2014年高考数学理科分类汇编专题03 导数与应用

合集下载

专题03 导数与应用-2014年高考数学试题分项版解析(解析版)

专题03 导数与应用-2014年高考数学试题分项版解析(解析版)

专题3 导数与应用1. 【2014高考安徽卷文第15题】若直线l 与曲线C 满足下列两个条件:)(i 直线l 在点()00,y x P 处与曲线C 相切;)(ii 曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号) ①直线0:=y l 在点()0,0P 处“切过”曲线C :3yx =②直线1:-=x l 在点()0,1-P 处“切过”曲线C :2)1(+=x y ③直线x y l =:在点()0,0P 处“切过”曲线C :x y sin = ④直线x y l =:在点()0,0P 处“切过”曲线C :x y tan = ⑤直线1:-=x y l 在点()0,1P 处“切过”曲线C :x y ln =3. 【2014高考湖南卷文第9题】若1201x x <<<,则( )A.2121ln ln xxe e x x ->-B.2121ln ln x xe e x x -<-C.1221xxx e x e >D.1221xxx e x e <①②解得1,2,a b =-⎧⎨=-⎩所以3a b +=-.【考点】导数与切线斜率.5. 【2014高考江西卷文第10题】在同意直角坐标系中,函数22322()2ay ax x y a x ax x a a R =-+=-++∈与的图像不可能的是( )6. 【2014高考江西卷文第11题】若曲线P x x y 上点ln =处的切线平行于直线P y x 则点,012=+-的坐标是_______. 【答案】(,)e e 【解析】试题分析:因为ln 1y x '=+,设切点(,)a b ,则ln 12,,k a a e =+==又ln ,b a a e ==(,).P e e 考点:利用导数求切点7. 【2014高考辽宁卷文第12题】当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]-- 【答案】C 【解析】试题分析:不等式32430ax x x -++≥变形为3243ax x x ≥--.当0x =时,03≥-,故实数a 的取值8. 【2014高考全国1卷文第12题】已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-9. 【2014高考全国2卷文第11题】若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( )(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞10.【2014高考上海卷文第9题】设,0,()1,0,x a xf xx xx-+≤⎧⎪=⎨+>⎪⎩若(0)f是()f x的最小值,则a的取值范围是.12. 【2014高考北京卷文第20题】已知函数3()23f x x x =-. (1)求()f x 在区间[2,1]-上的最大值;(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论) 【答案】(1)2;(2) (3,1)--;(3)详见解析.【解析】试题分析:(1)求导数,导数等于0求出x ,再代入原函数解析式,最后比较大小,即可;(2)设切点,由相切得出切线方程,然后列表并讨论求出结果;(3)由(2)容易得出结果.同零点”, '()g x =21212x x -=12(1)x x -,()g x 与'()g x 的情况如下:x(,0)-∞0 (0,1)1 (1,)+∞'()g x+ 0 -+ ()g xt+31t +所以,(0)3g t =+是()g x 的极大值,(1)1g t =+是()g x 的极小值,当(0)30g t =+≤,即3t ≤-时,此时()g x 在区间(,1]-∞和(1,)+∞上分别至多有1个零点,所以()g x 至多有2个零点,当(1)10g t =+≥,1t ≥-时,此时()g x 在区间(,0)-∞和[0,)+∞上分别至多有1个零点,所以()g x 至多有2个零点.当(0)0g >且(1)0g <,即31t -<<-时,因为(1)70g t -=-<,(2)110g t =+>,所以()g x 分别为区间[1,0),[0,1)-和[1,2)上恰有1个零点,由于()g x 在区间(,0)-∞和(1,)+∞上单调,所以()g x 分别在区间(,0)-∞和[1,)+∞上恰有1个零点.综上可知,当过点(1,)P t 存在3条直线与曲线()y f x =相切时,t 的取值范围是(3,1)--.13.【2014高考大纲卷文第21题】函数f(x)=a x3+3x2+3x(a≠0). (1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(1,2)是增函数,求a的取值范围.考点:1.函数的导数;2.导数性质的应用. 14. 【2014高考福建卷文第22题】已知函数()x f x e ax =-(a 为常数)的图像与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为1-.(1)求a 的值及函数()f x 的极值;(2)证明:当0x >时,2x xe <(3)证明:对任意给定的正数e ,总存在0x ,使得当0(,)x x ∈+∞时,恒有xx ce <(3)思路一:对任意给定的正数c ,取01x c=, 根据2x x e <.得到当0x x >时,21x e x x c>>. 思路二:令1(0)k k c=>,转化得到只需ln ln x x k >+成立. 分01k <≤,1k >,应用导数研究()ln ln h x x x k =--的单调性. 思路三:就①1c ≥,②01c <<,加以讨论. 试题解析:解法一:②若01c <<,令()xh x ce x =-,则'()1xh x ce =-, 令'()0h x =得1ln x c=. 当1lnx c >时,'()0h x >,()h x 单调递增. 取022ln x c =,22ln0222()2ln2(ln )ch x cec c c=-=-, 易知22ln 0c c->,又()h x 在0(,)x +∞内单调递增, 所以当0(,)x x ∈+∞时,恒有0()()0h x h x >>,即xx ce <.综上,对任意给定的正数c ,总存在0x ,当0(,)x x ∈+∞时,恒有xx ce <.考点:导数的计算及导数的应用,全称量词与存在量词,转化与化归思想,分类讨论思想.15. 【2014高考广东卷文第21题】已知函数()()32113f x x x ax a R =+++∈. (1)求函数()f x 的单调区间;(2)当0a <时,试讨论是否存在0110,,122x ⎛⎫⎛⎫∈ ⎪⎪⎝⎭⎝⎭,使得()012f x f ⎛⎫= ⎪⎝⎭.(2)()3232000011111111233222f x f x x ax a ⎡⎤⎛⎫⎛⎫⎛⎫-=+++-⋅++⋅+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦323200011113222x x a x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-+-⎢⎥⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦20000001111113224222x x x x x a x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++- ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 20000111236122x x x x a ⎛⎫⎛⎫=-+++++⎪ ⎪⎝⎭⎝⎭()200011414712122x x x a ⎛⎫=-+++ ⎪⎝⎭, 若存在0110,,122x ⎛⎫⎛⎫∈ ⎪⎪⎝⎭⎝⎭,使得()012f x f ⎛⎫= ⎪⎝⎭,【考点定位】本题以三次函数为考查形式,考查利用导数求函数的单调区间,从中渗透了利用分类讨论的思想处理含参函数的单调区间问题,并考查了利用作差法求解不等式的问题,综合性强,属于难题.16. 【2014高考湖北卷文第21题】π为圆周率,⋅⋅⋅=71828.2e 为自然对数的底数. (1)求函数xxx f ln )(=的单调区间; (2)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数;(3)将3e ,e 3,πe ,e π,π3,3π这6个数按从小到大的顺序排列,并证明你的结论.【答案】(1)单调增区间为),0(e ,单调减区间为),(+∞e ;(2)最大数为π3,最小数为e 3;(3)e 3,3e ,e π,πe ,3π,π3.【解析】试题分析:(1)先求函数)(x f 的定义域,用导数法求函数)(x f 的单调区间;(2)利用(1)的结论结合函17. 【2014高考湖南卷文第21题】已知函数()cos sin 1(0)f x x x x x =-+>.(1)求()f x 的单调区间;(2)记i x 为()f x 的从小到大的第(*)i i N ∈个零点,证明:对一切*n N ∈,有2221211123n x x x +++<. 【答案】(1) 单调递减区间为()()()2,21*k k k N ππ+∈,单调递增区间为()()()()21,22*k k k N ππ++∈.(2)详见解析【解析】试题分析:(1)对函数()f x 求导得到导函数()()'0f x x >,求()'f x 大于0和小于0的解集得到单调减区间和单调增区间,但是必须注意正余弦的周期性和原函数的定义域()0,+∞.的,故()11n n x n ππ+<<+,因此, 当1n =时,2211423x π=<; 当2n =时,()222121112413x x π+<+<; 当3n ≥时,()22222221231111111+4121n x x x x n π⎡⎤+++<++++⎢⎥-⎢⎥⎣⎦()()222221231111111+51221n x x x x n n π⎡⎤⇒+++<+++⎢⎥⨯--⎣⎦2222212311111111+51221n x x x x n n π⎡⎤⎛⎫⎛⎫⇒+++<+-++- ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎣⎦221162613n ππ⎛⎫=-<< ⎪-⎝⎭, 综上所述,对一切的*n N ∈,2221211123n x x x +++<. 【考点定位】导数 单调性 放缩法 裂项求和 18. 【2014高考江苏第19题】已知函数()xxf x e e -=+,其中e 是自然对数的底数.(1)证明:()f x 是R 上的偶函数; (2)若关于x 的不等式()1xmf x em -≤+-在(0,)+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0(1,)x ∈+∞,使得3000()(3)f x a x x <-+成立,试比较1a e -与1e a -的大小,并证明你的结论.个幂的大小比较,我们同样适当变形,要比较它们的大小,就是要比较1a -与(1)ln e a -的大小,为此研19. 【2014高考江西文第18题】 已知函数x a ax x x f )44()(22++=,其中0<a .(1)当4-=a 时,求)(x f 的单调递增区间; (2)若)(x f 在区间]4,1[上的最小值为8,求a 的值.,min ()min{(1),(4)},f x f f =由于(1)8,f ≠所以2(4)2(6416)8,f a a =++=且(4)(1),f f <解得10a =-或6a =-(舍),当10a =-时,()f x 在(1,4)上单调递减,满足题意,综上10a =-.试题解析:(1)定义域:[0,),+∞而 2222442012(10)(2)()(84)222x ax a x ax a x a x a f x x a x xxx++++++'=++==,当4-=a 时,2(52)(2)()x x f x x--'=,由()0f x '=得25x =或2x =,列表: x2(0,)5 252(,2)5 2 (2,)+∞ ()f x '+-+20. 【2014高考辽宁文第21题】已知函数()(cos )2sin 2f x x x x π=---,1sin 2()()11sin x xg x x x ππ-=-+-+.证明:(Ⅰ)存在唯一0(0,)2x π∈,使0()0f x =;(Ⅱ)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+>..因此存在唯一的1(,)2x ππ∈,使得1()0g x =.由于10x t π=-,00x t <,所以01x x π+>.【考点定位】1、函数的零点;2、利用导数判断函数单调性;3、利用导数求函数的最值.21. 【2014高考全国1文第21题】设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()()()11y f x f =在点,处的切线斜率为0(1)求b;(2)若存在01,x ≥使得()01a f x a <-,求a 的取值范围。

【高考复习】高考数学(理数)2014-2018年5年真题分类 第03章 导数及其应用(含答案解析)

【高考复习】高考数学(理数)2014-2018年5年真题分类 第03章  导数及其应用(含答案解析)

第三章导数及其应用考点1 导数与积分1.(2018全国Ⅰ,5)设函数.若为奇函数,则曲线在点处的切线方程为( )A.B.C.D.1.D 因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.2.(2017•浙江,7)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A. B. C. D.2. D 由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选D.3.(2017•新课标Ⅱ,11)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.13. A 函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选A.4.(2014·大纲全国,7)曲线y=x e x-1在点(1,1)处切线的斜率等于()A. 2eB.eC.2D.14.C[由题意可得y ′=e x -1+x e x -1,所以曲线在点(1,1)处切线的斜率等于2,故选C.]5.(2014·新课标全国Ⅱ,8)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A.0B.1C.2D.35.D [y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3.]6.(2014·陕西,3)定积分(2x +e x )d x 的值为( ) A.e +2 B.e +1 C.e D.e -16.C [∫10(2x +e x )d x =(x 2+e x )|10=(1+e)-(0+e 0)=e ,因此选C.]7.(2014·江西,8)若f (x )=x 2+2f (x )d x ,则f (x )d x =( )A.-1B.-13C.13D.17.B [因为∫10f (x )d x 是常数,所以f ′(x )=2x ,所以可设f (x )=x 2+c (c 为常数),所以x 2+c =x 2+2(13x 3+cx )|10,解得c =-23,∫10f (x )d x =∫10(x 2+c )d x =∫10(x 2-23)d x =⎝⎛⎭⎫13x 3-23x |10=-13.]8.(2014·山东,6)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A.2 2 B.4 2 C.2 D.48.D [由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线 y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为∫20(4x -x 3)d x =⎝⎛⎭⎫2x 2-14x 4|20=4.]9.(2014·湖南,9)已知函数f (x )=sin(x -φ),且2π30()d f x x ⎰=0,则函数f (x )的图象的一条对称轴是( )A.x =5π6B.x =7π12C.x =π3D.x =π69.A [由定积分∫2π30sin(x -φ)d x =-cos(x -φ)|2π30=12cos φ-32sin φ+cos φ=0,得tan φ=3,所以φ=π3+k π(k ∈Z ),所以f (x )=sin(x -π3-k π)(k ∈Z ),由正弦函数的性质知y =sin(x -π3-k π)与y =sin(x -π3)的图象的对称轴相同,令x -π3=k π+π2,则x =k π+5π6(k ∈Z ),所以函数f (x )的图象的对称轴为x =k π+56π(k ∈Z ),当k =0,得x =5π6,选A.]10.(2014·湖北,6)若函数f (x ),g (x )满足11()()d f x g x x -⎰=0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2.其中为区间[-1,1]上的正交函数的组数是( ) A.0 B.1 C.2 D.310.C [对于①,∫1-1sin 12x cos 12x d x =∫1-112sin x d x =0,所以①是一组正交函数;对于②,∫1-1(x +1)(x -1)d x =∫1-1(x 2-1)d x ≠0,所以②不是一组正交函数;对于③, ∫1-1x ·x 2d x =∫1-1x 3d x =0,所以③是一组正交函数.选C.]11.(2018全国Ⅱ,13)曲线在点处的切线方程为__________.11.12.(2018全国Ⅲ,14)曲线在点处的切线的斜率为,则________.12.,则.所以.13.(2016·全国Ⅲ,15)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.13.2x +y +1=0[设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x -3,f ′(1)=-2,切线方程为y =-2x -1.]14.(2016·全国Ⅱ,16)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.14.1-ln 2 [y =ln x +2的切线为:y =1x 1·x +ln x 1+1(设切点横坐标为x 1).y =ln(x +1)的切线为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1,(设切点横坐标为x 2).∴⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.]15.(2015·陕西,15)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.15.(1,1) [∵(e x )′|x=0=e 0=1,设P (x 0,y 0),有(x1)′|x=x0=-1x 20=-1,又x 0>0,∴x 0=1,故P (1,1).] 16.(2015·湖南,11)⎰2(x -1)d x =________.16.0 [∫20(x -1)d x =⎝⎛⎪⎪⎭⎫12x 2-x 20=12×22-2=0.]17.(2015·天津,11)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________.17.16 [曲线y =x 2与直线y =x 所围成的封闭图形如图,由⎩⎪⎨⎪⎧y =x 2,y =x ,得A (1,1),面积S =∫10x d x -∫10x 2d x =12x 2⎪⎪⎪⎪10-13x210=12-13=16.] 18.(2015·陕西,16)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为________.18.1.2 [由题意可知最大流量的比即为横截面面积的比,建立以抛物线顶点为原点的直角坐标系,设抛物线方程为y =ax 2,将点(5,2)代入抛物线方程得a =225,故抛物线方程为y =225x 2,抛物线的横截面面积为S 1=2⎰5(2-252x 2)d x =2(2x-752x 3)|50=403(m 2),而原梯形上底为10-2tan 45°×2=6(m),故原梯形面积为S 2=12(10+6)×2=16,S 2S 1=16403=1.2.]19.(2014·江西,13)若曲线y =e -x 上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.19.(-ln 2,2) [由题意有y ′=-e -x ,设P (m ,n ),直线2x +y +1=0的斜率为-2,则由题意得-e-m=-2,解得m=-ln 2,所以n=e-(-ln 2)=2.]20.(2018浙江,22)已知函数.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2;(Ⅱ)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.20.(Ⅰ)函数f(x)的导函数,由得,因为,所以.由基本不等式得.因为,所以.由题意得.设,则,所以所以g(x)在[256,+∞)上单调递增,故,即.(Ⅱ)令m =,n =,则f (m )–km –a >|a |+k –k –a ≥0,f (n )–kn –a <≤<0,所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a ,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点.由f (x )=kx +a 得.设h (x )=,则h ′(x )=,其中g (x )=.由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2, 故–g (x )–1+a ≤–g (16)–1+a =–3+4ln2+a ≤0,所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根.综上,当a ≤3–4ln2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.考点2 导数的应用1.(2015·福建,10)若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( ) A.f(k 1)<1k B.f(k 1)>1k -1 C.f(11-k )<1k -1 D.f(11-k )>kk -1 1.C ∵导函数f ′(x )满足f ′(x )>k >1,∴f ′(x )-k >0,k -1>0,1k -1>0,可构造函数g (x )=f (x )-kx ,可得g ′(x )>0,故g (x )在R 上为增函数, ∵f (0)=-1,∴g (0)=-1,∴g(11-k )>g (0),∴f(11-k )-k k -1>-1,∴f(11-k )>1k -1,∴选项C 错误,故选C.2.(2015·陕西,12)对二次函数f (x )=ax 2+bx +c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( )A.-1是f (x )的零点B.1是f (x )的极值点C.3是f (x )的极值D.点(2,8)在曲线y =f (x )上 2.A [A 正确等价于a -b +c =0,① B 正确等价于b =-2a ,② C 正确等价于4ac -b 24a =3,③D 正确等价于4a +2b +c =8.④ 下面分情况验证,若A 错,由②、③、④组成的方程组的解为⎩⎪⎨⎪⎧a =5,b =-10,c =8.符合题意;若B 错,由①、③、④组成的方程组消元转化为关于a 的方程后无实数解; 若C 错,由①、②、④组成方程组,经验证a 无整数解; 若D 错,由①、②、③组成的方程组a 的解为-34也不是整数.综上,故选A.]3.(2015·新课标全国Ⅱ,12)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( ) A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)3.A [因为f (x )(x ∈R )为奇函数,f (-1)=0,所以f (1)=-f (-1)=0.当x ≠0时,令g (x )=f (x )x,则g (x )为偶函数,且g (1)=g (-1)=0.则当x >0时,g ′(x )=(xx f )()′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0⇔f (x )x>0⇔f (x )>0;在(-∞,0)上,当x <-1时,g (x )<g (-1)=0⇔f (x )x <0⇔f (x )>0.综上,得使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),选A.]4.(2015·新课标全国Ⅰ,12)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎡⎭⎫-32e ,1B.⎣⎡⎭⎫-32e ,34C.⎣⎡⎭⎫32e ,34D.⎣⎡⎭⎫32e ,1 4.D [设g (x )=e x (2x -1),y =ax -a ,由题知存在唯一的整数x 0,使得g (x 0)在直线y =ax -a 的下方, 因为g ′(x )=e x (2x +1),所以当x <-12时,g ′(x )<0,当x >-12时,g ′(x )>0,所以当x =-12时,[g (x )]min=-2e -12,当x =0时,g (0)=-1,g (1)=3e>0,直线y =a (x -1)恒过(1,0)且斜率为a ,故-a >g (0)=-1, 且g (-1)=-3e -1≥-a -a ,解得32e≤a <1,故选D.]5.(2014·新课标全国Ⅱ,12)设函数f (x )=3sin πx m .若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)5.C[由正弦型函数的图象可知:f (x )的极值点x 0满足f (x 0)=±3,则πx 0m =π2+k π(k ∈Z ),从而得x 0=(k +12)m (k ∈Z ).所以不等式x 02+[f (x 0)]2<m 2即为(k +12)2m 2+3<m 2,变形得m 2⎣⎡⎦⎤1-⎝⎛⎭⎫k +122>3,其中k ∈Z .由题意,存在整数k 使得不等式m 2⎣⎡⎦⎤1-⎝⎛⎭⎫k +122>3成立.当k ≠-1且k ≠0时,必有⎝⎛⎭⎫k +122>1,此时不等式显然不能成立,故k =-1或k =0,此时,不等式即为34m 2>3,解得m <-2或m >2.] 6.(2014·辽宁,11)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A.[-5,-3]B.[-6,-89] C.[-6,-2] D. [-4,-3] 6.C [当x ∈(0,1]时,得a ≥-3⎝⎛⎭⎫1x 3-4⎝⎛⎭⎫1x 2+1x ,令t =1x ,则t ∈[1,+∞),a ≥-3t 3-4t 2+t ,令g (t )=-3t 3-4t 2+t ,t ∈[1,+∞),则g ′(t )=-9t 2-8t +1=-(t +1)(9t -1),显然在[1,+∞)上,g ′(t )<0,g (t )单调递减,所以g (t )max =g (1)=-6,因此a ≥-6;同理,当x ∈[-2,0)时,得a ≤-2.由以上两种情况得-6≤a≤-2,显然当x=0时也成立.故实数a的取值范围为[-6,-2]. 7.(2018全国Ⅰ,21)已知函数.(1)讨论的单调性;(2)若存在两个极值点,证明:.7.(1)的定义域为,.(i)若,则,当且仅当,时,所以在单调递减.(ii)若,令得,或.当时,;当时,.所以在单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值点满足,所以,不妨设,则.由于,所以等价于.设函数,由(1)知,在单调递减,又,从而当时,.所以,即.8.(2018全国Ⅱ,21)已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求的值.8.(1)当时,等价于.设函数,则.当时,,所以在单调递减.而,故当时,,即.(2)设函数.在只有一个零点当且仅当在只有一个零点.(i)当时,,没有零点;(ii)当时,.当时,;当时,.所以在单调递减,在单调递增.故是在的最小值.①若,即,在没有零点;②若,即,在只有一个零点;③若,即,由于,所以在有一个零点,由(1)知,当时,,所以.故在有一个零点,因此在有两个零点.综上,在只有一个零点时,.9.(2018全国Ⅲ,21)已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.9.(1)当时,,.设函数,则.当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.又,故当时,;当时,.(2)(i)若,由(1)知,当时,,这与是的极大值点矛盾.(ii)若,设函数.由于当时,,故与符号相同.又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点.如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点综上,.10.(2018天津,20)已知函数()xf x a =, ()log a g x x =,其中a >1. (I )求函数()()lnh x f x x a =-的单调区间;(II )若曲线()y f x =在点()()11,x f x 处的切线与曲线()y g x =在点()()22,x g x 处的切线平行,证明()122lnln ln ax g x a+=-; (III )证明当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线.10.(I )由已知, ()xh x a xlna =-,有()xh x a lna lna ='-.令()0h x '=,解得x =0.由a >1,可知当x 变化时, ()h x ', ()h x 的变化情况如下表:所以函数()h x 的单调递减区间为(),0-∞,单调递增区间为()0,+∞.(II )由()x f x a lna '=,可得曲线()y f x =在点()()11,x f x 处的切线斜率为1xa lna .由()1g x xlna=',可得曲线()y g x =在点()()22,x g x 处的切线斜率为21x lna .因为这两条切线平行,故有121xa lna x lna=,即()1221x x a lna =. 两边取以a 为底的对数,得21220a log x x log lna ++=,所以()122lnlnax g x lna+=-. (III )曲线()y f x =在点()11,x x a 处的切线l 1: ()111xxy a a lna x x -=⋅-.曲线()y g x =在点()22,a x log x 处的切线l 2: ()2221a y log x x x x lna-=⋅-. 要证明当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线, 只需证明当1ea e ≥时,存在()1,x ∈-∞+∞, ()20,x ∈+∞,使得l 1和l 2重合.即只需证明当1e a e ≥时,方程组1112121{1x x x a a lna x lnaa x a lna log x lna=-=-①②有解,由①得()1221x x a lna =,代入②,得1111120x x lnlna a x a lna x lna lna-+++=. ③ 因此,只需证明当1ea e ≥时,关于x 1的方程③存在实数解. 设函数()12x x lnlnau x a xa lna x lna lna=-+++, 即要证明当1ea e ≥时,函数()y u x =存在零点.()()21x u x lna xa '=-,可知(),0x ∈-∞时, ()0u x '>;()0,x ∈+∞时, ()u x '单调递减,又()010u '=>, ()()212110lna u a lna ⎡⎤=-<⎢⎥⎥'⎢⎣⎦, 故存在唯一的x 0,且x 0>0,使得()00u x '=,即()02010x lna x a-=.由此可得()u x 在()0,x -∞上单调递增,在()0,x +∞上单调递减.()u x 在0x x =处取得极大值()0u x .因为1ea e ≥,故()1ln lna ≥-, 所以()()000000201212220x x lnlna lnlna lnlna u x a x a lna x x lna lna lna lna x lna +=-+++=++≥≥. 下面证明存在实数t ,使得()0u t <. 由(I )可得1x a xlna ≥+, 当1x lna>时, 有()()()1211lnlnau x xlna xlna x lna lna≤+-+++()22121lnlna lna x x lna lna=-++++, 所以存在实数t ,使得()0u t <因此,当1ea e ≥时,存在()1,x ∈-∞+∞,使得()10u x =.所以,当1e a e ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线. 11.(2018江苏,19)记分别为函数的导函数.若存在,满足且,则称为函数与的一个“点”. (1)证明:函数与不存在“点”; (2)若函数与存在“点”,求实数的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“点”,并说明理由.11.(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得,此方程组无解,因此,f (x )与g (x )不存在“S ”点. (2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f(x)与g(x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.12.(2018北京,18)设函数=[].(1)若曲线在点(1,)处的切线与轴平行,求;(2)若在处取得极小值,求的取值范围.12.(Ⅰ)因为=[],所以f ′(x)=[2ax–(4a+1)]e x+[ax2–(4a+1)x+4a+3]e x(x∈R)=[ax2–(2a+1)x+2]e x.f′(1)=(1–a)e.由题设知f′(1)=0,即(1–a)e=0,解得a=1.此时f (1)=3e≠0.所以a的值为1.(Ⅱ)由(Ⅰ)得f ′(x)=[ax2–(2a+1)x+2]e x=(ax–1)(x–2)e x.若a>,则当x∈(,2)时,f ′(x)<0;当x∈(2,+∞)时,f ′(x)>0.所以f (x)<0在x=2处取得极小值.若a≤,则当x∈(0,2)时,x–2<0,ax–1≤x–1<0,所以f ′(x)>0.所以2不是f (x)的极小值点.综上可知,a的取值范围是(,+∞).13.(2017•浙江,20)已知函数f(x)=(x﹣)e﹣x(x≥ ).(Ⅰ)求f(x)的导函数;(Ⅱ)求f(x)在区间[ ,+∞)上的取值范围.13. (Ⅰ)函数f(x)=(x﹣)e﹣x(x≥ ),导数f′(x)=(1﹣• •2)e﹣x﹣(x﹣)e﹣x=(1﹣x+ )e﹣x=(1﹣x)(1﹣)e﹣x;(Ⅱ)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥ ⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()= e ,f(1)=0,f()= e ,即有f(x)的最大值为 e ,最小值为f(1)=0.则f(x)在区间[ ,+∞)上的取值范围是[0, e ].14.(2017•山东,20)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.14.(Ⅰ)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(Ⅱ)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(i)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(ii)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].15.(2017•北京,19)已知函数f(x)=e x cosx﹣x.(13分)(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.15.(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos ﹣=﹣.16.(2017·天津,20)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足| ﹣x0|≥ .16.(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x )=24x 2+18x ﹣6.令g′(x )=0,解得x=﹣1,或x= .当x 变化时,g′(x ),g (x )的变化情况如下表: ,所以,g (x )的单调递增区间是(﹣∞,﹣1),( ,+∞),单调递减区间是(﹣1, ).(Ⅱ)证明:由h (x )=g (x )(m ﹣x 0)﹣f (m ),得h (m )=g (m )(m ﹣x 0)﹣f (m ), h (x 0)=g (x 0)(m ﹣x 0)﹣f (m ). 令函数H 1(x )=g (x )(x ﹣x 0)﹣f (x ),则H′1(x )=g′(x )(x ﹣x 0). 由(Ⅰ)知,当x ∈[1,2]时,g′(x )>0,故当x ∈[1,x 0)时,H′1(x )<0,H 1(x )单调递减; 当x ∈(x 0 , 2]时,H′1(x )>0,H 1(x )单调递增.因此,当x ∈[1,x 0)∪(x 0 , 2]时,H 1(x )>H 1(x 0)=﹣f (x 0)=0,可得H 1(m )>0即h (m )>0,令函数H 2(x )=g (x 0)(x ﹣x 0)﹣f (x ),则H′2(x )=g′(x 0)﹣g (x ).由(Ⅰ)知,g (x )在[1,2]上单调递增,故当x ∈[1,x 0)时,H′2(x )>0,H 2(x )单调递增;当x ∈(x 0 , 2]时,H′2(x )<0,H 2(x )单调递减.因此,当x ∈[1,x 0)∪(x 0 , 2]时,H 2(x )>H 2(x 0)=0,可得得H 2(m )<0即h (x 0)<0,. 所以,h (m )h (x 0)<0.(Ⅲ)对于任意的正整数p ,q ,且 ,令m=,函数h (x )=g (x )(m ﹣x 0)﹣f (m ).由(Ⅱ)知,当m ∈[1,x 0)时,h (x )在区间(m ,x 0)内有零点;当m ∈(x 0 , 2]时,h (x )在区间(x 0 , m )内有零点.所以h (x )在(1,2)内至少有一个零点,不妨设为x 1 , 则h (x 1)=g (x 1)( ﹣x 0)﹣f ()=0.由(Ⅰ)知g (x )在[1,2]上单调递增,故0<g (1)<g (x 1)<g (2),于是|﹣x 0|= ≥ = .因为当x ∈[1,2]时,g (x )>0,故f (x )在[1,2]上单调递增,所以f (x )在区间[1,2]上除x 0外没有其他的零点,而≠x 0 , 故f ()≠0.又因为p ,q ,a 均为整数,所以|2p 4+3p 3q ﹣3p 2q 2﹣6pq 3+aq 4|是正整数, 从而|2p 4+3p 3q ﹣3p 2q 2﹣6pq 3+aq 4|≥1.所以|﹣x 0|≥.所以,只要取A=g (2),就有|﹣x 0|≥.17.(2017•江苏,20)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(Ⅰ)求b关于a的函数关系式,并写出定义域;(Ⅱ)证明:b2>3a;(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.17.(Ⅰ)因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+ ﹣+1=0,所以b= + (a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣+ >0,解得a>3,所以b= + (a>3).(Ⅱ)由(I)可知h(a)=b2﹣3a= ﹣+ = (4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(Ⅲ)解:由(I)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2= ,x1x2= ,所以f(x1)+f(x2)= + +a(+ )+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2= ﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+ ﹣+2= ﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].18.(2017•新课标Ⅰ,21)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(12分)(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.18.(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+ )(e x﹣),令f′(x)=0,解得:x=ln ,当f′(x)>0,解得:x>ln ,当f′(x)<0,解得:x<ln ,∴x∈(﹣∞,ln )时,f(x)单调递减,x∈(ln ,+∞)单调递增;当a<0时,f′(x)=2a(e x+ )(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln )是减函数,在(ln ,+∞)是增函数;(2)由f(x)=ae2x+(a﹣2)e x﹣x=0,有两个零点,由(1)可知:当a>0时,f(x)=0,有两个零点,则f(x)min=a +(a﹣2)﹣ln ,=a()+(a﹣2)× ﹣ln ,=1﹣﹣ln ,由f(x)min<0,则1﹣﹣ln <0,整理得:a﹣1+alna<0,设g(a)=alna+a﹣1,a>0,g′(a)=lna+1+1=lna+2,令g′(a)=0,解得:a=e﹣2,当a∈(0,e﹣2),g′(a)<0,g(a)单调递减,当a∈(e﹣2,+∞),g′(a)>0,g(a)单调递增,g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,由g(1)=1﹣1﹣ln1=0,∴0<a<1,a的取值范围(0,1).19.(2017•新课标Ⅱ,21)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(Ⅰ)求a;(Ⅱ)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.19.(Ⅰ)因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(Ⅱ)由(I)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x= ,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)= ﹣x0﹣x0lnx0= ﹣x0+2x0﹣2 =x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+ = ;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=﹣+ = >;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.20.(2017•新课标Ⅲ,21)已知函数f(x)=x﹣1﹣alnx.(Ⅰ)若f(x)≥0,求a的值;(Ⅱ)设m为整数,且对于任意正整数n,(1+ )(1+ )…(1+ )<m,求m的最小值.20.(Ⅰ)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1﹣= ,且f(1)=0.所以当a ≤0时f ′(x )>0恒成立,此时y=f (x )在(0,+∞)上单调递增,所以在(0,1)上f(x)<0,这与f (x )≥0矛盾; 当a >0时令f ′(x )=0,解得x=a ,所以y=f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增,即f (x )min =f (a ), 又因为f (x )min =f (a )≥0, 所以a=1;(Ⅱ)由(Ⅰ)可知当a=1时f (x )=x ﹣1﹣lnx ≥0,即lnx ≤x ﹣1, 所以ln (x+1)≤x 当且仅当x=0时取等号,所以ln (1+ )<,k ∈N *,所以,k ∈N *.一方面,因为 + +…+=1﹣<1, 所以,(1+ )(1+) (1))<e ;另一方面,(1+ )(1+ ) (1))>(1+ )(1+)(1+)=>2,同时当n ≥3时,(1+ )(1+ ) (1))∈(2,e ).因为m 为整数,且对于任意正整数n (1+ )(1+ ) (1))<m , 所以m 的最小值为3.21.(2016·全国Ⅱ,21)(1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x +x +2>0;(2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -ax 2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.21.(1)解 f (x )的定义域为(-∞,-2)∪(-2,+∞).f ′(x )=(x -1)(x +2)e x -(x -2)e x (x +2)2=x 2e x(x +2)2≥0,且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)单调递增.因此当x ∈(0,+∞)时,f (x )>f (0)=-1.所以(x -2)e x >-(x +2),即(x -2)e x +x +2>0. (2)证明 g ′(x )=(x -2)e x +a (x +2)x 3=x +2x3(f (x )+a ).由(1)知,f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈( 0,2],使得f (x a )+a =0,即g ′(x a )=0. 当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减;当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为g (x a )=e x a -a (x a +1)x 2a =e x a +f (x a )(x +1)x 2a =e x ax a +2. 于是h (a )=e x a x a +2,由⎝⎛⎭⎫e x x +2′=(x +1)e x (x +2)2>0,e x x +2单调递增. 所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24.因为e x x +2单调递增,对任意λ∈⎝⎛⎦⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝⎛⎦⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝⎛⎦⎤12,e 24.22.(2016·全国Ⅲ,21)设函数f (x )=a cos 2x +(a -1)·(cos x +1),其中a >0,记|f (x )|的最大值为4. (1)求f ′(x ); (2)求A ; (3)证明|f ′(x )|≤2A .22.(1)解 f ′(x )=-2a sin 2x -(a -1)sin x .(2)解 当a ≥1时,|f (x )|=|a cos 2x +(a -1)(cos x +1)|≤a +2(a -1)=3a -2.因此A =3a -2. 当0<a <1时,将f (x )变形为f (x )=2a cos 2x +(a -1)·cos x -1,令g (t )=2at 2+(a -1)t -1, 则A 是|g (t )|在[-1,1]上的最大值,g (-1)=a ,g (1)=3a -2,且当t =1-a 4a 时,g (t )取得极小值,极小值为g ⎝⎛⎭⎫1-a 4a =-(a -1)28a -1=-a 2+6a +18a . 令-1<1-a 4a <1,解得a <-13(舍去),a >15. (ⅰ)当0<a ≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=a ,|g (1)|=2-3a ,|g (-1)|<|g (1)|,所以A =2-3a .(ⅱ)当15<a <1时,由g (-1)-g (1)=2(1-a )>0,知g (-1)>g (1)>g ⎝⎛⎭⎫1-a 4a . 又⎪⎪⎪⎪g ⎝⎛⎭⎫1-a 4a -|g (-1)|=(1-a )(1+7a )8a >0,所以A =⎪⎪⎪⎪g ⎝⎛⎭⎫1-a 4a =a 2+6a +18a .综上,A =⎩⎨⎧2-3a ,0<a ≤15,a 2+6a +18a ,15<a <1,3a -2,a ≥1.(3)证明 由(1)得|f ′(x )|=|-2a sin 2x -(a -1)sin x |≤2a +|a -1|. 当0<a ≤15时,|f ′(x )|≤1+a ≤2-4a <2(2-3a )=2A .当15<a <1时,A =a 8+18a +34≥1,所以|f ′(x )|≤1+a <2A . 当a ≥1时,|f ′(x )|≤3a -1≤6a -4=2A .所以|f ′(x )|≤2A .23.(2016·全国Ⅰ,21)已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2. 23.解(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.②设a >0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a2(b -2)+a (b -1)2=a ⎝⎛⎭⎫b 2-32b >0,故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)上单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0,因此f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)不妨设x 1<x 2.由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)上单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0. 由于f (2-x 2)=-x 2e 2-x 2+a (x 2-1)2,而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0,所以f (2-x 2)=-x 2e 2-x2-(x 2-2)e x2.设g (x )=-x e 2-x -(x -2)e x ,则g ′(x )=(x -1)(e 2-x -e x ),所以当x >1时,g ′(x )<0,而g (1)=0,故当x >1时,g (x )<0,从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.24.(2016·北京,18)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e-1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间. 24. (1)f (x )的定义域为R .∵f ′(x )=e a -x -x e a -x +b =(1-x )e a -x +b .依题设,⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x ,由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x-1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞), 综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).25.(2016·四川,21)设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).25.解 (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a.此时,当x ∈⎝⎛⎭⎫0,12a 时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)令g (x )=1x -1e x -1,s (x )=e x -1-x .则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a >1.由(1)有f ⎝⎛⎭⎫12a <f (1)=0,而g ⎝⎛⎭⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈⎣⎡⎭⎫12,+∞.26.(2016·山东,20)已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.26.(1)解 f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,x ∈(0,1)时,f ′(x )>0,f (x )单调递增,x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎫x -2a ⎝⎛⎭⎫x +2a . ①0<a <2时,2a>1, 当x ∈(0,1)或x ∈⎝⎛⎭⎫2a ,+∞时,f ′(x )>0,f (x )单调递增, 当x ∈⎝⎛⎭⎫1,2a 时,f ′(x )<0,f (x )单调递减. ②a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增. ③a >2时,0<2a <1,当x ∈⎝⎛⎭⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增, 当x ∈⎝⎛⎭⎫2a ,1时,f ′(x )<0,f (x )单调递减. 综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减; 当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎫1,2a 内单调递减,在⎝⎛⎭⎫2a ,+∞内单调递增; 当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝⎛⎭⎫0,2a 内单调递增,在⎝⎛⎭⎫2a ,1内单调递减,在(1,+∞)内单调递增. (2)证明 由(1)知,a =1时,f (x )-f ′(x )=x -ln x +2x -1x 2-⎝⎛⎭⎫1-1x -2x 2+2x 3=x -ln x +3x +1x 2-2x3-1,x ∈[1,2]. 设g (x )=x -ln x ,h (x )=3x +1x 2-2x 3-1,x ∈[1,2],则f (x )-f ′(x )=g (x )+h (x ).由g ′(x )=x -1x ≥0,可得g (x )≥g (1)=1,当且仅当x =1时取得等号.又h ′(x )=-3x 2-2x +6x 4.设φ(x )=-3x 2-2x +6,则φ(x )在x ∈[1,2]单调递减.因为φ(1)=1,φ(2)=-10,所以∃x 0∈(1,2),使得x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0. 所以h (x )在(1,x 0)内单调递增,在(x 0,2)内单调递减. 由h (1)=1,h (2)=12,可得h (x )≥h (2)=12,当且仅当x =2时取得等号.所以f (x )-f ′(x )>g (1)+h (2)=32.即f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.27.(2015·新课标全国Ⅱ,21)设函数f (x )=e mx +x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围. 27.(1)证明 f ′(x )=m (e mx -1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx -1≥0,f ′(x )>0. 若m <0,则当x ∈(-∞,0)时,e mx -1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx -1<0,f ′(x )>0. 所以,f (x )在(-∞,0)单调递减, 在(0,+∞)上单调递增.(2)解 由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即⎩⎪⎨⎪⎧e m-m ≤e -1,e -m +m ≤e -1.①设函数g (t )=e t -t -e +1,则g ′(t )=e t -1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0.当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m -m >e -1; 当m <-1时,g (-m )>0,即e -m +m >e -1.综上,m 的取值范围是[-1,1].28.(2015·北京,18)已知函数f (x )=ln 1+x1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求证:当x ∈(0,1)时,f (x )>2⎝⎛⎭⎫x +x 33;(3)设实数k 使得f (x )>k ⎝⎛⎭⎫x +x33对x ∈(0,1)恒成立,求k 的最大值. 28.(1)解 因为f (x )=ln(1+x )-ln(1-x ),所以f ′(x )=11+x +11-x,f ′(0)=2. 又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x . (2)证明 令g (x )=f (x )-2⎝⎛⎭⎫x +x 33,则g ′(x )=f ′(x )-2(1+x 2)=2x 41-x 2. 因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝⎛⎭⎫x +x33. (3)解 由(2)知,当k ≤2时,f (x )>k ⎝⎛⎭⎫x +x33对x ∈(0,1)恒成立. 当k >2时,令h (x )=f (x )-k ⎝⎛⎭⎫x +x 33,则h ′(x )=f ′(x )-k (1+x 2)=kx 4-(k -2)1-x 2. 所以当0<x <4k -2k 时,h ′(x )<0,因此h (x )在区间⎝ ⎛⎭⎪⎫0,4k -2k 上单调递减.当0<x <4k -2k 时,h (x )<h (0)=0,即f (x )<k ⎝⎛⎭⎫x +x 33. 所以当k >2时,f (x )>k ⎝⎛⎭⎫x +x33并非对x ∈(0,1)恒成立. 综上可知,k 的最大值为2.29.(2015·四川,21)已知函数f (x )=-2(x +a )ln x +x 2-2ax -2a 2+a ,其中a >0. (1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.。

2014年全国高考试卷导数部分汇编(上)

2014年全国高考试卷导数部分汇编(上)

2014年全国高考试卷导数部分汇编(上)1. (2014安徽理18文20)设函数23()1(1)f x a x x x =++--,其中0a >.⑴讨论()f x 在其定义域上的单调性;⑵当[01]x ∈,时,求()f x 取得最大值和最小值时的x 的值. 【解析】 ⑴ ()f x 的定义域为2()'()123f x a x x -∞+∞=+--,,.令'()0f x =,得1212x x x x ==<, 所以12'()3()()f x x x x x =---.当1x x <或2x x >时,'()0f x <;当12x x x <<时,'()0f x >. 故()f x 在1()x -∞,和2()x +∞,内单调递减,在12()x x ,内单调递增. ⑵ 因为0a >,所以1200x x <>,. ①当4a ≥时,21x ≥.由⑴知,()f x 在[01],上单调递增. 所以()f x 在0x =和1x =处分别取得最小值和最大值. ②当04a <<时,21x <由⑴知,()f x 在2[0]x ,上单调递增,在2[1]x ,上单调递减.所以()f x 在2x x ==又(0)1(1)f f a ==,,所以当01a <<时,()f x 在1x =处取得最小值;当1a =时,()f x 在0x =处和1x =处同时取得最小值; 当14a <<时,()f x 在0x =处取得最小值.评析 本题考查利用导数求函数的单调区间和最大(小)值,同时考查分类讨论的思想,分为讨论的关键是确定分类的标准.2. (2014安徽理21)设实数0c >,整数1p >,*n N ∈.⑴证明:当1x >-且0x ≠时,(1)1p x px +>+; ⑵数列{}n a 满足11pa c >,111p n n np c a a a p p-+-=+.证明:11p n n a a c +>>. 【解析】 ⑴ 用数学归纳法证明:①当2p =时,22(1)1212x x x x +=++>+,原不等式成立. ②假设(2*)p k k k =N ≥,∈时,不等式(1)1k x kx +>+成立. 当1p k =+时,12(1)(1)(1)(1)(1)1(1)1(1)k k x x x x kx k x kx k x ++=++>++=+++>++所以1p k =+时,原不等式也成立.综合①②可得,当10x x >-,≠,对一切整数1p >,不等式(1)1p x px +>+均成立. ⑵ 证法一:先用数学归纳法证明1pn a c >. ①当1n =时,由题设11pa c >知1pn a c >成立. ②假设(1*)n k k k =N ≥,∈时,不等式1pn a c >成立. 由111pn n n p c a a a p p-+-=+易知0*n a n >N ,∈. 当1n k =+时,11111p k k p k k a p c ca a p p p a -+⎛⎫-=+=+- ⎪⎝⎭. 当10pk a c >>得11110p k cp p a ⎛⎫-<-<-< ⎪⎝⎭. 由⑴中的结论得11111ppk p k k a c p a p a +⎡⎤⎛⎫⎛⎫=+->+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.11p p k kcc p a a ⎛⎫-= ⎪⎝⎭. 因此1pk ac +>,即11pk a c +>.所以1n k =+时,不等式1rn a c >也成立.综合①②可得,对一切正整数n ,不等式1pn a c >均成立. 再由1111n p n n a ca p a +⎛⎫=+- ⎪⎝⎭可得11n n a a +<,即1n n a a +<.综上所述,11pn n a a c +>>,*n N ∈.证法二:设111()p p p cf x x x x c p p --=+,≥,则p x c ≥, 并且11()(1)10p p p c p c f x p x p p p x ---⎛⎫'=+-=-> ⎪⎝⎭,1p x c >. 由此可得,()f x 在1p c ⎡⎫+∞⎪⎢⎪⎢⎣⎭,上单调递增.因而,当1px c >时,11()()p pf x f c c >=, ①当1n =时,由110pa c >>,即1p a c >可知12111111111p p p c c a a a a a p p p a -⎡⎤⎛⎫-=+=+-<⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,并且121()pa f a c =>,从而112p a a c >>.故当1n =时,不等式11pn n a a c +>>成立.②假设(1*)n k k k =N ≥,∈时,不等式11pk k a a c +>>成立,则当1n k =+时,11()()()p k k f a f a f c +>>,即有112pk k a a c ++>>. 所以1n k =+时,原不等式也成立.综合①②可得,对一切正整数n ,不等式11pn n a a c +>>均成立.3. (2014安徽文15)若直线l 与曲线C 满足下列两个条件:⑴直线l 在点()00P x y ,处与曲线C 相切; ⑵曲线C 在点P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号)①直线:0l y =在点()00P ,处“切过”曲线C :2y x = ②直线:1l x =-在点()10P -,处“切过”曲线C :2(1)y x =+ ③直线:l y x =在点()00P ,处“切过”曲线C :sin y x = ④直线:l y x =在点()00P ,处“切过”曲线C :tan y x = ⑤直线:1l y x =-在点()10P ,处“切过”曲线C :ln y x = 【解析】 ①③④①直线0l y =:在()00P ,处与曲线3C y x =:相切,且曲线C 位于直线l 的两侧,①对; ②直线1l x =-:不是曲线()21C y x =+:在()10P -,处的切线,②错; ③中cos y x '=,cos 01=,因此曲线sin C y x =:在()00P ,处的切线为l y x =:,设()s i n f x x x =-,则()1cos 0f x x '=-≥,即()f x 是增函数,又()00f =,从而当0x <时,()0sin f x x x ⇒<<,当0x >时,()0sin f x x x ⇒>>,即曲线sin C y x =:在()00P ,附近位于直线l 的两侧,③正确;④中22sin 111cos cos cos 0x y x x ⎛⎫'='== ⎪⎝⎭,,因此曲线tan C y x =:在()00P ,处的切线为l y x =:,设()tan g x x x =-,则()21ππ10cos 22g x x x ⎛⎫'=-- ⎪⎝⎭<<≤,即()g x 在ππ22⎛⎫- ⎪⎝⎭,上是减函数,且()00g =,同③得④正确;⑤中1111y x '==,,因此曲线ln C y x =:在()10P ,处的切线为1l y x =-:,设()()1l n 0h x x x x =-->,则()111x h x x x-'=-=,当01x <<时,()0h x '<,当1x >时,()0h x '>,因此当1x =时,()()min 10h x h ==,因此曲线C 在()10P ,附近位于直线l 的一侧,故⑤错误.因此答案为①③④评析 本题考查导数的几何意义及导数在函数中的应用,解题时结合图象可简化运算和推理的过程.4. (2014北京理18)已知函数()πcos sin 02f x x x x x ⎡⎤=-,∈,⎢⎥⎣⎦,⑴求证:()0f x ≤;⑵若sin x a b x <<对π02x ⎛⎫∈, ⎪⎝⎭恒成立,求a 的最大值与b 的最小值. 【解析】 ⑴ ()()cos sin cos sin f x x x x x x x '=+--=-,π02x ⎡⎤∈,⎢⎥⎣⎦时,()0f x '≤,从而()f x 在π02⎡⎤,⎢⎥⎣⎦上单调递减, 所以()f x 在π02⎡⎤,⎢⎥⎣⎦上的最大值为()00f =,所以()()00f x f =≤. ⑵ 法一:当0x >时,“sin x a x >”等价于“sin 0x ax ->”;“sin xb x<”等价于“sin 0x bx -<”, 令()sin g x x cx =-,则()cos g x x c '=-.当0c ≤时,()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.当1c ≥时,因为对任意π02x ⎛⎫∈, ⎪⎝⎭,()cos 0g x x c '=-<,所以()g x 在区间π02⎡⎤,⎢⎥⎣⎦上单调递减.从而()()00g x g <=对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.当01c <<时,存在唯一的0π02x ⎛⎫∈, ⎪⎝⎭,使得()00cos 0g x x c '=-=,且当()00x x ∈,时,()0g x '>,()g x 单调递增;当0π2x x ⎛⎫∈, ⎪⎝⎭时,()0g x '<,()g x 单调递减.所以()()000g x g >=.进一步,“()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立”当且仅当ππ1022g c ⎛⎫=- ⎪⎝⎭≥,即20πc <≤.综上所述,当且仅当2πc ≤时,()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立;当且仅当1c ≥时,()0g x <对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.所以,若sin x a b x <<对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为1.法二: 令()sin π02x g x x x ⎛⎤=,∈, ⎥⎝⎦, 则()2cos sin x x xg x x ⋅-'=,由⑴知,()0g x '≤,故()g x 在π02⎛⎤, ⎥⎝⎦上单调递减,从而()g x 的最小值为π22πg ⎛⎫= ⎪⎝⎭,故2πa ≤,a 的最大值为2π.b 的最小值为1,下面进行证明:()sin h x x bx =-,π02x ⎡⎫∈,⎪⎢⎣⎭,则()cos h x x b '=-,当1b =时,()0h x '≤,()h x 在π02⎡⎫,⎪⎢⎣⎭上单调递减,从而()()max 00h x h ==,所以sin 0x x -≤,当且仅当0x =时取等号.从而当π02x ⎛⎫∈, ⎪⎝⎭时,sin 1x x <.故b 的最小值小于等于1.若1b <,则()cos 0h x x b '=-=在π02⎛⎫, ⎪⎝⎭上有唯一解0x ,且()00x x ∈,时,()0h x '>,故()h x 在()00x ,上单调递增,此时()()00h x h >=,sin sin 0xx bx b x->⇒>与恒成立矛盾,故1b ≥, 综上知:b 的最小值为1.5. (2014北京文20)已知函数3()23f x x x =-.⑴求()f x 在区间[]21-,上的最大值;⑵若过点(1)P t ,存在3条直线与曲线()y f x =相切,求t 的取值范围;⑶问过点(12)(210)(02)A B C -,,,,,分别存在几条直线与曲线()y f x =相切?(只需写出结论)【解析】 ⑴ 由()323f x x x =-得()263f x x '=-.令()0f x '=,得x =或x =.因为()210f -=-,f ⎛ ⎝⎭()11f f ==-⎝⎭所以()f x 在区间[]21-,上的最大值为f ⎛= ⎝⎭⑵ 设过点()1P t ,的直线与曲线()y f x =相切于点()00x y ,,则300023y x x =-,且切线斜率为2063k x =-,所以切线方程为()20063y y x -=-()0x x -, 因此()()2000631t y x x -=--.整理得32004630x x t -++=.设()32463g x x x t =-++,则“过点()1P t ,存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”.()()21212121g x x x x x '=-=-. ()g x 与()g x '的情况如下:当(0)30g t =+≤,即3t -≤时,此时()g x 在区间(]1-∞,和(1)+∞,上分别至多有1个零点,所以()g x 至多有2个零点. 当(1)10g t =+≥,即1t -≥时,此时()g x 在区间(0)-∞,和[)0+∞,上分别至多有1个零点,所以()g x 至多有2个零点.当()00g >且()10g <,即31t -<<-时,因为()()1702110g t g t -=-<=+>,, 所以()g x 分别在区间[)10-,,[)01,和[)12,上恰有1个零点. 由于()g x 在区间()0-∞,和()1+∞,上单调,所以()g x 分别在区间()0-∞,和[)1-∞,上恰有1个零点.综上可知,当过点()1P t ,存在3条直线与曲线()y f x =相切时,t 的取值范围是()31--,. ⑶ 过点()12A -, 存在3条直线与曲线()y f x =相切; 过点()210B , 存在2条直线与曲线()y f x =相切; 过点()02C , 存在1条直线与曲线()y f x =相切.:6. (2014大纲理7)曲线1e x y x -=在点()11,处切线的斜率等于( ) A .2e B .eC .2D .1【解析】 C7. (2014大纲理16)若函数()cos2sin f x x a x =+在区间ππ62⎛⎫⎪⎝⎭,上是减函数,则a 的取值范围是____________.【解析】 (]2-∞, 8. (2014大纲理22)函数()()()ln 11axf x x a x a=+->+. ⑴讨论()f x 的单调性;⑵设11a =,1ln(1)n n a a +=+,证明:2322n a n n <++≤. 【解析】 ⑴ ()f x 的定义域为()1-+∞,,()()()()222'1x x a a f x x x a ⎡⎤--⎣⎦=++(i )当12a <<时,若()212x a a ∈--,,则()'0f x >,()f x 在()212a a --,是增函数;若()220x a a ∈-,,则()'0f x <,()f x 在()220a a -,是减函数;若()0x ∈+∞,,则()'0f x >,()f x 在()0+∞,上增函数. (ii )当2a =时,()'0f x ≥,()'0f x =成立当且仅当0x =,()f x 在()1-+∞,是增函数. (iii )当2a >时,若()10x ∈-,,则()'0f x >,()f x 在()10-,是增函数; 若()202x a a ∈-,,则()'0f x <,()f x 在()202a a -,是减函数;若()22x aa ∈-+∞,,则()'0f x >,()f x 在()22a a -+∞,是增函数.⑵ 由⑴知,当2a =时,()f x 在()1-+∞,是增函数 当()0x ∈+∞,时,()()00f x f >=,即()()2ln 102xx x x +>>+ 又由⑴知,当3a =时,()f x 在[)03,是减函数.当()03x ∈,时,()()00f x f <=,即()()3ln 1033xx x x +<<<+. 下面用数学归纳法证明2322n a n n <++…(i )当1n =时,由已知1213a <=,故结论成立;(ii )设当n k =时结论成立,即12322a k k <++≤. 当1n k =+时.()122222ln 1ln 1=2322k k k a a k k k +⨯⎛⎫+=+>+>⎪++⎝⎭++. ()133332ln 1ln 12332k k k a a k k k +⨯⎛⎫+=++<= ⎪++⎝⎭++≤ 即当1n k =+时有12333k a k k +<++≤,结论成立 根据(i )(ii )知对任何*n ∈N 结论都成立.9. (2014大纲文21)函数()()32330f x ax x x a =++≠.⑴讨论()f x 的单调性;⑵若()f x 在区间()12,是增函数,求a 的取值范围. 【解析】 ⑴ ()2363f x ax x '=++,()0f x '=的判别式()361a ∆=-.(i )若1a ≥,则()0f x '≥,且()0f x '=当且仅当1a =,1x =-,故此时()f x 在R 上是增函数.(ii )由于0a ≠,故当1a <,()0f x '=有两个根;1x =2x =若01a <<,则当()2x x ∈-∞,或()1x x ∈+∞,时()0f x '>, 故()f x 分别在()2x -∞,,()1x +∞,上是增函数; 当()21x x x ∈,时,()0f x '<,故()f x 在()21x x ,上是减函数; 若0a <,则当()1x x ∈-∞,或()2x +∞,时,()0f x '<, 故()f x 分别在()1x -∞,,()2x +∞,上是减函数; 当()12x x x ∈,时,()0f x '>,故()f x 在()12x x ,上是增函数.⑵ 当0a >,0x >时,()23630f x ax x '=++>,故当0a >时,()f x 在区间()12,上是增函数. 当0a <时,()f x 在区间()12,上是增函数当且仅当()10f '≥且()20f '≥,解得504a -<≤.综上,a 的取值范围是()5004⎡⎫-+∞⎪⎢⎣⎭∪,,. 10. (2014福建理14)如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为______.【解析】 22e11. (2014福建理20文22)已知函数()e x f x ax =-(a 为常数)的图像与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为1-.⑴求a 的值及函数()f x 的极值; ⑵证明:当0x >时,2e x x <;⑶证明:对任意给定的正数c ,总存在0x ,使得当()0x x ∈+∞,,恒有2e x x c <. 【解析】 本小题主要考查基本初等函数的导数、导数的运算及导数的应用、全称量词与存在量词等基础知识,考查运算求解能力、推理论证能力、抽象概括能力,考查函数与方程思想、有限与无限思想、化归与转化思想、分类与整合思想、特殊与一般思想. ⑴ 由()x f x e ax =-,()x f x e a '=- 又'(0)11f a =-=-,得2a =. 所以()e 2'()e 2x x f x x f x =-=-,, 令'()0f x =,得ln 2x =.当ln 2x <时,'()0()f x f x <,单调递减; 当ln 2x >时,'()0()f x f x >,单调递增. 所以当ln 2x =时,()f x 取得极小值, 且极小值为ln 2(ln 2)e 2ln 22ln 4f =-=-, ()f x 无极大值.⑵ 令2()e x f x x =-,则'()e 2x g x x =-, 由⑴得'()()(ln 2)0g x f x f =>≥, 故()g x 在R 上单调递增,又(0)10g =>,x因此,当0x >时,()(0)0g x g >>,即2e x x <. ⑶ 理科解法一:①若1c ≥,则e e x x c ≤.又由⑵知,当0x >时,2e x x <. 所以当0x >时,2e x x c <.取00x =,当0()x x +∞∈,时,恒有2e x x c <. ②若01c <<,令11k c=>,要使不等式2e x x c <成立,只要2e x kx >成立. 而要使2e x kx >成立,则只要2ln()x kx >,只要2ln ln x x k >+成立. 令()2ln ln h x x x k =--,则22'()1x h x x x-=-=. 所以当2x >时,'()0h x >,()h x 在(2)+∞,内单调递增. 取01616x k =>,所以()h x 在0()x +∞,内单调递增, 又0()162ln(16)ln 8(ln 2)3(ln )5h x k k k k k k k =--=-+-+, 易知ln ln 250k k k k >>>,,,所以0()0h x >.即存在016x c=,当0()x x +∞∈,时,恒有2e x x c <. 综上,对任意给定的正数c ,总存在0x ,当0()x x +∞∈,时,恒有2e x x c <. 理科解法二:对任意给定的正数c ,取0x =,由⑵知,当0x >时,2e xx >,所以2222e e e 22x x xx x ⎛⎫⎛⎫=⋅> ⎪ ⎪⎝⎭⎝⎭.当0x x >时,222241e 222xx x x x c c ⎛⎫⎛⎫⎛⎫>>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因此,对任意给定的正数c ,总存()0x ∈+∞,时,恒有313x x e < 理科解法三:首先证明当(0)x +∞∈,时,恒有21e 3x x <.证明如下:令31()e 3x h x x =-,则2'()e x h x x =-.由⑵知,当0x >时,3e x x <,从而'()0()h x h x <,在(0)+∞,上单调递减, 所以()(0)10h x h <=-<,即31e 3x x <.取03x c =,当0x x >时,有2311e 3x x x c <<. 因此,对任意给定的正数c ,总存在0x ,当()x x ∞∈,+时,恒有2e x x c <. 文科解法一:对任意给定正数c ,取01x c=所以当0x x >时,21e x x x c>> ,即e x x c <.因此,对任意给定的正数c ,总存在0x ,当0()x x +∞∈,时,恒有e x x c <. 文科解法二:令1(0)k k c=>,要使不等式e x x c <成立,只要e x kx >成立.而要使e x kx >成立,则只需要ln()x kx >,即ln ln x x k >+成立. ①若01k <≤,则ln 0k ≤,易知当0x >时,ln ln ln x x x k >+≥成立.即对任意[)1c ∈+∞,,取00x =,当0()x x ∈+∞,时,恒有e x x c <. ②若1k >,令()ln ln h x x x k =--,则11'()1x h x x x-=-=, 所以当1x >时,'()0()h x h x >,在(1)+∞,内单调递增, 取04x k =.0()4ln(4)ln 2(ln )2(ln 2)h x k k k k k k =--=-+-.易知ln ln 2k k k >>,,所以0()0h x >. 因此对任意(01)c ∈,,取04x c=,当0()x x ∈+∞,时,恒有e x x c <. 综上,对任意给定的正数c ,总存在0x ,当0()x x +∞∈,时,恒有e x x c <. 文科解法三: ①若1c ≥,取00x =,由⑵的证明过程知,e 2x x >,所以当0()x x +∞∈,时,有e e 2x x c x x >>≥,即e x x c <. ②若01x <<,令()e x h x c x =-,则'()e 1x h x c =-. 令'()0h x =得1ln x c=.当1ln x c>时,'()0()h x h x >,单调递增.取022ln x c=, 22ln0222()e2ln2ln ch x c c cc ⎛⎫=-=- ⎪⎝⎭, 易知22ln 0c c->,又()h x 在()0x +∞,内单调递增. 所以当0()x x ∈+∞,时,恒有0()()0h x h x >>,即e x x c <.综上,对任意给定的正数c ,总存在0x ,当0()x x +∞∈,时,恒有e x x c <. 注:对c 的分类可有不同的方式,只要解法正确,均相应给分.12. (2014广东理10)曲线5e 2x y -=+在点(0,3)处的切线方程为____________. 【解析】530x y +-=. 55e x xy -'=-,05y '=-,切线过点(0,3),由点斜式写出直线方程53y x =-+. 13. (2014广东文11)曲线5e 3x y =-+在(02)-,处的切线方程为____________. 【解析】520x y ++= 14. (2014广东文21)已知函数321()1()3f x x x ax a =+++∈R⑴求函数()f x 的单调区间;⑵当0a <时,试讨论是否存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,∪,,使得01()2f x f ⎛⎫= ⎪⎝⎭. 【解析】 ⑴ 函数的定义域为R ,()22f x x x a '=++.①当1a <时,令()0f x '>,则2201x x a x ++>⇒>-或1x <-,所以()f x 的单调递增区间为(1-∞-,和()1-+∞;令()0f x '<,可得11x -<-+所以()f x 的单调递减区间为(11--+.②当1a ≥时,()0f x '≥在R 上恒成立,所以()f x 在R 上是增函数.⑵ 0a <时,10-.由⑴知,()f x在()1-++∞上是增函数. ①()1111701172244212551211442f f a a a a a ⎧⎛⎫⎧⎧+++- ⎪⎪⎪⎪⎪⎪⎪⎝⎭⇒⇒⇒-⎨⎨⎨⎪⎪⎪>->--⎪⎪⎪⎩⎩⎩,≤≤≥≤, 则7012a -<≤, 不存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012fx f ⎛⎫= ⎪⎝⎭; ②()1705721254121142f f a a a ⎧⎛⎫⎧><- ⎪⎪⎪⎪⎪⎝⎭⇒⇒-<<-⎨⎨⎪⎪>--⎪⎪⎩⎩,,,存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f x f ⎛⎫= ⎪⎝⎭; ③15124a -⇒=-, 不存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f xf ⎛⎫= ⎪⎝⎭; ④()1251252123512131142f f a a a ⎧⎛⎫⎧- ⎪⎪⎪⎪⎪⎝⎭⇒⇒-<<-⎨⎨⎪⎪-<<--⎪⎪⎩⎩,≤≤≤, 不存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f xf ⎛⎫= ⎪⎝⎭; ⑤()12512552125124131142f f a a a ⎧⎛⎫⎧>>- ⎪⎪⎪⎪⎪⎝⎭⇒⇒-<<-⎨⎨⎪⎪-<<-<-+⎪⎪⎩⎩,,,存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f x f ⎛⎫= ⎪⎝⎭; ⑥113a -⇒-≤,()f x 在()01,上是单调函数, 故不存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f x f ⎛⎫= ⎪⎝⎭. 综上所述,当25557124412a ⎛⎫⎛⎫∈---- ⎪ ⎪⎝⎭⎝⎭,,时, 存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,,使得()012f x f ⎛⎫= ⎪⎝⎭. 当2557012412a ⎛⎫⎧⎫⎡⎫∈-∞---⎨⎬ ⎪⎪⎢⎝⎭⎩⎭⎣⎭,,时,不存在0110122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,,, 使得()012f x f ⎛⎫= ⎪⎝⎭.15. (2014湖北理6)函数()(),f x g x 满足()()110f x g x dx -=⎰,则称()(),f x g x 为区间[]11-,上的一组正交函数,给出三组函数:①()()11sin cos 22f x x g x x ==,;②()()11f x x g x x =+=-,; ③()()2f x x g x x ==,其中为区间[]11-,的正交函数的组数是( ) A .0B .1C .2D .3【解析】 C由①得111()()sin cos sin 222f xg x x x x ==,是奇函数,所以11()()d 0f x g x x -=⎰,所以①为区间[]11-,上的正交函数;由②得2()()1f xg x x =-,∴131121114()()d (1)33x f x g x x x dx x ---⎛⎫=-=-=- ⎪⎝⎭⎰⎰,所以②不是区间[]11-,上的正交函数;由③得3()()f x g x x =,是奇函数,所以11()()d 0f x g x x -=⎰,所以①为区间[]11-,上的正交函数.故选C .16. (2014湖北理22)π为圆周率,e 2.71828= 为自然对数的底数.⑴求函数ln ()=xf x x的单调区间⑵求3e πe π3e ,3,e ,π,3,π这6个数中的最大数与最小数;⑶将3e πe π3e ,3,e ,π,3,π这6个数从小到大的顺序排列,证明你的结论.【解析】 ⑴ 函数()f x 的定义域为(0)+∞,. 因为ln ()x f x x =,所以2l ln ()xf x x-'=. 当()0f x '>,即0e x <<,函数()f x 单调递增; 当()0f x '<,即e x <,函数()f x 单调递减. 故函数()f x 的单调递增区间为(0e ,),单调递减区间为(e +∞,). ⑵ 因为e <3π<,所以eln3eln ππlne πln3<,<,即e e ππln3ln πln e ln3<,<. 于是根据函数ln e πx x y x y y ===,,在定义域上单调递增,可得e e 33ππ3ππe e 3<<,<<. 故这6个数的最大数在3π与π3之中,最小数在e 3与3e 之中.由e 3π<<及⑴的结论,得(π)(3)(e)f f f <<,即ln πln3lneπ3e<<. 由ln πln 3π3<,得3πln πln 3<,所以π33π>; 由ln 3ln e 3e <,得e 3ln 3ln e <,所以e 33e <. 综上,6个数中的最大数是π3,最小数是e 3.⑶ 由⑵知,e e 3πe 33ππ33e <<<,<. 又由⑵知,ln πlneπe<得e ππe <. 故只需比较3e 与e π和πe 与3π的大小.由⑴知,当0e x <<时,1()(e)=e f x f <,即ln 1ex x <.在上式中,令2e πx =,又2e e π<,则2e e ln ππ<,从而e 2ln ππ-<,即得eln π2π->.由①得,e 2.72e ln πe 2 2.72 2.7(20.88)π 3.1⎛⎫⎛⎫-⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭>>> 3.0243>,即e ln π>3,亦即e 3ln πln e >,所以3e e π<.又由①得,3e 3ln π66e ππ-->>>,即3ln ππ>,所以π3e π>. 综上可得,e 3e π3π3e πe π3<<<<<. 即6个数从小到大的顺序为e 3e π3π3e πe π3,,,,,. 评析 本题考查了函数和导数的结合应用;考查了不等式求解的能力;考查了分析问题、解决问题的综合能力.充分考查了考生的综合素质在平时的学习过程中应充分培养综合解决问题的能力.17. (2014湖北文21)π为圆周率,e 2.71828=为自然对数的底数.⑴求函数ln ()xf x x=的单调区间; ⑵求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数.【解析】 ⑴ 函数()f x 的定义域为()0+∞,.因为ln ()x f x x =,所以21ln ()xf x x -'=.当()0f x '>,即0e x <<时,函数()f x 单调递增;当()0f x '<,即e x >时,函数()f x 单调递减.故函数()f x 的单调递增区间为()0e ,,单调递减区间为()e +∞,. ⑵ 因为e 3π<<,所以eln 3eln π<,πln e πln 3<,即e e ln 3ln π<,ππln e ln 3<. 于是根据函数ln y x =,e x y =,πx y =在定义域上单调递增,可得 e e 33ππ<<,3ππe e 3<<.故这6个数的最大数在3π与π3之中,最小数在e 3与3e 之中.由e 3π<<及⑴的结论,得(π)(3)(e)f f f <<,即ln πln3lneπ3e<<. 由ln πln3π3<,得3πln πln 3<,所以π33>π; 由ln 3ln e 3e<,得e 3ln 3ln e <,所以e 33e <. 综上,6个数中的最大数是π3,最小数是e 3.18. (2014湖南理9)已知函数()()sin f x x ϕ=-,且()2π300f x dx =⎰,则函数()f x 的图象的一条对称轴是( )A .5π6x =B .7π12x =C .π3x =D .π6x =【解析】 A函数()f x 的对称轴为ππ2x k ϕ-=+ππ2x k ϕ⇒=++,因为()2π32πsin d 0cos cos 03x x ϕϕϕ⎛⎫-=⇒--+= ⎪⎝⎭⎰πsin 03ϕ⎛⎫⇒-= ⎪⎝⎭, 所以π2π3k ϕ=+或4π2π3k +,则5π6x =是其中一条对称轴,故选A . 19. (2014湖南理22)已知常数0a >,函数()()2ln 12xf x ax x =+-+.⑴讨论()f x 在区间()0+∞,上的单调性; ⑵若()f x 存在两个极值点1x ,2x ,且()()120f x f x +>,求a 的取值范围.【解析】 ⑴ 对函数()f x 求导可得()()2412a f x ax x '=-++()()()()2224112a x ax ax x +-+=++()()()224112ax a ax x --=++,因为()()2120ax x ++>,所以当10a -≤时,即1a ≥时,()0f x '≥恒成立,则函数()f x 在()0+∞,上单调递增;当1a ≤时,()0f x x '=⇒=则函数()f x在区间0⎛ ,⎝⎭上单调递减,在⎫⎪,+∞⎪⎝⎭上单调递增的. ⑵ 由⑴可知,当1a ≥时,()f x 不存在极值点,因而01a <<. 又()f x的极值点只可能是12x x ==-,且由()f x 的定义可知,1x a>-且2x ≠-,所以1a ->-,2--,解得12a ≠,此时12x x ,分别是()f x 的极小值点和极大值点.而()()()()1212121222ln 1ln 122x x f x f x ax ax x x +=+-++-++ ()2122212121212444ln 1224x x x x ax ax a x x x x x x ++=+++-+++=()()()22412ln 21ln 2122121a a a a a ---=-+--- 令21a x -=,由01a <<且12a ≠知, 当102a <<时,10x -<<;当112a <<时,01x <<.记()22ln 2g x x x=+-①当10x -<<时,()()22ln 2g x x x =-+-,所以()2222220x g x x x x -'=-=<,因此()g x 在区间()10-,上单调减,从而()()140g x g <-=-<, 故当102a <<时,()()120f x f x +<. ②当01x <<时,()22ln 2g x x x =+-,()2222220x g x x x x -'=-=<,因此()g x 在区间()01,上单调递减,从而()()10g x g >=, 故当112a <<时,()()120f x f x +>. 综上,满足条件的a 的取值范围为112⎛⎫⎪⎝⎭,. 20. (2014湖南文9)若1201x x <<<,则( )A .2121e e ln ln x x x x ->-B .2121e e ln ln x x x x -<-C .1221e e x x x x >D .1221e e x x x x <【解析】 C21. (2014湖南文21)已知函数()cos sin 1(0)f x x x x x =-+>.⑴求()f x 的单调区间;⑵记i x 为()f x 的从小到大的第()i i *∈N 个零点,证明:对一切*n ∈N ,有2221211123n x x x +++<. 【解析】 ⑴ ()cos sin cos sin f x x x x x x x '=--=-令()0f x '=,得()*πx k k =∈N .当()()()2π,21πx k k k ∈+∈N 时,sin 0x >,此时()0f x '<; 当()()()()21π,22πx k k k ∈++∈N 时,sin 0x <,此时()0f x '>, 故()f x 的单调递减区间为()()()2π,21πk k k +∈N ,单调递增区间为()()()()21π,22πk k k ++∈N .⑵ 由⑴知,()f x 在区间()0,π上单调递减,又π02f ⎛⎫= ⎪⎝⎭,故1π2x =,当*n ∈N 时,因为()()()()()()1π1π1π11110nn f n fn n n n +⎡⎤⎡⎤+=-+-++<⎣⎦⎣⎦,且函数()f x 的图象是连续不断的,所以()f x 在区间()()π,1πn n +内至少有一个零点. 又()f x 在区间()()π,1πn n +上是单调的,故()1π1πn n x n +<<+. 因此当1n =时,221142π3x =<; 当2n =时,()22212111241π3x x +<+<; 当3n ≥时,()2222221211111141π21n x x x n ⎡⎤+++<++++⎢⎥-⎢⎥⎣⎦()()21115π1221n n ⎡⎤<+++⎢⎥⨯--⎢⎥⎣⎦211111151π22321n n ⎡⎤⎛⎫⎛⎫⎛⎫<+-+-++- ⎪ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎝⎭⎣⎦2211626π1π3n ⎛⎫=-<< ⎪-⎝⎭. 综上所述,对一切*n ∈N ,2221211123n x x x +++<.22. (2014江苏理11)在平面直角坐标系xOy 中,若曲线()2by ax a b x=+,为常数过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是_______.【解析】3- 由已知,452b a +=-,又∵22b y ax x '=-,∴7442b a -=-,解得2b =-,1a =- ∴3a b +=-23. (2014江苏理19)已知函数()e e x x f x -=+,其中e 是自然对数的底数⑴证明:()f x 是R 上的偶函数;⑵若关于x 的不等式()e 1x mf x m -+-≤在(0,)+∞上恒成立,求实数m 的取值范围;⑶已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立,试比较1e a -与e 1a -的大小,并证明你的结论.【解析】 ⑴ x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数⑵ 由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤∵(0,)x ∈+∞,∴e e 10xx-+->,即e 1e e 1x x x m ---+-≤对(0,)x ∈+∞恒成立令e x t =(1)t >,则211tm t t --+≤对任意(1,)t ∈+∞恒成立.∵22111111(1)(1)131+11t t t t t t t t --=-=---+-+-+-+-≥,当且仅当2t =时等号成立 ∴实数m 的取值范围为1,3⎛⎤-∞- ⎥⎝⎦⑶ ()e e x x f x -'=-,当1x >时()0f x '>,∴()f x 在(1,)+∞上单调增 令3()(3)h x a x x =-+,()3(1)h x ax x '=--∵0a >,1x >,∴()0h x '<,即()h x 在(1,)x ∈+∞上单调减∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2e f a =+<,即11(e )2ea >+ ∵e 1e 111ln ln lne (e 1)ln 1ea a a a a a ----=-=--+设()(e 1)ln 1m a a a =--+,则e 1e 1()1a m a a a ---'=-=,11(e )2ea >+ 当11(e )e 12ea +<<-时()0m a '>,()m a 单调增;当e 1a >-时()0m a '<,()m a 单调减 因此()m a 至多有两个零点,而(1)(e)0m m ==∴当e a >时()0m a <,当11(e )e 2ea +<<时()0m a >,当e a =时()0m a =∵e 11()0e a m a a --<⇔<,e 11()0e a m a a -->⇔>,e 11()0e a m a a --=⇔=综上所述,当11(e e )e 2a -+<<时e 11e a a -->;当e a =时e 11e a a --=;当e a >时e 11e a a --<24. (2014江苏理23)已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,*n ∈N⑴求12πππ2()()222f f +的值⑵证明:对任意*n ∈N,等式1πππ()()444n n nf f -+=都成立.【解析】 ⑴ 0()sin xf x x =,两边求导得01()()cos f x xf x x +=两边再同时求导得122()()sin f x xf x x +=- (*)将π2x =代入(*)式得12πππ2()()1222f f +=-⑵ 下证命题:1sin ,4cos ,41()()sin ,42cos ,43n n x n kx n k nf x xf x x n k x n k -=⎧⎪=+⎪+=⎨-=+⎪⎪-=+⎩,*k ∈N 恒成立当0n =时,0()sin xf x x =成立当1n =时,10()()cos xf x f x x +=,由(1)知成立 当2n =时,21()2()sin xf x f x x +=-,由(1)知成立当3n =时,上式两边求导322()()2()cos xf x f x f x x ++=-,即32()3()cos xf x f x x +=- 假设当n m =(3)m ≥时命题成立,下面证明当1n m =+时命题也成立 若14m k +=,*k ∈N ,则41m k =-,*k ∈N由1()()cos m m mf x xf x x -+=-两边同时求导得1()()()sin m m m xf x f x mf x x +++= 即1(1)()()sin m m m f x xf x x +++=,命题成立同理,若141m k +=+,*k ∈N ,则4m k =,*k ∈N由1()()sin m m mf x xf x x -+=两边同时求导得1(1)()()cos m m m f x xf x x +++=,命题成立 若142m k +=+,*k ∈N ,则41m k =+,*k ∈N由1()()cos m m mf x xf x x -+=两边同时求导得1(1)()()sin m m m f x xf x x +++=-,命题成立 若143m k +=+,*k ∈N ,则42m k =+,*k ∈N由1()()sin m m mf x xf x x -+=-两边同时求导得1(1)()()cos m m m f x xf x x +++=-,命题成立 综上所述,命题对*n ∀∈N 恒成立 代入π4x =得1πππ()()444n n nf f -+=两边同时取绝对值得1πππ()()444n n nf f -+=25. (2014江西理8)若()()1202d ,f x x f x x =+⎰则()1d f x x =⎰( )A .1-B .13-C .13D .1【解析】 B令()10d f x x m =⎰,则()22f x x m =+,所以()()111230011d 2d 2233f x x x m x x mx m m ⎛⎫=+=+=+= ⎪⎝⎭⎰⎰,解得13m =-,故选B .26. (2014江西理13)若曲线e x y -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________. 【解析】 ()ln 2,2-令()e x f x -=,则()'e x f x -=-,令()00P x y ,,则()00'e 2x f x -=-=-,解得0ln 2x =-,所以0ln 20e e 2x y -===,所以点P 的坐标为()ln 2,2-.27. (2014江西理18)已知函数()()2f x x bx bb =++∈R .⑴当4b =时,求()f x 的极值;⑵若()f x 在区间103⎛⎫ ⎪⎝⎭,上单调递增,求b 的取值范围.【解析】 ⑴ 当4b =时,()52'x x f x -+=,由()'0f x =得2x =-或0x =.当()2x ∈-∞-,时,()'0f x <,()f x 单调递减; 当()20x ∈-,时,()'0f x >,()f x 单调递增; 当102x ⎛⎫∈ ⎪⎝⎭,时,()'0f x <,()f x 单调递减,故()f x 在2x =-处取极小值()20f -=,在0x =处取极大值()04f =.⑵ ()'f x =,因为当103x ⎛⎫∈ ⎪⎝⎭,0<,依题意,当103x ⎛⎫∈ ⎪⎝⎭,时,有()532x b +-≤0,从而()53203b +-≤.所以b 的取值范围为19⎛⎤∞ ⎥⎝⎦-,28. (2014江西文11)若曲线ln y x x =上点P 处的切线平行于直线210x y -+=,则点P 的坐标是_______. 【解析】 ()e e , 29. (2014江西文18)已知函数22()(44f x x ax a =++0a <. ⑴当4a =-时,求()f x 的单调递增区间; ⑵若()f x 在区间[14],上的最小值为8,求a 的值. 【解析】 ⑴ 当4a =-时,由()25220x x f x--'==得25x =或2x =,由()0f x '>得 205x ⎛⎫∈ ⎪⎝⎭,或()2x ∈+∞,,故函数()f x 的单调递增区间为205⎛⎫ ⎪⎝⎭,和()2+∞,.⑵ ()0f x a '=<, 由()0f x '=得10ax =-或2a x =-.当010a x ⎛⎫∈- ⎪⎝⎭,时,()f x 单调递增;当102aa x ⎛⎫∈-- ⎪⎝⎭,时,()f x 单调递减;当2a x ⎛⎫∈-+∞ ⎪⎝⎭,时,()f x 单调递增.易知()()220f x x a =+,且02a f ⎛⎫-= ⎪⎝⎭.①当12a-≤,即20a -<≤时,()f x 在[]14,上的最小值为()1f ,由()21448f a a =++=,得2a =±,均不符合题意.②当142a<-≤,即82a -<-≤时,()f x 在[]14,上的最小值为02a f ⎛⎫-= ⎪⎝⎭,不符合题意.③当42a ->,即8a <-时,()f x 在[]14,上的最小值可能在1x =或4x =处取得,而()18f ≠,由()()24264168f a a =++=得10a =-或6a =-(舍去),当10a =-时()f x 在()14,上单调递减,()f x 在[]14,上的最小值为()48f =,符合题意.综上,10a =-.30. (2014辽宁理11文12)当[]21x ∈-,时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是()A .[]53--,B .968⎡⎤--⎢⎥⎣⎦,C .[]62--,D .[]43--,【解析】 C31. (2014辽宁理14)正方形的四个顶点()11A --,,()11B -,,()11C ,,()11D -,分别在抛物线2y x =-和2y x =上,如图所示.若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是.【解析】 2332. (2014辽宁理21)已知函数()()()()8cos π2sin 13f x x x x x =-+-+, ()()()23πcos 41sin ln 3πx g x x x x ⎛⎫=--+- ⎪⎝⎭证明:⑴存在唯一0π02x ⎛⎫∈ ⎪⎝⎭,,使()00f x =;⑵存在唯一1ππ2x ⎛⎫∈ ⎪⎝⎭,,使()10g x =,且对⑴中的0x ,有01πx x +<.在0(0)x ,上()u t 是增函数,又(0)0u =,从而当0(0]t x ∈,时,()0u t >,所以()u t 在0(0]x ,上无零点在0π2x ⎛⎫ ⎪⎝⎭,上()u t 为减函数,由()00u x >,π4ln 202u ⎛⎫=-< ⎪⎝⎭,知存在唯一10π,2t x ⎛⎫∈ ⎪⎝⎭使1()0u t =.所以存在唯一的1π02t ⎛⎫∈ ⎪⎝⎭,,使1()0u t =. 因此存在唯一的11πππ2x t ⎛⎫=-∈ ⎪⎝⎭,,使1()h x h =11(π)()0t u t -==. 因为当ππ2x ⎛⎫∈ ⎪⎝⎭,时,1sin 0x +>,故()(1sin )()g x x h x =+与()h x 有相同的零点,所以存在唯一的1ππ2x ⎛⎫∈ ⎪⎝⎭,,使1()0g x =. 因1110πx t t x =->,,所以01πx x +<.33. (2014辽宁文21)已知函数()π(cos )2sin 2f x x x x =---,2()(π1πx g x x =--. 证明:⑴存在唯一0π(0,)2x ∈,使0()0=f x ; ⑵存在唯一1π(,π)2x ∈,使1()0=g x ,且对⑴中的0x ,01πx x +>. 【解析】 ⑴ 当π(0,)2∈x 时,()ππsin 2cos 0f x x x '=+->,所以()f x 在π(0,)2上为增函 数,又(0)f 2πππ20,()4022=--<=->f ,所以存在唯一0π(0,)2x ∈,使0()0=f x . ⑵ 当π,π2x ⎡⎤∈⎢⎥⎣⎦时,化简得cos 2()(π)11sin πx x g x x x =-⋅+-+ 令πt x =-,记()(π)=-u t g t =cos 211sin πt t t t --++,π[0,]2∈t ()().π(1sin )f t u t t '=+ 由⑴得,当0(0,)∈t x 时,()0u t '<当0π(,)2∈t x 时,()0u t '>. 在0π(,)2x 上()u t 为增函数,由π()02=u 知,当0π,2t x ⎡⎫∈⎪⎢⎣⎭时,()0<u t .所以()u t 在0π,2t x ⎡⎫∈⎪⎢⎣⎭上无零点. 在0(0,)x 上()u t 为减函数,由(0)1=u 及0()0u x <知存在唯一00(0,)∈t x ,使0()0=u t . 于是存在唯一0π(0,)2t ∈,使()00u t =. 设10ππ(,π)2x t =-∈,则100()(π)()0g x g t u t =-==,因此存在唯一的1π(,π)2x ∈,使1()0=g x .由于1000π,x t t x =-<,所以01πx x +>.。

2014年高考导数的综合应用(精华)

2014年高考导数的综合应用(精华)

导数的综合应用(推荐时间:70分钟)1. 设函数f (x )=x 3-92x 2+6x -a .(1)对于任意实数x ,f ′(x )≥m 恒成立,求m 的最大值;(2)若方程f (x )=0有且仅有一个实根,求a 的取值范围.解 (1)f ′(x )=3x 2-9x +6, 因为x ∈(-∞,+∞),f ′(x )≥m , 即3x 2-9x +(6-m )≥0恒成立,所以Δ=81-12(6-m )≤0,解得m ≤-34,即m 的最大值为-34.(2)因为当x <1时,f ′(x )>0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以当x =1时,f (x )取极大值f (1)=52-a ;当x =2时,f (x )取极小值,f (2)=2-a , 故当f (2)>0或f (1)<0时,f (x )=0仅有一个实根. 解得a <2或a >52.2. 已知x =1是函数f (x )=(ax -2)e x (a ∈R )的一个极值点.(1)求a 的值;(2)当x 1,x 2∈[0,2]时,证明:f (x 1)-f (x 2)≤e. (1)解 f ′(x )=(ax +a -2)e x , 由已知得f ′(1)=0,解得a =1.当a =1时,f (x )=(x -2)e x 在x =1处取得极小值.所以a =1.(2)证明 由(1)知,f (x )=(x -2)e x ,f ′(x )=(x-1)e x ,当x ∈[0,1]时,f ′(x )=(x -1)e x ≤0, f (x )在区间[0,1]上单调递减; 当x ∈(1,2]时,f ′(x )=(x -1)e x >0, f (x )在区间(1,2]上单调递增,所以在区间[0,2]上,f (x )的最小值为f (1)=-e. 又f (0)=-2,f (2)=0,所以在区间[0,2]上,f (x )的最大值为f (2)=0, 对于x 1,x 2∈[0,2],有f (x 1)-f (x 2)≤f (x )max -f (x )min ,所以f (x 1)-f (x 2)≤0-(-e)=e. 3. 已知函数f (x )=x ln x .(1)求函数f (x )的极值;(2)设函数g (x )=f (x )-k (x -1),其中k ∈R ,求函数g (x )在区间[1,e]上的最大值.解 (1)f ′(x )=ln x +1(x >0).令f ′(x )≥0,得ln x ≥-1=ln e -1,x ≥1e;令f ′(x )≤0,得x ∈(]0,1e . 所以f (x )的单调递增区间是[)1e ,+∞,单调递减区间是(]0,1e ,f (x )的极小值为f ()1e =-1e.f (x )无极大值.(2)g (x )=x ln x -k (x -1),则g ′(x )=ln x +1-k ,由g ′(x )=0,得x =e k -1,所以,在区间(0,e k -1)上,g (x )为递减函数, 在区间(e k -1,+∞)上,g (x )为递增函数. 当e k -1≤1,即k ≤1时,在区间[1,e]上,g (x )为递增函数,所以,g (x )的最大值为g (e)=e -k e +k ; 当1<e k -1<e ,即1<k <2时, g (x )的最大值是g (1)或g (e), 由g (1)=g (e),得k =ee -1,当1<k <ee -1时,g (e)=e -e k +k >0=g (1),g (x )最大值为g (e)=e -k e +k , 当e e -1≤k <2时,g (e)=e -e k +k <0=g (1),g (x )最大值为g (1)=0;当e k -1≥e ,即k ≥2时,在区间[1,e]上,g (x )为递减函数,所以g (x )最大值为g (1)=0.综上,当k <ee -1时,g (x )最大值为e -k e +k ;当k ≥ee -1时,g (x )的最大值为0.4. 某网店专卖当地某种特产,由以往的经验表明,不考虑其他因素,该特产每日的销售量y (单位:千克)与销售价格x (单位:元/千克,1<x ≤5)满足:当1<x ≤3时,y =a (x -3)2+bx -1(a ,b 为常数);当3<x ≤5时,y =-70x +490,已知当销售价格为2元/千克时,每日可售出该特产700千克;当销售价格为3元/千克时,每日可售出该特产150千克.(1)求a ,b 的值,并确定y 关于x 的函数解析式;(2)若该特产的销售成本为1元/千克,试确定销售价格x 的值,使店铺每日销售该特产所获利润f (x )最大(x 精确到0.01元/千克). 解 (1)因为x =2时,y =700;x =3时,y =150,所以⎩⎪⎨⎪⎧a +b =700b2=150,解得a =400,b =300.每日的销售量y =⎩⎪⎨⎪⎧400(x -3)2+300x -1 (1<x ≤3)-70x +490 (3<x ≤5).(2)由(1)知,当1<x ≤3时,每日销售利润f (x )=⎣⎡⎦⎤400(x -3)2+300x -1(x -1)=400(x -3)2(x -1)+300=400(x 3-7x 2+15x -9)+300(1<x ≤3) f ′(x )=400(3x 2-14x +15). 当x =53,或x =3时f ′(x )=0;当x ∈()1,53时,f ′(x )>0,f (x )单调递增; 当x ∈()53,3时,f ′(x )<0,f (x )单调递减.∴x =53是函数f (x )在(1,3]上的唯一极大值点,f ()53=400×3227+300>700;当3<x ≤5时,每日销售利润f (x )=(-70x +490)(x -1)=-70(x 2-8x +7)f (x )在x =4时有最大值,且f (4)=630<f ()53. 综上,销售价格x =53≈1.67元/千克时,每日利润最大.5. 已知函数f (x )=ln(e x +a +1)(a 为常数)是实数集R 上的奇函数,函数g (x )=λf (x )+sin x 在区间[-1,1]上是减函数. (1)求实数a 的值;(2)若g (x )≤λt -1在x ∈[-1,1]上恒成立,求实数t 的最大值;(3)若关于x 的方程ln x f (x )=x 2-2e x +m 有且只有一个实数根,求m 的值.解 (1)∵f (x )=ln(e x +a +1)是实数集R 上的奇函数,∴f (0)=0,即ln(e 0+a +1)=0⇒2+a =1⇒a =-1,将a =-1代入f (x )=ln e x =x ,显然为奇函数. (2)由(1)知g (x )=λf (x )+sin x =λx +sin x , ∴g ′(x )=λ+cos x ,x ∈[-1,1], ∴要使g (x )是区间[-1,1]上的减函数, 则有g ′(x )≤0在x ∈[-1,1]上恒成立, ∴λ≤(-cos x )min ,∴λ≤-1.要使g (x )≤λt -1在x ∈[-1,1]上恒成立, 只需g (x )max =g (-1)=-λ-sin 1≤λt -1在λ≤-1时恒成立即可.∴(t +1)λ+sin 1-1≥0(其中λ≤-1)恒成立即可.令h (λ)=(t +1)λ+sin 1-1(λ≤-1),则⎩⎨⎧t +1≤0,h (-1)≥0,即⎩⎨⎧t +1≤0,-t -2+sin 1≥0,∴t ≤sin 1-2,∴实数t 的最大值为sin 1-2. (3)由(1)知方程ln xf (x )=x 2-2e x +m ,即ln x x=x 2-2e x +m , 令f 1(x )=ln xx ,f 2(x )=x 2-2e x +m , ∵f ′1(x )=1-ln xx 2当x ∈(0,e]时,f ′1(x )≥0, ∴f 1(x )在(0,e]上为增函数; 当x ∈[e ,+∞)时,f ′1(x )≤0, ∴f 1(x )在[e ,+∞)上为减函数; 当x =e 时,f 1(x )max =1e.而f 2(x )=x 2-2e x +m =(x -e)2+m -e 2. ∴当x =e 时,f 2(x )min =m -e 2.只有当m -e 2=1e ,即m =e 2+1e 时,方程有且只有一个实数根. 6. 已知函数f (x )=ax -1-ln x (a ∈R ).(1)讨论函数f (x )的单调性;(2)若函数f (x )在x =1处取得极值,不等式f (x )≥bx -2对∀x ∈(0,+∞)恒成立,求实数b 的取值范围;(3)当x >y >e -1时,证明不等式e x ln(1+y )>e y ln(1+x ).(1)解 f ′(x )=a -1x =ax -1x (x >0).当a ≤0时,ax -1<0,从而f ′(x )<0, 函数f (x )在(0,+∞)上单调递减;当a >0时,若0<x <1a ,则ax -1<0,从而f ′(x )<0,若x >1a,则ax -1>0,从而f ′(x )>0,函数在()0,1a 上单调递减,在()1a ,+∞上单调递增.(2)解 根据(1)函数的极值点是x =1a ,若1a =1,则a =1.所以f (x )≥bx -2,即x -1-ln x ≥bx -2, 由于x >0,即b ≤1+1x -ln xx.令g (x )=1x -ln x x ,则g ′(x )=-1x 2-1-ln xx 2=ln x -2x 2, 可知x =e 2为函数g (x )在(0,+∞)内唯一的极小值点,也是最小值点,故g (x )min =g (e 2)=-1e 2, 所以1+1x -ln x x 的最小值是1-1e 2,故只要b ≤1-1e2即可,故b 的取值范围是(]-∞,1-1e 2.(3)证明 不等式e x ln(1+y )>e y ln(1+x )⇔e x +1ln (x +1)>e y +1ln (y +1).构造函数h (x )=e xln x,则h ′(x )=e x ln x -1xe x ln 2x =e x ()ln x -1xln 2x , 可知函数在(e ,+∞)上h ′(x )>0, 即函数h (x )在(e ,+∞)上单调递增, 由于x >y >e -1,所以x +1>y +1>e ,所以e x +1ln (x +1)>e y +1ln (y +1),所以e x ln(1+y )>e y ln(1+x ).。

专题03 导数与应用-2021年高考数学(理)试题分项版解析(原卷版)

专题03 导数与应用-2021年高考数学(理)试题分项版解析(原卷版)

1. 【2014江西高考理第8题】若12()2(),f x x f x dx =+⎰则1()f x dx =⎰( )A.1-B.13-C.13D.1 2. 【2014江西高考理第14题】若曲线xy e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________.3. 【2014辽宁高考理第11题】当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]--4. 【2014全国1高考理第11题】已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .()2,+∞B .()1,+∞C .(),2-∞-D .(),1-∞-5. 【2014高考江苏卷第11题】在平面直角坐标系xoy 中,若曲线2by ax x=+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += . 6. 【2014高考广东卷理第10题】曲线25+=-xey 在点()0,3处的切线方程为 .7. 【2014全国2高考理第8题】设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = ( ) A. 0 B. 1 C. 2 D. 38. 【2014全国2高考理第12题】设函数()3sin x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞B. ()(),44,-∞-⋃∞C. ()(),22,-∞-⋃∞D.()(),11,-∞-⋃∞ 9. 【2014山东高考理第6题】 直线34x y x y ==与曲线在第一象限内围成的封闭图形的面积为( ) A.22 B.24 C.2 D.4.2Ae + .1B e + .C e .1De -11. 【2014陕西高考理第10题】如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降, 已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )(A )3131255y x x =- (B )3241255y x x =-(C )33125y x x =- (D )3311255y x x =-+12. 【2014大纲高考理第7题】曲线1x y xe -=在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .113. 【2014高考安徽卷第18题】设函数23()1(1)f x a x x x =++--,其中0a >. (1) 讨论()f x 在其定义域上的单调性;(2) 当[0,1]x ∈时,求()f x 取得最大值和最小值时的x 的值.14. 【2014高考北京理第18题】已知函数()cos sin ,[0,]2f x x x x x π=-∈.(1)求证:()0f x ≤; (2)若sin x a b x <<对(0,)2x π∈恒成立,求a 的最大值与b 的最小值. 15. 【2014高考大纲理第22题】 函数()()()ln 11axf x x a x a=+->+. (I )讨论()f x 的单调性;(II )设111,ln(1)n n a a a +==+,证明:23+22n a n n <≤+. 16. 【2014高考福建理第20题】已知函数()ax e x f x-=(a 为常数)的图象与y 轴交于点A ,曲线()x f y =在点A 处的切线斜率为-1.(I )求a 的值及函数()x f 的极值; (II )证明:当0>x 时,x e x <2;(III )证明:对任意给定的正数c ,总存在0x ,使得当()∞+∈,0x x ,恒有x ce x <2.19. 【2014高考湖南理第22题】已知常数0a >,函数()()2ln 12xf x ax x =+-+. (1)讨论()f x 在区间()0,+∞上的单调性;(2)若()f x 存在两个极值点12,x x ,且()()120f x f x +>,求a 的取值范围. 20. 【2014高考江苏第23题】已知函数0sin ()(0)xf x x x=>,设()n f x 为1()n f x -的导数,*n N ∈ (1)求122()()222f f πππ+的值; (2)证明:对任意*n N ∈,等式12()()4442n n nf f πππ-+=都成立. 21. 【2014高考江西理第18题】已知函数.(1)当时,求的极值;(2)若在区间1(0,)3上单调递增,求b 的取值范围.22. 【2014高考辽宁理第21题】已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x x π=--+-.(Ⅱ)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.23. 【2014高考全国1第21题】设函数1()ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1))f 处的切线方程为(1) 2.y e x =-+(II )证明:() 1.f x >(Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.41422 1.4143<<,估计ln2的近似值(精确到0.001)25. 【2014高考山东卷第20题】设函数22()(ln )x e f x k x x x=-+(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数).(Ⅰ)当0k ≤时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(0,2)内存在两个极值点,求k 的取值范围. 26. 【2014高考陕西第21题】设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数. (1) (2)若()()f x ag x ≥恒成立,求实数a 的取值范围;(3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.27. 【2014高考四川第21题】已知函数2()1xf x e ax bx =---,其中,a b R ∈, 2.71828e =为自然对数的底数.(Ⅰ)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值; (Ⅱ)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围 28. 【2014高考天津第20题】已知函数x f xxae aR ,x R .已知函数y f x 有两个零点12,x x ,且12x x .(Ⅰ)求a 的取值范围;(Ⅱ)证明21x x 随着a 的减小而增大; (Ⅲ)证明12x x 随着a 的减小而增大.。

2014年各地高考理科试题导数及其应用

2014年各地高考理科试题导数及其应用

2014 年各地高考理科试题导数及其应用7.[全国卷 ]曲 y= xe x-1在点 (1, 1)切的斜率等于 ()A . 2e B. e C. 2D. 18.[ 新全国卷Ⅱ ]曲 y=ax- ln( x+ 1)在点 (0,0)的切方程y= 2x, a=()A . 0B. 1C.2D. 39.[四川卷 ]已知 f(x)= ln(1 + x)- ln(1 - x), x∈ (-1, 1).有以下命:① f(- x)=- f( x);② f2x1+x2 =2f(x);③|f(x)|≥2|x|.此中的全部正确命的序号是()A .①②③B .②③C.①③ D .①②10. [湖南卷 ] 已知函数2x 12f(x)= x + e- (x<0) 与 g(x)= x + ln( x+ a)的像上存在对于 y2称的点, a 的取范是 ()A . (-∞,1e) C.-1, e D.-e,1) B.(-∞,ee e1i10.[浙江卷 ]22,i = 0,1,2,⋯,函数 f1(x)= x ,f2(x)= 2(x- x ),f3(x)= |sin 2π x|,a i=99399. I k= |f k(a1)- f k(a0)|+ |f k(a2)-f k(a1)|+⋯+ |f k( a99)- f k(a98)|, k= 1, 2, 3, ()A . I1<I2<I3B . I2<I1<I3 C. I1<I 3<I2D. I3<I2<I110.[ 西卷 ]如 12,某行器在 4 千米高空水平行,从距着点 A 的水平距离 10千米开始降落,已知降落行迹某三次函数像的一部分,函数的分析式()A . y=1x33x B. y=234 125-125x- x 55C.y=3x3- x D. y=-3x3+1x125125512 11.[新全国卷Ⅰ ]已知函数 f(x) =ax3-3x2+ 1,若f(x)存在独一的零点x0,且 x0 >0, a 的取范是 ()A . (2,+∞ )B. (1,+∞ )C. (-∞,- 2)D. (-∞,- 1)11.[ 宁卷 ]当 x∈ [-2,1],不等式 ax3-x2+4x+ 3≥ 0 恒建立,数 a 的取范是 ()A.[-5,- 3] B.-6,-9C.[-6,- 2]D.[-4,- 3] 812. [宁卷 ] 已知定在 [0, 1]上的函数f(x)足:①f(0) = f(1)= 0;② 全部 x, y∈ [0, 1],且 x≠ y,有 |f(x)- f(y)|<1|x- y|. 2若全部 x, y∈ [0, 1],|f(x)- f( y)|<k 恒建立, k 的最小 () 1111A. 2B.4- 5x C.2π D. 8+2 在点 (0, 3)的切方程________.10. [广卷 ] 曲 y= e-x上点 P 的切平行于直2x+ y+ 1= 0,点 P 的坐13. [江西卷 ] 若曲 y= e是________.14.[湖北卷 ] f(x) 是定在 (0,+∞ )上的函数,且 f( x)>0 ,随意 a>0,b>0,若点( a,f(a)),(b,-f(b))的直与 x 的交点 (c,0),称 c a,b 对于函数 f(x) 的均匀数,M f ( a ,b),比如,当 f(x)= 1(x>0) ,可得 M f (a , b)= c =a + b,即 M f (a , b) a , b 的2算 均匀数.(1)当 f(x)= ________(x>0) , M f (a , b) a , b 的几何均匀数;2ab(2)当 f(x)= ________(x>0) , M f (a , b) a , b 的 和均匀数 a + b . (以上两空各只要写出一个切合要求的函数即可)15.[浙江卷 ] 函数 f(x)= x 2+ x , x<0,若 f[f(a)] ≤ 2, 数 a 的取 范 是 ________.-x 2, x ≥ 0.π 18. [北京卷 ] 已知函数 f(x)= xcos x - sin x , x ∈ 0, 2 . (1)求 : f(x)≤0;sin xπ 的最小 .(2)若 a< x <bx ∈ 0, 恒建立,求 a 的最大 与 b218. [安徽卷 ] 函数 f(x)= 1+ (1+ a)x - x 2- x 3,此中 a >0.(1)f(x)在其定 域上的 性;(2)当 x ∈ [0, 1],求 f(x)获得最大 和最小 的 x 的 .18. [江西卷 ] 已知函数 f(x)= (x 2+ bx + b) 1- 2x(b ∈ R ).(1)当 b = 4 ,求 f(x)的极 ;(2)若 f(x)在区 0, 1上 增,求b 的取 范 .3nn , b n)在函数 f(x)= 2 x的 像上 (n ∈ N *) .19. [四川卷 ] 等差数列 { a } 的公差 d ,点 (a (1)若 a 1=- 2,点 ( a 8 ,4b 7) 在函数 f(x)的 像上,求数列 { a n } 的前 n 和 S n ;(2)若 a 1= 1,函数 f(x)的 像在点 (a 2,b 2) 的切 在 x 上的截距1a n2- ln 2 ,求数列 b n 的前 n 和 T n .20.[福建卷 ] 已知函数 f(x)= e x -ax( a 常数 )的 像与 y 交于点 A ,曲 y = f(x)在点A 的切 斜率 - 1.(1) 求 a 的 及函数 f(x) 的极 ;(2) 明:当 x>0 , x 2<e x ;(3) 明: 随意 定的正数c , 存在 x 0,使适当 x ∈ (x 0,+∞ ) ,恒有 x 2<ce x .e x220.[山 卷 ] 函数 f(x)= x 2- k x + ln x (k 常数, e = 2.718 28⋯是自然 数的底数 ).(1) 当 k ≤ 0 ,求函数 f(x)的 区 ;(2) 若函数 f(x)在(0, 2)内存在两个极 点,求k 的取 范 .2x- 2x-cx(a ,b ,c ∈ R )的 函数 f ′(x) 偶函数, 且曲 20.[重 卷 ] 已知函数 f(x)= ae -bey = f(x)在点 (0 ,f(0)) 的切 的斜率4- c.(1)确立 a , b 的 ;(2) 若 c = 3,判断 f(x)的 性; (3) 若 f(x)有极 ,求 c 的取 范 .20.[天津卷 ]f(x)= x -ae x (a ∈ R ),x ∈ R .已知函数 y = f(x)有两个零点 x 1,x 2,且 x 1<x 2.(1) 求 a 的取 范 ;x 2(2) 明:跟着 a 的减小而增大;(3) 明: x 1+ x 2 跟着 a 的减小而增大.21. [ 西卷 ] 函数 f(x)= ln(1 + x), g(x)=xf ′( x), x ≥ 0,此中 f ′(x)是 f(x)的 函数.(1) 令 g 1( x)= g(x), g n +1(x)=g(g n (x)), n ∈ N + ,求 g n (x)的表达式; (2) 若 f(x)≥ ag(x)恒建立,求 数 a 的取 范 ;(3) n ∈ N +,比 g(1)+ g(2) +⋯+ g(n)与 n - f(n)的大小,并加以 明.21. [四川卷 ] 已知函数 f(x)= e x - ax 2- bx - 1,此中 a , b ∈ R , e = 2.718 28⋯ 自然数的底数.(1) g(x)是函数 f(x) 的 函数,求函数 g(x)在区 [0, 1]上的最小 ; (2) 若 f(1)= 0,函数 f(x)在区 (0, 1)内有零点,求a 的取 范 .1,此中k<-2.21. [广 卷 ] 函数 f(x)=(x 2+ 2x + k ) 2+ 2(x 2+ 2x + k )- 3(1) 求函数 f(x)的定 域 D (用区 表示 ); (2) 函数 f(x)在 D 上的 性;(3) 若 k<- 6,求 D 上 足条件 f(x)>f(1) 的 x 的会合 (用区 表示 ).x -1xbe,曲 y =f(x)在点 (1, f(1)) 的切21. [新 全国卷Ⅰ ] 函数 f(x)= ae ln x +x方程 y = e(x - 1)+2.(1)求 a , b ; (2) 明: f(x)>1.21. [新 全国卷Ⅱ ] 已知函数 f(x)= e x -e - x - 2x. (1) f(x)的 性;(2) g(x)=f(2x)- 4bf(x),当 x > 0 , g(x)> 0,求 b 的最大 ; (3)已知 1.414 2< 2< 1.414 3,估 ln 2 的近似 (精准到 0.001).22. [浙江卷 ] 已知函数 f(x)= x 3+ 3|x - a|(a ∈R ). (1)若 f(x)在 [- 1,1] 上的最大 和最小 分 M (a), m(a),求 M(a)- m(a); (2) b ∈ R ,若 [f(x)+ b]2≤ 4 x ∈ [- 1, 1]恒建立,求 3a + b 的取 范 . 22. [湖南卷 ] 已知常数 a > 0,函数2xf(x)= ln(1 + ax)- x + 2.(1) f(x)在区 (0,+∞ )上的 性;(2) 若 f(x)存在两个极 点 x 1, x 2,且 f( x 1)+ f( x 2)> 0,求 a 的取 范 .22. [浙江卷 ] 已知函数 f(x)= x 3+ 3|x - a|(a ∈R ). (1)若 f(x)在 [- 1,1] 上的最大 和最小 分 M (a), m(a),求 M(a)- m(a); (2) b ∈ R ,若 [f(x)+ b]2≤ 4 x ∈ [- 1, 1]恒建立,求 3a + b 的取 范 . 22. [湖北卷 ] π 周率, e = 2.718 28⋯ 自然 数的底数.(1)ln x的 区 ;求函数 f(x)= x(2)求 e 3, 3e , e π , πe ,, 3π,π 3 6 个数中的最大数与最小数;3 e πeπ36 个数按从小到大的 序摆列,并 明你的 .(3)将 e , 3 , e , π , 3 , π 22. [湖南卷 ] 已知常数 a > 0,函数2x f(x)= ln(1 + ax)- x + 2.(1) f(x)在区 (0,+∞ )上的 性;(2) 若 f(x)存在两个极 点x 1, x 2,且 f( x 1)+ f( x 2)> 0,求 a 的取 范 .22. [全国卷 ] 函数 f(x) =ln( x +1) -ax(a>1) .x + a(1) f(x)的 性;= 1, a + = ln( a +1), 明:2≤3 (2) an1n<an + 2n + 2。

新课标I(第03期)-2014届高三名校数学(理)试题分省分项汇编 专题03 导数解析版Word版含解析

新课标I(第03期)-2014届高三名校数学(理)试题分省分项汇编 专题03 导数解析版Word版含解析

一.基础题组1. 【河南省郑州市2014届高中毕业年级第一次质量预测试题】已知曲线23ln 4x y x =-的一条切线的斜率为12-,则切点的横坐标为( ) A .3 B .2 C .1 D .122. 【山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考】定积分=-⎰-dx x x 2222( ) A.5B.6C.7D.83. 【山西省太原市太远五中2014届高三12月月考】已知函数xe xx f cos )(=,则函数)(x f 在点))0(,0(f 处切线方程为 . 【答案】10x y +-= 【解析】试题分析:∵'2sin cos ()()x xx xe xe f x e --=,∴1k =-,(0)1f =,∴1y x -=-,即10x y +-=. 考点:利用导数求曲线的切线.4. 【唐山市2013-2014学年度高三年级第一学期期末考试】已知0a >,函数32f(x)x ax bx c =+++在区间[2,2]-单调递减,则4a b +的最大值为 .5. 【河北省衡水中学2014届高三上学期四调考试】设()ln af x x x x=+, 32()3g x x x =--.(Ⅰ)当2a =时,求曲线()y f x =在1x =处的切线的方程;(Ⅱ)如果存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立,求满足上述条件的最大整数M ;(Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.6. 【河北省唐山市一中2014届高三12月月考】(本小题满分12分)某地区注重生态环境建设,每年用于改造生态环境总费用为x 亿元,其中用于风景区改造为y 亿元。

该市决定制定生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少a 亿元,至多b 亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.若1=a ,4=b ,请你分析能否采用函数模型y =31(416)100x x ++作为生态环境改造投资方案.二.能力题组1. 【河北省唐山市一中2014届高三12月月考】已知函数()f x 对于一切实数x,y 均有()()()21f x y f y x x y +-=++成立,且()()110,0,21g 2a f x f x o x ⎛⎫=∈+ ⎪⎝⎭则当,不等式< 恒成立时,实数a 的取值范围是 .2. 【山西省太原市太远五中2014届高三12月月考】由曲线sin ,cos y x y x ==与直线0,2x x π==所围成的平面图形(图中的阴影部分)的面积是 .【答案】2 【解析】3. 【山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考】(本小题满分12分) 已知函数ln(1)()2x x f x x -=-.(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)设2()23g x x x =++,证明:对任意1(1,2)(2,)x ∈+∞ ,总存在2x R ∈,使得12()()f x g x >.试题解析:(1)''2212ln(1)1[ln(1)]ln(1)1()(2)(2)x x x x x x x f x x x --+------==-- .................1分设1()2ln(1)11h x x x x =--+---, 22'22(1)2(1)1(2)()0(1)(1)x x x h x x x ---+-==≥--∴()h x 在(1,)+∞是增函数,又(2)0h = ………………3分 ∴当(1,2)x ∈时, ()0h x < ,则'()0f x <,()f x 是单调递减函数; 当(2,)x ∈+∞时, ()0h x > ,则'()0f x >,()f x 是单调递增函数. 综上知:()f x 在(1,2)单调递减函数,()f x 在(2,)+∞单调递增函数 ……………………6分三.拔高题组1. 【山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考】0.50.521log log 1(1)(7)x mx x x +>---对任意x ∈[2,4]恒成立,则m 的取值范围为 .∴当4x =时,max 45y =,∴45m >.考点:1.对数函数的单调性;2.恒成立问题;3.利用导数求函数最值.2. 【唐山市2013-2014学年度高三年级第一学期期末考试】(本题满分12分)已知函数(x)1x x e f xe =+.(1)证明:0(x)1f <≤; (2)当0x >时,21(x)1f ax >+,求a 的取值范围.试题解析:(Ⅰ)设(x)xe 1x g =+,则'(x)(x 1)e xg =+.当(,1)x ∈-∞-时,'(x)0g <,(x)g 单调递减; 当(1,)x ∈-+∞时,'(x)0g >,(x)g 单调递增. 所以1(x)g(1)1e0g -≥-=->.又0xe >,故(x)0f >.…2分'2(1e )(x)(xe 1)x x x e f -=+ 当(,0)x ∈-∞时,'(x)0f >,(x)f 单调递增; 当(0,)x ∈+∞时,'(x)0f <,(x)f 单调递减. 所以(x)f(0)1f ≤=. 综上,有0(x)1f <≤.…5分3. 【河北省唐山市一中2014届高三12月月考】(本小题满分12分)已知)0()(>-=a e x x f ax.(1)曲线y=f (x )在x=0处的切线恰与直线012=+-y x 垂直,求a 的值;(2)若x ∈[a ,2a]求f (x )的最大值; (3)若f (x 1)=f (x 2)=0(x 1<x 2),求证:.【答案】(1)13a =;(2)当ln a a a >,即a e <时,max ()()f x f a a e ==-,当ln 2a a a a ≤≤,即2e a e ≤≤时,max ()(ln )ln f x f a a a a a ==-,当2ln a a a <,即2a e >时,2max ()(2)2f x f a a e ==-;(3)证明过程详见解析. 【解析】试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、最值、切线方程以及不等式的证明等基础知识,考查分类讨论思想,综合分析和解决问题的能力.第一问,对()f x 求导,将0x =代入得到切线的斜率,由已知切线与直线210x y -+=垂直得出方程,解出a 的值;第二问,先对()f x 求导,利用导数的正负判断出函数的单调区间,再讨论已知[,2]x a a ∈和单调区间的关系来决定最值的位置;第三问,利用第二问的结论,得出max ()ln f x a a a =-,因为12()()0f x f x ==,所以数形结合,得max ()0f x >,解得a e >,数形结合得出两组点的横坐标的关系21ln x x a a a ->-,又利用12()()0f x f x ==,得出11x a x e =,22x ax e =,进行转换得到所求证的不等式.(3)由(2)知,max ()(ln )ln f x f a a a a a ==-,∵12()()0f x f x ==,∴max ()(ln )ln 0f x f a a a a a ==->, ∴ln 1a >,得a e >,∴()0f a a e =->,且(ln )0f a a >. 得21ln x x a a a ->-,又11x a x e =,22x ax e =,∴1211()(ln )12x x a a a a a x e e e x a--=<=. 考点:1.利用导数求切线的斜率;2.两条直线垂直的充要条件;3.利用导数判断函数的单调性;4.利用导数求函数的最值.4. 【河南省郑州市2014届高中毕业年级第一次质量预测试题】(本小题满分12分)已知函数()ln f x x x =,()(1)g x k x =-.(1)若()()f x g x ≥恒成立,求实数k 的值;(2)若方程()()f x g x =有一根为11(1)x x >,方程''()()f x g x =的根为0x ,是否存在实数k ,使1x k x =?若存在,求出所有满足条件的k 值;若不存在,说明理由. 试题解析:⑴解:注意到函数()f x 的定义域为(0,)+∞, 所以()()f x g x ≥恒成立()()f xg x x x⇔≥恒成立, 设(1)()ln (0)k x h x x x x-=->, 则221()k x kh x x x x -'=-=, ------------2分当0k ≤时,()0h x '>对0x >恒成立,所以()h x 是(0,)+∞上的增函数, 注意到(1)0h =,所以01x <<时,()0h x <不合题意.-------4分5. 【山西省曲沃中学2014届高三上学期期中考试】已知函数()e x f x =,点(,0)A a 为一定点,直线()x t t a =≠分别与函数()f x 的图象和x 轴交于点M ,N ,记AMN ∆的面积为()S t . (1)当0a =时,求函数()S t 的单调区间;(2)当2a >时, 若0[0,2]t ∃∈,使得0()e S t ≥, 求实数a 的取值范围.(II )因为1()||e 2t S t t a =-,其中t a ≠ 当2a >,[0,2]t ∈时,1()()e 2tS t a t =-因为0[0,2]t ∃∈,使得0()e S t ≥,所以()S t 在[0,2]上的最大值一定大于等于e1'()[(1)]e 2t S t t a =---,令'()0S t =,得1t a =- …………………8分6. 【山西省太原市太远五中2014届高三12月月考】已知函数ln 1af x x a x =+∈+R ()(). (1)当92a =时,如果函数g x f x k =-()()仅有一个零点,求实数k 的取值范围; (2)当2a =时,试比较f x ()与1的大小; (3)求证:1111ln 135721n n +>+++++ ()n ∈*N ()一个交点,所以关键是()y f x =的图像,对()f x 求导,令'()0f x >和'()0f x <判断函数的单调性,确定函数的极值和最值所在位置,求出具体的数值,便可以描绘出函数图像,来决定k 的位置;第二问,先将2=a 代入,得到()f x 解析式,作差法比较大小,得到新函数()h x ,判断()h x 的正负即可,通过对()h x 求导,可以看出()h x 在(0,)+∞上是增函数且(1)0h =,所以分情况会出现3种大小关系;第三问,法一:利用第二问的结论,得到表达式1211ln+>+k k k ,再利用不等式的性质得到所证表达式的右边,左边是利用对数的运算性质化简,得证;法二,用数学归纳法证明,先证明当1n =时不等式成立,再假设当n k =时不等式成立,然后利用假设的结论证明当1n k =+时不等式成立即可.①当1>x 时,0)1()(=>h x h ,即1)(>x f ; ②当10<<x 时,0)1()(=<h x h ,即1)(<x f ;③当1=x 时,0)1()(==h x h ,即1)(=x f . ……………………………8分(3)(法一)根据(2)的结论,当1>x 时,112ln >++x x ,即11ln +->x x x . 令k k x 1+=,则有1211ln +>+k k k , ∑∑==+>+∴n k nk k k k 111211ln . ∑=+=+nk k k n 11ln )1ln( , 1215131)1ln(++++>+∴n n . …………………………………12分。

2014高考数学(理)一轮复习总教案:3.3 导数的应用 (二)

2014高考数学(理)一轮复习总教案:3.3 导数的应用 (二)

3.3导数的应用(二)典例精析题型一利用导数证明不等式【例1】已知函数f(x)=错误!x2+ln x.(1)求函数f(x)在区间[1,e]上的值域;(2)求证:x>1时,f(x)<错误!x3.【解析】(1)由已知f′(x)=x+错误!,当x∈[1,e]时,f′(x)>0,因此f(x)在[1,e]上为增函数.故f(x)max=f(e)=错误!+1,f(x)min=f(1)=错误!,因而f(x)在区间[1,e]上的值域为[12,错误!+1]。

(2)证明:令F(x)=f(x)-错误!x3=-错误!x3+错误!x2+ln x,则F′(x)=x +错误!-2x2=错误!,因为x>1,所以F′(x)<0,故F(x)在(1,+∞)上为减函数.又F(1)=-错误!<0,故x>1时,F(x)<0恒成立,即f(x)<错误!x3.【点拨】有关“超越性不等式”的证明,构造函数,应用导数确定所构造函数的单调性是常用的证明方法.【变式训练1】已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时( )A.f′(x)>0,g′(x)>0 B。

f′(x)>0,g′(x)<0C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0【解析】选B。

题型二优化问题【例2】(2012湖南模拟)某地建一座桥,两端的桥墩已建好,这两个桥墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+x)x万元。

假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y万元。

(1)试写出y关于x的函数关系式;(2)当m=640米时,需新建多少个桥墩才能使y最小?【解析】(1)设需新建n个桥墩,则(n+1)x=m,即n=错误!-1。

所以y=f(x)=256n+(n+1)(2+错误!)x=256(错误!-1)+错误!(2+错误!)x=错误!+m错误!+2m-256。

[2014-2018]北京高考数学真题分类汇编 专题三 导数及其应用

[2014-2018]北京高考数学真题分类汇编 专题三  导数及其应用

专题三 导数及其应用1.(2018北京)设函数f (x )=[ax 2﹣(4a +1)x +4a +3]e x .(Ⅰ)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (Ⅱ)若f (x )在x =2处取得极小值,求a 的取值范围. 2.(2017北京)已知函数f (x )=e x cos x ﹣x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间[0,]上的最大值和最小值.3. (2016北京)设函数f (x )=xe a ﹣x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e ﹣1)x +4, (Ⅰ)求a ,b 的值; (Ⅱ)求f (x )的单调区间. 4. (2015北京)已知函数f (x )=ln,(Ⅰ)求曲线y =f (x )在点(0,f (0))处的切线方程; (Ⅱ)求证,当x ∈(0,1)时,f (x );(Ⅲ)设实数k 使得f (x )对x ∈(0,1)恒成立,求k 的最大值.5. (2014北京)已知函数f (x )=x cos x ﹣sin x ,x ∈[0,] (1)求证:f (x )≤0; (2)若ab 对x ∈(0,)上恒成立,求a 的最大值与b 的最小值.6. (2013北京)设l 为曲线:lnxC y x=在点(1,0)处的切线. (Ⅰ)求l 的方程;(Ⅱ)证明:除切点(1,0)之外,曲线C 在直线l 的下方.7. (2012北京)已知函数2()1(0)f x ax a =+>,3()g x x bx =+(1)若曲线()y f x =与曲线()y g x =在它们的交点(1,)c 处具有公共切线,求a 、b 的值; (2)当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(,1)-∞-上的最大值 8. (2011北京)已知函数2()()x kf x x k e =-. (Ⅰ)求()f x 的单调区间;(Ⅱ)若对于任意的(0,)x ∈+∞,都有1()f x e,求k 的取值范围 9. (2010北京)已知函数2()(1)(0)2k f x ln x x x k =+-+. (Ⅰ)当2k =时,求曲线()y f x =在点(1,f (1))处的切线方程; (Ⅱ)求()f x 的单调区间.专题三 导数及其应用答案部分1.(2018北京)(Ⅰ)函数f (x )=[ax 2﹣(4a +1)x +4a +3]e x 的导数为 f ′(x )=[ax 2﹣(2a +1)x +2]e x .由题意可得曲线y =f (x )在点(1,f (1))处的切线斜率为0, 可得(a ﹣2a ﹣1+2)e =0,且f (1)=3e ≠0, 解得a =1;(Ⅱ)f (x )的导数为f ′(x )=[ax 2﹣(2a +1)x +2]e x =(x ﹣2)(ax ﹣1)e x , 若a =0则x <2时,f ′(x )>0,f (x )递增;x >2,f ′(x )<0,f (x )递减. x =2处f (x )取得极大值,不符题意; 若a >0,且a,则f ′(x )(x ﹣2)2e x ≥0,f (x )递增,无极值;若a ,则2,f (x )在(,2)递减;在(2,+∞),(﹣∞,)递增,可得f (x )在x =2处取得极小值;若0<a,则2,f(x)在(2,)递减;在(,+∞),(﹣∞,2)递增,可得f(x)在x=2处取得极大值,不符题意;若a<0,则2,f(x)在(,2)递增;在(2,+∞),(﹣∞,)递减,可得f(x)在x=2处取得极大值,不符题意.综上可得,a的范围是(,+∞).2.(2017北京)(1)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,令g(x)=e x(cos x﹣sin x)﹣1,则g(x)的导数为g′(x)=e x(cos x﹣sin x﹣sin x﹣cos x)=﹣2e x•sin x,当x∈[0,],可得g′(x)=﹣2e x•sin x≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()cos.3.(2016北京)(Ⅰ)∵y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,∴当x=2时,y=2(e﹣1)+4=2e+2,即f(2)=2e+2,同时f′(2)=e﹣1,∵f(x)=xe a﹣x+bx,∴f′(x)=e a﹣x﹣xe a﹣x+b,则,即a=2,b=e;(Ⅱ)∵a=2,b=e;∴f(x)=xe2﹣x+ex,∴f′(x)=e2﹣x﹣xe2﹣x+e=(1﹣x)e2﹣x+e=(1﹣x+e x﹣1)e2﹣x,∵e2﹣x>0,∴1﹣x+e x﹣1与f′(x)同号,令g(x)=1﹣x+e x﹣1,则g′(x)=﹣1+e x﹣1,由g′(x)<0,得x<1,此时g(x)为减函数,由g′(x)>0,得x>1,此时g(x)为增函数,则当x=1时,g(x)取得极小值也是最小值g(1)=1,则g(x)≥g(1)=1>0,故f′(x)>0,即f(x)的单调区间是(﹣∞,+∞),无递减区间.4. (2015北京)(1)因为f(x)=ln(1+x)﹣ln(1﹣x)所以又因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x.(2)证明:令g(x)=f(x)﹣2(x),则g'(x)=f'(x)﹣2(1+x2),因为g'(x)>0(0<x<1),所以g(x)在区间(0,1)上单调递增.所以g(x)>g(0)=0,x∈(0,1),即当x∈(0,1)时,f(x)>2(x).(3)由(2)知,当k≤2时,f(x)对x∈(0,1)恒成立.当k >2时,令h (x )=f (x ),则h '(x )=f '(x )﹣k (1+x 2),所以当时,h '(x )<0,因此h (x )在区间(0,)上单调递减.当时,h (x )<h (0)=0,即f (x ).所以当k >2时,f (x )并非对x ∈(0,1)恒成立.综上所知,k 的最大值为2. 6. (2013北京)(Ⅰ)lnxy x=∴21lnxy x -'=l ∴的斜率1|1x k y =='= l ∴的方程为1y x =-证明:(Ⅱ)令()(1)f x x x lnx =--,(0)x > 曲线C 在直线l 的下方,即()(1)0f x x x lnx =-->, 则1(21)(1)()21x x f x x x x+-'=--=()f x ∴在(0,1)上单调递减,在(1,)+∞上单调递增,又f (1)0= (0,1)x ∴∈时,()0f x >,即1lnxx x <- (1,)x ∈+∞时,()0f x >,即1lnxx x<- 即除切点(1,0)之外,曲线C 在直线l 的下方7. (2012北京)(1)2()1(0)f x ax a =+>,则()2f x ax '=,12k a =,3()g x x bx =+,则2()3g x x b '=+,23k b =+, 由(1,)c 为公共切点,可得:23a b =+① 又f (1)1a =+,g (1)1b =+,11a b ∴+=+,即a b =,代入①式可得:33a b =⎧⎨=⎩. (2)由题设24a b =,设3221()()()14h x f x g x x ax a x =+=+++则221()324h x x ax a '=++,令()0h x '=,解得:12ax =-,26a x =-;0a >,∴a a-<-,∴原函数在(,)2a -∞-单调递增,在(,)26a a --单调递减,在(,)6a -+∞上单调递增①若12a--,即02a <时,()h x 在(-∞,1]-递增,无最大值; ②若126a a -<-<-,即26a <<时,最大值为()12ah -=;③若16a --时,即6a 时,最大值为()12ah -=. 综上所述:当(0a ∈,2]时,无最大值;当(2,)a ∈+∞时,最大值为()12ah -=.8. (2011北京)(Ⅰ)22211()2()()()x x xkk k f x x k e x k e x k e k k'=-+-=-,令()0f x '=,得x k =±当0k >时,()()f x f x '随x 的变化情况如下:所以,()f x 的单调递增区间是(,)k -∞-,和(,)k +∞,单调递减区间是(,)k k -; 当0k <时,()()f x f x '随x 的变化情况如下:所以,()f x 的单调递减区间是(,)k -∞,和(,)k -+∞,单调递增区间是(,)k k -; (Ⅱ)当0k >时,有11(1)k kf k ee++=>,不合题意, 当0k <时,由()I 知()f x 在(0,)+∞上的最大值是24()k f k e-=,∴任意的(0,)x ∈+∞,1()f x e,241()k f k e e ⇔-=,解得102k -<,故对于任意的(0,)x ∈+∞,都有1()f x e ,k 的取值范围是102k -<.9. (2010北京)()I 当2k =时,21()(1),()121f x ln x x x f x x x'=+-+=-++ 由于3(1)(2),(1)2f ln f '==所以曲线()y f x =在点(1,f (1))处的切线方程为 32(1)2y ln x -=-.即322230x y ln -+-=1()()1(1)1II f x kx x x'=-+>-+ 当0k =时,()1x f x x'=-+ 因此在区间(1,0)-上,()0f x '>;在区间(0,)+∞上,()0f x '<; 所以()f x 的单调递增区间为(1,0)-,单调递减区间为(0,)+∞; 当01k <<时,(1)()01x kx k f x x +-'==+,得1210,0kx x k-==>;因此,在区间(1,0)-和1(,)k k -+∞上,()0f x '>;在区间1(0,)kk -上,()0f x '<;即函数()f x 的单调递增区间为(1,0)-和1(,)k k -+∞,单调递减区间为1(0,)kk-;当1k =时,2()1x f x x'=+.()f x 的递增区间为(1,)-+∞当1k >时,由(1)()01x kx k f x x +-'==+,得1210,(1,0)kx x k-==∈-;因此,在区间1(1,)k k --和(0,)+∞上,()0f x '>,在区间1(,0)k k-上,()0f x '<; 即函数()f x 的单调递增区间为1(1,)k k --和(0,)+∞,单调递减区间为1(,0)kk-.。

高考真题分类汇编——导数及其应用 (2)

高考真题分类汇编——导数及其应用 (2)

高考真题分类汇编——导数及其应用1.[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时 ,求f (x )取得最大值和最小值时的x 的值. 解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值. ②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 所以f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值.2.[2014·安徽卷] 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p. 证明:(1)用数学归纳法证明如下.①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立. ②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k >1+kx 成立.当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x . 所以当p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p >1+px 均成立. (2)方法一:先用数学归纳法证明a n >c 1p.①当n =1时,由题设知a 1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p成立. 由a n +1=p -1p a n +c p a 1-pn 易知a n >0,n ∈N *. 当n =k +1时,a k +1a k =p -1p +c p a -pk =1+1p ⎝⎛⎭⎫c a p k-1. 由a k >c 1p >0得-1<-1p <1p ⎝⎛⎭⎫c a p k-1<0. 由(1)中的结论得⎝⎛⎭⎫a k +1a k p=⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p k -1p>1+p · 1p ⎝⎛⎭⎫c a p k -1=c a p k . 因此a p k +1>c ,即a k +1>c 1p, 所以当n =k +1时,不等式a n >c 1p也成立.综合①②可得,对一切正整数n ,不等式a n >c 1p 均成立.再由a n +1a n =1+1p ⎝⎛⎭⎫c a p n -1可得a n +1a n <1, 即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *.方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p ,则x p ≥c ,所以f ′(x )=p -1p +c p (1-p )x -p =p -1p ⎝⎛⎭⎫1-c x p >0. 由此可得,f (x )在[c 1p ,+∞)上单调递增,因而,当x >c 1p 时,f (x )>f (c 1p )=c 1p .①当n =1时,由a 1>c 1p>0,即a p 1>c 可知 a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p 1-1<a 1,并且a 2=f (a 1)>c 1p ,从而可得a 1>a 2>c 1p , 故当n =1时,不等式a n >a n +1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p 成立,则当n =k +1时,f (a k )>f (a k +1)>f (c 1p ),即有a k +1>a k +2>c 1p,所以当n =k +1时,原不等式也成立.综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p均成立.3.[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x . 解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a . 又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 故g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:①若c ≥1,则e x ≤c e x .又由(2)知,当x >0时,x 2<e x . 故当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c >1,要使不等式x 2<c e x 成立,只要e x >kx 2成立.而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立. 令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x.所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增.取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增.又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k , 易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0. 即存在x 0=16c,当x ∈(x 0,+∞)时,恒有x 2<c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法二:(1)同方法一. (2)同方法一.(3)对任意给定的正数c ,取x 0=4c ,由(2)知,当x >0时,ex>x 2,所以e x=e x 2·e x 2>⎝⎛⎭⎫x 22·⎝⎛⎭⎫x 22,当x >x 0时,e x>⎝⎛⎭⎫x 22⎝⎛⎭⎫x 22>4c ⎝⎛⎭⎫x 22=1c x 2,因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法三:(1)同方法一. (2)同方法一.(3)首先证明当x ∈(0,+∞)时,恒有13x 3<e x .证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x .由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)上单调递减, 所以h (x )<h (0)=-1<0,即13x 3<e x .取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .4.[2014·广东卷] 曲线y =e -5x +2在点(0,3)处的切线方程为________. 答案:.y =-5x +3 [解析] 本题考查导数的几何意义以及切线方程的求解方法.因为y ′=-5e -5x ,所以切线的斜率k =-5e 0=-5,所以切线方程是:y -3=-5(x -0),即y =-5x +3.5.[2014·江西卷] 若曲线y =e -x 上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.答案:(-ln 2,2) [解析] 设点P 的坐标为(x 0,y 0),y ′=-e -x .又切线平行于直线2x +y +1=0,所以-e -x 0=-2,可得x 0=-ln 2,此时y =2,所以点P 的坐标为(-ln 2,2).6.[2014·江西卷] 已知函数f (x )=(x 2+bx +b )1-2x (b ∈R ). (1)当b =4时,求f (x )的极值;(2)若f (x )在区间⎝⎛⎭⎫0,13上单调递增,求b 的取值范围. 解:(1)当b =4时,f ′(x )=-5x (x +2)1-2x,由f ′(x )=0,得x =-2或x =0.所以当x ∈(-∞,-2)时,f ′(x )<0,f (x )单调递减;当x ∈(-2,0)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,f (x )单调递减,故f (x )在x =-2处取得极小值f (-2)=0,在x =0处取得极大值f (0)=4.(2)f ′(x )=-x [5x +(3b -2)]1-2x ,易知当x ∈⎝⎛⎭⎫0,13时,-x1-2x<0, 依题意当x ∈⎝⎛⎭⎫0,13时,有5x +(3b -2)≤0,从而53+(3b -2)≤0,得b ≤19. 所以b 的取值范围为⎝⎛⎦⎤-∞,19. 7.[2014·全国卷] 曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1 答案:C 8.[2014·新课标全国卷Ⅱ] 设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3答案:D9.[2014·陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数. (1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.解:由题设得,g (x )=x1+x (x ≥0).(1)由已知,g 1(x )=x 1+x, g 2(x )=g (g 1(x ))=x 1+x 1+x 1+x =x1+2x ,g 3(x )=x 1+3x ,…,可得g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x1+x ,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x 1+kx 1+x 1+kx =x1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x恒成立. 设φ(x )=ln(1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), 所以φ(x )在[0,+∞)上单调递增,又φ(0)=0, 所以φ(x )≥0在[0,+∞)上恒成立,所以a ≤1时,ln(1+x )≥ax1+x 恒成立(仅当x =0时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )<0, 所以φ(x )在(0,a -1]上单调递减, 所以φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0,故知ln(1+x )≥ax1+x 不恒成立.综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k+2),即结论成立.由①②可知,结论对n ∈N +成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12,ln 3-ln 2>13,……ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.10.[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和T n .解:(1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,所以2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2, 所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 其在x 轴上的截距为a 2-1ln 2.由题意有a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1.从而a n =n ,b n =2n ,所以数列{a n b n }的通项公式为a n b n =n2n ,所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -1,因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n .所以,T n =2n +1-n -22n.11.,[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围. 解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b . 所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理g (x )在区间(x 0,1)内存在零点x 2. 故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0, 解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )). 若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1).12.2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时 ,求f (x )取得最大值和最小值时的x 的值. 解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0, ①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值. ②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 所以f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值.13.[2014·北京卷] 已知函数f (x )=x cos x -sin x ,x ∈⎣⎡⎦⎤0,π2.(1)求证:f (x )≤0;(2)若a <sin xx <b 对x ∈⎝⎛⎭⎫0,π2恒成立,求a 的最大值与b 的最小值.解:(1)证明:由f (x )=x cos x -sin x 得f ′(x )=cos x -x sin x -cos x =-x sin x .因为在区间⎝⎛⎭⎫0,π2上f ′(x )=-x sin x <0,所以f (x )在区间⎣⎡⎦⎤0,π2上单调递减.从而f (x )≤f (0)=0.(2)当x >0时,“sin x x >a ”等价于“sin x -ax >0”,“sin xx <b ”等价于“sin x -bx <0”.令g (x )=sin x -cx ,则g ′(x )=cos x -c .当c ≤0时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立.当c ≥1时,因为对任意x ∈⎝⎛⎭⎫0,π2,g ′(x )=cos x -c <0,所以g (x )在区间⎝⎛⎭⎫0,π2上单调递减,从而g (x )<g (0)=0对任意x ∈⎝⎛⎭⎫0,π2恒成立.当0<c <1时,存在唯一的x 0∈⎝⎛⎭⎫0,π2使得g ′(x 0)=cos x 0-c =0.g (x )与g ′(x )在区间⎝⎛⎭⎫0,π2上的情况如下:因为g (x )在区间(0,x 0)上是增函数,所以g (x 0)>g (0)=0.进一步,“g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立”当且仅当g ⎝⎛⎭⎫π2=1-π2c ≥0,即0<c ≤2π.综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立;当且仅当c ≥1时,g (x )<0对任意x ∈⎝⎛⎭⎫0,π2恒成立.所以,若a <sin x x <b 对任意x ∈⎝⎛⎭⎫0,π2恒成立,则a 的最大值为2π,b 的最小值为1.14.[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x . 解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a . 又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 故g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:①若c ≥1,则e x ≤c e x .又由(2)知,当x >0时,x 2<e x . 故当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c >1,要使不等式x 2<c e x 成立,只要e x >kx 2成立.而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立. 令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x.所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增.取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增.又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k , 易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0. 即存在x 0=16c,当x ∈(x 0,+∞)时,恒有x 2<c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法二:(1)同方法一. (2)同方法一.(3)对任意给定的正数c ,取x 0=4c,由(2)知,当x >0时,e x>x 2,所以e x=e x 2·e x 2>⎝⎛⎭⎫x 22·⎝⎛⎭⎫x 22,当x >x 0时,e x>⎝⎛⎭⎫x 22⎝⎛⎭⎫x 22>4c ⎝⎛⎭⎫x 22=1c x 2,因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法三:(1)同方法一. (2)同方法一.(3)首先证明当x ∈(0,+∞)时,恒有13x 3<e x .证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x .由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)上单调递减, 所以h (x )<h (0)=-1<0,即13x 3<e x .取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .15.[2014·广东卷] 设函数f (x )=1(x 2+2x +k )2+2(x 2+2x +k )-3,其中k <-2.(1)求函数f (x )的定义域D (用区间表示); (2)讨论函数f (x )在D 上的单调性;(3)若k <-6,求D 上满足条件f (x )>f (1)的x 的集合(用区间表示).16..[2014·湖北卷] π为圆周率,e =2.718 28…为自然对数的底数.(1)求函数f (x )=ln xx 的单调区间;(2)求e 3,3e ,e π,πe ,,3π,π3这6个数中的最大数与最小数;(3)将e 3,3e ,e π,πe ,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.解:(1)函数f (x )的定义域为(0,+∞).因为f (x )=ln xx ,所以f ′(x )=1-ln x x 2.当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减.故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e <ln πe ,ln e π<ln 3π. 于是根据函数y =ln x ,y =e x ,y =πx 在定义域上单调递增,可得3e <πe <π3,e 3<e π<3π.故这6个数的最大数在π3与3π之中,最小数在3e 与e 3之中.由e<3<π及(1)的结论,得f (π)<f (3)<f (e),即ln ππ<ln 33<ln ee .由ln ππ<ln 33,得ln π3<ln3π,所以3π>π3;由ln 33<ln e e,得ln 3e <ln e 3,所以3e <e 3.综上,6个数中的最大数是3π,最小数是3e .(3)由(2)知,3e <πe <π3<3π,3e <e 3.又由(2)知,ln ππ<ln e e ,得πe <e π.故只需比较e 3与πe 和e π与π3的大小.由(1)知,当0<x <e 时,f (x )<f (e)=1e,即ln x x <1e. 在上式中,令x =e 2π,又e 2π<e ,则ln e 2π<e π,从而2-ln π<e π,即得ln π>2-eπ.①由①得,eln π>e ⎝⎛⎭⎫2-e π>2.7×⎝⎛⎭⎫2-2.723.1>2.7×(2-0.88)=3.024>3, 即eln π>3,亦即ln πe >ln e 3,所以e 3<πe .又由①得,3ln π>6-3eπ>6-e>π,即3ln π>π,所以e π<π3.综上可得,3e <e 3<πe <e π<π3<3π,即这6个数从小到大的顺序为3e ,e 3,πe ,e π,π3,3π. 17.[2014·湖南卷] 已知常数a >0,函数f (x )=ln(1+ax )-2xx +2.(1)讨论f (x )在区间(0,+∞)上的单调性;(2)若f (x )存在两个极值点x 1,x 2,且f (x 1)+f (x 2)>0,求a 的取值范围.解:(1)f ′(x )=a1+ax -2(x +2)-2x (x +2)2=ax 2+4(a -1)(1+ax )(x +2)2.(*)当a ≥1时,f ′(x )>0,此时,f (x )在区间(0,+∞)上单调递增. 当0<a <1时,由f ′(x )=0得x 1=21-a a ⎝ ⎛⎭⎪⎫x 2=-21-a a 舍去.当x ∈(0,x 1)时,f ′(x )<0; 当x ∈(x 1,+∞)时,f ′(x )>0.故f (x )在区间(0,x 1)上单调递减, 在区间(x 1,+∞)上单调递增. 综上所述,当a ≥1时,f (x )在区间(0,+∞)上单调递增;当0<a <1时,f (x )在区间⎝ ⎛⎭⎪⎫0,21-a a 上单调递减,在区间⎝ ⎛⎭⎪⎫21-a a ,+∞上单调递增.(2)由(*)式知,当a ≥1时,f ′(x )≥0,此时f (x )不存在极值点,因而要使得f (x )有两个极值点,必有0<a <1.又f (x )的极值点只可能是x 1=21-a a 和x 2=-21-aa,且由f (x )的定义可知,x >-1a且x ≠-2,所以-21-a a >-1a ,-21-a a ≠-2,解得a ≠12.此时,由(*)式易知,x 1,x 2分别是f (x )的极小值点和极大值点.而f (x 1)+f (x 2)=ln(1+ax 1)-2x 1x 1+2+ln(1+ax 2)-2x 2x 2+2=ln[1+a (x 1+x 2)+a 2x 1x 2]-4x 1x 2+4(x 1+x 2)x 1x 2+2(x 1+x 2)+4=ln(2a -1)2-4(a -1)2a -1=ln(2a -1)2+22a -1-2.令2a -1=x .由0<a <1且a ≠12知,当0<a <12时,-1<x <0;当12<a <1时,0<x <1. 记g (x )=ln x 2+2x-2.(i)当-1<x <0时,g (x )=2ln(-x )+2x -2,所以g ′(x )=2x -2x 2=2x -2x2<0,因此,g (x )在区间(-1,0)上单调递减, 从而g (x )<g (-1)=-4<0.故当0<a <12时,f (x 1)+f (x 2)<0.(ii)当0<x <1时,g (x )=2ln x +2x-2,所以g ′(x )=2x -2x 2=2x -2x2<0,因此,g (x )在区间(0,1)上单调递减,从而g (x )>g (1)=0.故当12<a <1时,f (x 1)+f (x 2)>0.综上所述,满足条件的a 的取值范围为⎝⎛⎭⎫12,1. 18.[2014·江西卷] 已知函数f (x )=(x 2+bx +b )1-2x (b ∈R ). (1)当b =4时,求f (x )的极值;(2)若f (x )在区间⎝⎛⎭⎫0,13上单调递增,求b 的取值范围. 解:(1)当b =4时,f ′(x )=-5x (x +2)1-2x,由f ′(x )=0,得x =-2或x =0.所以当x ∈(-∞,-2)时,f ′(x )<0,f (x )单调递减;当x ∈(-2,0)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,f (x )单调递减,故f (x )在x =-2处取得极小值f (-2)=0,在x =0处取得极大值f (0)=4.(2)f ′(x )=-x [5x +(3b -2)]1-2x ,易知当x ∈⎝⎛⎭⎫0,13时,-x1-2x<0, 依题意当x ∈⎝⎛⎭⎫0,13时,有5x +(3b -2)≤0,从而53+(3b -2)≤0,得b ≤19. 所以b 的取值范围为⎝⎛⎦⎤-∞,19. 19.[2014·辽宁卷] 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3] B.⎣⎡⎦⎤-6,-98 C .[-6,-2] D .[-4,-3]答案:C 当-2≤x <0时,不等式转化为a ≤x 2-4x -3x 3,令f (x )=x 2-4x -3x 3(-2≤x <0),则f ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故f (x )在[-2,-1]上单调递减,在(-1,0)上单调递增,此时有a ≤1+4-3-1=-2.当x =0时,g (x )恒成立.当0<x ≤1时,a ≥x 2-4x -3x 3,令个g (x )=x 2-4x -3x 3(0<x ≤1),则g ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故g (x )在(0,1]上单调递增,此时有a ≥1-4-31=-6.综上,-6≤a ≤-2.20.[2014·全国卷] 函数f (x )=ln(x +1)-axx +a(a >1).(1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2n +2<a n ≤3n +2.解:(1)易知f (x )的定义域为(-1,+∞),f ′(x )=x [x -(a 2-2a )](x +1)(x +a )2.(i)当1<a <2时,若x ∈(-1,a 2-2a ),则f ′(x )>0,所以f (x )在(-1,a 2-2a )是增函数; 若x ∈(a 2-2a ,0),则f ′(x )<0,所以f (x )在(a 2-2a ,0)是减函数; 若x ∈(0,+∞),则f ′(x )>0,所以f (x )在(0,+∞)是增函数.(ii)当a =2时,若f ′(x )≥0,f ′(x )=0成立当且仅当x =0,所以f (x )在(-1,+∞)是增函数.(iii)当a >2时,若x ∈(-1,0),则f ′(x )>0,所以f (x )在(-1,0)是增函数; 若x ∈(0,a 2-2a ),则f ′(x )<0, 所以f (x )在(0,a 2-2a )是减函数;若x ∈(a 2-2a ,+∞),则f ′(x )>0,所以f (x )在(a 2-2a ,+∞)是增函数. (2)由(1)知,当a =2时,f (x )在(-1,+∞)是增函数. 当x ∈(0,+∞)时,f (x )>f (0)=0,即ln(x +1)>2xx +2(x >0).又由(1)知,当a =3时,f (x )在[0,3)是减函数.当x ∈(0,3)时,f (x )<f (0)=0,即ln(x +1)<3xx +3(0<x <3).下面用数学归纳法证明2n +2<a n ≤3n +2.(i)当n =1时,由已知23<a 1=1,故结论成立.(ii)假设当n =k 时结论成立,即2k +2<a k ≤3k +2. 当n =k +1时,a k +1=ln(a k +1)>ln ⎝⎛⎭⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln(a k +1)≤ln ⎝⎛⎭⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n =k +1时,有2k +3 <a k +1≤3k +3,结论成立. 根据(i)(ii)知对任何n ∈结论都成立.21.[2014·新课标全国卷Ⅰ] 已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)答案:C [解析] 当a =0时,f (x )=-3x 2+1,存在两个零点,不符合题意,故a ≠0.由f ′(x )=3ax 2-6x =0,得x =0或x =2a.若a <0,则函数f (x )的极大值点为x =0,且f (x )极大值=f (0)=1,极小值点为x =2a,且f (x )极小值=f ⎝⎛⎭⎫2a =a 2-4a 2,此时只需a 2-4a 2>0,即可解得a <-2; 若a >0,则f (x )极大值=f (0)=1>0,此时函数f (x )一定存在小于零的零点,不符合题意. 综上可知,实数a 的取值范围为(-∞,-2).22.[2014·新课标全国卷Ⅰ] 设函数f (x )=a e xln x +b e x -1x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1.由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2. (2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x , 则g ′(x )=1+ln x ,所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0; 当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e.设函数h (x )=x e -x -2e,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e.因为g min (x )=g ⎝⎛⎭⎫1e =h (1)=h max (x ),所以当x >0时,g (x )>h (x ),即f (x )>1.23.[2014·新课标全国卷Ⅱ] 已知函数f (x )=e x -e -x -2x . (1)讨论f (x )的单调性;(2)设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值; (3)已知1.414 2<2<1.414 3,估计ln 2的近似值(精确到0.001).解:(1)f ′(x )=e x +e -x -2≥0,当且仅当x =0时,等号成立, 所以f (x )在(-∞,+∞)上单调递增.(2)g (x )=f (2x )-4bf (x )=e 2x -e -2x -4b (e x -e -x )+(8b -4)x ,g ′(x )=2[e 2x +e -2x -2b (e x +e -x )+(4b -2)]=2(e x +e -x -2)(e x +e -x -2b +2). (i)当b ≤2时,g ′(x )≥0,等号仅当x =0时成立,所以g (x )在(-∞,+∞)上单调递增.而g (0)=0,所以对任意x >0,g (x )>0.(ii)当b >2时,若x 满足2<e x +e -x <2b -2,即0<x <ln(b -1+b 2-2b )时,g ′(x )<0.而g (0)=0,因此当0<x <ln(b -1+b 2-2b )时,g (x )<0.综上,b 的最大值为2.(3)由(2)知,g (ln 2)=32-22b +2(2b -1)ln 2.当b =2时,g (ln 2)=32-42+6ln 2>0,ln 2>82-312>0.692 8;当b =324+1时,ln(b -1+b 2-2b )=ln 2,g (ln 2)=-32-22+(32+2)ln 2<0,ln 2<18+228<0.693 4.所以ln 2的近似值为0.693.24.[2014·山东卷] 设函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 解:(1)函数y =f (x )的定义域为(0,+∞),f ′(x )=x 2e x -2x e x x 4-k ⎝⎛⎭⎫-2x 2+1x=x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减;x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,当k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点; 当k >0时,设函数g (x )=e x -kx ,x ∈(0,+∞). 因为g ′(x )=e x -k =e x -e ln k , 当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增, 故f (x )在(0,2)内不存在两个极值点.当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点.当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e<k <e 22.综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝⎛⎭⎫e ,e 22. 25.[2014·陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.解:由题设得,g (x )=x1+x (x ≥0).(1)由已知,g 1(x )=x 1+x, g 2(x )=g (g 1(x ))=x 1+x 1+x 1+x =x1+2x ,g 3(x )=x 1+3x ,…,可得g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x1+x ,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x 1+kx 1+x 1+kx =x1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x恒成立. 设φ(x )=ln(1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax1+x 恒成立(仅当x =0时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )<0, ∴φ(x )在(0,a -1]上单调递减, ∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0,故知ln(1+x )≥ax1+x 不恒成立.综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k+2),即结论成立.由①②可知,结论对n ∈N +成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12,ln 3-ln 2>13,……ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.26.[2014·天津卷] 设f (x )=x -a e x (a ∈R ),x ∈R .已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2.(1)求a 的取值范围;(2)证明:x 2x 1随着a 的减小而增大;(3)证明:x 1+x 2随着a 的减小而增大. 解:(1)由f (x )=x -a e x ,可得f ′(x )=1-a e x . 下面分两种情况讨论:(i)a ≤0时,f ′(x )>0在R 上恒成立,可得f (x )在R 上单调递增,不合题意. (ii)a >0时,由f ′(x )=0,得x =-ln a .当x 变化时,f ′(x ),f (x )的变化情况如下表:这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞).于是,“函数y =f (x )有两个零点”等价于如下条件同时成立:①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0;③存在s 2∈(-ln a ,+∞),满足f (s 2)<0.由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1.而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;取s 2=2a +ln 2a,满足s 2∈(-ln a ,+∞),且f (s 2)=⎝⎛⎭⎫2a -e 2a +⎝⎛⎭⎫ln 2a -e 2a <0. 故a 的取值范围是(0,e -1).(2)证明:由f (x )=x -a e x =0,有a =x e x .设g (x )=xe x ,由g ′(x )=1-x e x ,知g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.并且,当x ∈(-∞,0]时,g (x )≤0; 当x ∈(0,+∞)时,g (x )>0.由已知,x 1,x 2满足a =g (x 1),a =g (x 2).由a ∈(0,e -1)及g (x )的单调性,可得x 1∈(0,1),x 2∈(1,+∞).对于任意的a 1,a 2∈(0,e -1),设a 1>a 2,g (ξ1)=g (ξ2)=a 1,其中0<ξ1<1<ξ2;g (η1)=g (η2)=a 2,其中0<η1<1<η2.因为g (x )在(0,1)上单调递增,所以由a 1>a 2,即g (ξ1)>g (η1),可得ξ1>η1.类似可得ξ2<η2.又由ξ1,η1>0,得ξ2ξ1<η2ξ1<η2η1, 所以x 2x 1随着a 的减小而增大.(3)证明:由x 1=a e x 1,x 2=a e x 2,可得ln x 1=ln a +x 1,ln x 2=ln a +x 2.故x 2-x 1=ln x 2-ln x 1=ln x 2x 1.设x 2x 1=t ,则t >1,且⎩⎪⎨⎪⎧x 2=tx 1,x 2-x 1=ln t ,解得x 1=ln t t -1,x 2=t ln tt -1,所以x 1+x 2=(t +1)ln t t -1.①令h (x )=(x +1)ln x x -1,x ∈(1,+∞),则h ′(x )=-2ln x +x -1x(x -1)2.令u (x )=-2ln x +x -1x ,得u ′(x )=⎝⎛⎭⎫x -1x 2.当x ∈(1,+∞)时,u ′(x )>0.因此,u (x )在(1,+∞)上单调递增,故对于任意的x ∈(1,+∞),u (x )>u (1)=0,由此可得h ′(x )>0,故h (x )在(1,+∞)上单调递增.因此,由①可得x 1+x 2随着t 的增大而增大.而由(2),t 随着a 的减小而增大,所以x 1+x 2随着a 的减小而增大.27.、[2014·浙江卷] 已知函数f (x )=x 3+3|x -a |(a ∈R ).(1)若f (x )在[-1,1]上的最大值和最小值分别记为M (a ),m (a ),求M (a )-m (a ); (2)设b ∈R ,若[f (x )+b ]2≤4对x ∈[-1,1]恒成立,求3a +b 的取值范围.解:(1)因为f (x )=⎩⎪⎨⎪⎧x 3+3x -3a ,x ≥a ,x 3-3x +3a ,x <a ,所以f ′(x )=⎩⎪⎨⎪⎧3x 2+3,x ≥a ,3x 2-3,x <a .由于-1≤x ≤1,(i)当a ≤-1时,有x ≥a , 故f (x )=x 3+3x -3a ,此时f (x )在(-1,1)上是增函数, 因此,M (a )=f (1)=4-3a ,m (a )=f (-1)=-4-3a ,故M (a )-m (a )=(4-3a )-(-4-3a )=8.(ii)当-1<a <1时,若x ∈(a ,1),则f (x )=x 3+3x -3a .在(a ,1)上是增函数;若x ∈(-1,a ),则f (x )=x 3-3x +3a 在(-1,a )上是减函数.所以,M (a )=max{f (1),f (-1)},m (a )=f (a )=a 3.由于f (1)-f (-1)=-6a +2,因此,当-1<a ≤13时,M (a )-m (a )=-a 3-3a +4;当13<a <1时,M (a )-m (a )=-a 3+3a +2.(iii)当a ≥1时,有x ≤a ,故f (x )=x 3-3x +3a ,此时f (x )在(-1,1)上是减函数,因此,M (a )=f (-1)=2+3a ,m (a )=f (1)=-2+3a ,故M (a )-m (a )=(2+3a )-(-2+3a )=4.综上,M (a )-m (a )=⎩⎪⎨⎪⎧8,a ≤-1,-a 3-3a +4,-1<a ≤13,-a 3+3a +2,13<a <1,4,a ≥1.(2)令h (x )=f (x )+b ,则h (x )=⎩⎪⎨⎪⎧x 3+3x -3a +b ,x ≥a ,x 3-3x +3a +b ,x <a ,h ′(x )=⎩⎪⎨⎪⎧3x 2+3,x >a ,3x 2-3,x <a .因为[f (x )+b ]2≤4对x ∈[-1,1]恒成立, 即-2≤h (x )≤2对x ∈[-1,1]恒成立,所以由(1)知,(i)当a ≤-1时,h (x )在(-1,1)上是增函数,h (x )在[-1,1]上的最大值是h (1)=4-3a +b ,最小值是h (-1)=-4-3a +b ,则-4-3a +b ≥-2且4-3a +b ≤2,矛盾.(ii)当-1<a ≤13时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (1)=4-3a +b ,所以a 3+b ≥-2且4-3a +b ≤2,从而-2-a 3+3a ≤3a +b ≤6a -2且0≤a ≤13.令t (a )=-2-a 3+3a ,则t ′(a )=3-3a 2>0,t (a )在⎝⎛⎭⎫0,13上是增函数,故t (a )>t (0)=-2, 因此-2≤3a +b ≤0.(iii)当13<a <1时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (-1)=3a +b +2,所以a 3+b ≥-2且3a +b +2≤2,解得-2827<3a +b ≤0;(iv)当a ≥1时,h (x )在[-1,1]上的最大值是h (-1)=2+3a +b ,最小值是h (1)=-2+3a +b ,所以3a +b +2≤2且3a +b -2≥-2,解得3a +b =0.综上,得3a +b 的取值范围是-2≤3a +b ≤0.28.[2014·重庆卷] 已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性; (3)若f (x )有极值,求c 的取值范围.解:(1)对f (x )求导得f ′(x )=2a e 2x +2b e -2x -c ,由f ′(x )为偶函数,知f ′(-x )=f ′(x ),即2(a-b )(e 2x -e -2x )=0.因为上式总成立,所以a =b .又f ′(0)=2a +2b -c =4-c ,所以a =1,b =1.(2)当c =3时,f (x )=e 2x -e -2x -3x ,那么f ′(x )=2e 2x +2e -2x -3≥22e 2x ·2e -2x -3=1>0, 故f (x )在R 上为增函数.(3)由(1)知f ′(x )=2e 2x +2e -2x -c ,而2e 2x +2e -2x ≥22e 2x ·2e -2x =4,当且仅当x =0时等号成立.下面分三种情况进行讨论:当c <4时,对任意x ∈R ,f ′(x )=2e 2x +2e -2x -c >0,此时f (x )无极值.当c =4时,对任意x ≠0,f ′(x )=2e 2x +2e -2x -4>0,此时f (x )无极值.。

【5年高考3年模拟】(新课标版)2014年高考数学真题分类汇编3.2导数的应用文

【5年高考3年模拟】(新课标版)2014年高考数学真题分类汇编3.2导数的应用文

3.2导数的应用考点一 导数与函数的单调性1.(2014课标Ⅱ,11,5分)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是( )A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)答案 D 2.(2014重庆,19,12分)已知函数f(x)=+-ln x-,其中a∈R,且曲线y=f(x)在点(1, f(1))处的切线垂直于直线y=x.(1)求a的值;(2)求函数f(x)的单调区间与极值.解析 (1)对f(x)求导得 f '(x)=--,由f(x)在点(1, f(1))处的切线垂直于直线y=x知f'(1)=--a=-2,解得a=.(2)由(1)知f(x)=+-ln x-,则f '(x)=,令f '(x)=0,解得x=-1或x=5.因x=-1不在f(x)的定义域(0,+∞)内,故舍去.当x∈(0,5)时, f '(x)<0,故f(x)在(0,5)内为减函数;当x∈(5,+∞)时, f '(x)>0,故f(x)在(5,+∞)内为增函数.由此知函数f(x)在x=5时取得极小值f(5)=-ln 5.3.(2014安徽,20,13分)设函数f(x)=1+(1+a)x-x2-x3,其中a>0.(1)讨论f(x)在其定义域上的单调性;(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.解析 (1)f(x)的定义域为(-∞,+∞), f '(x)=1+a-2x-3x2.令f '(x)=0,得x1=,x2=,x1<x2,所以f '(x)=-3(x-x1)(x-x2).当x<x1或x>x2时, f '(x)<0;当x1<x<x2时, f '(x)>0.故f(x)在(-∞,x1)和(x2,+∞)内单调递减,在(x1,x2)内单调递增.(2)因为a>0,所以x1<0,x2>0.(i)当a≥4时,x2≥1,由(1)知, f(x)在[0,1]上单调递增,所以f(x)在x=0和x=1处分别取得最小值和最大值.(ii)当0<a<4时,x2<1.由(1)知, f(x)在[0,x2]上单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=处取得最大值.又f(0)=1, f(1)=a,所以当0<a<1时, f(x)在x=1处取得最小值;当a=1时, f(x)在x=0和x=1处同时取得最小值;当1<a<4时, f(x)在x=0处取得最小值.4.(2014湖北,21,14分)π为圆周率,e=2.718 28…为自然对数的底数.(1)求函数f(x)=的单调区间;(2)求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数.解析 (1)函数f(x)的定义域为(0,+∞).因为f(x)=,所以 f '(x)=.当f '(x)>0,即0<x<e时,函数f(x)单调递增;当f '(x)<0,即x>e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e<ln πe,ln eπ<ln 3π.于是根据函数y=ln x,y=e x,y=πx在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π.故这6个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(1)的结论,得f(π)<f(3)<f(e),即<<.由<,得ln π3<ln 3π,所以3π>π3;由<,得ln 3e<ln e3,所以3e<e3.综上,6个数中的最大数是3π,最小数是3e.5.(2014广东,21,14分)已知函数f(x)=x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈∪,使得f(x0)=f.解析 (1)函数的定义域为R, f '(x)=x2+2x+a.①当a<1时,令f '(x)>0,则x2+2x+a>0?x>-1+或x<-1-,所以f(x)的单调递增区间为(-∞,-1-)和(-1+,+∞);令f '(x)<0,可得-1-<x<-1+,所以f(x)的单调递减区间为(-1-,-1+).②当a≥1时,f '(x)≥0在R上恒成立,所以f(x)在R上是增函数.(2)a<0时,-1+>0.由(1)知, f(x)在(-1+,+∞)上是增函数.①???-≤a,则-≤a<0,不存在x0∈∪,使得f(x0)=f;②??-<a<-,存在x0∈∪,使得f(x0)=f;③-1+=?a=-,不存在x0∈∪,使得f(x0)=f;④??-3<a<-,不存在x0∈∪,使得f(x0)=f;⑤??-<a<-,存在x0∈∪,使得f(x0)=f;⑥-1+≥1?a≤-3, f(x)在(0,1)上是单调函数,故不存在x0∈∪,使得f(x0)=f.综上所述,当a∈∪时,存在x0∈∪,使得f(x0)=f.当a∈∪∪时,不存在x0∈∪,使得f(x0)=f.考点二 导数与函数的极值与最值6.(2014辽宁,12,5分)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是( )A.[-5,-3]B.C.[-6,-2]D.[-4,-3]答案 C 7.(2014天津,19,14分)已知函数f(x)=x2-ax3(a>0),x∈R.(1)求f(x)的单调区间和极值;(2)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1.求a的取值范围.解析 (1)由已知,有f '(x)=2x-2ax2(a>0).令f '(x)=0,解得x=0或x=.当x变化时, f '(x), f(x)的变化情况如下表:x(-∞,0)f '(x)-0+0-f(x)↘0↗↘所以, f(x)的单调递增区间是;单调递减区间是(-∞,0),.当x=0时, f(x)有极小值,且极小值f(0)=0;当x=时,f(x)有极大值,且极大值f=.(2)由f(0)=f=0及(1)知,当x∈时, f(x)>0;当x∈时, f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B=.则“对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1”等价于A?B.显然,0?B.下面分三种情况讨论:①当>2,即0<a<时,由f=0可知,0∈A,而0?B,所以A不是B的子集.②当1≤≤2,即≤a≤时,有f(2)≤0,且此时f(x)在(2,+∞)上单调递减,故A=(-∞, f(2)),因而A?(-∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)?B.所以,A?B.③当<1,即a>时,有f(1)<0,且此时f(x)在(1,+∞)上单调递减,故B=,A=(-∞,f(2)),所以A 不是B的子集.综上,a的取值范围是.8.(2014浙江,21,15分)已知函数f(x)=x3+3|x-a|(a>0).若f(x)在[-1,1]上的最小值记为g(a).(1)求g(a);(2)证明:当x∈[-1,1]时,恒有f(x)≤g(a)+4.解析 (1)因为a>0,-1≤x≤1,所以(i)当0<a<1时,若x∈[-1,a],则f(x)=x3-3x+3a, f '(x)=3x2-3<0,故f(x)在(-1,a)上是减函数;若x∈[a,1],则f(x)=x3+3x-3a, f '(x)=3x2+3>0,故f(x)在(a,1)上是增函数.所以g(a)=f(a)=a3.(ii)当a≥1时,有x≤a,则f(x)=x3-3x+3a, f '(x)=3x2-3<0,故f(x)在(-1,1)上是减函数,所以g(a)=f(1)=-2+3a.综上,g(a)=(2)令h(x)=f(x)-g(a),(i)当0<a<1时,g(a)=a3,若x∈[a,1],h(x)=x3+3x-3a-a3,得h'(x)=3x2+3,则h(x)在(a,1)上是增函数,所以,h(x)在[a,1]上的最大值是h(1)=4-3a-a3,且0<a<1,所以h(1)≤4.故f(x)≤g(a)+4;若x∈[-1,a],h(x)=x3-3x+3a-a3,得h'(x)=3x2-3,则h(x)在(-1,a)上是减函数,所以,h(x)在[-1,a]上的最大值是h(-1)=2+3a-a3.令t(a)=2+3a-a3,则t'(a)=3-3a2>0,知t(a)在(0,1)上是增函数,所以,t(a)<t(1)=4,即h(-1)<4.故f(x)≤g(a)+4.(ii)当a≥1时,g(a)=-2+3a,故h(x)=x3-3x+2,得h'(x)=3x2-3,此时h(x)在(-1,1)上是减函数,因此h(x)在[-1,1]上的最大值是h(-1)=4.故f(x)≤g(a)+4.综上,当x∈[-1,1]时,恒有f(x)≤g(a)+4.9.(2014四川,21,14分)已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1.解析 (1)由f(x)=e x-ax2-bx-1,有g(x)=f '(x)=e x-2ax-b,所以g'(x)=e x-2a.当x∈[0,1]时,g'(x)∈[1-2a,e-2a],当a≤时,g'(x)≥0,所以g(x)在[0,1]上单调递增,因此g(x)在[0,1]上的最小值是g(0)=1-b;当a≥时,g'(x)≤0,所以g(x)在[0,1]上单调递减.因此g(x)在[0,1]上的最小值是g(1)=e-2a-b;当<a<时,令g'(x)=0,得x=ln(2a)∈(0,1).所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增.于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b.综上所述,当a≤时,g(x)在[0,1]上的最小值是g(0)=1-b;当<a<时,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b;当a≥时,g(x)在[0,1]上的最小值是g(1)=e-2a-b.(2)设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.则g(x)不可能恒为正,也不可能恒为负.故g(x)在区间(0,x0)内存在零点x1,同理,g(x)在区间(x0,1)内存在零点x2,所以g(x)在区间(0,1)内至少有两个零点.由(1)知,当a≤时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点.当a≥时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点,所以<a<.此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,因此x1∈(0,ln(2a)],x2∈(ln(2a),1),必有g(0)=1-b>0,g(1)=e-2a-b>0.由f(1)=0有a+b=e-1<2,有g(0)=a-e+2>0,g(1)=1-a>0,解得e-2<a<1.所以函数f(x)在区间(0,1)内有零点时,e-2<a<1.考点三 导数的综合应用10.(2014课标Ⅰ,12,5分)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)答案 C 11.(2014湖南,9,5分)若0<x1<x2<1,则( )A.->ln x2-ln x1B.-<ln x2-ln x1C.x2>x1D.x2<x1答案 C 12.(2014福建,22,14分)已知函数f(x)=e x-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<ce x.解析 (1)由f(x)=e x-ax,得f '(x)=e x-a.又f '(0)=1-a=-1,所以a=2.所以f(x)=e x-2x, f '(x)=e x-2.令f '(x)=0,得x=ln 2.当x<ln 2时, f '(x)<0, f(x)单调递减;当x>ln 2时, f '(x)>0, f(x)单调递增.所以当x=ln 2时, f(x)有极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值.(2)令g(x)=e x-x2,则g'(x)=e x-2x.由(1)得,g'(x)=f(x)≥f(ln 2)=2-ln 4>0,即g'(x)>0.所以g(x)在R上单调递增,又g(0)=1>0,所以当x>0时,g(x)>g(0)>0,即x2<e x.(3)解法一:对任意给定的正数c,取x0=,由(2)知,当x>0时,x2<e x.所以当x>x0时,e x>x2>x,即x<ce x.因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x<ce x.解法二:令k=(k>0),要使不等式x<ce x成立,只需要e x>kx成立.而要使e x>kx成立,只需要x>ln (kx),即x>ln x+ln k成立.①若0<k≤1,则ln k≤0,易知当x>0时,x>ln x≥ln x+ln k成立.即对任意c∈[1,+∞),取x0=0,当x∈(x0,+∞)时,恒有x<ce x.②若k>1,令h(x)=x-ln x-ln k,则h'(x)=1-=,所以当x>1时,h'(x)>0,h(x)在(1,+∞)内单调递增.取x0=4k,h(x0)=4k-ln (4k)-ln k=2(k-ln k)+2(k-ln 2),易知k>ln k,k>ln 2,所以h(x0)>0.因此对任意c∈(0,1),取x0=,当x∈(x0,+∞)时,恒有x<ce x.综上,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x<ce x.解法三:①若c≥1,取x0=0,由(2)的证明过程知,e x>2x,所以当x∈(x0,+∞)时,有ce x≥ex>2x>x,即x<ce x.②若0<c<1,令h(x)=ce x-x,则h'(x)=ce x-1.令h'(x)=0,得x=ln.当x>ln时,h'(x)>0,h(x)单调递增.取x0=2ln,h(x0)=c-2ln=2,易知-ln>0,又h(x)在(x0,+∞)内单调递增,所以当x∈(x0,+∞)时,恒有h(x)>h(x0)>0,即x<ce x.综上,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x<ce x.注:对c的分类可有不同的方式,只要解法正确,均相应给分.13.(2014课标Ⅰ,21,12分)设函数f(x)=aln x+x2-bx(a≠1),曲线y=f(x)在点(1, f(1))处的切线斜率为0.(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.解析 (1)f '(x)=+(1-a)x-b.由题设知 f '(1)=0,解得b=1.(2)f(x)的定义域为(0,+∞),由(1)知,f(x)=aln x+x2-x, f '(x)=+(1-a)x-1=(x-1).(i)若a≤,则≤1,故当x∈(1,+∞)时, f '(x)>0,f(x)在(1,+∞)上单调递增.所以,存在x0≥1,使得f(x0)<的充要条件为f(1)<,即-1<,解得--1<a<-1.(ii)若<a<1,则>1,故当x∈时, f '(x)<0;当x∈时, f '(x)>0.f(x)在上单调递减,在上单调递增.所以,存在x0≥1,使得f(x0)<的充要条件为f<.而f=aln ++>,所以不合题意.(iii)若a>1,则f(1)=-1=<.综上,a的取值范围是(--1,-1)∪(1,+∞).14.(2014江西,18,12分)已知函数f(x)=(4x2+4ax+a2),其中a<0.(1)当a=-4时,求f(x)的单调递增区间;(2)若f(x)在区间[1,4]上的最小值为8,求a的值.解析 (1)当a=-4时,由f '(x)==0得x=或x=2,由f '(x)>0得x∈或x∈(2,+∞),故函数f(x)的单调递增区间为和(2,+∞).(2)f '(x)=,a<0,由f '(x)=0得x=-或x=-.当x∈时,f(x)单调递增;当x∈时,f(x)单调递减;当x∈时,f(x)单调递增.易知 f(x)=(2x+a)2≥0,且f=0.①当-≤1,即-2≤a<0时,f(x)在[1,4]上的最小值为f(1),由f(1)=4+4a+a2=8,得a=±2-2,均不符合题意.②当1<-≤4,即-8≤a<-2时, f(x)在[1,4]上的最小值为f=0,不符合题意.③当->4,即a<-8时,f(x)在[1,4]上的最小值可能在x=1或x=4处取得,而f(1)≠8,由f(4) =2(64+16a+a2)=8得a=-10或a=-6(舍去),当a=-10时,f(x)在(1,4)上单调递减, f(x)在[1,4]上的最小值为f(4)=8,符合题意.综上,a=-10.15.(2014课标Ⅱ,21,12分)已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.(1)求a;(2)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.解析 (1)f '(x)=3x2-6x+a, f '(0)=a,曲线y=f(x)在点(0,2)处的切线方程为y=ax+2.由题设得-=-2,所以a=1.(2)由(1)知, f(x)=x3-3x2+x+2.设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4.由题设知1-k>0.当x≤0时,g'(x)=3x2-6x+1-k>0,g(x)单调递增,g(-1)=k-1<0,g(0)=4,所以g(x)=0在(-∞,0]上有唯一实根.当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).h'(x)=3x2-6x=3x(x-2),h(x)在(0,2)上单调递减,在(2,+∞)上单调递增,所以g(x)>h(x)≥h(2)=0.所以g(x)=0在(0,+∞)上没有实根.综上,g(x)=0在R上有唯一实根,即曲线y=f(x)与直线y=kx-2只有一个交点.。

高考数学专题03导数与应用-高考数学(理)试题分项版解析(原卷版).docx

高考数学专题03导数与应用-高考数学(理)试题分项版解析(原卷版).docx

高中数学学习材料唐玲出品1. 【2014江西高考理第8题】若12()2(),f x x f x dx =+⎰则1()f x dx =⎰( )A.1-B.13-C.13D.1 2. 【2014江西高考理第14题】若曲线xy e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________.3. 【2014辽宁高考理第11题】当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]--4. 【2014全国1高考理第11题】已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .()2,+∞B .()1,+∞C .(),2-∞-D .(),1-∞-5. 【2014高考江苏卷第11题】在平面直角坐标系xoy 中,若曲线2by ax x=+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += . 6. 【2014高考广东卷理第10题】曲线25+=-xey 在点()0,3处的切线方程为 .7. 【2014全国2高考理第8题】设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = ( ) A. 0 B. 1 C. 2 D. 38. 【2014全国2高考理第12题】设函数()3sin x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞B. ()(),44,-∞-⋃∞C. ()(),22,-∞-⋃∞D.()(),11,-∞-⋃∞ 9. 【2014山东高考理第6题】 直线34x y x y ==与曲线在第一象限内围成的封闭图形的面积为( ) A.22 B.24 C.2 D.4 10. 【2014陕西高考理第3题】定积分1(2)x x e dx +⎰的值为( ).2Ae + .1B e + .C e .1De -11. 【2014陕西高考理第10题】如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降, 已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )(A )3131255y x x =- (B )3241255y x x =-(C )33125y x x =- (D )3311255y x x =-+ 12. 【2014大纲高考理第7题】曲线1x y xe -=在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1 13. 【2014高考安徽卷第18题】设函数23()1(1)f x a x x x =++--,其中0a >.(1) 讨论()f x 在其定义域上的单调性;(2) 当[0,1]x ∈时,求()f x 取得最大值和最小值时的x 的值.14. 【2014高考北京理第18题】已知函数()cos sin ,[0,]2f x x x x x π=-∈.(1)求证:()0f x ≤; (2)若sin x a b x <<对(0,)2x π∈恒成立,求a 的最大值与b 的最小值. 15. 【2014高考大纲理第22题】函数()()()ln 11axf x x a x a=+->+. (I )讨论()f x 的单调性;(II )设111,ln(1)n n a a a +==+,证明:23+22n a n n <≤+. 16. 【2014高考福建理第20题】已知函数()ax e x f x-=(a 为常数)的图象与y 轴交于点A ,曲线()x f y =在点A 处的切线斜率为-1.(I )求a 的值及函数()x f 的极值; (II )证明:当0>x 时,xe x <2;(III )证明:对任意给定的正数c ,总存在0x ,使得当()∞+∈,0x x ,恒有xce x <2.19. 【2014高考湖南理第22题】已知常数0a >,函数()()2ln 12xf x ax x =+-+. (1)讨论()f x 在区间()0,+∞上的单调性;(2)若()f x 存在两个极值点12,x x ,且()()120f x f x +>,求a 的取值范围. 20. 【2014高考江苏第23题】已知函数0sin ()(0)xf x x x=>,设()n f x 为1()n f x -的导数,*n N ∈ (1)求122()()222f f πππ+的值;(2)证明:对任意*n N ∈,等式12()()4442n n nf f πππ-+=都成立. 21. 【2014高考江西理第18题】已知函数.(1)当时,求的极值;(2)若在区间1(0,)3上单调递增,求b 的取值范围.22. 【2014高考辽宁理第21题】已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x x π=--+-.证明:(Ⅰ)存在唯一0(0,)2x π∈,使0()0f x =;(Ⅱ)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.23. 【2014高考全国1第21题】设函数1()ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1))f 处的切线方程为(1) 2.y e x =-+ (I )求,;a b(II )证明:() 1.f x >24. 【2014高考全国2第21题】已知函数()f x =2x x e e x ---. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.41422 1.4143<<,估计ln2的近似值(精确到0.001)25. 【2014高考山东卷第20题】设函数22()(ln )x e f x k x x x=-+(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数).(Ⅰ)当0k ≤时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(0,2)内存在两个极值点,求k 的取值范围. 26. 【2014高考陕西第21题】设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数. (1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式;(2)若()()f x ag x ≥恒成立,求实数a 的取值范围;(3)设n N +∈,比较(1)(2)()g g g n +++与()n f n -的大小,并加以证明.27. 【2014高考四川第21题】已知函数2()1x f x e ax bx =---,其中,a b R ∈, 2.71828e =为自然对数的底数.(Ⅰ)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值; (Ⅱ)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围 28. 【2014高考天津第20题】已知函数()xf x x ae=-()a R Î,x R Î.已知函数()y f x =有两个零点12,x x ,且12x x <.(Ⅰ)求a 的取值范围; (Ⅱ)证明21x x 随着a 的减小而增大; (Ⅲ)证明12x x +随着a 的减小而增大.。

2014年高考理科数学试题分类汇编-导数-word版含答案

2014年高考理科数学试题分类汇编-导数-word版含答案

2014年高考数学试题汇编 导数一.选择题1。

(2014大纲)曲线1x y xe -=在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1 【答案】C . 2。

(2014浙江)已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤c B 。

63≤<c C 。

96≤<c D. 9>c C3。

(2014陕西)定积分1(2)x x e dx +⎰的值为( ).2Ae + .1B e + .C e .1D e -【答案】 C 【解析】C e e e e x dx e x x x 选∴,-0-1|)()2(1001102∫=+=+=+4. (2014湖南)已知函数()sin(),f x x ϕ=-且230()0,f x dx π=⎰则函数()f x 的图象的一条对称轴是( ) A 。

56x π=B 。

712x π= C 。

3x π= D.6x π=5(2014山东)直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为(A )22(B )42(C)2(D )46. (2014新课标II )设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A 。

0 B. 1 C 。

2 D. 3 【答案】 D..3.2)0(,0)0(.11-)(),1ln(-)(D a f f x a x f x ax x f 故选联立解得且==′=∴+=′∴+= 7. (2014江西)若12()2(),f x x f x dx =+⎰则1()f x dx =⎰( )A 。

1- B.13- C 。

13D 。

1 【答案】B 【解析】设()1m f x dx=⎰,则2()2f x x m=+,()111123011()2()2233f x dx x f x dx dx x mx m m =+=+=+=⎰⎰⎰,所以13m =-.8。

2014年高考导数专题(含详细解答) - 含答案

2014年高考导数专题(含详细解答) - 含答案

导数及其应用导数的运算1. 几种常见的函数导数:①、c '= (c 为常数); ②、n(x )'= (R n ∈); ③、)(sin 'x = ;④、)(cos 'x = ;⑤、x(a)'= ; ⑥、x (e )'= ; ⑦、a (log x )'= ; ⑧、(ln x )'= .2. 求导数的四则运算法则:()u v u v '''±=±;v u v u uv '+'=')(;2)(v v u v u v u '-'=' )0(2'''≠-=⎪⎭⎫ ⎝⎛v v u v vu v u注:① v u ,必须是可导函数. *3. 复合函数的求导法则: )()())((x u f x f x ϕϕ'•'=' 或 '•'='x u x u y y一、求曲线的切线(导数几何意义)导数几何意义:0()f x '表示函数()y f x =在点(0x ,0()f x )处切线L 的斜率;函数()y f x =在点(0x ,0()f x )处切线L 方程为000()()()y f x f x x x '-=-1.(2009全国卷Ⅱ理)曲线21xy x =-在点()1,1处的切线方程为( )A . 20x y --=B . 20x y +-=C .450x y +-=D . 450x y --= 2.【2012高考广东理12】曲线y =x 3-x +3在点(1,3)处的切线方程为 .变式一:3.(2009江西卷理)设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为( )A .4B .14-C .2D .12- 4.【2009安徽卷理】已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是( )A .21y x =-B .y x =C .32y x =-D .23y x =-+变式二:5.(2009江苏卷)在平面直角坐标系xoy 中,点P 在曲线3:103C y x x =-+上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为 . 6.【2009陕西卷理】设曲线1*()n y xn N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则1299a a a +++的值为 .7.(2010辽宁理数)已知点P 在曲线y =41xe +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 A 、[0,4π) B 、[,)42ππ C 、3(,]24ππ D 、3[,)4ππ变式三:8.(2009全国卷Ⅰ理) 已知直线y =x +1与曲线y ln()x a =+相切,则α的值为( )A .1B . 2C .-1D .-2 9.【2009江西卷文】若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( )A .1-或25-64 B .1-或214 C .74-或25-64D .74-或710.(2010全国卷理数2)若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =A 、64B 、32C 、16D 、8 11.【2012高考安徽理19】(本小题满分13分) 设1()(0)xxf x ae b a ae =++>. (I )求()f x 在[0,)+∞上的最小值;(II )设曲线()y f x =在点(2,(2))f 的切线方程为32y x =;求,a b 的值. 12. 【2009福建卷理】若曲线()2f x ax Inx =+存在垂直于y 轴的切线,则实数a 的取值范围是 .二、求单调性或单调区间1、利用导数判定函数单调性的方法:设函数)(x f y =在某个区间D 内可导,如果)(x f '>0,则)(x f y =在区间D 上为增函数; 如果)(x f '<0,则)(x f y =在区间D 上为减函数; 如果)(x f '=0恒成立,则)(x f y =在区间D 上为常数.2、利用导数求函数单调区间的方法:不等式)(x f '>0的解集与函数)(x f y =定义域的交集,就是)(x f y =的增区间;不等式)(x f '<0的解集与函数)(x f y =定义域的交集,就是)(x f y =的减区间.1、函数xe x xf )3()(-=的单调递增区间是( )A . )2,(-∞B .(0,3)C .(1,4)D . ),2(+∞2.(2009江苏卷)函数32()15336f x x x x =--+的单调减区间为 . 3.(2009安徽理)(本小题12分) 已知函数2()(2ln ),(0)f x x a x a x=-+->,讨论()f x 的单调性.4.【2009天津卷理】(本小题满分12分)已知函数22()(23)(),xf x x ax a a e x R =+-+∈其中a R ∈(1)当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; (2)当23a ≠时,求函数()f x 的单调区间与极值.三、求函数的极值与最值1、极值的判别方法:当函数)(x f 在点0x 处连续时,① 如果在0x 附近的左侧)(x f '>0,右侧)(x f '<0,那么)(0x f 是极大值; ② 如果在0x 附近的左侧)(x f '<0,右侧)(x f '>0,那么)(0x f 是极小值. 也就是说0x 是极值点的充分条件为0x 点两侧导数异号,而不是)(x f '=0. 2、最值的求法:求f (x )在[a ,b ]上的最大值与最小值的步骤如下:(1) 求 f (x ) 在区间 (a ,b ) 内的极值(极大值或极小值);(2) 将 y = f (x ) 的各极值与端点处的函数值 f (a )、f (b ) 比较,其中最大的一个为最大值,最小的一个最小值.注:极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较. 1.【2012高考陕西理7】设函数()xf x xe =,则( )A . 1x =为()f x 的极大值点B .1x =为()f x 的极小值点C . 1x =-为()f x 的极大值点D . 1x =-为()f x 的极小值点[学 2.(2011·广东高考理科·T12)函数32()31f x x x =-+在x = 处取得极小值.3.【2012高考重庆理16】(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.) 设13()ln 1,22f x a x x x =+++其中a R ∈,曲线()y f x =在点(1,(1))f 处的切线垂直于y 轴. (Ⅰ) 求a 的值;(Ⅱ)求函数()f x 的极值.4.(2011·福建卷理科·T18)(本小题满分13分) 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中3<x <6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (I )求a 的值.(II )若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大. 5.【2011·江苏高考·T17】请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D 四个点重合与图中的点P,正好形成一个正四棱柱形状的包装盒.E,F 在AB 上,是被切去的一个等腰直角三角形斜 边的两个端点,设)(cm x FB AE ==.(1)某广告商要求包装盒的侧面积S )(2cm 最大,试问x 应取何值? (2)某厂商要求包装盒的容积V )(3cm 最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.四、判断函数的零点1.(2010天津理数)函数f(x )=23xx +的零点所在的一个区间是 A .(-2,-1); B .(-1,0); C .(0,1); D .(1,2) 2.(2009天津卷理)设函数1()ln (0),3f x x x x =->则()y f x =( )A .在区间1(,1),(1,)e e 内均有零点;B .在区间1(,1),(1,)e e 内均无零点;C .在区间1(,1)e 内有零点,在区间(1,)e 内无零点;D .在区间1(,1)e内无零点,在区间(1,)e 内有零点.3.【2012高考全国卷理10】已知函数y =x 3-3x +c 的图像与x 轴恰有两个公共点,则c =A .-2或2 ;B .-9或3 ;C .-1或1;D .-3或14.【2012高考江苏18】(16分)若函数)(x f y =在0x x =处取得极大值或极小值,则称0x 为函数)(x f y = 的极值点. 已知a b ,是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数.五、导数与图像1.(2011·安徽高考理科·T10)函数()()1nm f x ax x =-在区间[]0,1上的图象如图所示,则,m n 的值可能是 A .1,1m n == B .1,2m n == C .2,1m n == D .3,1m n ==2.(2009湖南卷文)若函数()y f x =的导函数...在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是( )A .B .C .D .3.【2010江西理数】如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为()()()00S t S =,则导函数()'y S t =的图像大致为六、导数与不等式利用导数求解(证明)不等式 主要方法是:将不等式()()t x g x ≥左右两边的多项式移到一边,构造出一个新的函数()()()f x t x g x =-,通过对()f x 求导,根据()f x '的大小和导数的性质,结合已知条件进行求解或证明.1.(2011·江西高考理科·T4)若()224ln f x x x x =--,则()f x '>0的解集为A .()0,+∞B . ()()1,02,-⋃+∞C . ()2,+∞D . ()1,0-2.(2011·辽宁高考理科·T11)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,2)(>'x f , 则f (x )>2x +4的解集为A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)3.【2009江西卷理】(本小题满分12分)设函数()xe f x x=(1) 求函数()f x 的单调区间;(2) 若0k >,求不等式()f '()(1)()0x k x f x +->的解集.o xoxb aoxo xb y4.(2009全国卷Ⅰ理)本小题满分12分.设函数()3233f x x bx cx =++在两个极值点12x x 、,且12[10],[1,2].x x ∈-∈, (I )求b c 、满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(),b c 的区域; (II)证明:()21102f x -≤≤-5.(2009全国卷Ⅱ理)(本题满分12分) 设函数()()21f x x aIn x =++有两个极值点12x x 、,且12x x <(I )求a 的取值范围,并讨论()f x 的单调性; (II )证明:()21224In f x ->6.(2009辽宁卷理)(本小题满分12分)已知函数f (x )=21x 2-ax +(a -1)ln x ,1a >. (1)讨论函数()f x 的单调性;(2)证明:若5a <,则对任意x 1,x 2∈(0,)+∞,x 1≠x 2,有1212()()1f x f x x x ->--.7.(2009宁夏海南卷理)(本小题满分12分)已知函数32()(3)x f x x x ax b e -=+++(1)如3a b ==-,求()f x 的单调区间;(2)若()f x 在(,),(2,)αβ-∞单调增加,在(,2),(,)αβ+∞单调减少,证明βα-<6.8.【2012高考新课标理21】(本题满分12分)已知函数()f x 满足121()(1)(0)2x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; (2)若21()2f x x ax b ≥++,求(1)a b +的最大值.9.【2012高考辽宁理21】(本小题满分12分) 设()ln(1)(,,,)f x x ax b a b R a b =++∈为常数,曲线()y f x =与直线32y x =在(0,0)点相切. (Ⅰ)求,a b 的值.(Ⅱ)证明:当02x <<时,9()6xf x x <+.10.【2012高考山东理22】(本小题满分13分) 已知函数ln ()xx kf x e +=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2()()'()g x x x f x =+,其中'()f x 为()f x 的导函数.证明:对任意20,()1x g x e -><+.七、求参数范围1.(2009北京理)(本小题共13分)设函数()(0)kx f x xe k =≠(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)若函数()f x 在区间(1,1)-内单调递增,求k 的取值范围.2.(2011·安徽高考理科·T16)设2()1xe f x ax =+,其中a 为正实数(Ⅰ)当a 43=时,求()f x 的极值点; (Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围.3. (2011·新课标全国高考理科·T21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.4.(2011·北京高考理科·T18)(13分)已知函数2()()xkf x x k e=-.(I )求()f x 的单调区间;(II )若对于任意的(0,)x ∈+∞,都有1()f x e≤,求k 的取值范围.5.(2009陕西卷理)(本小题满分12分)已知函数1()ln(1),01xf x ax x x-=++≥+,其中0a > ()I 若()f x 在x =1处取得极值,求a 的值; ()II 求()f x 的单调区间;(Ⅲ)若()f x 的最小值为1,求a 的取值范围.6.(2011·浙江高考理科·T22)(本题满分14分)设函数()f x =2()ln x a x -,a ∈R(Ⅰ)若x =e 为()y f x =的极值点,求实数a ;(Ⅱ)求实数a 的取值范围,使得对任意的x ∈(0,3e ],恒有()f x ≤42e 成立. 注:e 为自然对数的底数.7.【2012高考浙江理22】(本小题满分14分) 已知a >0,b ∈R ,函数()342f x ax bx a b =--+.(Ⅰ) 证明:当0≤x ≤1时,(ⅰ) 函数()f x 的最大值为|2a -b |﹢a ;(ⅱ) ()f x +|2a -b |﹢a ≥0;(Ⅱ) 若-1≤()f x ≤1对x ∈[0,1]恒成立,求a +b 的取值范围.8.【2012高考湖南理22】(本小题满分13分)已知函数()f x =axe x =-,其中a ≠0.(1) 若对一切x ∈R ,()f x ≥1恒成立,求a 的取值集合.(2) 在函数()f x 的图像上取定两点11(,())A x f x ,22(,())B x f x 12()x x <,记直线AB 的斜率为K , 问:是否存在x 0∈(x 1,x 2),使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.9.【2012高考天津理20】(本题满分14分) 已知函数)ln()(a x x x f +-=的最小值为0,其中.0>a(Ⅰ)求a 的值;(Ⅱ)若对任意的),,0[+∞∈x 有)(x f ≤2kx 成立,求实数k 的最小值; (Ⅲ)证明∑=<+--ni n i 12)12ln(122(*N n ∈).10.(2009广东卷理)(本小题满分14分)已知二次函数()y g x =的导函数的图像与直线2y x =平行,且()y g x =在1x =-处取得极小值1(0)m m -≠.设()()g x f x x=.(1)若曲线()y f x =上的点P 到点(0,2)Q ,求m 的值; (2)()k k R ∈如何取值时,函数()y f x kx =-存在零点,并求出零点.导数及其应用__答案一、求曲线的切线(导数几何意义)1、B ;2、012=+-y x ;3、A ;4、A ;5、(-2,15);6、-2;7、D ;8、B ;9、A ;10. A .11、【解析】(I )设(1)xt e t =≥;则2222111a t y atb y a at at at -'=++⇒=-=, ①当1a ≥时, ()f x 的最小值为1a b a++.②当01a <<时, ()f x 的最小值为2b +. (II )221,2a b e ==; 12、{}|0a a <. 二、求单调性或单调区间1、D ;2、(1,11)-;3、①当0a <<()f x 在(0,)+∞上是增函数.②当a =时,()f x 在(0,)+∞上也是增函数. ③当a >()f x 在和)+∞上单调递增, 在是上单调递减.4、(I )3e ;(II )(1)a 若>32,函数的极大值为.3)2()2(2)(2aae a f a f a x x f -=---=,且处取得极大值在函数函数的极小值为.)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极小值在函数(2)a 若<32,则函数的极大值为.)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极小值在数函数的极小值为.3)2()2(2)(2aae a f a f a x x f -=---=,且处取得极大值在函数三、求函数的极值与最值1、D ;2、2;3、(1)1a =-;(2)()f x 在1x =处取得极小值()13f =.4、(I )2a =;(II )当4x =时,函数()f x 取得最大值42.5、(1)当15=x 时,S 取得最大值.(2)当20=x 时取最大值,此时21=a h 四、判断函数的零点1、B ;2、D ;3、A ;4、(1)==3a b -0,;(2)()g x 的极值点是-2;(3)当=2c 时,函数()y h x =有5 个零点;当2c <时,函数()y h x =有9 个零点.五、导数与图像1、m=1,n=2;2、A ;3、A .六、导数与不等式1、C ;2、B .3、 (1) ()f x 的单调增区间是[1,)+∞; 单调减区间是(,0)(0,1]-∞,.(2)当 01k <<时, 解集是1{1}x x k <<;当 1k =时,解集是∅;当 1k >时, 解集是1{1}x x k<<.4.(1)略;(2)由题意有()22223630f x x bx c '=++=............①又()32222233f x x bx cx =++.....................②由①、②消去b 可得()32221322cf x x x =-+.又2[1,2]x ∈,且[2,0]c ∈-,2110()2f x ∴-≤≤-.5、解: (I )()2222(1)11a x x a f x x x x x ++'=+=>-++,令2()22g x x x a =++,其对称轴为12x =-. 由题意知12x x 、是方程()0g x =的两个均大于1-的不相等的实根,其充要条件为480(1)0a g a ∆=->⎧⎨-=>⎩,得102a <<⑴ 当1(1,)x x ∈-时,()0,()f x f x '>∴在1(1,)x -内为增函数; ⑵ 当12(,)x x x ∈时,()0,()f x f x '<∴在12(,)x x 内为减函数; ⑶ 当2,()x x ∈+∞时,()0,()f x f x '>∴在2,()x +∞内为增函数; (II )由(I )21(0)0,02g a x =>∴-<<,222(2)a x x =-+2 ()()()22222222221(2)1f x x aln x x x x ln x ∴=++=-++2设()()221(22)1()2h x x x x ln x x =-++>-,则()()()22(21)122(21)1h x x x ln x x x ln x '=-++-=-++ ⑴ 当1(,0)2x ∈-时,()0,()h x h x '>∴在1[,0)2-单调递增; ⑵ 当(0,)x ∈+∞时,()0h x '<,()h x 在(0,)+∞单调递减.()1112ln 2(,0),()224x h x h -∴∈->-=当时,故()22122()4In f x h x -=>. 6、解析: (1)()f x 的定义域为(0,)+∞. ()f x'2'11(1)(1)()a x ax a x x a f x x a x x x --+--+-=-+==2分 (i )若11a -=,即2a =,则()f x '2'(1)()x f x x-=,故()f x 在(0,)+∞单调增加.(ii) 若11a -<,而1a >,故12a <<,则当(1,1)x a ∈-时,'()0f x <;当(0,1)x a ∈-及(1,)x ∈+∞时,'()0f x >故()f x 在(1,1)a -单调减少,在(0,1),(1,)a -+∞单调增加.(iii) 若11a ->,即2a >,同理可得()f x 在(1,1)a -单调减少,在(0,1),(1,)a -+∞单调增加.(2) 考虑函数 ()()g x f x x =+21(1)ln 2x ax a x x =-+-+则211()(1)(1)11)a a g x x a x a x x--'=--+≥--=- 由于1<a <5,故()0g x '>,即g(x )在(4, +∞)单调增加,从而当120x x >>时有12()()0g x g x ->,即1212()()0f x f x x x -+->,故1212()()1f x f x x x ->--,当120x x <<时,有12211221()()()()1f x f x f x f x x x x x --=>---·········12分7、(1)()(,3),(0,3)303f x -∞--+∞在单调增加,在(,),(,)单调减.(2)3223'()(3)(36)[(6)].xx x f x x x ax b ex x a e e x a x b a ---=-++++++=-+-+-由条件得:3'(2)0,22(6)0,4,f a b a b a =+-+-==-即故 从而3'()[(6)42].xf x e x a x a -=-+-+-因为'()'()0,f f αβ==∴3(6)42(2)()()x a x a x x x αβ+-+-=---2(2)(()).x x x αβαβ=--++ 将右边展开,与左边比较系数得,2, 2.a αβαβ+=-=- 故βα-==又(2)(2)0,2()40.βααβαβ--<-++<即由此可得 6.a <- 于是 6.βα->8、解:(1)()f x 的解析式为21()2x f x e x x =-+,且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ (2)21()()(1)02x f x x ax b h x e a x b ≥++⇔=-+-≥,得()(1)x h x e a '=-+ ①当10a +≤时,()0()h x y h x '>⇒=在x R ∈上单调递增 x →-∞时,()h x →-∞与()0h x ≥矛盾②当10a +>时,()0ln(1),()0ln(1)h x x a h x x a ''>⇔>+<⇔<+ 得:当ln(1)x a =+时,min ()(1)(1)ln(1)0h x a a a b =+-++-≥ 22(1)(1)(1)ln(1)(10)a b a a a a +≤+-+++>令22()ln(0)F x x xx x =->;则()(12ln )F x x x '=-()00()0F x x F x x ''>⇔<<<⇔>则当x =max ()2e F x =当1,a b ==(1)a b +的最大值为2e 9、(1)b=-1,=0a(2)证:首先由均值不等式得:当>0x 时,)+11<+1+1=+2x x +12x再次记()()9=-+6xh x f xx ,则()()()()()22215454+654'=<-+14+1+6+6+6x h x x x x x x ()()()()32+6-216+1=4+1+6x x x x , 令()()()3=+6-216+1g x x x ,则当0<<2x 时,()()2'=3+6-216<0g x x因此()g x 在()0,2内是减函数,又由()0=0g ,得()<0g x ,∴()'<0h x因此()h x 在()0,2内是减函数,又由()0=0h ,得()<0h x ,于是当0<<2x 时, ()9<+6xf x x …12分 10、解:(Ⅰ)k=1;(Ⅱ)()f x 的增区间为(0,1);减区间为(1,)+∞.(Ⅲ)21()()'()(1ln )x x g x x x f x e x x x +=+=⋅--,先研究1ln x x x --,再研究1x x e+.① 记()1ln ,0i x x x x x =-->,'()ln 2i x x =--,令'()0i x =,得2x e -=,当(0x ∈,2)e -时,'()0i x >,()i x 单增; 当2(x e -∈,)+∞时,'()0i x <,()i x 单减 . ∴22max ()()1i x i e e --==+,即21ln 1x x x e ---≤+.② 记1(),0x x j x x e +=>,'()0x x j x e=-<,∴()j x 在(0,)+∞单减,∴()(0)1j x j <=,即11x x e+<综①、②知,2211()(1ln )(1)1x x x x g x x x x e e e e--++=--≤+<+.七、求参数范围1、(Ⅰ)y x =;(Ⅱ)由()f x'()()'10kxf x kx e =+=,得()10x k k=-≠, 若0k >,则当1,x k ⎛⎫∈-∞-⎪⎝⎭时,()'0f x <,函数()f x 单调递减, 当1,,x k ⎛⎫∈-+∞ ⎪⎝⎭时,()'0f x >,函数()f x 单调递增, 若0k <,则当1,x k ⎛⎫∈-∞-⎪⎝⎭时,()'0f x >,函数()f x 单调递增, 当1,,x k ⎛⎫∈-+∞ ⎪⎝⎭时,()'0f x <,函数()f x 单调递减, (Ⅲ)由(Ⅱ)知,若0k >,则当且仅当11k-≤-,即1k ≤时,函数()f x ()1,1-内单调递增, 若0k <,则当且仅当11k-≥,即1k ≥-时,函数()f x ()1,1-内单调递增, 综上可知,函数()f x ()1,1-内单调递增时,k 的取值范围是[)(]1,00,1-.2、(Ⅰ)当时,34=a 令0)(='x f ,则03842=+-x x .解得21,2321==x x , 列表得∴21=x 是极小值点,22=x 是极大值点. (Ⅱ)若)(x f 为R 上的单调函数,则)(x f '在R 上不变号,结合222)1(21)(ax axax e x f x+-+='与条件a >0,知0122≥+-ax ax 在R 上恒成立,因此.0)1(4442≤-=-=∆a a a a 由此并结合a>0,知10≤<a .3、(Ⅰ)1a =,1b =.(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x =++,∴22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x--(0)x >,则22(1)(1)2'()k x x h x x -++=. ① 设0k ≤,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <,h(x )递减.而(1)0h =,故当(0,1)x ∈时, ()0h x >,可得21()01h x x >-; 当x ∈(1,+∞)时,h(x ) < 0,可得211x - h (x )>0从而当x >0,且x ≠1时,f (x )-(1ln -x x +x k )>0,即f (x )>1ln -x x +xk.② 设0< k<1.由于2(1)(1)2k x x -++=2(1)21k x x k -++-的图像开口向下, 且244(1)0k ∆=-->,对称轴x =111k >-.当x ∈(1,k -11)时,(k -1)(x 2 +1)+2x >0, 故h '(x )>0,而h (1)=0,故当x ∈(1,k -11)时,h(x ) > 0,可得211x-h(x ) < 0,与题设矛盾. ③设k ≥1. ∵ x >0且x ≠1,∴此时2(1)(1)20k x x -++>⇒'h (x )>0,而h (1)=0, 故当x ∈(1,+∞)时,h (x )>0,可得211x - h (x )<0,与题设矛盾. 综合得,k 的取值范围为(-∞,0]4、 (Ⅰ)当k>0时,()f x 的单调增区间是(,)k -∞-和(,)k +∞;单调减区间是(,)k k -.当0k <时,()f x 的单调减区间是(,)k -∞和(,)k -+∞;单调增区间是(,)k k -.(Ⅱ)当0k >时,因为11(1)k kf k ee ++=>,∴不会有(0,)x ∀∈+∞,1()f x e≤. 当0k <时,由(1)知()f x 在(0,)+∞上的最大值是24()k f k e -=.∴1(0,),()x f x e ∀∈+∞≤等价于241()k f k e e -=≤,解得102k -≤<. 故当(0,)x ∀∈+∞,1()f x e ≤时,k 的取值范围是1[,0)2-. 5、解(Ⅰ) 1.a =(Ⅱ)①当2a ≥时,()f x 的单调增区间为(0,).+∞②当02a <<时,()f x +∞的单调减区间为(0). (Ⅲ)若()f x 得最小值为1,则a 的取值范围是[2,).+∞ 6、(Ⅰ)∴a e = 或3a e =.(Ⅱ) ①当01x <≤时,对于任意的实数a ,恒有2()04f x e ≤<成立, ②当13x e <≤,由题意,首先有22(3)(3)ln(3)4f e e a e e =-≤,解得33e a e -≤≤+ 由(Ⅰ)知'()()(2ln 1)af x x a x x =-+-,令 ()2ln 1ah x x x=+-,则(1)10h a =-<,()2ln 0h a a =>,且(3)2ln(3)12ln(3)13ah e e e e=+-≥+-=2(ln 30e ->. 又()h x 在(0,+∞)内单调递增,∴函数()h x 在(0,+∞)内有唯一零点,记此零点为0x , 则013x e <<,01x a <<.从而,当0(0,)x x ∈时,'()0f x >;当0(,)x x a ∈时,'()0f x <;当(,)x a ∈+∞时,'()0f x >, 即()f x 在0(0,)x 内单调递增,在0,()x a 内单调递减,在(,)a +∞内单调递增.∴要使2()4f x e ≤对](1,3x e ∈恒成立,只要 2200022()()ln 4,(1)(3)(3)ln(3)4,(2)f x x a x e f e e a e e ⎧=-≤⎪⎨=-≤⎪⎩ 成立.000()2ln 10ah x x x =+-=,知0002ln a x x x =+ (3)将(3)代入(1)得232004ln 4x x e ≤,又01x >,注意到函数23ln x x 在[1,+∞)内单调递增,故01x e <≤ 再由(3)以及函数2x ln x +x 在(1, +∞)内单调递增,可得13a e <≤. 由(2)解得,33ln(3)ln(3)e a e e e -≤≤+∴33ln(3)e a e e ≤≤ 综上,a 的取值范围为33ln(3)e a e e ≤≤.7、 (Ⅰ) (ⅰ)()2122f x ax b '=-.当b ≤0时,()2122f x ax b '=->0在0≤x ≤1上恒成立,此时()f x 的最大值为:()1423f a b a b a b =--+=-=|2a -b |﹢a ;当b >0时,()2122f x ax b '=-在0≤x ≤1上的正负性不能判断,此时()f x 的最大值为:()max 2max{(0)1}max{()3}32b a b af x f f b a a b a b b a ->⎧==--=⎨-<⎩,,(),(),=|2a -b |﹢a ;综上所述:函数()f x 在0≤x ≤1上的最大值为|2a -b |﹢a ;(ⅱ) 要证()f x +|2a -b |﹢a ≥0,即证()g x =-()f x ≤|2a -b |﹢a . 亦即证()g x 在0≤x ≤1上的最大值小于(或等于)|2a -b |﹢a ,∵()342g x ax bx a b =-++-,∴令()212206bg x ax b x a'=-+=⇒=. 当b ≤0时,()2122g x ax b '=-+<0在0≤x ≤1上恒成立,此时()g x 的最大值为:()03g a b a b =-<-=|2a -b |﹢a ;当b <0时,()2122g x ax b '=-+在0≤x ≤1上的正负性不能判断,()max max{()1}6bg x g g a=,() 4max{2}36463662bb a b b a a bb a ba b ab a b a =--⎧≤-⎪=⎨>⎪-⎩,,,≤|2a -b |﹢a ;综上所述:函数()g x 在0≤x ≤1上的最大值小于(或等于)|2a -b |﹢a .即()f x +|2a -b |﹢a ≥0在0≤x ≤1上恒成立.(Ⅱ)由(Ⅰ)知:函数()f x 在0≤x ≤1上的最大值为|2a -b |﹢a ,且函数()f x 在0≤x ≤1上的最小值比-(|2a -b |﹢a )要大.∵-1≤()f x ≤1对x ∈[0,1]恒成立,∴|2a -b |﹢a ≤1. 取b 为纵轴,a 为横轴.则可行域为:21b a b a ≥⎧⎨-≤⎩和231b aa b <⎧⎨-≤⎩,目标函数为z =a +b .作出可行域,由图易得:当目标函数为z =a +b 过P(1,2)时,有max 3z =. ∴所求a +b 的取值范围为:(]3-∞,.8、解:(Ⅰ)若0a <,则对一切0x >,()f x 1axe x =-<,这与题设矛盾,又0a ≠,故0a >.而()1,axf x ae '=-令11()0,ln .f x x a a'==得 当11ln x a a <时,()0,()f x f x '<单调递减;当11ln x a a >时,()0,()f x f x '>单调递增,故当11ln x a a =时,()f x 取最小值11111(ln )ln .f a a a a a=-于是对一切,()1x R f x ∈≥恒成立,当且仅当 111ln 1a a a-≥. ①令()ln ,g t t t t =-则()ln .g t t '=-当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减. 故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当11a=即1a =时,①式成立. 综上所述,a 的取值集合为{}1.(Ⅱ)由题意知,21212121()() 1.ax ax f x f x e e k x x x x --==--- 令2121()(),ax ax axe e xf x k ae x x ϕ-'=-=--则121()12121()()1,ax a x x e x e a x x x x ϕ-⎡⎤=----⎣⎦- 212()21221()()1.ax a x x e x e a x x x x ϕ-⎡⎤=---⎣⎦- 令()1tF t e t =--,则()1tF t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增. 故当0t =,()(0)0,F t F >=即10.te t --> 从而21()21()10a x x ea x x ---->,12()12()10,a x x e a x x ---->又1210,ax e x x >-2210,ax e x x >- ∴1()0,x ϕ<2()0.x ϕ> 因为函数()y x ϕ=在区间[]12,x x 上的图像是连续不断的一条曲线,∴存在012(,)x x x ∈使0()0,x ϕ=2()0,()axx a e x ϕϕ'=>单调递增,故这样的c 是唯一的,且21211ln ()ax ax e e c a a x x -=-. 故当且仅当212211(ln ,)()ax ax e e x x a a x x -∈-时, 0()f x k '>. 综上所述,存在012(,)x x x ∈使0()f x k '>成立.且0x 的取值范围为212211(ln ,)()ax ax e e x a a x x --. 9、解:(Ⅰ)函数()f x 的定义域为(,)a -+∞()ln()f x x x a =-+11()101x a f x x a a x a x a+-'⇒=-==⇔=->-++ ()01,()01f x x a f x a x a ''>⇔>-<⇔-<<-,得1x a =-时,min ()(1)101f x f a a a =-⇔-=⇔=(Ⅱ)设22()()ln(1)(0)g x kx f x kx x x x =-=-++≥则()0g x ≥在[0,+)x ∈∞上恒成立min ()0(0)g x g ⇔≥= …………(*) (1)1ln 200g k k =-+≥⇒>, 1(221)()2111x kx k g x kx x x +-'=-+=++ ①当1210()2k k -<<时,0012()00()(0)02k g x x x g x g k-'≤⇔≤≤=⇒<=与(*)矛盾 ②当12k ≥时,min ()0()(0)0g x g x g '≥⇒==符合(*), ∴实数k 的最小值为12(Ⅲ)由(2)得:21ln(1)2x x x -+<对任意的0x >值恒成立 取2(1,2,3,,)21x i n i ==-:222[ln(21)ln(21)]21(21)i i i i -+--<-- 当1n =时,2ln32-< 得:=12ln (2+1)<221ni n i --∑ 当2i ≥时,2211(21)2321i i i <---- 得:121[ln(21)ln(21)]2ln 3122121n i i i i n =-++-<-+-<--∑. 10、(1)依题可设1)1()(2-++=m x a x g (0≠a ),则a ax x a x g 22)1(2)('+=+=;又()g x '的图像与直线2y x =平行 22a ∴=,即1a =m x x m x x g ++=-++=∴21)1()(22, ()()2g x m f x x x x==++,设(),o o P x y ,则2002020202)()2(||x m x x y x PQ ++=-+=m m m m m x m x 2||2222222220220+=+≥++= 当且仅当202202x m x =时,2||PQ 取得最小值,即||PQ 取得最小值2 当0>m 时,2)222(=+m 解得12-=m 当0<m 时,2)222(=+-m 解得12--=m (2)由()()120m y f x kx k x x=-=-++=(0≠x ),得()2120k x x m -++= ()* 当1k =时,方程()*有一解2m x =-,函数()y f x kx =-有一零点2m x =-; 当1k ≠时,方程()*有二解()4410m k ⇔∆=-->,若0m >,11k m >-,函数()y f x kx =-有两个零点)1(2)1(442k k m x ---±-=, 即1)1(11---±=k k m x ; 若0m <,11k m <-,函数()y f x kx =-有两个零点)1(2)1(442k k m x ---±-=, 即1)1(11---±=k k m x ; 当1k ≠时,方程()*有一解()4410m k ⇔∆=--=, 11k m=-, 函数()y f x kx =-有一零点m k x -=-=11 综上,①当1k =时, 函数()y f x kx =-有一零点2m x =-; ②当11k m >-(0m >),或11k m <-(0m <)时,函数()y f x kx =-有两个零点1)1(11---±=k k m x ;③当11k m =-时,函数()y f x kx =-有一零点m k x -=-=11.。

2014年高考数学真题解析之导数真题(理科)

2014年高考数学真题解析之导数真题(理科)

(Ⅰ)当 k 0 时,求函数 f ( x ) 的单调区间; (Ⅱ)若函数 f ( x ) 在 (0, 2) 内存在两个极值点,求 k 的取值范围. 5. (本小题满分 12 分) 已知函数 (1)当 时,求 (2)若
. Байду номын сангаас极值;
1 在区间 (0, ) 上单调递增,求 b 的取值范围. 3
6.设函数 f x
f ( x ) 1 (1 a ) x x 2 x 3 ,其中 a 0 .
f ( x) 在其定义域上的单调性; f ( x) 取得最大值和最小值时的 x 的值.
*
(2)当 x [0,1] 时,求
17.设实数 c 0 ,整数 p 1 , n N . (1)证明:当 x 1 且 x 0 时, (1 x ) 1 px ;
试题解答: (Ⅰ) g ( x ) e 2ax b, g ( x ) e 2a
变形为 x ln x xe x
f ( x) g ( x) 的充分不必要条件,意即当 f ( x) g ( x) 成立,最值之间不一定有上述关系.
试题解析: (I)函数的定义域为 (0, ) . f ' ( x ) ae x ln x 由题意可得, f (1) 2, f (1) e .故 a 1, b 2 .
(1)若 b (2)若 b
1 ,求 a2 , a3 及数列 {an } 的通项公式; 1 ,问:是否存在实数 c 使得 a2 n c a2 n 1 对所有 n N * 成立?证明
.已知函数 y = f ( x) 有两个零点 x1 , x2 ,
你的结论. 9.已知函数 且 x1 < x2 . (1)求 a 的取值范围; (2)证明
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 【2014江西高考理第8题】若1
2
()2(),f x x f x dx =+⎰
则1
()f x dx =⎰( )
A. 1-
B.13-
C.1
3
D.1
2. 【2014江西高考理第14题】若曲线x y e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________.
3. 【2014辽宁高考理第11题】当[2,1]x ∈-时,不等式32
430ax x x -++≥恒成立,则实数a 的取值范围是( )
A .[5,3]--
B .9
[6,]8
-- C .[6,2]-- D .[4,3]--
4. 【2014全国1高考理第11题】已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )
A .()2,+∞
B .()1,+∞
C .(),2-∞-
D .(),1-∞-
5. 【2014高考江苏卷第11题】在平面直角坐标系xoy 中,若曲线2
b
y ax x
=+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += . 【答案】3-
6. 【2014高考广东卷理第10题】曲线25+=-x e y 在点()0,3处的切线方程为 .
7. 【2014全国2高考理第8题】设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = ( ) A. 0 B. 1 C. 2 D. 3
8. 【2014全国2高考理第12题】设函数()x f x m
π=.若存在()f x 的极值点0x 满足
()2
22
00x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )
A. ()(),66,-∞-⋃∞
B. ()(),44,-∞-⋃∞
C. ()(),22,-∞-⋃∞
D.()(),11,-∞-⋃∞
9.【2014山东高考理第6题】 直线34x y x y ==与曲线在第一象限内围成的封闭图形的面积为( ) A.22 B.24 C.2 D.4
10. 【2014陕西高考理第3题】定积分
1
(2)x
x e dx +⎰的值为( )
.2A e + .1B e + .C e .1D e -
11. 【2014陕西高考理第10题】如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降, 已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )
(A )3131255y x x =
- (B )324
1255y x x =-
(C )33125y x x =- (D )3311255
y x x =-+
12. 【2014大纲高考理第7题】曲线1x y xe -=在点(1,1)处切线的斜率等于 ( )
A .2e
B .e
C .2
D .1。

相关文档
最新文档