrusion of Taiwan Warm Current and Kuroshio Current海洋地质与第四纪地质. 2021, 41(5): 151科学计量:中国海洋地质40年发展历程与研究热点分析Forty years development of marine geology in China: Evidence from scientometrics海洋地质与第四纪地质. 2021, 41(6): 1关注微信公众号,获得更多资讯信息宋晓帅,孙志文,朱超祁,等. 深海滑坡研究进展[J]. 海洋地质与第四纪地质,2022,42(1): 222-235.SONG Xiaoshuai ,SUN Zhiwen ,ZHU Chaoqi ,et al. A review on deepwater landslide[J]. Marine Geology & Quaternary Geology ,2022,42(1):222-235.深海滑坡研究进展宋晓帅1,4,孙志文1,朱超祁1,2,3,范智涵1,朱娜1,贾永刚1,2,于开宁41. 中国海洋大学山东省海洋环境地质工程重点实验室,青岛 2661002. 青岛海洋科学与技术试点国家实验室海洋地质过程与环境功能实验室,青岛 2660613. 海南省海洋地质资源与环境重点实验室,海口 5702064. 河北地质大学河北省高校生态环境地质应用技术研发中心,石家庄 050031摘要:随着深水油气资源开发、天然气水合物试采和海底管线铺设等人类工程活动的日益增多,影响资源开采和工程施工的深海地质灾害备受关注。
微扩层改性对煤基石墨微观结构和储锂性能的影响
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 12 期微扩层改性对煤基石墨微观结构和储锂性能的影响李龙1,邢宝林2,3,鲍倜傲2,3,靳鹏1,曾会会2,3,郭晖2,3,张越2,张文豪2(1 炼焦煤资源开发及综合利用国家重点实验室,中国平煤神马控股集团有限公司,河南 平顶山 467000;2 河南省煤炭绿色转化重点实验室,河南理工大学化学化工学院,河南 焦作 454000;3 煤炭安全生产河南省协同创新中心,河南 焦作 454000)摘要:以自制煤基石墨为前体,浓硫酸为插层剂,高锰酸钾为氧化剂,采用液相氧化插层-热处理工艺对煤基石墨进行微扩层改性处理,制备出微扩层煤基石墨。
利用X 射线衍射仪、扫描电子显微镜、透射电子显微镜、拉曼光谱测试、低温氮气吸附和X 射线光电子能谱等手段分析不同微扩层煤基石墨的微观结构,并测试其用作锂离子电池负极材料的电化学储锂特性,系统研究微扩层改性对煤基石墨微观结构和储锂性能的影响。
研究表明,微扩层改性处理不仅可增加石墨微晶片层的层间距,还可以在石墨基体中引入纳米孔道和C ==O 、C —O —H 及C —O —C 等含氧官能团。
氧化剂用量是影响微扩层煤基石墨微观结构的重要因素。
通过调节氧化剂用量可实现微扩层煤基石墨微晶层间距、纳米孔道和表面官能团等微观结构的有效调控。
当氧化剂用量为煤基石墨的0.30倍时,微扩层煤基石墨的层间距为0.3374nm ,其纳米孔道主要由1~2nm 微孔和2~6nm 中孔组成,比表面积为24.6m 2/g ,且富含C ==O 、C —O —H 及C —O —C 等含氧官能团。
微扩层煤基石墨用作锂离子电池负极材料展现出优异的电化学储锂性能,其在0.1C 低电流密度下的可逆比容量最高可达511.1mAh/g ,在5C 高电流密度下为348.7mAh/g ,且经300次循环充放电后,其比容量仍可维持在313.3mAh/g ,容量保持率为89.9%,综合性能远高于煤基石墨。
地球化学勘查
【区域地球化学】regional geochemistry是系统研究大面积内化学元素及其同位素在各种介质(如水系沉积物、湖积物、岩石等)中的空间分布规律和它们与各种地质过程和地质特征之间的关系的科学。它着重于研究地壳各种介质中大面积的地球化学异常(各种区域性异常及地球化学省)以及化学元素在各种介质中的区域变化趋势。
【地球化学填图】geochemical mapping自韦布(JSWebb)于1973年出版《北爱尔兰地球化学实验图集》之后,迄今为止有50余项国家性或区域性地球化学填图工作已经完成或正在进行。这些地球化学填图工作在方法上各行其是,没有统一的做法,难以全球对比,这就大大降低了地球化学数据的科学与应用价值。1989年在联合国教科文组织的国际地质对比计划(IGCP)内开始立项的IGCP 259/360旨在使地球化学填图方法标准化。根据IGCP 259所作的规定,地球化学填图可定义为使用标准化的工作方法及分析方法,在不同尺度下,系统地测量周期表上大多数元素的含量,将所得结果用标准化形式制作出不同比例尺的地球化学图。
geochemistry研究水系沉积物勘查的方法与技术,并通过大规模系统的水系沉积物采样及分析,研究水系沉积物中元素迁移、分布、富集的规律及其与基岩和矿化之间关系的科学。它是勘查地球化学的分支学科。
链状结构硅酸盐晶体
硅灰石
Ca3[Si3O9];
蔷薇辉石 (Mn,Fe,Ca)5[Si5)O15] .
角闪石族:
直闪石 (Mg,Fe)7[Si4O11]2(OH)2 ;
透闪石
Ca2Mg5[Si4O11]2(OH)2 ;
透闪石石棉
阳起石
Ca2(Mg,Fe)5[Si4O11]2(OH) ;
一般角闪石
(Ca,Na)2-3(Mg,Fe,Al)5[(Si,Al)4O11]2(OH)2 ;
蓝闪石
Na2Mg3Al2[Si4O11]2(OH)2 ;
钠闪石
Na3Fe32+Fe23+[Si4O11]2(OH)2 ;
蓝石棉
Chain silicates
Chain silicates are the compounds of metallic cations with chain silicate radicals .Cations in the minerals are Ca , Na , K , Mg , Al , Li , Fe , Mn , Ni , Cr andTi . The chain silicates are charecterized by prismatic , acicular and fibrous crystal form , moderate hardness and density , two sets of cleavages . The chain silicates are : Pyroxene Group:
Blue asbestos
Enstatite Mg2[Si2O6] ; Bronzite (Mg,Fe)2[Si2O6] ; Hyperthene (Mg,Fe)2[Si2O6] ; Diopside CaMg[Si2O6] ; Hedenbergite CaFe[Si2O6] ; Augite (Ca,Mg,Fe,Al)2[(Si,Al)2O6] ; Aegirine NaFe[Si2O6] ; Jadeite NaAl[Si2O6] ; Aegirine-augite (Na,Ca)(Fe,Mg,Al)[Si2O6] ; Spodumene LiAl[Si2O6] ; Wollastonite Ca3[Si3O9] ; Rhodonite (Mn,Fe,Ca)5[Si5O15]
本草纲目中对滑石的记载
本草纲目中对滑石的记载英文回答:Talc is a mineral composed of hydrated magnesiumsilicate (Mg3Si4O10(OH)2). It is the softest mineral known, with a Mohs hardness of 1. Talc is white or light green in color and has a greasy feel. It is used as a lubricant, a dusting powder, and an ingredient in cosmetics, ceramics, and other products.The Chinese herbal classic Bencao Gangmu, written by Li Shizhen in the 16th century, includes a description of talc. Li Shizhen wrote that talc is "smooth and slippery, and can be used to treat skin diseases and digestive problems." He also noted that talc is "non-toxic and can be used safelyfor both internal and external applications."In traditional Chinese medicine, talc is used to treata variety of conditions, including:Skin diseases, such as eczema and psoriasis.Digestive problems, such as diarrhea and constipation.Genitourinary problems, such as urinary tract infections and vaginitis.Respiratory problems, such as asthma and bronchitis. Eye problems, such as conjunctivitis and blepharitis.Talc is also used in traditional Chinese medicine as a tonic and a rejuvenator. It is believed to help strengthen the body and improve overall health.中文回答:李时珍在《本草纲目》中对滑石的记载:滑石。
海洋产物化学
Dr.Francesco Pietra
1.国际海洋药物的研究现状
海洋是一个巨大的生物资源宝库
50万种生物,其中: 20万种较低等海洋生物,2万种海生植物。
次生代谢产物(Secondary metabolites)
作用:
化学防御 Anti-fouling 信息传递等
Other biotech, 9%
Health food, 9% Comestics, 4%
Health, 70%
Marine Natural Products used in the Health Sector
二、海洋天然产物化学
是研究海洋生物中产生的天然产物的提取、分离、纯化、结构调 整、生物合成途径等诸多化学问题的一门新兴学科,属天然有机 化学的一个重要分支。
三、海洋天然产物化学研究的历史
50年代已有人从事海洋生物中化学成分的研究,如河豚毒素。但
一般公认海洋天然产物的研究兴起于60年代末70年代初。
1969年前列腺素15-PGA2的发现,掀起了海洋天然产物化 学研究的第一个学潮。
利马原甲藻
Prorocentrum lima
用途 抗癌药 抗癌药 抗癌药 抗癌药 抗癌药 抗AIDS 抗癌药 细胞毒
“From healthcare to Food additives,marine Natural products could Find many applicationsWhich is why they are Currenty the subjects of
用途 抗病毒,抗癌
驱虫药 抗生素 营养剂 补维生素A、D 内毒素测定 培养基 乳化剂 悬浮剂 农用杀虫剂
p区金属氧化物Ga_(2)O_(3)和Sb_(2)O_(3)光催化降解盐酸四环素性能差异
收稿日期:2020⁃09⁃29。
收修改稿日期:2020⁃12⁃28。
国家自然科学基金(No.21875037,51502036)和国家重点研发计划(No.2016YFB0302303,2019YFC1908203)资助。
*通信联系人。
E⁃mail :***************.cn ,***************第37卷第3期2021年3月Vol.37No.3509⁃515无机化学学报CHINESE JOURNAL OF INORGANIC CHEMISTRYp 区金属氧化物Ga 2O 3和Sb 2O 3光催化降解盐酸四环素性能差异毛婧芸1黄毅玮2黄祝泉1刘欣萍1薛珲*,1肖荔人*,3(1福建师范大学环境科学与工程学院,福州350007)(2福建师范大学生命科学学院,福州350007)(3福建师范大学化学与材料学院,福州350007)摘要:对沉淀法合成的p 区金属氧化物Ga 2O 3和Sb 2O 3紫外光光催化降解盐酸四环素的性能进行了研究,讨论了制备条件对光催化性能的影响。
最佳制备条件下得到的Ga 2O 3⁃900和Sb 2O 3⁃500样品光催化性能存在巨大差异,通过X 射线粉末衍射、傅里叶红外光谱、N 2吸附-脱附测试、荧光光谱、拉曼光谱、电化学分析及活性物种捕获实验等对样品进行分析,研究二者光催化降解盐酸四环素的机理,揭示影响光催化性能差异的本质因素。
结果表明,Ga 2O 3和Sb 2O 3光催化性能差异主要归结于二者不同的电子和晶体结构、表面所含羟基数量及光催化降解机理。
关键词:p 区金属;氧化镓;氧化锑;光催化;盐酸四环素中图分类号:O643.36;O614.37+1;O614.53+1文献标识码:A文章编号:1001⁃4861(2021)03⁃0509⁃07DOI :10.11862/CJIC.2021.063Different Photocatalytic Performances for Tetracycline Hydrochloride Degradation of p ‑Block Metal Oxides Ga 2O 3and Sb 2O 3MAO Jing⁃Yun 1HUANG Yi⁃Wei 2HUANG Zhu⁃Quan 1LIU Xin⁃Ping 1XUE Hun *,1XIAO Li⁃Ren *,3(1College of Environmental Science and Engineering,Fujian Normal University,Fuzhou 350007,China )(2College of Life and Science,Fujian Normal University,Fuzhou 350007,China )(3College of Chemistry and Materials Science,Fujian Normal University,Fuzhou 350007,China )Abstract:The UV light photocatalytic performances of p ⁃block metal oxides Ga 2O 3and Sb 2O 3synthesized by a pre⁃cipitation method for the degradation of tetracycline hydrochloride were explored.The effects of synthesis conditions on the photocatalytic activity were discussed.The Ga 2O 3⁃900and Sb 2O 3⁃500samples prepared under optimal condi⁃tions exhibited a remarkable photocatalytic activity difference,which were characterized by X⁃ray diffraction,Fouri⁃er transform infrared spectroscopy,N 2adsorption⁃desorption tests,fluorescence spectrum,Raman spectrum,electro⁃chemical analysis and trapping experiment of active species.The photocatalytic degradation mechanisms of tetracy⁃cline hydrochloride over the photocatalysts were proposed and the essential factors influencing the difference of pho⁃tocatalytic performance were revealed.The results show that the different photocatalytic activities observed for Ga 2O 3and Sb 2O 3can be attributed to their different electronic and crystal structures,the amount of hydroxyl groupin the surface and the photocatalytic degradation mechanisms.Keywords:p ⁃block metal;Ga 2O 3;Sb 2O 3;photocatalysis;tetracycline hydrochloride无机化学学报第37卷0引言盐酸四环素(TC)作为一种四环素类广谱抗生素,被广泛应用于治疗人体疾病及预防畜禽、水产品的细菌性病害,其在世界范围的大量使用致使其在环境中积累[1]。
海绿石成因类型及其对沉积环境的指相分析
工程技术科技创新导报 Science and Technology Innovation Herald84海绿石最早被定义为岩石中的绿色颗粒矿物,这一概念为德国博物学家Hu mb old t于1823年所提出[1]。
海绿石能作为指相矿物对沉积环境、沉积速率进行分析,还能用作岩石测年的样本,不仅能作为标志性矿物用于地层对比,而且能用于层序地层划分、区域地层对比及构造演化等多个方面[2]。
通常认为,海绿石为一种富钾、富铁、含水并具有二八面体层状结构的硅铝酸盐矿物。
海绿石一般在50~500 m间的大陆架上出现,在水深200~300 m左右的大陆坡和外大陆架上格外富集,常见于晚前寒武纪以后的地层中[3]。
海绿石包含了丰富的地质信息,这是因为海绿石的形成沉积环境对水体离子环境及酸碱度条件要求苛刻,因此,国内外学者为了充分挖掘海绿石矿物地质信息采取了大量的研究方法。
对海绿石的研究共经历了3个阶段,早在20世纪60年代初,海绿石最初被认为为海相环境的特征指相矿物,如安徽宿县夹沟海绿石[4]、贵州二叠纪大厂层海绿石[5]。
在20世纪90年代末至21世纪初,非海相环境的海绿石被陆续发现,国内主要代表为泰康海绿石、天津蓟县海绿石、抚仙湖海绿石[6]、贵州纳雍地区龙潭组海绿石[7]、延长海绿石[8]。
海绿石的元素组成也被广泛关注,富钾贫铁的海绿石和贫钾富铁的海绿石均被发现。
现今,对海绿石的研究问题主要集中在两个方面:一是什么类型的海绿石能作为指相矿物,二是什么类型海绿石的K-A r测年是真实可靠的依据。
作为指相矿物的结论被实例所修正,原地自生海绿石由于其未经过外部的破坏,仍保留了沉积时的环境及沉积特征信息,能够作为对原始沉积环境的指相矿物,但即使是原地自生海绿石,当其成熟度未达到①作者简介:张田(1990—),女,湖北荆州人,硕士,助理工程师,研究方向:地震地质综合分析。
DOI:10.16660/ k i.1674-098X.2017.17.084海绿石成因类型及其对沉积环境的指相分析①张田 王辰昊(中国石油天然气新疆油田公司勘探开发研究院 新疆克拉玛依 834000)摘 要:海绿石不仅可以作为地层对比的标志矿物,而且可以作为指相矿物反映沉积环境,它包含了丰富的地质信息。
黑果枸杞花色苷的提取、纯化及降解动力学研究
连敏,高艺玮,年新,等. 黑果枸杞花色苷的提取、纯化及降解动力学研究[J]. 食品工业科技,2024,45(6):24−31. doi:10.13386/j.issn1002-0306.2023080105LIAN Min, GAO Yiwei, NIAN Xin, et al. Study on Extraction, Purification and Degradation Kinetics of Anthocyanins from Lycium ruthenicum [J]. Science and Technology of Food Industry, 2024, 45(6): 24−31. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2023080105· 特邀主编专栏—枸杞、红枣、沙棘等食药同源健康食品研究与开发(客座主编:方海田、田金虎、龚桂萍) ·黑果枸杞花色苷的提取、纯化及降解动力学研究连 敏,高艺玮,年 新,王梦泽*(宁夏大学食品科学与工程学院,宁夏银川 750021)摘 要:以花色苷提取量为主要考察指标,通过单因素和正交试验优化冻干黑果枸杞花色苷提取工艺,并在此条件下研究花色苷纯化工艺及其降解动力学,探讨不同温度、pH 下花色苷提取量的变化。
结果表明,提取最佳工艺条件为:料液比1:25(g :mL )、乙醇浓度60%、pH4、提取时间2 h ,此条件下花色苷提取量达36.507±0.325 mg/g 。
研究显示AB-8大孔树脂纯化黑果枸杞花色苷效果最好,对花色苷吸附量和解吸量的影响效果最佳,其最佳条件为:上样液浓度200 mg/100 g ,解吸乙醇浓度80%,上样流速2 mL/min ,洗脱流速2 mL/min ,上样体积为5 BV ,纯化率为90.02%。
有机硼化学的英文
有机硼化学的英文In the realm of organic chemistry, the field of organoboron chemistry holds a unique and significant place.It's a niche that's been instrumental in the development of various pharmaceuticals, agrochemicals, and advanced materials. The use of boron-containing compounds in organic synthesis is not just about enhancing reactivity or selectivity; it's about opening up new pathways that were previously inaccessible.Organic chemists have long been fascinated by the ability of boron to form stable complexes with organic molecules. This stability is key when it comes to reactions that require a delicate balance of conditions. The advent of organoboron reagents like borane (BH3) and its derivatives has revolutionized how chemists approach complex syntheses.One of the most profound impacts of organoboron chemistry is in the area of cross-coupling reactions, which are essential for the formation of carbon-carbon bonds. Pioneers like Akira Suzuki, for whom the Suzuki reaction is named, have shown that boron can be a reliable partner in these reactions, leading to the creation of a myriad of complex molecular structures with precision.Moreover, the field has seen a surge in "green chemistry" applications. Boron-based compounds are often less toxic and more environmentally friendly compared to traditional heavymetal catalysts. This has led to a growing interest in developing new organoboron compounds that can perform reactions under milder, more sustainable conditions.The emotional connection to organoboron chemistry is not just about the elegance of the reactions or the beauty of the molecules produced. It's about the potential these compounds hold for improving lives. Whether it's a new drug thattargets a specific disease pathway or a material with unique electronic properties, the work in this field is driven by a sense of purpose and the thrill of discovery.In the lab, the smell of borane in THF (tetrahydrofuran) is a familiar one, signaling the beginning of an experiment that could lead to the next breakthrough. The carefuladdition of reagents, the anticipation of a reaction's progress, and the meticulous analysis of the results all contribute to the rich tapestry of experiences that make organoboron chemistry so captivating.As researchers continue to push the boundaries of what's possible with organoboron chemistry, the field remains a vibrant and dynamic area of study. It's a testament to the power of collaboration, innovation, and the relentlesspursuit of knowledge. And for those who dedicate their lives to this work, it's not just a job; it's a passion that drives them to unlock the secrets of the molecular world, one boron compound at a time.。
乙二胺四乙酸配位螯合法制备钴铝尖晶石蓝色颜料
乙二胺四乙酸配位螯合法制备钴铝尖晶石蓝色颜料胡名卫;王宏全;夏浩孚;黄志良;池汝安【摘要】提出一种可以在较低温度下焙烧制备出钴铝尖晶石蓝色颜料的方法.以六水合硝酸钴、九水合硝酸铝为主要原料,乙二胺四乙酸(EDTA)为配位螯合剂,通过EDTA配住螯合钴、铝得到有机配合物前驱体,经过焙烧制备钴蓝颜料.通过国际照明委员会的色度图谱(CIE)、X射线衍射(XRD)和傅里叶红外光谱(FTIR),分别对所制备样品的物相和呈色进行研究袁征.主要考察了钴铝物质的量比、反应体系pH值、焙烧温度等工艺条件对铝酸钴尖晶石相的完整性和颜料呈色的影响.制备钴铝尖晶石蓝色颜料的最佳工艺参数是900℃温度下保温时间为2h,pH值为9~10,前驱体的钴铝比为1∶2.5.【期刊名称】《吉首大学学报(自然科学版)》【年(卷),期】2014(035)001【总页数】7页(P72-77,96)【关键词】乙二胺四乙酸;正交试验;尖晶石;前驱体;配位螯合【作者】胡名卫;王宏全;夏浩孚;黄志良;池汝安【作者单位】武汉工程大学材料科学与工程学院,湖北武汉430074;武汉工程大学材料科学与工程学院,湖北武汉430074;武汉工程大学材料科学与工程学院,湖北武汉430074;武汉工程大学材料科学与工程学院,湖北武汉430074;武汉工程大学化工与制药学院,湖北武汉430074【正文语种】中文【中图分类】TQ174.5Cobalt blue pigments are a metal oxide miscible pigment with the spinel structure,which is also called cobalt aluminate (CoA12O4) [1].Its chemical composition is CoO and Al2O3.It has several superiorperforman ces,including thermal stability (up to 1 200 ℃),chemical stability,anti-erosion to acid and alkali,weather resistance and strong corrosion resistance.In terms of transparency,saturation,hue and refractive index,cobalt blue pigments are significantly better than other blue paint.Besides,it is non-toxic and environment friendly [2-4].With the development of the super durable coating and plastic industry,the demand for cobalt blue pigments is increasing dramatically.Thetraditional method to prepare cobalt blue pigments is solid-phase method [5-6] which mixes solid reactant through grinding after calcination at high temperature to generate the product directly.Solid phase reaction rate is affected by the diffusion kinetics which is not easy to fulfill completely;the prepared pigment particle size distribution is not uniform,and the color,luster and chemical stability are not sogood.Thus,the application of solid-phase method is limited.But it has the advantages of simple process and easy maneuverability.At present,solid-phase method is widely used in industry.In order to meet the market and take full advantage of the cobalt blue pigments,other methods have been explored:liquid-phase method [7-18] and gas-phase method [19].Through liquid-phase method,the reactants are mixed uniformly in the liquid phase.In this way,reactants can be fully contacted,and the preparedpigment particles have the advantages of small diameter,highpurity,thermal stability and chemical stability.The calcination temperature of liquid-phase method is lower than that of the solid phase reaction,and the process is easy to control.Through gas phase method,the solid raw materials are evaporated at high temperature and react with each other in gas phase.The pigments prepared by gas phase reaction have the advantages of high purity and small particle size.But it also requires high energy consumption and cost[20].In this study,the cobalt blue pigments with spinel structure were prepared through the EDTA coordination chelalegal method by using the cobalt aluminum nitrate as the main raw material,and the Commission International Eclairage chromaticity diagram,X-Ray Diffraction,FTIR Investigation and Fluorescence analysis are used to characterize the samples’ phases and colorations.2.1 ReagentsCo(NO3)3·6H2O (>99%,by Nanjing Chemical Reagent Co.,LTD),Al(NO3)3·9H2O (>99%,by Shanghai New Fine Chemical Plant),ethylene diamine Tetraacetic acid (EDTA,>99.99%,by Shanghai ReagentCo.,LTD),NH3·H2O (25%~28%,by Tianjin Tianli Chemical Reagent Co.,LTD) were used as reagents.2.2 ProcessA representative procedure of Co-Al-EDTA precursors is as follows:a certain amount of EDTA powder was introduced into quantificational absolute ethyl alcohol placed in a 400 mL beaker,magnetically stirred at40 ℃;aqueous ammonia was then added dropwise into the beaker tofacilitate the dissolution of EDTA,which was converted into a water-soluble ammonium salt.The resulting solution had a pH value of 8 to 10.After that,the required stoichiometric amounts of Al(NO3)3·9H2O andCo(NO3)2·6H2O were introduced into the above prepared EDTA ammonium solution at the same time,stirred at 60 ℃ for several hours until the solution was completely transformed from transparent into a purple color;then the purple solution was placed into a water bath kettle and was heated at 90 ℃ so that the excess water was removed and the polymerization was promoted.After the solution being turned into viscous atropurpureus xerogel without sediments,the sample was dried completely at 100 ℃ and grinded into powder.Then,a small amount of the resulting powder was calcined at a certain temperature in a resistance furnace for 120 min to remove the carbon impurity and cooled to room temperature.The final product samples were black or blue powder.The detailed flow diagram was shown in figure 1.Three different proportions of the molar ratio of cobalt nitrate,aluminum nitrate and EDTA were1∶2∶3,1∶2.5∶3.5 and 1∶3∶4 respectively.2.3 Orthogonal DesignPreparation of CoA12O4 spinel cobalt blue pigments by EDTA chelating method is influenced by many factors,such as the molar ratio of cobalt nitrate and aluminum nitrate,pH value,heating temperature and calcination temperature.In order to obtain the cobalt blue pigments with intense coloration,all these factors should be studied.The factors,involving the molar ratio of cobalt nitrate and aluminum nitrate,pH value and calcinationtemperature,are studied to investigate the coloration and crystalline phase of the cobalt blue pigments.The orthogonal experiment is designed by using L9 (43).The various factors are shown in table 1.3.1 Results of Orthogonal ExperimentThe index of orthogonal experiment is the color of the samples.In the orthogonal experiment,minuscule a represents the dark aquamarine blue;minuscule b represents the sage green with slight blue;minuscule c represents atrovirens with slight blue;minuscule d represents aquamarine blue;and minuscule e represents cobalt blue.The results of orthogonal experiment are shown in table 2.According to table 2,the order of the factors is as follow:calcination temperature>pH value=nCo∶nAl.The most important factor is calcination temperature,followed by pH value in the process of the reaction and the molar ratio of cobalt nitrate and aluminum nitrate.According to table 2,the optimal experimental conditions are as follows:(i) the molar ratio of cobalt nitrate and aluminum nitrate is 1∶2.5;(ii) the pH value of the reaction is 9~10;(iii) the calcination temperature is 900 ℃.3.2 Effects of Co Content in the Precursors and Calcinations Temperature on the Color of the SamplesThe precursors were calcined at 700,800 and 900 respectively,and the coloration of the samples is shown in table 3.The solution with standard color was prepared by potassium chloroplatinate and cobalt pared with the standard solution visually,the color intensity of the samples can be determined.The color ofthe solution with 1 mg platinum and 0.5 mg cobalt is named 1degree,which is called chrominance.The chrominance of the samples can be represented by that of the standard solution which has the similar color of the samples.The results were analyzed and calculated by CIE colorimetric[21-22].Compared with the standard chromaticity diagram of CIE 1931,the five colors were signed in the corresponding area of the coordinate paper.It is shown in figure 2.According to the figure 2,the color from 1 to 5 has become blue generally.3.3 Effects of pH Value on the Formation of Cobalt Blue PrecursorsIn the process of the preliminary exploration,the pH value of the chelating between cobalt and aluminum was determined in the range from 9 to 10 when the environment of the chelating of EDTA was taken into consideration.According to table 2,the pH value is suitable between 9 and 10.When the pH value of the reaction is beyond this range,pink emulsion can be observed instead of purple transparent solution.Thus,pH value between 9 and 10 is needed.3.4 XRD MeasurementStructural phases were determined for sintered powders in a Shimadzu X-ray diffractometer using Cu Ka radiation.A continuous scan mode was used to collect 2θ data from 10°to 80° with a 0.02 sampling pitch and a 2°/min scan rate.X-ray tube voltage and current were set at 40 kV and 30 mA respectively.(ⅰ) According to the comparison between curve ① and curve ②,crystal planes (311),(511) and (440) have CoA12O4 diffraction peaks (PDF# 82-2239) of the spinel phase,which indicates that only a small amount ofCoA12O4 spinel is generated.In addition,the intensity and integrity of the diffraction peaks in crystal plane (220),(311),(400),(422),(511) and (440) of sample ② is better than those of sample ①.(ⅱ) According to the comparison between curve ① and curve ③,the amount of CoA12O4 spinel crystal of ③ treated at 800 ℃ is more than that of ① which treated at 700 ℃.It can be seen that w ith the increment of the calcination temperature,diffraction peaks of the CoA12O4 spinel phase become more complete,and the intensity of the corresponding crystal plane becomes increasingly great.(ⅲ) According to the comparison between curve ⑤ and curve ⑥,the intensity of the diffraction peaks in crystal plane (400),(422),and (511) of sample ⑤ is less than those of sample ⑥.As can be seen from the coloration,the most complete CoA12O4 spinel phase with the best coloration is at the ratio of Co and Al (nCo∶nAl=1∶2.5) in the precursors.In summary,the results of XRD indicate that the pure CoA12O4 spinel blue pigments depend on the temperature (900 ℃) of heat treatment and time(2 h),and the ratio of Co and Al (nCo∶nAl=1∶2.5) in the precursors.3.5 FTIR InvestigationThe Fourier-transform infrared (FTIR) spectra of the dried powders at different conditions were obtained on a Shimadzu FTIR-8101 by employing potassium bromide (KBr) pellet technique.The FTIR spectra of the obtained powders prepared with the different ratio of cobalt to aluminum and atcalcination temperature are shown in figure 4.We can see from figure 4,the IR spectra are similar;they all have three absorption peaks.CoAl2O4 vibrations are around 505,550 and 670 cm-1,those observed lines with this spectral line are typical spinel compound and special CoAl2O4;comparing with the other curves,we know that as the temperature rises,the absorption peaks is more and more significant;at 900 ℃ and with the ratio of cobalt to aluminum 1∶2.5,the spectral line shows the most significant peaks.3.6 Effects of the Temperature in the Reaction Process on the Formation of Cobalt Blue PrecursorsFrom the experiments,we find the reaction rate between EDTA and metal ions in the solution is high,so the temperature in the reaction process has little effect on the color of the cobalt blue precursors and the quality of the cobalt blue pigments.We suggest that it would be advisable to set the reactive temperature at 60 ℃.(1) The most important factors that influence the color of the cobalt blue pigments and the formation of the crystalline phase are the molar ratio of cobalt nitrate and aluminum nitrate,pH value and calcination temperature.These factors can affect the formation of CoA12O4 spinel phase and the color directly.(2) The optimal experimental conditions are as follows:(i) the molar ratio of cobalt nitrate,aluminum nitrate and EDTA is 1∶2.5∶3.5;(ii) reactive temperature is 60 ℃;(iii) the pH value in the reaction process is between 9 and 10;(iv) the calcination tempe rature is 900 ℃.[1] CHEMLAL S,LARBOTETC A.Materials Research Bulletin[J].Journal of the European Ceramic Society,2000,35(2):2 515-2 523.[2] YANG Zongzhi.Cobalt Blue Pigments and Its Progress[J].Paint & Coatings Industry,1997(4):39-40.[3] ZHU Jiliang,WU Shennian.Pigment Technology[M].Beijing:Chemical Industry Press,2002:293-296.[4] ZHOU Junyi.Synthesis,Characterization and Property of Spinel Metal Oxides[D].Ji’nan:Ji’nan University,Material Science and Engineering Institute,2009.[5] SHAO Qinghui,GU Guobang,ZHANG Lijuan,et al.Research Progress of Synthesis and Preparation of Nanophase Materials[J].Ordnance Material Science and Engineering,2005,22(4):59-63.[6] ALEXANDRIA,VIRGINIA.DCMA Classification and Chemical Description of the Complex Inorganic Color Pigments[J].Dry Color Manufacturers’ Association,1991,21(1):54-58.[7] HAN Yunfang,LI Xiangtang.Preparation of Cobalt-Blue Pigment by Sluggish Precipitation Method[J].Journal of Tianjin Institute of Urban Construction,2002,8(2):92-95.[8] ZHOU Yongqiang,YU Fangli,LUO Hongjie et al.Preparation of Nanometer Cobalt Blue Pigment by Sol-Gel Method[J].Bulletin of the Chinese Ceramic Society,2006,25(5):31-33.[9] ZHAO Ying,ZENG Yanli,ZHENG Shijun,et al.The Present Studies and Prospect on Halogen Bond[J].Journal of HeBei Normal University/Nature Science Edition,2007,31(1):85-99.[10] MASOUD SALAVATI-NIASARI,MASOUD FARHADI-KHOUZANI,FATEMEH DAVAR.Bright Blue Pigment CoAl2O4 Nanocrystals Prepared by Modified Sol-Gel Method[J].Sol-Gel Sci. Technol.,2009,52:321-327.[11] CAO Liyun,DEN Fei,ZHANG Xinhe,et al.Preparation of Nano-CoAl2O4 Blue Ceramic Pigment by Microemulsion Process[J].Glass & Enamel,2005,35(5):40-44.[12] CHEN Jing,SHI Xiaobo,HAN Bing.The Preparation and Characteristics of Cobalt Blue Colored Mica Titania Pearlescent Pigment by Micro Emulsions[J].Dyes and Pigments,2007,75(1):766-769.[13] DENG Xinrong,HU Guorong,PENG Zhongdong,et al.Preparation of Superfine Sized Cobalt Blue Pigment Using Precipitation-Azeotropic Distillation Method[J].Materials Review,2006,5(20):345-353.[14] AI Jun,LU Xilong,WANG Weixing,et al.Synthesis of CoAl2O4 Spinel-Type Cobalt Blue Pigments via Acid Chelating PrecursorTechnique[J].Journal of Ceramics,2011,32(2):178-181.[15] CUI Yanwang,XUAN Bai,SHAO Minliu,et al.Synthesis of Cobalt-Aluminum Spinels via EDTA Chelating Precursors[J].Journal of Materials Science,2004,39:6 161-6 201.[16] CHEN Zhizhan,SHI Erwei,ZHENG Yanqing,et al.Hydrothermal Synthesis and Optical Property of Nano-Sized CoAI2O4 Pigment[J].Materials Letters,2002,55(1):281-289.[17] HU Guorong,DENG Xinrong,CAOYanbing,et al.Synthesis of Spherical CoA12O4 Pigment Particles with High Reflectivity by Polymeric-AerosolPyrolysis[J].Science Direct,2007,26(3):236-242.[18] HU Guorong,CAOYanbing,DENG Xinrong,et al.Synthesis of Ultrafine Cobalt Blue Pigment Using Crystallization-Pyrolysis Process[J].Paint & Coating Industry,2006,11:15-15.[19] CARTA G,CASARIN M,HABRA N E.MOCVD Deposition of CoAl2O4 Films[J].Electrochimica Acta,2005,50(3):4 592-4 599.[20] LIU Zhubo.Study of Spinel Cobalt Blue Pigment Preparation and Performance[D].Nanjing:Nanjing University of Science and Technology,Material Science and Engineering Institute,2008.[21] ROBERT HUNTER.CIE Colorimetry[J].Jiangxi BuildingMaterials,1996(4):31-42.[22] YE Chunfang,LIU Wangling,YU Feihong.Realization of Active X Control of CIE Chromatic Spaces[J].Optical Instrument,2005(3):27-32.。
三种含钙矿物抑制剂研究进展及机理
三种含钙矿物抑制剂研究进展及机理李有余;张英;宋国军;秦雪聪【摘要】For scheelite, fluorite, calcite have similar surface properties and floatability, it is difficult to achieve efficient recovery of scheelite in the flotation system. Therefore, it is essential to develop effective separation depressants for calcium-bearing gangue minerals and scheelite flotation collectors. Based on the survey on the research status of separation depressants for calcium-bearing gangue minerals and scheelite flotation collectors, this paper elaborated on the mechanisms and applications of a variety of inorganic depressants and organic depressants. In accordance with the current research progress of depressants on calcium mineral calcium mineral and scheelite, this paper suggested that the hydrophilic improvement of inhibitor can greatly improves its selectiveness.%白钨矿与萤石、方解石等含钙矿物表面性质相似,可浮性相近,在浮选体系中难以实现白钨矿与它们的高效分离和有效回收,因此在研究白钨选矿浮选捕收剂的同时,开展对含钙脉石矿物高效分离抑制剂的研究至关重要.文章综述了近年来白钨矿与含钙脉石矿物分离抑制剂的研究现状,详细阐述了多种无机抑制剂和有机抑制剂的抑制机理和应用,并结合当前白钨矿与含钙矿物抑制剂的研究进展,认为开发对含钙矿物具有高效抑制性能的药剂引入特性基团增强抑制剂的亲水性,能达到提高其选择性的目的,最后探讨了抑制剂研究的新方向.【期刊名称】《中国钨业》【年(卷),期】2016(031)001【总页数】6页(P52-57)【关键词】白钨矿;萤石;方解石;抑制剂,机理【作者】李有余;张英;宋国军;秦雪聪【作者单位】昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室,云南昆明 650093;昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室,云南昆明 650093;昆明理工大学国土资源工程学院,云南昆明 650093;昆明理工大学国土资源工程学院,云南昆明 650093;昆明理工大学国土资源工程学院,云南昆明 650093【正文语种】中文【中图分类】TD952我国的白钨矿床具有钨品位低、嵌布粒度细等特点,白钨矿(CaWO4)、萤石(CaF2)、方解石(CaCO3)是白钨矿床中三种主要含钙矿物,其中白钨矿和萤石是具有工业利用价值的含钙矿物,方解石由于含量和价值低而作为脉石矿物。
层间阴离子对四元水滑石超分子作用力的影响_英文_胡军
层间阴离子对四元水滑石超分子作用力的影响胡军施炜倪哲明*刘娇薛继龙(浙江工业大学化学工程与材料学院,先进催化材料实验室,杭州310032)摘要:构建一价阴离子(X=F -,Cl -,Br -,I -,NO -3,OH -)插层铜锌镁铝四元水滑石(CuZnMgAl-X)周期性计算模型,采用密度泛函理论(DFT),选取CASTEP 程序模块,对体系进行几何全优化,从结合能、结构参数、Mulliken 布居、氢键布居、态密度等角度研究了不同层间阴离子的分布形态以及其对主客体间超分子作用的影响.结果表明,随着CuZnMgAl-X 体系层间阴离子电负性的减弱,电子逐渐从层间阴离子向层板发生转移,主客体间静电作用力逐渐减小,氢键强度逐渐降低,禁带宽度逐渐变窄,体系电子更易向高能级发生跃迁,稳定性逐渐下降.此外,Cu 的掺杂使得CuZnMgAl-X 体系的价带顶向高能量处发生偏移,禁带宽度较传统水滑石体系更窄,稳定性更低,进一步解释了含铜水滑石较难合成的原因.关键词:密度泛函理论;铜锌镁铝四元水滑石;不同层间阴离子;超分子作用力中图分类号:O641Influence of Interlayer Anion on Supermolecular Interaction inQuaternary HydrotalcitesHU JunSHI WeiNI Zhe-Ming *LIU JiaoXUE Ji-Long(Laboratory of Advanced Catalytic Materials,College of Chemical Engineering and Materials Science,Zhejiang University of Technology,Hangzhou 310032,P .R.China )Abstract:A periodic interaction model with different intercalated anions (X=F -,Cl -,Br -,I -,NO -3,OH −)isproposed for the CuZnMgAl quaternary hydrotalcites (CuZnMgAl-X).Based on density functional theory,the CuZnMgAl-X geometry was optimized using the CASTEP program.The distribution of anions in the interlayer,and the supra-molecular interaction between host layer and guest anions were investigated by analyzing binding energies,geometric parameters,Mulliken populations,hydrogen-bonding and densities of states.A decreased electronegativity of interlayer anion caused a transfer of charge from guest anions to host layer and a gradual decrease in the strength of electrostatic interaction and hydrogen bonding.The system band gap narrowed,electrons transferred to higher energy levels more easily,and the overall stability of the system decreased.The Cu dopant caused a deviation in CuZnMgAl-X valence band to high pared with traditional layered double hydroxides,the band gap narrowed and stability decreased,accounting for the difficulty in preparing copper-containing hydrotalcites.Key Words:Density functional theory;Cu-Zn-Mg-Al quaternary hydrotalcite;Different intercalatedanions;Supra-molecular interaction[Article]doi:10.3866/PKU.WHXB201301072物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin .2013,29(3),491-497March Received:November 9,2012;Revised:January 7,2013;Published on Web:January 7,2013.∗Corresponding author.Email:jchx@;Tel:+86-138********.The project was supported by the National Natural Science Foundation of China (51002137).国家自然科学基金(51002137)资助项目ⒸEditorial office of Acta Physico-Chimica Sinica1引言层状双金属氢氧化物(LDHs)又称水滑石类化合物或阴离子粘土,1,2它是一类由带正电的金属氢氧化物为主体层板,层间具有可交换阴离子的层柱状化合物,由于该类化合物主体层板金属的可调控性以及层间阴离子的可交换性,使其在催化、吸附、491Vol.29 Acta Phys.-Chim.Sin.2013阻燃、离子交换等领域具有广泛的应用前景.1-5随着水滑石制备技术的进步及其应用领域的拓宽,层间阴离子调变以及多元水滑石的合成越来越受到人们的关注.6-9Parida和Mohapatra6曾合成了一系列不同阴离子插层的ZnFe-LDHs,比较了它们对于含氮染料的光降解活性,发现不同阴离子插层的ZnFe-LDHs之间显示出了不同的催化性能;王松林等7研究了不同阴离子插层的MgAl-LDHs阻燃剂,结果表明层间阴离子的不同会影响LDHs的阻燃效果;吴健松等8采用水热法合成了排列规整、粒度均匀的CuZnMgAl四元水滑石,探讨了适宜的合成条件.王军涛等9将CuZnMgAl四元水滑石用于废水中Pb2+的吸附,性能优越.但是,由于LDHs层间阴离子排布的无序性和多元水滑石层板构成的复杂性,目前要从实验角度精确探求阴离子在多元LDHs层间的排布情况、电子性质以及主客体超分子作用还存在相当大的困难,有必要引入计算机模拟技术.密度泛函理论(DFT)10,11是一种采用电子密度分布函数来研究多电子体系电子结构的量子力学方法,目前已被广泛应用于研究水滑石体系的结构参数、成键状况、作用能、电子密度等性质.Fraccarollo 等12曾以MgAl-LDHs为主体,采用混合密度泛函B3LYP方法讨论了CO2-3、NO-3、Cl-、I-、I-3插层LDHs 的层间排布、结构参数,并在此基础上与实验值进行比较,吻合性较好.本课题组曾利用DFT总结了一价阴离子插层MgAl-LDHs的相互作用规律及微观结构性质;13此外,还曾探讨了CuZnMgAl-LDHs 的层板排布方式和结构稳定性.14基于以上原因,本文采用密度泛函理论,构建了一系列一价阴离子(F-,Cl-,Br-,I-,OH-,NO-3)插层的铜锌镁铝四元水滑石模型,从结合能、结构参数、Mulliken布居、氢键布居、态密度等角度研究了层间阴离子的分布形态以及其对主客体间超分子作用的影响,为多元水滑石的阴离子插层改性提供理论参考.2计算模型与方法以2H堆积模式1,2构建了铜锌镁铝四元水滑石主体层板[Cu2Zn2Mg2Al2(OH)16]X2,记作CuZnMgAl-X,其中X为以下几种一价阴离子:F-、Cl-、Br-、I-、NO-3、OH-,将层间阴离子分为两类:A类为单原子层间阴离子,B类为多原子层间阴离子.采用先前工作中13,14证实的Cu在晶胞顶点,Al在晶胞中心的层板排布方式,选取层间阴离子处于较稳定的Hcp-Al位且位于层板间中心位置的构型为初始模型,如图1所示.通过Material Studio5.5软件中CASTEP模块,15利用局域密度近似(LDA)泛函下的CA-PZ基组16对模型进行几何全优化.其中,原子电子采用超软赝势,17截止能量为330.0eV,自洽场计算的误差为2×10-6eV·atom-1,能带结构在布里渊区k矢量的选取为4×4×1,基态能量选用Pulay密度混合算法,18整体电荷数为0,电子的计算采用自旋极化方法,同时优化晶胞,其它参数设置为程序的默认值.图2列出了所有体系最终优化后的结构和氢键分布图.3结果与讨论3.1结合能为估计结构的稳定性,现定义CuZnMgAl-X体系的结合能ΔE CuZnMgAl-X为:ΔE CuZnMgAl-X=E CuZnMgAl-X-(16E H+16E O+2E X+2E Cu+2E Zn+2E Mg+2E Al)其中E CuZnMgAl-X为优化后CuZnMgAl-X体系的能量,E N=-25295.7kJ·mol-1、E H=-1169.2kJ·mol-1、E O= -41364.3kJ·mol-1、E F=-63301.9kJ·mol-1、E Cl=-39180.6 kJ·mol-1、E Br=-35232.9kJ·mol-1、E I=-30233.4kJ·mol-1、E Cu=-129759.8kJ·mol-1、E Zn=-165066.0kJ·mol-1、E Mg=-93770.7kJ·mol-1、E Al=-5114.7kJ·mol-1,分别为各原子的能量,体系的结合能结果列于表1中.从表1可以看出,CuZnMgAl-X体系的总势能绝对值顺序为:CuZnMgAl-NO3>CuZnMgAl-F> CuZnMgAl-OH>CuZnMgAl-Cl>CuZnMgAl-Br> CuZnMgAl-I,与层间阴离子电负性大小相一致.结合能绝对值顺序为:CuZnMgAl-NO3>CuZnMgAl-OH> CuZnMgAl-F>CuZnMgAl-Cl>CuZnMgAl-Br> CuZnMgAl-I,B类水滑石的结合能均大于A类水滑石,且A类和B类水滑石的结合能均随着层间阴离子电负性的减弱而降低,体系稳定性逐渐下降.3.2结构参数表2列出了优化后CuZnMgAl-X体系的结构参数.晶胞参数a值和b值的大小主要归因于层板金属离子半径的影响,即在CuZnMgAl-X体系中,a、b 主要与晶胞棱上的Cu-O、Zn-O、Mg-O、Al-O 键长大小相关.2从表2可以看出,对于A类水滑石, a、b值随着层间阴离子电负性的减弱而增大,键长492胡军等:层间阴离子对四元水滑石超分子作用力的影响No.3l Cu-O、l Mg-O、l Zn-O随着层间阴离子电负性的减弱而呈减小趋势,l Al-O随着层间阴离子电负性的减弱而增大;对于B类水滑石,a、b值随着层间阴离子电负性的减弱而减小,l Cu-O、l Mg-O、l Zn-O随着层间阴离子电负性的减弱而增大,l Al-O随着层间阴离子电负性的减弱而减小,故可认为l Al-O在决定层板a、b大小中起决定性作用.晶胞参数c值(层间距d c=0.5c)为层板厚度和层间通道的加和,其不仅受到层板金属离子半径的影响,还受到主客体间作用力大小的影响.2由表2可知,层间距会随着层间阴离子的不同而改变.对于A 类水滑石,层间距随着层间阴离子电负性的减弱而增大,这主要是由于随着电负性的减弱,体系结合能逐渐降低(数据见表1),主客体作用力逐渐减小,从而使得c值增大;对于B类水滑石,层间距反而随着层间阴离子电负性的减弱而减小,这可能是由于NO-3基团较大,所产生的空间效应所造成的.3.3Mulliken布居分析Mulliken布居是Mulliken20提出的一种基于电子轨道来定量描述体系电荷分布情况的方法,它常用于分析相同基组下体系的电荷变化趋势,间接地讨论分子内相互作用力的强弱.因此,为了进一步研究CuZnMgAl-X体系中主体层板与客体阴离子间的作用力变化,表3、表4、表5分别列出了各体系的键布居、原子电荷布居和原子轨道布居(对上下层板、层间阴离子、各原子的轨道布居作了平均处理).图2CuZnMgAl-X优化构型和层间氢键分布情况Fig.2Geometry structures and distribution of hydrogen-bonding between layers of CuZnMgAl-XType ABSystemCuZnMgAl-FCuZnMgAl-ClCuZnMgAl-BrCuZnMgAl-ICuZnMgAl-NO3CuZnMgAl-OHE CuZnMgAl-X-LDHs/(kJ·mol-1)-1618392.7050-1569795.3548-1561805.6041-1551675.2222-1766735.6609-1577915.8400ΔE CuZnMgAl-X-LDHs/(kJ·mol-1)-23830.5050-23475.7548-23381.4354-23250.0222-28336.8190-24890.4400Electronegativity of anion193.983.162.962.664.583.51表1CuZnMgAl-X的结合能(ΔE)Table1Binding energy(ΔE)of CuZnMgAl-X图1CuZnMgAl-X主客体计算模型Fig.1Host-guest calculation models ofCuZnMgAl-X493Vol.29 Acta Phys.-Chim.Sin.2013从图2和表3数据可以看出,层板上的金属离子和氧原子之间不仅存在着离子键,同时还具有共价键.层间阴离子与层板金属相距较远,它们之间主要是较弱的静电作用力,总体表现为静电吸引.从表4数据可以看出,当阴离子插层后,其电荷布居由-1.000e分别降低为-0.6800e、-0.6500e、-0.6300e、-0.6300e、-0.7500e、-0.5800e,层板布居由1.000e 分别降低为0.6906e、0.6552e、0.6296e、0.6268e、0.7698e、0.5700e.由此可见,部分电子由层间客体阴离子向主体层板发生了转移.对于A类和B类水滑石,层板及层间阴离子电荷均随着层间阴离子电负性的减弱而减小,说明其静电作用力逐渐减弱.表5中列出了CuZnMgAl-X体系的原子轨道布居,定量地分析了不同原子轨道对化学键成键的贡献.各原子轨道的初始电子分布为:H为1s1,O为2s22p4,Al为3s23p1,Mg为2p63s2,Cu为4s13d10,Zn为4s23d10,优化后层板中Cu、Zn、Mg、Al的s轨道上的电子发生了大幅降低,说明s轨道上的电子发生了一定程度的离域.同时,Mg、Al的p轨道上的电子被氧原子定域,这说明了CuZnMgAl-X层板中的金属离子和羟基间同时存在着离子键和共价键,与表3 Mulliken键布居的分析结果相一致.System CuZnMgAl-F CuZnMgAl-Cl CuZnMgAl-Br CuZnMgAl-I CuZnMgAl-NO3 CuZnMgAl-OHQ(H)0.39880.39250.38500.38340.39940.3806Q(O)-0.9581-0.9556-0.9513-0.9488-0.9563-0.9506Q(Mg)1.95501.97001.97001.97001.98001.9050Q(Al)1.55001.56001.56001.56001.54001.5500Q(Zn)1.00000.95000.97000.96001.01501.0150Q(Cu)0.66000.68000.66000.66000.69000.6600Q(layer)0.69060.65520.62960.62680.76980.5700Q(X)-0.6800-0.6500-0.6300-0.6300-0.7500-0.5800System CuZnMgAl-F CuZnMgAl-Cl CuZnMgAl-Br CuZnMgAl-I CuZnMgAl-NO3 CuZnMgAl-OHQ(Cu-O)0.24250.23170.23920.23920.23170.2367Q(Al-O)0.36330.36670.36830.36830.37000.3700Q(Mg-O)-0.9525-0.9592-0.9633-0.9650-0.9675-0.9033Q(Zn-O)0.20750.23330.22080.21920.22670.2150Q(H-O)0.58560.59000.59750.59690.60380.5763表4CuZnMgAl-X的Mulliken原子电荷布居(e)Table4Mulliken atomic population(e)of CuZnMgAl-X表3CuZnMgAl-X的Mulliken成键布居(e)Table3Mulliken bond population(e)of CuZnMgAl-X表5CuZnMgAl-X的原子轨道布居Table5Atomic orbital populations of CuZnMgAl-XSystem CuZnMgAl-F CuZnMgAl-Cl CuZnMgAl-Br CuZnMgAl-I CuZnMgAl-NO3 CuZnMgAl-OHH1s0.621s0.611s0.621s0.621s0.621s0.60O2s1.862p5.102s1.862p5.102s1.862p5.102s1.862p5.102s1.852p5.102s1.852p5.10Cu4s0.523d9.374s0.513d9.374s0.513d9.374s0.513d9.374s0.533d9.384s0.523d9.37Zn4s0.343d9.994s0.403d9.994s0.383d9.994s0.373d9.994s0.343d9.994s0.353d9.99Mg3s0.332p5.723s0.322p5.713s0.322p5.713s0.322p5.713s0.332p5.773s0.332p5.69Al3s0.563p0.893s0.553p0.893s0.553p0.903s0.553p0.903s0.553p0.903s0.553p0.91X2s1.982p5.703s1.973p5.684s1.974p5.665s2.005p5.632s1.222p3.24/2s1.842p4.592s1.892p5.10/1s0.60表2CuZnMgAl-X的晶胞参数和键长数据Table2Lattice parameters and bond length data of CuZnMgAl-Xa,b:the sum of lattice parameters a and bSystemCuZnMgAl-F CuZnMgAl-Cl CuZnMgAl-Br CuZnMgAl-I CuZnMgAl-NO3 CuZnMgAl-OHLattice length/nma,b1.20941.21201.21221.21261.21761.2107c1.35021.53831.62011.68791.52771.3687Bond length/nml Al-O0.18820.18840.18840.18850.18930.1887l Cu-O0.20810.20740.20750.20710.20720.2084l Mg-O0.20670.20670.20650.20650.20670.2078l Zn-O0.20900.20860.20860.20830.20840.2085494胡军等:层间阴离子对四元水滑石超分子作用力的影响No.3此外,层间阴离子的初始原子轨道分别为:F为2s22p5,Cl为3s23p5,Br为4s24p5,I为5s25p5,N为2s22p3,H为1s1,O为2s22p4.在CuZnMgAl-X体系中,优化后不同层间阴离子的原子轨道布居分别为:F-(2s1.982p5.70),Cl-(3s1.973p5.68),Br-(4s1.974p5.66),I-(5s2.005p5.63),NO-3(N2s1.222p3.24、O2s1.842p4.59),OH-(O2s1.892p5.10、H1s0.60).由此可见,大部分层间阴离子s轨道上的电子被定域,而层间阴离子p轨道上的电子则呈现出了轻度的离域现象.层板金属Mg、Al的p轨道和层间阴离子的s轨道对整个体系的离子键部分贡献较大,而层板金属阳离子的s轨道和层间阴离子的p轨道对体系的共价键部分贡献较大.3.4氢键布居分析氢键会对水滑石的微观结构及稳定性造成较大影响,它是一种广泛存在的分子间弱作用力,它是一种特殊的分子间或分子内作用,其键长、键角和方向性等各个方面都可以在相当大的范围内变化,具有一定的适应性和灵活性.21-23一般情况下,氢键的数目越多,键长越短,键角越接近180°,氢键的强度越强.表6和图3分别列出了CuZnMgAl-X体系的氢键布居及分布图.可以看出,CuZnMgAl-X体系中电负性较强的层间阴离子与层板多个羟基上的氢原子形成了多重氢键,故该体系存在复杂的氢键网络.结合表6数据和图3可以看出以下几个特征:(1)对于A类水滑石和B类水滑石,氢键强度均随着层间阴离子电负性的减弱而降低,氢键强度顺序为:表6CuZnMgAl-X的氢键参数Table6Hydrogen bond parameters of CuZnMgAl-X0.1850 0.1953 0.2021 0.1965 0.1898 0.1977 0.1799 0.1853 0.2038 0.1901 0.19410.1918152.99148.38147.67150.74152.21147.50154.58151.87146.84152.41150.25150.710.23500.23300.23330.23610.23630.23180.23480.22910.23640.23820.23380.2340151.27153.02151.54150.53151.36153.04151.16153.07151.63150.25151.66151.810.25550.25610.24680.25270.25730.25820.25220.24720.25180.24790.25130.2521151.50151.19155.56152.06150.58150.51153.64155.22153.17153.70152.01152.720.26010.27810.26600.25880.27840.27190.26350.26750.27190.26250.26790.2677155.94151.46152.52154.30149.33152.87154.70153.61150.85153.12151.38152.920.16800.18480.21950.17110.19770.16000.19690.16360.20430.26850.1953163.66155.57157.31163.22151.91164.01156.12164.26155.88134.51156.720.23870.18950.18920.23510.18070.24490.19620.23790.18250.18930.24590.19200.25000.23810.18240.17970.23690.18490.24340.18940.25100.25570.2465139.27167.47168.19138.76170.62138.57166.00138.62170.38167.50137.94167.00137.90138.37170.10170.58138.69167.80138.87166.49138.82137.55138.25The data in the last line correspond to average values.图3CuZnMgAl-X中氢键键角与键长的关系Fig.3Relationship between bond angle and bond lengthof hydrogen-bonding in CuZnMgAl-X495Vol.29Acta Phys.-Chim.Sin.2013CuZnMgAl-NO3>CuZnMgAl-F>CuZnMgAl-OH>CuZnMgAl-Cl>CuZnMgAl-Br>CuZnMgAl-I,与CuZnMgAl-X体系的总势能顺序一致;(2)对比其他体系,CuZnMgAl-NO3的氢键强度最强,在图3左上角和右下角均有分布,原因是其层间阴离子NO-3中的N、O均可作为氢键受体,形成的氢键数目最多;(3)CuZnMgAl-OH的氢键数目虽然小于CuZnMgAl-Cl、CuZnMgAl-Br、CuZnMgAl-I,但是其氢键强度却比它们大,这主要是由于Cl-、Br-、I-的离子半径较大,较难形成氢键所导致的;(4)从计算所得的氢键键长结果来看,所形成的氢键键长总体比一般的O-H…O型氢键键长(0.240-0.276nm)和O-H…N型氢键键长(0.280-0.300nm)均略短,氢键强度更强,这主要是LDHs主客体间静电与氢键协同效应的结果.3.5态密度分析为了进一步了解CuZnMgAl-X体系中主客体间的相互作用,本文计算了CuZnMgAl-X体系的单独层板态密度、总态密度以及层间阴离子的分态密度,并将其用图表示出来(见图4,图5).图4为CuZnMgAl-X体系单独层板的态密度分布图.从图中可以看出,CuZnMgAl-X体系主体层板的态密度主要由四个区域组成:(1)价带底部(-40--30eV),其态密度的贡献主要来自于Mg的2p轨道;(2)价带中部(-25--17eV),其态密度贡献主要来自于H的1s轨道,O的2s轨道以及Al的3s、3p轨道;(3)价带顶部(-10-0eV),其态密度贡献主要来自于O的2p轨道,Zn的3d轨道,Cu的3d 轨道以及Al的3s、3p轨道,Zn的4s、3p轨道和Cu的4s、3p轨道也有部分贡献;(4)导带底部(1-8eV),其态密度贡献主要来自于H的1s轨道,Cu的4s、3p轨道以及Zn的4s、3p轨道.图5为CuZnMgAl-X体系的总态密度以及层间阴离子的分态密度,从图中可以看出以下几个特征:(1)当层间阴离子插层进入水滑石后,层板O、H 之间成键作用逐渐减弱,层板金属与层间阴离子之间相互作用逐渐增强,从而导致CuZnMgAl-X体系比单独CuZnMgAl层板稳定性更强;(2)CuZnMgAl-X体系的禁带宽度较传统MgAl-LDHs的禁带宽度(2-5eV)13,24,25小很多,这主要是由于层板中Cu的掺杂导致了LDHs价带顶向导带底靠拢,禁带宽度变窄,稳定性下降,与文献26-29报道的含铜水滑石较难合成相符;(3)对于A类和B类水滑石,随着层间阴离子电负性的减弱,禁带宽度逐渐变窄,体系电子更易向高能级发生跃迁,稳定性逐渐下降,与结合能分析结果相一致;(4)对于A类和B类水滑石,随着层间阴离子电负性的减弱,层间阴离子的s轨道和p轨道总体向高能量处发生偏移,这主要是由于层间阴离子和层板间的氢键网络强度逐渐减弱所导致的,与氢键分析结果相一致.4结论采用赝势平面波法计算了CuZnMgAl-X(X=图4CuZnMgAl-X体系主体层板的态密度(DOSs) Fig.4Densities of states(DOSs)of layer of theCuZnMgAl-X 图5CuZnMgAl-X体系及其层间阴离子的态密度Fig.5DOSs of the CuZnMgAl-X and theanions 496胡军等:层间阴离子对四元水滑石超分子作用力的影响No.3F-,Cl-,Br−,I-,OH-,NO-3)的结构参数和电子性质,探讨了不同层间阴离子对CuZnMgAl-X体系主客体间超分子作用的影响,结论如下:(1)CuZnMgAl-X体系主客体间存在着较强的超分子作用力,主要包括静电和氢键作用.对于A 类和B类水滑石,随着层间阴离子电负性的减弱,电子逐渐从层间阴离子向层板发生转移,主客体间静电作用力逐渐减小,氢键强度逐渐降低,两者协同作用导致体系结合能逐渐下降,稳定性降低.(2)CuZnMgAl-X体系中同时存在着离子键与共价键,层板金属Mg、Al的p轨道和层间阴离子的s 轨道对体系的离子键部分贡献较大,而层板金属离子的s轨道和层间阴离子的p轨道对体系的共价键部分贡献较大.(3)Cu等过渡金属的掺杂导致了CuZnMgAl-X 体系的价带顶向高能量处发生偏移,禁带宽度较传统MgAl-LDHs体系更窄,稳定性更低.对于A类和B类水滑石,随着层间阴离子电负性的减弱,禁带宽度逐渐降低,体系电子更易向高能级发生跃迁,稳定性逐渐下降.References(1)Cavani,F.;Trifiro,F.;Vaccari,A.Catal.Today1991,11,173.doi:10.1016/0920-5861(91)80068-K(2)Duan,X.;Zhang,F.Z.Intercalation and Assembly Chemistry ofInorganic Supramolecular Materials;Science Press:Beijing,2009.[段雪,张法智.无机超分子材料的插层组装化学.北京:科学出版社,2009.](3)Bellotto,M.;Rebours,B.;Clause,O.;Lynch,L.J.Phys.Chem.1996,100,8535.doi:10.1021/jp960040i(4)Leuteritz,A.;Kutlu,B.;Meinl,J.;Wang,D.;Das,A.;Wagenknecht,U.;Heinrich,G.Mol.Cryst.Liq.Cryst.2012,556,107.doi:10.1080/15421406.2012.635923(5)Asouhidou,D.D.;Triantafyllidis,K.S.;Lazaridis,N.K.;Matis,K.A.J.Chem.Technol.Biot.2012,87,575.doi:10.1002/jctb.v87.4(6)Parida,K.M.;Mohapatra,L.Chem.Eng.J.2012,179,131.doi:10.1016/j.cej.2011.10.070(7)Wang,S.L.;Huang,J.L.;Chen,F.S.China Pulp&Paper2012,31,14.[王松林,黄建林,陈夫山.中国造纸,2012,31,14.](8)Wu,J.S.;Xiao,Y.K.;Lin,Y.P.;Liang,H.Q.;Li,C.Y.;He,H.Y.Journal of Synthetic Crystals2010,39,817.[吴健松,肖应凯,林意萍,梁海群,李春银,何海英.人工晶体学报,2010,39,817.](9)Wang,J.T.;Chen,L.P.;Zhan,Z.K.Chemical Research2012,23,39.[王军涛,陈兰萍,詹正坤.化学研究,2012,23,39.] (10)Heermann,puter Simulation Methods in TheoreticalPhysics;Springer-Verlag Press:Heidelberg,1990;pp387-439.(11)Leach,A.R.Molecular Modelling:Principles and Applications;Addison Wesley Longman Limitted Press:Essex,2001;pp26-454.(12)Fraccarollo,A.;Cossi,M.;Marchese,L.Chem.Phys.Lett.2010,494,274.doi:10.1016/j.cplett.2010.06.029(13)Xu,Q.;Ni,Z.M.;Mao,J.H.J.Mol.Struct.-Theochem2009,915,122.doi:10.1016/j.theochem.2009.08.033(14)Wang,L.G.;Shi,W.;Yao,P.;Ni,Z.M.;Li,Y.;Liu,J.ActaPhys.-Chim.Sin.2012,28,58.[王力耕,施炜,姚萍,倪哲明,李远,刘娇.物理化学学报,2012,28,58.]doi:10.3866/PKU.WHXB20122858(15)Segall,M.D.;Linda,P.;Probert,M.;Pickard,C.;Hasnip,P.;Clark,S.;Payne,M.J.Phys.-Condes.Matter2002,14,2717.doi:10.1088/0953-8984/14/11/301(16)Ceperley,D.M.;Aider,B.J.Phys.Rev.Lett.1980,45,566.doi:10.1103/PhysRevLett.45.566(17)Vanderbilt,D.Phys.Rev.B1990,41,7892.doi:10.1103/PhysRevB.41.7892(18)Kresse,G.;Furthmiiller,J.Phys.Rev.B1996,54,11169.doi:10.1103/PhysRevB.54.11169(19)Steven,c.1985,62,101.doi:10.1021/ed062p101(20)Mulliken,R.S.J.Chem.Phys.1955,23,1833.doi:10.1063/1.1740588(21)Scheiner,S.Hydrogen Bonding;Oxford University Press:NewYork,1997.(22)Jeffrey,G.A.An Introduction to Hydrogen Bond;OxfordUniversity Press:New York,1997.(23)Desiraju,G.;Steiner,T.The Weak Hydrogen Bond;OxfordUniversity Press:New York,1999.(24)Hong,Y.;Min,W.;Jing,M.;Evans,D.G.;Xue,D.J.Phys.Chem.A2010,114,7369.doi:10.1021/jp9121003(25)Cao,G.T.;Xu,Q.;Ni,Z.M.Acta Chim.Sin.2011,69,2947.[曹根庭,胥倩,倪哲明.化学学报,2011,69,2947.](26)Velu,S.;Suzuki,K.;Osaki,T.Catal.Lett.1999,62,159.doi:10.1023/A:1019023811688(27)Morpurgo,S.;Jacono,M.L.;Porta,P.J.Solid State Chem.1996,122,324.doi:10.1006/jssc.1996.0121(28)Ni,Z.M.;Yao,P.;Liu,X.M.;Wang,Q.Q.;Xu,Q.Chem.J.Chin.Univ.2010,31,2438.[倪哲明,姚萍,刘晓明,王巧巧,胥倩.高等学校化学学报,2010,31,2438.](29)Liu,J.;Yao,P.;Ni,Z.M.;Li,Y.;Shi,W.Acta Phys.-Chim.Sin.2011,27,2088.[刘娇,姚萍,倪哲明,李远,施炜.物理化学学报,2011,27,2088.]doi:10.3866/PKU.WHXB20110923497。
绿色化学 中英文翻译
Enzymic hydrolysis of steam exploded herbaceous agricultural waste(Brassica carinata) at different particule sizes在不同粒子大小情况下草本农业废弃物(芸苔属植物)的蒸汽爆炸酶水解Abstract摘要The objective of this work was to evaluate the effect of particle size on steam-explosion pretreatment of herbaceous lignocellulosicbiomass. Hemicellulose and cellulose recovery, and effectiveness of enzymic hydrolysis of the cellulosic residue is presented for steam-explosion pretreatment of an agriculture residue (Brassica carinata) using different particle sizes. The parameters tested were: particle size (2 5, 5 8 and 8 12 mm), temperature (190 and 210 8C), and residence time (4 and 8 min). The compositional analysis of filtrate and water insoluble fibre after pretreatment and enzymic digestibility data are presented. Larger steam-exploded particle (8 12 mm) results in higher cellulose and enzymic digestibilities. The use ofvery small particles in steam explosion would not be desirable in optimising the effectiveness of the process improving economy.这项工作的目的是评估效果的粒子大小对蒸汽爆破预处理木质纤维素的草本生物量。
虎眼万年青属植物化学成分研究
虎眼万年青属植物化学成分研究邹翔;刘影;曲中原;石鑫;刘欣;汪波;陈敏【摘要】通过查阅近年来国内外百合科虎眼万年青属植物相关文献,系统总结整理了Ornithogalum saundersiae、Ornithogalum thyrsoides和Ornithogalum caudatum三种研究较多的植物的化学成分,发现该属植物主要含有皂苷类、黄酮类、三萜类、生物碱类、多糖类和挥发油类等化学成分.通过系统的总结虎眼万年青属植物化学成分研究进展,为该属植物的研究开发提供了有价值的参考.%In this paper, through consulting the literatures of Liliaceae Ornithogalum plants at home and abroad in recent years, the chemical compositions ofO.Saundersiae, O.thyr-soides and O.caudatum were systematically summarized.It was found that the Ornithogalum plants mainly contained saponins, flavonoids, triterpenes, alkaloids, polysaccharides, vola-tile oils, and so on.This paper provided a valuable reference for research and development of Ornithogalum plants.【期刊名称】《哈尔滨商业大学学报(自然科学版)》【年(卷),期】2016(032)002【总页数】6页(P136-141)【关键词】虎眼万年青属;化学成分;甾体皂苷类;研究进展【作者】邹翔;刘影;曲中原;石鑫;刘欣;汪波;陈敏【作者单位】哈尔滨商业大学药物研究所博士后科研工作站,哈尔滨150076;哈尔滨商业大学药物研究所博士后科研工作站,哈尔滨150076;哈尔滨商业大学药学院,哈尔滨150076;哈尔滨商业大学药学院,哈尔滨150076;哈尔滨商业大学药物研究所博士后科研工作站,哈尔滨150076;哈尔滨商业大学药物研究所博士后科研工作站,哈尔滨150076;哈尔滨商业大学药物研究所博士后科研工作站,哈尔滨150076【正文语种】中文【中图分类】R284百合科(Liliaceae)虎眼万年青属(Orinithogalum)植物原产于非洲南部,分布于东半球温带地区,约150种,常用于切花和园林绿化.目前虎眼万年青O.caudatum在我国大面积引种栽培.对虎眼万年青属植物化学成分的研究源于20世纪90年代初[1],迄今为止,研究较多的主要集中于 O. saundersiae,O.thyrsoides,O.caudatum等三种植物.据文献报道,从该属植物中分离得到的甾体皂苷类化合物具有显著的抗肿瘤作用[2-3].虽然这三种均属同属,但是具体成分不尽相同,下面将对这三种植物中的主要成分做以综述.1992年由日本科学家Kubo等[1]首次从百合科植物虎眼万年青O.saundersiae中获得抗肿瘤活性较强的不饱和多氧化酰化胆甾皂苷OSW-1[4].经过药理活性筛选结果显示,在适当的剂量下,OSW-1的抗癌活性强于紫杉醇、顺铂、阿霉素和喜树碱,而对正常细胞基本无毒性[5].OSW-1抗肿瘤活性显著,但是植物中的含量低而且较难获得,很难应用于临床.为此,很多科研人员致力于该化合物及其衍生物的合成[6-7],同时对O.saundersiae及同属植物的化学成分进行了深入的研究.目前,O.saundersiae中所含有的化学成分见表1. 虎眼万年青(Ornithogalum thyrsoides)具有良好的抗肿瘤作用.我国协和医学科学院从国外引种栽培O.thyrsoides,对它的抗肿瘤化学成分进行研究[11].目前,O.thyrsoides的抗肿瘤药效物质基础研究逐渐深入,发现其含有一系列的OSW-1的类似物,其中甾体糖苷类化合物对HL-60人早幼粒白血病细胞和HSC-2口腔鳞状细胞癌的IC50值范围分别为1.6~5.3μg/mL和19.9~34.6μg/mL [12].O.thyrsoides中化合物种类和类型较O.saundersiae多,主要的成分为胆甾烷苷和螺甾烷苷类[11-14].以下为该植物的化学成分,具体见表2.虎眼万年青(Ornithogalum caudatum)20世纪中叶作为观赏花卉由朝鲜传入我国东北地区,现广泛栽培于吉林省长白县.长白山中药研究所对它的抗肿瘤化学成分和药理作用进行了深入研究,以O.caudatum为君药研制的复方万年青胶囊已应用于肺癌、肝癌、胃癌化疗合并用药,具有减毒增效的作用.研究表明,虎眼万年青总皂苷能够抑制人乳腺癌细胞MDA-MB-231和人肝癌细胞HepG2的增殖,其增殖抑制作用主要是通过诱导细胞凋亡实现的[15-17].陈瑞战等[18]证明了虎眼万年青多糖OCAP-2-2对小鼠S180肉瘤和人白血病细胞K562有明显的抑制作用.化学成分研究表明,O.caudatum主要含有甾体皂苷和黄酮类成分[19-22],具体见表3.此外,赫玉芳等[27]对虎眼万年青中的挥发油类成分进行研究,主要含有9,12-十八碳二烯酸、5,22-豆甾二烯-3-醇、γ-谷甾醇、菜油甾醇和正十六酸5种成分,占总挥发油的57.65%[25],除此之外,还有2-庚烯醛,5-羟甲基-2-呋喃甲醛,1,7,7-三甲基双环[2,2,1]-2-乙酸庚酯,2,4-二癸烯醛,3,7,7-三甲基-11甲烯基-螺旋十一碳-2-烯等[28].近年来,虎眼万年青属植物抗肿瘤作用已引起国内外科学家的重视,开展了大量实验研究工作,也取得了一定的成果.目前,该属甾体皂苷类抗肿瘤活性成分是学术界研究的重点.随着虎眼万年青属植物化学成分研究的不断深入,抗肿瘤活性成分逐步阐明,以虎眼万年青为主要原料的中成药品种逐渐增多,虎眼万年青在肿瘤治疗方面必将得到广泛应用.【相关文献】[1]KUBO S,MIMAKIY,TERAO M,et al.Acylated cholestane glycosides from the bulbs of Ornithogalum saundersiae[J].Phytochemistry,1992,31(11):3969-3973. [2] ZHOU Y,GARCIA-PRIETO C,CARNEY D A,et al.OSW -1:A natural compound with potent anticancer activity and a novelmechanism of action[J].J.Natl.Cancer Inst.,2005,97(23):1781-1785.[3]KURODA M,MIMAKIY,SASHIDA Y.Saundersiosides CH,rearranged cholestane glycosides from the bulbs of Ornithogalum saundersiae and their cytostatic activity onHL-60 cells [J].Phytochemistry,1999,52(3):435-443.[4]谢明霞,周媛,邹坤.虎眼万年青皂苷及其衍生物研究进展[J].中国药房,2009,20(12):950-952.[5]李斌.我国率先合成高活性抗癌物质[J].科技经济市场,2000(3):46.[6]DENG S,YU B,LOU Y,etal.First totol synthesis of an exceptionally potent antitumer saponin,OSW-1[J]. Chem.,1999,64(1):202-208.[7]YUW S,JIN Z D.A new strategy for the stereoselective introduction of steroid side chain via ralkoxy vinyl cuprates:total synthesis ofa highly potentantitumor natural productOSW-1[J]. J.Am.Chem.Soc.,2001,123(14):3369-3370.[8]KURODA M,MIMAKIY.Cytotoxic cholestane glycosides from the bulbs of ornithogalum saundersiae[J].JNat.Prod.2001,64(1):88-91.[9] MIMAKIY,KURODA M,SASHIDA Y,et al.Cholestane glycosides with potent cytostatic activities on various tumor cells from Ornithogalum saundersiae bulbs[J].Bioorg Med Chem Lett,1997,7(5):633-636.[10]KURODA M,MIMAKI Y,SASHIDA Y.Cholestane rhamnosides from the bulbs of Ornithogalum saundersiae[J].Phytochemistry,1999,52(3):445-452.[11]曹秀萍.虎眼万年青中抗肿瘤活性成分的研究[D].北京:北京协和医学院,2010.[12]KURODA M,MIMAKIY,ORI K,et al.Steroidal glycosides from the bulbs of Ornithogalum thyrsoides[J].J Nat Prod,2004,67(10):1690-1696.[13]KURODA M,MIMAKI Y,YOKOSUKA A,et al.Cholestane glycosides from the bulbs of Ornithogalum thyrsoides and their cytotoxic activity against HL-60 leukemia cells [J].J Nat Prod.2002,65(10):1417-1423.[14]曹秀萍,邹建华,邱德有,等.虎眼万年青属植物Ornithoga-lum thyrsoide的甾体皂苷及黄酮类化学成分[J].天然产物研究与开发,2012,24:768-771.[15]刘旭.虎眼万年青总皂苷对乳腺癌细胞增殖与凋亡的影响及机制研究[D].南京:南京中医药大学,2012.[16]刘旭,章永红.虎眼万年青总皂苷对人乳腺癌MDA-MB -231细胞增殖及凋亡的影响[J].中药新药与临床药理,2012,23(2):121-124.[17]刘超,刘双萍.虎眼万年青皂苷对肝癌细胞HepG2增殖与凋亡的影响[J].时珍国医国药,2013(11):2634-2636.[18]陈瑞战,李世哲,刘志强,等.虎眼万年青多糖的分离纯化和抗肿瘤活性研究[J].中国药学杂志,2011,46(21):1630-1634.[19]徐暾海,徐雅娟,刘大有,等.虎眼万年青的化学成分[J].药学学报,2000,35(1):32-36.[20]TANG Y,YU B,HU J,etal.Three new homoisoflavanone glycosides from the bulbs of Ornithogalum caudatum[J].J Nat Prod,2002,65(2):218-220.[21]TANG Y,YU B,HU J,et al.The chemical constituents from the bulbs of Ornithogalum Caudatum[J].J Chin Pharm Sci, 2001,10(4):691-671.[22]白进发,刘志强,王淑敏,等.虎眼万年青单萜内酯新成分的分离及结构鉴定[J].高等学校化学学报,2005,10:1817 -1819.[23]孙亚娟,金凤燮,鱼红闪.虎眼万年青总皂苷中单体皂苷的分离纯化[J].大连工业大学学报,2010,29(5):346-348.[24]王建辉.虎眼万年青化学成分与质量控制标准研究[D].北京:北京中医药大学,2008. [25]刘大有,王开宇,张慧,等.虎眼万年青化学成分的研究(Ⅰ)[J].中草药,1998,07:443-444.[26]迪丽菲嗄尔·阿布都热一木.虎眼万年青化学成分研究[D].长春:东北师范大学,1998. [27]赫玉芳,南敏伦,张瑜,等.虎眼万年青的挥发油成分研究[J].黑龙江医药,2010,123(12):183-185.[28]曹海玲,徐旸,闫静.虎眼万年青提取物降血糖作用的实验研究[J].哈尔滨商业大学学报:自然科学版,2015,31 (2):132-134.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Applied Catalysis B:Environmental29(2001)135–145Mineralization of aniline and4-chlorophenol in acidic solution by ozonation catalyzed with Fe2+and UV A lightRoser Sauleda,Enric Brillas∗Department de Qu´ımica Fisica,Laboratori de Ciència i Tecnologia Electroqu´ımica de Materials,Facultat de Qu´ımica,Universitat deBarcelona,Mart´ıi Franauès1-11,08028Barcelona,SpainReceived8April2000;received in revised form23June2000;accepted23June2000AbstractSolutions with1.07mmol dm−3aniline or with1.38mmol dm−34-chlorophenol at pH ca.3have been treated with ozone and ozonation catalyzed with Fe2+and/or UV A.The initial mineralization rate increases as more oxidizing hydroxyl radical is produced in the medium by the catalyzed ozonations.Direct ozone treatment leads to stable oxidation products,which are quickly destroyed under UV A illumination.In the presence of Fe2+as catalyst,the degradation process is inhibited by the formation of Fe3+complexes with short organic diacids,being photodecomposed by UV A light.Each initial pollutant is destroyed at similar rate in all processes.p-Benzoquinone and nitrobenzene are identified as intermediates of aniline oxidation. The former product is only detected when high amounts of hydroxyl radical are produced by the action of Fe2+.Ammonium ion released during p-benzoquinone formation is also generated in larger extension under the same conditions.Nitrate ion reaches maximum production under UV A irradiation,indicating that generation of nitrobenzene from selective attack of O3on the amino group of aniline is photocatalyzed.Reaction of4-chlorophenol with ozone leads to4-chloro-1,3-dihydroxybenzene and4-chloro-1,2-dihydroxybenzene.The last product is produced in larger extension when high amounts of hydroxyl radical can selectively attack the initial pollutant.Chloride ion is completely lost during the further degradation of both dihydroxylated derivatives.Oxidation of all aromatic intermediates detected during aniline and4-chlorophenol degradation gives maleic acid, which is further mineralized via oxalic acid.A general reaction pathway for the degradation of each pollutant is proposed.©2001Elsevier Science B.V.All rights reserved.Keywords:Aniline;4-Chlorophenol;UV A light;Ozone;Fe(II)1.IntroductionIn the last years,a wide variety of methods are being applied to the mineralization(i.e.conversion to CO2and inorganic ions)of recalcitrant organic con-taminants in wastewaters.Among these technologies, ozonation is widely used for drinking water disinfec-∗Corresponding author.Tel.:+34-93-4021223;fax:+34-93-4021231.E-mail address:e.brillas@qf.ub.es(E.Brillas).tion and its effectiveness towards organics oxidation is well proven[1].The practical use of ozonation for wastewater treatment,however,is limited by its high energy demand.Several approaches have been taken to improve the oxidizing power of this technique lead-ing to the reduction of the required reaction time and hence,decreasing its energy cost.In this way,combi-nation of ozonation with UV light[1],homogeneous catalysts,such as H2O2[1,2]and Fe2+[3–5],and pho-tocatalysis with TiO2[6–9],has shown an important increase in its effectiveness on contaminant removal.0926-3373/01/$–see front matter©2001Elsevier Science B.V.All rights reserved. PII:S0926-3373(00)00197-1136R.Sauleda,E.Brillas/Applied Catalysis B:Environmental29(2001)135–145It is well known[1,2]that in acidic medium ozone selectively attacks organic species,usually follow-ing second-order reactions with small rate constants. When the solution is irradiated with UV light(O3/UV system),the degradation of pollutants becomes faster and non-selective because they mainly react with hydroxyl radical(OH•).For UV irradiation atλ< 300nm,this species is produced by photodissociation of H2O2previously formed from ozone photolysis[1]: O3+H2O+hν→H2O2+O2(1) H2O2+hν→2OH•(2) whereas if UV A light withλ≥300nm is utilized,di-rect reaction of ozone with H2O2produced by reaction (1)is the main source of hydroxyl radicals[1]:O3+H2O2→OH•+HO2•+O2(3) and weaker oxidizing hydroperoxyl radicals(HO2•) are also produced.Several authors[3–5]have shown that Fe2+cat-alyzes O3decomposition to generate hydroxyl radical. In fact,the catalytic O3/Fe2+system involves direct reaction of Fe2+with ozone to give the intermediate FeO2+,species that evolves to OH•[4]:Fe2++O3→FeO2++O2(4) FeO2++H2O→Fe3++OH•+OH−(5) The intermediate FeO2+is also able to oxidize Fe2+ to Fe3+at slower rate[4]:FeO2++Fe2++2H+→2Fe3++H2O(6) thus limiting the generation of hydroxyl radical for high Fe2+concentration[9].In previous work[9],the degradation of herbicide 2,4-D at pH ca.3has been comparatively tested by ozonation catalyzed with Fe2+and/or UV A light.The use of direct ozonation,as well as of the O3/Fe2+ and O3/UV A systems,leads to a partial removal of2,4-D,whereas it is completely mineralized by Fe2+catalyzed ozonation under UV A illumination (O3/Fe2+/UV A system).The highest oxidative capa-bility of the last system has been accounted for by the photoreduction of Fe3+formed in Eqs.(5)and(6)to give Fe2+and an additional OH•via photo-Fenton reaction[10]:Fe3++H2O+hν→Fe2++OH•+H+(7)Fe2+regeneration then propagates catalytic reaction (4)and larger amounts of oxidizing OH•can be formed by reaction(5).Since H2O2is generated in this system from reaction(1),more OH•is also pro-duced from the classical Fenton reaction between this species and Fe2+[11]:Fe2++H2O2→Fe3++OH•+OH−(8) and the resulting Fe3+can be photoreduced again by reaction(7).In addition,the mineralization process can be accelerated by photolysis of complexes of Fe3+with short organic diacid intermediates,such as oxalic acid[12].To gain a better knowledge on the behavior of the O3/Fe2+and O3/Fe2+/UV A systems for contaminant removal,we have undertaken a study on the degra-dation of aniline and4-chlorophenol,as models of biorefractory aromatics in wastewaters,by ozona-tion catalyzed with Fe2+and/or UV A light.Several works have shown the effective mineralization of 4-chlorophenol by chemical[13],photochemical[14], electrochemical[15]and O3/UV[16–22]treatments. Aniline degradation has also been previously stud-ied by advanced electrochemical oxidation methods [23],photocatalysis with TiO2[23]and combining photocatalysis and ozonation[6].The present paper reports the results obtained for the mineralization of 1.07mmol dm−3aniline and1.38mmol dm−3chlorophenol solutions at pH ca.3by applying the O3,O3/UV A,O3/Fe2+and O3/Fe2+/UV A systems under comparable conditions. An initial concentration1mmol dm−3of Fe2+has been chosen for the two last methods,since higher contents of this catalyst in solution do not enhance the degradation of organics due to the increase in rate of competitive reaction(6),such as found previously for 2,4-D mineralization[9].In each process considered, organic intermediates and inorganic ions released have been identified.A general reaction pathway for the degradation of every initial pollutant is proposed.2.Experimental2.1.ReagentsReagent grade aniline from Probus was doubly distilled at178–180◦C under atmospheric pressureR.Sauleda,E.Brillas/Applied Catalysis B:Environmental29(2001)135–145137before use.Reagent grade4-chlorophenol sup-plied by Merck was recrystallized in ethanol-water. p-Benzoquinone,nitrobenzene,maleic acid,oxalic acid and4-chloro-1,3-dihydroxybenzene were reagent grade from Merck and Fluka.4-Chloro-1,2-dihydrox-ybenzene was synthesized by chlorination of pyro-catechol with SO2Cl2at room temperature following a standard method described in the literature[24]. Analytical grade sulfuric acid was purchased from Merck.Ferrous sulfate heptahydrate,puriss.p.a.,was supplied by Fluka.Acidic solutions were prepared with water obtained from a Millipore Milli-Q system, with a conductivity lower than6×10−8 −1cm−1.2.2.Ozonation systemAll degradation experiments were performed with a thermostated cylindrical vessel of150ml capacity. Ozone was generated with an Erwin Sander300.5 ozonizer fed with pure O2as carrier gas at15l h−1.A production of0.5g O3h−1was determined by standard iodometry.The resulting O2+O3mixture was supplied to the solution through a stainless steel diffuser.A6W Philipsfluorescent black light blue tube was used to irradiate the sample with UV A light, which emitted in the range300–420nm with a max-imum centered at360nm.It was placed at the top of the open vessel at4cm over the sample and the intensity of the incident light inside the solution was 8.3×10−7einstein dm−3min−1,as detected with an uranyl actinometer active to photons in the range 250–500nm.Test solutions were prepared with1.07mmol dm−3 aniline or with 1.38mmol dm−34-chlorophenol. Samples of100ml of both solutions were acidified with0.25mol dm−3H2SO4to pH ca.3and fur-ther mineralized by the O3,O3/UV A,O3/Fe2+and O3/Fe2+/UV A systems at25◦C.For the two last treat-ments,1mmol dm−3FeSO4was previously added to each sample.2.3.Product analysisThe solution pH was measured with a Crison2000 pH-meter.Mineralization of pollutants was monitored for total organic carbon(TOC)removal,which was determined on a Shimadzu5050TOC analyzer by the non purgeable organic carbon(NPOC)method.The decay in substrate concentration and the evolu-tion of stable aromatic intermediates were followed by reverse-phase chromatography with a Waters600 HPLC liquid chromatographfitted with a Spherisorb ODS25m column(150mm×4.6mm(i.d.))at room temperature,and equipped with a Waters486spec-trophotometric detector at280nm.This instrument was connected to a PS-486DX microcomputer and controlled through a Waters Baseline program.20l aliquots were injected into the liquid chromatograph and their components were separated with an eluent composed of a60:40acetonitrile/phosphate buffer(pH 3.1)mixture at1.0ml min−1.The same HPLC chro-matographfitted with an Aminex HPX87H column (300mm×7.8mm(i.d.))at35◦C,in conjunction with the spectrophotometric detector selected at210nm, were used to analyze the presence of short-chain organic acids in treated solutions by ion-exclusion chromatography.In this case,20l aliquots were also injected into the liquid chromatograph,using a 4mmol dm−3sulfuric acid solution at0.6ml min−1 as mobile phase.Ammonium ion concentration was measured on a Technicon Autoanalyzer II system fol-lowing the standard colorimetric automated phenate method[25].Treated solutions were diluted several times for measuring NH4+concentration in a linear range from5to100mol dm−3.The presence of nitrate and nitrite ions in such samples was tested by ion chromatography using a Kontron600HPLC liquid chromatographfitted with a Waters IC-Pak anion column at30◦C and equipped with a Waters spectrophotometric detector.For this technique,a borate-gluconate buffer of pH8.5was employed as eluent and100l aliquots were injected into the liq-uid chromatograph.Chloride ion concentration was determined by potentiometric titration with AgNO3 using a Metrohm Titrino702SM automatic titrator.3.Results and discussion3.1.Aniline mineralization3.1.1.TOC removalSolutions of1.07mmol dm−3aniline were adjusted at pH3.3with0.25mol dm−3H2SO4to be further de-graded during2h as maximum.The TOC abatement for the O3,O3/UV A,O3/Fe2+and O3/Fe2+/UV A138R.Sauleda,E.Brillas /Applied Catalysis B:Environmental 29(2001)135–145Fig.1.TOC removal with time for the mineralization of a 1.07mmol dm −3aniline solution at pH 3.3under the following conditions:(a,᭛)O 3+1mmol dm −3Fe 2+;(b,᭺)O 3;(c,᭝)O 3+1mmol dm −3Fe 2++UV A;(d,ᮀ)O 3+UV A.Aniline concentration decay with time during the same treatments is given as insert.Ozone flow rate 0.5g h −1;temperature 25◦C.systems is depicted in Fig.1.From these data,the min-eralization rate until 15min is found of 59(Fig.1b),101(Fig.1d),132(Fig.1a)and 154(Fig.1c)ppm TOC h −1,respectively.These results indicate that the degradation ability of the O 3system at the beginning of the process is accelerated in the presence of catalytic Fe 2+,as expected if intermediates are more quickly mineralized by OH •produced from reaction (5)than by ozone.Since a greater initial TOC decay is found for the O 3/Fe 2+system than for the O 3/UV A one,it is apparent that OH •is more efficiently generated from reaction (5)than from reaction (3).The O 3/Fe 2+/UV A treatment leads to the highest initial mineralization rate because more oxidizing OH •is produced by the simultaneous action of reactions (3),(5),(7)and (8).The relative oxidation ability of the above processes varies at longer degradation times,although the solu-tion pH slightly decreases to a value ca.3.0at the end of all treatments.Thus,78%of organics are removed after 1h of direct ozonation (see Fig.1b),whereupon no significant mineralization occurs due to the forma-tion of stable products.Under UV A irradiation,the decomposition of such stable species is accelerated by reaction with OH •generated from reaction (3)and the solution TOC is already reduced by 91%after 1h of the O 3/UV A treatment (see Fig.1d).In contrast,a very different behavior is observed in the presence of Fe 2+.While at the first oxidation stages this catalyst causes an increase in degradation rate of contaminants,at times >30min the mineralization becomes very hard (see Fig.1a)because of the formation of stable com-plexes of Fe 3+with oxalate and other short organic diacids [12].At the end of this treatment,only a 80%of TOC is removed.When the solution is also illumi-nated with UV A light using the O 3/Fe 2+/UV A system,the process becomes more efficient,allowing a 91%of TOC removal after 1.5h (see Fig.1c).This find-ing can be explained by the photodecomposition and further mineralization of Fe 3+complexes produced as stable products [12].3.1.2.Aniline decay and product detectionThe kinetics for aniline degradation and the evo-lution of aromatic intermediates for the different processes was followed by reverse-phase chromatog-raphy.A fast decay of aniline by direct attack with O 3is expected due to its high second-order rate constant of 108dm 3mol −1[26].As can be seen in Fig.1,this compound disappears quickly from the medium in a time ranging between 10and 15min in all cases,but its kinetics does not follow a defined reaction order.These results are indicative of a similar rate for the reaction of aniline with both O 3and OH •under the experimental conditions tested,because this com-pound is not photodegraded under UV A illumination.R.Sauleda,E.Brillas /Applied Catalysis B:Environmental 29(2001)135–145139Several aromatic intermediates,such as p -benzo-quinone and nitrobenzene,were also detected and quantified using the same technique.Fig.2a shows that p -benzoquinone is only accumulated when 1mmol dm −3Fe 2+is added to the solution and high amounts of OH •are produced from reactions (5),(7)and/or (8)to react with aniline.Under these condi-tions,maximum concentrations of 0.036mmol dm −3at 8min and 0.13mmol dm −3at 5min for this inter-mediate can be observed in the presence and absence of UV A light,respectively.For the O 3/Fe 2+/UV A system,the degradation rate of p -benzoquinone is then faster,disappearing from the medium in 10min.In contrast,nitrobenzene is accumulated in solution for all methods tested,such as depicted in Fig.2b.This intermediate reaches a maximum concentration of ca.8mol dm −3,being more quickly destroyed in the presence of Fe 2+.Ion-exclusion chromatography allowed to detect the presence of small contents of oxalic acid and to fol-low the evolution of maleic acid,which is shown in Fig.2c.This product is slowly accumulated and de-stroyed during direct ozonation,where attains a maxi-mum concentration of 10mol dm −3.When the solu-tion is irradiated with UV A light,its degradation rate is accelerated disappearing in <15min.In the pres-ence of Fe 2+,however,maleic acid is more slowly de-graded and until 6mol dm −3can be accumulated in the medium.It is noteworthy that possible complexes of Fe 3+with this acid are not detected by the analyt-ical method.Table 1summarizes the concentrations of both ammonium and nitrate ions,as well as the corre-sponding percentage of released nitrogen,after 2h of treatment of the 1.07mmol dm −3aniline solution by the different methods.No nitrite ions were detected by ion chromatography.Ammonium ion is released dur-ing the oxidation of aniline to p -benzoquinone,while nitrate ion is generated when nitrobenzene degradesTable 1Concentration of ammonium and nitrate ions obtained after 2h of treatment of a 1.07mmol dm −3aniline solution at pH 3.3by O 3and catalyzed ozonation processes at 25◦C aO 3O 3/UV A O 3/Fe 2+O 3/Fe 2+/UV A [NH 4+]/mmol dm −30.43(40%)0.49(45%)0.74(69%)0.68(64%)[NO 3−]/mmol dm −30.14(13%)0.38(35%)0.07(7%)0.36(33%)aThe percentage of released nitrogen with respect to that of initial aniline is given in parenthesis.[23].As can be seen in Table 1,NH 4+is produced in larger extension (until 64–69%)in the presence of Fe 2+,just when more p -benzoquinone is formed,in agreement with results of Fig.2a.In contrast,the maximum accumulations of NO 3−(until 33–35%)are reached under UV A irradiation with and without Fe 2+,indicating that generation of nitrobenzene from aniline oxidation is photocatalyzed by UV A light.Results of Table 1also show the release of more percentage of nitrogen as NH 4+in all cases,although the total nitrogen contained in both NH 4+and NO 3−concen-trations is always lower than that initially present in aniline.This suggests nitrogen elimination by evapo-ration of volatile intermediates,such as nitrobenzene,which is promoted by the O 2+O 3flow through the solution.In addition,it is also possible the existence of stable nitrogen-containing compounds in the final degraded solutions,specially after direct ozonation where only a 53%of the initial nitrogen is trans-formed into inorganic ions.3.1.3.Reaction pathways for aniline degradation On the basis of intermediates detected in this work and previous results reported in the literature [12,23,27],a general reaction pathway for aniline mineralization at pH ca.3is proposed in Fig.3.The main oxidizing agents are O 3for direct ozona-tion and O 3and OH •for the other systems.Both species have similar degradation power on aniline under our experimental conditions (see Fig.1),al-though intermediates are more quickly mineralized by the stronger oxidizing OH •.This radical also fa-vors p -benzoquinone and NH 4+production.On the other hand,UV A irradiation enhances nitrobenzene formation and Fe 3+complexes decomposition.Taking into account that at pH ca.3the solution contains a small proportion of the neutral form of aniline (p K a =4.7),which is more easily oxidable than its protonated one,the initial reactant in Fig.3140R.Sauleda,E.Brillas/Applied Catalysis B:Environmental29(2001)135–145Fig.2.Evolution of the concentration of:(a)p-benzoquinone;(b)nitrobenzene;(c)maleic acid,detected as intermediates during the degradation of a1.07mmol dm−3aniline solution at pH3.3by the system:(᭺)O3;(ᮀ)O3/UV A;(᭝)O3/Fe2+/UV A;(᭛)O3/Fe2+.R.Sauleda,E.Brillas/Applied Catalysis B:Environmental29(2001)135–145141Fig.3.Proposed reaction pathway for aniline mineralization by O3 and ozonation catalyzed with Fe2+and/or UV A light at pH ca.3. is assumed to be the unprotonated aniline.The pro-cess is then initiated by the attack of O3and/or OH•on this form to yield either benzoquinonimine or nitrobenzene.p-Benzoquinone is subsequently pro-duced by hydrolytic decomposition of benzoquinon-imine[23,27],leading to the release of NH3,present as NH4+ion in the acidic medium.This way is en-hanced in the O3/Fe2+and O3/Fe2+/UV A systems when more OH•can react with the initial reactant. In contrast,nitrobenzene is generated from the se-lective attack of O3on the amino group of aniline, being photocatalyzed by UV A light in the O3/UV A and O3/Fe2+/UV A systems.Further degradation of p-benzoquinone,as well as of nitrobenzene with re-lease of NO3−,lead to the formation of maleic acid, which is mineralized to CO2in all cases.This process depends on the conditions used.Thus,for the O3and O3/UV A systems,maleic acid is directly mineralized via oxalic acid,being this path accelerated by reaction of such diacids and its intermediates with OH•formed by reaction(3).In the presence of Fe2+,however, stable Fe3+-oxalato complexes are produced[12], which can be further photodecomposed to CO2under the action of UV A light in the O3/Fe2+/UV A system.3.2.4-Chlorophenol mineralization3.2.1.TOC removal4-Chlorophenol was mineralized under compa-rable conditions to those used for aniline degrada-tion.The sample initially contained1.38mmol dm−3 4-chlorophenol(equivalent to100ppm of TOC),be-ing adjusted to pH3.3with0.25mol dm−3H2SO4. In all these trials,a slow acidification of the solution occurs,always reaching afinal pH value close to3. Fig.4shows the TOC decay determined under oxidation by the O3(curve b),O3/UV A(curve d), O3/Fe2+(curve a)and O3/Fe2+/UV A(curve c)sys-tems.The mineralization rates until15min for these processes are68,124,144and152ppm TOC h−1, respectively,values very close to those reported pre-viously for aniline degradation.This trend confirms again that OH•produced in the different catalyzed ozonations has higher oxidizing power than O3,ac-celerating the initial mineralization of intermediates.A more efficient OH•generation is then attained in the presence of Fe2+from reaction(5)than under UV A illumination from reaction(3),although it is en-hanced by reactions(7)and(8)when both catalysts, Fe2+and UV A light,are combined.At longer times than30min,the decreases in TOC for the different oxidative processes of4-chlorophenol in Fig.4are similar to those of aniline in Fig.1.While 75%of organics are destroyed after2h of treatment with O3(see Fig.4b),the resulting stable products are quickly removed by reaction with OH•under UV A ir-radiation,thus,allowing to reduce the solution TOC by 98%in1h(see Fig.4d).The formation of stable Fe3+ complexes causes a fast inhibition in TOC decay for the O3/Fe2+system,where only69%mineralization is possible during2h(see Fig.4a).The photodegra-dation of such complexes in the O3/Fe2+/UV A sys-tem accelerates again the TOC removal and ca.95% of pollutants can be destroyed during thefirst hour of this treatment(see Fig.4c).It is noteworthy that aniline and4-chlorophenol undergo similar TOC abatements(<90%)after1h of the corresponding O3/UV A and O3/Fe2+/UV A142R.Sauleda,E.Brillas /Applied Catalysis B:Environmental 29(2001)135–145Fig.4.TOC abatement with time for a 1.38mmol dm −34-chlorophenol solution at pH 3.3when it is degraded with:(a,᭺)O 3+1mmol dm −3Fe 2+;(b,᭛)O 3;(c,᭝)O 3+1mmol dm −3Fe 2++UV A;(d,ᮀ)O 3+UV A.4-Chlorophenol concentration decay with time during the same treatments is shown in insert.Ozone flow rate 0.5g h −1;temperature 25◦C.treatments,as can be deduced from Figs.1and 4,respectively.This differs from results previously re-ported for 2,4-D,where only the O 3/Fe 2+/UV A sys-tem leads to its fast and complete mineralization [9].Then,the Fe 3+complexes derived from aniline and 4-chlorophenol oxidation are more slowly photode-composed by the O 3/Fe 2+/UV A system,while the O 3/UV A treatment has sufficient oxidizing power to mineralize the pollutant at a similar rate.3.2.2.4-Chlorophenol decay and products time-courseThe 4-chlorophenol concentration decay for all pro-cesses was followed by reverse-phase chromatography and the results obtained are also presented in Fig.4.A similar degradation rate can be observed in all cases,disappearing from the solution in 25–30min.How-ever,its kinetics does not fit with any defined reac-tion order,probably because under our experimental conditions,no steady concentrations for the oxidiz-ing agents O 3and/or OH •are attained.This finding indicates that the increase in TOC abatement for the catalyzed ozonations is due to the faster degradation rate of its intermediates by the action of OH •and/or UV A light.The fact that 4-chlorophenol is more slowly eliminated than aniline under comparable conditions (see Figs.1and 4)can be associated with the lower value of the second-order rate constant of the first pol-lutant with O 3(3.4×106dm 3mol −1s −1[26])than that of the second one (108dm 3mol −1s −1[26]).Two dihydroxylated derivatives,4-chloro-1,3-dihy-droxybenzene and 4-chloro-1,2-dihydroxybenzene,have been identified as primary products of 4-chloro-phenol by reverse-phase chromatography.These compounds are generated by meta -and ortho -hydrox-ylation of the initial pollutant,respectively.Note that 4-chloro-1,2-dihydroxybenzene is the unique interme-diate found when 4-chlorophenol is only oxidized with OH •[14,15],and hence,chloro-1,3-dihydroxybenzene is expected to be produced by its reaction with O 3.The evolution of 4-chloro-1,2-dihydroxybenzene is depicted in Fig.5a.As can be seen,the presence of Fe 2+yields more accumulation of this product.Its maximum concentration reached in solution is 22and 17mol dm −3for the O 3/Fe 2+/UV A and O 3/Fe 2+systems,whereas a maximum value of 10mol dm −3is attained without Fe 2+.The combined action of Fe 2+and UV A light then enhances the generation of 4-chloro-1,2-dihydroxybenzene.In contrast,Fig.5b shows that 4-chloro-1,3-dihydroxybenzene is accumu-lated in larger extension in the absence of Fe 2+,with maximum concentrations of 0.13and 0.09mmol dm −3for the O 3and O 3/UV A systems,respectively.In the O 3/Fe 2+treatment,a maximum accumulation of only 0.04mmol dm −3can be observed for this product,being undetected for the O 3/Fe 2+/UV A system.The144R.Sauleda,E.Brillas /Applied Catalysis B:Environmental 29(2001)135–145opposite effect shown in Fig.5a and b on the action of Fe 2+confirms that 4-chloro-1,2-dihydroxybenzene formation is favored when 4-chlorophenol can be selectively ortho -hydroxylated with OH •.Ion-exclusion chromatography of treated solutions also allowed the detection of oxalic acid in small concentrations and the quantification of free maleic acid,i.e.without forming complexes with Fe 3+.As can be seen in Fig.5c,the mineralization of this last acid is accelerated by UV A illumination,disappear-ing after 12min without Fe 2+and after 16min in the presence of this catalyst.when the solution is not ir-radiated,maleic acid is slowly accumulated in the O 3/Fe 2+system,probably because its generation from 4-chloro-1,2-dihydroxybenzene is more difficult than from 4-chloro-1,3-dihydroxybenzene.The further degradation of the above dihydroxylated derivatives yields chloride ion,which remains stableinFig.6.General reaction pathway proposed for 4-chlorophenol mineralization by O 3and ozonation catalyzed with Fe 2+and/or UV A light at pH ca.3.the medium.Fig.5d shows that Cl −is completely re-leased (up to 1.38mmol dm −3)in all processes tested.The dechlorination process is faster for the O 3/UV A and O 3/Fe 2+/UV A treatments,in agreement with the faster mineralization rate found under UV A irradiation in Fig.4.3.2.3.Reaction pathways for 4-chlorophenol degradationThe proposed reaction pathway for 4-chlorophenol mineralization at pH ca.3in Fig.6involves its ini-tial reaction with O 3to give 4-chloro-1,3-dihydroxy-benzene and 4-chloro-1,2-dihydroxybenzene.The formation of the second compound is enhanced in the catalyzed ozonations by the selective attack of OH •on the ortho -position of 4-chlorophenol.This path is more favorable for the O 3/Fe 2+/UV A system due to the production of higher amounts of this radical fromR.Sauleda,E.Brillas/Applied Catalysis B:Environmental29(2001)135–145145reactions(3),(5),(7)and(8).Further degradation of both dihydroxylated derivatives with O3and/or OH•leads to maleic acid with loss of Cl−.For the O3and O3/UV A systems,this acid is mineralized to CO2via oxalic acid,although in the presence of UV A light,their destruction is strongly accelerated by OH•radicals produced from reaction(3).For the O3/Fe2+system,however,maleic acid yields stable Fe3+-oxalato complexes[12],which can be quickly photodecomposed to CO2under UV A irradiation in the O3/Fe2+/UV A system.4.ConclusionsThe mineralization of aniline and4-chlorophenol at pH ca.3by O3and ozonation catalyzed with Fe2+ and/or UV A has been examined.Stable products are formed when they are directly oxidized with O3,al-though these species are quickly destroyed under UV A illumination.The presence of Fe2+as catalyst im-proves the initial reaction efficiency,but the degrada-tion processes are inhibited by the formation of Fe3+ complexes with intermediates,which are photode-composed by UV A light.Aniline and4-chlorophenol are then quickly mineralized by the O3/UV A and O3/Fe2+/UV A systems,a different result from previ-ously found for2,4-D,where only the O3/Fe2+/UV A system leads to a fast and complete mineralization [9].p-Benzoquinone,nitrobenzene,maleic acid and oxalic acid are identified as intermediates during ani-line mineralization,and ammonium and nitrate ions are found in thefinal solutions.The production of benzoquinone and ammonium ion is enhanced in the presence of Fe2+,whereas more nitrate ion is accumu-lated in the solution under UV A irradiation,indicating that formation of nitrobenzene from the selective at-tack of O3on aniline is photocatalyzed.The direct reaction of ozone with4-chlorophenol mainly gives 4-chloro-1,3-dihydroxybenzene as primary product. The formation of4-chloro-1,2-dihydroxybenzene is enhanced in the catalyzed ozonations by the selec-tive attack of hydroxyl radical on the ortho-position of4-chlorophenol.Further degradation of such di-hydroxylated intermediates leads to maleic acid with complete release of chloride ion in all processes.For the O3and O3/UV A systems,this acid is mineralized to CO2via oxalic acid,whereas for the O3/Fe2+sys-tem,it yields stable Fe3+-oxalato complexes,which are photodecomposed to CO2under UV A irradiation in the O3/Fe2+/UV A system.References[1]G.R.Peyton,in:N.M.Ram,R.F.Christan,K.P.Canto(Eds.),Significance and Treatment of V olatile Organic Compounds in Water Supplies,Lewis Pu.,1990,pp.313–362.[2]C.Adams,P.A.Scanlan,N.D.Secrist,Environ.Sci.Technol.28(1994)1812.[3]T.J.Conocchioli,E.J.Hamilton,N.J.Sutin,J.Am.Chem.Soc.87(1965)926.[4]T.Lgager,J.Holeman,K.Sehested,T.Pedersen,Inorg.Chem.31(1992)3523.[5]D.L.Sedlack,J.Hoigné,M.M.David,R.N.Colvile, E.Seyffer,K.Acker,W.Wiepercht,L.Wolfgang,J.A.Lind,S.Fuzzi,Atmos.Environ.31(1997)2515.[6]L.Sánchez,J.Peral,X.Domènech,Appl.Catal.B:Environ.19(1998)59.[7]L.Rivas,I.R.Bellodono,F.Ascari,Chemosphere37(1998)1033.[8]S.Hay,T.N.Obee,J.Adv.Oxid.Technol.4(1999)209.[9]E.Piera,J.C.Calpe,E.Brillas,X.Domènech,J.Peral,Appl.Catal.B:Environ.27(2000)169.[10]B.C.Faust,J.Hoigné,Atmos.Environ.24(1990)79.[11]Y.Sun,J.J.Pignatello,Environ.Sci.Technol.27(1993)304.[12]Y.Zuo,J.Hoigné,Environ.Sci.Technol.26(1992)1014.[13]O.Koyama,Y.Kamagata,K.Nakamura,Water Res.28(1994)895.[14]E.Lipcynska-Kochany,R.James,Environ.Sci.Technol.26(1992)259.[15]E.Brillas,R.Sauleda,J.Casado,J.Electrochem.Soc.145(1998)759.[16]S.Esplugas,P.L.Yue,M.I.Pervez,Water Res.28(1994)1323.[17]M.A.Boncz,H.Bruning,W.H.Rulkens,E.J.R.Sudhoelter,G.H.Harmsen,J.W.Bijsterbosch,Water Sci.Technol.35(1997)65.[18]K.Abe,K.Tanaka,Chemosphere37(1997)2837.[19]M.Trapido,A.Hirvonen,Y.Veressinina,J.Hentunen,R.Munter,Ozone:Sci.Eng.19(1997)75.[20]M.Hautaniemi,J.Kallas,R.Munter,M.Trapido,Ozone:Sci.Eng.20(1998)259.[21]R.Andreozzi,R.Marotta,J.Hazard Mater.69(1999)303.[22]S.W.Kuo,Chemosphere39(1999)1853.[23]E.Brillas, E.Mur,R.Sauleda,L.Sánchez,J.Peral,X.Domènech,J.Casado,Appl.Catal.B:Environ.16(1998)31.[24]J.Frejka, B.Sefránek,J.Zika,Collect.Czech.Chem.Commun.9(1937)238.[25]Methods for Chemical Analysis of Water and Wastes,method350.1,US Environmental Protection Agency,Cincinnati, 1983.[26]J.Hoigné,H.Bader,Water Res.17(1983)185.[27]R.L.Hand,R.F.Nelson,J.Electrochem.Soc.125(1978)1059.。