2021年高考数学专题03 导数及其应用 (原卷版)

合集下载

2021年高考数学真题逐题解析:导数的几何意义及应用(原卷)

2021年高考数学真题逐题解析:导数的几何意义及应用(原卷)

第7题导数的几何意义及应用一、原题呈现【原题】若过点 ,a b 可以作曲线e x y 的两条切线,则()A.e b aB.e a bC.0e b aD.0e ab 【答案】D 【解析】解法一:设过点 ,a b 的切线与曲线e x y 切于,e tP t ,对函数e x y 求导得e x y ,所以曲线e x y 在点P 处的切线方程为 e e t t y x t ,即 e 1e t t y x t ,由题意可知,点 ,a b 在直线 e 1et ty x t 上,所以 e 1e 1e ttt b a t a t ,过点 ,a b 可以作曲线e x y 的两条切线,则方程 1etb a t 有两个不同实根,令 1e tf t a t ,则 e tf t a t .当t a 时, 0f t ,此时函数 f t 单调递增,且 0f t ,当t a 时, 0f t ,此时函数 f t 单调递减,所以, max e af t f a ,如图所示,当直线y b 与曲线 y f t 的图象有两个交点时,当0e a b 时,直线y b 与曲线 y f t 的图象有两个交点.故选D.解法二:画出函数曲线e x y 的图象如图所示,根据直观即可判定点 ,a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0e a b .故选D.【就题论题】本题主要考查利用导数的几何意义研究确定的切线,注意等价转化思想的应用:切线有两条 切点 ,ett 有2个t整理出关于的方程关于t 的方程 1e tb a t 有2个不同实根 直线y b 与1e t f t a t 有2个交点.另外由解法二可知:点 ,a b 在曲线下方且在x 轴上方时符合条件的切线有2条;点 ,a b 在曲线上或在x 轴上或在x 轴下方时符合条件的切线有1条;点 ,a b 在曲线上方时符合条件的切线不存在;若把题中的切线换成3y x ,点 ,a b 位置与切线条数有何关系,有兴趣的同学可以探讨一下.二、考题揭秘【命题意图】本题考查导数几何意义的应用,考查直观想象与逻辑推理的核心素养.难度:中等.【考情分析】导数的几何意义是高考的一个高频考点,考查热点主要有:求曲线在某点处的切线;求两条曲线的公切线;确定满足条件的曲线的条数.【得分秘籍】(1)导数的几何意义是研究曲线的切线的基石,函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是 0f x .求以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤:①求出函数f (x )的导数f ′(x );②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简.(2)研究曲线的公切线,一般是分别设出两切点,写出两切线方程,然后再使这两个方程表示同一条直线.(3)求曲线切线的条数一般是设出切点,t f t ,由已知条件整理出关于t 的方程,把切线条数问题转化为关于t 的方程的实根个数问题.【易错警示】(1)求导出错,如一下几个函数的导数比较容易出错:211cos sin,x xx x;(2)混淆在某点处的切线与过某点的切线,注意求曲线过某点的切线,一般是设出切点(x0,y0),解方程组x0),f′(x0),得切点(x0,y0),进而确定切线方程.(3)对曲线的切线理解失误,如误认为曲线的切线与曲线只有1个公共点,又如误认为0x 不是曲线3y x 在0x 处的切线方程.三、以例及类(以下所选试题均来自新高考Ⅰ卷地区2020年1-6月模拟试卷)单选题1.(2021广东省肇庆市高三二模)曲线 1lnf x xx在1,1f处的切线方程为()A.230x y B.210x y C.230x y D.210x y2.(2021湖南省部分学校高三下学期联考)函数32()71f x x x的图象在点(4,(4))f处的切线斜率为()A.8 B.7 C.6 D.53.(2021山东省滨州市高三二模)设曲线2axy e (e=2.718…为自然对数的底数)在点 0,1处的切线及直线210x y 和两坐标轴的正半轴所围成的四边形有外接圆,则a ()A.1 B.14C.14D.14.(2021江苏省盐城市高三5月第三次模拟)韦达是法国杰出的数学家,其贡献之一是发现了多项式方程根与系数的关系,如:设一元三次方程3200ax bx cx d a的3个实数根为1x,2x,3x,则123bx x xa,122331cx x x x x xa,123dx x xa.已知函数 321f x x x,直线l与 f x的图象相切于点11,P x f x,且交 f x的图象于另一点22,Q x f x,则()A.1220x x B.12210x xC.12210x x D.1220x x5.(2021湖南省永州市高三下学期二模)曲线()2lnf x x在x t 处的切线l过原点,则l的方程是()A.20x eyB.20x eyC .20ex yD .20ex y 6.(2021广东省肇庆市高三下学期5月模拟)函数1()cos f x x x的图像的切线斜率可能为()A .13B .2C .53D .47.(2021河北省衡水中学高三第一次联考)已知M 为抛物线2:4C x y 上一点,C 在点M 处的切线11:2l y x a交C 的准线于点P ,过点P 向C 再作另一条切线2l ,则2l 的方程为()A .1124y xB .122y xC .24y xD .24y x 8.(2021湖南省衡阳市高三下学期联考)若函数 210f x ax a 与 1ln g x x 的图象存在公切线,则实数a 的最小值为()A .12eB .21e C .2eD .19.(2021江苏省南通等七市2021届高三下学期2月调研)已知曲线ln y x 在 11,A x y , 22,B x y ,两点处的切线分别与曲线x y e 相切于 33,C x y , 44,D x y ,则1234x x y y 的值为()A .1B .2C .52D .17410.(2021江苏省苏州市常熟市高三抽测)已知两曲线()2sin f x x ,()cos g x a x ,0,2x相交于点P ,若两曲线在点P 处的切线互相垂直,则实数a 的值为()A .2B .3C .2D .23311.(2021山东省高考考前热身押题)若x ,y R ,0x ,求2224ln 21x y x x y 的最小值为()A B C .165D .512.(2021河北省邢台市高考模拟)若曲线 11xmy xe x x 存在两条垂直于y 轴的切线,则m 的取值范围为()A .427,0eB .427,0eC .427,eD .4271,e13.(2021福建省龙岩市高三三模)若直线y kx b 是曲线2x y e 的切线,也是曲线1x y e 的切线,则k b ()A .ln22 B .1ln22C .ln212D .ln22二、多选题14.(2021广东省深圳市高三下学期二模)设函数 xf x e ex 和 21ln 122g x x kx k x kR ,其中e 是自然对数的底数 2.71828e ,则下列结论正确的为()A . f x 的图象与x 轴相切B .存在实数0k ,使得 g x 的图象与x 轴相切C .若12k,则方程 f x g x 有唯一实数解D .若 g x 有两个零点,则k 的取值范围为10,215.(2021河北省邯郸市高三三模)英国数学家牛顿在17世纪给出了一种求方程近似根的方法——牛顿迭代平法,做法如下:如图,设r 是()0f x 的根,选取0x 作为r 的初始近似值,过点00,x f x 作曲线()y f x 的切线 000:'l y f x f x x x ,则l 与x 轴的交点的横坐标01000'0'f x x x f x f x,称1x 是r的一次近似值;过点11,x f x 作曲线()y f x 的切线,则该切线与x 轴的交点的横坐标为x 2,称x 2是r 的二次近似值;重复以上过程,得r 的近似值序列,其中1'0'n n n n n f x x x f x f x ,称1n x 是r 的n +1次近似值,这种求方程()0f x 近似解的方法称为牛顿迭代法.若使用该方法求方程22x 的近似解,则()A .若取初始近似值为1,则该方程解的二次近似值为1712B .若取初始近似值为2,则该方程解的二次近似值为1712C .0123400123''''f x f x f x f x x x f x f x f x f xD .0123400123''''f x f x f x f x x x f x f x f x f x16.(2021河北省唐山市高三下学期第二次模拟)若直线y ax 与曲线()x f x e 相交于不同两点 11,A x y , 22,B x y ,曲线()x f x e 在A ,B 点处切线交于点 00,M x y ,则()A .a eB .1201x x x C .2AM BM AB k k k D .存在a ,使得135AMB三、填空题17.(2021山东省百所名校高三下学期4份联考)已知函数 3xf x e mx ,曲线 y f x 在不同的三点 11,x f x , 22,x f x , 33,x f x 处的切线均平行于x 轴,则m 的取值范围是______.18.(2021江苏省南京市高三下学期5月第三次模拟)已知直线y kx b 与曲线2cos y x x 相切,则2k b的最大值为______.四、解答题18.(2021广东省惠州市高三调研)已知实数0a ,函数 22ln f x a x a x x,(0,10)x .(1)讨论函数 f x 的单调性;(2)若1x 是函数 f x 的极值点,曲线()y f x 在点11(,())P x f x 、22(,())Q x f x (12x x )处的切线分别为12l l ,,且12l l ,在y 轴上的截距分别为1b 、2b .若12l l //,求12b b 的取值范围.。

专题03 透镜及其应用(练习)(原卷版)

专题03  透镜及其应用(练习)(原卷版)
A.倒立、缩小的实像B.倒立、放大的实像
C.正立、缩小的实像D.正立、放大的虚像
4.下列关于实像和虚像的说法,正确的是( )。
A.实像不可能与物体等大;
B.实像都是由光的折射形成的;
C.虚像是人的幻觉,并没有光线射入人眼;
D.虚像不能在光屏上呈现
5.(2023·陕西A)如图,是某地投放使用的智能无人驾驶小巴车,它可以通过车上的摄像机和激光雷达识别道路状况。小巴车上的摄像机识别道路上的行人时,其镜头相当于一个________透镜,行人在摄像机感光元件上成倒立、缩小的________像。当小巴车靠近公交站牌时,站牌在摄像机感光元件上所成的像___________(选填“变大”“变小”或“不变”)。
4.(2023·连云港)在“探究凸透镜成像规律”的实验中,当烛焰、凸透镜、光屏在图所示的位置时,恰能在光屏上得到一个清晰的像,利用这个成像规律可以制成( )。
A. 照机机B. 潜望镜C. 幻灯机D. 放大镜
5.(2023·贵州)人们将传统的汽车后视镜换成了电子摄像头(如图甲所示),摄像头将车辆周围的路况成像在车内的显示屏上(如图乙所示),司机通过显示屏即可了解车辆周围的情况。下列关于这种新技术描述正确的是( )。
A. 近视眼需要配戴凸透镜来矫正;
B. 望远镜中物镜的作用相当于放大镜;
C. 用手机扫描二维码时,应使二维码位于手机镜头一倍焦距之内;
D. 当投影仪的镜头靠近投影片时,投影仪成的像将变大
3.(2023·株洲)如图,放大镜能使我们看清邮票的细微之处。下列能用来说明其成像原理的图是( )。
A. B. C. D.
D.利用这种成像原理可以制成照相机
3.(多选)在“探究凸透镜的成像规律”实验中,当蜡烛、凸透镜和光屏的位置如图所示时,烛焰在光屏上恰好成一清晰的像。下列说法正确的是( )。

2021版高考数学北师大版攻略专题复习课件:专题三 导数及其应用(讲解部分)

2021版高考数学北师大版攻略专题复习课件:专题三 导数及其应用(讲解部分)

例2 (1)曲线f(x)=x2过点P(-1,0)的切线方程是
;
(2)已知直线y=kx+1与曲线y=x3+ax+b相切于点(1,3),则b的值是
.
解题导引
解析 (1)由题意,得f '(x)=2x.设直线与曲线相切于点(x0,y0),则所求切线的斜
率k=2x0,
由题意知2x0=
y0 x0
-0 1
=
y0 x0
数学 高考专题
3.2 导数的应用
考点清单
考点一 导数与函数的单调性
数学 高考专题
专题三 导数及其应用
3.1 导数的概念及运算
考点清单
考点一 导数的概念与几何意义
考向基础
1.导数的概念:称函数f(x)在x=x0处的瞬时变化率
lim
Δx 0
=
Δy Δx
lim
Δx 0
f
(x0
Δx)-f Δx
(x0
)
为函数f(x)在x=x0处的导数,记作f
'(x0)或y'|xx0
,即f
Δy Δx
=
lim
Δx 0
f (x0
Δx)-f (x0 )
Δx
.
2.用导数运算法则求导数应注意的问题:
(1)求函数的导数时,先要把函数拆分为基本初等函数的和、差、积、商的
形式,再利用导数的运算法则求导数.
(2)利用公式求导时,一定要注意公式的适用范围及符号,而且还要注意不
要混用公式,如(ax)'=axln a,a>0且a≠1,而不是(ax)'=xax-1,a>0且a≠1.还要特别
1-2ln 2
所以f '(x)= 2 ·2x·ln 2+2x,所以f '(2)= 2 ×22×ln 2+2×2= 4 .

2021年高考数学的导数及其应用多选题附解析

2021年高考数学的导数及其应用多选题附解析

2021年高考数学的导数及其应用多选题附解析一、导数及其应用多选题1.关于函数()e cos xf x a x =-,()π,πx ∈-下列说法正确的是( )A .当1a =时,()f x 在0x =处的切线方程为y x =B .若函数()f x 在()π,π-上恰有一个极值,则0a =C .对任意0a >,()0f x ≥恒成立D .当1a =时,()f x 在()π,π-上恰有2个零点 【答案】ABD 【分析】直接逐一验证选项,利用导数的几何意义求切线方程,即可判断A 选项;利用分离参数法,构造新函数和利用导数研究函数的单调性和极值、最值,即可判断BC 选项;通过构造新函数,转化为两函数的交点个数来解决零点个数问题,即可判断D 选项. 【详解】解:对于A ,当1a =时,()e cos xf x x =-,()π,πx ∈-,所以()00e cos00f =-=,故切点为(0,0),则()e sin xf x x '=+,所以()00e sin01f '=+=,故切线斜率为1,所以()f x 在0x =处的切线方程为:()010y x -=⨯-,即y x =,故A 正确; 对于B ,()e cos xf x a x =-,()π,πx ∈-,则()e sin xf x a x '=+,若函数()f x 在()π,π-上恰有一个极值,即()0f x '=在()π,π-上恰有一个解, 令()0f x '=,即e sin 0x a x +=在()π,π-上恰有一个解, 则sin xxa e -=在()π,π-上恰有一个解, 即y a =与()sin xxg x e -=的图象在()π,π-上恰有一个交点, ()sin cos xx xg x e -'=,()π,πx ∈-,令()0g x '=,解得:134x π=-,24x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪ ⎪⎝⎭⎝⎭时,()0g x '>,当3,44x ππ⎛⎫∈-⎪⎝⎭时,()0g x '<, ()g x ∴在3,4ππ⎛⎫--⎪⎝⎭上单调递增,在443,ππ⎛⎫- ⎪⎝⎭上单调递减,在,4ππ⎛⎫ ⎪⎝⎭上单调递增,所以极大值为3423204g e ππ-⎛⎫-=> ⎪⎝⎭,极小值为42204g e ππ-⎛⎫=< ⎪⎝⎭, 而()()()0,0,00g g g ππ-===, 作出()sinxg x e -=,()π,πx ∈-的大致图象,如下:由图可知,当0a =时,y a =与()sinx g x e-=的图象在()π,π-上恰有一个交点, 即函数()f x 在()π,π-上恰有一个极值,则0a =,故B 正确; 对于C ,要使得()0f x ≥恒成立,即在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即在()π,πx ∈-上,cos x xa e ≥恒成立,即maxcos x x a e ⎛⎫≥ ⎪⎝⎭,设()cos x x h x e =,()π,πx ∈-,则()sin cos xx xh x e--'=,()π,πx ∈-, 令()0h x '=,解得:14x π=-,234x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪⎪⎝⎭⎝⎭时,()0h x '>,当3,44x ππ⎛⎫∈- ⎪⎝⎭时,()0h x '<,()h x ∴在,4ππ⎛⎫--⎪⎝⎭上单调递增,在3,44ππ⎛⎫-⎪⎝⎭上单调递减,在3,4ππ⎛⎫⎪⎝⎭上单调递增, 所以极大值为42204h e ππ-⎛⎫-=> ⎪⎝⎭,()()11,h h e e ππππ--==,所以()cos x xh x e =在()π,πx ∈-上的最大值为42204h e ππ-⎛⎫-=> ⎪⎝⎭, 所以422a e π-≥时,在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即当422a e π-≥时,()0f x ≥才恒成立,所以对任意0a >,()0f x ≥不恒成立,故C 不正确; 对于D ,当1a =时,()e cos xf x x =-,()π,πx ∈-,令()0f x =,则()e cos 0xf x x =-=,即e cos x x =,作出函数xy e =和cos y x =的图象,可知在()π,πx ∈-内,两个图象恰有两个交点,则()f x 在()π,π-上恰有2个零点,故D 正确.故选:ABD. 【点睛】本题考查函数和导数的综合应用,考查利用导数的几何意义求切线方程,考查分离参数法的应用和构造新函数,以及利用导数研究函数的单调性、极值最值、零点等,考查化简运算能力和数形结合思想.2.已知函数()21xx x f x e+-=,则下列结论正确的是( ) A .函数()f x 存在两个不同的零点 B .函数()f x 既存在极大值又存在极小值C .当0e k -<<时,方程()f x k =有且只有两个实根D .若[),x t ∈+∞时,()2max 5f x e=,则t 的最小值为2 【答案】ABC 【分析】首先求函数的导数,利用导数分析函数的单调性和极值以及函数的图象,最后直接判断选项. 【详解】对于A .2()010f x x x =⇒+-=,解得15x -±=,所以A 正确; 对于B .22(1)(2)()x xx x x x f x e e--+-=-=-', 当()0f x '>时,12x -<<,当()0f x '<时,1x <-或2x >,所以(,1),(2,)-∞-+∞是函数的单调递减区间,(1,2)-是函数的单调递增区间, 所以(1)f -是函数的极小值,(2)f 是函数的极大值,所以B 正确.对于C .当x →+∞时,0y →,根据B 可知,函数的最小值是(1)f e -=-,再根据单调性可知,当0e k -<<时,方程()f x k =有且只有两个实根,所以C 正确;对于D :由图象可知,t 的最大值是2,所以D 不正确. 故选:ABC. 【点睛】易错点点睛:本题考查了导数分析函数的单调性,极值点,以及函数的图象,首先求函数的导数,令导数为0,判断零点两侧的正负,得到函数的单调性,本题易错的地方是(2,)+∞是函数的单调递减区间,但当x →+∞时,0y →,所以图象是无限接近轴,如果这里判断错了,那选项容易判断错了.3.关于函数()sin x f x e a x =+,(,)x π∈-+∞,下列说法正确的是( ) A .当1a =时,()f x 在(0,(0))f 处的切线方程为210x y -+=; B .当1a =时,()f x 存在唯一极小值点0x ,且()010f x -<<; C .对任意0a >,()f x 在(,)π-+∞上均存在零点; D .存在0a <,()f x 在(,)π-+∞上有且只有一个零点. 【答案】ABD 【分析】当1a =时,()sin x f x e x =+,求出(),(0),(0)f x f f '',得到()f x 在(0,(0))f 处的切线的点斜式方程,即可判断选项A ;求出()0,()0f x f x ''><的解,确定()f x 单调区间,进而求出()f x 极值点个数,以及极值范围,可判断选项B ;令()sin 0xf x e a x =+=,当0a ≠时,分离参数可得1sin x x ae -=,设sin (),(,)xxg x x eπ=∈-+∞,求出()g x 的极值最值,即可判断选项C ,D 的真假. 【详解】A.当1a =时,()sin x f x e x =+,所以()cos x f x e x '=+,0(0)cos 02f e '=+=,0(0)01f e =+=,所以()f x 在(0,(0))f 处的切线方程为210x y -+=,故正确;B. 因为()sin 0x f x e x ''=->,所以()'f x 单调递增,又()202f π'-=>,3344332()cos 442f e e ππππ--⎛⎫'-=+-=- ⎪⎝⎭,又233442e e e ππ⎛⎫= ⎪⎝>>⎭,即342e π>,则3()04f π'-<,所以存在03,42x ππ⎛⎫∈-- ⎪⎝⎭,使得0()0f x '=,即 00cos 0x e x +=,则在()0,x π-上()0f x '<,在()0,x +∞上,()0f x '>,所以()f x 存在唯一极小值点0x,因为000000()sin sin cos 24xf x e x x x x π⎛⎫=+=-=- ⎪⎝⎭,03,42x ππ⎛⎫∈-- ⎪⎝⎭,所以03,44x πππ⎛⎫-∈-- ⎪⎝⎭()021,04x π⎛⎫-∈- ⎪⎝⎭,故正确; C.令()sin 0x f x e a x =+=,当0a ≠时,可得1sin x xa e-=,设sin (),(,)x xg x x eπ=∈-+∞,则cos sin 4()x x x x x g x e e π⎛⎫- ⎪-⎝⎭'==,令()0g x '=,解得,,14x k k Z k ππ=+∈≥-当52,244x k k ππππ⎡⎤∈++⎢⎥⎣⎦时()0g x '<,当592,244x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,()0g x '>,所以当524x k ππ=+,,1k Z k ∈≥-时,()g x 取得极小值,即35,,...44x ππ=-,()g x 取得极小值,又35 (44)g g ππ⎛⎫⎛⎫-<> ⎪ ⎪⎝⎭⎝⎭,因为在3,4ππ⎡⎤--⎢⎥⎣⎦上,()g x 递减,所以()34342g x g e ππ⎛⎫≥-=- ⎪⎝⎭,所以当24x k ππ=+,,0k Z k ∈≥时, ()g x 取得极大值,即9,,...44x ππ=,()g x 取得极大值,又9 (44)g g ππ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭ ,所以 ()442g x g e ππ⎛⎫≤= ⎪⎝⎭,所以(),x π∈-+∞时,()3442g x e π≤≤341e a π-<,即4a e >()f x 在(,)π-+∞上不存在零点,故C 错误; D.当412ae π-=,即4a e π=时,1=-y a 与()sin x xg x e =的图象只有一个交点,所以存在0a <,()f x 在(,)π-+∞上有且只有一个零点,故D 正确; 故选:ABD 【点睛】方法点睛:用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.4.已知(0,1)x ∈,则下列正确的是( ) A .cos 2x x π+<B .22xx <C.sin 2x >D .1ln 1x x <- 【答案】ABC 【分析】构造函数()sin f x x x =-证明其在0,2π⎛⎫⎪⎝⎭单调递减,即可得sin 22x x ππ⎛⎫-<-⎪⎝⎭即可判断选项A ;作出2yx 和2x y =的函数图象可判断选项B ;作出()sin2xf x =,()224x h x x =+的图象可判断选项C ;构造函数()1ln 1x g x x =+-利用导数判断其在()0,1x ∈上的单调性即可判断选项D ,进而可得正确选项.【详解】对于选项A :因为()0,1x ∈,所以022x ππ<-<,令()sin f x x x =-,()cos 10f x x '=-≤,()sin f x x x =-在0,2π⎛⎫⎪⎝⎭单调递减,所以()()00f x f <=,即sin x x <,所以sin 22x x ππ⎛⎫-<- ⎪⎝⎭即cos 2x x π<-,可得cos 2x x π+<,故A 正确, 对于选项B :由图象可得()0,1x ∈,22x x <恒成立,故选项B 正确;对于选项C :要证22sin 24xx x >+ 令()sin 2x f x =,()224xh x x =+()()f x f x -=-,()sin2xf x =是奇函数, ()()h x h x -=,()224x h x x =+是偶函数, 令2224144x t x x ==-++ ,则y t = 因为24y x =+在()0,∞+单调递增,所以2414t x =-+在()0,∞+单调递增,而y t =调递增,由符合函数的单调性可知()224x h x x =+在()0,∞+单调递增, 其函数图象如图所示:由图知当()0,1x ∈时22sin 24xx x >+C 正确; 对于选项D :令()1ln 1x g x x =+-,()01x <<,()221110x g x x x x-'=-=<, 所以()1ln 1x g x x=+-在()0,1单调递减,所以()()1ln1110g x g >=+-=, 即1ln 10x x+->,可得1ln 1x x >-,故选项D 不正确.故选:ABC 【点睛】思路点睛:证明不等式恒成立(或能成立)一般可对不等式变形,分离参数,根据分离参数后的结果,构造函数,由导数的方法求出函数的最值,进而可求出结果;有时也可根据不等式,直接构成函数,根据导数的方法,利用分类讨论求函数的最值,即可得出结果.5.已知函数()1ln f x x x x=-+,()()1ln x x x x g --=,则下列结论正确的是( ) A .()g x 存在唯一极值点0x ,且()01,2x ∈ B .()f x 恰有3个零点C .当1k <时,函数()g x 与()h x kx =的图象有两个交点D .若120x x >且()()120f x f x +=,则121=x x 【答案】ACD 【分析】根据导数求得函数()g x '在(0,)+∞上为单调递减函数,结合零点的存在性定,可判定A 正确;利用导数求得函数 ()f x 在(,0)-∞,(0,)+∞单调递减,进而得到函数 ()f x 只有2个零点,可判定B 不正确;由()g x kx =,转化为函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象的交点个数,可判定C 正确;由()()120f x f x +=,化简得到 ()121()f x f x =,结合单调性,可判定D 正确. 【详解】由函数()()1ln x x x x g --=,可得 ()1ln ,0g x x x x '=-+>,则()2110g x x x''=--<,所以()g x '在(0,)+∞上为单调递减函数,又由 ()()110,12ln 202g g '=>=-+<, 所以函数()g x 在区间(1,2)内只有一个极值点,所以A 正确; 由函数()1ln f x x x x=-+, 当0x >时,()1ln f x x x x=-+,可得 ()221x x f x x -+-'=, 因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(0,)+∞单调递减;又由()10f =,所以函数在(0,)+∞上只有一个零点, 当0x <时,()1ln()f x x x x =--+,可得 ()221x x f x x -+-'=,因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(,0)-∞单调递减; 又由()10f -=,所以函数在(,0)-∞上只有一个零点, 综上可得函数()1ln f x x x x=-+在定义域内只有2个零点,所以B 不正确; 令()g x kx =,即()1ln x x x kx --=,即 ()1ln (1)x x k x -=-, 设()()1ln x x x ϕ-=, ()(1)m x k x =-, 可得()1ln 1x x x ϕ'=+-,则 ()2110x x xϕ''=+>,所以函数()x ϕ'(0,)+∞单调递增, 又由()01ϕ'=,可得当(0,1)x ∈时, ()0x ϕ'<,函数()x ϕ单调递减, 当(1,)x ∈+∞时,()0x ϕ'>,函数 ()x ϕ单调递增, 当1x =时,函数()x ϕ取得最小值,最小值为()10ϕ=, 又由()(1)m x k x =-,因为1k <,则 10k ->,且过原点的直线,结合图象,即可得到函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象有两个交点,所以C 正确;由120x x >,若120,0x x >>时,因为 ()()120f x f x +=,可得()()12222222211111lnln 1f x f x x x f x x x x x ⎛⎫⎛⎫=-=--+=+-= ⎪ ⎪⎝⎭⎝⎭,即()121()f x f x =,因为()f x 在(0,)+∞单调递减,所以 121x x =,即121=x x , 同理可知,若120,0x x <<时,可得121=x x ,所以D 正确. 故选:ACD.【点睛】函数由零点求参数的取值范围的常用方法与策略:1、分类参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从()f x 中分离参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围;2、分类讨论法:一般命题情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各个小范围并在一起,即可为所求参数的范围.6.设函数cos 2()2sin cos xf x x x=+,则( )A .()()f x f x π=+B .()f x 的最大值为12C .()f x 在,04π⎛⎫- ⎪⎝⎭单调递增 D .()f x 在0,4π⎛⎫⎪⎝⎭单调递减 【答案】AD 【分析】先证明()f x 为周期函数,周期为π,从而A 正确,再利用辅助角公式可判断B 的正误,结合导数的符号可判断C D 的正误. 【详解】()f x 的定义域为R ,且cos 2()2sin cos xf x x x=+,()()()()cos 22cos 2()2sin cos 2sin cos x xf x f x x x x xππππ++===++++,故A 正确.又2cos 22cos 2()42sin cos 4sin 2x x f x x x x ==++,令2cos 24sin 2xy x=+,则()42cos 2sin 22y x y x x ϕ=-=+,其中cos ϕϕ==1≤即2415y ≤,故1515y -≤≤,当y =时,有1cos 4ϕϕ==,此时()cos 21x ϕ+=即2x k ϕπ=-,故max y =B 错误. ()()()()()22222sin 24sin 22cos 2414sin 2()4sin 24sin 2x x x x f x x x ⎡⎤-+--+⎣⎦'==++,当0,4x π⎛⎫∈ ⎪⎝⎭时,()0f x '<,故()f x 在0,4π⎛⎫⎪⎝⎭为减函数,故D 正确. 当,04x π⎛⎫∈-⎪⎝⎭时,1sin20x -<<,故314sin 21x -<+<, 因为2t x =为增函数且2,02x π⎛⎫∈- ⎪⎝⎭,而14sin y t =+在,02π⎛⎫- ⎪⎝⎭为增函数,所以()14sin 2h x x =+在,04π⎛⎫-⎪⎝⎭上为增函数, 故14sin 20x +=在,04π⎛⎫- ⎪⎝⎭有唯一解0x ,故当()0,0x x ∈时,()0h x >即()0f x '<,故()f x 在()0,0x 为减函数,故C 不正确. 故选:AD 【点睛】方法点睛:与三角函数有关的复杂函数的研究,一般先研究其奇偶性和周期性,而单调性的研究需看函数解析式的形式,比如正弦型函数或余弦型函数可利用整体法来研究,而分式形式则可利用导数来研究,注意辅助角公式在求最值中的应用.7.设函数()()()1f x x x x a =--,则下列结论正确的是( ) A .当4a =-时,()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为194B .当1a =时,函数()f x 的图像与直线427y =有2个交点 C .当2a =时,()f x 的图像关于点()1,0中心对称D .若函数()f x 有两个不同的极值点1x ,2x ,则当2a ≥时,()()120f x f x +≤ 【答案】BCD 【分析】运用平均变化率的定义可分析A ,利用导数研究()f x 的单调性和极值,可分析B 选项,证明()()20f x f x +-=可分析C 选项,先得出1x ,2x 为方程()23210x a x a -++=的两个实数根,结合韦达定理可分析D 选项. 【详解】对于A ,当4a =-时,()()()14f x x x x =-+,则()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为()()()119123192221412⎛⎫⨯-⨯--⨯-⨯ ⎪⎝⎭=---,故A 错误;对于B ,当1a =时,()()23212f x x x x x x =-=-+,()()()2341311f x x x x x '=-+=--,可得下表:因为327f ⎛⎫= ⎪⎝⎭,()10f =,()42227f =>,结合()f x 的单调性可知, 方程()427f x =有两个实数解,一个解为13,另一个解在()1,2上,故B 正确; 对于C ,当2a =时,()()()()()()()231211111f x x x x x x x x ⎡⎤=--=---=---⎣⎦, 则有()()()()()()33211110f x f x x x x x +-=---+---=,故C 正确; 对于D ,()()()1f x x x x a =--,()()()()()2121321f x x x a x x a x a x a '=--+--=-++,令()0f x '=,可得方程()23210x a x a -++=,因为()()22412130a a a ∆=-+=-+>,且函数()f x 有两个不同的极值点1x ,2x ,所以1x ,2x 为方程()23210x a x a -++=的两个实数根,则有()12122132x x a a x x ⎧+=+⎪⎪⎨⎪=⎪⎩,则()()()()()()1211122211f x f x x x x a x x x a +=--+--()()()()33221212121x x a x x a x x =+-++++()()()()()22212112212121212x x x x x x a x x x x a x x ⎡⎤=+-++++-++⎣⎦()()()22211221212221233a x x x x x x x x a ⎡⎤=+-+-+++⎢⎥⎣⎦ ()()()()()21242212113327a a a x x a a --⎡⎤=+-++=-+⋅⎢⎥⎣⎦因为2a ≥,所以()()120f x f x +≤,故D 正确; 故选:BCD . 【点睛】关键点点睛:本题考查利用导数研究函数的单调性,平均变化率,极值等问题,本题的关键是选项D ,利用根与系数的关系,转化为关于a 的函数,证明不等式.8.若方程()2110x m x -+-=和()120x m ex -+-=的根分别为()1212,x x x x <和3x ,()434x x x <,则下列判断正确的是( )A .3201x x <<<B .1310x x -<<C .(),1m ∈-∞- D.1112x ⎛⎫-∈- ⎪ ⎪⎝⎭【答案】ABD 【分析】根据题意将问题转化为,1x ,2x 和3x ,4x 分别是y m =与11y x x =--和12x xy e-=-交点的横坐标,再用导数研究函数11y x x =--和12x xy e-=-的单调性与取值情况,作出函数图象,数形结合即可解决问题. 【详解】解:由题,1x ,2x 和3x ,4x 分别是11m x x =--和12x xm e-=-的两个根,即y m =与11y x x =--和12xxy e-=-交点的横坐标. 对于函数11y x x =--,定义域为{}0x x ≠,21'10y x=+>,所以函数在(),0-∞和()0,∞+上单调递增,且1x =时,1y =-;对于函数12x xy e -=-,11'x xy e--=,所以函数在(),1-∞上单调递增,在()1,+∞单调递减,且当,2x y →+∞→-,0x =时,2y =-,1x =时,1y =-;故作出函数11y x x =--,12x xy e-=-的图像如图所示, 注意到:当()0,1x ∈时,11122x xx x x e---<-<-, 由图可知,3201x x <<<,()2,1m ∈--, 从而()11112,1x x --∈--,解得115,1x ⎛⎫--∈- ⎪ ⎪⎝⎭, 所以选项AD 正确,选项C 错误, 又121310x x x x -=<<. 故选:ABD .【点睛】本题考查利用导数研究函数的零点问题,考查化归转化思想与数形结合思想,是中档题.9.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是( ). A .2- B .1-C .0D .1【答案】ABC 【分析】将()41ln ln 3k x x x x --<-+,当1x >时,恒成立,转化为13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,.当1x >时,恒成立,令()()3ln ln 1xF x x x x x=++>,利用导数法研究其最小值即可. 【详解】因为当1x >时,()41ln ln 3k x x x x --<-+恒成立, 所以13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立, 令()()3ln ln 1xF x x x x x=++>, 则()222131ln 2ln x x x F x x x x x---'=-+=. 令()ln 2x x x ϕ=--, 因为()10x x xϕ-'=>,所以()x ϕ在()1,+∞上单调递增. 因为()10ϕ<,所以()0F x '=在()1,+∞上有且仅有一个实数根0x , 于是()F x 在()01,x 上单调递减,在()0,x +∞上单调递增, 所以()()000min 00ln 3ln x F x F x x x x ==++.(*) 因为()1ln 3309F -'=<,()()21ln 22ln 4401616F --'==>,所以()03,4x ∈,且002ln 0x x --=, 将00ln 2x x =-代入(*)式, 得()()0000min 00023121x F x F x x x x x x -==-++=+-,()03,4x ∈. 因为0011t x x =+-在()3,4上为增函数, 所以713,34t ⎛⎫∈⎪⎝⎭,即()min 1713,41216F x ⎛⎫∈ ⎪⎝⎭.因为k 为整数,所以0k ≤. 故选:ABC 【点睛】本题主要考查函数与不等式恒成立问题,还考查了转化化归的思想和运算求解的能力,属于较难题.10.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a cb d -+-的值可能是( ) A .7 B .8C .9D .10【答案】BCD 【分析】由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a cb d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),Ncd 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项.【详解】由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12xf x e '∴=-由1121cd c d -=⇒=-+-,令()2g x x =-+ 则()()22a cb d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),Ncd 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y 由()0001210xf x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD. 【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。

专题03 导数与应用-2021年高考数学(理)试题分项版解析(原卷版)

专题03 导数与应用-2021年高考数学(理)试题分项版解析(原卷版)

1. 【2014江西高考理第8题】若12()2(),f x x f x dx =+⎰则1()f x dx =⎰( )A.1-B.13-C.13D.1 2. 【2014江西高考理第14题】若曲线xy e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________.3. 【2014辽宁高考理第11题】当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]--4. 【2014全国1高考理第11题】已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .()2,+∞B .()1,+∞C .(),2-∞-D .(),1-∞-5. 【2014高考江苏卷第11题】在平面直角坐标系xoy 中,若曲线2by ax x=+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += . 6. 【2014高考广东卷理第10题】曲线25+=-xey 在点()0,3处的切线方程为 .7. 【2014全国2高考理第8题】设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = ( ) A. 0 B. 1 C. 2 D. 38. 【2014全国2高考理第12题】设函数()3sin x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞B. ()(),44,-∞-⋃∞C. ()(),22,-∞-⋃∞D.()(),11,-∞-⋃∞ 9. 【2014山东高考理第6题】 直线34x y x y ==与曲线在第一象限内围成的封闭图形的面积为( ) A.22 B.24 C.2 D.4.2Ae + .1B e + .C e .1De -11. 【2014陕西高考理第10题】如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降, 已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )(A )3131255y x x =- (B )3241255y x x =-(C )33125y x x =- (D )3311255y x x =-+12. 【2014大纲高考理第7题】曲线1x y xe -=在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .113. 【2014高考安徽卷第18题】设函数23()1(1)f x a x x x =++--,其中0a >. (1) 讨论()f x 在其定义域上的单调性;(2) 当[0,1]x ∈时,求()f x 取得最大值和最小值时的x 的值.14. 【2014高考北京理第18题】已知函数()cos sin ,[0,]2f x x x x x π=-∈.(1)求证:()0f x ≤; (2)若sin x a b x <<对(0,)2x π∈恒成立,求a 的最大值与b 的最小值. 15. 【2014高考大纲理第22题】 函数()()()ln 11axf x x a x a=+->+. (I )讨论()f x 的单调性;(II )设111,ln(1)n n a a a +==+,证明:23+22n a n n <≤+. 16. 【2014高考福建理第20题】已知函数()ax e x f x-=(a 为常数)的图象与y 轴交于点A ,曲线()x f y =在点A 处的切线斜率为-1.(I )求a 的值及函数()x f 的极值; (II )证明:当0>x 时,x e x <2;(III )证明:对任意给定的正数c ,总存在0x ,使得当()∞+∈,0x x ,恒有x ce x <2.19. 【2014高考湖南理第22题】已知常数0a >,函数()()2ln 12xf x ax x =+-+. (1)讨论()f x 在区间()0,+∞上的单调性;(2)若()f x 存在两个极值点12,x x ,且()()120f x f x +>,求a 的取值范围. 20. 【2014高考江苏第23题】已知函数0sin ()(0)xf x x x=>,设()n f x 为1()n f x -的导数,*n N ∈ (1)求122()()222f f πππ+的值; (2)证明:对任意*n N ∈,等式12()()4442n n nf f πππ-+=都成立. 21. 【2014高考江西理第18题】已知函数.(1)当时,求的极值;(2)若在区间1(0,)3上单调递增,求b 的取值范围.22. 【2014高考辽宁理第21题】已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x x π=--+-.(Ⅱ)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.23. 【2014高考全国1第21题】设函数1()ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1))f 处的切线方程为(1) 2.y e x =-+(II )证明:() 1.f x >(Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.41422 1.4143<<,估计ln2的近似值(精确到0.001)25. 【2014高考山东卷第20题】设函数22()(ln )x e f x k x x x=-+(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数).(Ⅰ)当0k ≤时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(0,2)内存在两个极值点,求k 的取值范围. 26. 【2014高考陕西第21题】设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数. (1) (2)若()()f x ag x ≥恒成立,求实数a 的取值范围;(3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.27. 【2014高考四川第21题】已知函数2()1xf x e ax bx =---,其中,a b R ∈, 2.71828e =为自然对数的底数.(Ⅰ)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值; (Ⅱ)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围 28. 【2014高考天津第20题】已知函数x f xxae aR ,x R .已知函数y f x 有两个零点12,x x ,且12x x .(Ⅰ)求a 的取值范围;(Ⅱ)证明21x x 随着a 的减小而增大; (Ⅲ)证明12x x 随着a 的减小而增大.。

专题03 方程的运算及应用问题(专项训练)(原卷版)-二轮基础过关与直击中考

专题03 方程的运算及应用问题(专项训练)(原卷版)-二轮基础过关与直击中考

专题03 方程的运算及应用问题专项训练【基础过关|直击中考】1.(2021·浙江温州市·中考真题)解方程()221x x -+=,以下去括号正确的是( ) A .41x x -+=-B .42x x -+=-C .41x x --=D .42x x --=2.(2021·山东临沂市·中考真题)方程256x x -=的根是( ) A .1278x x ==,B .1278x x ==-,C .1278x x =-=,D .1278x x =-=-,3.(2021·四川成都市·中考真题)分式方程21133x x x-+=--的解为( ) A .2x =B .2x =-C .1x =D .1x =-4.(2021·天津中考真题)方程组234x y x y +=⎧⎨+=⎩的解是( )A .02x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .22x y =⎧⎨=-⎩D .33x y =⎧⎨=-⎩5.(2021·四川泸州市·中考真题)关于x 的一元二次方程2220x mx m m ++-=的两实数根12,x x ,满足122x x =,则2212(2)(2)x x ++的值是( )A .8B .16C . 32D .16或406.(2021·湖南怀化市·中考真题)定义12a b a b⊗=+,则方程342x ⊗=⊗的解为( ) A .15x =B .25x =C .35x =D .45x =7.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( ) A .20a 元B .()2024a +元C .()17 3.6a +元D .()20 3.6a +元8.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( ) A .0个B .1个C .2个D .1或2个9.(2021·山东临沂市·中考真题)某工厂生产A 、B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%;清扫2100m 所用的时间A 型机器人比B 型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2m x ,根据题意可列方程为( )A .10010020.53x x =+ B .10021000.53x x +=C .10021003 1.5x x+=D .10010021.53x x =+10.(2021·江苏苏州市·中考真题)某公司上半年生产甲,乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x 架,乙种型号无人机y 架.根据题意可列出的方程组是( )A .()()111,3122x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩B .()()111.3122x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩C .()()111,2123x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩D .()()111,2123x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩11.(2021·浙江杭州市·中考真题)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是( )A .212y x x =+和21y x =-- B .212y x x =+和21y x =-+C .11y x=-和21y x =-- D .11y x=-和21y x =-+ 12.(2021·浙江嘉兴市·中考真题)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中荧光棒共花费40元,缤纷棒共花费30元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x 元( )A .4030201.5x x -= B .4030201.5x x -= C .3040201.5x x -= D .3040201.5x x-= 13.(2021·浙江宁波市·中考真题)我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x 斗,醑酒y 斗,那么可列方程组为( )A .510330x y x y +=⎧⎨+=⎩B .531030x y x y +=⎧⎨+=⎩C .305103x y x y+=⎧⎪⎨+=⎪⎩ D .305310x y x y+=⎧⎪⎨+=⎪⎩ 14.(2021·云南中考真题)若一元二次方程2210ax x ++=有两个不相等的实数根,则实数a 的取值范围是( ) A .1a <B .1a ≤C .1a ≤且0a ≠D .1a <且0a ≠15.(2021·北京中考真题)方程213x x=+的解为______________. 16.(2021·四川凉山彝族自治州·中考真题)已知13x y =⎧⎨=⎩是方程2ax y +=的解,则a 的值为______________.17.(2021·湖南岳阳市·中考真题)已知关于x 的一元二次方程260x x k ++=有两个相等的实数根,则实数k 的值为_______.18.(2021·湖北荆州市·中考真题)若关于x 的方程21322x m x x x+-+=--的解是正数,则m 的取值范围为_____________.19.(2021·重庆中考真题)若关于x 的方程442xa -+=的解是2x =,则a 的值为__________. 20.(2021·四川遂宁市·中考真题)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.21.(2021·湖南衡阳市·中考真题)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树__________棵.22.(2021·江苏扬州市·中考真题)已知方程组271x y x y +=⎧⎨=-⎩的解也是关于x 、y 的方程4ax y +=的一个解,求a 的值.23.(2021·四川南充市·中考真题)已知关于x 的一元二次方程22(21)0x k x k k -+++=.(1)求证:无论k 取何值,方程都有两个不相等的实数根.(2)如果方程的两个实数根为1x ,2x ,且k 与12x x 都为整数,求k 所有可能的值.24.(2021·江苏连云港市·中考真题)解方程:214111x x x +-=--.25.(2021·浙江丽水市·中考真题)解方程组:26x yx y =⎧⎨-=⎩.26.(2021·山东泰安市·中考真题)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?27.(2021·山东聊城市·中考真题)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.(1)A,B两种花卉每盆各多少元?(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量的13,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?1.(2021·安徽)设a ,b ,c 为互不相等的实数,且4155b ac =+,则下列结论正确的是( ) A .a b c >>B .c b a >>C .4()a b b c -=-D .5()a c a b -=-2.(2021·浙江丽水市·中考真题)用配方法解方程2410x x ++=时,配方结果正确的是( ) A .2(2)5x -=B .2(2)3x -=C .2(2)5x +=D .2(2)3x +=3.(2021·湖北恩施土家族苗族自治州·中考真题)分式方程3111x x x +=--的解是( ) A .1x =B .2x =-C .34x =D .2x =4.(2021·浙江杭州市·中考真题)某景点今年四月接待游客25万人次,五月接待游客60.5万人次,设该景点今年四月到五月接待游客人次的增长率为x (0x >),则( ) A .()60.5125x -= B .()25160.5x -= C .()60.5125x +=D .()25160.5x +=5.(2021·四川广安市·中考真题)关于x 的一元二次方程()22310a x x +-+=有实数根,则a 的取值范围是( ) A .14a ≤且2a ≠- B .14a ≤ C .14a <且2a ≠- D .14a < 6.(2021·湖北十堰市·中考真题)某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x 台机器,则下列方程正确的是( )A .400450150x x -=- B .450400150x x -=- C .400450501x x -=+ D .45040051x x-=+ 7.(2021·四川南充市·中考真题)端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x 元,则可列方程为( ) A .105(1)70x x +-= B .105(1)70x x ++= C .10(1)570x x -+=D .10(1)570x x ++=8.(2021·四川眉山市·中考真题)已知一元二次方程2310x x -+=的两根为1x ,2x ,则211252x x x --的值为( ) A .7-B .3-C .2D .59.(2021·重庆中考真题)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5B .8C .12D .1510.(2021·四川成都市·中考真题)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50,问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x ,y ,则可列方程组为( )A .15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩C .2502503x y x x -=⎧⎪⎨-=⎪⎩ D .2502503x y x y -=⎧⎪⎨-=⎪⎩ 11.(2021·山东泰安市·中考真题)已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k 的取值范围是( ) A .14k>-B .14k <C .14k >-且0k ≠D .14k <0k ≠ 12.(2021·四川广安市·中考真题)若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______.13.(2021·上海中考真题)若一元二次方程2230x x c -+=无解,则c 的取值范围为_________. 14.(2021·江苏宿迁市·中考真题)方程22142xx x -=--的解是_____________. 15.(2021·江苏扬州市·中考真题)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.16.(2021·江西中考真题)已知1x ,2x 是一元二次方程2430x x -+=的两根,则1212x x x x +-=______.17.(2021·湖南常德市·中考真题)分式方程1121(1)x x x x x ++=--的解为__________. 18.(2021·江苏连云港市·中考真题)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A 型消毒液和3瓶B 型消毒液共需41元,5瓶A 型消毒液和2瓶B 型消毒液共需53元. (1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B 型消毒液的数量不少于A 型消毒液数量的13,请设计出最省钱的购买方案,并求出最少费用.19.(2021·四川自贡市·中考真题)随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A ,B 两种型号的无人机都被用来运送快件,A 型机比B 型机平均每小时多运送20件,A 型机运送700件所用时间与B 型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?20.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有,A B两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?。

专题03 二次求导函数处理(二阶导数)(原卷版)2021学年高三导数满分突破

专题03 二次求导函数处理(二阶导数)(原卷版)2021学年高三导数满分突破

专题03 二次求导函数处理(二阶导数)一、考情分析1、在历年全国高考数学试题中,函数与导数部分是高考重点考查的内容,并且在六道解答题中必有一题是导数题。

利用导数求解函数的单调性、极值和最值等问题是高考考查导数问题的主要内容和形式,并多以压轴题的形式出现. 常常考查运算求解能力、概括抽象能力、推理论证能力和函数与方程、化归与转化思想、分类与整合思想、特殊与一般思想的渗透和综合运用,难度较大.2、而在有些函数问题中,如含有指数式、对数式的函数问题,求导之后往往不易或不能直接判断出原函数的单调性,从而不能进一步判断函数的单调性及极值、最值情况,此时解题受阻。

需要利用“二次求导”才能找到导数的正负,找到原函数的单调性,才能解决问题. 若遇这类问题,必须“再构造,再求导”。

本文试以全国高考试题为例,说明函数的二阶导数在解高考函数题中的应用。

3、解决这类题的常规解题步骤为: ①求函数的定义域;②求函数的导数)('x f ,无法判断导函数正负; ③构造求)(')(x f x g =,求'(x)g ; ④列出)(),(',x g x g x 的变化关系表; ⑤根据列表解答问题。

二、经验分享方法 二次求导使用情景对函数()f x 一次求导得到()f x '之后,解不等式()0()0f x f x ''><和难度较大甚至根本解不出.解题步骤设()()g x f x '=,再求()g x ',求出()0()0g x g x ''><和的解,即得到函数()g x 的单调性,得到函数()g x 的最值,即可得到()f x '的正负情况,即可得到函数()f x 的单调性.三、题型分析(一) 利用二次求导求函数的极值或参数的范围例1.【2020届西南名校联盟高考适应月考卷一,12】(最小整数问题-导数的单调性和恒成立的转化) 已知关于x 的不等式()22ln 212x m x mx +-+≤在()0,∞上恒成立,则整数m 的最小值为( )A.1B.2C.3D.4【变式训练1】若不等式()ln 120x x x k k +-+>对任意的()2,x ∈+∞都恒成立,则整数k 的最大值为( ) A .3 B .4 C .5D .6【变式训练2】【2019浙江22】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)ex ∈+∞均有()2f x a ≤ 求a 的取值范围.(e=2.71828…为自然对数的底数)【变式训练3】【浙江省温州市2019—2020学年11月高三一模数学,21题】 已知实数0a ≠,设函数()e ax f x ax =-.(e 2.71828=为自然对数的底数)(1)求函数()f x 的单调区间; (2)当12a >时,若对任意的[)1,x ∈-+∞,均有()()212af x x ≥+,求a 的取值范围.(二) 利用二次求导证明不等式例2.【全国卷Ⅰ第20题】 已知函数1ln )1()(+-+=x x x x f . (1)若1)('2++≤ax x x xf ,求a 的取值范围; (2)证明:0)()1(≥-x f x .【变式训练1】已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a ,b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-.【变式训练2】已知函数2()ln f x ax ax x x =--,且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.(三) 利用二次求导求函数的单调性例3【高考数学全国卷Ⅱ(22)小题】设函数()1x f x e -=-. (Ⅰ)证明:当x >-1时,()1x f x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.【变式训练1】已知函数ln ()xx kf x e +=(k 为常数, 71828.2=e 是自然对数的底数),曲线()y f x = 在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2()()()g x x x f x '=+,其中()f x '是()f x 的导数.【变式训练2】【华中师大附中2017级高三上期中考试,21题】 (1)已知21()ln f x x x =+,证明:当2x ≥时,221ln 1(ln 2)4x x x +≥+; (2)证明:当4211(2,1)a e e ∈----时,33131()ln (2)39a g x x x x x x -=++≥有最小值,记()g x 最小值为()a ϕ,求()a ϕ的值域.四、迁移应用1.【2020河北衡水中学一调】已知()11,01,22,1,x x x f x x -⎧+≤<⎪=⎨⎪≥⎩存在210x x >≥,使得()()12f x f x =,则()12x f x 的取值范围为( )A .211,42⎡⎫-⎪⎢⎪⎣⎭ B .1,12⎡⎫⎪⎢⎣⎭ C .2,14⎡⎫⎪⎢⎪⎣⎭ D .221,32⎡⎫-⎪⎢⎪⎣⎭ 2.已知函数()lg(31)xf x =+,则(4)(3)(4)(3)f f f f +----=( ) A. 0 B. 1 C. lg 4 D. lg 33.已知函数(x),(x)xlnx xf xeg ==,若12(x )g(x )t f ==,其中0t >,则12ln tx x 的取值范围 4. 设a ∈R ,函数1()2x f x e -=(21ax a ++),其中e 是自然对数的底数. (Ⅰ) 判断函数()f x 在R 上的单调性;(Ⅱ) 当10a -<<时,求函数)(x f 在[1,2]上的最小值.4. 已知函数14341ln )(-+-=xx x x f . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)设42)(2-+-=bx x x g ,若对任意)2,0(1∈x ,[]2,12∈x ,不等式)()(21x g x f ≥ 恒成立,求实数b 的取值范围.5. 已知函数2()()xf x ax x e =+,其中e是自然数的底数,a R ∈。

专题03 简单事件的概率(重难点)(原卷版)

专题03 简单事件的概率(重难点)(原卷版)

专题03 简单事件的概率(重难点)一、单选题a b张标签中,任取一张,得到点朝上,掷第4次时.23对称图形的概率是()111A.4cm2B.3.5 cm2C.4.5 cm2D.5 cm2方形纸外不计试验结果),他将若干次有效试验的结果整理成统计表,由此他估计此图案的面积大约为()二、填空题11.一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为.米接力赛用班主任抽签方式确定赛道.若9班班主任第一个抽签,她从2~6号12.如图,某校运会4100中随机抽取一签,则抽到6号赛道的概率是.13.为了解衢州市九年级学生的跳绳成绩,随机抽取了1000名学生的1分钟跳绳成绩,成绩统计如下:三、解答题17.如图是一个可以自由转动的转盘,它被分成了6个面积相等的扇形区域.(1)转动转盘,当转盘停止转动时,记录下指针所指区域的颜色,则下列说法错误..的是______(填写序号).①转动6次,指针都指向红色区域,说明第7次转动时指针指向红色区域;②转动10次,指针指向红色区域的次数一定大于指向蓝色区域的次数;③转动60次,指针指向黄色区域的次数正好为10.下列问题:每人必须推荐一人(且只能推荐一人),选出了票数最多的甲、乙、丙三人.投票结果统计如图1.其次,对三名候选人进行了笔试和面试两项测试.各项成绩如表所示:请你根据以上信息解答下列问题:价与日销售量之间有一定的变化规律,如下表是近一段时间该水果公司的销售记录24.“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马111,,A B C ,田忌也有上、中、下三匹马222,,A B C ,且这六匹马在比赛中的胜负可用不等式表示如下:121212A A B B C C >>>>>(注:A B >表示A 马与B 马比赛,A 马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(212121,,C A A B B C )获得了整场比赛的胜利,创造了以弱胜强的经典案例. 假设齐王事先不打探田忌的“出马”情况,试回答以下问题:(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;(2)如果田忌事先无法打探到齐王各局的“出马”情况,他是否必败无疑?若是,请说明理由;若不是,请列出田忌获得整场比赛胜利的所有对阵情况,并求其获胜的概率.。

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知曲线y=f(x)在x=5处的切线方程是y=-x+5,则f(5)与f′(5)分别为() A.5,-1B.-1,5C.-1,0D.0,-1答案D解析由题意可得f(5)=-5+5=0,f′(5)=-1,故选D.2.已知函数f(x)=x sin x+ax,且f1,则a等于()A.0B.1C.2D.4答案A解析∵f′(x)=sin x+x cos x+a,且f1,∴sin π2+π2cosπ2+a=1,即a=0.3.若曲线y=mx+ln x在点(1,m)处的切线垂直于y轴,则实数m等于() A.-1B.0C.1D.2答案A解析f(x)的导数为f′(x)=m+1x,曲线y=f(x)在点(1,m)处的切线斜率为k=m+1=0,可得m=-1.故选A.4.已知f1(x)=sin x+cos x,f n+1(x)是f n(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),n∈N*,则f2020(x)等于()A.-sin x-cos x B.sin x-cos xC.-sin x+cos x D.sin x+cos x答案B解析∵f1(x)=sin x+cos x,∴f2(x)=f1′(x)=cos x-sin x,∴f3(x)=f2′(x)=-sin x-cos x,∴f4(x)=f3′(x)=-cos x+sin x,∴f5(x)=f4′(x)=sin x+cos x=f1(x),∴f n(x)是以4为周期的函数,∴f2020(x)=f4(x)=sin x-cos x,故选B.5.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x(其中e为自然对数的底数),则f′(e)等于()A .1B .-1C .-eD .-e -1答案D解析已知f (x )=2xf ′(e)+ln x ,其导数f ′(x )=2f ′(e)+1x,令x =e ,可得f ′(e)=2f ′(e)+1e ,变形可得f ′(e)=-1e ,故选D.6.函数y =12x 2-ln x 的单调递减区间为()A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)答案B解析由题意知,函数的定义域为(0,+∞),又由y ′=x -1x≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].7.(2019·沈阳东北育才学校模拟)已知定义在(0,+∞)上的函数f (x )=x 2+m ,g (x )=6ln x -4x ,设两曲线y =f (x )与y =g (x )在公共点处的切线相同,则m 值等于()A .5B .3C .-3D .-5答案D解析f ′(x )=2x ,g ′(x )=6x -4,令2x =6x-4,解得x =1,这就是切点的横坐标,代入g (x )求得切点的纵坐标为-4,将(1,-4)代入f (x )得1+m =-4,m =-5.故选D.8.(2019·新乡模拟)若函数f (x )=a e x +sin x 在-π2,0上单调递增,则a 的取值范围为()B .[-1,1]C .[-1,+∞)D .[0,+∞)答案D解析依题意得,f ′(x )=a e x +cos x ≥0,即a ≥-cos xe x 对x ∈-π2,0恒成立,设g (x )=-cos xe x ,x ∈-π2,0,g ′(x )g ′(x )=0,则x =-π4,当x ∈-π2,-g ′(x )<0;当x -π4,0时,g ′(x )>0,故g (x )max =g (0,则a ≥0.故选D.9.(2019·河北衡水中学调研)如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为()A.2000π9B.4000π27C .81πD .128π答案B解析小圆柱的高分为上下两部分,上部分同大圆柱一样为5,下部分深入底部半球内设为h (0<h <5),小圆柱的底面半径设为r (0<r <5),由于r ,h 和球的半径5满足勾股定理,即r 2+h 2=52,所以小圆柱体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),求导V ′=-π(3h -5)·(h +5),当0<h ≤53时,体积V 单调递增,当53<h <5时,体积V 单调递减.所以当h =53时,小圆柱体积取得最大值,V max ==4000π27,故选B.10.(2019·凉山诊断)若对任意的0<x 1<x 2<a 都有x 2ln x 1-x 1ln x 2<x 1-x 2成立,则a 的最大值为()A.12B .1C .eD .2e答案B解析原不等式可转化为1+ln x 1x 1<1+ln x 2x 2,构造函数f (x )=1+ln x x ,f ′(x )=-ln xx2,故函数在(0,1)上导数大于零,单调递增,在(1,+∞)上导数小于零,单调递减.由于x 1<x 2且f (x 1)<f (x 2),故x 1,x 2在区间(0,1)上,故a 的最大值为1,故选B.11.(2019·洛阳、许昌质检)设函数y =f (x ),x ∈R 的导函数为f ′(x ),且f (x )=f (-x ),f ′(x )<f (x ),则下列不等式成立的是(注:e 为自然对数的底数)()A .f (0)<e -1f (1)<e 2f (2)B .e -1f (1)<f (0)<e 2f (2)C .e 2f (2)<e -1f (1)<f (0)D .e 2f (2)<f (0)<e -1f (1)答案B解析设g (x )=e -x f (x ),∴g ′(x )=-e -x f (x )+e -x f ′(x )=e -x (f ′(x )-f (x )),∵f ′(x )<f (x ),∴g ′(x )<0,∴g (x )为减函数.∵g (0)=e 0f (0)=f (0),g (1)=e -1f (1),g (-2)=e 2f (-2)=e 2f (2),且g (-2)>g (0)>g (1),∴e -1f (1)<f (0)<e 2f (2),故选B.12.(2019·廊坊省级示范高中联考)已知函数f (x )=-13x 3-12x 2+ax -b 的图象在x =0处的切线方程为2x -y -a =0,若关于x 的方程f (x 2)=m 有四个不同的实数解,则m 的取值范围为()A.-323,-B.-2-323,-2答案D解析由函数f (x )=-13x 3-12x 2+ax -b ,可得f ′(x )=-x 2-x +a ,则f (0)=-b =-a ,f ′(0)=a =2,则b =2,即f (x )=-13x 3-12x 2+2x -2,f ′(x )=-x 2-x +2=-(x -1)(x +2),所以函数f (x )在(-2,1)上单调递增,在(-∞,-2),(1,+∞)上单调递减,又由关于x 的方程f (x 2)=m 有四个不同的实数解,等价于函数f (x )的图象与直线y =m 在x ∈(0,+∞),上有两个交点,又f (0)=-2,f (1)=-56,所以-2<m <-56,故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·陕西四校联考)已知函数f (x )=ln x +2x 2-4x ,则函数f (x )的图象在x =1处的切线方程为________________.答案x -y -3=0解析∵f (x )=ln x +2x 2-4x ,∴f ′(x )=1x +4x -4,∴f ′(1)=1,又f (1)=-2,∴所求切线方程为y -(-2)=x -1,即x -y -3=0.14.已知函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则实数a 的取值范围是________.答案-1e2,解析f ′(x )=ln x +1x (x -a )=ln x +1-ax,函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则f ′(x )有两个变号零点,即f ′(x )=0有两个不等实根,即a =x (ln x +1)有两个不等实根,转化为y =a 与y =x (ln x +1)的图象有两个不同的交点.令g (x )=x (ln x +1),则g ′(x )=ln x +2,令ln x +2=0,则x =1e 2,即g (x )=x (ln x +1)[g (x )]min =-1e 2,当x →0时,g (x )→0,当x →+∞时,f (x )→+∞,所以结合f (x )的图象(图略)可知a -1e 2,15.(2019·山师大附中模拟)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.答案-1,12解析由函数f (x )=x 3-2x +e x -1e x f ′(x )=3x 2-2+e x +1e x ≥-2+e x +1ex ≥-2+2e x ·1e x=0,当且仅当x =0时等号成立,可得f (x )在R 上递增,又f (-x )+f (x )=(-x )3+2x +e -x -e x +x 3-2x +e x -1e x 0,可得f (x )为奇函数,则f (a -1)+f (2a 2)≤0,即有f (2a 2)≤0-f (a -1)=f (1-a ),即有2a 2≤1-a ,解得-1≤a ≤12.16.(2019·湖北黄冈中学、华师附中等八校联考)定义在R 上的函数f (x )满足f (-x )=f (x ),且对任意的不相等的实数x 1,x 2∈[0,+∞)有f (x 1)-f (x 2)x 1-x 2<0成立,若关于x 的不等式f (2mx -ln x-3)≥2f (3)-f (-2mx +ln x +3)在x ∈[1,3]上恒成立,则实数m 的取值范围是______________.答案12e ,1+ln 36解析∵函数f (x )满足f (-x )=f (x ),∴函数f (x )为偶函数.又f (2mx -ln x -3)≥2f (3)-f (-2mx +ln x +3)=2f (3)-f (2mx -ln x -3),∴f (2mx -ln x -3)≥f (3).由题意可得函数f (x )在(-∞,0)上单调递增,在[0,+∞)上单调递减.∴|2mx -ln x -3|≤3对x ∈[1,3]恒成立,∴-3≤2mx -ln x -3≤3对x ∈[1,3]恒成立,即ln x2x ≤m ≤ln x +62x对x ∈[1,3]恒成立.令g (x )=ln x2x ,x ∈[1,3],则g ′(x )=1-ln x 2x 2∴g (x )在[1,e ]上单调递增,在(e,3]上单调递减,∴g (x )max =g (e)=12e .令h (x )=ln x +62x ,x ∈[1,3],则h ′(x )=-5-ln x2x 2<0,∴h (x )在[1,3]上单调递减,∴h (x )min =h (3)=6+ln 36=1+ln 36.综上可得实数m 的取值范围为12e ,1+ln 36.三、解答题(本大题共70分)17.(10分)(2019·辽宁重点高中联考)已知函数f (x )=x 3+mx 2-m 2x +1(m 为常数,且m >0)有极大值9.(1)求m 的值;(2)若斜率为-5的直线是曲线y =f (x )的切线,求此直线方程.解(1)f ′(x )=3x 2+2mx -m 2=(x +m )(3x -m )=0,令f ′(x )=0,则x =-m 或x =13m ,当x 变化时,f ′(x )与f (x )的变化情况如下表:f ′(x )+0-0+f (x )增极大值减极小值增从而可知,当x =-m 时,函数f (x )取得极大值9,即f (-m )=-m 3+m 3+m 3+1=9,∴m =2.(2)由(1)知,f (x )=x 3+2x 2-4x +1,依题意知f ′(x )=3x 2+4x -4=-5,∴x =-1或x =-13,又f (-1)=6,=6827,所以切线方程为y -6=-5(x +1)或y -6827=-即5x +y -1=0或135x +27y -23=0.18.(12分)(2019·成都七中诊断)已知函数f (x )=x sin x +2cos x +ax +2,其中a 为常数.(1)若曲线y =f (x )在x =π2处的切线斜率为-2,求该切线的方程;(2)求函数f (x )在x ∈[0,π]上的最小值.解(1)求导得f ′(x )=x cos x -sin x +a ,由f a -1=-2,解得a =-1.此时2,所以该切线的方程为y -2=-2x +y -2-π=0.(2)对任意x ∈[0,π],f ″(x )=-x sin x ≤0,所以f ′(x )在[0,π]内单调递减.当a ≤0时,f ′(x )≤f ′(0)=a ≤0,∴f (x )在区间[0,π]上单调递减,故f (x )min =f (π)=a π.当a ≥π时,f ′(x )≥f ′(π)=a -π≥0,∴f (x )在区间[0,π]上单调递增,故f (x )min =f (0)=4.当0<a <π时,因为f ′(0)=a >0,f ′(π)=a -π<0,且f ′(x )在区间[0,π]上单调递减,结合零点存在定理可知,存在唯一x 0∈(0,π),使得f ′(x 0)=0,且f (x )在[0,x 0]上单调递增,在[x 0,π]上单调递减.故f (x )的最小值等于f (0)=4和f (π)=a π中较小的一个值.①当4π≤a <π时,f (0)≤f (π),故f (x )的最小值为f (0)=4.②当0<a <4π时,f (π)≤f (0),故f (x )的最小值为f (π)=a π.综上所述,函数f (x )的最小值f (x )min,a ≥4π,π,a <4π.19.(12分)(2019·武汉示范高中联考)已知函数f (x )=4ln x -mx 2+1(m ∈R ).(1)若函数f (x )在点(1,f (1))处的切线与直线2x -y -1=0平行,求实数m 的值;(2)若对于任意x ∈[1,e ],f (x )≤0恒成立,求实数m 的取值范围.解(1)∵f (x )=4ln x -mx 2+1,∴f ′(x )=4x -2mx ,∴f ′(1)=4-2m ,∵函数f (x )在(1,f (1))处的切线与直线2x -y -1=0平行,∴f ′(1)=4-2m =2,∴m =1.(2)∵对于任意x ∈[1,e ],f (x )≤0恒成立,∴4ln x -mx 2+1≤0,在x ∈[1,e ]上恒成立,即对于任意x ∈[1,e ],m ≥4ln x +1x 2恒成立,令g (x )=4ln x +1x 2,x ∈[1,e ],g ′(x )=2(1-4ln x )x 3,令g ′(x )>0,得1<x <14e ,令g ′(x )<0,得14e <x <e ,当x 变化时,g ′(x ),g (x )的变化如下表:x 14(1,e )14e14(e ,e)g ′(x )+0-g (x )极大值∴函数g (x )在区间[1,e ]上的最大值g (x )max =g (14e )=141244ln e 1(e )+=2e e ,∴m ≥2ee,即实数m 的取值范围是2ee ,+20.(12分)已知函数f (x )=ln x -ax (ax +1),其中a ∈R .(1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围.解(1)依题意知,函数f (x )的定义域为(0,+∞),且f ′(x )=1x -2a 2x -a =2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a,函数f (x )当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a ,函数f (x )-1a,+.(2)①当a =0时,函数f (x )在(0,1]内有1个零点x 0=1;②当a >0时,由(1)知函数f (x )若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;若0<12a <1,即当a >12时,f (x )1上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足0,即ln 12a ≥34,又∵a >12,∴ln 12a <0,∴不等式不成立.∴f (x )在(0,1]内无零点;③当a <0时,由(1)知函数f (x )-1a,+若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;若0<-1a <1,即a <-1时,函数f (x )-1a,1上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].21.(12分)(2019·湖北黄冈中学、华师附中等八校联考)在工业生产中,对一正三角形薄钢板(厚度不计)进行裁剪可以得到一种梯形钢板零件,现有一边长为3(单位:米)的正三角形钢板(如图),沿平行于边BC 的直线DE 将△ADE 剪去,得到所需的梯形钢板BCED ,记这个梯形钢板的周长为x (单位:米),面积为S (单位:平方米).(1)求梯形BCED 的面积S 关于它的周长x 的函数关系式;(2)若在生产中,梯形BCED 试确定这个梯形的周长x 为多少时,该零件才可以在生产中使用?解(1)∵DE ∥BC ,△ABC 是正三角形,∴△ADE 是正三角形,AD =DE =AE ,BD =CE =3-AD ,则DE +2(3-AD )+3=9-AD =x ,S =(3+AD )·(3-AD )·sin 60°2=3(12-x )(x -6)4(6<x <9),化简得S =34(-x 2+18x -72)(6<x <9).故梯形BCED 的面积S 关于它的周长x 的函数关系式为S =34(-x 2+18x -72)(6<x <9).(2)∵由(1)得S =34(-x 2+18x -72)(6<x <9),令f (x )=S x =x -72x +x <9),∴f ′(x )1令f ′(x )=0,得x =62或x =-62(舍去),f (x ),f ′(x )随x 的变化如下表:x(6,62)62(62,9)f ′(x )+0-f (x )单调递增极大值单调递减∴当x =62时,函数f (x )=S x有最大值,为f (62)=923-36.∴当x =62米时,该零件才可以在生产中使用.22.(12分)(2019·衡水中学调研)已知函数f (x )=k e x -x 2(其中k ∈R ,e 是自然对数的底数).(1)若k =2,当x ∈(0,+∞)时,试比较f (x )与2的大小;(2)若函数f (x )有两个极值点x 1,x 2(x 1<x 2),求k 的取值范围,并证明:0<f (x 1)<1.解(1)当k =2时,f (x )=2e x -x 2,则f ′(x )=2e x -2x ,令h (x )=2e x -2x ,h ′(x )=2e x -2,由于x ∈(0,+∞),故h ′(x )=2e x -2>0,于是h (x )=2e x -2x 在(0,+∞)上为增函数,所以h (x )=2e x -2x >h (0)=2>0,即f ′(x )=2e x -2x >0在(0,+∞)上恒成立,从而f (x )=2e x -x 2在(0,+∞)上为增函数,故f (x )=2e x -x 2>f (0)=2.(2)函数f (x )有两个极值点x 1,x 2,则x 1,x 2是f ′(x )=k e x -2x =0的两个根,即方程k =2x ex 有两个根,设φ(x )=2x e x ,则φ′(x )=2-2x ex ,当x <0时,φ′(x )>0,函数φ(x )单调递增且φ(x )<0;当0<x <1时,φ′(x )>0,函数φ(x )单调递增且φ(x )>0;当x >1时,φ′(x )<0,函数φ(x )单调递减且φ(x )>0.作出函数φ(x )的图象如图所示,要使方程k =2x e x 有两个根,只需0<k <φ(1)=2e,故实数k f (x )的两个极值点x 1,x 2满足0<x 1<1<x 2,由f ′(x 1)=1e x k -2x 1=0得k =112e x x ,所以f (x 1)=1e x k -x 21=112e x x 1e x -x 21=-x 21+2x 1=-(x 1-1)2+1,由于x 1∈(0,1),所以0<-(x 1-1)2+1<1,所以0<f (x 1)<1.。

2021年高中数学第三章导数及其应用3.2.2导数的运算法则学案含解析人教A版选修1_1.doc

2021年高中数学第三章导数及其应用3.2.2导数的运算法则学案含解析人教A版选修1_1.doc

3.2.2 导数的运算法则自主预习·探新知情景引入如何求得下列函数的导数呢? 1.y =x 5+x 3-x 2+3; 2.y =e x-sin x +ln x ; 3.y =cos 2x2-sin 2x2.新知导学 导数的运算法则和差的导数 [f (x )±g (x )]′=__f ′(x )±g ′(x )__积的导数[f (x )·g (x )]′=__f ′(x )g (x )+f (x )·g ′(x )__ 商的导数[f xg x]′=__f ′xg x -f x g ′xg 2x__(g (x )≠0)预习自测1.已知函数f (x )=ax 2+c ,且f ′(1)=2,则a 的值为( A ) A .1 B . 2 C .-1D .0[解析] ∵f (x )=ax 2+c ,∴f ′(x )=2ax , 又∵f ′(1)=2a ,∴2a =2,∴a =1. 2.已知f (x )=e xln x ,则f ′(x )=( C ) A .e xxB .e x+1xC .e xx ln x +1xD .1x+ln x[解析] f ′(x )=(e x)′ln x +e x(ln x )′=e xln x +exx=exx ln x +1x.3.(2020·全国卷Ⅰ理,6)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( B )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1[解析] ∵f (x )=x 4-2x 3,∴f ′(x )=4x 3-6x 2,∴f ′(1)=-2,又f (1)=1-2=-1, ∴所求的切线方程为y +1=-2(x -1),即y =-2x +1.故选B .4.(2020·全国卷Ⅲ文,15)设函数f (x )=e xx +a .若f ′(1)=e 4,则a =__1__.[解析] 由于f ′(x )=exx +a -e x x +a 2,故f ′(1)=e a1+a2=e4,解得a =1.5.求下列函数的导数: (1)y =sin x -2x 2; (2)y =(2x 2+3)(3x -2); (3)y =excos x.[解析] (1)y ′=(sin x -2x 2)′ =(sin x )′-(2x 2)′ =cos x -4x .(2)y ′=(2x 2+3)′(3x -2)+(2x 2+3)(3x -2)′ =4x (3x -2)+3(2x 2+3) =12x 2-8x +6x 2+9 =18x 2-8x +9.(3)y ′=⎝ ⎛⎭⎪⎫e xcos x ′=ex′·cos x -cos x ′·excos 2x =excos x +sin xcos 2x互动探究·攻重难互动探究解疑 命题方向❶导数的四则运算法则的应用典例1 求下列函数的导数:(1)y =(x +1)2(x -1); (2)y =x 2sin x ; (3)y =1x +2x 2+3x3;(4)y =x tan x -2cos x. [解析] (1)解法一:y ′=[(x +1)2]′(x -1)+(x +1)2(x -1)′=2(x +1)(x -1)+(x +1)2=3x 2+2x -1.解法二:y =(x 2+2x +1)(x -1)=x 3+x 2-x -1,y ′=(x 3+x 2-x -1)′=3x 2+2x -1.(2)y ′=(x 2sin x )′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(3)y ′=⎝ ⎛⎭⎪⎫1x +2x 2+3x 3′=(x -1+2·x -2+3·x -3)′=-x -2-4x -3-9x -4=-1x 2-4x 3-9x4.(4)y ′=⎝ ⎛⎭⎪⎫x sin x cos x -2cos x ′=⎝ ⎛⎭⎪⎫x sin x -2cos x ′=x sin x -2′cos x +x sin x -2sin xcos 2x=sin x +x cos xcos x +x sin 2x -2sin xcos 2x=sin x cos x +x -2sin x cos 2x =tan x +x cos 2 x -2tan xcos x. 『规律方法』 1.符合导数运算法则形式特点的函数求导可直接用公式,注意不要记错用混积商的导数运算法则.①[f (x )g (x )]′≠f ′(x )g ′(x );②⎣⎢⎡⎦⎥⎤f x g x ′≠f ′x g ′x .2.公式[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x )的推广为[f 1(x )·f 2(x )·f 3(x )…f n (x )]′=f 1′(x )f 2(x )f 3(x )…f n (x )+f 1(x )f 2′(x )f 3(x )f 4(x )…f n (x )+…+f 1(x )f 2(x )…f n ′(x )3.较为复杂的求导运算,一般要先将函数化简,再求导. ┃┃跟踪练习1__■ 求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3);(3)y =x -1x +1. [解析] (1)y ′=(x ·tan x )′=⎝ ⎛⎭⎪⎫x sin x cos x ′=x sin x ′cos x -x sin x cos x ′cos 2x=sin x +x cos x cos x +x sin 2xcos 2x =sin x cos x +xcos 2x. (2)解法一:y ′=[(x +1)(x +2)(x +3)]′ =[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2)=(x +2+x +1)(x +3)+(x +1)(x +2)=(2x +3)(x +3)+x 2+3x +2=3x 2+12x +11;解法二:∵(x +1)(x +2)(x +3)=(x 2+3x +2)(x +3)=x 3+6x 2+11x +6, ∴y ′=[(x +1)(x +2)(x +3)]′=(x 3+6x 2+11x +6)′=3x 2+12x +11; (3)解法一:y ′=⎝ ⎛⎭⎪⎫x -1x +1′=x -1′x +1-x -1x +1′x +12=x +1-x -1x +12=2x +12;解法二:∵y =x -1x +1=x +1-2x +1=1-2x +1, ∴y ′=⎝⎛⎭⎪⎫1-2x +1′=⎝ ⎛⎭⎪⎫-2x +1′=2x +12.命题方向❷利用导数求参数典例2 (2020·云南昆明高二调研)已知函数f (x )=ax 3+bx 2+cx 过点(1,5),其导函数y =f ′(x )的图象如图所示,求f (x )的解析式.[思路分析] 本题主要考查利用导数求解参数问题,观察y =f ′(x )的图象可知y =f ′(x )过点(1,0)、(2,0),即f ′(1)=0,f ′(2)=0.[解析] ∵f ′(x )=3ax 2+2bx +c ,且f ′(1)=0、 f ′(2)=0、 f (1)=5, ∴⎩⎪⎨⎪⎧3a +2b +c =012a +4b +c =0a +b +c =5,解得⎩⎪⎨⎪⎧a =2b =-9c =12.∴函数y =f (x )的解析式为f (x )=2x 3-9x 2+12x .『规律方法』 1.导数的应用中,求导数是一个基本解题环节,应仔细分析函数解析式的结构特征,根据导数公式及运算法则求导数,不具备导数运算法则的结构形式时,先恒等变形,然后分析题目特点,探寻条件与结论的联系,选择解题途径.2.求参数的问题一般依据条件建立参数的方程求解. ┃┃跟踪练习2__■偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求y =f (x )的解析式.[解析] ∵f (x )的图象过点P (0,1), ∴e =1.又∵f (x )为偶函数,∴f (-x )=f (x ).故ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e . ∴b =0,d =0.∴f (x )=ax 4+cx 2+1.∵函数f (x )在x =1处的切线方程为y =x -2, ∴切点为(1,-1).∴a +c +1=-1. ∵f ′(x )|x =1=4a +2c ,∴4a +2c =1. ∴a =52,c =-92.∴函数y =f (x )的解析式为f (x )=52x 4-92x 2+1.命题方向❸导数的综合应用典例3 已知曲线y =f (x )=x 2a-1(a >0)在x =1处的切线为l ,求l 与两坐标轴所围成的三角形的面积的最小值.[解析] ∵f (1)=1a -1,∴切点坐标为(1,1a-1).由已知,得f ′(x )=(x 2a -1)′=2xa,∴切线的斜率k =f ′(1)=2a,∴切线l 的方程为y -(1a -1)=2a(x -1),即2x -ay -a -1=0. 令y =0,得x =a +12;令x =0,得y =-a +1a. ∴切线l 与两坐标轴所围成的三角形的面积S =12×a +12×a +1a=14(a +1a )+12≥14×2a ×1a +12=1,当且仅当a =1a,即a =1时取等号,∴S min =1.故l 与两坐标轴所围成的三角形的面积的最小值为1.『规律方法』 求曲线的切线方程要注意分清点是否是切点.若已知点是切点,则可通过点斜式直接写方程,若已知点不是切点,则需设出切点.┃┃跟踪练习3__■函数f (x )=x 3-x 2-x +1的图象上有两点A (0,1)和B (1,0),在区间(0,1)内求实数a ,使得函数f (x )的图象在x =a 处的切线平行于直线AB .[解析] 直线AB 的斜率k AB =-1,f ′(x )=3x 2-2x -1,令f ′(a )=-1 (0<a <1), 即3a 2-2a -1=-1,解得a =23.学科核心素养 综合应用问题灵活运用导数的运算法则,求解复合函数的导数,或与其他知识结合解决相关问题;利用基本初等函数的求导公式,结合导数的几何意义可以解决一些与距离、面积相关的几何问题与实际问题.典例4 已知曲线f (x )=x 3+ax +b 在点P (2,-6)处的切线方程是13x -y -32=0.(1)求a ,b 的值;(2)如果曲线y =f (x )的某一切线与直线l :y =-14x +3垂直,求切点坐标与切线的方程.[思路分析] (1)由f (x )在点P 处的切线方程可知f ′(2),及f (2)=-6,得到a 、b 的方程组,解方程组可求出a 、b ;(2)由曲线y =f (x )的切线与l 垂直,可得切线斜率k =f ′(x 0),从而解出x 0,求得切点坐标和k .[解析] (1)∵f (x )=x 3+ax +b 的导数f ′(x )=3x 2+a , 由题意可得f ′(2)=12+a =13, f (2)=8+2a +b =-6, 解得a =1,b =-16.(2)∵切线与直线y =-x4+3垂直,∴切线的斜率k =4.设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,∴x 0=±1.由f (x )=x 3+x -16,可得y 0=1+1-16=-14,或y 0=-1-1-16=-18. 则切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.『规律总结』 处理与切线有关的参数问题时,一般利用曲线、切线、切点的三个关系列方程求解.┃┃跟踪练习4__■(天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为__1__.[解析] ∵f ′(x )=a -1x,∴f ′(1)=a -1.又∵f (1)=a ,∴切线l 的斜率为a -1,且过点(1,a ), ∴切线l 的方程为y -a =(a -1)(x -1). 令x =0,得y =1,故l 在y 轴上的截距为1.易混易错警示 准确应用公式典例5 若f (x )=cos xx,求f ′(π).[错解] ∵f (x )=cos xx,∴f ′(x )=cos x ′x +cos x ·x ′x 2=-x sin x +cos xx2,∴f ′(π)=-πsin π+cos ππ2=-1π2.[错解分析] 应用商的求导法则时,分子应是“分子的导数乘分母-分子乘分母的导数”,解题时错误的写成了“+”.[正解]∵f (x )=cos xx,∴f ′(x )=cos x ′x -cos x ·x ′x 2=-x sin x -cos xx2, ∴f ′(π)=-πsin π-cos ππ2=1π2.。

专题03等高线地形图(原卷版+解析)

专题03等高线地形图(原卷版+解析)

专题03 等高线地形图一、等高线地形图:读高线地形图,完成下面各题。

(1)该图中地形类型主要是____。

(2)图中数字代号所表示的地形部位②是:____②、②、②、②四地形部位,适合攀岩运动的是____。

(3)该等高线地形图等高距是____米,②山顶的海拔范围是____。

(4)图中“小河”两字所在河段的流向是____。

图中河流有甲、乙、丙三条河流,其中画错的一条是____,理由是____。

(5)如果图中A点的温度是12.4°C,那么B点的温度是____°C(6)地理兴趣小组同学进行爬山运动,A和B所在地,爬山比较轻松的是____;为什么?____。

(7)甲、乙、丙、丁适合修建水电站大坝的是____。

二、解题技巧:1、等高线地形图的等高线都是一些闭合的曲线,即使在某一张图上有断开的现象,也会在相邻的图上闭合。

判读等高线地形图时要做到“一读二看”:“一读”是指读数值,读数值可知海拔高度、相对高度和等高距等;“二看”是指看疏密和看形状,看疏密可知坡度的陡缓,等高线稀疏的地方坡缓,等高线密集的地方坡陡,看形状可判断不同的山体部位。

2、易混淆的概念:(1)山峰与盆地:山峰与盆地等高线上的数值分布相反(如下图)。

①山峰:等高线数值中心大,四周小;表示中间高,四周低。

②盆地:等高线数值中心小,四周大;表示中间低,四周高。

(2)山脊与山谷山脊与山谷等高线的弯曲方向相反(如下图)①山脊:等高线由高处向低处弯曲。

②山谷:等高线由低处向高处弯曲。

1、地形类型:利用等高线数值判断地形类型,小于200米是平原;200~500米是丘陵;大于500米且等高线密集的是山地;大于500米且边缘等高线密集、内部等高线稀疏的是高原。

地形类型海拔高度地表起伏特征举例平原一般在200米以下宽广平坦、起伏较小亚马孙平原高原500米以上面积较大,外围较陡,内部起伏较为和缓青藏高原山地500米以上具有耸立的山峰、陡峭的山坡喜马拉雅山丘陵500米以下地势起伏较大东南丘陵盆地没有一定标准四周高,中间低刚果盆地2、等高线地形图地形部位的表示方法如下:地形部位等高线表示方法山峰(山顶)等高线闭合,数值从中间向四周递减,一般符号为“▲”山脊等高线的弯曲部分向低处凸出鞍部两山峰等高线之间的低矮处,形似“马鞍”山谷等高线的弯曲部分向高处凸出陡崖(峭壁)多条等高线重叠处盆地(洼地)等高线闭合,数值从外向内递减3、坡度判读:等高线密集的地方坡度较陡,等高线稀疏的地方坡度较缓。

数学(文)知识清单-专题04 导数及其应用(原卷+解析版)

数学(文)知识清单-专题04 导数及其应用(原卷+解析版)

ex-1 x>0 , 20.已知奇函数 f(x)= x
h x x<0 ,
则函数 h(x)的最大值为________.
3
高考押题专练 1.曲线 f(x)=xlnx 在点(e,f(e))(e 为自然对数的底数)处的切线方程为( ) A.y=ex-2 B.y=2x+e C.y=ex+2 D.y=2x-e 【解析】本题考查导数的几何意义以及直线的方程.因为 f(x)=xlnx,故 f′(x)=lnx+1,故切线的斜率 k =f′(e)=2,因为 f(e)=e,故切线方程为 y-e=2(x-e),即 y=2x-e,故选 D. 【答案】D
D.
【答案】D
8.已知曲线 C1:y2=tx(y>0,t>0)在点 M
4,2 t
处的切线与曲线
C2:y=ex+1+1
也相切,则
t
的值为
()
A.4e2 B.4e
C.e2 D.e
4
4
【解析】由 y=
tx,得
y′= 2
t ,则切线斜率为 tx
k=4t ,所以切线方程为
y-2=4t
x-4 t
,即
y=4t x+1.
-∞,-4 3
,(0,+∞),故选
C.
【答案】C
7.函数 f(x)=ex-3x-1(e 为自然对数的底数)的图象大致是( )
5
【解析】由题意,知 f(0)=0,且 f′(x)=ex-3,当 x∈(-∞,ln3)时,f′(x)<0,当 x∈(ln3,+∞)时,f′(x)>0,
所以函数 f(x)在(-∞,ln3)上单调递减,在(ln3,+∞)上单调递增,结合图象知只有选项 D 符合题意,故选
3.曲线 y=x3+11 在点 P(1,12)处的切线与两坐标轴围成三角形的面积是( ) A.75 B.75

高考数学(理)三年真题专题演练—导数及其应用(解答题)

高考数学(理)三年真题专题演练—导数及其应用(解答题)

高考数学三年真题专题演练—导数及其应用(解答题)1.【2021·天津高考真题】已知0a >,函数()x f x ax xe =-. (I )求曲线()y f x =在点(0,(0))f 处的切线方程: (II )证明()f x 存在唯一的极值点(III )若存在a ,使得()f x a b ≤+对任意x ∈R 成立,求实数b 的取值范围. 【答案】(I )(1),(0)y a x a =->;(II )证明见解析;(III )[),e -+∞ 【分析】(I )求出()f x 在0x =处的导数,即切线斜率,求出()0f ,即可求出切线方程;(II )令()0f x '=,可得(1)xa x e =+,则可化为证明y a =与()y g x =仅有一个交点,利用导数求出()g x 的变化情况,数形结合即可求解;(III )令()2()1,(1)xh x x x e x =-->-,题目等价于存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥,利用导数即可求出()h x 的最小值. 【详解】(I )()(1)xf x a x e =-+',则(0)1f a '=-,又(0)0f =,则切线方程为(1),(0)y a x a =->;(II )令()(1)0x f x a x e =-+=',则(1)xa x e =+,令()(1)x g x x e =+,则()(2)xg x x e =+',当(,2)x ∈-∞-时,()0g x '<,()g x 单调递减;当(2,)x ∈-+∞时,()0g x '>,()g x 单调递增,当x →-∞时,()0g x <,()10g -=,当x →+∞时,()0g x >,画出()g x 大致图像如下:所以当0a >时,y a =与()y g x =仅有一个交点,令()g m a =,则1m >-,且()()0f m a g m '=-=,当(,)x m ∈-∞时,()a g x >,则()0f x '>,()f x 单调递增, 当(),x m ∈+∞时,()a g x <,则()0f x '<,()f x 单调递减,x m =为()f x 的极大值点,故()f x 存在唯一的极值点;(III )由(II )知max ()()f x f m =,此时)1(1,ma m e m +>-=,所以()2max {()}()1(1),mf x a f m a m m e m -=-=-->-, 令()2()1,(1)xh x x x e x =-->-,若存在a ,使得()f x a b ≤+对任意x ∈R 成立,等价于存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥,()2()2(1)(2)x x h x x x e x x e =+-=+'-,1x >-,当(1,1)x ∈-时,()0h x '<,()h x 单调递减,当(1,)x ∈+∞时,()0h x '>,()h x 单调递增,所以min ()(1)h x h e ==-,故b e ≥-, 所以实数b 的取值范围[),e -+∞. 【点睛】关键点睛:第二问解题的关键是转化为证明y a =与()y g x =仅有一个交点;第三问解题的关键是转化为存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥.2.【2021·全国高考真题】已知函数2()(1)x f x x e ax b =--+.(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点①21,222e a b a <≤>; ②10,22a b a <<≤. 【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可; (2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论. 【详解】(1)由函数的解析式可得:()()'2xf x x e a =-,当0a ≤时,若(),0x ∈-∞,则()()'0,f x f x <单调递减, 若()0,x ∈+∞,则()()'0,f x f x >单调递增; 当102a <<时,若()(),ln 2x a ∈-∞,则()()'0,f x f x >单调递增, 若()()ln 2,0x a ∈,则()()'0,f x f x <单调递减, 若()0,x ∈+∞,则()()'0,f x f x >单调递增;当12a =时,()()'0,f x f x ≥在R 上单调递增; 当12a >时,若(),0x ∈-∞,则()()'0,f x f x >单调递增,若()()0,ln 2x a ∈,则()()'0,f x f x <单调递减, 若()()ln 2,x a ∈+∞,则()()'0,f x f x >单调递增; (2)若选择条件①:由于2122e a <,故212a e <≤,则()21,010b af b >>=->,而()()210b f b b e ab b --=----<,而函数在区间(),0-∞上单调递增,故函数在区间(),0-∞上有一个零点.()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 21ln 22a a a a a >--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 2ln 2a a a a =-⎡⎤⎣⎦ ()()ln 22ln 2a a a =-⎡⎤⎣⎦,由于2122e a <,212a e <≤,故()()ln 22ln 20a a a -≥⎡⎤⎣⎦,结合函数的单调性可知函数在区间()0,∞+上没有零点. 综上可得,题中的结论成立. 若选择条件②: 由于102a <<,故21a <,则()01210f b a =-≤-<,当0b ≥时,24,42ea ><,()2240f e ab =-+>,而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点. 当0b <时,构造函数()1xH x e x =--,则()1xH x e '=-,当(),0x ∈-∞时,()()0,H x H x '<单调递减,当()0,x ∈+∞时,()()0,H x H x '>单调递增,注意到()00H =,故()0H x ≥恒成立,从而有:1x e x ≥+,此时:()()()()22111x f x x e ax b x x ax b =---≥-+-+()()211a x b =-+-,当x >()()2110a x b -+->,取01x =,则()00f x >,即:()00,10f f ⎫<>⎪⎪⎭,而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点.()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 21ln 22a a a a a ≤--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 2ln 2a a a a =-⎡⎤⎣⎦ ()()ln 22ln 2a a a =-⎡⎤⎣⎦,由于102a <<,021a <<,故()()ln 22ln 20a a a -<⎡⎤⎣⎦, 结合函数的单调性可知函数在区间(),0-∞上没有零点. 综上可得,题中的结论成立. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用. 3.【2021·北京高考真题】已知函数()232xf x x a-=+. (1)若0a =,求()y f x =在()()1,1f 处切线方程;(2)若函数()f x 在1x =-处取得极值,求()f x 的单调区间,以及最大值和最小值. 【答案】(1)450x y +-=;(2)函数()f x 的增区间为(),1-∞-、()4,+∞,单调递减区间为()1,4-,最大值为1,最小值为14-. 【分析】(1)求出()1f 、()1f '的值,利用点斜式可得出所求切线的方程;(2)由()10f '-=可求得实数a 的值,然后利用导数分析函数()f x 的单调性与极值,由此可得出结果. 【详解】(1)当0a =时,()232xf x x -=,则()()323x f x x-'=,()11f ∴=,()14f '=-, 此时,曲线()y f x =在点()()1,1f 处的切线方程为()141y x -=--,即450x y +-=; (2)因为()232xf x x a-=+,则()()()()()()222222223223x a x x x x a f x xa xa -+----'==++,由题意可得()()()224101a f a -'-==+,解得4a =,故()2324x f x x -=+,()()()()222144x x f x x +-'=+,列表如下:所以,函数()f x 的增区间为(),1-∞-、()4,+∞,单调递减区间为()1,4-. 当32x <时,()0f x >;当32x >时,()0f x <. 所以,()()max 11f x f =-=,()()min 144f x f ==-. 4.【2021·全国高考真题】已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【分析】(1)求出函数的导数,判断其符号可得函数的单调区间; (2)设1211,x x a b==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e +<转化为()()1ln 1ln 0t t t t -+-<在()1,+∞上的恒成立问题,利用导数可证明该结论成立. 【详解】(1)函数的定义域为()0,∞+, 又()1ln 1ln f x x x '=--=-,当()0,1x ∈时,()0f x '>,当()1,+x ∈∞时,()0f x '<, 故()f x 的递增区间为()0,1,递减区间为()1,+∞.(2)因为ln ln b a a b a b -=-,故()()ln 1ln +1b a a b +=,即ln 1ln +1a b a b+=, 故11f f a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 设1211,x x a b==,由(1)可知不妨设1201,1x x <<>. 因为()0,1x ∈时,()()1ln 0f x x x =->,(),x e ∈+∞时,()()1ln 0f x x x =-<, 故21x e <<. 先证:122x x +>,若22x ≥,122x x +>必成立.若22x <, 要证:122x x +>,即证122x x >-,而2021x <-<, 故即证()()122f x f x >-,即证:()()222f x f x >-,其中212x <<. 设()()()2,12g x f x f x x =--<<,则()()()()2ln ln 2g x f x f x x x '''=+-=---()ln 2x x =--⎡⎤⎣⎦, 因为12x <<,故()021x x <-<,故()ln 20x x -->,所以()0g x '>,故()g x 在()1,2为增函数,所以()()10g x g >=, 故()()2f x f x >-,即()()222f x f x >-成立,所以122x x +>成立, 综上,122x x +>成立.设21x tx =,则1t >, 结合ln 1ln +1a b a b+=,1211,x x a b ==可得:()()11221ln 1ln x x x x -=-,即:()111ln 1ln ln x t t x -=--,故11ln ln 1t t tx t --=-,要证:12x x e +<,即证()11t x e +<,即证()1ln 1ln 1t x ++<, 即证:()1ln ln 111t t tt t --++<-,即证:()()1ln 1ln 0t t t t -+-<,令()()()1ln 1ln ,1S t t t t t t =-+->, 则()()112ln 11ln ln 111t S t t t t t t -⎛⎫'=++--=+- ⎪++⎝⎭, 先证明一个不等式:()ln 1x x ≤+. 设()()ln 1u x x x =+-,则()1111xu x x x -'=-=++, 当10x -<<时,()0u x '>;当0x >时,()0u x '<,故()u x 在()1,0-上为增函数,在()0,+∞上为减函数,故()()max 00u x u ==, 故()ln 1x x ≤+成立由上述不等式可得当1t >时,112ln 11t t t ⎛⎫+≤< ⎪+⎝⎭,故()0S t '<恒成立, 故()S t 在()1,+∞上为减函数,故()()10S t S <=, 故()()1ln 1ln 0t t t t -+-<成立,即12x x e +<成立. 综上所述,112e a b<+<. 【点睛】方法点睛:极值点偏移问题,一般利用通过原函数的单调性,把与自变量有关的不等式问题转化与原函数的函数值有关的不等式问题,也可以引入第三个变量,把不等式的问题转化为与新引入变量有关的不等式问题.5.【2021·浙江高考真题】设a ,b 为实数,且1a >,函数()2R ()xf x a bx e x =-+∈(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围; (3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点12,x x ,满足2212ln 2b b e x x e b>+.(注: 2.71828e =⋅⋅⋅是自然对数的底数)【答案】(1)0b ≤时,()f x 在R 上单调递增;0b >时,函数的单调减区间为,log ln a b a ⎛⎫-∞ ⎪⎝⎭,单调增区间为log ,ln a b a ⎛⎫+∞ ⎪⎝⎭;(2)(21,e ⎤⎦;(3)证明见解析.【分析】(1)首先求得导函数的解析式,然后分类讨论即可确定函数的单调性;(2)将原问题进行等价转化,然后构造新函数,利用导函数研究函数的性质并进行放缩即可确定实数a 的取值范围;(3)结合(2)的结论将原问题进行等价变形,然后利用分析法即可证得题中的结论成立.【解析】(1)2(),()ln x xf x b f a x e a x a b '==+--,①若0b ≤,则()ln 0xf x a a b '=-≥,所以()f x 在R 上单调递增;②若0b >, 当,log ln ab x a ⎛⎫∈-∞ ⎪⎝⎭时,()()'0,f x f x <单调递减, 当log ,ln ab x a ⎛⎫∈+∞ ⎪⎝⎭时,()()'0,f x f x >单调递增. 综上可得,0b ≤时,()f x 在R 上单调递增;0b >时,函数的单调减区间为,log ln ab a ⎛⎫-∞ ⎪⎝⎭,单调增区间为log ,ln a b a ⎛⎫+∞ ⎪⎝⎭.(2)()f x 有2个不同零点20x a bx e ⇔-+=有2个不同解ln 20x a e bx e ⇔-+=有2个不同的解,令ln t x a =,则220,0ln ln t tb b e e e e t a a tt +-+=⇒=>,记()22222(1)(),()t t t t e t e e e e e t e g t g t t t t'⋅-++--===, 记2()(1),()(1)10t t tt h t e t e h t e t e e t '=--=-+⋅=⋅>, 又(2)0h =,所以(0,2)t ∈时,()0,(2,)h t t <∈+∞时,()0h t >,则()g t 在(0,2)单调递减,(2,)+∞单调递增,22(2),ln ln b bg e a a e∴>=∴<, 22222,ln ,21bb e a a e e>∴>∴≤⇒<≤. 即实数a 的取值范围是(21,e ⎤⎦.(3)2,()x a e f x e bx e ==-+有2个不同零点,则2x e e bx +=,故函数的零点一定为正数. 由(2)可知有2个不同零点,记较大者为2x ,较小者为1x ,1222412x x e e e e b e x x ++==>,注意到函数2x e e y x +=在区间()0,2上单调递减,在区间()2,+∞上单调递增,故122x x <<,又由5245e e e +<知25x >,122211122x e e e e b x x x b+=<⇒<,要证2212ln 2b b e x x e b >+,只需22ln e x b b>+, 222222x x e e e b x x +=<且关于b 的函数()2ln e g b b b =+在4b e >上单调递增,所以只需证()22222222ln 52x x e x e x x x e >+>, 只需证2222222ln ln 02x x x e x e e x e-->,只需证2ln ln 202x e xx e-->,242e <,只需证4()ln ln 2x x h x x e =--在5x >时为正,由于()11()44410x x x h x xe e e x x x '---+-+-==>,故函数()h x 单调递增, 又54520(5)ln 5l 20n 2ln 02h e e =--=->,故4()ln ln 2x xh x x e=--在5x >时为正,从而题中的不等式得证.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.6.【2021·全国高考真题(理)】已知0a >且1a ≠,函数()(0)ax x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围. 【答案】(1)20,ln2⎛⎤ ⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减;(2)()()1,,e e ⋃+∞. 【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性;(2)利用指数对数的运算法则,可以将曲线()y f x =与直线1y =有且仅有两个交点等价转化为方程ln ln x a x a =有两个不同的实数根,即曲线()y g x =与直线ln ay a=有两个交点,利用导函数研究()g x 的单调性,并结合()g x 的正负,零点和极限值分析()g x 的图象,进而得到ln 10a a e<<,发现这正好是()()0g a g e <<,然后根据()g x 的图象和单调性得到a 的取值范围.【解析】(1)当2a =时,()()()()22222ln 2222ln 2,242xx x x x x x x x x x f x f x '--===,令()'0f x =得2ln 2x =,当20ln 2x <<时,()0f x '>,当2ln 2x >时,()0f x '<, ∴函数()f x 在20,ln2⎛⎤ ⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减; (2)()ln ln 1ln ln a x a x x x af x a x x a a x a x a==⇔=⇔=⇔=,设函数()ln x g x x =, 则()21ln xg x x-'=,令()0g x '=,得x e =, 在()0,e 内()0g x '>,()g x 单调递增; 在(),e +∞上()0g x '<,()g x 单调递减;()()1max g x g e e∴==,又()10g =,当x 趋近于+∞时,()g x 趋近于0,所以曲线()y f x =与直线1y =有且仅有两个交点,即曲线()y g x =与直线ln ay a=有两个交点的充分必要条件是ln 10a a e<<,这即是()()0g a g e <<, 所以a 的取值范围是()()1,,e e ⋃+∞.【点睛】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题,关键是将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.7.【2021·全国高考真题(理)】设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.【答案】1;证明见详解【分析】(1)由题意求出'y ,由极值点处导数为0即可求解出参数a ; (2)由(1)得()()ln 1()ln 1x x g x x x +-=-,1x <且0x ≠,分类讨论()0,1x ∈和(),0x ∈-∞,可等价转化为要证()1g x <,即证()()ln 1ln 1x x x x +->-在()0,1x ∈和(),0x ∈-∞上恒成立,结合导数和换元法即可求解 【解析】(1)由()()()n 1'l a f x a x f x x ⇒==--,()()'ln xy a x x ay xf x ⇒=-=+-, 又0x =是函数()y xf x =的极值点,所以()'0ln 0y a ==,解得1a =; (2)由(1)得()()ln 1f x x =-,()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-,1x <且0x ≠, 当()0,1x ∈时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x >-<,()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->; 同理,当(),0x ∈-∞时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x <->,()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->; 令()()()1ln 1h x x x x =+--,再令1t x =-,则()()0,11,t ∈+∞,1x t =-,令()1ln g t t t t =-+,()'1ln 1ln g t t t =-++=,当()0,1t ∈时,()'0g x <,()g x 单减,假设()1g 能取到,则()10g =,故()()10g t g >=;当()1,t ∈+∞时,()'0g x >,()g x 单增,假设()1g 能取到,则()10g =,故()()10g t g >=;综上所述,()()ln 1()1ln 1x x g x x x +-=<-在()(),00,1x ∈-∞恒成立【点睛】本题为难题,根据极值点处导数为0可求参数a ,第二问解法并不唯一,分类讨论对函数进行等价转化的过程,一定要注意转化前后的等价性问题,构造函数和换元法也常常用于解决复杂函数的最值与恒成立问题.8.【2020年高考全国Ⅰ卷理数】已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 【解析】(1)当a =1时,f (x )=e x +x 2–x ,则()f x '=e x +2x –1.故当x ∈(–∞,0)时,()f x '<0;当x ∈(0,+∞)时,()f x '>0.所以f (x )在(–∞,0)单调递减,在(0,+∞)单调递增. (2)31()12f x x ≥+等价于321(1)e 12x x ax x --++≤. 设函数321()(1)e (0)2xg x x ax x x -=-++≥,则32213()(121)e 22x g x x ax x x ax -'=--++-+-21[(23)42]e 2x x x a x a -=--+++1(21)(2)e 2x x x a x -=----.(i )若2a +1≤0,即12a ≤-,则当x ∈(0,2)时,()g x '>0.所以g (x )在(0,2)单调递增,而g (0)=1,故当x ∈(0,2)时,g (x )>1,不合题意.(ii )若0<2a +1<2,即1122a -<<,则当x ∈(0,2a +1)∪(2,+∞)时,g'(x )<0;当x ∈(2a +1,2)时,g'(x )>0.所以g (x )在(0,2a +1),(2,+∞)单调递减,在(2a +1,2)单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7−4a )e −2≤1,即a ≥27e 4-. 所以当27e 142a -≤<时,g (x )≤1. (iii )若2a +1≥2,即12a ≥,则g (x )≤31(1)e 2xx x -++.由于27e 10[,)42-∈,故由(ii )可得31(1)e 2x x x -++≤1. 故当12a ≥时,g (x )≤1.综上,a 的取值范围是27e [,)4-+∞. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.9.【2020年高考全国Ⅱ卷理数】已知函数2() sin sin2f x x x =.(1)讨论f (x )在区间(0,π)的单调性;(2)证明:()f x ≤;(3)设*n ∈N ,证明:2222sin sin 2sin 4sin 234nn nx x xx ≤.【解析】(1)()cos (sin sin 2)sin (sin sin 2)f x x x x x x x ''=+ 22sin cos sin 22sin cos2x x x x x =+ 2sin sin3x x =.当(0,)(,)33x π2π∈π时,()0f x '>;当(,)33x π2π∈时,()0f x '<. 所以()f x 在区间(0,),(,)33π2ππ单调递增,在区间(,)33π2π单调递减.(2)因为(0)()0f f =π=,由(1)知,()f x 在区间[0,]π的最大值为()3f π=,最小值为()3f 2π=.而()f x 是周期为π的周期函数,故|()|f x ≤. (3)由于32222(sin sin 2sin 2)nx x x333|sin sin 2sin 2|n x x x =23312|sin ||sin sin 2sin 2sin 2||sin 2|n n n x x x x x x -= 12|sin ||()(2)(2)||sin 2|n n x f x f x f x x -=1|()(2)(2)|n f x f x f x -≤,所以222233sin sin 2sin 2)4n nnn x xx ≤=.10.【2020年高考全国Ⅲ卷理数】设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求B .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 【解析】(1)2()3f x x b '=+. 依题意得1()02f '=,即304b +=.故34b =-.(2)由(1)知3(3)4f x x x c -=+,2()334f x x '=-. 令)0(f x '=,解得12x =-或12x =.()f x '与()f x 的情况为:x 1()2-∞-,12- 11()22-, 12 1()2∞,+ ()f x ' + 0 – 0 + ()f x14c +14c -因为11(1)()24f f c =-=+,所以当14c <-时,()f x 只有大于1的零点.因为11(1)()24f f c -==-,所以当14c >时,f (x )只有小于–1的零点.由题设可知1144c -≤≤,当1=4c -时,()f x 只有两个零点12-和1.当1=4c 时,()f x 只有两个零点–1和12.当1144c -<<时,()f x 有三个等点x 1,x 2,x 3,且11(1,)2x ∈--,211(,)22x ∈-,31(,1)2x ∈.综上,若()f x 有一个绝对值不大于1的零点,则()f x 所有零点的绝对值都不大于1.11.【2020年高考天津】已知函数3()ln ()f x x k x k =+∈R ,()f x '为()f x 的导函数.(Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程;(ii )求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅱ)当3k ≥-时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 【解析】(Ⅰ)(i )当6k =时,3()6ln f x x x =+,故26()3f x x x'=+.可得(1)1f =,(1)9f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程为19(1)y x -=-,即98y x =-.(ii )依题意,323()36ln ,(0,)g x x x x x x=-++∈+∞.从而可得2263()36g x x x x x'=-+-,整理可得323(1)(1)()x x g x x -+'=.令()0g x '=,解得1x =.当x 变化时,(),()g x g x '的变化情况如下表:所以,函数()g x 的单调递减区间为(0,1),单调递增区间为(1,)+∞;()g x 的极小值为(1)1g =,无极大值.(Ⅱ)证明:由3()ln f x x k x =+,得2()3k f x x x'=+. 对任意的12,[1,)x x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+-- ⎪⎝⎭. ①令1()2ln ,[1,)h x x x x x =--∈+∞.当1x >时,22121()110h x x x x ⎛⎫'=+-=-> ⎪⎝⎭,由此可得()h x 在[1,)+∞单调递增,所以当1t >时,()(1)h t h >,即12ln 0tt t -->.因为21x ≥,323331(1)0,3t t t t k -+-=->≥-,所以,()332322113312ln (331)32ln x t t t k t t t t t t t tt⎛⎫⎛⎫-+-+-->-+---- ⎪ ⎪⎝⎭⎝⎭2336ln 31t t t t-=++-. ②由(Ⅰ)(ii )可知,当1t >时,()(1)g t g >,即32336ln 1t t t t-++>, 故23336ln 10t t t t-++->. ③ 由①②③可得()()()()()()()12121220x x f x f x f x f x ''-+-->.所以,当3k ≥-时,对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 12.【2020年高考北京】已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.【解析】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程:()1121y x -=--,即2130x y +-=.(Ⅱ)显然0t ≠, 因为()y f x =在点()2,12t t-处的切线方程为:()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t +=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样),则()423241441144(24)44t t S t t t t t++==++,所以()S t '=4222211443(848)(324)44t t t t t +-+-=222223(4)(12)3(2)(2)(12)44t t t t t t t-+-++==, 由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()S t 在()0,2上递减,在()2,+∞上递增, 所以2t =时,()S t 取得极小值, 也是最小值为()16162328S ⨯==. 【点睛】本题考查了利用导数的几何意义求切线方程,考查了利用导数求函数的最值,属于中档题.13.【2020年高考浙江】已知12a <≤,函数()e xf x x a =--,其中e=2.71828…是自然对数的底数.(Ⅰ)证明:函数()y f x =在(0,)+∞上有唯一零点; (Ⅱ)记x 0为函数()y f x =在(0,)+∞上的零点,证明:(ⅰ0x ≤≤; (ⅱ)00(e )(e 1)(1)x x f a a ≥--.【解析】(Ⅰ)因为(0)10f a =-<,22(2)e 2e 40f a =--≥->,所以()y f x =在(0,)+∞上存在零点.因为()e 1x f x '=-,所以当0x >时,()0f x '>,故函数()f x 在[0,)+∞上单调递增, 所以函数以()y f x =在(0,)+∞上有唯一零点.(Ⅱ)(ⅰ)令21()e 1(0)2xg x x x x =---≥,()e 1()1x g'x x f x a =--=+-,由(Ⅰ)知函数()g'x 在[0,)+∞上单调递增,故当0x >时,()(0)0g'x g'>=, 所以函数()g x 在[0,)+∞单调递增,故()(0)0g x g ≥=.由0g ≥得00()f a f x =≥=,因为()f x 在[0,)+∞0x .令2()e 1(01)x h x x x x =---≤≤,()e 21x h'x x =--,令1()e 21(01)x h x x x =--≤≤,1()e 2xh'x =-,所以故当01x <<时,1()0h x <,即()0h'x <,所以()h x 在[0,1]单调递减, 因此当01x ≤≤时,()(0)0h x h ≤=.由0h ≤得00()f a f x =≤=,因为()f x 在[0,)+∞0x .0x ≤≤(ⅱ)令()e (e 1)1x u x x =---,()e (e 1)x u'x =--,所以当1x >时,()0u'x >, 故函数()u x 在区间[1,)+∞上单调递增,因此()(1)0u x u ≥=.由00e x x a =+可得022000000(e )()(e 1)(e 2)(e 1)x a a x f x f x a x a x ax =+=-+-≥-,由0x ≥得00(e )(e 1)(1)xx f a a ≥--.14.【2020年高考江苏】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米. (1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点)..桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0),问O E'为多少米时,桥墩CD 与EF 的总造价最低?【解析】(1)设1111,,,AA BB CD EF 都与MN 垂直,1111,,,A B D F 是相应垂足. 由条件知,当40O'B =时, 31140640160,800BB =-⨯+⨯= 则1160AA =. 由21160,40O'A =得80.O'A = 所以8040120AB O'A O'B =+=+=(米).(2)以O 为原点,OO'为y 轴建立平面直角坐标系xOy (如图所示). 设2(,),(0,40),F x y x ∈则3216,800y x x =-+ 3211601606800EF y x x =-=+-. 因为80,CE =所以80O'C x =-.设1(80,),D x y -则211(80),40y x =- 所以22111160160(80)4.4040CD y x x x =-=--=-+ 记桥墩CD 和EF 的总造价为()f x ,则3232131()=(1606)(4)80024013(160)(040).80080f x k x x k x x k x x x +-+-+=-+<<2333()=(160)(20)80040800k f x k x x x x '-+=-, 令()=0f x ', 得20.x =所以当20x =时,()f x 取得最小值.答:(1)桥AB 的长度为120米;(2)当O'E 为20米时,桥墩CD 和EF 的总造价最低.【点睛】本题考查实际成本问题、利用导数求最值,考查基本分析求解能力,属中档题. 15.【2020年高考江苏】已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; (2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围; (3)若()422342() 2() (48 () 4 3 0)2 2f x x x g x x h x t t x t t t =-=-=--+<≤,,,[] , 2,2D m n =⊆-⎡⎤⎣⎦,求证:7n m -≤.【解析】(1)由条件()()()f x h x g x ≥≥,得222 2x x kx b x x +≥+≥-+, 取0x =,得00b ≥≥,所以0b =.由22x x kx +≥,得2 2 ()0x k x +-≥,此式对一切(,)x ∈-∞+∞恒成立, 所以22 0()k -≤,则2k =,此时222x x x ≥-+恒成立, 所以()2h x x =.(2) 1 ln ,()()()()0,h g x k x x x x -=--∈+∞.令() 1ln u x x x =--,则1()1,u'x x=-令()=0u'x ,得1x =.所以min () 0(1)u x u ==.则1ln x x -≥恒成立,所以当且仅当0k ≥时,()()f x g x ≥恒成立.另一方面,()()f x h x ≥恒成立,即21x x kx k -+≥-恒成立, 也即2()1 1 +0x k x k -++≥恒成立. 因为0k ≥,对称轴为102kx +=>, 所以2141)0(()k k +-+≤,解得13k -≤≤. 因此,k 的取值范围是0 3.k ≤≤(3)①当1t ≤≤由()()g x h x ≤,得2342484()32x t t x t t -≤--+,整理得4223328()0.()4t t x t t x ----+≤*令3242=()(328),t t t t ∆---- 则642=538t t t ∆-++.记64253()18(t t t t t ϕ-++=≤≤则53222062(31)(3())06t t t t t t 't ϕ-+=--<=恒成立,所以()t ϕ在[1,上是减函数,则()(1)t ϕϕϕ≤≤,即2()7t ϕ≤≤. 所以不等式()*有解,设解为12x x x ≤≤,因此21n m x x -≤-=≤ ②当01t <<时,432()()11 34241f h t t t t ---=+---.设432 = 342(41)t t t t v t +---,322 ()=1212444(1)(31),v't t t t t t +--=+-令()0v t '=,得t .当(0t ∈时,()0v t '<,()v t 是减函数;当1)t ∈时,()0v t '>,()v t 是增函数. (0)1v =-,(1)0v =,则当01t <<时,()0v t <.(或证:2()(1)(31)(1)0v t t t t =++-<.) 则(1)(1)0f h ---<,因此1()m n -∉,.因为m n ⊆[][,,所以1n m -≤<③当0t <时,因为()f x ,()g x 均为偶函数,因此n m -≤综上所述,n m -≤【点睛】本小题主要考查利用的导数求切线方程,考查利用导数研究不等式恒成立问题,考查利用导数证明不等式,考查分类讨论的数学思想方法,属于难题.16.【2020年新高考全国Ⅰ卷】已知函数1()e ln ln x f x a x a -=-+.(1)当e a =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围.【解析】()f x 的定义域为(0,)+∞,11()e x f x a x-'=-. (1)当e a =时,()e ln 1x f x x =-+,(1)e 1f '=-,曲线()y f x =在点(1,(1))f 处的切线方程为(e 1)(e 1)(1)y x -+=--,即(e 1)2y x =-+. 直线(e 1)2y x =-+在x 轴,y 轴上的截距分别为2e 1--,2. 因此所求三角形的面积为2e 1-. (2)当01a <<时,(1)ln 1f a a =+<.当1a =时,1()e ln x f x x -=-,11()e x f x x-'=-. 当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>.所以当1x =时,()f x 取得最小值,最小值为(1)1f =,从而()1f x ≥. 当1a >时,11()e ln ln e ln 1x x f x a x a x --=-+≥-≥. 综上,a 的取值范围是[1,)+∞.【点睛】本题考查导数几何意义、利用导数研究不等式恒成立问题,考查综合分析求解能力,分类讨论思想和等价转化思想,属较难试题.17.【2019年高考全国Ⅰ卷理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析.【解析】(1)设()()g x f 'x =,则1()cos 1g x x x=-+,21sin ())(1x 'x g x =-++.当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α.则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫<⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减.又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+>⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而,()f x 在0,2⎛⎤ ⎥⎝⎦π没有零点.(iii )当,2x π⎛⎤∈π⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π ⎥⎝⎦有唯一零点.(iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点.【名师点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在性定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可. 18.【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e x y =的切线.【答案】(1)函数()f x 在(0,1)和(1,)+∞上是单调增函数,证明见解析; (2)见解析.【解析】(1)f (x )的定义域为(0,1)(1,+∞).因为212()0(1)f 'x x x =+>-,所以()f x 在(0,1),(1,+∞)单调递增. 因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-,故f (x )在(0,1)有唯一零点11x . 综上,f (x )有且仅有两个零点.(2)因为0ln 01e x x -=,故点B (–ln x 0,01x )在曲线y =e x 上.由题设知0()0f x =,即0001ln 1x x x +=-,故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----.曲线y =e x 在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是1x , 所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e x 的切线.【名师点睛】本题考查了利用导数求已知函数的单调性、考查了曲线的切线方程,考查了数学运算能力.19.【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+.(1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【答案】(1)见解析;(2)01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减; 若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减. (2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾. 综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1. 【名师点睛】这是一道常规的函数导数和不等式的综合题,题目难度比往年降低了不少,考查函数的单调性、最大值、最小值这种基本量的计算. 20.【2019年高考北京理数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ).当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =, 所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-, 即y x =与6427y x =-. (Ⅱ)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:x 2-(2,0)-8(0,)3 838(,4)34()g'x+-+()g x6-6427-所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力. 21.【2019年高考天津理数】设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242n n ππ⎛⎫π+π+ ⎪⎝⎭内的零点,其中n ∈N ,证明20022sin c s e o n n n x x x -πππ+-<-.【答案】(Ⅰ)()f x 的单调递增区间为3ππ2π,2π(),()44k k k f x ⎡⎤-+∈⎢⎥⎣⎦Z 的单调递减区间为π5π2π,2π()44k k k ⎡⎤++∈⎢⎥⎣⎦Z .(Ⅱ)见解析;(Ⅲ)见解析. 【解析】(Ⅰ)由已知,有()e (cos sin )xf 'x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (Ⅱ)证明:记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )xg x x x =-,从而()2e sin xg'x x =-.当,42x ππ⎛⎫∈⎪⎝⎭时,0()g'x <,故 ()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭. 所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭.(Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos e 1n xn x =.记2n n y x n =-π,则。

2021届高考数学选择填空题专题复习课件:专题3 导数的概念及简单应用

2021届高考数学选择填空题专题复习课件:专题3 导数的概念及简单应用

【解析】(1)令t=ex,故x=ln t,所以f(t)=ln t+t,
即f(x)=ln x+x,
所以f′(x)= +11,所以f′(1)=2.
x
(2)因为曲线y=ax2+b 过点P(2,-5),
x
所以4a+b =-5.①
2
又y′=2ax- b,且曲线在点P(2,-5)处的切线与直线
x2
7x+2y+3=0平行,所以4ab- =-7 .②
【变式训练】
(1)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为
y=2x,则a= ( )
A.0
B.1
C.2
D.3
(2)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切
线过点(2,7),则a=________.
【解析】(1)选D.y′=a- x,+1由1 题意得y′|x=0=2, 即a-1=2,所以a=3. (2)因为f′(x)=3ax2+1,所以f′(1)=3a+1. 又f(1)=a+2,所以f(x)在点(1,f(1))处的切线方程为 y-(a+2)=(3a+1)(x-1).
3.已知点P在曲线y= 4 上,α为曲线在点P处的切线
ex+1
的倾斜角,则α的取值范围是________.
【解析】1.由题意知y′=ex+xex,令y′=0,解得x=-1,
代入函数解析式可得极值点的坐标为(-1,-. 1)
e
又极值点处的切线为平行于x轴的直线,故方程为y=
- 1.
e
2.设P(x0,y0)(x0>0),
由y=ex,得y′=ex,所以y′|x=0=1.

导数的概念及应用(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(原卷版)

 导数的概念及应用(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(原卷版)

考向14 导数的概念及应用【2022·全国·高考真题】曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________.【2022·全国·高考真题】若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________.1.求函数导数的总原则:先化简解析式,再求导.注意以下几点:连乘形式则先展开化为多项式形式,再求导;三角形式,先利用三角函数公式转化为和或差的形式,再求导;分式形式,先化为整式函数或较为简单的分式函数,再求导;复合函数,先确定复合关系,由外向内逐层求导,必要时可换元2.利用导数研究曲线的切线问题,一定要熟练掌握以下三点:(1)函数在切点处的导数值是切线的斜率,即已知切点坐标可求切线斜率,已知斜率可求切点坐标.(2)切点既在曲线上,又在切线上,切线还有可能和曲线有其它的公共点. (3)曲线()y f x =“在”点00(,)P x y 处的切线与“过”点00(,)P x y 的切线的区别:曲线()y f x =在点00(,)P x y 处的切线是指点P 为切点,若切线斜率存在,切线斜率为()0k f x '=,是唯一的一条切线;曲线()y f x =过点00(,)P x y 的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.3.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.4.求解与导数的几何意义有关问题时应注意的两点 (1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.1.在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩.2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-, 又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.一、导数的概念和几何性质1.概念函数()f x 在0x x =处瞬时变化率是0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.诠释:①增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有多近,即|0|x ∆-可以小于给定的任意小的正数;②当0x ∆→时,y ∆在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近; ③导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率,即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 2.几何意义函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.3.物理意义函数)(t s s =在点0t 处的导数)(0t s '是物体在0t 时刻的瞬时速度v ,即)(0t s v '=;)(t v v =在点0t 的导数)(0t v '是物体在0t 时刻的瞬时加速度a ,即)(0t v a '=.二、导数的运算 1.求导的基本公式 基本初等函数 导函数 ()f x c =(c 为常数) ()0f x '= ()a f x x =()a Q ∈1()a f x ax -'=()x f x a =(01)a a >≠, ()ln x f x a a '=()log (01)a f x x a a =>≠, 1()ln f x x a'=()x f x e =()x f x e '=()ln f x x = 1()f x x'=()sin f x x = ()cos f x x '= ()cos f x x =()sin f x x '=-2.导数的四则运算法则(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±; (2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+; (3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=. 3.复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为x u x y y u '''=:1.(2022·青海·海东市第一中学模拟预测(理))曲线2e x y x -=在2x =处的切线方程为( ) A .34y x =+ B .43y x =+ C .34y x =-D .43y x =-2.(2022·湖南·长沙县第一中学模拟预测)函数()2ln 1sin y x x =++的图象在0x =处的切线对应的倾斜角为α,则sin2α=( ) A .310 B .±310C .35D .±353.(2022·湖南·模拟预测)已知P 是曲线()2:ln 3C y x x a x =++-上的一动点,曲线C 在P点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)23,0⎡⎣B .)22,0⎡⎣C .(,23⎤-∞⎦D .(,22⎤-∞⎦4.(2022·安徽·巢湖市第一中学模拟预测(文))曲线22x ay x +=+在点()1,b 处的切线方程为60kx y -+=,则k 的值为( )A .1-B .23-C .12D .11.(2022·广东·模拟预测)如图是网络上流行的表情包,其利用了“可倒”和“可导”的谐音生动形象地说明了高等数学中“连续”和“可导”两个概念之间的关系.根据该表情包的说法,()f x 在0x x =处连续是()f x 在0x x =处可导的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2022·湖北·模拟预测)若过点()(),0m n m <可作曲线3y x =-三条切线,则( ) A .30n m <<-B .3n m >-C .0n <D .30n m <=-3.(2022·全国·模拟预测(理))过点()0,P b 作曲线e x y x =的切线,当240e b -<<时,切线的条数是( ) A .0B .1C .2D .34.(2022·湖北·黄冈中学模拟预测)已知a ,b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则14a b+的最小值为( )A .8B .9C .10D .135.(2022·四川省内江市第六中学模拟预测(理))若函数()21f x x =+与()2ln 1g x a x =+的图象存在公共切线,则实数a 的最大值为( ) A .e 2B .eC eD .2e6.(2022·云南师大附中模拟预测(理))若函数()y f x =的图象上存在两个不同的点A ,B ,使得曲线()y f x =在这两点处的切线重合,则称函数()y f x =为“自重合”函数.下列函数中既是奇函数又是“自重合”函数的是( ) A .ln y x x =+ B .3y x = C .cos y x x =-D .sin y x x =+7.(2022·山东潍坊·三模)过点()()1,P m m ∈R 有n 条直线与函数()e x f x x =的图像相切,当n 取最大值时,m 的取值范围为( )A .25e e m -<< B .250e m -<< C .10em -<<D .e m <8.(多选题)(2022·辽宁·渤海大学附属高级中学模拟预测)已知0a >,0b >,直线2y x a =+与曲线1e 1x y b -=-+相切,则下列不等式一定成立的是( ) A .219ab+≥B .19ab ≤C 225a b +D 22a b ≤9.(多选题)(2022·山东潍坊·模拟预测)过平面内一点P 作曲线|ln |y x =两条互相垂直的切线12,l l ,切点为P 1、P 2(P 1、P 2不重合),设直线12,l l 分别与y 轴交于点A ,B ,则下列结论正确的是( )A .P 1、P 2两点的横坐标之积为定值B .直线P 1P 2的斜率为定值C .线段AB 的长度为定值D .三角形ABP 面积的取值范围为(0,1]10.(多选题)(2022·江苏·模拟预测)设函数()()()2e R x f x x ax a a -=++∈的导函数()f x '存在两个零点1x 、()212x x x >,当a 变化时,记点()()11,x f x 构成的曲线为1C ,点()()22,x f x 构成的曲线为2C ,则( ) A .曲线1C 恒在x 轴上方 B .曲线1C 与2C 有唯一公共点C .对于任意的实数t ,直线y t =与曲线1C 有且仅有一个公共点D .存在实数m ,使得曲线1C 、2C 分布在直线y x m =-+两侧 11.(2022·全国·南京外国语学校模拟预测)己知函数22f xx ,()3ln g x x ax =-,若曲线()y f x =与曲线()y g x =在公共点处的切线相同,则实数=a ________. 12.(2022·江苏·阜宁县东沟中学模拟预测)已知0a >,0b >,直线y x a =+与曲线1e 21x y b -=-+相切,则21a b+的最小值为___________. 13.(2022·山东泰安·模拟预测)已知函数32()f x x ax =-+,写出一个同时满足下列两个条件的()f x :___________.①在[1,)+∞上单调递减;②曲线()(1)y f x x =≥存在斜率为1-的切线.14.(2022·山东潍坊·模拟预测)已知()e 1x f x =-(e 为自然对数的底数),()ln 1g x x =+,请写出()f x 与()g x 的一条公切线的方程______.15.(2022·山东师范大学附中模拟预测)已知函数()()2e ,x f x g x x a==,若存在一条直线同时与两个函数图象相切,则实数a 的取值范围__________.16.(2022·广东佛山·模拟预测)已知函数()()211ln 21,4212,2x x f x x x a x ⎧->⎪⎪=⎨⎪++≤⎪⎩,函数在1x =处的切线方程为____________.若该切线与()f x 的图象有三个公共点,则a 的取值范围是____________.1.(2021·全国·高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则( )参考答案 A .e b a < B .e a b < C .0e b a <<D .0e a b <<2.(2020·全国·高考真题(理))若直线l 与曲线y x x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +123.(2020·全国·高考真题(理))函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =-D .21y x =+4.(2022·全国·高考真题)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线5.(2022·全国·高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________.6.(2022·全国·高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________.7.(2021·全国·高考真题)已知函数12()1,0,0x f x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______.8.(2021·全国·高考真题(理))曲线212x y x -=+在点()1,3--处的切线方程为__________. 9.(2020·全国·高考真题(文))曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________.10.(2022·全国·高考真题(文))已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点()()11,x f x 处的切线也是曲线()y g x =的切线.(1)若11x =-,求a ; (2)求a 的取值范围.11.(2021·全国·高考真题(文))已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标.12.(2020·北京·高考真题)已知函数2()12f x x =-. (Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.。

曲线的公切线方程(原卷版)高中数学 导数满分通关 专题03

曲线的公切线方程(原卷版)高中数学 导数满分通关 专题03

专题03曲线的公切线方程【方法总结】解决此类问题通常有两种方法(1)利用其中一曲线在某点处的切线与另一曲线相切,列出关系式求解;(2)设公切线l 在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=f (x 1)-g (x 2)x 1-x 2.注意:求两条曲线的公切线,如果同时考虑两条曲线与直线相切,头绪会比较乱,为了使思路更清晰,一般是把两条曲线分开考虑,先分析其中一条曲线与直线相切,再分析另一条曲线与直线相切,直线与抛物线相切可用判别式法.【例题选讲】[例1](1)(2020·全国Ⅲ)若直线l 与曲线y =x 和圆x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12(2)已知f (x )=e x (e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为.(3)曲线C 1:y =ln x +x 与曲线C 2:y =x 2有________条公切线.(4)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =.(5)(2016·课标全国Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =e x 的切线,则b =________.(6)已知曲线f (x )=ln x +1与g (x )=x 2-x +a 有公共切线,则实数a 的取值范围为.【对点训练】1.若直线l 与曲线y =e x 及y =-14x 2都相切,则直线l 的方程为________.2.已知函数f (x )=x 2的图象在x =1处的切线与函数g (x )=e x a 的图象相切,则实数a 等于()A .eB .e e 2C .e 2D .e e3.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为()A .14B .12C .1D .44.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于()A .1B .2C .3D .3或-15.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.6.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f(1)),则m=________.7.已知定义在区间(0,+∞)上的函数f(x)=-2x2+m,g(x)=-3ln x-x,若以上两函数的图象有公共点,且在公共点处切线相同,则m的值为()A.2B.5C.1D.08.若直线y=kx+b是曲线y=e xe2的切线,也是曲线y=ex-1的切线,则k+b等于()A.-ln22B.1-ln22C.ln2-12D.ln229.设曲线y=e x在点(0,1)处的切线与曲线y=1x(x>0)在点P处的切线垂直,则P的坐标为________.10.已知曲线f(x)=x3+ax+14在x=0处的切线与曲线g(x)=-ln x相切,则a的值为.11.已知曲线y=e x在点(x1,1e x)处的切线与曲线y=ln x在点(x2,ln x2)处的切线相同,则(x1+1)(x2-1)=()A.-1B.-2C.1D.212.曲线C1:y=x2与曲线C2:y=a e x(a>0)存在公切线,则a的取值范围是________.13.若存在过点O(0,0)的直线l与曲线y=x3-3x2+2x和y=x2+a都相切,求a的值.14.已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直线m:y=kx+9,且f′(-1)=0.(1)求a的值;(2)是否存在k,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,请说明理由.。

专题03函数概念与基本初等函数(原卷版)

专题03函数概念与基本初等函数(原卷版)

专题03函数概念与基本初等函数 1.【2022年全国甲卷理科05】函数y =(3x −3−x )cosx 在区间[−π2,π2]的图象大致为( )A .B .C .D .2.【2022年全国乙卷理科12】已知函数f(x),g(x)的定义域均为R ,且f(x)+g(2−x)=5,g(x)−f(x −4)=7.若y =g(x)的图像关于直线x =2对称,g(2)=4,则∑k=122f(k)=( ) A .−21 B .−22 C .−23 D .−243.【2022年新高考2卷08】已知函数f(x)的定义域为R ,且f(x +y)+f(x −y)=f(x)f(y),f(1)=1,则∑22k=1f(k)=( ) A .−3 B .−2 C .0 D .14.【2021年全国甲卷理科4】青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足L =5+lgV .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )(√1010≈1.259) A .1.5 B .1.2 C .0.8 D .0.65.【2021年全国甲卷理科12】设函数f(x)的定义域为R ,f(x +1)为奇函数,f(x +2)为偶函数,当x ∈[1,2]时,f(x)=ax 2+b .若f(0)+f(3)=6,则f(92)=( )A .−94B .−32C .74D .52 真题汇总6.【2021年全国乙卷理科4】设函数f(x)=1−x 1+x ,则下列函数中为奇函数的是( )A .f(x −1)−1B .f(x −1)+1C .f(x +1)−1D .f(x +1)+1 7.【2021年全国乙卷理科12】设a =2ln1.01,b =ln1.02,c =√1.04−1.则( )A .a <b <cB .b <c <aC .b <a <cD .c <a <b 8.【2021年新高考2卷7】已知a =log 52,b =log 83,c =12,则下列判断正确的是( )A .c <b <aB .b <a <cC .a <c <bD .a <b <c9.【2021年新高考2卷8】已知函数f(x)的定义域为R ,f(x +2)为偶函数,f(2x +1)为奇函数,则( )A .f(−12)=0B .f(−1)=0C .f(2)=0D .f(4)=010.【2020年全国1卷理科12】若2a +log 2a =4b +2log 4b ,则( )A .a >2bB .a <2bC .a >b 2D .a <b 211.【2020年全国2卷理科09】设函数f(x)=ln|2x +1|−ln|2x −1|,则f (x )( )A .是偶函数,且在(12,+∞)单调递增 B .是奇函数,且在(−12,12)单调递减 C .是偶函数,且在(−∞,−12)单调递增 D .是奇函数,且在(−∞,−12)单调递减12.【2020年全国2卷理科11】若2x −2y <3−x −3−y ,则( )A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y|>0D .ln|x −y|<013.【2020年全国3卷理科04】Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I(t)=K1+e −0.23(t−53),其中K 为最大确诊病例数.当I (t ∗)=0.95K 时,标志着已初步遏制疫情,则t ∗约为( )(ln19≈3)A .60B .63C .66D .69 14.【2020年全国3卷理科12】已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b15.【2020年山东卷06】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( )A .1.2天B .1.8天C .2.5天D .3.5天16.【2020年山东卷08】若定义在R 的奇函数f (x )在(−∞,0)单调递减,且f (2)=0,则满足xf(x −1)≥0的x 的取值范围是( )A .[−1,1]∪[3,+∞)B .[−3,−1]∪[0,1]C .[−1,0]∪[1,+∞)D .[−1,0]∪[1,3]17.【2020年海南卷06】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( )A .1.2天B .1.8天C .2.5天D .3.5天18.【2020年海南卷08】若定义在R 的奇函数f (x )在(−∞,0)单调递减,且f (2)=0,则满足xf(x −1)≥0的x 的取值范围是( )A .[−1,1]∪[3,+∞)B .[−3,−1]∪[0,1]C .[−1,0]∪[1,+∞)D .[−1,0]∪[1,3]19.【2019年新课标3理科11】设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则( )A .f (log 314)>f (2−32)>f (2−23)B .f (log 314)>f (2−23)>f (2−32)C .f (2−32)>f (2−23)>f (log 314) D .f (2−23)>f (2−32)>f (log 314) 20.【2019年全国新课标2理科12】设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m ],都有f (x )≥−89,则m 的取值范围是( )A .(﹣∞,94]B .(﹣∞,73]C .(﹣∞,52]D .(﹣∞,83] 21.【2019年新课标1理科03】已知a =log 20.2,b =20.2,c =0.20.3,则( )A .a <b <cB .a <c <bC .c <a <bD .b <c <a22.【2018年新课标1理科09】已知函数f (x )={e x ,x ≤0lnx ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)23.【2018年新课标2理科11】已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.5024.【2018年新课标3理科12】设a=log0.20.3,b=log20.3,则()A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b25.【2017年新课标1理科05】函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]26.【2017年新课标1理科11】设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z27.【2016年新课标1理科08】若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.a log b c<b log a c D.log a c<log b c28.【2016年新课标2理科12】已知函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),若函数y=x+1x与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则∑m i=1(x i+y i)=()A.0B.m C.2m D.4m29.【2016年新课标3理科06】已知a=243,b=323,c=2513,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b30.【2015年新课标2理科05】设函数f(x)={1+log2(2−x),x<12x−1,x≥1,则f(﹣2)+f(log212)=()A.3B.6C.9D.1231.【2015年新课标2理科10】如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边B C,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.32.【2014年新课标1理科03】设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数33.【2014年新课标1理科06】如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.34.【2013年新课标1理科11】已知函数f (x )={−x 2+2x ,x ≤0ln(x +1),x >0,若|f (x )|≥ax ,则a 的取值范围是( )A .(﹣∞,0]B .(﹣∞,1]C .[﹣2,1]D .[﹣2,0]35.【2013年新课标2理科08】设a =log 36,b =log 510,c =log 714,则( )A .c >b >aB .b >c >aC .a >c >bD .a >b >c36.【2022年新高考1卷12】已知函数f(x)及其导函数f ′(x)的定义域均为R ,记g(x)=f ′(x),若f (32−2x),g(2+x)均为偶函数,则( ) A .f(0)=0 B .g (−12)=0 C .f(−1)=f(4) D .g(−1)=g(2)37.【2021年新高考1卷13】已知函数f(x)=x 3(a ⋅2x −2−x )是偶函数,则a =______.38.【2021年新高考2卷14】写出一个同时具有下列性质①②③的函数f(x):_______.①f(x 1x 2)=f(x 1)f(x 2);②当x ∈(0,+∞)时,f ′(x)>0;③f ′(x)是奇函数.39.【2019年全国新课标2理科14】已知f (x )是奇函数,且当x <0时,f (x )=﹣e ax .若f (ln 2)=8,则a = .40.【2017年新课标3理科15】设函数f (x )={x +1,x ≤02x ,x >0,则满足f (x )+f (x −12)>1的x 的取值范围是 .41.【2015年新课标1理科13】若函数f (x )=xln (x +√a +x 2)为偶函数,则a = .42.【2014年新课标2理科15】已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x ﹣1)>0,则x 的取值范围是 . 1.已知f (x +1)=lnx ,则f (x )=( )A .ln (x +1)B .ln (x −1)C .ln |x −1|D .ln (1−x )2.已知函数f (x )={2x 2+4x +1(x <0)2ex (x ≥0) ,则y =f (x )(x ∈R )的图象上关于坐标原点O 对称的点共有( )A .0对B .1对C .2对D .3对模拟好题3.对任意不相等的两个正实数x 1,x 2,满足f (x 1+x 22)>f (x 1)+f (x 2)2的函数是( ) A .f (x )=2xB .f (x )=ln2xC .f (x )=sin2xD .f (x )=2x4.已知函数f (x )={e x −1,x ⩾0,x +1,x <0,若m <n ,且f (m )=f (n ),则n −m 的最大值是( ) A .ln 2 B .1 C .2 D .ln 35.设函数f (x )={log 2(−x +4),x <22x ,x >2,则f (−4)+f (log 25)=( ) A .5 B .6 C .7 D .86.已知函数f (x )={2x ,x ⩽0,ln x,x >0,g (x )=|x (x −2)| ,若方程f(g (x ))+g (x )−m =0的所有实根之和为4,则实数m 的取值范围是( )A .m >1B .m ⩾1C .m <1D .m ⩽17.若f(x)为奇函数,且x 0是y =f(x)−2e x 的一个零点,则−x 0一定是下列哪个函数的零点( ) A .y =f(−x)e −x −2 B .y =f(x)e x +2 C .y =f(x)e x −2 D .y =f(−x)e x +28.已知函数f (x )=|x +2|+e x+2+e −2−x +a 有唯一零点,则实数a =( )A .1B .−1C .2D .−29.下列函数,既是奇函数,又是其定义域内增函数的是( )A .y =6x −6−xB .y =tanxC .y =−x 3D .y =x 3+110.定义在R 上的函数f (x )满足f (−x )+f (x )=0,f (x )=f (2−x ),且当x ∈[0,1]时,f (x )=x 2.则函数y =7f (x )−x +2的所有零点之和为( )A .7B .14C .21D .28 11.已知a =log 53,b =212,c =7−0.5,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a12.已知f(x)={2x 0<x ≤12f(x −1)+1,x >1f ,若f(n)<2022(n ∈N +),则n 的最大值为( ) A .9 B .10 C .11 D .1213.函数f (x )=lnx ,其中f (x )+f (y )=2,记S n =lnx n +ln (x n−1y )+⋯+ln (xy n−1)+lny n (n ∈N ∗),则∑1S i 2022i=1=( )A .20222023B .20232022C.20234044D.4044202314.已知a是方程x+lgx=4的根,b是方程x+10x=4的根,函数f(x)是定义在R上的奇函数,且当x ⩾0时,f(x)=x2+(a+b−4)x,若对任意x∈[t,t+2],不等式f(x+t)⩾2f(x)恒成立,则实数t的取值范围是()A.[√2,+∞)B.[2,+∞)C.(0,2]D.[−√2,−1]∪[√2,√3]15.垃圾分类,一般是指按一定规定或标准将垃圾分类储存、分类投放和分类搬运,从而变成公共资源的一系列活动的总称.分类的目的是提高垃圾的资源价值和经济价值,力争物尽其用.进行垃圾分类收集可以减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会、经济、生态等几方面的效益.已知某种垃圾的分解率v与时间t(月)满足函数关系式v=a⋅b t(其中a,b为非零常数).若经过6个月,这种垃圾的分解率为5%,经过12个月,这种垃圾的分解率为10%,那么这种垃圾完全分解(分解率为100%)至少需要经过()(参考数据lg2≈0.3)A.40个月B.32个月C.28个月D.20个月16.已知函数f(x)=2x+a2x−1是奇函数,则实数a的值为__________.17.函数y=√x(4−x)的定义域是___________.18.已知函数y=f(x−2)为奇函数,y=f(x+1)为偶函数,且f(0)−f(6)=4,则f(2022)=_________ __.19.设f(x)={√x,0<x<23(x−2),x≥2.若f(a)=f(a+2),则a=__________.20.设a∈R,函数f(x)={3ax(x≤0)log3x(x>0).若f[f(13)]≥9,则实数a的取值范围是_________.21.已知函数f(x)的定义域D=(−∞,0)∪(0,+∞),对任意的x1,x2∈D,都有f(x1x2)=f(x1)+f(x2)−3,若f(x)在(0,+∞)上单调递减,且对任意的t∈[9,+∞),f(m)>√t−√t−9恒成立,则m的取值范围是______.22.设函数y=f(x)的图象与y=3x+m的图象关于直线y=x对称,若f(3)+f(9)=1,实数m的值为______ __.23.函数f(x)=9x+31−2x的最小值是___________.24.若2a=3b=m,且1a +1b=2,则m=_____________.25.若函数f(x)同时满足:(1)对于定义域上的任意x,恒有f(x)+f(−x)=0;(2)对于定义域上的任意x1,x2,当x1≠x2,恒有f(x1)−f(x2)x1−x2<0,则称函数f(x)为“理想函数”,下列①f(x)=1x,②f(x)=ln√(1+x2)+x,③f(x)=1−2x1+2x ,④f(x)={−x2,x⩾0x2,x<0四个函数中,能被称为“理想函数”的有___________.(填出函数序号)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题03 导数及其应用易错点1 不能正确识别图象与平均变化率的关系A ,B 两机关单位开展节能活动,活动开始后两机关的用电量()()12W t W t ,与时间t (天)的关系如图所示,则一定有A .两机关单位节能效果一样好B .A 机关单位比B 机关单位节能效果好C .A 机关单位的用电量在0[0]t ,上的平均变化率比B 机关单位的用电量在0[0]t ,上的平均变化率大D .A 机关单位与B 机关单位自节能以来用电量总是一样大 【错解】选C.因为在(0,t 0)上,()1W t 的图象比()2W t 的图象陡峭,所以在(0,t 0)上用电量的平均变化率,A 机关单位比B 机关单位大.【错因分析】识图时,一定要结合题意弄清图形所反映的量之间的关系,特别是单调性,增长(减少)的快慢等要弄清.【试题解析】由题可知,A 机关单位所对应的图象比较陡峭,B 机关单位所对应的图象比较平缓,且用电量在0[0]t ,上的平均变化率都小于0,故一定有A 机关单位比B 机关单位节能效果好.故选B. 【参考答案】B1.平均变化率函数()y f x =从1x 到2x 的平均变化率为2121()()f x f x x x --,若21x x x ∆=-,2()y f x ∆=-1()f x ,则平均变化率可表示为y x∆∆. 2.瞬时速度一般地,如果物体的运动规律可以用函数()s s t =来描述,那么,物体在时刻t 的瞬时速度v 就是物体在t 到t t +∆这段时间内,当t ∆无限趋近于0时,st∆∆无限趋近的常数.1.巍巍泰山为我国的五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从A 处到B 处会感觉比较轻松,而从B 处到C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化BC 段曲线的陡峭程度吗?【答案】见解析.【解析】山路从A 到B 高度的平均变化率为h AB =10015005-=-,山路从B 到C 高度的平均变化率为h BC =1510170504-=-,∴h BC >h AB ,∴山路从B 到C 比从A 到B 要陡峭的多.易错点2 求切线时混淆“某点处”和“过某点”若经过点P (2,8)作曲线3y x =的切线,则切线方程为A .12160x y --=B .320x y -+=C .12160x y -+=或320x y --=D .12160x y --=或320x y -+=【错解】设()3f x x =,由定义得f ′(2)=12,∴所求切线方程为()8122y x -=-,即12160x y --=.【错因分析】曲线过点P 的切线与在点P 处的切线不同.求曲线过点P 的切线时,应注意检验点P 是否在曲线上,若点P 在曲线上,应分P 为切点和P 不是切点讨论.【试题解析】①易知P 点在曲线3y x =上,当P 点为切点时,由上面解法知切线方程为12160x y --=.②当P 点不是切点时,设切点为A (x 0,y 0),由定义可求得切线的斜率为203k x =.∵A 在曲线上,∴300y x=,∴32000832x x x -=-,∴3200340x x -+=, ∴()()200120x x +-=,解得01x =-或x 0=2(舍去),∴01y =-,k =3,此时切线方程为y +1=3(x +1),即320x y -+=.故经过点P 的曲线的切线有两条,方程为12160x y --=或320x y -+=. 【参考答案】D1.导数的几何意义函数()y f x =在0x x =处的导数0()f x '就是曲线()y f x =在点00(,())x f x 处的切线的斜率k . 2.曲线的切线的求法若已知曲线过点00(),P x y ,求曲线过点P 的切线,则需分点P (x 0,y 0)是切点和不是切点两种情况求解: (1)当点00(),P x y 是切点时,切线方程为()000()y y f x x x '-=-; (2)当点00(),P x y 不是切点时,可分以下几步完成: 第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过()11()P x f x ',的切线方程为()()()111 y f x f x x x -='-; 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程()()()111 y f x f x x x -='-,可得过点00(),P x y 的切线方程.2.已知函数0()(2018ln ),()2019f x x x f 'x =+=,则0x = A .2e B .1C .ln 2018D .e【答案】B 【解析】()(2018ln ),f x x x =+()2018ln 12019ln f 'x x x ∴=++=+,又因为0()2019f 'x =, 所以02019ln 2019x +=, 解得01x =,故选B.【名师点睛】本题主要考查导数的运算法则以及初等函数的求导公式,意在考查对基础知识的掌握与应用,属于基础题.在求曲线()y f x =的切线方程时,要注意区分是求某点处的切线方程,还是求过某点(不在曲线()f x 上)的切线方程,前者的切线方程为()()()000y f x f x x x -='-,其中切点()()00,x f x ,后者一般先设出切点坐标,再求解.易错点3 不能准确把握导数公式和运算法则求下列函数的导数:(1)22()2f x a ax x =+-; (2)sin ()ln x xf x x=.【错解】(1)22()(2)22f x a ax x a x ''=+-=+; (2)2sin (sin )sin cos ()()sin cos 1ln (ln )x x x x x x xf x x x x x x x x'+''====+'.【错因分析】(1)求导是对自变量求导,要分清表达式中的自变量.本题中的自变量是x ,a 是常量;(2)商的求导法则是:分母平方作分母,分子是差的形式,等于分子的导数乘以分母的积减去分母的导数乘以分子的积.本题把分数的导数类同于分数的乘方运算了. 【试题解析】(1)22()(2)22f x a ax x a x ''=+-=-; (2)22sin (sin )ln sin (ln )sin ln cos ln sin ()()ln (ln )ln x x x x x x x x x x x x x xf x x x x''⋅-⋅+-''===. 【参考答案】(1)()22f x a x '=-;(2)2sin ln cos ln sin ()ln x x x x x xf x x+-'=.1.导数计算的原则先化简解析式,使之变成能用八个求导公式求导的函数的和、差、积、商,再求导. 2.导数计算的方法①连乘积形式:先展开化为多项式的形式,再求导;②分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; ③对数形式:先化为和、差的形式,再求导; ④根式形式:先化为分数指数幂的形式,再求导;⑤三角形式:先利用三角函数公式转化为和或差的形式,再求导;3.已知()f x =1()2f '=A .2ln2--B .2ln2-+C .2ln2-D .2ln2+【答案】D【解析】依题意有()()121122ln 22x x x f x x-⋅⋅⋅'=,故12ln22ln221f +⎛⎫=⎪⎭'=+ ⎝,所以选D. 【名师点睛】本小题主要考查基本初等函数的导数,考查复合函数的导数计算,考查函数除法的导数计算,属于中档题.易错点4 区分复合函数的构成特征求下列函数的导数:(1)()221y x =+; (2)22cos y x =. 【错解】(1)()221y x '=+; (2)2sin2xy =-. 【错因分析】这是复合函数的导数,若()(),y f u u h x ==,则x u x y y u '='⋅'.如(1)中,22,1y u u x ==+,()()222221241x y u x x x x x '=⋅=+⋅=+,遇到这种类型的函数求导,可先整理再求导,或用复合函数求导公式求导.【试题解析】解法一:(1)∵()2242121y x x x =+=++,∴344y x x '=+.(2)∵221cos cos 2x y x +==,∴1sin 2y x '=-. 解法二:(1)()()()22221141y x x x x '=+⋅+'=+.(2)12coscos 2cos sin sin 2222()()(22)x x x x x y x '=⋅'=⋅-⋅'=-. 【参考答案】(1)()241y x x '=+;(2)1sin 2y x '=-.1.求复合函数的导数的关键环节: ①中间变量的选择应是基本函数结构; ②正确分析出复合过程;③一般是从最外层开始,由外及里,一层层地求导; ④善于把一部分表达式作为一个整体; ⑤最后结果要把中间变量换成自变量的函数. 2.求复合函数的导数的方法步骤:①分解复合函数为基本初等函数,适当选择中间变量; ②求每一层基本初等函数的导数;③每层函数求导后,需把中间变量转化为自变量的函数.4⎛ ⎝⎭处的切线方程是__________.【答案】20x y -=【解析】πcos 3y x '⎛⎫=+⎪⎝⎭,所以斜率为π1cos 032⎛⎫+= ⎪⎝⎭,切线方程为1,20.2y x x y =-+= 易错点5 审题不细致误设函数()2ln af x ax x x=--. (1)若()20f '=,求函数()f x 的单调区间;(2)若()f x 在定义域上是增函数,求实数a 的取值范围. 【错解】(1)∵()22a f x a x x '=+-,∴()2104a f a '=+-=,∴45a =. ∴()()2224422252555f x x x x x x'=+-=-+, 令()0f x '>,得2x >或12x <,令()0f x '<,得122x <<,∴函数()f x 的单调递增区间为122()()-∞+∞,,,单调递减区间为1()22,.(2)∵()f x 在定义域上为增函数,∴()0f x '≥恒成立,∵()22222a ax x af x a x x x-+'=+-=,∴220ax x a -+≥恒成立, ∴2440a a >⎧⎨∆=-≤⎩,∴1a ≥,即实数a 的取值范围是[1,)+∞. 【错因分析】错解有多处错误:一是忽视了定义域的限制作用,研究函数一定要注意函数的定义域;二是将单调区间取并集,函数的单调区间不要随意取并集;三是对不等式恒成立处理不当,对于自变量取值有限制条件的恒成立问题要和自变量在R 上取值的恒成立问题加以区分. 【试题解析】(1)由已知得x >0,故函数()f x 的定义域为(0,+∞).∵()22a f x a x x '=+-, ∴()2104af a '=+-=,∴45a =.∴()()2224422252555f x x x x x x'=+-=-+,令()0f x '>,得2x >或12x <,令()0f x '<,得122x <<,∴函数()f x 的单调递增区间为()102)2(+∞,,,,单调递减区间为1()22,.(2)若()f x 在定义域上是增函数,则()0f x '≥对x >0恒成立,∵()22222a ax x af x a x x x -+'=+-=,∴需x >0时220ax x a -+≥恒成立,即221xa x ≥+对x >0恒成立. ∵222111x x x x=≤++,当且仅当x =1时取等号, ∴1a ≥,即实数a 的取值范围是[1,)+∞.【参考答案】(1)函数()f x 的单调递增区间为()102)2(+∞,,,,单调递减区间为1()22,;(2)[1,)+∞.用导数求函数()f x 的单调区间的“三个方法”:1.当不等式()0f x '>(或()0f x '<)可解时, ①确定函数()y f x =的定义域; ②求导数()y f x '=';③解不等式()0f x '>,解集在定义域内的部分为单调递增区间; ④解不等式()0f x '<,解集在定义域内的部分为单调递减区间. 2.当方程()0f x '=可解时, ①确定函数()y f x =的定义域;②求导数()y f x '=',令()0f x '=,解此方程,求出在定义区间内的一切实根;③把函数()f x 的间断点(即()f x 的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义区间分成若干个小区间;④确定()f x '在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性. 3.当不等式()0f x '>(或()0f x '<)及方程()0f x '=均不可解时, ①确定函数()y f x =的定义域;②求导数并化简,根据()f x '的结构特征,选择相应基本初等函数,利用其图象与性质确定()f x '的符号; ③得单调区间.5.已知函数()322f x x ax b x =+-,其中,a b ∈R .(1)若曲线()y f x =在点()()1,1f 处的切线与直线30y -=平行,求a 与b 满足的关系; (2)当0b =时,讨论()f x 的单调性;(3)当0,1a b ==时,对任意的()0,x ∈+∞,总有()()e xf x x k <+成立,求实数k 的取值范围.【答案】(1)2320a b +-=;(2)①当0a =时,()f x 在R 上单调递增;②当0a >时,()f x 在2,3a ⎛⎫-∞- ⎪⎝⎭和()0,+∞上单调递增;在2,03a ⎛⎫- ⎪⎝⎭上单调递减;当0a <时,函数()f x 在(),0-∞和2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增;在20,3a ⎛⎫- ⎪⎝⎭上单调递减;(3)[)2,-+∞. 【解析】(1)由题意,得22()32f 'x x ax b =+-.由函数()f x 在点()()1,1f 处的切线与30y -=平行,得(1)0f '=. 即2320a b +-=.(2)当0b =时,2()32f 'x x ax =+,由()0f 'x =知240a ∆=≥.① 当0a =时,0∆=,()0f 'x ≥在R 恒成立, ∴函数()f x 在R 上单调递增.②当0a >时,由()0f 'x >,解得0x >或23x a <-; 由()0f 'x <,解得203a x -<<. 函数()f x 在2,3a ⎛⎫-∞-⎪⎝⎭和()0,+∞上单调递增;在2,03a ⎛⎫- ⎪⎝⎭上单调递减. ③当0a <时,()0f 'x >,解得23x a >-或0x <; 由()0f 'x <,解得203x a <<-. 函数()f x 在(),0-∞和2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增;在20,3a ⎛⎫-⎪⎝⎭上单调递减. (3)当0,1a b ==时,3()f x x x =-,由()()e xf x x k <+,得()3e xx x x k -<+对任意的()0,x ∈+∞恒成立.0x ,21e x x k ∴-<+,21e x k x ∴>--在()0,x ∈+∞恒成立.设()()21e ,0xg x x x =-->,则()2e xg'x x =-,令()2e xh x x =-,则()2e xh'x =-,由()0h'x =,解得ln2x =. 由()0h'x >,解得0ln2x <<; 由()0h'x <,解得ln2x >.∴导函数()g'x 在区间()0,ln2上单调递增;在区间()ln2,+∞上单调递减,()()ln22ln220g'x g'∴≤=-<,∴()g x 在()0,+∞上单调递减, ()()02g x g ∴<=-,2k ∴≥-.故所求实数k 的取值范围[)2,-+∞.本题主要考查导数的几何意义以及利用导数求函数的单调性、最值,考查了不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.易错点6 极值的概念理解不透彻已知()322f x x ax bx a =+++在1x =处有极值10,则a b +=________.【错解】7-或0由题得,2()32f x x ax b '=++,由已知得2(1)10110,,(1)0230f a a b f a b =⎧+++=⎧∴⎨⎨'=++=⎩⎩解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,所以a b +等于7-或0.【错因分析】极值点的导数值为0,但导数值为0的点不一定为极值点,错解忽视了“()101f x '=≠>=是f (x )的极值点”的情况.【试题解析】由题得,2()32f x x ax b '=++,由已知得2(1)10110,,(1)0230f a a b f a b =⎧+++=⎧∴⎨⎨'=++=⎩⎩解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,所以a b +等于7-或0.当4,11a b ==-时,2()3811(311)(1)f x x x x x '=+-=+-在x =1两侧的符号相反,符合题意. 当3,3a b =-=时,2()3(1)f x x '=-在x =1两侧的符号相同,所以3,3a b =-=不合题意,舍去. 综上可知,4,11a b ==-,所以7a b +=-. 【参考答案】7-对于给出函数极大(小)值的条件,一定既要考虑()00f x '=,又要考虑在0x x =两侧的导数值符号不同,否则容易产生增根.1.函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号. 2.求函数()f x 极值的方法: ①确定函数()f x 的定义域. ②求导函数()f x '. ③求方程()0f x '=的根.④检查()f x '在方程的根的左右两侧的符号,确定极值点.如果左正右负,那么()f x 在这个根处取得极大值,如果左负右正,那么()f x 在这个根处取得极小值,如果()f x '在这个根的左右两侧符号不变,则()f x 在这个根处没有极值.3.利用极值求参数的取值范围:确定函数的定义域,求导数()f x ',求方程()0f x '=的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围.6.若1x =是函数()3221()(1)33f x x a x a a x =++-+-的极值点,则a 的值为 A .−2 B .3C .−2或3D .−3或2【答案】B 【解析】()()()()23222()2(131)133f 'x f x x a x a a x a x x a a =++-+-⇒+-+=-+,由题意可知(1)0f '=,()2(1)12(1)303f 'a a a a ⇒+-+=-⇒+==或2a =-,当3a =时,()222389(9)(1)()2(1)f 'x x a x a a x x x x +-=++-=+-=+-,当1,9x x ><-时,()0f 'x >,函数单调递增;当91x -<<时,()0f 'x <,函数单调递减,显然1x =是函数()f x 的极值点;当2a =-时,()2222()232(111))(0a a f 'x x a x x x x +-=-++=-=+≥-,所以函数是R 上的单调递增函数,没有极值,不符合题意,舍去,故选B.【名师点睛】本题考查了已知函数的极值,求参数的问题.本题易错的地方是求出a 的值,没有通过单调性来验证1x =是不是函数的极值点,也就是说使得导函数为零的自变量的值,不一定是极值点.(1)()f x 在0x x =处有极值时,一定有()00f x '=,()0f x 可能为极大值,也可能为极小值,应检验()f x 在0x x =两侧的符号后才可下结论;(2)若()00f x '=,则()f x 未必在0x x =处取得极值,只有确认102x x x <<时,()()120f x f x ⋅<,才可确定()f x 在0x x =处取得极值.(3)在本题中,不要遗漏掉3a =-这种特殊情况.易错点7 被积函数与积分上、下限确定不准致误由抛物线()280y x y =>与直线60x y +-=及y =0所围成图形的面积为A .163- B .163+ C .403D .143【错解】D由()280y x y =>得y =,由60x y +-=得6y x =-,由2860y x x y ⎧=⎨+-=⎩得24x y =⎧⎨=⎩或1812x y =⎧⎨=-⎩(舍去).∴所求面积206(S x x =-⎰()32220111468212|3[]x x x =--=,故选D.【错因分析】错解没有画图分析曲线之间的位置关系,没有弄清平面图形的形状,以致弄错被积函数和积分区间致误.【试题解析】由题意,所围成平面图形如图所示,由2860y x x y ⎧=⎨+-=⎩得24x y =⎧⎨=⎩或1812x y =⎧⎨=-⎩(舍去),所以抛物线()280y x y =>与直线60x y +-=的交点坐标为(2,4),方法一:(选y 为积分变量)24042301111406d 624864822424(3())|S y y y y y y =--=--=--⨯=⎰. 方法二:(选x 为积分变量)3262202602221d 6d ()|62)3(|S x x x x x x =+-=+-⎰⎰2216114066662232)()]2[(3-=+⨯-⨯⨯-⨯=. 【参考答案】C用定积分求较复杂的平面图形的面积时:一要根据图形确定x 还是y 作为积分变量,同时,由曲线交点确定好积分上、下限;二要依据积分变量确定好被积函数,积分变量为x 时,围成平面图形的上方曲线减去下方曲线为被积函数,积分变量为y 时,围成平面图形的右方曲线减去左方曲线为被积函数; 三要找准原函数.1.利用定积分求平面图形面积的步骤 ①根据题意画出图形;②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案. 2.定积分与曲边梯形的面积的关系定积分的概念是从曲边梯形面积引入的,但是定积分并不一定就是曲边梯形的面积.这要结合具体图形来确定:设阴影部分面积为S ,则 (1) ()d baS f x x =⎰;(2) ()d baS f x x =-⎰;(3) ()()d d cbacS f x x f x x =-⎰⎰;(4) ()()()()d d []d b b baaaS f x x g x x f x g x x =-=-⎰⎰⎰.7.如图,若在矩形OABC 中随机撒一粒豆子,则豆子落在图中阴影部分的概率为A .21π- B .2π C .22πD .221π-【答案】A【解析】π1πS =⨯=矩形,又()ππ00sin d cos |cos πcos02x x x =-=--=⎰,π2S ∴=-阴影,∴豆子落在图中阴影部分的概率为π221ππ-=-. 故选A.在利用定积分求曲边梯形的面积时,要注意结合图形分析,否则易造成对实际情况的考虑不全而失误.本题主要考查的是抛物线的方程和定积分的几何意义,属于难题.解题时一定要抓住重要字眼“原始”和“当前”,否则很容易出现错误.解本题需要掌握的知识点是定积分的几何意义,即由直线x a =,x b =,0y =和曲线()y f x =所围成的曲边梯形的面积是()d b af x x ⎰.一、导数的概念及计算 1.导数的定义:00()()()limlimx x y f x+x f x f x x x∆→∆→∆∆-'==∆∆. 2.导数的几何意义:函数()y f x =在0x x =处的导数()0f x '就是曲线()y f x =在点00(,())x f x 处的切线的斜率k ,即0()k f x '=.求曲线()y f x =的切线方程的类型及方法(1)已知切点()00,P x y ,求()y f x =过点P 的切线方程:求出切线的斜率f ′(x 0),由点斜式写出方程; (2)已知切线的斜率为k ,求()y f x =的切线方程:设切点()00,P x y ,通过方程()0k f x ='解得x 0,再由点斜式写出方程;(3)已知切线上一点(非切点),求()y f x =的切线方程:设切点()00,P x y ,利用导数求得切线斜率()0f x ',再由斜率公式求得切线斜率,列方程(组)解得x 0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由()0k f x ='求出切点坐标()00,x y ,最后写出切线方程. (5)①在点P 处的切线即是以P 为切点的切线,P 一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是 否在已知曲线上. 3.基本初等函数的导数公式4.导数的运算法则(1)()()()()u x v x u x v x ±'⎡⎦'⎤±⎣'=. (2)()()()()()()·u x v x u x v x u x v x ⎡⎤⎣⎦'''=+. (3)2()()()()()[](()0)()()u x u x v x u x v x v x v x v x ''-'=≠. 5.复合函数的导数复合函数()()y f g x =的导数和函数()()y f u u g x ==,的导数间的关系为x u x y y u '='⋅',即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 二、导数的应用1.函数的单调性与导数的关系 一般地,在某个区间(a ,b )内:①如果()0f x '>,函数f (x )在这个区间内单调递增; ②如果()0f x '<,函数f (x )在这个区间内单调递减; ③如果()=0f x ',函数f (x )在这个区间内是常数函数.(1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;(2)在某个区间内,()0f x '>(()0f x '<)是函数f (x )在此区间内单调递增(减)的充分条件,而不是必要条件.例如,函数3()f x x =在定义域(,)-∞+∞上是增函数,但2()30f x x '=≥.(3)函数()f x 在(a ,b )内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(a ,b )内恒成立,且()f x '在(a ,b )的任意子区间内都不恒等于0.这就是说,在区间内的个别点处有()0f x '=,不影响函数()f x 在区间内 的单调性.2.函数的极值与导数的关系 一般地,对于函数()y f x =,①若在点x = a 处有f ′(a )= 0,且在点x = a 附近的左侧()0f 'x <,右侧()0f 'x >,则称x= a 为f (x )的极小值点;()f a 叫做函数f (x )的极小值.②若在点x =b 处有()f 'b =0,且在点x=b 附近的左侧()0f 'x >,右侧()0f 'x <,则称x= b 为f (x )的极大值点,()f b 叫做函数f (x )的极大值.③极小值点与极大值点通称极值点,极小值与极大值通称极值. 3.函数的最值与极值的关系①极值是对某一点附近(即局部)而言,最值是对函数的定义区间[,]a b 的整体而言;②在函数的定义区间[,]a b 内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个(或者没有);③函数f (x )的极值点不能是区间的端点,而最值点可以是区间的端点; ④对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得.求函数()y f x =在[a ,b ]上的最大值与最小值的步骤 ①求函数()y f x =在(a ,b )内的极值;②将函数()y f x =的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.三、定积分与微积分基本定理 1.定积分的定义和相关概念(1)如果函数f (x )在区间[a ,b ]上连续,用分点011i i n a x x x x x b -=<<<<<<=将区间[a ,b ]等分成n 个小区间,在每个小区间[x i −1,x i ]上任取一点()1,2,,i i n ξ=,作和式11()()nni i i i b af x f nξξ==-∆=∑∑;当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作()d baf x x ⎰,即()d baf x x ⎰= 1lim ()ni n i b af nξ→∞=-∑. (2)在()d baf x x ⎰中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 2.定积分的性质 (1)()()d d bba akf x x k f x x =⎰⎰(k 为常数);(2)[()()]d ()d ()d bb ba aaf xg x x f x x g x x ±=±⎰⎰⎰;(3)()d =()d +()d bcb aacf x x f x x f x x ⎰⎰⎰(其中a <c <b ).3.定积分的几何意义(1)当函数f (x )在区间[a ,b ]上恒为正时,定积分ba ⎰ f (x )d x 的几何意义是由直线x = a ,x =b (a ≠b ),y = 0和曲线y = f (x )所围成的曲边梯形的面积(图①中阴影部分).(2)一般情况下,定积分ba ⎰ f (x )d x 的几何意义是介于x 轴、曲线f (x )以及直线x = a ,x =b 之间的曲边梯形面积的代数和(图②中阴影部分所示),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.定积分的物理意义(1)变速直线运动的路程:做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即()d bas v t t =⎰.(2)变力做功:一物体在恒力F (单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s m ,则力F 所做的功为W =Fs .如果物体在变力F (x )的作用下沿着与F (x )相同的方向从x =a 移动到x =b ,则变力F (x )做的功()d baW F x x =⎰.4.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )= f (x ),那么()d baf x x ⎰= F (b )−F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式,其中F (x )叫做f (x )的一个原函数.为了方便,我们常把F (b )−F (a )记作()|ba F x ,即()d baf x x ⎰=()|b a F x = F (b )−F (a ).1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-2.【2018年高考全国Ⅰ卷理数】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x =D .y x =3.【2017年高考全国Ⅱ卷理数】若2x =-是函数21()(1)ex f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e --C .35e -D .14(),x y 处的切线斜率为()g x ,则函数()2y x g x =的部分图象可以为A .B .C .D .5.函数2l ()n f x x x =的最小值为A .1e- B .1e C .12e-D .12e6.定义在()0,+∞上的函数()f x 满足()21x f x '>,()522f =,则关于x 的不等式()1e 3ex x f <-的解集为A .()20,e B .(),ln2-∞ C .()0,ln2D .()2e ,+∞7.已知定义在()0,+∞上的函数()()2,6ln 4f x x m h x x x =-=-,设两曲线()y f x =与()y h x =在公共点处的切线相同,则m 值等于 A .−3 B .1 C .3D .58.若函数()51ln 12f x x ax ax=+--在()1,2上为增函数,则a 的取值范围为 A .()1,0,24⎡⎤-∞⎢⎥⎣⎦B .()1,0,12⎡⎤-∞⎢⎥⎣⎦C .[)11,00,4⎛⎤- ⎥⎝⎦D .[)11,0,12⎡⎤-⎢⎥⎣⎦9.若方程330x x m -+=在[0,2]上有解,则实数m 的取值范围是 A .[]2,2- B .[0,2]C .[]2,0-D .2()()2-∞-+∞,,10.两曲线sin y x =,cos y x =与两直线0x =A C11.已知函数()()()322132132f x x a x a a x =+-+-+,若在区间()0,3内存在极值点,则实数a 的取值范围是 A .()0,3B .1,22⎛⎫⎪⎝⎭ C .()()0,11,3D .()1,11,22⎛⎫⎪⎝⎭12.【2019年高考全国Ⅰ卷理数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 13.【2018年高考全国Ⅱ卷理数】曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.14.【2018年高考全国Ⅰ卷理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.15.已知函数22,0,()e ,0,x x x f x x ⎧≤=⎨>⎩若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.16.【2019年高考全国Ⅰ卷理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点.17.【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e xy =的切线.18.【2018年高考全国Ⅰ卷理数】已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.19.已知函数()3213f x x bx cx c =+++. (1)当1x =时,()f x 有极小值196-,求实数,b c ;(2)设()()g x f x cx =-,当()0,1x ∈时,在()g x 图象上任意一点P 处的切线的斜率为k ,若1k <,求实数b 的取值范围.20.已知函数()e 1(0)x f x ax a =-->,e 为自然对数的底数.(1)求函数)(x f 的最小值;(2)若0)(≥x f 对任意的x ∈R 恒成立,求实数a 的值;(3)在(2________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________ ________________________________________________________________________________________。

相关文档
最新文档