高考数学(文科)总复习考点解析及试题第二章函数导数及其应用

合集下载

2019版高考数学总复习第二章函数、导数及其应用2.4二次函数与幂函数课件文

2019版高考数学总复习第二章函数、导数及其应用2.4二次函数与幂函数课件文

(3)五种幂函数的性质
函数
特征
y=x
y=x2
性质
定义域
R
R
y=x3 R
值域
R
[0,+∞) R
奇偶性 奇函数 偶函数 奇函数
y=x
1 2
y=x-1
(-∞,
[0,+∞) 0)∪(0,+
∞)
(-∞,
[0,+∞) 0)∪(0,+
∞)
非奇非偶 函数
奇函数
单调性
x∈ [0,+
x∈ (-

∞) 时,增 x∈ (- ∞,0]
[自主练透型]
1.(2018·太原模拟)当
0<x<1
时,f(x)=x2,g(x)=x
ห้องสมุดไป่ตู้
1 2
,h(x)=x-2,
则 f(x),g(x),h(x)的大小关系是__h_(_x_)>__g_(x_)_>_f_(x_)___.
解析:分别作出 f(x),g(x),h(x)的图象,如图所示. 可知当 0<x<1 时,h(x)>g(x)>f(x).
答案:A
4
3.(2016·新课标全国卷Ⅲ)已知
a=2
3
,b=4
2 5
,c=25
1 3
,则(
)
A.b<a<c B.a<b<c
C.b<c<a D.c<a<b
4
解析:因为
a=2
3
=16
1 3
,b=4
2 5
=16
1 5
,c=25
1 3
,且幂函数
y=x
1 3
在 R 上单调递增,指数函数 y=16x 在 R 上单调递增,所以 b<a<c.

202新数学复习第二章函数导数及其应用8导数与函数的零点问题含解析

202新数学复习第二章函数导数及其应用8导数与函数的零点问题含解析

课时作业18 导数与函数的零点问题1.设a为实数,函数f(x)=-x3+3x+a.(1)求f(x)的极值;(2)是否存在实数a,使得方程f(x)=0恰好有两个实数根?若存在,求出实数a的值;若不存在,请说明理由.解:(1)f′(x)=-3x2+3,令f′(x)=0,得x=-1或x=1.∵当x∈(-∞,-1)时,f′(x)〈0;当x∈(-1,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)〈0,∴f(x)在(-∞,-1),(1,+∞)上单调递减,在(-1,1)上单调递增.∴f(x)的极小值为f(-1)=a-2,极大值为f(1)=a+2。

(2)方程f(x)=0恰好有两个实数根,等价于直线y=a 与函数y=x3-3x的图象有两个交点.∵y=x3-3x,∴y′=3x2-3。

令y′〉0,解得x>1或x〈-1;令y′<0,解得-1<x<1。

∴y=x3-3x在(-1,1)上为减函数,在(1,+∞)和(-∞,-1)上为增函数.∴当x=-1时,y极大值=2;当x=1时,y极小值=-2.∴y=x3-3x的大致图象如图所示.y=a表示平行于x轴的一条直线,由图象知,当a=2或a =-2时,y=a与y=x3-3x有两个交点.故当a=2或a=-2时,方程f(x)=0恰好有两个实数根.2.已知函数f(x)=ln x+错误!,g(x)=错误!,a∈R。

(1)求函数f(x)的极小值;(2)求证:当-1≤a≤1时,f(x)>g(x).解:(1)f′(x)=错误!-错误!=错误!(x〉0),当a-1≤0,即a≤1时,f′(x)〉0,函数f(x)在(0,+∞)上单调递增,无极小值;当a-1>0,即a>1时,则当0〈x<a-1时,f′(x)<0,函数f(x)在(0,a-1)上单调递减,当x>a-1时,f′(x)>0,函数f(x)在(a-1,+∞)上单调递增,故f(x)极小值=f(a-1)=1+ln(a-1).综上所述,当a≤1时,f(x)无极小值;当a>1时,f(x)极小值=1+ln(a-1).(2)证明:令F(x)=f(x)-g(x)=ln x+错误!-错误!=错误!(x>0),当-1≤a≤1时,要证f(x)>g(x),即证F(x)〉0,即证x ln x-a sin x+1〉0。

高考数学一轮总复习第二章函数导数及其应用2.5指数与指数函数课件理

高考数学一轮总复习第二章函数导数及其应用2.5指数与指数函数课件理

第六页,共42页。
(2)有理数指数幂的性质 ①aras= ar+s (a>0,r,s∈Q); ②(ar)s= ars (a>0,r,s∈Q); ③(ab)r= arbr (a>0,b>0,r∈Q).
第七页,共42页。
2.指数函数的图象与性质
y=ax
a>1
0<a<1
图象
定义域
R
第八页,共42页。
第九页,共42页。
故②正确;③
= = 2;④ 4 -24=2;⑤当 a≠0 时,由(1+a2)m<(1
+a2)n 可知 m<n,当 a=0 时不成立.
答案:②
第十五页,共42页。
3
考点疑难突破
第十六页,共42页。
指数(zhǐshù)幂的化简与求值
计算:
第十七页,共42页。
【解】 (1)原式=
- 51-0 2+1=
第二十页,共42页。
[自 主 演 练]
1.化简 4 16x8y4(x<0,y<0)得( A.2x2y C.4x2y
) B.2xy D.-2x2y
解析: 4 16x8y4=(16x8y4) =[24(-x)8·(-y)4] =

2(-x)2(-y)=-2x2y.
答案:D
第二十一页,共42页。
2.(2017 届四川绵阳一诊)计算:2 3×3 1.5×6 12=________. 解析:原式=
【答案】 C
第三十三页,共42页。
角度三 探究指数型函数的性质
(1)函数 y=14x-12x+1 在区间[-3,2]上的值域是________.
(2)函数 f(x)=
的单调减区间为________.
第三十四页,共42页。
【解析】 (1)因为 x∈[-3,2], 所以令 t=12x,则 t∈14,8, 故 y=t2-t+1=t-122+34. 当 t=12时,ymin=34;当 t=8 时,ymax=57. 故所求函数的值域为34,57.

202新数学复习第二章函数导数及其应用2.2函数的单调性与最值学案含解析

202新数学复习第二章函数导数及其应用2.2函数的单调性与最值学案含解析

第二节函数的单调性与最值课标要求考情分析1。

理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图象分析函数的性质。

1。

主要考查函数单调性的判定、求单调区间、比较大小、解不等式、求最值及不等式恒成立问题.2.题型以选择题、填空题为主,若与导数交汇命题则以解答题的形式出现,属中高档题.知识点一函数的单调性1.增函数、减函数的定义定义:一般地,设函数f(x)的定义域为I,如果对于定义域I 内某个区间D上的任意两个自变量x1,x2:(1)增函数:当x1〈x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;(2)减函数:当x1〈x2时,都有f(x1)〉f(x2),那么就说函数f(x)在区间D上是减函数.2.单调性、单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y =f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间.注意以下结论1.对∀x1,x2∈D(x1≠x2),错误!>0⇔f(x)在D上是增函数,错误!<0⇔f(x)在D上是减函数.2.对勾函数y=x+错误!(a〉0)的增区间为(-∞,-错误!]和[错误!,+∞),减区间为[-错误!,0)和(0,错误!].3.在区间D上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.4.函数f(g(x))的单调性与函数y=f(u)和u=g(x)的单调性的关系是“同增异减”.知识点二函数的最值1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)对于函数f(x),x∈D,若对任意x1,x2∈D,且x1≠x2有(x1-x2)[f(x1)-f(x2)]〉0,则函数f(x)在区间D上是增函数.(√)(2)函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).(×)(3)对于函数y=f(x),若f(1)<f(3),则f(x)为增函数.(×)(4)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)解析:(2)此单调区间不能用并集符号连接,取x1=-1,x2=1,则f(-1)〈f(1),故应说成单调递减区间为(-∞,0)和(0,+∞).(3)应对任意的x1<x2,f(x1)〈f(x2)成立才可以.(4)若f(x)=x,f(x)在[1,+∞)上为增函数,但y=f(x)的单调递增区间是R.2.小题热身(1)下列函数中,在区间(0,+∞)内单调递减的是(A)A.y=错误!-x B.y=x2-xC.y=ln x-x D.y=e x(2)函数f(x)=-x+错误!在区间错误!上的最大值是(A)A.错误!B.-错误!C.-2 D.2(3)设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为[-1,1]和[5,7].(4)函数f(x)=错误!的值域为(-∞,2).(5)函数f(x)=错误!在[2,6]上的最大值和最小值分别是4,错误!.解析:(1)对于A,y1=错误!在(0,+∞)内是减函数,y2=x在(0,+∞)内是增函数,则y=1x-x在(0,+∞)内是减函数;B,C选项中的函数在(0,+∞)上均不单调;选项D中,y=e x 在(0,+∞)上是增函数.(2)∵函数y=-x与y=错误!在x∈错误!上都是减函数,∴函数f(x)=-x+错误!在错误!上是减函数,故f(x)的最大值为f(-2)=2-错误!=错误!.(3)由图可知函数的增区间为[-1,1]和[5,7].(4)当x≥1时,f(x)=log错误!x是单调递减的,此时,函数的值域为(-∞,0];x<1时,f(x)=2x是单调递增的,此时,函数的值域为(0,2).综上,f(x)的值域是(-∞,2).(5)函数f(x)=错误!=错误!=2+错误!在[2,6]上单调递减,所以f(x)min=f(6)=错误!=错误!。

高考数学总复习 第二章 函数、导数及其应用 第8讲 幂函数课件 理

高考数学总复习 第二章 函数、导数及其应用 第8讲 幂函数课件 理

【互动探究】
1.已知函数f(x)=(m2+2m)·xm2 m1,求当m为何值时, (1)f(x)是幂函数; (2)f(x)是正比例函数; (3)f(x)是反比例函数; (4)f(x)是二次函数.
解:(1)若f(x)为幂函数, 则m2+2m=1,∴m=-1± 2.
(2)若f(x)为正比例函数,则mm22+ +m2m-≠1= 0 1, ⇒m=1. (3)若f(x)为反比例函数,则mm22+ +m2m-≠1= 0 -1, ⇒m=-1.
C.13,12
D.0,13
解析:设
f(x)=
1 2
x


1
x3
,f(0)=1>0,f13=
1 2
1
3

1 3
1
3

1
1
1
由于幂函数
y=
1
x3
单调递增,得
f13=
1 2
3

1 3
3
>0;f12=
图 2-8-4
1
1
A.①y= x3 ;②y=x2;③y= x2 ;④y=x-1
1
B.①y=x3;②y=x2;③y= x2 ;④y=x-1
1
C.①y=x2;②y=x3;③y= x2 ;④y=x-1
1
1
D.①y= x3 ;②y= x2 ;③y=x2;④y=x-1
1
解析:y=x2 为偶函数,对应②;y=x 2 定义域 x≥0,对应
即m>12或m<-2, 或-2<m<12,
0<m<2
m>2或m<0,
∴12<m<2或-2<m<0. ∵m∈N*,∴m=1.此时 f(x)=x3,x∈R. ∵f(-x)=(-x)3=-x3=-f(x), ∴函数 f(x)为奇函数. 【规律方法】(1)幂函数 y=xα的特点: ①系数必须为 1;②指数必须为常数. (2)幂函数的单调性:①α>0 时,y=xα在(0,+∞)上为增函 数;②α<0 时,y=xα在(0,+∞)上为减函数.

202新数学复习第二章函数导数及其应用2.2.2利用导数证明不等式学案含解析

202新数学复习第二章函数导数及其应用2.2.2利用导数证明不等式学案含解析

第2课时利用导数证明不等式构造函数证明不等式:构造法证明不等式是指在证明与函数有关的不等式时,根据所要证明的不等式,构造与之相关的函数,利用函数单调性、极值、最值加以证明.常见的构造方法有:(1)直接构造法:证明不等式f(x)〉g(x)(f(x)<g(x))转化为证明f(x)-g(x)>0(f(x)-g(x)〈0),进而构造辅助函数h(x)=f(x)-g(x);(2)适当放缩构造法:一是根据已知条件适当放缩,二是利用常见的放缩结论,如ln x≤x-1,e x≥x+1,ln x〈x<e x(x〉0),错误!≤ln(x+1)≤x(x>-1);(3)特征分析构造法:稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构"构造辅助函数;(4)构造双函数:若直接构造函数求导难以判断符号,导函数零点也不易求得,因此函数单调性与极值点都不易获得,则可构造函数f(x)和g(x),利用其最值求解.方法1直接构造差函数法【例1】已知函数f(x)=1-错误!,g(x)=错误!+错误!-bx(e为自然对数的底数),若曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直.(1)求a,b的值;(2)求证:当x≥1时,f(x)+g(x)≥错误!.【解】(1)因为f(x)=1-ln x x,所以f′(x)=错误!,f′(1)=-1。

因为g(x)=错误!+错误!-bx,所以g′(x)=-错误!-错误!-b。

因为曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直,所以g(1)=1,且f′(1)·g′(1)=-1,即g(1)=1+a-b=1,g′(1)=-a-1-b=1,解得a=-1,b=-1。

(2)证明:由(1)知,g(x)=-错误!+错误!+x,则f(x)+g(x)≥2x⇔1-错误!-错误!-错误!+x≥0.令h(x)=1-错误!-错误!-错误!+x(x≥1),则h′(x)=-错误!+错误!+错误!+1=错误!+错误!+1.因为x≥1,所以h′(x)=ln xx2+错误!+1>0,所以h(x)在[1,+∞)上单调递增,所以h(x)≥h(1)=0,即1-错误!-错误!-错误!+x≥0,所以当x≥1时,f(x)+g(x)≥错误!。

高考总复习——第二章 函数、导数及其应用

高考总复习——第二章 函数、导数及其应用

第一节函数及其表示[备考方向要明了][归纳·知识整合] 1.函数与映射的概念[探究] 1.函数和映射的区别与联系是什么?提示:二者的区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集,二者的联系是函数是特殊的映射.2.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合 {f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系. 3.相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. [探究] 2.若两个函数的定义域与值域都相同,它们是否是同一个函数?提示:不一定.如函数y =x 与y =x +1,其定义域与值域完全相同,但不是同一个函数;再如y =sin x 与y =cos x ,其定义域都为R ,值域都为[-1,1],显然不是同一个函数.因为定义域和对应关系完全相同的两个函数的值域也相同,所以定义域和对应关系完全相同的两个函数才是同一个函数.4.函数的表示方法表示函数的常用方法有:解析法、列表法和图象法. 5.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数,分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.[自测·牛刀小试]1.(教材习题改编)给出下列四个命题,正确的有( ) ①函数是定义域到值域的对应关系; ②函数f (x )=x -4+1-x ;③f (x )=5,因这个函数的值不随x 的变化而变化,所以f (t 2+1)也等于5; ④y =2x (x ∈N )的图象是一条直线; ⑤f (x )=1与g (x )=x 0表示同一个函数.A .1个B .2个C .3个D .4个解析:选B 由函数的定义知①正确;②错误;由⎩⎪⎨⎪⎧x -4≥0,1-x ≥0,得定义域为∅,所以不是函数;因为函数f (x )=5为常数函数,所以f (t 2+1)=5,故③正确;因为x ∈N ,所以函数y =2x (x ∈N )的图象是一些离散的点,故④错误;由于函数f (x )=1的定义域为R ,函数g (x )=x 0,的定义域为{x |x ≠0},故⑤错误.综上分析,可知正确的个数是2.2.(教材习题改编)以下给出的对应是从集合A 到B 的映射的有( )①集合A ={P |P 是数轴上的点},集合B =R ,对应关系f :数轴上的点与它所代表的实数对应.②集合A ={P |P 是平面直角坐标系中的点},集合B ={(x ,y )|x ∈R ,y ∈R },对应关系f :平面直角坐标系中的点与它的坐标对应;③集合A ={x |x 是三角形},集合B ={x |x 是圆},对应关系f :每一个三角形都对应它的内切圆;④集合A ={x |x 是新华中学的班级},集合B ={x |x 是新华中学的学生},对应关系f :每一个班级都对应班里的学生.A .1个B .2个C .3个D .4个解析:选C 由于新华中学的每一个班级里的学生都不止一个,即一个班级对应的学生不止一个,所以④不是从集合A 到集合B 的映射.3.(文)(2012·江西高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23 D.139 解析:选D ∵f (3)=23,∴f (f (3))=⎝⎛⎭⎫232+1=139.3.(理)(2012·江西高考)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:选B f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2.4.(教材习题改编)已知函数f (x )=x +2x -6,则f (f (4))=________;若f (a )=2,则a =________.解析:∵f (x )=x +2x -6,∴f (4)=4+24-6=-3.∴f (f (4))=f (-3)=-3+2-3-6=19.∵f (a )=2,即a +2a -6=2,解得a =14.答案:19145.(教材习题改编)A ={x |x 是锐角},B =(0,1),从A 到B 的映射是“求余弦”,与A 中元素60°相对应的B 中的元素是________;与B 中元素32相对应的A 中的元素是________. 解析:∵cos 60°=12,∴与A 中元素60°相对应的B 中的元素是12.又∵cos 30°= 32,∴与B 中元素32相对应的A 中的元素是30°. 答案:1230°[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,(x ≥0)-1,(x <0)表示同一个函数.(2)函数y =f (x )的图象与直线x =1的交点最多有1个. (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数.(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f⎝⎛⎭⎫12=0. 其中正确判断的序号是________.[自主解答] 对于(1),函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1(x ≠0),-1(x <0)的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,若x =1是y =f (x )定义域内的值,由函数的定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )与g (t )表示同一函数;对于(4),由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0, 所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1.综上可知,正确的判断是(2)(3). [答案] (2)(3)———————————————————1.判断两个变量之间是否存在函数关系的方法要检验两个变量之间是否存在函数关系,只需检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值,是否都能找到唯一的函数值y 与之对应.2.判断两个函数是否为同一个函数的方法判断两个函数是否相同,要先看定义域是否一致,若定义域一致,再看对应法则是否一致,由此即可判断.1.(1)以下给出的同组函数中,是否表示同一函数?为什么?①f 1:y =xx;f 2:y =1.②f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:③f 1:y =2x ;f 2:如图所示.解:①不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R .②同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式.③同一函数.理由同②.(2)已知映射f :A →B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是( )A .k >1B .k ≥1C .k <1D .k ≤1解析:选A 由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根. 所以Δ=4(1-k )<0,解得k >1时满足题意.[例2] (1)已知f (x +1)=x 2+4x +1,求f (x )的解析式.(2)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9.求f (x ). [自主解答] (1)法一:(换元法)设x +1=t ,则x =t -1, ∴f (t )=(t -1)2+4(t -1)+1, 即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.法二:(配凑法)∵f (x +1)=x 2+4x +1=(x +1)2+2(x +1)-2, ∴所求函数为f (x )=x 2+2x -2.(2)(待定系数法)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9.由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,解得a =1,b =3.∴所求函数解析式为f (x )=x +3.若将本例(1)中“f (x +1)=x 2+4x +1”改为“f ⎝⎛⎭⎫2x +1=lg x ”,如何求解? 解:令2x 1=t ,∵x >0,∴t >1且x =2t -1.∴f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).———————————————————求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (4)解方程组法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).2.给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式. 解:(1)令t = x +1, ∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1(x ≥1).(2)设f (x )=ax 2+bx +c ,又∵f (0)=c =3. ∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧ 4a =4,4a +2b =2,解得⎩⎪⎨⎪⎧a =1,b =-1.∴f (x )=x 2-x +3.[例3] (文)(2012·福建高考)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( )A .1B .0C .-1D .π(理)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.124 B.112 C.16 D.13[解析] (文) ∵g (π)=0,f (g (π))=f (0)=0, ∴f (g (π))=0.(理) ∵2+log 23<4,∴f (2+log 23)=f (3+log 23).∵3+log 23>4,∴f (2+log 23)=f (3+log 23)=⎝⎛⎭⎫123+log 23=18×⎝⎛12log 23=18×13=124.[答案] (文)B (理)A ———————————————————解决分段函数求值问题的方法(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值范围,做到分段函数分段解决.3.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( )A.12 B.45 C .2D .9解析:选C ∵x <1,f (x )=2x+1,∴f (0)=2.由f (f (0))=4a ,得f (2)=4a ,∵x ≥1,f (x )=x 2+ax ,∴4a =4+2a ,解得a =2.4种方法——函数解析式的求法求函数解析式常用的方法有:(1)待定系数法;(2)换元法;(3)配凑法;(4)解方程组法.具体内容见例2[方法·规律].2两个易误点——映射的概念及分段函数求值问题中的易误点(1)判断对应是否为映射,即看A 中元素是否满足“每元有象”和“且象唯一”.但要注意:①A 中不同元素可有相同的象,即允许多对一,但不允许一对多;②B 中元素可无原象,即B 中元素可有剩余.(2)求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域是其定义域内不同子集上对应的各关系式的值域的并集.数学思想——分类讨论思想在分段函数中的应用当数学问题不宜用统一的方法处理时,我们常常根据研究对象的差异,按照一定的分类方法或标准,将问题分为“全而不重,广而不漏”的若干类,然后逐类分别讨论,再把结论汇总,得出问题答案的思想,这就是主要考查了分类讨论的数学思想,由于分段函数在不同定义区间上具有不同的解析式,在处理分段函数问题时应对不同的区间进行分类求解,然后整合,这恰好是分类讨论的一种体现.[典例] (2011·江苏高考)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.[解析] ①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34. [答案] -34[题后悟道]1.在解决本题时,由于a 的取值不同限制了1-a 及1+a 的取值,从而应对a 进行分类讨论.2.运用分类讨论的思想解题的基本步骤 (1)确定讨论对象和确定研究的区域;(2)对所讨论的问题进行合理的分类(分类时需要做到不重不漏,标准统一、分层不越级); (3)逐类讨论:即对各类问题详细讨论,逐步解决; (4)归纳总结,整合得出结论. [变式训练]1.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)解析:选C ①当a >0时,∵f (a )>f (-a ), ∴log 2a >log 12a =log 2 1a.∴a >1a,得a >1.②当a <0时,∵f (a )>f (-a ), ∴log 12(-a )>log 2(-a )=log 121-a. ∴-a <1-a得-1<a <0,故C 项为正确选项.2.设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是________________.解析:当x <1时,由f (x )>4得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2,但由于x ≥1,所以x >2. 综上,x 的取值范围是x <-2或x >2. 答案:(-∞,-2)∪(2,+∞)一、选择题1.下列各组函数中,表示相等函数的是( ) A .y =5x 5与y =x 2 B .y =ln e x 与y =e ln x C .y =(x -1)(x +3)x -1与y =x +3D .y =x 0与y =1x解析:选D y =5x 5=x ,y =x 2=|x |,故y =5x 5与y =x 2不表示相等函数;B 、C 选项中的两函数定义域不同;D 选项中的两函数是同一个函数.2.设A ={0,1,2,4},B =⎩⎨⎧⎭⎬⎫12,0,1,2,6,8,则下列对应关系能构成A 到B 的映射的是( )A .f :x →x 3-1B .f :x →(x -1)2C .f :x →2x -1D .f :x →2x解析:选C 对于A ,由于集合A 中x =0时,x 3-1=-1∉B ,即A 中元素0在集合B 中没有元素与之对应,所以选项A 不符合;同理可知B 、D 两选项均不能构成A 到B 的映射,C 符合.3.已知函数f (x )=⎩⎪⎨⎪⎧2x -2,x ≥0,lg (-x ),x <0,则f (f (-10))=( )A.12 B.14 C .1D .-14解析:选A 依题意可知f (-10)=lg 10=1, f (1)=21-2=12.4.(2013·杭州模拟)设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1解析:选D ∵f (a )+f (-1)=2,且f (-1)= 1=1, ∴f (a )=1,当a ≥0时,f (a )= a =1,∴a =1; 当a <0时,f (a )=-a =1,∴a =-1.5.(文)若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( ) A .x -1 B .x +1 C .2x +1D .3x +3解析:选B 由题意知2f (x )-f (-x )=3x +1.① 将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1.5.(理)已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=132-4x +6C .f (x )=6x +9D .f (x )=2x +3解析:选B 由f (x )+2f (3-x )=x 2可得f (3-x )+2f (x )=(3-x )2,由以上两式解得f (x )=13x 2-4x +6.6.(2013·泰安模拟)具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”交换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有①解析:选B ①f ⎝⎛⎭⎫1x =1x -x =-f (x )满足.②f ⎝⎛⎭⎫1x =1x +x =f (x )不满足. ③0<x <1时,f ⎝⎛⎭⎫1x =-x =-f (x ), x =1时,f ⎝⎛⎭⎫1x =0=-f (x ),x >1时,f ⎝⎛⎭⎫1x =1x =-f (x )满足.二、填空题7.已知f ⎝⎛⎭⎫x -1x =x 2+1x 2,则函数f (3)=________. 解析:∵f ⎝⎛⎭⎫x -1x =x 2+1x 2=⎝⎛⎭⎫x -1x 2+2,∴f (x )=x 2+2.∴f (3)=32+2=11. 答案:118.若f (a +b )=f (a )·f (b )且f (1)=1,则f (2)f (1)+f (3)f (2)+…+f (2 012)f (2 011)=________.解析:令b =1,∵f (a +1)f (a )=f (1)=1, ∴f (2)f (1)+f (3)f (2)+…+f (2 012)f (2 011)=2 011. 答案:2 0119.(文)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧2x,x ≤0,f (x -1)-f (x -2),x >0,则f (3)的值为________.解析:由题意得f (3)=f (2)-f (1)=f (1)-f (0)-f (1)=-f (0)=-20=-1. 答案:-19.(理)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析:画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,如图.由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x , 即⎩⎨⎧-1<x <1,-1-2<x <-1+ 2.得x ∈(-1,2-1). 答案:(-1,2-1) 三、解答题10.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))和g (f (x ))的解析式. 解:(1)由已知,g (2)=1,f (2)=3, 因此f (g (2))=f (1)=0, g (f (2))=g (3)=2.(2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.当x >1或x <-1时,f (x )>0, 故g (f (x ))=f (x )-1=x 2-2; 当-1<x <1时,f (x )<0, 故g (f (x ))=2-f (x )=3-x 2.所以g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x >1或x <-1,3-x 2,-1<x <1. 11.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有 a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x . ∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.12.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x );(2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围. 解:(1)∵x =716时,4x =74, ∴f 1(x )=⎣⎡74=1. ∵g (x )=74-⎣⎡⎦⎤74=34∴f 2(x )=f 1[g (x )]=f 1⎝⎛34=[3]=3.(2)∵f 1(x )=[4x ]=1,g (x )=4x -1, ∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4,∴716≤x <12.1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到达终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用s 1,s 2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( )解析:选B 根据故事的描述,乌龟是先于兔子到达终点,到达终点的最后时刻乌龟的路程大于兔子的路程,并且兔子中间有一段路程为零,分析知B 图象与事实相吻合.2.下列对应关系是集合P 上的函数的是________.(1)P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; (2)P ={-1,1,-2,2},Q ={1,4},对应关系:f :x →y =x 2,x ∈P ,y ∈Q ;(3)P ={三角形},Q ={x |x >0},对应关系f :对P 中三角形求面积与集合Q 中元素对应. 解析:对于(1),集合P 中元素0在集合Q 中没有对应元素,故(1)不是函数;对于(3)集合P 不是数集,故(3)不是函数;(2)正确.答案:(2)3.试判断以下各组函数是否表示同一函数: (1)y =x -2·x +2,y =x 2-4; (2)y =x ,y =3t 3; (3)y =|x |,y =(x )2.解:∵y =x -2·x +2的定义域为{x |x ≥2}, y =x 2-4的定义域为{x |x ≥2或x ≤-2}, ∴它们不是同一函数.(2)∵它们的定义域相同,且y =3t 3=t , ∴y =x 与y =3t 3是同一函数.(3)∵y =|x |的定义域为R ,y =(x )2的定义域为{x |x ≥0}, ∴它们不是同一函数. 4.已知f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,2x ,-1<x <2,x22,x ≥2,且f (a )=3,求a 的值.解:①当a ≤-1时,f (a )=a +2,由a +2=3,得a =1,与a ≤-1相矛盾,应舍去. ②当-1<a <2时,f (a )=2a , 由2a =3,得a =321<a <2.③当a ≥2时,f (a )=a22,由a 22=3,得a =±6, 又a ≥2,故a = 6. 综上可知,a 的值为32或 6.[备考方向要明了][归纳·知识整合]1.常见基本初等函数的定义域 (1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R .(4)y =a x(a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R . (5)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(6)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .(7)实际问题中的函数定义域,除了使函数的解析式有意义外,还要考虑实际问题对函数自变量的制约.2.基本初等函数的值域 (1)y =kx +b (k ≠0)的值域是R . (2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧⎬⎫y |y ≥4ac -b 24a ;当a <0时,值域为⎩⎨⎧⎬⎫y |y ≤4ac -b 24a . (3)y =kx (k ≠0)的值域是{y |y ≠0}.(4)y =a x (a >0且a ≠1)的值域是{y |y >0}. (5)y =log a x (a >0且a ≠1)的值域是R . (6)y =sin x ,y =cos x 的值域是[-1,1]. (7)y =tan x 的值域是R .[探究] 1.若函数y =f (x )的定义域和值域相同,则称函数y =f (x )是圆满函数,则函数①y =1x;②y =2x ;③y = x ;④y =x 2中是圆满函数的有哪几个?提示:①y =1x 的定义域和值域都是(-∞,0)∪(0,+∞),故函数y =1x 是圆满函数;②y=2x 的定义域和值域都是R ,故函数y =2x 是圆满函数;③y = x 的定义域和值域都是[0,+∞),故y = x 是圆满函数;④y =x 2的定义域为R ,值域为[0,+∞),故函数y =x 2不是圆满函数.2.分段函数的定义域、值域与各段上的定义域、值域之间有什么关系? 提示:分段函数的定义域、值域为各段上的定义域、值域的并集.[自测·牛刀小试]1.(教材习题改编)函数f (x )=4-xx -1的定义域为( ) A .[-∞,4] B .[4,+∞) C .(-∞,4)D .(-∞,1)∪(1,4]解析:选D 要使函数f (x )=4-x x -1有意义,只需⎩⎪⎨⎪⎧ 4-x ≥0,x -1≠0,即⎩⎪⎨⎪⎧x ≤4,x ≠1.所以函数的定义域为(-∞,1)∪(1,4].2.下表表示y 是x 的函数,则函数的值域是( )A .[2,5]B .NC .(0,20]D .{2,3,4,5}解析:选D 函数值只有四个数2,3,4,5,故值域为{2,3,4,5}. 3.若f (x )=1log 12(2x +1),则f (x )的定义域为( )A.⎝⎛⎭⎫-120 B.⎝⎛⎦⎤-12,0C.⎝⎛⎭⎫-12,+∞D .(0,+∞)解析:选A 根据题意得log 12(2x +1)>0,即0<2x +1<1,解得-12<x <0,即x ∈⎝⎛⎭⎫-120.4.(教材改编题)函数y =f (x )的图象如图所示,则函数y =f (x )的定义域为________,值域为________.解析:由图象可知,函数y =f (x )的定义域为[-6,0]∪[3,7),值域为[0,+∞).答案:[-6,0]∪[3,7) [0,+∞)5.(教材改编题)若x -4有意义,则函数y =x 2-6x +7的值域是________. 解析:∵x -4有意义,∴x -4≥0,即x ≥4. 又∵y =x 2-6x +7=(x -3)2-2, ∴y min =(4-3)2-2=1-2=-1. ∴其值域为[-1,+∞). 答案:[-1,+∞)[例1] (1)(2012·山东高考)函数f (x )=1ln (x +1)+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2](2)已知函数f (x 2-1)的定义域为[0,3],则函数y =f (x )的定义域为________. [自主解答] (1)x 满足⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,即⎩⎪⎨⎪⎧x >-1,x ≠0,-2≤x ≤2.解得-1<x <0或0<x ≤2. (2)∵0≤x ≤3,∴0≤x 2≤9,-1≤x 2-1≤8. ∴函数y =f (x )的定义域为[-1,8].[答案] (1)B (2)[-1,8]本例(2)改为f (x )的定义域为[0,3],求y =f (x 2-1)的定义域. 解:∵y =f (x )的定义域为[0,3], ∴0≤x 2-1≤3,解得-2≤x ≤-1或1≤x ≤2,所以函数定义域为[-2,-1]∪[1,2]. ———————————————————简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)对抽象函数:①若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.1.(1)(2012·江苏高考)函数f (x )=1-2log 6x 的定义域为________.(2)已知f (x )的定义域是[-2,4],求f (x 2-3x )的定义域.解析:(1)由1-2log 6x ≥0解得log 6x ≤12⇒0<x ≤6,故所求定义域为(0, 6 ].(2)∵f (x )的定义域是[-2,4],∴-2≤x 2-3x ≤4,由二次函数的图象可得,-1≤x ≤1或2≤x ≤4. ∴定义域为[-1,1]∪[2,4].答案:(1)(0, 6 ] (2)[-1,1]∪[2,4][例2] 求下列函数的值域: (1)y =x -3x +1;(2)y =x -1-2x ;(3)y =x +4x. [自主解答] (1)法一:(分离常数法)y =x -3x +1=x +1-4x +1=1-4x +1.因为4x +1≠0,所以1-4x +1≠1, 即函数的值域是{y |y ∈R ,y ≠1}.法二:由y =x -3x +1得yx +y =x -3. 解得x =y +31-y,所以y ≠1, 即函数值域是{y |y ∈R ,y ≠1}.(2)法一:(换元法)令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎩⎨⎧⎭⎫y |y ≤12.法二:(单调性法)容易判断函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12.所以y ≤f ⎝⎛⎭⎫12=12,即函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12. (3)法一:(均值不等式法)当x >0时, x +4x≥2 x ×4x=4, 当且仅当x =2时“=”成立; 当x <0时,x +4x =-(-x -4x )≤-4,当且仅当x =-2时“=”成立. 即函数的值域为(-∞,-4]∪[4,+∞).法二:(导数法)f ′(x )=1-4x 2=x 2-4x2.x ∈(-∞,-2)或x ∈(2,+∞)时,f (x )单调递增, 当x ∈(-2,0)或x ∈(0,2)时,f (x )单调递减. 故x =-2时,f (x )极大值=f (-2)=-4; x =2时,f (x )极小值=f (2)=4.即函数的值域为(-∞,-4]∪[4,+∞).若将本例(3)改为“y =x -4x”,如何求解?解:易知函数y =x -4x 在(-∞,0)和(0,+∞)上都是增函数,故函数y =x -4x 的值域为R .———————————————————求函数值域的基本方法(1)观察法:一些简单函数,通过观察法求值域. (2)配方法:“二次函数类”用配方法求值域.(3)换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且a ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数用三角函数代换求值域.(4)分离常数法:形如y =cx +dax +b(a ≠0)的函数可用此法求值域.(5)单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.(6)数形结合法:画出函数的图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围.2.求下列函数的值域. (1)y =x 2+2x ,x ∈[0,3]; (2)y =x 2-xx 2-x +1;(3)y =log 3x +log x 3-1.解:(1)(配方法)y =x 2+2x =(x +1)2-1, ∵0≤x ≤3,∴1≤x +1≤4.∴1≤(x +1)2≤16. ∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15]. (2)y =x 2-x +1-1x 2-x +1=1-1x 2-x +1,∵x 2-x +1=⎝⎛⎭⎫x -122+34≥34, ∴0<1x 2-x +1≤43,∴-13≤y <1,即值域为⎣⎡⎭⎫-13,1. (3)y =log 3x +1log 3x-1, 令log 3x =t , 则y =t +1t -1(t ≠0),当x >1时,t >0,y ≥2t ·1t-1=1, 当且仅当t =1t 即log 3x =1,x =3时,等号成立;当0<x <1时,t <0,y =-⎣⎡⎦⎤(-t )+⎝⎛⎭⎫-1t -1≤-2-1=-3. 当且仅当-t =-1t 即log 3x =-1,x =13综上所述,函数的值域是(-∞,-3]∪[1,+∞).[例3] 已知函数f (x )=ax 2+bx .若至少存在一个正实数b ,使得函数f (x )的定义域与值域相同,求实数a 的值.[自主解答] ①若a =0,则对于每个正数b ,f (x )=bx 的定义域和值域都是[0,+∞),故a =0满足条件;②若a >0,则对于正数b ,f (x )=ax 2+bx 的定义域为D ={x |ax 2+bx ≥0}=⎝⎛⎦⎤-∞,-b a ∪[0,+∞),但f (x )的值域A ⊆[0,+∞),故D ≠A ,即a >0不符合条件;③若a <0,则对于正数b ,f (x )=ax 2+bx 的定义域D =⎣⎡⎦⎤0,-ba ,由于此时f (x )max =f ⎝⎛⎭⎫-b 2a =b 2-a , 故f (x )的值域为⎣⎢⎡⎦⎥⎤0,b2-a , 则-b a =b2-a ⇒⎩⎨⎧a <0,2-a =-a⇒a =-4.综上所述,a 的值为0或-4. ——————————————————— 由函数的定义域或值域求参数的方法已知函数的值域求参数的值或取值范围问题,通常按求函数值域的方法求出其值域,然后依据已知信息确定其中参数的值或取值范围.3.(2013·温州模拟)若函数f (x )=1x -1在区间[a ,b ]上的值域为⎣⎡⎦⎤13,1,则a +b =________.解析:∵由题意知x -1>0,又x ∈[a ,b ], ∴a >1.则f (x )=1x -1在[a ,b ]上为减函数,则f (a )=1a -1=1且f (b )=1b -1=13,∴a =2,b =4,a +b =6.答案:61种意识——定义域优先意识函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础.因此,我们一定要树立函数定义域优先的意识.4个注意——求函数定义域应注意的问题(1)如果没有特别说明,函数的定义域就是能使解析式有意义的所有实数x的集合.(2)不要对解析式进行化简变形,以免定义域变化.(3)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(4)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.4个准则——函数表达式有意义的准则函数表达式有意义的准则一般有:①分式中的分母不为0;②偶次根式的被开方数非负;③y=x0要求x≠0;④对数式中的真数大于0,底数大于0且不等于1.6种技巧——妙求函数的值域(1)当所给函数是分式的形式,且分子、分母是同次的,可考虑用分离常数法;(2)若与二次函数有关,可用配方法;(3)若函数解析式中含有根式,可考虑用换元法或单调性法;(4)当函数解析式结构与基本不等式有关,可考虑用基本不等式求解;(5)分段函数宜分段求解;(6)当函数的图象易画出时,还可借助于图象求解.易误警示——与定义域有关的易错问题[典例](2013·福州模拟)函数f(x)=(x+1)2x+1-1-x的定义域为________________.[解析]∵要使函数f(x)=(x+1)2x+1-1-x有意义,则⎩⎪⎨⎪⎧1-x≥0,x+1≠0,∴⎩⎪⎨⎪⎧x≤1,x≠-1,∴函数f(x)的定义域为{x|x≤1,且x≠-1}.[答案](-∞,-1)∪(-1,1][易误辨析]1.本题若将函数f (x )的解析式化简为f (x )=(x +1)-1-x 后求定义域,会误认为其定义域为(-∞,1].事实上,上述化简过程扩大了自变量x 的取值范围.2.在求函数的值域时,要特别注意函数的定义域.求函数的值域时,不但要重视对应关系的作用,而且还要特别注意定义域对值域的制约作用.[变式训练]1.若函数f (x )的值域是⎣⎡⎦⎤12,3,则函数F (x )=f (x )+1f (x )的值域是( ) A.⎣⎡⎦⎤12,5 B.⎣⎡⎦⎤56,5 C.⎣⎡⎦⎤2,103 D.⎣⎡⎦⎤3,103 解析:选C 令t =f (x ),则12≤t ≤3.易知函数g (t )=t +1t 在区间⎣⎡⎦⎤12,1上是减函数,在[1,3]上是增函数. 又因为g ⎝⎛⎭⎫12=52,g (1)=2,g (3)=103.可知函数F (x )=f (x )+1f (x )的值域为⎣⎡2,103. 2.已知函数f (x +2)=x +2x ,则函数f (x )的值域为________. 解析:令2+x =t ,则x =(t -2)2(t ≥2). ∴f (t )=(t -2)2+2(t -2)=t 2-2t (t ≥2). ∴f (x )=x 2-2x (x ≥2).∴f (x )=(x -1)2-1≥(2-1)2-1=0, 即f (x )的值域为[0,+∞). 答案:[0,+∞)一、选择题1.已知a 为实数,则下列函数中,定义域和值域都有可能是R 的是( ) A .f (x )=x 2+a B .f (x )=ax 2+1 C .f (x )=ax 2+x +1D .f (x )=x 2+ax +1解析:选C 当a =0时,f (x )=ax 2+x +1=x +1为一次函数,其定义域和值域都是R . 2.已知等腰△ABC 周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,则函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5} D.⎩⎨⎧⎭⎬⎫x |52<x <5 解析:选C 由题意知⎩⎪⎨⎪⎧x >0,10-2x >0,即0<x <5.3.设M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )解析:选A A 中定义域是[-2,2],值域为[0,2];B 中定义域为[-2,0],值域为[0,2];C 不表示函数;D 中的值域不是[0,2].4.(2013·南昌模拟)函数y = x (x -1)-lg 1x的定义域为( )A .{x |x >0}B .{x |x ≥1}C .{x |x ≥1,或x <0}D .{x |0<x ≤1}解析:选B 由⎩⎪⎨⎪⎧x (x -1)≥0,1x ,得x ≥1.5.函数y =2--x 2+4x 的值域是( ) A .[-2,2] B .[1,2] C .[0,2]D .[-2, 2 ]解析:选C ∵-x 2+4x =-(x -2)2+4≤4,0≤-x 2+4x ≤2,-2≤--x 2+4x ≤0, 0≤2--x 2+4x ≤2,∴0≤y ≤2.6.(文)用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为( )A .4B .5C .6D .7解析:选C f (x )=min{2x,x +2,10-x }(x ≥0)的图象如图.令x +2=10-x ,得x =4.当x =4时,f (x )取最大值,f (4)=6.6.(理)设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f (x )的值域是( )A.⎣⎡⎦⎤-940∪(1,+∞) B. )[0,+∞C.⎣⎡⎭⎫-94,+∞ D.⎣⎡⎦⎤-94,0∪(2,+∞) 解析:选D 令x <g (x ),即x 2-x -2>0,解得x <-1或x >2;令x ≥g (x ),即x 2-x -2≤0,解得-1≤x ≤2,故函数f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.当x <-1或x >2时,函数f (x )>f (-1)=2;当-1≤x ≤2时,函数f ⎝⎛⎭⎫12≤f (x )≤f (-1),即-94f (x )≤0,故函数f (x )的值域是⎣⎡⎦⎤-94,0∪(2,+∞).二、填空题 7.函数y =16-x -x2________.解析:由函数解析式可知6-x -x 2>0,即x 2+x -6<0,故-3<x <2. 答案:(-3,2)8.(文)设函数f (x )=12(x +|x |),则函数f [f (x )]的值域为________.解析:先去绝对值,当x ≥0时,f (x )=x ,故f [f (x )]=f (x )=x ; 当x <0时,f (x )=0,故f [f (x )]=f (0)=0.即f [f (x )]=⎩⎪⎨⎪⎧x (x ≥0),0(x <0),易知其值域为[0,+∞).答案:[0,+∞)8.(理)设x ≥2,则函数y =(x +5)(x +2)x +1的最小值是______.解析:y =[(x +1)+4][(x +1)+1]x +1,设x +1=t ,则t ≥3,那么y =t 2+5t +4t =t +4t +5,在区间[2,+∞)上此函数为增函数,所以t =3时,函数取得最小值即y min =283答案:2839.(2013·厦门模拟)定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.解析:由题意知,f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1],x 3-2,x ∈(1,2].当x ∈[-2,1]时,f (x )∈[-4,-1];当x ∈(1,2]时,f (x )∈(-1,6],故当x ∈[-2,2]时,f (x )∈[-4,6].答案:[-4,6] 三、解答题10.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a ,b 的值.解:∵f (x )=12(x -1)2+a -12,∴其对称轴为x =1,即[1,b ]为f (x )的单调递增区间. ∴f (x )min =f (1)=a -12=1,①f (x )max =f (b )=12b 2-b +a =b .②由①②解得⎩⎪⎨⎪⎧a =32,b =3.11.设O 为坐标原点,给定一个定点A (4,3),而点B (x,0)在x 轴的正半轴上移动,l (x )表示 AB 的长,求函数y =xl (x )的值域.解:依题意有x >0,l (x )=(x -4)2+32=x 2-8x +25, 所以y =x l (x )=x x 2-8x +25=11-8x +25x2. 由于1-8x +25x 2=25⎝⎛⎭⎫1x -4252+925, 所以1-8x +25x 2≥35,故0<y ≤53. 即函数y =x l (x )的值域是⎝⎛⎦⎤0,53. 12.(文)已知函数f (x )=x +1-a a -x (a ∈R 且x ≠a ),求x ∈⎣⎡⎦⎤a -1,a -12时,f (x )的值域.解:∵f (x )=-(a -x )+1a -x =-1+1a -x当a -1≤x ≤a -12时,-a +12≤-x ≤-a +1,∴12≤a -x ≤1.∴1≤1a -x ≤2. ∴0≤-1+1a -x≤1,即f (x )的值域为[0,1]. 12.(理)已知函数f (x )=x 2+4ax +2a +6. (1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域. 解:(1)∵函数的值域为[0,+∞), ∴Δ=16a 2-4(2a +6)=0⇒2a 2-a -3=0⇒a =-1或a =32.(2)∵对一切x ∈R 函数值均为非负, ∴Δ=8(2a 2-a -3)≤0⇒-1≤a ≤32.∴a +3>0.∴g (a )=2-a |a +3|=-a 2-3a +2 =-⎝⎛⎭⎫a +322+174⎝⎛⎭⎫a ∈⎣⎡⎦⎤-1,32.∵二次函数g (a )在⎣⎡⎦⎤-1,32上单调递减,∴g ⎝⎛⎭⎫32≤g (a )≤g (-1),即-194≤g (a )≤4.∴g (a )的值域为⎣⎡⎦⎤-194,4.1.下列函数中,与函数y =1x有相同定义域的是( )A .f (x )=ln xB .f (x )=1x C .f (x )=|x |D .f (x )=e x解析:选A 当x >0时,1x 有意义,因此函数y =1x的定义域为{x |x >0}. 对于A ,函数f (x )=ln x 的定义域为{x |x >0}; 对于B ,函数f (x )=1x 的定义域为{x |x ≠0,x ∈R };对于C ,函数f (x )=|x |的定义域为R ; 对于D ,函数f (x )=e x 的定义域为R . 所以与函数y =1x有相同定义域的是f (x )=ln x .2.函数y =ln (x +1)-x 2-3x +4的定义域为( )A .[-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]解析:选C 由⎩⎪⎨⎪⎧-x 2-3x +4>0x +1>0得-1<x <1,因此该函数的定义域是(-1,1).3.若函数y =f (x )的定义域为[0,2],则函数g (x )=f (2x )x -1的定义域是( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)解析:选B 要使g (x )有意义,则⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1.故定义域为[0,1).4.已知函数f (x )=⎝⎛⎭⎫13x ,x ∈[-1,1],函数g (x )=f 2(x )-2af (x )+3的最小值为h (a ).(1)求h (a )的解析式;(2)是否存在实数m ,n 同时满足下列两个条件:①m >n >3;②当h (a )的定义域为[n ,m ]时,值域为[n 2,m 2]?若存在,求出m ,n 的值;若不存在,请说明理由.解:(1)由f (x )=⎝⎛⎭⎫13x,x ∈[-1,1], 知f (x )∈⎣⎡⎦⎤13,3,令t =f (x )∈⎣⎡⎦⎤13,3 记g (x )=y =t 2-2at +3,则g (x )的对称轴为t =a ,故有: ①当a ≤13时,g (x )的最小值h (a )=289-2a3,②当a ≥3时,g (x )的最小值h (a )=12-6a , ③当13<a <3时,g (x )的最小值h (a )=3-a 2综上所述,h (a )=⎩⎪⎨⎪⎧289-2a 3,a ≤13,3-a 2,13<a <3,12-6a ,a ≥3,(2)当a ≥3时,h (a )=-6a +12,故m >n >3时,h (a )在[n ,m ]上为减函数, 所以h (a )在[n ,m ]上的值域为[h (m ),h (n )].由题意,则有⎩⎪⎨⎪⎧ h (m )=n 2,h (n )=m 2,⇒⎩⎪⎨⎪⎧-6m +12=n 2,-6n +12=m 2,,两式相减得6n -6m =n 2-m 2,又m ≠n ,所以m+n=6,这与m>n>3矛盾,故不存在满足题中条件的m,n的值.第三节函数的单调性与最值[备考方向要明了][归纳·知识整合] 1.函数的单调性(1)单调函数的定义.(2)如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在区间D 具有(严格的)单调性,这一区间叫做y =f (x )的单调区间.[探究] 1.函数y =1x (-∞,0)∪(0,+∞),这种表示法对吗?提示:首先函数的单调区间只能用区间表示,不能用集合或不等式的形式表示;如果一个函数有多个单调区间应分别写,分开表示,不能用并集符号“∪”联结,也不能用“或”联结.2.函数f (x )在区间[a ,b ]上单调递增与函数f (x )的单调递增区间为[a ,b ]含义相同吗? 提示:含义不同.f (x )在区间[a ,b ]上单调递增并不能排除f (x )在其他区间上单调递增,而f (x )的单调递增区间为[a ,b ]意味着f (x )在其他区间上不可能单调递增.2.函数的最值[探究] 3.函数的单调性、最大(小)值反映在其图象上有什么特征?提示:函数的单调性反映在图象上是上升或下降的,而最大(小)值反映在图象上为其最高(低)点的纵坐标的值.[自测·牛刀小试]1.(教材习题改编)函数f (x )=2x -1,x ∈[2,6],则下列说法正确的有( )①函数f (x )为减函数;②函数f (x )为增函数;③函数f (x )的最大值为2;④函数f (x )的最小值为25.A .①③B .①③④C .②③④D .②④解析:选B 易知函数f (x )=2x -1在x ∈[2,6]上为减函数,故f (x )min =f (6)=25,f (x )max =f (2)=2.2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-12解析:选D 使y =(2k +1)x +b 在(-∞,+∞)上是减函数,则2k +1<0,即k <-12.3.已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C ∵函数f (x )为R 上的减函数,且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1), ∴⎪⎪⎪⎪1x >1,即|x |<1且|x |≠0. ∴x ∈(-1,0)∪(0,1).4.(教材习题改编)f (x )=x 2-2x (x ∈[-2,4])的单调递增区间为________;f (x )max =________.解析:∵函数f (x )=x 2-2x 的对称轴为x =1.∴函数f (x )=x 2-2x (x ∈[-2,4])的单调递增区间为[1,4],单调递减区间为[-2,1). 又f (-2)=4+4=8,f (4)=16-8=8. ∴f (x )max =8. 答案:[1,4] 85.(教材习题改编)若函数f (x )=4x 2-kx -8在[5,20]上是单调递增函数,则实数k 的取值范围是________.解析:∵函数f (x )=4x 2-kx -8的对称轴为x =k8,又函数f (x )在[5,20]上为增函数, ∴k8≤5,即k ≤40. 答案:(-∞,40]。

高考数学复习第2章函数导数及其应用第8讲一次函数反比例函数及二次函数

高考数学复习第2章函数导数及其应用第8讲一次函数反比例函数及二次函数
解析:∵函数图象的对称轴方程为 x=--24=2,∴f(x)在 [0,1]上单调递减,最大值为 f(0)=3,最小值为 f(1)=1-4+3= 0,值域为[0,3].当 x∈[0,3]时,f(x)在[0,2]上单调递减,在[2,3] 上单调递增,最大值 f(0)=3,最小值为 f(2)=22-4×2+3= -1,值域为[-1,3].
图象与 x 轴的两个交点的横坐标.
4.二次函数的图象及性质 解析式 f(x)=ax2+bx+c(a>0)
f(x)=ax2+bx+c(a<0)
图象
开口 顶点
对称性 定义域
向上
向下
-2ba,4ac4-a b2 函数的图象关于 x=-2ba对称
(-∞,+∞)
(续表) 解析式
值域
f(x)=ax2+bx+c(a>0) 4ac4-a b2,+∞
2.y= 3-aa+6(-6≤a≤3)的最大值为( B )
9
32
A.9
B.2
C.3
D. 2
3.(2019年河南信阳模拟)函数y=-2x2-4ax+3在区间
[-4,-2]上是单调函数,则 a 的取值范围是( )C
A.(-∞,1]
B.[4,+∞)
C.(-∞,2]∪[4,+∞)
D.(-∞,1]∪[2,+∞)
解析:函数y=-2x2-4ax+3的图象的对称轴为x=-a,
由题意可得-a≤-4或-a≥-2,解得a≤2或a≥4,故选C.
4.(2017年北京)已知x≥0,y≥0,且x+y=1,则x2+y2的 取值范围是_____12_,__1___.
考点 1 二次函数的图象及应用
例 1:(1)(2018 年安徽淮南模拟)二次函数 y=ax2+bx 及指
第8讲 一次函数、反比例函数及二次函数

高考数学一轮总复习第二章函数导数及其应用2.9函数模型及其应用课件理

高考数学一轮总复习第二章函数导数及其应用2.9函数模型及其应用课件理
必修(bìxiū)部分
第二章 函数(hánshù)、导数及其应用
第九节 函数模型(móxíng)及其应用
第一页,共33页。

考情分析 1
(fēnxī)

基础自主(zìzhǔ) 2
3 考点疑难(yí
nán)突破

梳理

4 课时跟踪检测
第二页,共33页。
1
考情分析
第三页,共33页。
考点分布
考纲要求
第十三页,共33页。
3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品 x 万件时的生产成本为 C(x)=12x2+2x+20(万元).一万件售价是 20 万元,为获取更大 利润,该企业一个月应生产该商品数量为________万件.
解析:利润 L(x)=20x-C(x)=-12(x-18)2+142,当 x=18 时,L(x)有最大值. 答案:18
第三十页,共33页。
指数函数与对数函数模型的应用技巧 (1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会 合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于 1)的一 类函数模型,与增长率、银行利率有关的问题都属于指数函数模型. (2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函 数解析式,再借助函数的图象求解最值问题.
二次函数模型
f(x)=ax2+bx+c (a,b,c 为常数,a≠0)
第六页,共33页。
f(x)=bax+c 指数函数模型
(a,b,c 为常数,b≠0,a>0 且 a≠1)
对数函数模型
f(x)=blogax+c
(a,b,c 为常数,b≠0,a>0 且 a≠1)

最新高考数学(文)一轮复习第二章 函数、导数及其应用 第二章 函数、导数及其应用及答案

最新高考数学(文)一轮复习第二章 函数、导数及其应用 第二章 函数、导数及其应用及答案

第二章⎪⎪⎪函、导及其应用第一节函及其表示1.函与映射的概念2.函的有关概念 (1)函的定义域、值域:在函y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函的定义域;与x 的值相对应的y 值叫做函值,函值的集合{f (x )|x ∈A }叫做函的值域.显然,值域是集合B 的子集.(2)函的三要素:定义域、值域和对应关系.(3)相等函:如果两个函的定义域和对应关系完全一致,则这两个函相等,这是判断两函相等的依据.(4)函的表示法表示函的常用方法有:解析法、图象法、列表法. 3.分段函若函在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函通常叫做分段函.1.下列函中,与函y =13x定义域相同的函为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx答案:D2.若函y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函y =f (x )的图象可能是()答案:B 3.函f (x )=x -4|x |-5的定义域是________________.答案:1.设函f (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =________.解析:若a ≥0,则a +1=2,得a =1; 若a <0,则-a +1=2,得a =-1. 答案:±12.已知f ⎝ ⎛⎭⎪⎫1x =x 2+5x ,则f (x )=________.解析:令t =1x ,∴x =1t .∴f (t )=1t 2+5t.∴f (x )=5x +1x 2(x ≠0).答案:5x +1x 2(x ≠0)考点一 函的定义域 基础送分型考点——自主练透1.函f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .C .(-∞,0)∪(1,+∞)D .(-∞,0]∪B .C .,则函g (x )=f x +1x -1的定义域是( )A .B .C .(1,2 017]D .解析:选B 令t =x +1,则由已知函的定义域为,可知1≤t ≤2 017.要使函f (x +1)有意义,则有1≤x +1≤2 017,解得0≤x ≤2 016,故函f (x +1)的定义域为.所以使函g (x )有意义的条件是⎩⎨⎧0≤x ≤2 016,x -1≠0,解得0≤x <1或1<x ≤2 016.故函g (x )的定义域为.4.函f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为____________________.解析:由⎩⎨⎧1-|x -1|≥0,a x-1≠0⇒⎩⎨⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函的定义域为(0,2].答案:(0,2]函定义域的求解策略(1)已知函解析式:构造使解析式有意义的不等式(组)求解.(2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函:①若已知函f (x )的定义域为,其复合函f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;②若已知函f (g (x ))的定义域为,则f (x )的定义域为g (x )在x ∈时的值域. 考点二 求函的解析式 重点保分型考点——师生共研(1)已知f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ); (4)已知函f (x )满足f (-x )+2f (x )=2x ,求f (x )的解析式. 解:(1)(配凑法)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.(2)(换元法)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1, 故f (x )的解析式是f (x )=lg2x -1,x >1. (3)(待定系法)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1,即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1, 所以⎩⎨⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.(4)(解方程组法)由f (-x )+2f (x )=2x ,① 得f (x )+2f (-x )=2-x ,② ①×2-②,得,3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.∴f (x )的解析式是f (x )=2x +1-2-x3.求函解析式的4种方法1.已知f (x +1)=x +2x ,求f (x )的解析式.解:法一:(换元法)设t =x +1,则x =(t -1)2,t ≥1,代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1.法二:(配凑法)∵x +2x =(x )2+2x +1-1=(x +1)2-1,∴f (x +1)=(x +1)2-1,x +1≥1, 即f (x )=x 2-1,x ≥1.2.设y =f (x )是二次函,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根,∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1. 考点三 分段函 题点多变型考点——多角探明高考对分段函的考查多以选择题、填空题的形式出现,试题难度一般较小. 常见的命题角度有: (1)分段函的函求值问题; (2)分段函的自变量求值问题;(3)分段函与方程、不等式问题.角度一:分段函的函求值问题1.(2017·西安质检)已知函f (x )=⎩⎨⎧log 2x ,x >0,3x+1,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14的值是________.解析:由题意可得f ⎝ ⎛⎭⎪⎫14=log 214=-2,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14=f (-2)=3-2+1=109.答案:109角度二:分段函的自变量求值问题2.已知f (x )=⎩⎪⎨⎪⎧x 12,x ∈[0,+∞ ,|sin x |,x ∈⎝ ⎛⎭⎪⎫-π2,0,若f (a )=12,则a =________.解析:若a ≥0,由f (a )=12得,a 12=12,解得a =14;若a <0,则|sin a |=12,a ∈⎝ ⎛⎭⎪⎫-π2,0,解得a =-π6.综上可知,a =14或-π6. 答案:14或-π6角度三:分段函与方程、不等式问题 3.已知函f (x )=⎩⎨⎧x 2+2ax ,x ≥2,2x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a , 若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)1.分段函的求值问题的解题思路(1)求函值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函定义区间的各段上,然后求出相应自变量的值,切记要代入检验.2.分段函与方程、不等式问题的求解思路依据不同范围的不同段分类讨论求解,最后将讨论结果并起.1.(2017·唐山统考)已知函f (x )=⎩⎨⎧2x-2,x ≤0,-log 3x ,x >0,且f (a )=-2,则f (7-a )=( )A .-log 37B .-34C .-54D .-74解析:选D 当a ≤0时,2a -2=-2无解;当a >0时,由-log 3a =-2,解得a =9,所以f (7-a )=f (-2)=2-2-2=-74.2.(2015·山东高考)设函f (x )=⎩⎨⎧3x -1,x <1,2x, x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1 B .C.⎣⎢⎡⎭⎪⎫23,+∞ D . B .(0,1] C .D ..∴原函的定义域为(0,1].4.已知函y =f (x )的定义域是,则函g (x )=f 3xx -1的定义域是( ) A.⎣⎢⎡⎭⎪⎫0,13∪⎝ ⎛⎦⎥⎤13,1 B . D . 解析:选B 由⎩⎨⎧0≤3x ≤3,x -1≠0可得0≤x <1,选B.5.已知具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函,我们称为满足“倒负”变换的函,下列函:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函是( ) A .①② B .①③ C .②③D .① 解析:选B 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x +x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x>1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函是①③. 6.函f (x ),g (x )分别由下表给出.则f (g (1))的值为________;满足f (g (x ))>g (f (x ))的x 的值是________. 解析:∵g (1)=3,f (3)=1,∴f (g (1))=1.当x =1时,f (g (1))=f (3)=1,g (f (1))=g (1)=3,不合题意. 当x =2时,f (g (2))=f (2)=3,g (f (2))=g (3)=1,符合题意. 当x =3时,f (g (3))=f (1)=1,g (f (3))=g (1)=3,不合题意. 答案:1 27.已知函f (x )=⎩⎨⎧a -1 x +1,x ≤1,a x -1,x >1,若f (1)=12,则f (3)=________.解析:由f (1)=12,可得a =12,所以f (3)=⎝ ⎛⎭⎪⎫122=14.答案:148.已知函y =f (x 2-1)的定义域为,则函y =f (x )的定义域为________. 解析:∵y =f (x 2-1)的定义域为, ∴x ∈,x 2-1∈, ∴y =f (x )的定义域为. 答案:9.已知函f (x )=2x +1与函y =g (x )的图象关于直线x =2成轴对称图形,则函y =g (x )的解析式为________.解析:设点M (x ,y )为函y =g (x )图象上的任意一点,点M ′(x ′,y ′)是点M 关于直线x =2的对称点,则⎩⎨⎧x ′=4-x ,y ′=y .又y ′=2x ′+1, ∴y =2(4-x )+1=9-2x , 即g (x )=9-2x . 答案:g (x )=9-2x10.如图,已知A (n ,-2),B (1,4)是一次函y =kx +b 的图象和反比例函y =mx的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函和一次函的解析式. (2)求△AOC 的面积.解:(1)因为B (1,4)在反比例函y =m x上,所以m =4,又因为A (n ,-2)在反比例函y =m x =4x的图象上,所以n =-2,又因为A (-2,-2),B (1,4)是一次函y =kx +b 上的点,联立方程组⎩⎨⎧-2k +b =-2,k +b =4,解得⎩⎨⎧k =2,b =2.所以y =4x,y =2x +2.(2)因为y =2x +2,令x =0,得y =2,所以C (0,2),所以△AOC 的面积为:S =12×2×2=2.三上台阶,自主选做志在冲刺名校 1.已知实a ≠0,函f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为( )A .-32B .-34C .-32或-34 D.32或-34解析:选B 当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-34,所以a 的值为-34,故选B.2.已知函f (x )满足对任意的x ∈R 都有f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2成立,则f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=________.解析:由f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2,得f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫78=2,f ⎝ ⎛⎭⎪⎫28+f ⎝ ⎛⎭⎪⎫68=2, f ⎝ ⎛⎭⎪⎫38+f ⎝ ⎛⎭⎪⎫58=2,又f ⎝ ⎛⎭⎪⎫48=12⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫48+f ⎝ ⎛⎭⎪⎫48=12×2=1,∴f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=2×3+1=7.答案:73.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常).如图是根据多次实验据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m=1100,n=0,所以y=x2200+x100(x≥0).(2)令x2200+x100≤25.2,得-72≤x≤70.∵x≥0,∴0≤x≤70.故行驶的最大速度是70千米/时.第二节函的单调性与最值1.函的单调性(1)单调函的定义如果函y=f(x)在区间D上是增函或减函,那么就说函y=f(x)在这一区间具有(严格的)单调性,区间D叫做函y=f(x)的单调区间.2.函的最值1.下列函中,定义域是R且为增函的是( )A.y=e-x B.y=x3C.y=ln x D.y=|x|答案:B2.y=x2-6x+5的单调减区间为________.解析:y=x2-6x+5=(x-3)2-4,表示开口向上,对称轴为x=3的抛物线,其单调减区间为(-∞,3].答案:(-∞,3]3.若函f(x)=1x 在区间上的最大值与最小值的和为34,则a=________.解析:由f (x )=1x 的图象知,f (x )=1x在(0,+∞)上是减函,∵⊆(0,+∞),∴f (x )=1x在上也是减函,∴f (x )m ax =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:41.易混淆两个概念:“函的单调区间”和“函在某区间上单调”,前者指函具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函f (x )在区间(-1,0)上是减函,在(0,1)上是减函,但在(-1,0)∪(0,1)上却不一定是减函,如函f (x )=1x.3.两函f (x ),g (x )在x ∈(a ,b )上都是增(减)函,则f (x )+g (x )也为增(减)函,但f (x )·g (x ),1f x等的单调性与其正负有关,切不可盲目类比.1.设定义在上的函y =f (x )的图象如图所示,则函y =f (x )的增区间为________.答案:, 2.函f (x )=2x -1在上的最大值与最小值之差为________. 解析:易知f (x )在上是减函,∴f (x )m ax -f (x )min =f (-2)-f (0)=-23-(-2)=43.答案:43考点一 函单调性的判断 基础送分型考点——自主练透1.下列四个函中,在(0,+∞)上为增函的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函; 当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函;当x ∈(0,+∞)时,f (x )=-1x +1为增函; 当x ∈(0,+∞)时,f (x )=-|x |为减函. 2.试讨论函f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.解:法一(定义法):设-1<x 1<x 2<1,f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1, f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1 =a x 2-x 1x 1-1 x 2-1,由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函f(x)在(-1,1)上递增.法二(导法):f′(x)= ax ′ x-1 -ax x-1 ′x-1 2=a x-1 -axx-1 2=-ax-1 2.当a>0时,f′(x)<0,函f(x)在(-1,1)上递减;当a<0时,f′(x)>0,函f(x)在(-1,1)上递增.3.判断函y=x+2x+1在(-1,+∞)上的单调性.解:法一:任取x1,x2∈(-1,+∞),且x1<x2,则y1-y2=x1+2x1+1-x2+2x2+1=x2-x1x1+1 x2+1.∵x1>-1,x2>-1,∴x1+1>0,x2+1>0,又x1<x2,∴x2-x1>0,∴x2-x1x1+1 x2+1>0,即y1-y2>0.∴y1>y2,∴函y=x+2x+1在(-1,+∞)上单调递减.法二:y=x+2x+1=1+1x+1.∵y=x+1在(-1,+∞)上是增函,∴y=1x+1在(-1,+∞)上是减函,∴y=1+1x+1在(-1,+∞)上是减函.即函y=x+2x+1在(-1,+∞)上单调递减.判断或证明函的单调性的2种重要方法及其步骤 (1)定义法,其基本步骤: 取值作差 商变形确定符号与1的大小得出结论(2)导法,其基本步骤: 求导函确定符号得出结论考点二 求函的单调区间 重点保分型考点——师生共研求下列函的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =错误!即y =⎩⎨⎧- x -1 2+2,x ≥0,- x +1 2+2,x <0.画出函图象如图所示,单调递增区间为(-∞,-1]和,单调递减区间为和确定函的单调区间的3种方法单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.1.函y =|x |(1-x )在区间A 上是增函,那么区间A 是( ) A .(-∞,0) B.⎣⎢⎡⎦⎥⎤0,12C .高考对函单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.常见的命题角度有: (1)求函的值域或最值;(2)比较两个函值或两个自变量的大小; (3)解函不等式;(4)利用单调性求参的取值范围或值.角度一:求函的值域或最值1.函f (x )=⎩⎨⎧1x,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函f (x )=1x为减函,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函f (x )的最大值为2. 答案:2角度二:比较两个函值或两个自变量的大小2.(2017·哈尔滨联考)已知函f (x )的图象关于直线x =1对称,当x 2>x 1>1时,(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c解析:选D 因f (x )的图象关于直线x =1对称.由此可得f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由x 2>x 1>1时,(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝ ⎛⎭⎪⎫52>f (e),∴b >a >c .角度三:解函不等式3.已知函f (x )为R 上的减函,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选 C 由f (x )为R 上的减函且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1),得⎩⎨⎧⎪⎪⎪⎪⎪⎪1x >1,x ≠0,即⎩⎨⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.故选C.角度四:利用单调性求参的取值范围或值 4.已知函f (x )=⎩⎨⎧a -2 x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实a 的取值范围为________.解析:要使函f (x )在R 上单调递增,则有⎩⎨⎧a >1,a -2>0,f 1 ≤0,即⎩⎨⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实a 的取值范围是(2,3]. 答案:(2,3]函单调性应用问题的常见类型及解题策略(1)求函最值(五种常用方法)(2)比较大小比较函值的大小,应将自变量转到同一个单调区间内,然后利用函的单调性解决.(3)解不等式在求解与抽象函有关的不等式时,往往是利用函的单调性将“f”符号脱掉,使其转为具体的不等式求解.此时应特别注意函的定义域.(4)利用单调性求参视参为已知,依据函的图象或单调性定义,确定函的单调区间,与已知单调区间比较求参.①若函在区间上单调,则该函在此区间的任意子区间上也是单调的;②分段函的单调性,除注意各段的单调性外,还要注意衔接点的取值.1.已知函f(x)=|x+a|在(-∞,-1)上是单调函,则a的取值范围是( ) A.(-∞,1] B.(-∞,-1]C.解析:选A 法一:由一次函的图象可知选A.法二:设∀x1,x2∈R且x1<x2,∵f(x)=kx+b在R上是增函,∴(x1-x2)(f(x1)-f(x2))>0,即k(x1-x2)2>0,∵(x1-x2)2>0,∴k>0,故选A.3.(2017·北京东城期中)已知函y =1x -1,那么( ) A .函的单调递减区间为(-∞,1),(1,+∞) B .函的单调递减区间为(-∞,1)∪(1,+∞) C .函的单调递增区间为(-∞,1),(1,+∞) D .函的单调递增区间为(-∞,1)∪(1,+∞) 解析:选A 函y =1x -1可看作是由y =1x向右平移1个单位长度得到的,∵y =1x 在(-∞,0)和(0,+∞)上单调递减,∴y =1x -1在(-∞,1)和(1,+∞)上单调递减,∴函y =1x -1的单调递减区间为(-∞,1)和(1,+∞),故选A. 4.函y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝⎛⎭⎪⎫t -122+14,结合图象知,当t =12,即x =14时,y m ax =14.答案:145.函f (x )=log 12(x 2-4)的单调递增区间为________.解析:由x 2-4>0得x <-2或x >2.又u =x 2-4在(-∞,-2)上为减函,在(2,+∞)上为增函,y =log 12u 为减函,故f (x )的单调递增区间为(-∞,-2).答案:(-∞,-2)二保高考,全练题型做到高考达标1.已知函f (x )=x 2-2x -3,则该函的单调递增区间为( ) A .(-∞,1] B . D .∪上单调递减,在 B.⎝ ⎛⎦⎥⎤0,12C.⎣⎢⎡⎦⎥⎤12,2 D .(0,2]解析:选C 因为log 12a =-log 2 a ,且f (x )是偶函,所以f (log 2a )+f (log 12a )=2f (log 2a )=2f (|log 2a |)≤2f (1),即f (|log 2a |)≤f (1),又函在的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函. ∴f (x )的最大值为f (2)=23-2=6.4.已知函f (x )=⎩⎨⎧a -2 x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2是R 上的单调递减函,则实a的取值范围是( )A .(-∞,2) B.⎝⎛⎦⎥⎤-∞,138 C .(0,2)D.⎣⎢⎡⎭⎪⎫138,2 解析:选B因为函为递减函,则⎩⎨⎧a -2<0,2 a -2 ≤⎝ ⎛⎭⎪⎫122-1,解得a ≤138,故选B.5.(2017·安徽皖江名校联考)定义在上的函f (x )满足(x 1-x 2)>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实a 的取值范围为( )A .>0,x 1≠x 2,∴函在上单调递增,∴⎩⎨⎧-2≤a 2-a ≤2,-2≤2a -2≤2,2a -2<a 2-a .∴⎩⎨⎧-1≤a ≤2,0≤a ≤2,a <1或a >2,∴0≤a <1,故选C.6.函f (x )=1x -1在区间上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在上为减函,∴⎩⎨⎧f a =1,f b =13,即⎩⎪⎨⎪⎧1a -1=1,1b -1=13,∴⎩⎨⎧a =2,b =4.∴a +b =6. 答案:67.已知函f (x )=x 2-2ax -3在区间上具有单调性,则实a 的取值范围为________________.解析:函f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函在(-∞,a ]和上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪∪上的最大值为4,最小值为m ,且函g (x )=(1-4m )x 在上的最小值为1a =m ,最大值为a 2=4,解得a =2,12=m ,与m <14矛盾;当0<a <1时,函f (x )在上的最小值为a 2=m ,最大值为a -1=4,解得a =14,m =116.所以a =14.答案:149.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2 x 1-x 2 x 1+2 x 2+2. ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f(x1)<f(x2),∴f(x)在(-∞,-2)上单调递增.(2)任设1<x1<x2,则f(x1)-f(x2)=x1x1-a-x2x2-a=a x2-x1x1-a x2-a.∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0在(1,+∞)上恒成立,∴a≤1.综上所述知a的取值范围是(0,1].10.已知函f(x)=a-1|x|.(1)求证:函y=f(x)在(0,+∞)上是增函;(2)若f(x)<2x在(1,+∞)上恒成立,求实a的取值范围.解:(1)证明:当x∈(0,+∞)时,f(x)=a-1 x ,设0<x1<x2,则x1x2>0,x2-x1>0,f(x2)-f(x1)=⎝⎛⎭⎪⎫a-1x2-⎝⎛⎭⎪⎫a-1x1=1x1-1x2=x2-x1x1x2>0,所以f(x)在(0,+∞)上是增函.(2)由题意a-1x<2x在(1,+∞)上恒成立,设h(x)=2x+1x,则a<h(x)在(1,+∞)上恒成立.任取x1,x2∈(1,+∞)且x1<x2,h(x1)-h(x2)=(x1-x2)⎝⎛⎭⎪⎫2-1x1x2.因为1<x1<x2,所以x1-x2<0,x1x2>1,所以2-1x1x2>0,所以h(x1)<h(x2),所以h(x)在(1,+∞)上单调递增.故a≤h(1),即a≤3,所以实a 的取值范围是(-∞,3]. 三上台阶,自主选做志在冲刺名校1.如果函y =f (x )在区间I 上是增函,且函y =f xx在区间I 上是减函,那么称函y =f (x )是区间I 上的“缓增函”,区间I 叫做“缓增区间”.若函f (x )=12x 2-x +32是区间I 上的“缓增函”,则“缓增区间”I 为( )A . C .D .解析:选D 因为函f (x )=12x 2-x +32的对称轴为x =1,所以函y =f (x )在区间上单调递减,故“缓增区间”I 为.2.已知定义在区间(0,+∞)上的函f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)证明:f (x )为单调递减函.(2)若f (3)=-1,求f (x )在上的最小值. 解:(1)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函f (x )在区间(0,+∞)上是单调递减函. (2)因为f (x )在(0,+∞)上是单调递减函, 所以f (x )在上的最小值为f (9). 由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝ ⎛⎭⎪⎫93=f (9)-f (3),而f (3)=-1, 所以f (9)=-2.所以f (x )在上的最小值为-2.第三节函的奇偶性及周期性1.函的奇偶性(1)周期函对于函f(x),如果存在一个非零常T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函f(x)为周期函,称T为这个函的周期.(2)最小正周期如果在周期函f(x)的所有周期中存在一个最小的正,那么这个最小正就叫做f(x)的最小正周期.1.下列函中,既是偶函又在(0,+∞)上单调递增的是( )A.y=x B.y=cos xC.y=e x D.y=ln |x|答案:D2.已知函f(x)是定义在R上的奇函,且当x>0时,f(x)=x2+1x,则f(-1)=________.答案:-23.若函f (x )是周期为5的奇函,且满足f (1)=1,f (2)=2,则f (8)-f (14)=________.答案:-11.判断函的奇偶性,易忽视判断函定义域是否关于原点对称.定义域关于原点对称是函具有奇偶性的一个必要条件.2.判断函f (x )的奇偶性时,必须对定义域内的每一个x ,均有f (-x )=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0).3.分段函奇偶性判定时,误用函在定义域某一区间上不是奇偶函去否定函在整个定义域上的奇偶性.1.已知f (x )=ax 2+bx 是定义在上的偶函,那么a +b 的值是( ) A .-13B.13C.12D .-12解析:选B ∵f (x )=ax 2+bx 是定义在上的偶函,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.2.下列函中,为奇函的是( ) A .y =3x +13xB .y =x ,x ∈{0,1}C .y =x ·sin xD .y =⎩⎨⎧1,x <0,0,x =0,-1,x >0解析:选D 由函奇偶性定义易知函y =3x +13x 和y =x ·sin x 都是偶函,排除A 和C ;函y =x ,x ∈{0,1}的定义域不关于坐标原点对称,既不是奇函又不是偶函,排除B ;由奇函的定义知y =⎩⎨⎧1,x <0,0,x =0,-1,x >0是奇函,故选D.考点一 函奇偶性的判断 基础送分型考点——自主练透判断下列函的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3;(3)f (x )=3x -3-x ; (4)f (x )=4-x 2|x +3|-3;(5)(易错题)f (x )=⎩⎨⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)∵由⎩⎨⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ). ∴f (x )既是奇函又是偶函. (2)∵函f (x )=3-2x +2x -3的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫32,不关于坐标原点对称,∴函f (x )既不是奇函,也不是偶函. (3)∵f (x )的定义域为R ,∴f (-x )=3-x -3x =-(3x -3-x )=-f (x ), 所以f (x )为奇函.(4)∵由⎩⎨⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为,∴f (x )=4-x 2|x +3|-3=4-x 2 x +3 -3=4-x 2x ,∴f (-x )=-f (x ),∴f (x )是奇函.(5)易知函的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0, 故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0, 故f (-x )=x 2+x =f (x ),故原函是偶函.判定函奇偶性的3种常用方法(1)定义法(2)图象法(3)性质法①设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函的奇偶性可概括为“同奇则奇,一偶则偶”.(1)“性质法”中的结论是在两个函的公共定义域内才成立的.(2)判断分段函的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x都满足相同的关系时,才能判断其奇偶性.如“题组练透”第(5)题.考点二函的周期性 重点保分型考点——师生共研设f(x)是定义在R上的奇函,且对任意实x,恒有f(x+2)=-f(x),当x ∈时,f(x)=2x-x2.(1)求证:f(x)是周期函;(2)计算f(0)+f(1)+f(2)+…+f(2 018).解:(1)证明:∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)是周期为4的周期函.(2)∵f(0)=0,f(1)=1,f(2)=0,f(3)=-f(1)=-1.又f(x)是周期为4的周期函,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 012)+f(2 013)+f(2 014)+f(2 015)=0.∴f(0)+f(1)+f(2)+…+f(2 018)=f(2 016)+f(2 017)+f(2 018)=f(0)+f(1)+f(2)=1.1.判断函周期性的2个方法(1)定义法.(2)图象法.2.周期性3个常用结论(1)若f(x+a)=-f(x),则T=2a,(2)若f(x+a)=1f x,则T=2a,(3)若f(x+a)=-1f x,则T=2a(a>0).1.若f(x)是R上周期为5的奇函,且满足f(1)=1,f(2)=2,则f(3)-f(4)等于( )A.-1 B.1 C.-2 D.2解析:选A 由f(x)是R上周期为5的奇函,知f(3)=f(-2)=-f(2)=-2,f(4)=f(-1)=-f(1)=-1,∴f(3)-f(4)=-1,故选A.2.已知定义在R上的函满足f(x+2)=-1f x,x∈(0,2]时,f(x)=2x -1.则f(1)+f(2)+f(3)+…+f(2 017)的值为________.解析:∵f(x+2)=-1f x,∴f(x+4)=-1f x+2=f(x),∴函y=f(x)的周期T=4.又x∈(0,2]时,f(x)=2x-1,∴f(1)=1,f(2)=3,f(3)=-1f 1=-1,f(4)=-1f 2=-13.∴f(1)+f(2)+f(3)+…+f(2 017)=504+f (504×4+1) =504⎝ ⎛⎭⎪⎫1+3-1-13+1=1 345. 答案:1 345考点三 函性质的综合应用 题点多变型考点——多角探明函的奇偶性、周期性以及单调性是函的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函相结合,并以结合奇偶性求函值为主.多以选择题、填空题形式出现.常见的命题角度有: (1)奇偶性的应用; (2)单调性与奇偶性结合; (3)周期性与奇偶性结合;(4)单调性、奇偶性与周期性结合.角度一:奇偶性的应用1.(2017·福建三明模拟)函y =f (x )是R 上的奇函,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-xC .-2-xD .2x解析:选C x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函,∴当x >0时,f (x )=-f (-x )=-2-x .故选C.角度二:单调性与奇偶性结合2.(2016·天津高考)已知f (x )是定义在R 上的偶函,且在区间(-∞,0)上单调递增.若实a 满足f (2|a -1|)>f (-2),则a 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,12B.⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫32,+∞C.⎝ ⎛⎭⎪⎫12,32D.⎝ ⎛⎭⎪⎫32,+∞ 解析:选C 因为f (x )是定义在R 上的偶函,且在区间(-∞,0)上单调递增,所以f (-x )=f (x ),且f (x )在(0,+∞)上单调递减.由f (2|a -1|)>f (-2),f (-2)=f (2),可得2|a -1|<2,即|a -1|<12,所以12<a <32.角度三:周期性与奇偶性结合3.已知f (x )是定义在R 上以3为周期的偶函,若f (1)<1,f (5)=2a -3a +1,则实a 的取值范围是( )A .(-1,4)B .(-2,1)C .(-1,2)D .(-1,0)解析:选A 因为函f (x )是定义在R 上以3为周期的偶函,所以f (5)=f (-1)=f (1),即2a -3a +1<1, 简得(a -4)(a +1)<0, 解得-1<a <4,故选A.角度四:单调性、奇偶性与周期性结合4.已知定义在R 上的奇函f (x )满足f (x -4)=-f (x ),且在区间上是增函,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:选D 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函f (x )是以8为周期的周期函,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f(x)在区间上是增函,f(x)在R上是奇函,所以f(x)在区间上是增函,所以f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).函性质综合应用问题的常见类型及解题策略(1)函单调性与奇偶性结合.注意函单调性及奇偶性的定义,以及奇、偶函图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函值的自变量转到已知解析式的函定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转自变量所在的区间,然后利用奇偶性和单调性求解.1.(2017·广州模拟)已知f(x)在R上是奇函,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( )A.2 B.-2C.-98 D.98解析:选B 因为f(x+4)=f(x),所以函f(x)的周期T=4,又f(x)在R 上是奇函,所以f(7)=f(-1)=-f(1)=-2.2.已知偶函f(x)对于任意x∈R都有f(x+1)=-f(x),且f(x)在区间上是递增的,则f(-6.5),f(-1),f(0)的大小关系是( )A.f(0)<f(-6.5)<f(-1)B.f(-6.5)<f(0)<f(-1)C.f(-1)<f(-6.5)<f(0)D.f(-1)<f(0)<f(-6.5)解析:选A 由f(x+1)=-f(x),得f(x+2)=-f(x+1)=f(x),∴函f(x)的周期是2.∵函f(x)为偶函,∴f(-6.5)=f(-0.5)=f(0.5),f(-1)=f(1).∵f(x)在区间上是单调递增的,∴f(0)<f(0.5)<f(1),即f(0)<f(-6.5)<f(-1).3.设f(x)是定义在R上周期为4的奇函,若在区间上,f(x)=⎩⎨⎧ax +b ,-2≤x <0,ax -1,0<x ≤2,则f (2 018)=________.解析:设0<x ≤2,则-2≤-x <0,f (-x )=-ax +b .f (x )是定义在R 上周期为4的奇函,所以f (-x )=-f (x )=-ax +1=-ax +b ,所以b =1.而f (-2)=f (-2+4)=f (2),所以-2a +1=2a -1,解得a =12,所以f (2 018)=f (2)=2×12-1=0.答案:0一抓基础,多练小题做到眼疾手快1.(2017·石家庄质检)下列函中,既是偶函又在区间(0,+∞)上单调递增的是( )A .y =1xB .y =|x |-1C .y =lg xD .y =⎝ ⎛⎭⎪⎫12|x |解析:选B A 中函y =1x不是偶函且在(0,+∞)上单调递减,故A 错误;B中函满足题意,故B 正确;C 中函不是偶函,故C 错误;D 中函不满足在(0,+∞)上单调递增,故选B.2.已知f (x )为定义在R 上的奇函,当x ≥0时,f (x )=2x +m ,则f (-2)=( )A .-3B .-54C.54D .3解析:选A 因为f (x )为R 上的奇函,所以f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.3.函f (x )=x +1x+1,f (a )=3,则f (-a )的值为( )A .-3B .-1C .1D .2解析:选B 由题意得f (a )+f (-a )=a +1a +1+(-a )+1-a +1=2.∴f (-a )=2-f (a )=-1,故选B.4.函f (x )在R 上为奇函,且x >0时,f (x )=x +1,则当x <0时,f (x )=________.解析:∵f (x )为奇函,x >0时,f (x )=x +1, ∴当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1. 答案:--x -15.设函f (x )是定义在R 上周期为2的偶函,当x ∈时,f (x )=x +1,则f ⎝ ⎛⎭⎪⎫32=________.解析:依题意得,f (2+x )=f (x ),f (-x )=f (x ), 则f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=12+1=32.答案:32二保高考,全练题型做到高考达标1.(2016·山西考前质检)下列函中,既是偶函又在区间(1,2)内单调递减的是( )A .f (x )=xB .f (x )=1x2C .f (x )=2x +2-xD .f (x )=-cos x解析:选B 对于A ,偶函与单调递减均不满足;对于B ,符合题意;对于C ,不满足单调递减;对于D ,不满足单调递减,故选B.2.设f (x )是周期为2的奇函,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52等于( )A .-12B .-14C.14D.12解析:选A ∵f (x )是周期为2的奇函,∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-2×12×⎝ ⎛⎭⎪⎫1-12=-12.3.(2017·绵阳诊断)已知偶函f (x )在区间(a <b <0)上的值域为,则在区间上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3解析:选B 法一:根据题意作出y =f (x )的简图,由图知,选B.法二:当x ∈时,-x ∈,由题意得f (b )≤f (-x )≤f (a ),即-3≤-f (x )≤4,∴-4≤f (x )≤3,即在区间上f (x )min =-4,f (x )m ax =3,故选B. 5.设f (x )是定义在实集上的函,且f (2-x )=f (x ),若当x ≥1时,f (x )=ln x ,则有( )A .f ⎝ ⎛⎭⎪⎫13<f (2)<f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫12<f (2)<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2)D .f (2)<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13解析:选C 由f (2-x )=f (x )可知函f (x )的图象关于x =1对称,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫53,又当x ≥1时,f (x )=ln x 单调递增,所以f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫53<f (2),即f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2),故选C.6.(2017·贵州适应性考试)已知f (x )是奇函,g (x )=2+f xf x.若g (2)=3,则g (-2)=________.解析:由题意可得g (2)=2+f 2f 2=3,则f (2)=1,又f (x )是奇函,则f (-2)=-1,所以g (-2)=2+f -2 f -2 =2-1-1=-1.答案:-17.定义在R 上的奇函y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,则满足f (x )>0的x 的集合为________.解析:由奇函y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,得函y =f (x )在(-∞,0)上递增,且f ⎝ ⎛⎭⎪⎫-12=0,∴f (x )>0时,x >12或-12<x <0.即满足f (x )>0的x 的集合为 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <0或x >12. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <0或x >12 8.已知f (x ),g (x )分别是定义在R 上的奇函和偶函,且f (x )-g (x )=⎝ ⎛⎭⎪⎫12x ,则f (1),g (0),g (-1)之间的大小关系是______________.解析:在f (x )-g (x )=⎝ ⎛⎭⎪⎫12x 中,用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函和偶函, 所以f (-x )=-f (x ),g (-x )=g (x ), 因此得-f (x )-g (x )=2x .联立方程组解得f (x )=2-x -2x 2,g (x )=-2-x +2x2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1). 答案:f (1)>g (0)>g (-1)9.设f (x )的定义域为(-∞,0)∪(0,+∞),且f (x )是奇函,当x >0时,f (x )=x 1-3x.(1)求当x <0时,f (x )的解析式; (2)解不等式f (x )<-x8.解:(1)因为f (x )是奇函,所以当x <0时,f (x )=-f (-x ),-x >0, 又因为当x >0时,f (x )=x1-3x ,所以当x <0时,f (x )=-f (-x ) =--x 1-3-x =x1-3-x. (2)f (x )<-x 8,当x >0时,即x 1-3x <-x8,所以11-3x <-18,所以13x-1>18,所以3x -1<8, 解得x <2,所以x ∈(0,2). 当x <0时,即x1-3-x<-x 8,所以11-3-x >-18, 所以3-x >32,所以x <-2, 所以解集是(-∞,-2)∪(0,2).10.已知函f (x )=⎩⎨⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函.(1)求实m 的值;(2)若函f (x )在区间上单调递增,求实a 的取值范围. 解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函,所以f (-x )=-f (x ), 于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在上单调递增,结合f (x )的图象(如图所示)知⎩⎨⎧a -2>-1,a -2≤1,所以1<a ≤3,故实a 的取值范围是(1,3].三上台阶,自主选做志在冲刺名校1.已知y =f (x )是偶函,当x >0时,f (x )=x +4x,且当x ∈时,n ≤f (x )≤m恒成立,则m -n 的最小值是________.解析:∵当x ∈时,n ≤f (x )≤m 恒成立, ∴n ≤f (x )min 且m ≥f (x )m ax ,∴m -n 的最小值是f (x )m ax -f (x )min ,又由偶函的图象关于y 轴对称知,当x ∈时,函的最值与x ∈时的最值相同,又当x >0时,f (x )=x +4x,在上递减,在上递增,且f (1)>f (3),∴f (x )m ax -f (x )min =f (1)-f (2)=5-4=1. 答案:12.设函f (x )是定义在R 上的奇函,对任意实x 有f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x 成立.(1)证明y =f (x )是周期函,并指出其周期; (2)若f (1)=2,求f (2)+f (3)的值;(3)若g (x )=x 2+ax +3,且y =|f (x )|·g (x )是偶函,求实a 的值. 解:(1)由f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x , 且f (-x )=-f (x ),知f (3+x )=f ⎣⎢⎡⎦⎥⎤32+⎝ ⎛⎭⎪⎫32+x =-f⎣⎢⎡⎦⎥⎤32-⎝ ⎛⎭⎪⎫32+x =-f (-x )=f (x ), 所以y =f (x )是周期函,且T =3是其一个周期. (2)因为f (x )为定义在R 上的奇函,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.(3)因为y =|f (x )|·g (x )是偶函,且|f (-x )|=|-f (x )|=|f (x )|,所以|f (x )|为偶函. 故g (x )=x 2+ax +3为偶函, 即g (-x )=g (x )恒成立,于是(-x )2+a (-x )+3=x 2+ax +3恒成立. 于是2ax =0恒成立,所以a =0.第四节函的图象1.描点法作图其基本步骤是列表、描点、连线,具体为:(1)①确定函的定义域;②简函的解析式;③讨论函的性质(奇偶性、单调性、周期性).(2)列表(注意特殊点、零点、最大值点、最小值点以及坐标轴的交点). (3)描点,连线. 2.图象变换 (1)平移变换①y =f (x )的图象――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a )的图象; ②y =f (x )的图象――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b 的图象. (2)对称变换。

高考数学总复习:第2章《函数、导数及其应用》

高考数学总复习:第2章《函数、导数及其应用》

=52lg 2-lg 7-2lg 2+12lg 5+lg 7
=12lg 2+12lg 5=12lg(2×5)=12.
整理ppt
17
(2)由 2a=5b=m 得 a=log2m,b=log5m,
∴1a+1b=logm2+logm5=logm10.
∵1a+1b=2,
∴logm10=2,即 m2=10.
行分类讨论.
整理ppt
15
对数式的化简与求值
[典题导入] 求解下列各题.
1 (1)2lg
3429-43lg
8+lg
245=________;
(2)若 2a=5b=m,且1a+1b=2,则 m=________.
整理ppt
16
[听课记录]
1 (1)2lg
3429-43lg
8+lg
245
=12×(5lg 2-2lg 7)-43×32lg 2+12(lg 5+2lg 7)
整理ppt
9
2.函数 y=loga(3x-2)(a>0,a≠1)的图象经过定点 A,则 A 点坐
标是
()
A.0,23 C.(1,0)
B.23,0 D.(0,1)
C [当 x=1 时 y=0.]
整理ppt
10
3.函数y=lg |x|
()
A.是偶函数,在区间(-∞,0)上单调递增
B.是偶函数,在区间(-∞,0)上单调递减
解得 m= 101)2
(2) 10
整理ppt
18
[规律方法]
对数式的化简与求值的常用思路
(1)先利用幂的运算把底数或真数进行变形,化成分数指数幂 的形式,使幂的底数最简,然后运用对数运算法则化简合 并.

高考数学二轮复习考点知识与题型专题解析20---导数的简单应用

高考数学二轮复习考点知识与题型专题解析20---导数的简单应用

高考数学二轮复习考点知识与题型专题解析导数的简单应用微专题1导数的几何意义及其应用导数的几何意义函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P 处的切线的斜率k=f′(x0),相应的切线方程为y-f(x0)=f′(x0)·(x-x0).『典型题训练』1.若过函数f(x)=ln x-2x图象上一点的切线与直线y=2x+1平行,则该切线方程为()A.2x-y-1=0B.2x-y-2ln2+1=0C.2x-y-2ln2-1=0D.2x+y-2ln2-1=02.已知a∈R,设函数f(x)=ax-ln x+1的图象在点(1,f(1))处的切线为l,则l过定点()A.(0,2) B.(1,0)C.(1,a+1) D.(e,1)),则曲线y=f(x)在x=0 3.已知函数f(x)的导函数为f′(x),且满足f(x)=cos x-xf′(π2处的切线方程是()A.2x-y-1=0 B.2x+y+1=0C.x-2y+2=0 D.x+2y+1=04.已知函数f(x)=a e x+x2的图象在点M(1,f(1))处的切线方程是y=(2e+2)x+b,那么ab=()A.2 B.1 C.-1 D.-25.[2021·重庆三模]已知曲线C1:f(x)=e x+a和曲线C2:g(x)=ln (x+b)+a2(a,b∈R),若存在斜率为1的直线与C1,C2同时相切,则b的取值范围是(),+∞)B.[0,+∞)A.[−94]C.(−∞,1]D.(−∞,94在点(-1,-3)处的切线方程为________________.6.[2021·全国甲卷(理)]曲线y=2x−1x+2微专题2利用导数研究函数的单调性『常考常用结论』导数与单调性的关系1.f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0;2.f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,则f(x)为常数,函数不具有单调性.『提分题组训练』1.[2021·山东烟台模拟]已知a=ln12 020+2 0192 020,b=ln12 021+2 0202 021,c=ln12 022+2 0212 022,则a,b,c的大小关系是()A.a>b>c B.a>c>bC.c>b>a D.c>a>b2.函数f(x)=x2-a ln x在[1,+∞)上单调递增,则实数a的取值范围是()A.(0,2] B.(2,+∞)C.(-∞,2] D.(-∞,2)3.已知函数f(x)=23x3-ax2+4x在区间(-2,-1)内存在单调递减区间,则实数a的取值范围是()A.(2√2,+∞) B.[2√2,+∞)C.(-∞,-2√2) D.(-∞,-2√2]4.若函数f(x)的导函数为f′(x),对任意x∈(-π,0),f′(x)sin x<f(x)cos x恒成立,则()A.√2f(−5π6)>f(−3π4)B.f(−5π6)>√2f(−3π4)C.√2f(−5π6)<f(−3π4)D.f(−5π6)<√2f(−3π4)5.定义在R上的函数f(x)满足f(x)>1-f′(x),f(0)=6,则不等式f(x)>1+5e x(e为自然对数的底数)的解集为()A.(0,+∞) B.(5,+∞)C.(-∞,0)∪(5,+∞) D.(−∞,0)6.[2021·山东济南一模]设a=2022ln2020,b=2021ln2021,c=2020ln2022,则() A.a>c>b B.c>b>aC.b>a>c D.a>b>c微专题3利用导数研究函数的极值、最值『常考常用结论』导数与极值、最值(1)函数f(x)在x0处的导数f′(x0)=0且f′(x)在x0附近“左正右负”⇔f(x)在x0处取极大值;函数f(x)在x0处的导数f′(x0)=0且f′(x)在x0附近“左负右正”⇔f(x)在x0处取极小值.(2)函数f(x)在一闭区间上的最大值是此函数在该区间上的极值与该区间端点处函数值中的“最大者”;函数f(x)在一闭区间上的最小值是此函数在该区间上的极值与该区间端点处函数值中的“最小者”.『提分题组训练』1.已知函数f(x)=12sin2x+sin x,则f(x)的最小值是()A.-3√32B.3√32C.-3√34D.3√342.[2021·全国乙卷(理)]设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则()A .a <bB .a >bC .ab <a 2D .ab >a 23.函数f (x )=x 3-ax 2-bx +a 2在x =1处有极值10,则点(a ,b )为() A .(3,-3) B .(-4,11) C .(3,-3)或(-4,11) D .(4,11)4.若函数f (x )=x 3-3x 在区间(2a ,3-a 2)上有最大值,则实数a 的取值范围是() A .(-3,1) B .(-2,1) C .(−3,−12) D .(-2,-1]5.若函数f (x )=12e 2x -m e x -m2x 2有两个极值点,则实数m 的取值范围是() A .(12,+∞) B .(1,+∞) C .(e 2,+∞) D .(e ,+∞) 6.[2021·山东模拟]若函数f (x )={2x−2−2m ,x <12x 3−6x 2,x ≥1有最小值,则m 的一个正整数取值可以为________.参考答案导数的简单应用微专题1导数的几何意义及其应用典型题训练1.解析:由题意,求导函数可得y ′=1x -2, ∵切线与直线y =2x +1平行, ∴1x -2=2, ∴x =14,∴切点P 坐标为(14,−2ln 2−12),∴过点P 且与直线y =2x +1平行的切线方程为y +2ln2+12=2(x −14),即2x -y -2ln2-1=0.故选C.答案:C2.解析:由f (x )=ax -ln x +1⇒f ′(x )=a -1x ,f ′(1)=a -1,f (1)=a +1,故过(1,f (1))处的切线方程为:y =(a -1)(x -1)+a +1=(a -1)x +2,故l 过定点(0,2).故选A.答案:A3.解析:∵f (x )=cos x -xf ′(π2), ∴f ′(x )=-sin x -f ′(π2),∴f ′(π2)=-sin π2-f ′(π2)=-1-f ′(π2), 解得:f ′(π2)=-12,∴f (x )=cos x +12x ,f ′(x )=-sin x +12,∴f (0)=1,f ′(0)=12,∴y =f (x )在x =0处的切线方程为y -1=12x ,即x -2y +2=0.故选C.4.解析:因为f (x )=a e x +x 2,所以f ′(x )=a e x +2x ,因此切线方程的斜率k =f ′(1)=a e +2,所以有a e +2=2e +2,得a =2,又切点在切线上,可得切点坐标为(1,2e +2+b ), 将切点代入f (x )中,有f (1)=2e +1=2e +2+b ,得b =-1, 所以ab =-2.故选D. 答案:D5.解析:f ′(x )=e x ,g ′(x )=1x+b ,设斜率为1的切线在C 1,C 2上的切点横坐标分别为x 1,x 2,由题知e x 1=1x2+b=1,∴x 1=0,x 2=1-b ,两点处的切线方程分别为y -(1+a )=x 和y -a 2=x -(1-b ), 故a +1=a 2-1+b ,即b =2+a -a 2=-(a −12)2+94≤94.故选D. 答案:D6.解析:y ′=(2x−1x+2)′=2(x+2)−(2x−1)(x+2)2=5(x+2)2,所以y ′|x =-1=5(−1+2)2=5,所以切线方程为y +3=5(x +1),即y =5x +2.答案:y =5x +2微专题2利用导数研究函数的单调性提分题组训练1.解析:构造函数f (x )=ln x +1-x ,f ′(x )=1x-1=1−x x,当0<x <1时,f ′(x )>0,f (x )单调递增,所以f (12 020)>f (12 021)>f (12 022),a >b >c .故选A.2.解析:由题意得,f ′(x )=2x -ax ≥0在x ∈[1,+∞)上恒成立, 所以a ≤2x 2在x ∈[1,+∞)上恒成立, 因为2x 2在x ∈[1,+∞)的最小值为2, 所以m ≤2.故选C. 答案:C3.解析:f ′(x )=2x 2-2ax +4,由题意得∃x ∈(-2,-1),使得不等式f ′(x )=2(x 2-ax +2)<0成立, 即x ∈(-2,-1)时,a <(x +2x )max ,令g (x )=x +2x ,x ∈(-2,-1), 则g ′(x )=1-2x 2=x 2−2x 2,令g ′(x )>0,解得-2<x <-√2, 令g ′(x )<0,解得-√2<x <-1,故g (x )在(-2,-√2)上单调递增,在(-√2,-1)上单调递减, 故g (x )max =g (-√2)=-2√2,故满足条件的a 的范围是(-∞,-2√2), 故选C. 答案:C4.解析:因为任意x ∈(-π,0),f ′(x )sin x <f (x )cos x 恒成立, 即任意x ∈(-π,0),f ′(x )sin x -f (x )cos x <0恒成立, 又x ∈(-π,0)时,sin x <0,所以[f (x )sin x ]′=f ′(x )sin x−f (x )cos x(sin x )2<0,所以f (x )sin x 在(-π,0)上单调递减, 因为-5π6<-3π4,所以f(−5π6)sin(−5π6)>f(−3π4)sin(−3π4),即f(−5π6)−12>f(−3π4)−√22,所以√2f (−5π6)<f (−3π4),故选C.答案:C5.解析:设g (x )=e x f (x )-e x ,因为f (x )>1-f ′(x ),所以g ′(x )=e x [f (x )+f ′(x )]-e x =e x [f (x )+f ′(x )-1]>0,所以g (x )是R 上的增函数, 又g (0)=e 0f (0)-e 0=5,所以不等式f (x )>1+5e x 可化为e xf (x )-e x >5,即g (x )>g (0),所以x >0.故选A.答案:A6.解析:令f (x )=ln xx+1且x ∈(0,+∞),则f ′(x )=1+1x−ln x (x+1)2,若g (x )=1+1x -ln x ,则在x ∈(0,+∞)上g ′(x )=-1x 2−1x <0,即g (x )单调递减, 又g (e)=1e >0,g (e 2)=1e 2-1<0,即∃x 0∈(1e ,e 2)使g (x 0)=0, ∴在(x 0,+∞)上g (x )<0,即f ′(x )<0,f (x )单调递减; ∴f (2021)<f (2020),有ln 20212 022<ln 20202 021,即a >b ,令m (x )=ln xx−1且x ∈(0,1)∪(1,+∞),则m ′(x )=1−1x−ln x (x−1)2,若n (x )=1-1x -ln x ,则n ′(x )=1x (1x -1),即在x ∈(0,1)上n (x )单调递增,在x ∈(1,+∞)上n (x )单调递减,∴n (x )<n (1)=0,即m ′(x )<0,m (x )在x ∈(1,+∞)上递减, ∴m (2022)<m (2021),有ln 20222 021<ln 20212 020,即b >c ,故选D.答案:D微专题3利用导数研究函数的极值、最值提分题组训练1.解析:由题得f ′(x )=cos2x +cos x =2cos 2x +cos x -1=(2cos x -1)(cos x +1), 所以当cos x >12时,f ′(x )>0,f (x )单调递增;当-1≤cos x <12时,f ′(x )<0,f (x )单调递减.所以f (x )取得最小值时,cos x =12,此时sin x =±√32, 当sin x =-√32时,f (x )=sin x cos x +sin x =-3√34; 当sin x =√32时,f (x )=sin x cos x +sin x =3√34; 所以f (x )的最小值是-3√34.故选C.答案:C 2.解析:当a >0时,根据题意画出函数f (x )的大致图象,如图1所示,观察可知b >a .当a <0时,根据题意画出函数f (x )的大致图象,如图2所示,观察可知a >b .综上,可知必有ab >a 2成立.故选D.答案:D3.解析:由f (x )=x 3-ax 2-bx +a 2,求导f ′(x )=3x 2-2ax -b ,由函数f(x)=x3-ax2-bx+a2在x=1处有极值10,则{f(1)=10f′(1)=0,即{1−a−b+a2=103−2a−b=0,解得{a=−4b=11或{a=3b=−3,当a=3,b=-3时,f′(x)=3x2-6x+3=3(x-1)2≥0,此时f(x)在定义域R上为增函数,无极值,舍去.当a=-4,b=11,f′(x)=3x2+8x-11,x=1为极小值点,符合题意,故选B.答案:B4.解析:因为函数f(x)=x3-3x,所以f′(x)=3x2-3,当x<-1或x>1时,f′(x)>0,当-1<x<1时,f′(x)<0,所以当x=-1时,f(x)取得最大值,又f(-1)=f(2)=2,且f(x)在区间(2a,3-a2)上有最大值,所以2a<-1<3-a2≤2,解得-2<a≤-1,所以实数a的取值范围是(-2,-1]故选D.答案:D5.解析:依题意,f′(x)=e2x-m e x-mx有两个变号零点,令f′(x)=0,即e2x-m e x-mx=0,则e2x=m(e x+x),显然m≠0,则1m =e x+xe2x,设g(x)=e x+xe2x,则g′(x)=(e x+1)·e2x−(e x+x)·2e2xe4x =1−e x−2xe2x,设h(x)=1-e x-2x,则h′(x)=-e x-2<0,∴h(x)在R上单调递减,又h(0)=0,∴当x∈(-∞,0)时,h(x)>0,g′(x)>0,g(x)单调递增,当x∈(0,+∞)时,h(x)<0,g′(x)<0,g(x)单调递减,∴g(x)max=g(0)=1,且x→-∞时,g(x)→-∞,x→+∞时,g(x)→0,<1,解得m>1.∴0<1m故选B.答案:B6.解析:y=2x-2-2m在(-∞,1)上单调递增,∴y=2x-2-2m>-2m;当x≥1时,y=2x3-6x2,此时,y′=6x2-12x=6x(x-2).∴y=2x3-6x2在(1,2)上单调递减,在(2,+∞)上单调递增,∴y=2x3-6x2在[1,+∞)上的最小值为-8,函数f(x)有最小值,则-2m≥-8,即m≤4,故m的一个正整数取值可以为4.答案:4。

高考一轮复习第2章函数导数及其应用第2讲函数的定义域值域

高考一轮复习第2章函数导数及其应用第2讲函数的定义域值域

第二讲 函数的定义域、值域知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理知识点一 函数的定义域 函数y =f(x)的定义域1.求定义域的步骤:(1)写出使函数式有意义的不等式(组); (2)解不等式(组);(3)写出函数定义域.(注意用区间或集合的形式写出) 2.求函数定义域的主要依据 (1)整式函数的定义域为R. (2)分式函数中分母不等于0.(3)偶次根式函数被开方式大于或等于0. (4)一次函数、二次函数的定义域均为R . (5)函数f(x)=x 0的定义域为{x|x≠0}. (6)指数函数的定义域为R . (7)对数函数的定义域为(0,+∞). 知识点二 函数的值域 基本初等函数的值域:1.y =kx +b(k≠0)的值域是R .2.y =ax 2+bx +c(a≠0)的值域是:当a>0时,值域为⎩⎨⎧y ⎪⎪⎪⎭⎬⎫y ≥4ac -b 24a ;当a<0时,值域为⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y ≤4ac -b 24a . 3.y =kx (k≠0)的值域是{y|y≠0}.4.y =a x(a>0且a≠1)的值域是(0,+∞). 5.y =log a x(a>0且a≠1)的值域是R .重要结论1.定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集. 3.函数f(x)与f(x +a)(a 为常数a≠0)的值域相同.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若两个函数的定义域与值域相同,则这两个函数相等.( × ) (2)函数y =xx -1定义域为x>1.( × ) (3)函数y =f(x)定义域为[-1,2],则y =f(x)+f(-x)定义域为[-1,1].( √ ) (4)函数y =log 2(x 2+x +a)的值域为R ,则a 的取值范围为⎝ ⎛⎦⎥⎤-∞,14.( √ ) (5)求函数y =x 2+3x 2+2的值域时有以下四种解法.判断哪种解法是正确的.[解法一](不等式法):y =x 2+3x 2+2=x 2+2+1x 2+2≥2,∴值域为[2,+∞).( × ) [解法二](判别式法):设x 2+2=t(t≥2),则y =t +1t ,即t 2-ty +1=0,∵t∈R,∴Δ=y 2-4≥0,∴y≥2或y ≤-2(舍去).( × )[解法三](配方法):令x 2+2=t(t≥2),则y =t +1t =⎝ ⎛⎭⎪⎫t -1t 2+2≥2.( × )[解法四](单调性法):易证y =t +1t 在t≥2时是增函数,所以t =2时,y min =322,故y∈⎣⎢⎡⎭⎪⎫322,+∞.( √ ) [解析] (4)y =log 2(x 2+x +a)值域为R 应满足Δ≥0,即1-4a≥0,∴a≤14.题组二 走进教材2.(必修1P 17例1改编)函数f(x)=2x-1+1x -2的定义域为( C )A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)[解析] 使函数有意义满足⎩⎪⎨⎪⎧2x-1≥0x -2≠0,解得x≥0且x≠2,故选C .3.(必修1P 32T5改编)函数f(x)的图象如图,则其最大值、最小值分别为( B )A .f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫-32B .f(0),f ⎝ ⎛⎭⎪⎫32 C .f ⎝ ⎛⎭⎪⎫-32,f(0) D .f(0),f(3)4.(必修1P 39BT1改编)已知函数f(x)=x +9x ,x∈[2,4]的值域为⎣⎢⎡⎦⎥⎤6,132.[解析] 当x =3时取得最小值6,当x =2取得最大值132,值域为⎣⎢⎡⎦⎥⎤6,132.题组三 走向高考5.(2020·北京,11,5分)函数f(x)=1x +1+ln x 的定义域是(0,+∞).[解析] 要使函数f(x)有意义,则⎩⎪⎨⎪⎧x +1≠0,x>0,故x>0,因此函数f(x)的定义域为(0,+∞).6.(2016·北京,5分)函数f(x)=xx -1(x≥2)的最大值为2.[解析] 解法一:(分离常数法)f(x)=x x -1=x -1+1x -1=1+1x -1,∴x≥2,∴x-1≥1,0<1x -1≤1,∴1+1x -1∈(1,2],故当x =2时,函数f(x)=xx -1取得最大值2.解法二:(反解法)令y =x x -1,∴xy-y =x ,∴x=y y -1.∵x ≥2,∴y y -1≥2,∴y y -1-2=2-yy -1≥0,解得1<y≤2,故函数f(x)的最大值为2.解法三:(导数法)∵f(x)=x x -1,∴f′(x)=x -1-x (x -1)2=-1(x -1)2<0,∴函数f(x)在[2,+∞)上单调递减,故当x =2时,函数f(x)=xx -1取得最大值2.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU考点一 求函数的定义域——多维探究 角度1 求具体函数的定义域例1 (1)(2021·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( D )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)(2021·宣城八校联考期末)函数y =-x 2+2x +3lg (x +1)的定义域为( B )A .(-1,3]B .(-1,0)∪(0,3]C .[-1,3]D .[-1,0)∪(0,3][解析] (1)由题意得⎩⎪⎨⎪⎧1-x>0,x +1>0,x≠0,解得-1<x<0或0<x<1.所以原函数的定义域为(-1,0)∪(0,1).(2)要使函数有意义,x 需满足⎩⎪⎨⎪⎧-x 2+2x +3≥0,x +1>0,x +1≠1,解得-1<x<0或0<x≤3,所以函数的定义域为(-1,0)∪(0,3]. 角度2 求抽象函数的定义域例2 已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( B ) A .(-1,1) B .⎝⎛⎭⎪⎫-1,-12C .(-1,0)D .⎝ ⎛⎭⎪⎫12,1[解析] 由函数f(x)的定义域为(-1,0),则使函数f(2x +1)有意义,需满足-1<2x +1<0,解得-1<x<-12,即所求函数的定义域为⎝⎛⎭⎪⎫-1,-12. [引申1]若将本例中f(x)与f(2x +1)互换,结果如何? [解析] f(2x +1)的定义域为(-1,0),即-1<x<0, ∴-1<2x +1<1,∴f(x)的定义域为(-1,1).[引申2]若将本例中f(x)改为f(2x -1)定义域改为[0,1],求y =f(2x +1)的定义域,又该怎么办? [解析] ∵y=f(2x -1)定义域为[0,1].∴-1≤2x-1≤1,要使y =f(2x +1)有意义应满足-1≤2x +1≤1,解得-1≤x≤0, 因此y =f(2x +1)定义域为[-1,0]. 名师点拨 MING SHI DIAN BO函数定义域的求解策略(1)已知函数解析式:构造使解析式有意义的不等式(组)求解. (2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函数:①若已知函数f(x)的定义域为[a ,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 求出; ②若已知函数f[g(x)]的定义域为[a ,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域. 〔变式训练1〕(1)(角度1)函数f(x)=1ln (x +1)+4-x 2的定义域为( B )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2](2)(角度1)(2021·安徽芜湖检测)如果函数f(x)=ln(-2x +a)的定义域为(-∞,1),那么实数a 的值为( D )A .-2B .-1C .1D .2(3)(角度2)已知函数y =f(x 2-1)的定义域为[-3,3],则函数y =f(x)的定义域为[-1,2]. [解析] (1)由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x≤2,且x≠0.故选B .(2)因为-2x +a>0,所以x<a 2,所以a2=1,得a =2.故选D .(3)因为y =f(x 2-1)的定义域为[-3,3],所以x∈[-3,3],x 2-1∈[-1,2],所以y =f(x)的定义域为[-1,2].考点二,求函数的值域——师生共研例3 求下列函数的值域. (1)y =1-|x|1+|x|;(2)y =-2x 2+x +3; (3)y =x 2+x +1x ;(4)y =x -1-2x ; (5)y =x +1-x 2;(6)y =|x +1|+|x -2|.[解析] (1)解法一:分离常数法: y =1-|x|1+|x|=-1+21+|x|, ∵|x|≥0,∴|x|+1≥1,∴0<2|x|+1≤2.∴-1<-1+21+|x|≤1.即函数值域为(-1,1].解法二:反解法:由y =1-|x|1+|x|,得|x|=1-y 1+y.∵|x|≥0,∴1-y 1+y ≥0,∴-1<y≤1,即函数值域(-1,1].(2)解法一:配方法:y =-2⎝ ⎛⎭⎪⎫x -142+258,∴0≤y ≤524,∴值域为⎣⎢⎡⎦⎥⎤0,524.解法二:复合函数法: y =t ,t =-2x 2+x +3, 由t =-2x 2+x +3,解得t≤258,又∵y=t 有意义,∴0≤t≤258,∴0≤y ≤524,∴值域为⎣⎢⎡⎦⎥⎤0,524.(3)y =x 2+x +1x =x +1x +1解法一:基本不等式法由y =x +1x +1(x≠0),得y -1=x +1x.∵⎪⎪⎪⎪⎪⎪x +1x =|x|+⎪⎪⎪⎪⎪⎪1x ≥2|x|·⎪⎪⎪⎪⎪⎪1x =2,∴|y -1|≥2,即y≤-1或y≥3.即函数值域为(-∞,-1]∪[3,+∞)解法二:判别式法由y =x 2+x +1x ,得x 2+(1-y)x +1=0.∵方程有实根,∴Δ=(1-y)2-4≥0.即(y -1)2≥4,∴y-1≤-2或y -1≥2.得y≤-1或y≥3.即函数的值域为(-∞,-1]∪[3,+∞). 解法三:导数法(单调性法)令y′=1-1x 2=(x +1)(x -1)x 2<0, 得-1<x<0或0<x<1.∴函数在(0,1)上递减,在(1,+∞)上递增,此时y≥3; 函数在(-1,0)上递减,在(-∞,-1)上递增,此时y≤-1. ∴y ≤-1或y≥3.即函数值域为(-∞,-1]∪[3,+∞). (4)解法一:换元法设1-2x =t(t≥0),得x =1-t22,∴y =1-t 22-t =-12(t +1)2+1≤12(t≥0),∴y ∈⎝ ⎛⎦⎥⎤-∞,12.即函数的值域为⎝ ⎛⎦⎥⎤-∞,12.解法二:单调性法∵1-2x≥0,∴x≤12,∴定义域为⎝ ⎛⎦⎥⎤-∞,12.又∵函数y =x ,y =-1-2x 在⎝ ⎛⎭⎪⎫-∞,12上均单调递增,∴y≤12-1-2×12=12,∴y∈⎝⎛⎦⎥⎤-∞,12. (5)三角换元法:设x =sin θ,θ∈⎣⎢⎡⎦⎥⎤-π2,π2,y =sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π4, ∵θ∈⎣⎢⎡⎦⎥⎤-π2,π2,∴θ+π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,∴sin ⎝ ⎛⎭⎪⎫θ+π4∈⎣⎢⎡⎦⎥⎤-22,1,∴y∈[-1,2].(6)解法一:绝对值不等式法:由于|x +1|+|x -2|≥|(x+1)-(x -2)|=3, 所以函数值域为[3,+∞).解法二:数形结合法: y =⎩⎪⎨⎪⎧-2x +1(x<-1),3(-1≤x≤2),2x -1(x>2).画出此分段函数的图象如图,可知值域为[3,+∞). 名师点拨 MING SHI DIAN BO求函数值域的一般方法(1)分离常数法:形如y =cx +d ax +b(a≠0)的函数;如例3(1).(2)反解法:形如y =cf (x )+daf (x )+b (a≠0,f(x)值域易求)的函数;如例3(1).(3)配方法:形如y =af 2(x)+bf(x)+c(a≠0)的函数;如例3(2). (4)不等式法;如例3(3).(5)单调性法:通过研究函数单调性,求出最值,进而确定值域.(6)换元法:形如y =ax +b±cx +d (c≠0)的函数;如例3(4);形如y =ax +b±c 2-x 2(c≠0)的函数采用三角换元,如例3(5).(7)数形结合法:借助函数图象确定函数的值域,如例3(6). (8)导数法. 〔变式训练2〕 求下列函数的值域: (1)y =1-x 21+x 2;(2)y =x +41-x ;(3)y =2x 2-x +12x -1⎝ ⎛⎭⎪⎫x>12.[解析] (1)解法一:y =1-x 21+x 2=-1+21+x 2,因为x 2≥0,所以x 2+1≥1,所以0<21+x 2≤2.所以-1<-1+21+x 2≤1.即函数的值域为(-1,1].解法二:由y =1-x 21+x 2,得x 2=1-y 1+y . 因为x 2≥0,所以1-y 1+y≥0.所以-1<y≤1,即函数的值域为(-1,1]. (2)设t =1-x ,t≥0,则x =1-t 2,所以原函数可化为y =1-t 2+4t =-(t -2)2+5(t≥0), 所以y≤5,所以原函数的值域为(-∞,5]. (3)y =2x 2-x +12x -1=x (2x -1)+12x -1=x +12x -1=x -12+12x -12+12, 因为x>12,所以x -12>0,所以x -12+12x -12≥2⎝ ⎛⎭⎪⎫x -12·12⎝ ⎛⎭⎪⎫x -12=2, 当且仅当x -12=12x -12,即x =1+22时取等号.所以y≥2+12,即原函数的值域为⎣⎢⎡⎭⎪⎫2+12,+∞. 导数法:y′=4x 2-4x +1(2x -1)2,∴y 在⎝ ⎛⎦⎥⎤12,1+22递减,在⎝ ⎛⎭⎪⎫1+22,+∞递增,∴y ≥2+12.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG 已知函数的定义域或值域求参数的取值范围例4 已知函数f(x)=lg [(a 2-1)x 2+(a +1)x +1].(1)若f(x)的定义域为R ,求实数a 的取值范围; (2)若f(x)的值域为R ,求实数a 的取值范围.[分析] (1)由f(x)的定义域为R 知(a 2-1)x 2+(a +1)·x +1>0的解集为R ,即(a 2-1)x 2+(a +1)x +1>0恒成立;(2)由f(x)的值域为R 知(a 2-1)x 2+(a +1)x +1能取所有正数,即y =(a 2-1)x 2+(a +1)x +1图象的开口向上且与x 轴必有交点.[解析] (1)依题意(a 2-1)x 2+(a +1)x +1>0,对一切x∈R 恒成立,当a 2-1≠0时,其充要条件是⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)<0,即⎩⎪⎨⎪⎧a>1或a<-1,a>53或a<-1. ∴a<-1或a>53.又a =-1时,f(x)=1>0,满足题意.∴a ≤-1或a>53.(2)依题意,只要t =(a 2-1)x 2+(a +1)x +1能取到(0,+∞)上的任何值,则f(x)的值域为R ,故有a 2-1>0,Δ≥0,解得-1≤a≤53,又当a 2-1=0,即a =1时,t =2x +1符合题意;a =-1时不合题意,∴-1<a≤53.名师点拨 MING SHI DIAN BO已知函数的定义域,等于是知道了x 的范围,(1)当定义域不是R 时,往往转化为解集问题,进而转化为与之对应的方程解的问题,此时常利用代入法或待定系数法求解;(2)当定义域为R 时,往往转化为恒成立的问题,常常结合图形或利用最值求解.〔变式训练3〕(1)已知函数y =mx 2-6mx +m +8的定义域为R ,则实数m 的取值范围为[0,1].(2)(2021·甘肃天水三中阶段测试)若函数y =x 2-3x -4的定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,则实数m 的取值范围是( C )A .(0,4]B .⎣⎢⎡⎦⎥⎤32,4C .⎣⎢⎡⎦⎥⎤32,3D .⎣⎢⎡⎭⎪⎫32,+∞ [解析] (1)①当m =0时,y =8,其定义域为R. ②当m≠0时,由定义域为R 可知, mx 2-6mx +m +8≥0对一切实数x 均成立,于是有⎩⎪⎨⎪⎧m>0,Δ=(-6m )2-4m (m +8)≤0, 解得0<m≤1,∴m 的取值范围是[0,1].(2)由x 2-3x -4=-254得x =32;由x 2-3x -4=-4,得x =0或x =3,又函数y =x 2-3x -4的定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,∴32≤m≤3. 另:由y =x 2-3x -4=⎝ ⎛⎭⎪⎫x -322-254,∴32≤m ≤3.。

高考数学复习第2章函数导数及其应用第1讲函数与映射的概念

高考数学复习第2章函数导数及其应用第1讲函数与映射的概念
C.A=N,B=N*,对应关系 f:x→|x-1| D.A={x||x|≥3,x∈N},B={a|a≥0,a∈Z},f:x→a= x2-2x+4
解析:x=1∈A,x→|x-1|=0 B,即对集合 A 中元素 1, 在集合 B 中没有元素与之对应.故选 C.
答案:C
(2)(多选)下列四个图象中,是函数图象的是(
解析:由已知得 7+6x-x2≥0,即x2-6x-7≤0, 解得-1≤x≤7,故函数的定义域为[-1,7]. 答案:[-1,7]
(3)若函数 f(x)=x+1 1,则函数 y=f(f(x))的定义域为 ______________________.
素 了 2.知解,会道映求指射一数的些函概简数念单y.=函a数x 与的对定数义函域数和y值=域;决反在连函求2续0数函三11年的数年、概的都2念定考01及义 查2年求域 求、法简,但2单,新也01函课涉3年数标及
logax互为反函数(a>0, a≠1)
的反函数
设 A,B 是两个非空集合,如果按照某种对应关系 f,对于集
第二章 函数、导数及其应用
第1讲 函数与映射的概念
课标要求
考情风向标
1.通过丰富实例,进一步体会函数是描 述变量之间的依赖关系的重要数学模
对函数概念的理解是学好函 数的关键,函数的概念比较抽
型,在此基础上学习用集合与对应的语 言来刻画函数,体会对应关系在刻画函 数概念中的作用;了解构成函数的要
象,不易理解,应做适量练习, 通过练习弥补理解的缺陷,纠 正理解上的错误.本讲重点解
答案:D
(4)已知函数 f(x),g(x)分别由下表给出:
x
1
2
3
f(x) 1
3
1
x
1

高考数学第二章 函数、导数及其应用

高考数学第二章  函数、导数及其应用

第二章⎪⎪⎪ 函数、导数及其应用第一节 函数及其表示1.函数与映射的概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法. 3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题体验]1.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xx C .y =x e xD .y =sin xx答案:D2.已知函数f (x )满足f (2x )=2f (x ),且当1≤x <2时,f (x )=x 2,则f (3)=( ) A.98 B.94 C.92D .9解析:选C ∵f (2x )=2f (x ),且当1≤x <2时,f (x )=x 2,∴f (3)=2f ⎝⎛⎭⎫32=2×⎝⎛⎭⎫322=92. 3.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案:B4.(教材习题改编)函数f (x )=x -4|x |-5的定义域是________________. 答案:[4,5)∪(5,+∞)1.解决函数的一些问题时,易忽视“定义域优先”的原则.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A 到B 的一个映射,A ,B 若不是数集,则这个映射便不是函数.3.误把分段函数理解为几个函数组成.[小题纠偏]1.函数y =ln (1-x )x +1+1x 的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)解析:选D 由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).2.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1解析:选D 若a ≥0,则a +1=2,得a =1; 若a <0,则-a +1=2,得a =-1. 3.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=________. 解析:令t =1x ,∴x =1t .∴f (t )=1t 2+5t .∴f (x )=5x +1x 2(x ≠0).答案:5x +1x 2(x ≠0)考点一 函数的定义域 (常考常新型考点——多角探明)[命题分析]函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,研究函数问题必须树立“定义域优先”的观念.求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴.常见的命题角度有:(1)求给定函数解析式的定义域; (2)求抽象函数的定义域; (3)已知定义域确定参数问题.[题点全练]角度一:求给定函数解析式的定义域 1.(2015·德州期末)y = x -12x-log 2(4-x 2)的定义域是( )A .(-2,0)∪(1,2)B .(-2,0]∪(1,2)C .(-2,0)∪[1,2)D .[-2,0]∪[1,2]解析:选C 要使函数有意义,必须⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,∴x ∈(-2,0)∪[1,2). 2.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为____________________.解析:由⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0⇒⎩⎪⎨⎪⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2]. 答案:(0,2]角度二:求抽象函数的定义域3.若函数y =f (x )的定义域是[1,2 016],则函数g (x )=f (x +1)x -1的定义域是( ) A .[0,2 015] B .[0,1)∪(1,2 015] C .(1,2 016]D .[-1,1)∪(1,2 015]解析:选B 令t =x +1,则由已知函数的定义域为[1,2 016],可知1≤t ≤2 016.要使函数f (x +1)有意义,则有1≤x +1≤2 016,解得0≤x ≤2 015,故函数f (x +1)的定义域为[0,2 015].所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 015,x -1≠0,解得0≤x <1或1<x ≤2 015.故函数g (x )的定义域为[0,1)∪(1,2 015]4.若函数f (x 2+1)的定义域为[-1,1],则f (lg x )的定义域为( ) A .[-1,1] B .[1,2] C .[10,100]D .[0,lg 2]解析:选C 因为f (x 2+1)的定义域为[-1,1],则-1≤x ≤1,故0≤x 2≤1,所以1≤x 2+1≤2.因为f (x 2+1)与f (lg x )是同一个对应法则,所以1≤lg x ≤2,即10≤x ≤100,所以函数f (lg x )的定义域为[10,100].角度三:已知定义域确定参数问题 5.(2016·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为______________________.解析:因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0][方法归纳]函数定义域的2种求法考点二 求函数的解析式 (重点保分型考点——师生共研)[典例引领](1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ); (4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1,求f (x ). 解:(1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2. (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1,x >1.(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1,即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.(4)在f (x )=2f ⎝⎛⎭⎫1x x -1中, 用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x-1, 将f ⎝⎛⎭⎫1x =2f (x )x -1代入f (x )=2f ⎝⎛⎭⎫1x x -1中, 可求得f (x )=23x +13.[由题悟法][即时应用]1.已知f (x +1)=x +2x ,求f (x )的解析式.解:法一:设t =x +1,则x =(t -1)2,t ≥1,代入原式有 f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1.法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1,x +1≥1, 即f (x )=x 2-1,x ≥1.2.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根,∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1.考点三 分段函数 (重点保分型考点——师生共研)[典例引领]1.已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3解析:选B 由题意得f (0)=a 0+b =1+b =2, 解得b =1.f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝⎛⎭⎫12-3+1=9, 从而f (f (-3))=f (9)=log 39=2.2.(2015·山东高考)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x , x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B .[0,1] C.⎣⎡⎭⎫23,+∞D .[1,+∞)解析:选C 由f (f (a ))=2f (a )得,f (a )≥1. 当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥23,故选C.[由题悟法]分段函数2种题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.[提醒] 当分段函数的自变量范围不确定时,应分类讨论.[即时应用]1.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0,3x 2,x <0,且f (x 0)=3,则实数x 0的值为A .-1B .1C .-1或1D .-1或-13解析:选C 由条件可知,当x 0≥0时,f (x 0)=2x 0+1=3,所以x 0=1;当x 0<0时,f (x 0)=3x 20=3,所以x 0=-1,所以实数x 0的值为-1或1.2.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. 答案:[-4,2]一抓基础,多练小题做到眼疾手快1.函数f (x )=x +3+log 2(6-x )的定义域是( ) A .(6,+∞) B .(-3,6) C .(-3,+∞)D .[-3,6)解析:选D 要使函数有意义应满足⎩⎪⎨⎪⎧x +3≥0,6-x >0,解得-3≤x <6.2.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A .-74B.74C.43D .-43解析:选B 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2xD .g (x )=-3x 2-2x解析:选B 设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图象过原点, ∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x .4.已知函数f (x )=⎩⎪⎨⎪⎧(a -1)x +1,x ≤1,a x -1,x >1,若f (1)=12,则f (3)=________.解析:由f (1)=12,可得a =12,所以f (3)=⎝⎛⎭⎫122=14. 答案:145.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题意知f (1)=2+1=3,f (f (1))=f (3)=32+6a , 若f (f (1))>3a 2,则9+6a >3a 2, 即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)二保高考,全练题型做到高考达标1.函数f (x )=10+9x -x 2lg (x -1)的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使函数f (x )有意义,则x 须满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg (x -1)≠0,即⎩⎪⎨⎪⎧(x +1)(x -10)≤0,①x >1,x ≠2,解①得,-1≤x ≤10.所以函数f (x )的定义域为(1,2)∪(2,10].2.(2016·武汉调考)函数f (x )=⎩⎪⎨⎪⎧sin (πx 2),-1<x <0,e x -1,x ≥0满足f (1)+f (a )=2,则a 的所有可能值为( )A .1或-22B .-22 C .1D .1或22解析:选A 因为f (1)=e 1-1=1且f (1)+f (a )=2, 所以f (a )=1,当-1<a <0时,f (a )=sin(πa 2)=1, ∵0<a 2<1,∴0<πa 2<π, ∴πa 2=π2⇒a =-22;当a ≥0时,f (a )=e a -1=1⇒a =1.3.(2016·福建四地六校联考)若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=( )A .2B .0C .1D .-1解析:选A 令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2, ② 联立①②得f (1)=2.4.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx,x <a ,ca ,x ≥a ,(a ,c 为常数).已知工人组装第4件产品用时30分钟,组装第a 件产品用时15分钟,那么c 和a 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第a 件产品用时15分钟, 所以ca=15,①所以必有4<a ,且c 4=c2=30.② 联立①②解得c =60,a =16.5.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x,f ⎝⎛⎭⎫1x =1x -x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x=1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.6.已知f (x )=⎩⎨⎧x 12,x ∈[0,+∞),|sin x |,x ∈⎝⎛⎭⎫-π2,0,若f (a )=12,则a =________.解析:若a ≥0,由f (a )=12得,a 12=12,解得a =14;若a <0,则|sin a |=12,a ∈⎝⎛⎭⎫-π2,0,解得a =-π6. 综上可知,a =14或-π6.答案:14或-π67.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3, 3 ],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2]. 答案:[-1,2]8.已知函数f (x )=2x +1与函数y =g (x )的图象关于直线x =2成轴对称图形,则函数y =g (x )的解析式为________.解析:设点M (x ,y )为函数y =g (x )图象上的任意一点,点M ′(x ′,y ′)是点M 关于直线x =2的对称点,则⎩⎪⎨⎪⎧x ′=4-x ,y ′=y .又y ′=2x ′+1, ∴y =2(4-x )+1=9-2x , 即g (x )=9-2x . 答案:g (x )=9-2x9.已知函数f (x )满足对任意的x ∈R 都有f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2成立,则f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=________.解析:由f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2, 得f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫78=2, f ⎝⎛⎭⎫28+f ⎝⎛⎭⎫68=2, f ⎝⎛⎭⎫38+f ⎝⎛⎭⎫58=2, 又f ⎝⎛⎭⎫48=12⎣⎡⎦⎤f ⎝⎛⎭⎫48+f ⎝⎛⎭⎫48=12×2=1, ∴f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=2×3+1=7. 答案:710.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求f (x )的解析式; (2)画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1)得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得a =-1,b =1, 所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)f (x )的图象如图:三上台阶,自主选做志在冲刺名校1.(2016·唐山期末)已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1] B.⎝⎛⎭⎫-1,12 C.⎣⎡⎭⎫-1,12 D.⎝⎛⎭⎫0,12 解析:选C 要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1, ∴-1≤a <12.即a 的取值范围是⎣⎡⎭⎫-1,12. 2.(2015·北京二模)已知f 是有序数对集合M ={(x ,y )|x ∈N *,y ∈N *}上的一个映射,正整数数对(x ,y )在映射f 下的象为实数z ,记作f (x ,y )=z .对于任意的正整数m ,n (m >n ),映射f 由下表给出:则f (3,5)=. 解析:由表可知f (3,5)=5+3=8.∵∀x ∈N *,都有2x >x ,∴f (2x ,x )=2x -x , 则f (2x ,x )≤4⇔2x -x ≤4(x ∈N *)⇔2x ≤x +4(x ∈N *), 当x =1时,2x =2,x +4=5,2x ≤x +4成立;当x =2时,2x =4,x +4=6,2x ≤x +4成立; 当x ≥3(x ∈N *)时,2x >x +4. 故满足条件的x 的集合是{1,2}. 答案:8 {1,2}3.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx+n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70. ∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.第二节 函数的单调性与最值1.函数的单调性 (1)单调函数的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.2.函数的最值1.下列函数中,定义域是R 且为增函数的是( ) A .y =e -xB .y =x 3C .y =ln xD .y =|x |答案:B2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-12答案:D3.(教材习题改编)已知函数f (x )=2x -1(x ∈[2,6]),则函数的最大值为________.答案:21.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f (x )在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f (x )=1x .3.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),1f (x )等的单调性与其正负有关,切不可盲目类比. [小题纠偏]1.函数y =x 2-6x +10在区间(2,4)上是( ) A .递减函数 B .递增函数 C .先递减再递增 D .先递增再递减答案:C2.设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.答案:[-1,1],[5,7]考点一 函数单调性的判断 (基础送分型考点——自主练透)[题组练透]1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数. 2.讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性. 解:法一(定义法): 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,a >0,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在(-1,1)上为减函数. 法二(导数法):f ′(x )=a (x 2-1)-2ax 2(x 2-1)2=-a (x 2+1)(x 2-1)2.又a >0, 所以f ′(x )<0,所以函数f (x )在(-1,1)上为减函数.[谨记通法]判断或证明函数的单调性的2种重要方法及其步骤 (1)定义法,其基本步骤: 取值作差(商)变形确定符号(与1的大小)得出结论(2)导数法,其基本步骤: 求导函数确定符号得出结论考点二 求函数的单调区间 (重点保分型考点——师生共研)[典例引领]求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0, 即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log 12u 与u =x 2-3x +2的复合函数. 令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).[由题悟法]确定函数的单调区间的3种方法[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[即时应用]1.若将[典例引领](1)中的函数变为“y =|-x 2+2x +1|”,则结论如何? 解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调递增区间为(1-2,1)和(1+2,+∞);单调递减区间为(-∞,1-2)和(1,1+2).2.函数y =⎝⎛⎭⎫132x 2-3x +1的单调递增区间为( ) A .(1,+∞) B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞D.⎣⎡⎭⎫34,+∞解析:选B 令u =2x 2-3x +1=2⎝⎛⎭⎫x -342-18.因为u =2⎝⎛⎭⎫x -342-18在⎝⎛⎦⎤-∞,34上单调递减,函数y =⎝⎛⎭⎫13u 在R 上单调递减. 所以y =⎝⎛⎭⎫132x 2-3x +1在⎝⎛⎦⎤-∞,34上单调递增. 考点三 函数单调性的应用 (常考常新型考点——多角探明)[命题分析]高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.常见的命题角度有: (1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.[题点全练]角度一:求函数的值域或最值1.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 答案:2角度二:比较两个函数值或两个自变量的大小2.(2016·哈尔滨联考)已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c解析:选D 因f (x )的图象关于直线x =1对称.由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e), ∴b >a >c .角度三:解函数不等式3.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x-8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)解析:选B 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.角度四:利用单调性求参数的取值范围或值4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A.⎝⎛⎭⎫-14,+∞ B.⎣⎡⎭⎫-14,+∞ C.⎣⎡⎭⎫-14,0 D.⎣⎡⎦⎤-14,0 解析:选D 当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a , 因为f (x )在(-∞,4)上单调递增, 所以a <0, 且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值范围是⎣⎡⎦⎤-14,0. 5.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a的取值范围为________.解析:要使函数f (x )在R 上单调递增, 则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. 答案:(2,3][方法归纳]函数单调性应用问题的常见类型及解题策略(1)求函数值域或最值.常用方法有:单调性法、图象法、基本不等式法、导数法、换元法.(2)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(3)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(4)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.一抓基础,多练小题做到眼疾手快1.(2016·珠海摸底)下列函数中,定义域是R 且为增函数的是( ) A .y =2-xB .y =xC .y =log 2 xD .y =-1x解析:选B 由题知,只有y =2-x与y =x 的定义域为R ,且只有y =x 在R 上是增函数.2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].3.(2016·长春市质量检测)已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( )A .(-∞,1]B .(-∞,-1]C .[-1,+∞)D .[1,+∞)解析:选A 因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1. 4.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4. ∴a +b =6. 答案:65.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞)二保高考,全练题型做到高考达标1.给定函数:①y =x 12;②y =log 12(x +1);③y =|x -1|;④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④解析:选B ①是幂函数,在(0,+∞)上为增函数,故此项不符合要求;②中的函数图象是由y =log 12x 的图象向左平移1个单位得到的,函数y =log 12x 是(0,+∞)上的减函数,所以函数y =log 12(x +1)是(-1,+∞)上的减函数,故此项符合要求;③中的函数在(-∞,1)上为减函数,(1,+∞)上为增函数,符合要求;④中的函数在R 上为增函数,不符合要求.2.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)解析:选B 设t =x 2-2x -3,由t ≥0, 即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞).3.(2016·安徽师大附中第二次月考)函数f (x )=x1-x在( ) A .(-∞,1)∪(1,+∞)上是增函数 B .(-∞,1)∪(1,+∞)上是减函数 C .(-∞,1)和(1,+∞)上是增函数 D .(-∞,1)和(1,+∞)上是减函数解析:选C 函数f (x )的定义域为{x |x ≠1}.f (x )=x 1-x =11-x-1,根据函数y =-1x 的单调性及有关性质,可知f (x )在(-∞,1)和(1,+∞)上是增函数.4.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.5.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log ax ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13D.⎣⎡⎭⎫17,1解析:选C 当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立,令g (x )=(3a -1)x +4a ,则必有⎩⎪⎨⎪⎧ 3a -1<0,g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0⇒17≤a <13.此时,log a x 是减函数,符合题意.6.函数y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝⎛⎭⎫t -122+14,结合图象知,当t =12,即x =14时,y max =14.答案:147.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞) 8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1). 答案:[0,1)9.已知函数f (x )=1a -1x (a >0,x >0),(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在 ⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数. (2)由(1)可知f (x )在⎣⎡⎦⎤12,2上为增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25.10.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增. (2)任设1<x 1<x 2,则 f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1. 综上所述知a 的取值范围是(0,1].三上台阶,自主选做志在冲刺名校1.(2015·浦东一模)如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( )A .[1,+∞)B .[0, 3 ]C .[0,1]D .[1, 3 ]解析:选D 因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x在区间[1,3]上单调递减,故“缓增区间”I 为[1, 3 ].2.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0, 故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9). 由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.第三节 函数的奇偶性及周期性1.函数的奇偶性(1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.[小题体验]1.(2015·北京高考)下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x | D .y =2-x答案:B2.若函数f (x )是周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (8)-f (14)=________. 答案:-13.(教材习题改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________.答案:x (1-x )1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f (x )的奇偶性时,必须对定义域内的每一个x ,均有f (-x )=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0).3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.[小题纠偏]1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13B.13C.12D .-12解析:选B ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数, ∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.2.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时, f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 解析:由题意得,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案:1考点一 函数奇偶性的判断 (基础送分型考点——自主练透)[题组练透]判断下列函数的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3-x ;(4)(易错题)f (x )=4-x 2|x +3|-3;(5)(易错题)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1, ∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数.(2)∵函数f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,∴函数f (x )既不是奇函数,也不是偶函数. (3)∵f (x )的定义域为R ,∴f (-x )=3-x -3x =-(3x -3-x )=-f (x ),所以f (x )为奇函数.(4)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2], ∴f (x )=4-x 2|x +3|-3=4-x 2(x +3)-3=4-x 2x ,∴f (-x )=-f (x ),∴f (x )是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时, f (x )=x 2+x ,则当x <0时,-x >0, 故f (-x )=x 2-x =f (x );当x<0时,f(x)=x2-x,则当x>0时,-x<0,故f(-x)=x2+x=f(x),故原函数是偶函数.[谨记通法]判定函数奇偶性的3种常用方法(1)定义法:(2)图象法:(3)性质法:①设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函数的奇偶性可概括为“同奇则奇,一偶则偶”.[提醒](1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x都满足相同的关系时,才能判断其奇偶性.如“题组练透”第(5)题.考点二函数的周期性(题点多变型考点——纵引横联)[典型母题]设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求函数的最小正周期;(2)计算f(0)+f(1)+f(2)+…+f(2 015).[解](1)∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)的最小正周期为4.(2)f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1.又∵f(x)是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0, ∴f (0)+f (1)+f (2)+…+f (2 015)=0.[类题通法]1.判断函数周期性的2个方法 (1)定义法. (2)图象法.2.周期性3个常用结论对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a ; (2)若f (x +a )=1f (x ),则T =2a ; (3)若f (x +a )=-1f (x ),则T =2a .(a >0)[越变越明][变式1] 若母题中条件变为“f (x +2)=-1f (x )”,求函数f (x )的最小正周期. 解:∵对任意x ∈R ,都有f (x +2)=-1f (x ), ∴f (x +4)=f (x +2+2)=-1f (x +2)=-1-1f (x )=f (x ),∴f (x )的最小正周期为4.[变式2] 若母题条件改为:定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .求f (1)+f (2)+f (3)+…+f (2 015)的值.解:∵f (x +6)=f (x ),∴T =6. ∵当-3≤x <-1时,f (x )=-(x +2)2; 当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0,∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+…+f (6)=f (7)+f (8)+…+f (12)=…=f (2 005)+f (2 006)+…+f (2 010)=1, ∴f (1)+f (2)+…+f (2 010)=1×2 0106=335.而f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015) =f (1)+f (2)+f (3)+f (4)+f (5)=1+2-1+0-1=1. ∴f (1)+f (2)+…+f (2 015)=335+1=336.[变式3] 在母题条件下,求f (x )(x ∈[2,4])的解析式. 解:当x ∈[-2,0]时,-x ∈[0,2],由已知得f (-x )=2(-x )-(-x )2=-2x -x 2, 又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2. ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4). 又f (x )是周期为4的周期函数,∴f (x )=f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. 故x ∈[2,4]时,f (x )=x 2-6x +8.利用函数的周期性,求函数的解析式,应把问题转化为已知区间上的相应问题,即把区间[2,4]转化为[-2,0]上.考点三 函数性质的综合应用 (常考常新型考点——多角探明)[命题分析]函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.多以选择题、填空题形式出现.常见的命题角度有: (1)奇偶性的应用; (2)单调性与奇偶性结合; (3)周期性与奇偶性结合; (4)单调性、奇偶性与周期性结合.[破译玄机][题点全练]角度一:奇偶性的应用1.已知f (x )是R 上的偶函数,且当x >0时,f (x )=x 2-x -1,则当x <0时,f (x )=________. 解析:∵f (x )是定义在R 上的偶函数,∴当x <0时,-x >0. 由已知f (-x )=(-x )2-(-x )-1=x 2+x -1=f (x ), ∴f (x )=x 2+x -1. 答案:x 2+x -1 2.设函数f (x )=(x +1)(x +a )x为奇函数,则a =________. 解析:∵f (x )=(x +1)(x +a )x为奇函数, ∴f (1)+f (-1)=0,即(1+1)(1+a )1+(-1+1)(-1+a )-1=0,∴a =-1.答案:-1角度二:单调性与奇偶性结合3.(2015·昆明统考)下列函数中,在其定义域内既是偶函数又在(-∞,0)上单调递增的函数是( )A .f (x )=x 2B .f (x )=2|x |C .f (x )=log 21|x |D .f (x )=sin x解析:选C 函数f (x )=x 2是偶函数,但在区间(-∞,0)上单调递减,不合题意;函数f (x )=2|x |是偶函数,但在区间(-∞,0)上单调递减,不合题意;函数f (x )=log 21|x |是偶函数,且在区间(-∞,0)上单调递增,符合题意;函数f (x )=sin x 是奇函数,不合题意.4.(2015·刑台摸底考试)已知定义在(-1,1)上的奇函数f (x ),其导函数为f ′(x )=1+cos x ,如果f (1-a )+f (1-a 2)<0,则实数a 的取值范围为( )A .(0,1)B .(1,2)C .(-2,-2)D .(1,2)∪(-2,-1)解析:选B 依题意得,f ′(x )>0,则f (x )是定义在(-1,1)上的奇函数、增函数.不等式f (1-a )+f (1-a 2)<0等价于f (1-a 2)<-f (1-a )=f (a -1),则-1<1-a 2<a -1<1,由此解得1<a < 2.角度三:周期性与奇偶性结合5.已知f(x)是定义在R上的以3为周期的偶函数,若f(1)<1,f(5)=2a-3a+1,则实数a的取值范围为()A.(-1,4) B.(-2,0)C.(-1,0) D.(-1,2)解:选A∵f(x)是定义在R上的周期为3的偶函数,∴f(5)=f(5-6)=f(-1)=f(1),∵f(1)<1,f(5)=2a-3a+1,∴2a-3a+1<1,即a-4a+1<0,解得-1<a<4.角度四:单调性、奇偶性与周期性结合6.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则() A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)解析:选D因为f(x)满足f(x-4)=-f(x),所以f(x-8)=f(x),所以函数f(x)是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3).由f(x)是定义在R上的奇函数,且满足f(x-4)=-f(x),得f(11)=f(3)=-f(-1)=f(1).因为f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数,所以f(x)在区间[-2,2]上是增函数,所以f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).[方法归纳]函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.一抓基础,多练小题做到眼疾手快1.(2015·福建高考)下列函数为奇函数的是( ) A .y =x B .y =e x C .y =cos x D .y =e x -e -x解析:选D 对于A ,定义域不关于原点对称,故不符合要求;对于B ,f (-x )≠-f (x ),故不符合要求;对于C ,满足f (-x )=f (x ),故不符合要求;对于D ,∵f (-x )=e -x -e x =-(e x -e -x )=-f (x ),∴y =e x -e-x为奇函数,故选D.2.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =( ) A.17 B .-1 C .1D .7解析:选A 因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又f (x )为偶函数,所以3a (-x )2-bx -5a +b =3ax 2+bx -5a +b ,解得b =0,所以a +b =17.3.(2015·石家庄一模)设函数f (x )为偶函数,当x ∈(0,+∞)时,f (x )=log 2x ,则f (-2)=( )A .-12B.12C .2D .-2解析:选B 因为函数f (x )是偶函数,所以f (-2)=f (2)=log 22=12.4.函数f (x )=lg|sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数解析:选C ∵f (-x )=lg|sin(-x )|=lg|sin x |, ∴函数f (x )为偶函数.∵f (x +π)=lg|sin(x +π)|=lg|sin x |, ∴函数f (x )的周期为π.5.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________. 解析:∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0, f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1.。

高考数学(文科全国通用)一轮总复习课件:第二章 函数、导数及其应用 2.11.1

高考数学(文科全国通用)一轮总复习课件:第二章 函数、导数及其应用 2.11.1

a
【规律方法】导数法判断(证明)函数f(x)在(a,b)内的 单调性的步骤 (1)求f′(x). (2)确认f′(x)在(a,b)内的符号. (3)得出结论:f′(x)>0时为增函数;f′(x)<0时为减函 数.
易错提醒:研究含参数函数的单调性时,需注意依据参 数取值对不等式解集的影响进行分类讨论.
1 xx 1x 4ex.
单调递增
单调递减
常数函数
【特别提醒】 导数与函数单调性的关系
(1)f′(x)>0(或f′(x)<0)是f(x)在(a,b)内单调递增 (或递减)的充分不必要条件. (2)f′(x)≥0(或f′(x)≤0)是f(x)在(a,b)内单调递 增(或递减)的必要不充分条件(f′(x)=0不恒成立).
【小题快练】 链接教材 练一练 1.(选修1-1P91例1改编)如图所示是函数f(x)的导函数 f′(x)的图象,则下列判断中正确的是 ( )
【解析】选C.由条件可知当0<x<1时,xf′(x)<0, 所以f′(x)<0,函数递减.当x>1时,xf′(x)>0, 所以f′(x)>0,函数递增,所以当x=1时,函数取得极小值. 当x<-1时,xf′(x)<0,所以f′(x)>0,函数递增, 当-1<x<0,xf′(x)>0,所以f′(x)<0,函数递减,所以当x=1时,函数取得极大值.符合条件的只有C项.
B.(-1,1) ax D.(-∞,-1)x或2 (11,+∞)
【解析】选B.函数f(x)的定义域为R,f′(x)=
=
由于a>0,要使f′(x)>0,
只需(1-x)(1+x)>0,解得x∈(-1,1).

【通用版】超实用新高考文科数学重难点专题复习:专题四 导数及其应用 第二讲 导数的应用(核心课件)

【通用版】超实用新高考文科数学重难点专题复习:专题四 导数及其应用 第二讲 导数的应用(核心课件)
e2x1 e2x mx 在 R 上为增函数,
则实数 m 的取值范围为( A )
A. (, 4 e]
B.[4 e, )
C. (, 2 e]
D.[2 e, )
[解析] 因为函数 f (x) e2x1 e2x mx 在 R 上为增函数, 所以 f '(x) 2e2x1 2e2x m 0 对 xR 恒成立, 即 m 2e2x1 2e2x 对 x R 恒成立, 又因为 2e2x1 2e2x 2 2e2x1 2e2x 4 e (当且仅当 2e2x1 2e2x ,即 x 1 时等号成立),
它可以把抽象的数学语言与直观图形相对应,使复杂问题简单化,抽象问 题具体化; (4)分类讨论的思想:

l
'
512 y2
2
0
,解得
y
16

y
16
舍去),
当 0 y 16 时, l ' 0 ;当 y 16 时, l ' 0 ,所以当 y 16 时,
l 取得极小值,也就是最小值,此时 x 512 32 . 16
故选 A.
[典型例题]
2. 中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,
2x
39
x
x2
17x 2
39 2

故当 x 9 时,体积取得最大值, 2
最大值为
9 2
2
9 2
17 2
39 2
75 2
,故选
B.
做题时要善于总结。不仅总结方法,也要总结错误。这样,作完之后才会有 所收获,才能举一反三。
一、第一轮复习,即基础复习阶段
这个阶段的复习是整个高考复习中最关键的环节,一般从8月份到第二年的 三月份,历时8个月,这一阶段的复习效果直接影响整个高考的成败,因此同学 们应该高度重视,在第一轮复习中我们必须严格按照《复习大纲》的要求,把 《大纲》中所有的考点逐个进行突破,全面落实,形成完整的知识体系。这就 需要考生要对课本中的基本概念,基本公式,基本方法重点掌握,在复习中应 淡化特殊技巧的训练,重视数学思想和方法的作用。

高考文科数学导数应用考点讲解

高考文科数学导数应用考点讲解
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题称为优化问题. 利用导数解决生活中优化问题的基本思路为:
在求实际问题的最大值、最小值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.
高考复习讲义 导数的应用
高考文科数学导数应用考点讲解
考纲解读
命题趋势
命题规律
考情精解读
1
高考复习讲义 导数的应用源自213了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).
考情精解读
3
高考复习讲义 导数的应用
继续学习
考点全通关
1
高考复习讲义 导数的应用
1.函数极值的概念
通关秘籍
考点全通关
5
高考复习讲义 导数的应用
考点二 利用导数研究函数的极值和最值
继续学习
考点全通关
7
考点全通关
8
高考复习讲义 导数的应用
考点三 生活中的优化问题
继续学习
所有理想化模型均忽略对所研究问题无影响的因素,是研究问题的一种理想方法.在高中学习的理想模型还有:点电荷、理想气体、弹簧振子、点光源等.
由定义可知,若函数f(x)在区间(a,b)内有极值,则 f(x)在区间(a,b)内绝不是单调函数,即在区间(a,b)内单调的函数在区间(a,b)内没有极值.
1.函数极值的概念
考点全通关
4
高考复习讲义 导数的应用
函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,f '(a)=0;而且在点x=a附近的左侧f '(x)<0,右侧f '(x)>0. 类似地,函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,f '(b)=0;而且在点x=b附近的左侧f '(x)>0,右侧f '(x)<0. 我们把点a叫做函数y=f(x)的极小值点,f(a)叫做函数 y=f(x)的极小值;点b叫做函数y=f(x)的极大值点, f(b)叫做函数y=f(x)的极大值.极大值点和极小值点统称为极值点,极大值和极小值统称为极值.

高考数学(文科全国通用)一轮总复习课件:第二章函数、导数及其应用2.11.2

高考数学(文科全国通用)一轮总复习课件:第二章函数、导数及其应用2.11.2

第二课时利用导数研究函数的极值、最值山东卷5年4考 高考指数:★★★★☆:1.T 解函数在某点取得极值的必要条件和充分 考纲I 条件I 考情| 2.会用导数求函数的极大值、极小值(其中多项 主干知识•自主排查…温*提示 女果您木乐件的辻 雄中出字他象・册旻 同幷右幻灯片・ 可lEtO ・1式函数不超过三次)I| 3.会求闭区间上函数的最大值、最小值(其中多:项式函数不超过三次)III 1•利用导数求函数的最值(极值)及由极值与最I 值求参数的值或取值范围足高考命题的热点I2.常与基本初等函数的图象与性质、解析几何、iI ;考情;I I分析I II I不等式、方程等交汇命题,主要考查转化与化归思想、分类讨论思想的应用3.题型以解答题为主,属高档题教师专用【知识梳理】1.函数的极值与导数的关系(1)函数的极小值与极小值点:若函数f(X)在点x=a处的函数值f @)比它在点x=a附近其他点的函数值_ f (a)-0,而且在点附近的左侧________ ,刪k________ ,则点&叫做函数的极小值辱f(馬%I做函犁程懦.(2)函数的极大值与极大值点:若函薮f (x)在点x=b处的函数值f (b)比它在点x=b附近其他点的函数值_ ,& (b)=0,而且在点x=b附近的左侧________ ,右侧________ ,则点b叫做函数的极大值点,f (b)叫做函数的极大值.都大(x)>0f‘ (x)<02.函数的最值与导数的关系(1)函数f (x)在[a, b]上有最值的条件:如果注区间[a, b]上函数y=f (x)的图象是一条______ 的曲线,那么它必有最大值和最小值.连续不断(2)求尸f (x)在[a, b ]上的最大(小)值的步骤: ① 求函数y=f (x)在(a, b)内的 _____・② 将函数y=f (x)的各极值与 _______________________ 比较,其中 ___ 的一个是最大篠値 的一个是最小值. 端点处的函数值f (a), f (b)最大最小【特别提醒】1・f' (x0) =0与x°是f (x)极值点的关系f,(x°)=0是x°为f(x)的极值点的既不充分也不必要条件•例如,f (x) =x3, f' (0) =0,但x=0不是极值点;又如f (x) = |x|, x=0是它的极小值点,但0 (0)不存在.2.极值与最值的关系极值只能在定义域内取得(不包括端点),最值却可以在端点处取得,有极值的不一定有最值,有最值的也未必有极值;极值有可能成为最值,非常数可导函数最值只要不在端点处取,则必定在极值处取.【小题快练】链接教材练一练1.(选修1-1P96T2改编)函数f(x)的定义域为开区间(a,b),导函数F (x)在@,b) 内的图象如图所示,则函数f (x)在开区间小值点()A.1个B.2个C.3个D.4个【解析】选A・导函数F(x)的图象与x轴的交点中佐侧图象在x轴下方■右侧图象在x轴上方的只有一个. 所以f (x)在区间(比b)内有一个极小值点.2. ________________ (选修1-1P97例5改编)函数y=x+2cosx在区间仃上的最大值是・___________________ [0,T]o直v偃y大丈最日取5匀得>0OSX解f2B M^/6解因当函案I又则故答感悟考题试一试3.(2016 •莱芜模拟)已知函数y=x-ln(l+x2),则函数y的极值情况是(A.有极小值B.有极大值C.既有极大值又有极小值D.无极值【解析】选D.xGR,y = ii--^-d+x2y所以函数y二x・m(:L+x2)无械置2x —(-I.=1一一、—=l + X2 1 + X24.(2016 •德州模拟)已知f(x)=-x2+mx+l在区间[-2, -1] 上的最大值就是函数f(x)的极大值,则m的取值范围是_________ .【解析】f'(x)二m-2x,令f'(x)=(M^x=・由题设得G[-2,-l],iKmG[-4f-2]・答案:卜4厂2]25.(2016 •泰安模拟)函数f (x)二]在区间上的最小值是 ______ • -e x(sin x + cos x)1菁】弋(XT一一Hexcosx・—ex(sinx+cosxfrIe-(cosx—sinX)UKxmaf(X)vr(x)亩h-时龌凰聲is3^Hln專4Hexcosx.Xre°(已知函数的 给出函数的极值,利用导数及 极值求参数函数的单调性确定参数的值,一・•••核心考点•互动探究•••・一考向一运用导数解决函数的极值问题, ______ 【考情快递】高频考点 多维探究命题方向 命题视角已知函数求 极值给出函数,利用函数的单调性 及极值的概念确定函数的极 值,属较难题【考题例析】命题方向1:已知函数求极值【典例1】(2015 •安徽高考)已知函数f (x) = (a>0, r>0) •⑴亲f (x)的定义域,并讨论f (x)的单调性. ⑵若=400,求f (x)在(0, +8)内的极值.(x + r)2【解题导引】(I)令分母不等于0即可得函数的走义域. 并结合导数讨论函数的单调性.(2)利用(1)中的结论,找出极值点从而求出极值.【规范解答】(1)由题意知XH-I;所以走义域为C 8.-r)U(-r f+cx,)f f(x)二f'(x)二所以当xv-r或x>i•时f(x)vO. 当—,(x + r)5 x + ^rx + r2 a(x2 + 2rx + r2) - ax(2x + 2r)(x2 + 2rx + r2)2a(r-x)(x + r)(x + r)4因此'f(x)的单调递减区间是(-oo f-r)f(r f+oo); f(x)的单调递增区间是(心).(2)由⑴可知f(x)在(0「r)上单调递增「在(匚+8)上单调递减因此・x=i•是f(x)的极大值点•所以f(x)在(0.+8)内的极大值为f(r)二2命题方向2:已知函数的极值求参数的值或范围 【典例2】(2016 •太原模拟)f (x)个极值点Xp x 2S.x r <x 2. ⑴求a 的取值范围.2= x3+ax2+ax+l有两(2)若f(X]) +f (x2) >求a的取值范【解题导引】(1)利用f'(x)二0有两个不等实根求解.⑵将冷也用a表示■把f(xj +f(x2) >转化为关于a的不等式求解. 223【规范解答】⑴f'(x)=2x?+2ax+a■由题意知f'(x)有两个不同零点■△二4a2-8a > 0,即a > 2或a < 0, 故a的取值范围为(-oo f0) U (2f+oo).I t x e + *X B +『X — + I +e +」x e +」x — - J "「 H 0+(zx +IX) e +kxTXZ 」+ ・oveJgrqAeBH0XIX・e■%x+TX>£e IE s o H e +xeN +z x fM DIII x .x gc c )s令g(a) = ] Rg(a)>0f g f(a)=a2-2a=a(a-2)f当a > 2BW(aJ>lg(a)为增函数g(a) > g(2)=0,符合题意,3 3当a<0Blg,(a)>0,g(a)为増函数■又g(-l)=0,ffi g(a)>0=g(-l)f此时・lvav0, 综上a的取值范围是(・h0) U(乙+8).[技法感悟]1.利用萃陽研究函数极值问题的一般流程2.已知函数极值点或极值求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)验证:因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.易错提:若函数y=f(X)在区间(a, b)内有极值,那么尸f(x)(a, b)内绝不是单调函数,即在某区间上单调函数没有极值・【题组通关】1. (2016 •滨州模拟)设函数f(x)在R上可导,其导函数为f‘(x),且函数y=(l-x)f/ (x)的图象如图所示,则下列结论中一定成立的是()2 - 2 - z (\ /(\ /(\ /(\\17 \17 \)/ \17 X X X X /(\ 7(\ /(X /(X fff数数数数函A.B U D【解析】选D・由题干图Rj^f^x<-2Btl-x>3f 此时f'(x)>0;当-2<x<lB10<l-x<3f此时f'(x)vO;当:Lvxv2 时厂:Lvl-xvO■此时f'(x)vO;当x> 2时J-x <丄此时『仪)> 0.由此可以得到函数f (x)在x=・2处取得极大值■在x=2处取得极小值.2・(2016 •青岛模拟)设f f (x)是函数f(x)的导函数, y=f,(x)的图象如图所示,则y=f (x)的图象最有可能是()AB CD【解析】选c.方法一:由y二F(x)的图象可以清晰地看出. 当x W (0.2)时f (x) v 0,则f (x)为减函数,只有C项符台方法二:在导函数f'(x)的图象中■零点0的左侧函数值为正「右侧为负•由此可知原函数f(x)在x=0时取得极大值.又零点2的左侧为负,右侧为正,由此可知原函数f(x)在x=2时取得极小值■只有选项C符合.3. (2016 •成都模拟)已知函数f(x)二则函数f (x)的极小值为_______ 上+ 2-ln J 4 4x 2【解析]因为f'(x)二2L Z W X)=0,4x2 '解得x=・l或X=5・因X = -1不在f (x)的定义域(0, + OO)内,故舍去.当x G (0,5)时f (x) V 0■故f (x)在(0,5)内为减函数;当x G (5,+oo)时f (x) > 0■故f (x)在(5.+8)内为増函数.由此知函数f(x)在x=5时取得极小值f(5)二-In5・答案:・ln5 4. (2016 •临沂模拟)设f (x)=xgax2+bx+l 的导数0 (x) 满足f‘(l)=2a,f‘(2)=-b,其中常数爲bWR.⑴求曲线尸f (x)在点(1, f⑴)处的切线方程. ⑵设g(x)=f‘(x)e-x,求函数g(x)的极信.0=I-A3+X9[|a,(T-x)£- =(・),电豈皇第(ft埔騎(⑴口)笑|(x)j"第冊讯f E- =(T)J^- =(TWM £f£-X£-3xg壬(x)J*T+x「乙x 飞x二(x)打汕0• -=ef|*g,q-=q+Bi7+ZT=(3)J©二q劃搦‘陀二q+陀+£=(1)』"列,q+xej+3xs = (x)jq<|g(i)】(2)由⑴知g(x)=(3x2-3x-3)e\ 则g,(x)=(-3x2+9x)e x, 令g‘ (x)=0 得x=0 或x 二3,于是函数g(x)在(・8.0)上单调递减, 在(0⑶上单调递増■在⑶+ 8)上单调递减.所以函数g(x)在x=0处取得极小值g(0)=-3, 在x二3处取得极大值g(3)=15e3.考向二运用导数解决函数的最值问题【典例3】(1)已知為b为正实数,函数f (x)=ax3+bx+2x 在[0, 1]上的最大值为4,则函数f (x)在[-1, 0]上的最小值为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学(文科)总复习考点解析及试题(解析版)第二章 函数、导数及其应用本章是高考复习中十分重要的一章,共有13个考点如下:考点1 函数及其表示 考点2 函数的定义域和值域考点3 函数的单调性考点4 函数的奇偶性与周期性考点5 二次函数与幂函数 考点6 指数与指数函数 考点7 对数与对数函数 考点8 函数的图象 考点9 函数与方程 考点10 函数模型及其应用考点11 变化率与导数、导数的计算考点12 导数的应用(一) 考点13 导数的应用(二)考点测试1 函数及其表示高考概览高考在本考点的常考题型为选择题和填空题,分值5分,中高等难度 考纲研读1.了解构成函数的要素,了解映射的概念2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数3.了解简单的分段函数,并能简单应用一、基础小题1.设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f [g (π)]的值为( )A .1B .0C .-1D .π 答案 B解析 因为g (π)=0,所以f [g (π)]=f (0)=0,故选B . 2.下列图象中,不可能成为函数y =f (x )图象的是( )答案 A解析 函数图象上一个x 值只能对应一个y 值.选项A 中的图象上存在一个x 值对应两个y 值,所以其不可能为函数图象,故选A .3.下列各组函数中是同一个函数的是( ) ①f (x )=x 与g (x )=(x )2; ②f (x )=x 与g (x )=x 2; ③f (x )=x 2与g (x )=x 4;④f (x )=x 2-2x -1与g (t )=t 2-2t -1. A .①② B .①③ C .③④ D .①④ 答案 C解析 ①中f (x )的定义域为R ,g (x )的定义域为[0,+∞),故f (x ),g (x )不是同一个函数;②中g (x )=x 2=|x |,故f (x ),g (x )不是同一个函数.故选C .4.若点A (0,1),B (2,3)在一次函数y =ax +b 的图象上,则一次函数的解析式为( ) A .y =-x +1 B .y =2x +1 C .y =x +1 D .y =2x -1 答案 C解析 将点A ,B 代入一次函数y =ax +b 得b =1,2a +b =3,则a =1.故一次函数的解析式为y =x +1.故选C .5.已知反比例函数y =f (x ).若f (1)=2,则f (3)=( ) A .1 B .23 C .13 D .-1答案 B解析 设f (x )=k x (k ≠0),由题意有2=k ,所以f (x )=2x ,故f (3)=23.故选B .6.已知f (x +1)=x 2+2x +3,则f (x )=( ) A .x 2+4x +6 B .x 2-2x +2 C .x 2+2 D .x 2+1 答案 C解析 解法一:由f (x +1)=(x +1)2+2得f (x )=x 2+2.故选C .解法二:令x +1=t ,则x =t -1,所以f (t )=(t -1)2+2(t -1)+3=t 2+2,故f (x )=x 2+2.故选C .7.函数y =f (x )的图象与直线x =1的公共点个数可能是( ) A .1 B .0 C .0或1 D .1或2 答案 C解析 函数的图象与直线有可能没有交点.如果有交点,那么对于x =1,f (x )仅有一个函数值与之对应.故选C .8.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用s 1,s 2分别表示乌龟和兔子所行的路程(t 为时间),则下图与故事情节相吻合的是( )答案 B解析 兔子的速率大于乌龟,且到达终点的时间比乌龟长,观察图象可知,选B . 9.下列从集合A 到集合B 的对应中是映射的是( ) A .A =B =N *,对应关系f :x →y =|x -3|B .A =R ,B ={0,1},对应关系f :x →y =⎩⎪⎨⎪⎧1(x ≥0),0(x <0)C .A =Z ,B =Q ,对应关系f :x →y =1xD .A ={0,1,2,9},B ={0,1,4,9,16},对应关系f :a →b =(a -1)2答案 B解析 A 项中,对于集合A 中的元素3,在f 的作用下得0,但0∉B ,即集合A 中的元素3在集合B 中没有元素与之对应,所以这个对应不是映射;B 项中,对于集合A 中任意一个非负数在集合B 中都有唯一元素1与之对应,对于集合A 中任意一个负数在集合B 中都有唯一元素0与之对应,所以这个对应是映射;C 项中,集合A 中的元素0在集合B 中没有元素与之对应,故这个对应不是映射;D 项中,在f 的作用下,集合A 中的元素9应该对应64,而64∉B ,故这个对应不是映射.故选B .10.若函数f (x )如下表所示:则f [f (1)]=________. 答案 1解析 由表格可知,f (1)=2,所以f [f (1)]=f (2)=1.11.已知函数g (x )=1-2x ,f [g (x )]=2x 2-x 2,则f ⎝ ⎛⎭⎪⎫12=________.答案831解析 令1-2x =12,得x =14,所以f ⎝ ⎛⎭⎪⎫12=2×142-116=123116=831.12.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.答案 f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0解析 当-1≤x ≤0时,设解析式为y =kx +b (k ≠0),由图象得⎩⎪⎨⎪⎧-k +b =0,b =1,解得⎩⎪⎨⎪⎧k =1,b =1.∴y =x +1.当x >0时,设解析式为y =a (x -2)2-1(a ≠0), ∵图象过点(4,0),∴0=a (4-2)2-1,解得a =14.综上,函数f (x )在[-1,+∞)上的解析式为f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0.13.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12 答案 C解析 ∵-2<1,∴f (-2)=1+log 2[2-(-2)]=3; ∵log 212>1,∴f (log 212)=2log 212-1=2log 26=6. ∴f (-2)+f (log 212)=9.14.存在函数f (x )满足:对于任意x ∈R 都有( ) A .f (sin2x )=sin x B .f (sin2x )=x 2+x C .f (x 2+1)=|x +1| D .f (x 2+2x )=|x +1| 答案 D解析 对于A ,令x =0,得f (0)=0;令x =π2,得f (0)=1,这与函数的定义不符,故A 错误.在B 中,令x =0,得f (0)=0;令x =π2,得f (0)=π24+π2,与函数的定义不符,故B 错误.在C 中,令x =1,得f (2)=2;令x =-1,得f (2)=0,与函数的定义不符,故C 错误.在D 中,变形为f (|x +1|2-1)=|x +1|,令|x +1|2-1=t ,得t ≥-1,|x +1|=t +1,从而有f (t )=t +1,显然这个函数关系在定义域[-1,+∞)上是成立的,故选D .15.设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1.则满足f [f (a )]=2f (a )的a 的取值范围是( )A .⎣⎢⎡⎦⎥⎤23,1B .[0,1]C .⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞) 答案 C解析 解法一:①当a <23时,f (a )=3a -1<1,f [f (a )]=3(3a -1)-1=9a -4,2f (a )=23a -1,显然f [f (a )]≠2f (a ).②当23≤a <1时,f (a )=3a -1≥1,f [f (a )]=23a -1,2f (a )=23a -1,故f [f (a )]=2f (a ).③当a ≥1时,f (a )=2a>1,f [f (a )]=22a,2f (a )=22a ,故f [f (a )]=2f (a ).综合①②③知a ≥23.故选C .解法二:∵f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1,而f [f (a )]=2f (a ),∴f (a )≥1,∴有⎩⎪⎨⎪⎧a <1,3a -1≥1或⎩⎪⎨⎪⎧a ≥1,2a≥1,解得23≤a <1或a ≥1,∴a ≥23,即a ∈⎣⎢⎡⎭⎪⎫23,+∞,故选C . 16.函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,x +12,-2<x ≤0,则f [f (15)]的值为________. 答案22解析 ∵f (x +4)=f (x ),∴函数f (x )的周期为4, ∴f (15)=f (-1)=12,f 12=cos π4=22,∴f [f (15)]=f 12=22.17.设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-14,+∞ 解析 由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x >-14.18.设f ,g 都是由A 到A 的映射,其对应关系如下:映射f 的对应关系映射g 的对应关系则f [g (1)]的值为( ) A .1 B .2 C .3 D .4 答案 A解析 根据映射g 的对应关系,可得g (1)=4,再根据映射f 的对应关系,可得f (4)=1,故选A .19.下列函数为同一函数的是( ) A .y =x 2-2x 和y =t 2-2t B .y =x 0和y =1C .y =(x +1)2和y =x +1 D .y =lg x 2和y =2lg x 答案 A解析 对于A :y =x 2-2x 和y =t 2-2t 的定义域都是R ,对应关系也相同,∴是同一函数;对于B :y =x 0的定义域是{x |x ≠0},而y =1的定义域是R ,两函数的定义域不同,∴不是同一函数;对于C :y = (x +1)2=|x +1|和y =x +1的定义域都是R ,但对应关系不相同,∴不是同一函数;对于D :y =lg x 2的定义域是{x |x ≠0},而y =2lg x 的定义域是{x |x >0},两函数的定义域不同,∴不是同一函数.故选A .20.设函数f (x )=⎩⎪⎨⎪⎧x 2-1(x ≥2),log 2x (0<x <2),若f (m )=3,则实数m 的值为( )A .-2B .8C .1D .2 答案 D解析 当m ≥2时,由m 2-1=3,得m 2=4,解得m =2;当0<m <2时,由log 2m =3,解得m =23=8(舍去).综上所述,m =2,故选D .21. 某工厂八年来某种产品总产量y 与时间t (年)的函数关系如图,下列四种说法:①前三年中,产量的增长速度越来越快; ②前三年中,产量的增长速度越来越慢; ③第三年后,这种产品停止生产;④第三年后,年产量保持不变.其中说法正确的是( ) A .②③ B .②④ C .①③ D .①④ 答案 A解析 由函数图象可知,在区间[0,3]上,图象凸起上升,表明年产量增长速度越来越慢;在区间(3,8]上,图象是水平直线,表明总产量保持不变,即年产量为0,所以②③正确.故选A .22.设函数f (x )=⎩⎪⎨⎪⎧-x +λ,x <1(λ∈R ),2x,x ≥1,若对任意的a ∈R 都有f [f (a )]=2f (a )成立,则λ的取值范围是( )A .(0,2]B .[0,2]C .[2,+∞) D.(-∞,2) 答案 C解析 当a ≥1时,2a ≥2,∴f [f (a )]=f (2a )=22a =2f (a ),∴λ∈R ;当a <1时,f [f (a )]=f (λ-a )=2λ-a,∴λ-a ≥1,即λ≥a +1,由题意知λ≥(a +1)max ,∴λ≥2.综上,λ的取值范围是[2,+∞).故选C .23.已知函数f (x )=ax -b (a >0),f [f (x )]=4x -3,则f (2)=________. 答案 3解析 由题意,得f [f (x )]=a (ax -b )-b =a 2x -ab -b =4x -3,即⎩⎪⎨⎪⎧a 2=4,-ab -b =-3,因为a >0,所以解得⎩⎪⎨⎪⎧a =2,b =1,所以f (x )=2x -1,则f (2)=3.24.已知函数f (x )=22x +1+sin x ,则f (-2)+f (-1)+f (0)+f (1)+f (2)=________.答案 5解析 ∵f (x )+f (-x )=22x +1+sin x +22-x +1-sin x =22x +1+2x +11+2x =2,且f (0)=1,∴f (-2)+f (-1)+f (0)+f (1)+f (2)=5.25.已知f (1-cos x )=sin 2x ,则f (x 2)的解析式为________. 答案 f (x 2)=-x 4+2x 2,x ∈[-2,2]解析 f (1-cos x )=sin 2x =1-cos 2x ,令1-cos x =t ,t ∈[0,2],则cos x =1-t ,所以f (t )=1-(1-t )2=2t -t 2,t ∈[0,2],则f (x 2)=-x 4+2x 2,x ∈[-2,2].二、高考大题1.已知f (x )=⎩⎪⎨⎪⎧cx +1,0<x <c ,2-xc 2+1,c ≤x <1,且f (c 2)=98.(1)求常数c ; (2)解方程f (x )=98.解 (1)∵0<c <1,∴c 2<c , ∴f (c 2)=c 3+1=98,即c =12.(2)由(1)得f (x )=⎩⎪⎨⎪⎧12x +1,0<x <12,2-4x +1,12≤x <1.由f (x )=98得⎩⎪⎨⎪⎧0<x <12,12x +1=98或⎩⎪⎨⎪⎧12≤x <1,2-4x+1=98,解得x =14或x =34.2.已知二次函数f (x )满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)在区间[-1,1]上,y =f (x )的图象恒在y =2x +m 的图象上方,试确定实数m 的取值范围.解 (1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,所以f (x )=ax 2+bx +1. 因为f (x +1)-f (x )=2x ,所以a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x ,即2ax +a +b =2x ,所以⎩⎪⎨⎪⎧2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,所以f (x )=x 2-x +1.(2)由题意得x 2-x +1>2x +m 在[-1,1]上恒成立, 即x 2-3x +1-m >0在[-1,1]上恒成立.设g (x )=x 2-3x +1-m , 其图象的对称轴为直线x =32,所以g (x )在[-1,1]上单调递减.故只需g (1)>0,即12-3×1+1-m >0,解得m <-1. 故实数m 的取值范围是(-∞,-1).3.已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1)上有表达式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的表达式.解 (1)由题意知f (-1)=-2f (-1+1)=-2f (0)=0,f (1.5)=f (1+0.5)=-12f (0.5)=-12×14=-18.(2)当x ∈[0,1)时,f (x )=x 2; 当x ∈[1,2)时,x -1∈[0,1),f (x )=-12f (x -1)=-12(x -1)2, f (2)=-12f (1)=14f (0)=0;当x ∈[-1,0)时,x +1∈[0,1),f (x )=-2f (x +1)=-2(x +1)2;当x ∈[-2,-1)时,x +1∈[-1,0),f (x )=-2f (x +1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f (x )=⎩⎪⎨⎪⎧0,x =2,-12(x -1)2,x ∈[1,2),x 2,x ∈[0,1),-2(x +1)2,x ∈[-1,0),4(x +2)2,x ∈[-2,-1).4.某公司研发出一款产品,批量生产前先在某城市销售30天进行市场调查.调查结果发现:日销量f (t )与天数t 的对应关系服从图①所示的函数关系:每件产品的销售利润h (t )与天数t 的对应关系服从图②所示的函数关系.图①由抛物线的一部分(A 为抛物线顶点)和线段AB 组成.(1)设该产品的日销售利润Q (t )(0≤t ≤30,t ∈N ),分别求出f (t ),h (t ),Q (t )的解析式;(2)若在30天的销售中,日销售利润至少有一天超过8500元,则可以投入批量生产,该产品是否可以投入批量生产,请说明理由.解 (1)f (t )=⎩⎪⎨⎪⎧-110t 2+4t ,0≤t ≤20,-t +60,20<t ≤30,h (t )=⎩⎪⎨⎪⎧20t ,0≤t ≤10,200,10<t ≤30.由题可知,Q (t )=f (t )h (t ), ∴当0≤t ≤10时,Q (t )=-110t 2+4t 20t =-2t 3+80t 2;当10<t ≤20时,Q (t )=-110t 2+4t ×200=-20t 2+800t ;当20<t ≤30时,Q (t )=(-t +60)×200=-200t +12000.∴Q (t )=⎩⎪⎨⎪⎧-2t 3+80t 2,0≤t ≤10,-20t 2+800t ,10<t ≤20,-200t +12000,20<t ≤30(t ∈N ).(2)该产品不可以投入批量生产,理由如下: 当0≤t ≤10时,Q (t )max =Q (10)=6000, 当10<t ≤20时,Q (t )max =Q (20)=8000, 当20<t ≤30时,Q (t )<Q (20)=8000, ∴Q (t )的最大值为Q (20)=8000<8500.∴在一个月的销售中,没有一天的日销售利润超过8500元,不可以投入批量生产.考点测试2 函数的定义域和值域高考概览高考在本考点的常考题型为选择题、填空题,分值5分,中等难度 考纲研读会求一些简单函数的定义域和值域一、基础小题1.函数y =1log 2x -2的定义域为( )A .(0,4)B .(4,+∞)C .(0,4)∪(4,+∞) D.(0,+∞) 答案 C解析 由条件可得log 2x -2≠0且x >0,解得x ∈(0,4)∪(4,+∞).故选C . 2.函数y =x (3-x )+x -1的定义域为( ) A .[0,3] B .[1,3] C .[1,+∞) D.[3,+∞) 答案 B解析 由题意得⎩⎪⎨⎪⎧x (3-x )≥0,x -1≥0,解得1≤x ≤3.故选B .3.函数f (x )=-2x 2+3x (0<x ≤2)的值域是( ) A .-2,98 B .-∞,98C .0,98D .98,+∞答案 A解析 f (x )=-2x -342+98(x ∈(0,2]),所以f (x )的最小值是f (2)=-2,f (x )的最大值是f 34=98.故选A .4.已知函数f (x )=2+log 3x ,x ∈181,9,则f (x )的最小值为( )A .-2B .-3C .-4D .0 答案 A解析 由函数f (x )在其定义域内是增函数可知,当x =181时,函数f (x )取得最小值f 181=2+log 3 181=2-4=-2,故选A .5.已知函数f (x )的定义域为(-1,1),则函数g (x )=f x2+f (x -1)的定义域为( ) A .(-2,0) B .(-2,2) C .(0,2) D .-12,0答案 C解析 由题意得⎩⎪⎨⎪⎧-1<x 2<1,-1<x -1<1,∴⎩⎪⎨⎪⎧-2<x <2,0<x <2,∴0<x <2,∴函数g (x )=f x2+f (x-1)的定义域为(0,2),故选C .6.函数y =x +2-x 的值域为( ) A .94,+∞ B.94,+∞ C .-∞,94 D .-∞,94答案 D解析 令t =2-x ≥0,则t 2=2-x ,x =2-t 2,∴y =2-t 2+t =-t -122+94(t ≥0),∴y ≤94,故选D .7.已知函数f (x )=1x +1,则函数f [f (x )]的定义域是( ) A .{x |x ≠-1} B .{x |x ≠-2}C .{x |x ≠-1且x ≠-2}D .{x |x ≠-1或x ≠-2} 答案 C 解析 f [f (x )]=1f (x )+1=11x +1+1,所以有⎩⎪⎨⎪⎧x ≠-1,11+x+1≠0,解得x ≠-1且x ≠-2.故选C .8.若函数y =f (x )的值域是[1,3],则函数F (x )=1-f (x +3)的值域是( ) A .[-8,-3] B .[-5,-1] C .[-2,0] D .[1,3]答案 C解析 ∵1≤f (x )≤3,∴-3≤-f (x +3)≤-1,∴-2≤1-f (x +3)≤0,即F (x )的值域为[-2,0].故选C .9.函数y =16-4x的值域是( )A .[0,+∞) B.[0,4] C .[0,4) D .(0,4) 答案 C解析 由已知得0≤16-4x<16,0≤ 16-4x<16=4,即函数y =16-4x的值域是[0,4).故选C .10.函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( ) A .(-∞,0)∪⎝ ⎛⎦⎥⎤12,2 B .(-∞,2] C .⎝ ⎛⎦⎥⎤-∞,12∪(2,+∞) D.(0,+∞) 答案 A解析 当x <1时,x -1<0,此时y =2x -1<0;当2≤x <5时,1≤x -1<4,此时14<1x -1≤1,12<2x -1≤2,即12<y ≤2,综上,函数的值域为(-∞,0)∪⎝ ⎛⎦⎥⎤12,2.故选A .11.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,-2≤x ≤0,1x,0<x ≤3,则函数f (x )的值域是________.答案 -14,+∞解析 当-2≤x ≤0时,x 2+x =x +122-14,其值域为-14,2;当0<x ≤3时,1x 的值域为13,+∞,故函数f (x )的值域是-14,+∞. 12.函数f (x )=x -1x +1的值域为________. 答案 [-1,1) 解析 由题意得f (x )=x -1x +1=1-2x +1,∵x ≥0,∴0<2x +1≤2,∴-2≤-2x +1<0,∴-1≤1-2x +1<1,故所求函数的值域为[-1,1).13.下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x答案 D 解析 函数y =10lg x的定义域、值域均为(0,+∞),而y =x ,y =2x的定义域均为R ,排除A ,C ;y =lg x 的值域为R ,排除B .故选D .14.函数f (x )=log 2x -1的定义域为________. 答案 [2,+∞)解析 由题意可得log 2x -1≥0,即log 2x ≥1,∴x ≥2.∴函数的定义域为[2,+∞). 15.函数y =3-2x -x 2的定义域是________. 答案 [-3,1]解析 若函数有意义,则需3-2x -x 2≥0,即x 2+2x -3≤0,解得-3≤x ≤1. 16.已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,lg (x 2+1),x <1,则f [f (-3)]=________,f (x )的最小值是________. 答案 0 22-3解析 由题知,f (-3)=1,f (1)=0,即f [f (-3)]=0.又f (x )在(-∞,0)上单调递减,在(0,1)上单调递增,在(1,2)上单调递减,在(2,+∞)上单调递增,所以f (x )min =min{f (0),f (2)}=22-3.17.已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________. 答案 -32解析 ①当a >1时,f (x )在[-1,0]上单调递增,则⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,无解.②当0<a <1时,f (x )在[-1,0]上单调递减,则⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.18.若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a的取值范围是________.答案 (1,2]解析 当x ≤2时,f (x )=-x +6,f (x )在(-∞,2]上为减函数,∴f (x )∈[4,+∞).当x >2时,若a ∈(0,1),则f (x )=3+log a x 在(2,+∞)上为减函数,f (x )∈(-∞,3+log a 2),显然不满足题意,∴a >1,此时f (x )在(2,+∞)上为增函数,f (x )∈(3+log a 2,+∞),由题意可知(3+log a 2,+∞)⊆[4,+∞),则3+log a 2≥4,即log a 2≥1,∴1<a ≤2.19.函数f (x )=12-x+ln (x +1)的定义域为( )A .(2,+∞) B.(-1,2)∪(2,+∞) C .(-1,2) D .(-1,2] 答案 C解析 函数的定义域应满足⎩⎪⎨⎪⎧2-x >0,1+x >0,∴-1<x <2.故选C .20.已知函数f (x )=x +2x-a (a >0)的最小值为2,则实数 a =( ) A .2 B .4 C .8 D .16 答案 B解析 由2x-a ≥0得x ≥log 2a ,故函数的定义域为[log 2a ,+∞),易知函数f (x )在[log 2a ,+∞)上单调递增,所以f (x )min =f (log 2a )=log 2a =2,解得a =4.故选B .21.已知函数f (x )=⎩⎪⎨⎪⎧x -2(x ≤1),ln x (x >1),那么函数f (x )的值域为( )A .(-∞,-1)∪[0,+∞) B.(-∞,-1]∪(0,+∞) C .[-1,0) D .R 答案 B解析 函数y =x -2(x ≤1)的值域为(-∞,-1],函数y =ln x (x >1)的值域为(0,+∞),故函数f (x )的值域为(-∞,-1]∪(0,+∞).故选B .22.已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z ),值域是[0,1],那么满足条件的整数数对(a ,b )共有( )A .2个B .3个C .5个D .无数个 答案 C解析 ∵函数f (x )=4|x |+2-1的值域是[0,1],∴1≤4|x |+2≤2,∴0≤|x |≤2,∴-2≤x ≤2,∴[a ,b ]⊆[-2,2].又由于仅当x =0时,f (x )=1,当x =±2时,f (x )=0,故在定义域中一定有0,且2,-2中必有其一,故满足条件的整数数对(a ,b )有(-2,0),(-2,1),(-2,2),(-1,2),(0,2)共5个.故选C .23.函数y =3|x |-1的定义域为[-1,2],则函数的值域为________.答案 [0,8]解析 当x =0时,y min =30-1=0,当x =2时,y max =32-1=8,故值域为[0,8]. 24.若函数f (x +1)的定义域是[-1,1],则函数f (log 12x )的定义域为________.答案 14,1解析 ∵f (x +1)的定义域是[-1,1],∴f (x )的定义域是[0,2],则f (log 12x )的定义域为0≤log 12x ≤2,∴14≤x ≤1.二、高考大题1.已知a ≥3,函数F (x )=min{2|x -1|,x 2-2ax +4a -2},其中min{p ,q }=⎩⎪⎨⎪⎧p ,p ≤q ,q ,p >q .(1)求使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围; (2)①求F (x )的最小值m (a );②求F (x )在区间[0,6]上的最大值M (a ). 解 (1)由于a ≥3,故当x ≤1时,(x 2-2ax +4a -2)-2|x -1|=x 2+2(a -1)(2-x )>0, 当x >1时,(x 2-2ax +4a -2)-2|x -1|=(x -2)(x -2a ).所以,使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围为[2,2a ]. (2)设函数f (x )=2|x -1|,g (x )=x 2-2ax +4a -2. ①f (x )min =f (1)=0,g (x )min =g (a )=-a 2+4a -2, 所以,由F (x )的定义知m (a )=min{f (1),g (a )},即m (a )=⎩⎨⎧0,3≤a ≤2+2,-a 2+4a -2,a >2+ 2.②当0≤x ≤2时,F (x )≤f (x )≤max{f (0),f (2)}=2=F (2),当2≤x ≤6时,F (x )≤g (x )≤max{g (2),g (6)}=max{2,34-8a }=max{F (2),F (6)}.所以,M (a )=⎩⎪⎨⎪⎧34-8a ,3≤a <4,2,a ≥4.2.已知f (x )=2+log 3x ,x ∈[1,9],试求函数y =[f (x )]2+f (x 2)的值域. 解 ∵f (x )=2+log 3x 的定义域为[1,9],要使[f (x )]2+f (x 2)有意义,必有1≤x ≤9且1≤x 2≤9,∴1≤x ≤3,∴y =[f (x )]2+f (x 2)的定义域为[1,3]. 又y =(2+log 3x )2+2+log 3x 2=(log 3x +3)2-3. ∵x ∈[1,3],∴log 3x ∈[0,1],∴y max =(1+3)2-3=13,y min =(0+3)2-3=6. ∴函数y =[f (x )]2+f (x 2)的值域为[6,13].3.已知函数f (x )=ax +1a(1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),求g (a )的最大值.解 f (x )=⎝⎛⎭⎪⎫a -1a x +1a,当a >1时,a -1a>0,此时f (x )在[0,1]上为增函数,∴g (a )=f (0)=1a;当0<a <1时,a -1a<0,此时f (x )在[0,1]上为减函数,∴g (a )=f (1)=a ;当a =1时,f (x )=1,此时g (a )=1.∴g (a )=⎩⎪⎨⎪⎧a ,0<a <1,1a,a ≥1,∴g (a )在(0,1)上为增函数,在[1,+∞)上为减函数, 又a =1时,有a =1a=1,∴当a =1时,g (a )取得最大值1. 4.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域; (2)若函数f (x )在[1,3]上的最大值为1,求实数a 的值. 解 (1)当a =2时,f (x )=x 2+3x -3=x +322-214,又x ∈[-2,3],所以f (x )min =f -32=-214,f (x )max =f (3)=15,所以所求函数的值域为-214,15.(2)对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,所以6a +3=1,即a =-13,满足题意;②当-2a -12≥3,即a ≤-52时,f (x )max =f (1)=2a -3,所以2a -3=1,即a =2,不满足题意; ③当1<-2a -12<3,即-52<a <-12时,此时,f (x )max 在端点处取得,令f (1)=1+2a -1-3=1,得a =2(舍去), 令f (3)=9+3(2a -1)-3=1,得a =-13(舍去).综上,可知a =-13.考点测试3 函数的单调性高考预览:本考点是高考的常考知识点,常与函数的奇偶性、周期性相结合综合考查。

相关文档
最新文档