模拟退火算法

合集下载

模拟退火算法

模拟退火算法
模拟退火算法 (Simulated Annealing)
Keynote:尤志强
背景
模拟退火算法是Kirkpatrick提出,应组合优化问题而产生的,主要解决的是NP-hard问题。 优化问题可以分为:函数优化问题和组合优化问题两大类
1、函数优化问题: 可以描述为:令S为上的有界子集(即变量的定义域),f:S—>R为n维实值函数,所谓函数f在S域上全局最 小化就是寻求点XminS使得f(Xmin)在S域上全局最小,即X S:f(Xmin)<=f(X)
pr exp[(E j Ei ) / kt]
大于[0,1)区间内的随机数则仍旧接受新状态j为当前状态,若不成立则保留i为当前状态,其中k为 Boltzmann常数。 这种重要性采样过程在高温下可接受与当前状态能量差较大的新状态,而在低温下基本只接受与当 前能量差较小的新状态,而且当温度趋于零时,就不能接受比当前状态能量高的新状态。
背景
计算复杂度
由于某些优化算法所需的计算时间和存储空间难以承受,因此算法可解的问题在实践中不 一定可解。如TSP问题,可能的路径有n!,暴力求解显然是不行的。所以只有了解了研究 问题的复杂性,才能有针对性地设计算法,进而提高优化效率。
算法的时间和空间复杂性对计算机求解非常重要。问题的时间复杂性是指求解该问题的所 有算法中时间复杂性最小的算法的时间复杂性,同理,空间复杂性也有类似定义。这样, 按照计算复杂性理论研究问题求解的难易程度,可把问题分为P类、NP类和NP完全类。
背景
4、基于系统动态演化算法
将优化过程转化为系统动态的演化过程,基于系统动态的演化来实现优化,如神经网络和混沌 搜索等。
5、混合型算法 上述算法从结果或者操作上相混合而产生的各类算法

模拟退火算法

模拟退火算法

模拟退⽕算法模拟退⽕(SA)物理过程由以下三个部分组成1.加温过程问题的初始解2.等温过程对应算法的Metropolis抽样的过程3.冷却过程控制参数的下降默认的模拟退⽕是⼀个求最⼩值的过程,其中Metropolis准则是SA算法收敛于全局最优解的关键所在,Metropolis准则以⼀定的概率接受恶化解,这样就使算法跳离局部最优的陷进1.模拟退⽕算法求解⼀元函数最值问题使⽤simulannealbnd - Simulated annealing algorithm⼯具箱求y=sin(10*pi*x)./x;在[1,2]的最值下图是⽤画图法求出最值的x=1:0.01:2;y=sin(10*pi*x)./x;figurehold onplot(x,y,'linewidth',1.5);ylim([-1.5,1.5]);xlabel('x');ylabel('y');title('y=sin(10*\pi*x)/x');[maxVal,maxIndex]=max(y);plot(x(maxIndex),maxVal,'r*');text(x(maxIndex),maxVal,{['x:' num2str(x(maxIndex))],['y:' num2str(maxVal)]});[minVal,minIndex]=min(y);plot(x(minIndex),minVal,'ro');text(x(minIndex),minVal,{['x:' num2str(x(minIndex))],['y:' num2str(minVal)]});hold off;⽤模拟退⽕⼯具箱来找最值求最⼩值function fitness=fitnessfun(x)fitness=sin(10*pi*x)./x;end求最⼤值function fitness=fitnessfun(x)fitness=-sin(10*pi*x)./x;endOptimization running.Objective function value: -0.9527670052175917Maximum number of iterations exceeded: increase options.MaxIterations.⽤⼯具箱求得的最⼤值为0.95276700521759172.⼆元函数优化[x,y]=meshgrid(-5:0.1:5,-5:0.1:5);z=x.^2+y.^2-10*cos(2*pi*x)-10*cos(2*pi*y)+20;figuremesh(x,y,z);hold onxlabel('x');ylabel('y');zlabel('z');title('z=x^2+y^2-10*cos(2*\pi*x)-10*cos(2*\pi*y)+20');maxVal=max(z(:));[maxIndexX,maxIndexY]=find(z==maxVal);%返回z==maxVal时,x和y的索引for i=1:length(maxIndexX)plot3(x(maxIndexX(i),maxIndexY(i)),y(maxIndexX(i),maxIndexY(i)),maxVal,'r*');text(x(maxIndexX(i),maxIndexY(i)),y(maxIndexX(i),maxIndexY(i)),maxVal,{['x:' num2str(x(maxIndexX(i)))] ['y:' num2str(y(maxIndexY(i)))] ['z:' num2str(maxVal)] }); endhold off;function fitness=fitnessfun(x)fitness=-(x(1).^2+x(2).^2-10*cos(2*pi*x(1))-10*cos(2*pi*x(2))+20);endOptimization running.Objective function value: -80.50038894455415Maximum number of iterations exceeded: increase options.MaxIterations.找到的最⼤值:80.500388944554153.解TSP问题(⽤的数据和前⼏天⽤遗传算法写TSP问题的数据⼀致,但是结果⽐遗传算法算出来效果差很多,不知道是不是我写错了,怀疑⼈⽣_(:з」∠)_中。

五大常用算法 模拟退火算法

五大常用算法 模拟退火算法

五大常用算法模拟退火算法
模拟退火算法是一种常用的求解优化问题的算法,它可以用于解决各种实际问题。

本文将介绍模拟退火算法及其应用,同时还会介绍其他四种常用的算法。

一、模拟退火算法
模拟退火算法是一种启发式算法,适用于求解复杂的优化问题。

它源于固体物理学中的退火过程,通过模拟退火过程来寻求最优解。

模拟退火算法通过随机跳出局部最优解的过程,寻找全局最优解。

二、其他四种常用算法
1.遗传算法
遗传算法是一种模拟自然进化过程的优化方法。

它通过对可行解进行适应度评价、选择、交叉和变异等操作,将优秀的个体遗传给下一代,从而不断优化解的质量。

2.蚁群算法
蚁群算法是一种模拟蚂蚁寻找食物的行为而发展出来的算法。

它通过模拟蚂蚁在搜索过程中的信息素沉积和信息素挥发,不断优化搜索路径,从而找到最优解。

3.粒子群算法
粒子群算法是一种模拟粒子在空间中移动的算法。

它通过模拟粒子在搜索空间中的移动和互相协作,不断优化搜索路径,从而找到最优解。

4.人工神经网络
人工神经网络是一种模拟人脑神经元工作原理的算法。

它通过构建神经元之间的连接和权重来实现对输入信息的处理和输出结果的预测,可以用于分类、回归等问题的求解。

三、总结
以上介绍了五种常用的算法,它们都可以用于解决不同类型的优化问题。

在实际应用中,需要根据具体问题的特点选择合适的算法。

模拟退火算法是其中一种常用算法,具有较为广泛的应用。

模拟退火算法

模拟退火算法

模拟退火算法模拟退火是一种通用概率算法,目的是在固定时间内在一个大的搜寻空间内寻求给定函数的全局最优解。

它通常被用于离散的搜索空间中,例如,旅行商问题。

特别地,对于确定的问题,模拟退火算法一般是优于穷举法。

这是由于我们一般只需得到一个可接受的最优解,而不是精确的最优解。

退火一词来源于冶金学。

退火(见图1)是将材料加热后再经特定速率冷却,目的是增大晶粒的体积,并且减少晶格中的缺陷。

材料中的原子原来会停留在使内能有局部最小值的位置,加热使能量变大,原子会离开原来位置,而随机在其他位置中移动。

退火冷却时速度较慢,使得原子有较多可能可以找到内能比原先更低的位置。

因此,我们将热力学的理论应用到统计学上,将搜寻空间内每一点想象成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。

而模拟退火算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。

模拟退火原理最早是 S. Kirkpatrick, C. D. Gelatt 和 M. P. Vecchi 在1983年所创造的。

而 V . Černý 在1985年也独立发明了此算法。

1. 问题描述数学上的最优化问题一般描述为如下形式:()()minimize()g 0,1,2,,subject to 0,1,2,,i i f x x i m h x i p≤=⎧⎪⎨==⎪⎩ 其中,():R n f x R →称作问题的目标函数,()g 0i x ≤称作问题的不等式约束条件,()0i h x =称作问题的等式约束条件。

寻求上述问题的最优解的过程就类似于从热动力系统的任意一个初始状态向内能最小的状态转移的过程,即退火过程。

2. 模拟退火算法基本思想模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有图1 物理退火原理图序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

模拟退火算法及其改进算法

模拟退火算法及其改进算法

模拟退火算法及其改进算法模拟退火算法(Simulated Annealing Algorithm)是一种基于概率的全局优化算法,它模拟了金属冶炼过程中的“退火”过程。

退火过程是指将高温物质逐渐降温,使之逐渐固化形成晶态结构。

同样地,模拟退火算法通过随机和接受不太好的解决方案的策略,以找到全局最优解。

算法的基本思路是在一个空间中随机生成一个起始解,然后通过一系列的变换和评估过程逐步更新当前解,直到找到满足优化目标的解决方案。

在每次迭代中,算法会通过采样邻域解决方案来将当前解转移到新的状态,并计算相应的目标函数值。

如果新的状态比当前解更优,则接受新的解作为当前解,并在下一次迭代中继续。

如果新的状态不是更优的解,则以一定的概率接受新的解,概率的大小与两个解之间的差距以及当前温度有关。

温度逐渐降低,使得算法在开始时可以接受较差的解决方案,但随着迭代次数的增加逐渐降低接受较差解决方案的概率,最终使算法收敛到一个较好的解。

尽管模拟退火算法在全局优化问题中表现优秀,但仍存在一些问题,例如收敛速度慢、易陷入局部最优解等。

因此,研究者提出了一些改进算法来提高模拟退火算法的性能。

一种改进算法是自适应模拟退火算法(Adaptive Simulated Annealing, ASA),它利用负自适应参数来调整算法自身的控制参数,从而提高收敛速度。

通过对负自适应参数进行精确建模和合适的调整,能够使算法自动地根据当前状态的差距和目标函数值的变化来调整的速度和方向。

另一种改进算法是量子模拟退火算法(Quantum Simulated Annealing, QSA),它引入了量子位操作和量子态演化来提高效率。

QSA利用一种特殊的迭代方式来更新解决方案,将随机排列算法与量子信息处理技术相结合,通过量子态的演化来寻找最优解,并避免陷入局部最优解。

此外,还有一些其他的改进算法,如多重爬山算法(Multi-startHill Climbing)、禁忌算法(Tabu Search)等,它们在模拟退火算法的基础上增加了一些启发式方法和约束条件,从而进一步提高性能。

模拟退火算法详解

模拟退火算法详解

车间调度问题求解
总结词
模拟退火算法在车间调度问题求解中具有较好的应用 效果,能够提高生产效率。
详细描述
车间调度问题是一个复杂的优化问题,旨在合理安排生 产任务和资源分配,以提高生产效率。模拟退火算法通 过随机搜索和接受不良解的概率,能够找到较为满意的 调度方案。在车间调度问题中,模拟退火算法可以与其 他启发式方法结合使用,以获得更好的性能。此外,模 拟退火算法还可以应用于其他生产调度问题,如作业车 间调度、装配线平衡等。
旅行商问题求解
总结词
模拟退火算法在旅行商问题求解中具有较好的性能, 能够找到高质量的解。
详细描述
旅行商问题是一个NP难问题,旨在寻找一条旅行路线 ,使得一个旅行商能够访问一系列城市并返回到起始 城市,且总旅行距离最短,同时满足每个城市恰好经 过一次。模拟退火算法通过随机搜索和接受不良解的 概率,能够探索更广阔的解空间,从而找到高质量的 解。在旅行商问题中,模拟退火算法可以与其他启发 式方法结合使用,以获得更好的性能。
迭代更新
重复产生新解、计算能量差和降低温度的 过程,直到满足终止条件。
终止条件
达到最大迭代次数
当达到预设的最大迭代次数时,算法终止。
温度低于阈值
当温度低于一个预设的阈值时,算法终止。
解的质量满足要求
当当前解的质量满足预设的要求或与最优解 的差距在可接受范围内时,算法终止。
03
模拟退火算法参数设置
温度衰减率
总结词
温度衰减率是模拟退火算法中温度变化的速率,它决定了算法的收敛速度和全局搜索能 力。
详细描述
温度衰减率决定了算法在迭代过程中温度下降的速度。较小的衰减率可以使算法在迭代 过程中有更多的时间来探索解空间,但可能会导致算法收敛速度较慢;而较大的衰减率 则可以使算法更快地收敛到最优解,但可能会牺牲一些全局搜索能力。因此,选择合适

模拟退火算法公式

模拟退火算法公式

模拟退火算法公式模拟退火算法是一种基于物理退火过程的优化算法,最早由美国物理学家,冯·诺依曼奖得主,以及诺贝尔物理学奖得主南部-安丘因于1953年提出。

它模拟了固体物质退火时的行为,通过对潜在解空间的搜索,寻找全局最优解。

在固体退火过程中,物质从高温到低温逐渐冷却,通过不断调控温度,使系统的能量逐渐减少。

模拟退火算法的核心思想正是基于这一过程,通过一系列接受概率较低的状态转移,来跳出局部最优解,最终找到全局最优解。

模拟退火算法具体流程如下:1. 随机初始化初始解,并设定初始温度和终止温度。

2. 在每个温度下,通过随机扰动当前解,产生一个新解。

3. 计算新解的函数值和当前解的函数值之差△E。

4. 如果△E ≤ 0,则接受新解作为当前解。

5. 如果△E > 0,则以一定概率接受新解。

该概率由Metropolis 准则决定,概率公式为 P = e^(-△E/T)。

6. 逐渐降低温度,根据设定的降温速率进行迭代搜索,直到达到终止温度。

值得注意的是,温度决定了接受不良解的概率,随着退火过程的进行,温度逐渐降低,接受不良解的概率减小,使得算法更加倾向于收敛到全局最优解。

模拟退火算法在全局优化问题中有着广泛的应用。

例如,在旅行商问题中,通过模拟退火算法可以找到最优的旅行路径,从而使得旅行商的行程最短。

在网络设计中,模拟退火算法可以优化网络拓扑结构,提高数据传输效率。

在机器学习中,模拟退火算法可以用于参数调优,帮助优化模型的性能。

然而,模拟退火算法也存在着一定的局限性。

首先,算法的运行时间较长,需要大量的迭代次数和计算资源。

其次,在应对高维问题和非凸问题时,算法可能会陷入局部最优解,无法得到全局最优解。

因此,在实际应用中,我们需要根据问题的特点选择合适的算法,并结合其他优化方法来提高解的质量。

综上所述,模拟退火算法是一种具有指导意义的全局优化算法。

通过模拟退火过程,可以在搜索解空间时避免陷入局部最优解,并找到全局最优解。

模拟退火算法

模拟退火算法

模拟退火算法(Simulated Annealing)是一种随机优化算法,其基本思想是将问题转化为能量最小化问题,在解空间中以概率形式进行搜索空间,从而达到全局优化的目的。

一、算法原理的原理源于冶金学中的“模拟退火”过程。

在冶金学中,模拟退火是一种将材料加热到足够高的温度,使得原子以无序方式排列,并随着温度逐渐下降,原子逐渐重新排列成为有序状态的过程。

类似地,在算法中,模拟退火过程由三个参数组成:初始温度、降温速率和停止温度。

算法从一个初始解开始,随机产生新解,并计算新解与当前解之间的能量差。

如果新解的能量小于当前解的能量,则直接接受新解,如果新解的能量大于当前解的能量,则以一定的概率接受新解,以避免过早陷入局部最优解。

通过不断降温的过程,在搜索空间中进行随机跳跃,并慢慢收敛到全局最优解。

二、算法流程的流程如下:1. 设定初始温度、降温速率和停止温度。

2. 随机生成一个初始解,并计算其能量。

3. 生成一个新解,并计算新解与当前解之间的能量差。

4. 如果新解的能量小于当前解的能量,则接受新解。

5. 如果新解的能量大于当前解的能量,则以一定的概率接受新解。

6. 降温,更新温度。

7. 判断算法是否收敛,如果未收敛则返回步骤2。

三、应用场景广泛应用于组合优化问题、图论问题、生产调度问题等领域。

例如:1. 旅行商问题:在旅行商问题中,可以通过搜索空间中随机跳跃的方式找到最短路径,从而达到全局最优解。

2. 排课问题:在学校的排课问题中,可以帮助学校最优化考虑不同的课程安排,得到最优化的课程表。

3. 生产调度问题:在生产调度问题中,可以帮助生产企业在限制资源的条件下找到最优化的生产方案,提高生产效率。

四、优缺点作为一种优化算法,具有以下优点:1. 全局搜索能力强:能够在搜索空间中进行全局搜索,并趋向于全局最优解。

2. 算法收敛性好:在算法搜索到解后,能够很快地达到最优解,收敛速度较快。

3. 收敛到局部最优解的可能性较小:由于算法在跳跃过程中具有随机性,因此收敛到局部最优解的可能性较小。

模拟退火算法介绍

模拟退火算法介绍

模拟退火算法介绍模拟退火算法(Simulated Annealing,SA)是一种基于蒙特卡洛方法的优化算法,由Kirkpatrick等人于1983年提出。

它模拟了固体物体从高温到低温时退火的过程,通过模拟这一过程来寻找问题的最优解。

首先,模拟退火算法需要生成一个初始解。

初始解是随机生成的,它代表了问题的一个可能解。

初始解的生成可以采用随机数生成方法,或者使用其他启发式算法生成。

然后,算法需要定义一个邻域结构来解空间。

邻域结构定义了问题的解的相邻解之间的关系。

在退火算法中,邻域结构是动态变化的,随着算法的进行,邻域结构会不断调整以适应的需求。

在退火准则方面,模拟退火算法使用了一个“接受准则”来决定是否接受一个邻域解。

接受准则基于Metropolis准则,它比较了当前解和邻域解之间的差异以及温度参数。

如果邻域解的质量更好,那么就接受它;否则,以一定的概率接受较差的解。

这个概率与温度成正比,随着温度降低,接受较差解的概率逐渐减小。

在算法的每个迭代中,温度参数会随着迭代次数逐渐降低,这意味着算法逐渐从随机转变为局部。

温度参数的降低速率决定了算法的接受较差解的概率的减小速率。

温度参数的决定是关键,它通常是一个退火函数的参数,根据经验选择。

总的来说,模拟退火算法是一种随机化的优化算法,通过模拟物理退火过程,在解空间时能够克服局部最优解,从而寻找全局最优解。

它的应用范围广泛,涵盖了诸多领域,如组合优化、图像处理、网络设计等。

但是,模拟退火算法的收敛速度相对较慢,需要很多次迭代才能找到最优解,因此在实际应用中需要根据具体问题进行合适的调整和优化。

模拟退火算法

模拟退火算法
模拟退火算法
模拟退火算法
模拟退火算法(simulated annealing,简称 SA)的思想最早是由Metropolis等(1953)提 出的,1983年Kirkpatrick等将其用于组合 优化。SA算法是基于Monte Carlo迭代求 解策略的一种随机寻优算法,其出发点 是基于物理中固体物质的退火过程与一 般组合优化问题之间的相似性。
降低温度Tk的方法有以下两种: Tk+1=Tk*r,其中r∈(0.95-0.99) Tk+1=Tk-ΔT

模拟退火算法流程图
开始 产生 i
S
k 0, Tk T0
设定 n T 外循环 产生 计算
n 1
f i
j

T k 8
模拟退火算法的应用

(3)
注释: 1.① ②无条件转移; 2.在③中,停在3-1-4-2状态,目标值仍为92; SA没有历史最优,不会终止在最优解,故算 法一定要保持历史最优。
Tk
模拟退火算法的应用
0-1背包问题 一个旅行者有一个最多能装M公斤的背 包,现在有N件物品, 它们的重量分别是W1,W2,...,Wn, 它们的价值分别为P1,P2,...,Pn. 若每种物品只有一件。 求旅行者能获得的最大总价值。
总结


模拟退火是一种贪心算法,但是它的搜 索过程引入了随机因素。模拟退火算法 以一定的概率来接受一个比当前解要差 的解,因此有可能会跳出这个局部的最 优解,达到全局的最优解。 模拟退火算法也是一种随机算法,并不 一定能找到全局的最优解,可以比较快 的找到问题的近似最优解。
模拟退火算法的应用
1. 问题的提出
单机极小化总流水时间的排序问题 四个工作:P1=8,P2=18,P3=5,P4=15,求 min∑Fi的最优顺序。

模拟退火算法

模拟退火算法
pr exp[(E j Ei ) / kt]
大于 [0,1) 区间内的随机数则仍旧接受新状 态j为当前状态,若不成立则保留i为当前状 态,其中k为Boltzmann常数。
这种重要性采样过程在高温下可接受与当前 状态能量差较大的新状态,而在低温下基 本只接受与当前能量差较小的新状态,而 且当温度趋于零时,就不能接受比当前状 态能量高的新状态。这种接受准则通常称 为Metropolis准则。
①均匀抽样一组状态,以各状态目标值的方 差为初温。 ②随机产生一组状态,确定两两状态间的最 | 大目标值差 | max,然后依据差值,利用一 pr 定的函数确定初温。譬如 t 0 / ln,其中 pr 为初始接受概率 ③利用经验公式给出。
⑷温度更新函数 温度更新函数,即温度的下降方式,用于在 外循环中修改温度值。 目前,最常用的温度更新函数为指数退温函 数,即,其中且其大小可以不断变化。
Until 抽样稳定准则满足; ( ②退温 t k 1 updatet k ) ,并 k k 1 令 ; Until 算法终止准则满足; ⑶输出算法搜索结果。
3 模拟退火算法关键参数和操作的设定
从算法流程上看,模拟退火算法包括三函数 两准则,即状态产生函数、状态接受函数、 温度更新函数、内循环终止准则和外循环 终止准则,这些环节的设计将决定SA算法 的优化性能。此外,初温的选择对SA算法 性能也有很大影响。
模拟退火算法
模拟退火算法(simulated annealing, 简称SA) 的思想最早是由Metropolis等(1953)提出的, 1983年Kirkpatrick等将其用于组合优化。 SA算法是基于Monte Carlo迭代求解策略的 一种随机寻优算法,其出发点是基于物理 中固体物质的退火过程与一般组合优化问 题之间的相似性。

模拟退火算法

模拟退火算法

options = saoptimset('PlotFcns',{@saplotbestf,@saplottemperature, @saplotf,@saplotstopping}); simulannealbnd(@dejong5fcn,x0,lb,ub,options);
options = saoptimset('InitialTemperature',[300 50]);
模拟退火算法的数学模型:马尔可夫链(可达 性,渐近不依赖起点,分布稳定性,收敛到最 优解) 如果温度下降十分缓慢,而在每个温度都有足 够多次的状态转移,使之在每一个温度下达到 热平衡,则全局最优解将以概率1被找到。因 此可以说模拟退火算法能找到全局最优解。
模拟退火算法实现的技术问题
1)解的形式和邻域结构 •解的表现形式直接决定于邻域的构造
模拟退火算法对TSP的应用1)加ຫໍສະໝຸດ 数据表1 29个城市的坐标
城市序 号 X坐标 Y坐标 城市序 号 X坐标 Y坐标 1 1150.0 1760.0 11 840.0 550.0 21 830.0 1770.0 2 630.0 1660.0 12 1170.0 2300.0 22 490.0 500.0 3 40.0 2090.0 13 970.0 1340.0 23 1840.0 1240.0 4 750.0 1100.0 14 510.0 700.0 24 1260. 0 1500. 0 5 750.0 2030.0 15 750.0 900.0 25 1280.0 790.0 6 1030.0 2070.0 16 1280.0 1200.0 26 490.0 2130.0 7 1650.0 650.0 17 230.0 590.0 27 1460.0 1420.0 8 1490.0 1630.0 18 460.0 860.0 28 1260.0 1910.0 9 790.0 2260.0 19 1040.0 950.0 29 360.0 1980.0 10 710.0 1310.0 20 590.0 1390.0

模拟退火算法详解

模拟退火算法详解

模拟退⽕算法详解博客⾷⽤更佳模拟退⽕算法(Simulate Anneal ,SA )是⼀种通⽤概率演算法,⽤来在⼀个⼤的搜寻空间内找寻命题的最优解。

模拟退⽕是由S .Kirkpatrick ,C .D .Gelatt 和M .P .Vecchi 在1983年所发明的。

V .Cern 和yacute 在1985年也独⽴发明此演算法。

模拟退⽕算法是解决TSP 问题的有效⽅法之⼀。

TSP 是啥我们等会再解释(就是⼀道例题,给个link:,有兴趣的童鞋可以先看着)模拟退⽕的出发点是基于物理中固体物质的退⽕过程与⼀般组合优化问题之间的相似性。

模拟退⽕算法是⼀种通⽤的优化算法,其物理退⽕过程由加温过程、等温过程、冷却过程这三部分组成。

---引⾃《百度百科》关于物理呢,本蒟蒻就不做过多的解释了.算法原理就是⼀个物体,在降温的过程中,根据热⼒学规律并结合计算机对离散数据的处理,在温度为T 时,出现能量差为ΔE 的降温的概率为P (ΔE )这个P 函数我们在下⼀个部分给⼤家解释.算法解析(现在我们要求这个函数图像的最⼩值)附图:要开始写这个算法,我们就要引⼊⼀个叫做Metropolis 接受准则的玩意⼉了.(英语⼤佬们不要把它当成那个⼤都会了...)P =1(ΔE >0)P =exp (−ΔEkT )(ΔE <0)显然如果 ΔE 为正的话转移是⼀定会成功的, 但是对于 ΔE <0 我们则以上式中计算得到的概率接受这个新解.然后我们维护温度 T 即可. 这⾥我们有三个参数: 初温 T b , 降温系数 D , 终温 T e⼀般 T b 是个⽐较⼤的数,取1000000, D 是个接近 1 但是⼩于 1 的值,⼀般取0.97, T e 是个接近 0 的正值, ⼀般取1−14即1e −14.⾸先让温度 T =T b , 然后进⾏⼀次转移尝试, 然后让 T ∗=D .当 T <T e 时模拟退⽕过程结束, 当前解作为最优解.转移转移是整个模拟退⽕算法的重头戏.它通过当前温度进⾏⼀定程度的扰动,产⽣新解.其实扰动也并不复杂,当时学习这种算法时就不懂扰动是什么.它其实就是当前温度T 0,乘以⼀个随机数R 加在原解上得到新解.很多同学可能看不懂.现在我们假设估价函数为f (x ),x 为原解,我们要让函数值最⼩.那么新解就是x 1=x +T 0∗R (R ∈[−1,0)∪(0,1])那么ΔE =f (x )−f (x 1)此处千万不要把x 和x 1记反了,要不然这样使⽤Metrospolis 准则就会出错.我们在⼀次模拟退⽕完成后,可以再多来⼏次怎么⽣成R 呢,有些同学可能会有问题,具体我们可以⽤记得要⽤初始化例题现在,你应该已经了解了模拟退⽕算法了这⾥有⼏道例题TSP 问题没错,就是⽂章开头提到的那个TSP 问题具体请百度平衡点具体⾃⼰可以在洛⾕上看附带代码(double)(rand()-rand())/RAND_MAXsrand(time(NULL))#include<bits/stdc++.h>#define LD long doubleusing namespace std;/***** 模拟退⽕控制 *****/const LD D=0.97,EPS=1e-14;int times=10;/***** ============ *****/int n;int w[1010],x[1010],y[1010];LD bx=0,by=0;LD cur_ans,new_ans,best;inline LD Rand(){ //产⽣-1到1闭区间(除去0)的随机数return (LD)(rand()-rand())/((LD)RAND_MAX);}LD calc(LD cx,LD cy){ //估价函数LD ret=0;for(int i=1;i<=n;i++){LD dx=cx-x[i],dy=cy-y[i];ret+=sqrt(dx*dx+dy*dy)*w[i];}return ret;}int main(){srand(time(NULL)); cin>>n;Processing math: 100%cin>>n;for(int i=1;i<=n;i++){cin>>x[i]>>y[i]>>w[i];bx+=x[i];by+=y[i];}bx/=n;by/=n; //初始解best=cur_ans=calc(bx,by);while(times--){ //控制多次退⽕cur_ans=best;LD cx=bx,cy=by;for(LD T=1000000;T>EPS;T*=D){ //模拟退⽕LD nx=cx+T*Rand(),ny=cy+T*Rand();new_ans=calc(nx,ny);if(best>new_ans){ //更新最优解best=new_ans;bx=nx,by=ny;}if(cur_ans>new_ans||exp((cur_ans-new_ans)/T)>(LD)rand()/RAND_MAX){ //更新当前解并转移 cur_ans=new_ans;nx=cx,ny=cy;}}}cout<<fixed<<setprecision(3)<<bx<<" "<<by<<endl;return 0;}。

退火参数计算公式

退火参数计算公式

退火参数计算公式模拟退火算法描述:若J(Y(i+1))>=J(Y(i))(即移动后得到更优解),则总是接受该移动若J(Y(i+1))<J(Y(i))(即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。

根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:P(dE)=exp(dE/(kT))其中k是一个常数,exp表示自然指数,且dE<0。

这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。

又由于dE总是小于0(否则就不叫退火了),因此dE/kT<0,所以P(dE)的函数取值范围是(0,1)。

随着温度T的降低,P(dE)会逐渐降低。

我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。

关于爬山算法与模拟退火,有一个有趣的比喻:爬山算法:兔子朝着比现在高的地方跳去。

它找到了不远处的最高山峰。

但是这座山不一定是珠穆朗玛峰。

这就是爬山算法,它不能保证局部最优值就是全局最优值。

模拟退火:兔子喝醉了。

它随机地跳了很长时间。

这期间,它可能走向高处,也可能踏入平地。

但是,它渐渐清醒了并朝最高方向跳去。

这就是模拟退火。

下面给出模拟退火的伪代码表示。

模拟退火算法伪代码四.使用模拟退火算法解决旅行商问题旅行商问题(TSP,TravelingSalesmanProblem):有N个城市,要求从其中某个问题出发,唯一遍历所有城市,再回到出发的城市,求最短的路线。

旅行商问题属于所谓的NP完全问题,精确的解决TSP只能通过穷举所有的路径组合,其时间复杂度是O(N!)。

使用模拟退火算法可以比较快的求出TSP的一条近似最优路径。

(使用遗传算法也是可以的,我将在下一篇文章中介绍)模拟退火解决TSP的思路:1.产生一条新的遍历路径P(i+1),计算路径P(i+1)的长度L(P(i+1))2.若L(P(i+1))<L(P(i)),则接受P(i+1)为新的路径,否则以模拟退火的那个概率接受P(i+1),然后降温3.重复步骤1,2直到满足退出条件产生新的遍历路径的方法有很多,下面列举其中3种:1.随机选择2个节点,交换路径中的这2个节点的顺序。

(完整版)模拟退火算法基本原理介绍

(完整版)模拟退火算法基本原理介绍

模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。

用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。

退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。

二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。

模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。

终止条件通常取为连续若干个新解都没有被接受时终止算法。

(7) T逐渐减少,且T->0,然后转第2步。

算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。

模拟退火算法

模拟退火算法

在机器学习中的应用
总结词
模拟退火算法在机器学习中用于优化神经网 络结构和超参数调整。
详细描述
在机器学习中,神经网络结构和超参数的选 择对于模型性能至关重要。模拟退火算法可 以用于优化神经网络的结构,如神经元的数 量、层数等,以及调整超参数,如学习率、 正则化参数等。通过模拟退火算法,可以找 到一组最优的神经网络结构和超参数配置,
自适应调整策略
研究自适应调整策略,根据搜索过程 动态调整参数,以更好地适应问题变 化。
感谢您的观看
THANKS
局部搜索
在生成初始解之后,可以对初始解进行局部搜索,以改进其质量。局部搜索可以通过迭代更新当前解 的邻域来寻找更好的解。这种方法可以帮助模拟退火算法更快地收敛到全局最优解。
05
模拟退火算法应用实例
在旅行商问题中的应用
要点一
总结词
模拟退火算法在旅行商问题中表现出色,能够有效求解大 规模问题。
要点二
初始温度
初始温度的选择对算法的搜索效果有重要影响。初始温度太高可能导致算法陷入局部最优 解,而初始温度太低则可能使算法搜索不到全局最优解。通常,初始温度应根据问题的特 性进行设定。
最小温度
最小温度是算法终止时的温度,其选择同样重要。如果最小温度设置得太高,算法可能无 法收敛;如果设置得太低,则可能无法跳出局部最优解。最小温度通常根据问题的复杂度 和算法的迭代次数来设定。
模拟退火算法的相似性
通过模拟物理退火过程,模拟退火算法在搜索解空间时能够跳出局部最优解,寻找全局最优解。
Metropolis准则
Metropolis准则定义
对于当前解的任何小扰动,如果扰动后的解能量低于当前解,则接受该扰动;否则以一 定概率接受该扰动。

模拟退火算法

模拟退火算法
i j
开始
产生 i S k 0,Tk T0
设定 nTk n 0
产生 j N i n n 1 计算 f f j f i
f 0 N
exp f Tk U 0,1
N
n nTk N
Y k k 1,降温 Tk
N
Tk T f Y
停止
内循环
19
四.计算举例 (1)
➢ 问题旳提出
Tk
Ei与 E j 旳小差别带来Pi Tk 和 Pj Tk 旳巨大差别
例如: Ei=90,E j =100,
11
二.退火过程和Bolzman方程(6)
➢ 当 Tk =100时
90
Pi Tk
Pj Tk
Ck
e
100
Ck
100
e 100
u
0.406 Ck
0.367 Ck
0.406 0.367
12
二.退火过程和Bolzman方程(7)
➢ 当 Tk =1时
Pi Tk Pj Tk 8.194 1040 Ck 3.72 1044 Ck 20000 此时 n
Pi Tk Pi Tk
i 1
结论: Tk 0 时,以概率1趋于最小能量状态
13
三.SA旳算法构造及环节(1)
➢ SA旳模拟要求 ➢ 初始温度足够高 ➢ 降温过程足够慢 ➢ 终止温度足够低
四.计算举例 (4)
⑴ ① j 1324 ② j 43 21 ③ j 4 231
f j 98 f j 119 f j 132
f 20
ef Tk 0.8106 0.7414 ef Tk 0.8781 0.3991
i j i j i j
注释:
➢ ①无条件转移;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旅行商问题
TSP,即Traveling Saleman Problem, 也就是旅行商问题,又译为旅行推销员问 题、货郎担问题,简称为TSP问题,是数 学领域著名的问题之一。 TSP问题是最基本的路线问题,该问题是 在寻求单一旅行者由起点出发,通过所有 给定的需求点之后,最后再回到原点的最 小路径成本。
移位
移位的主要思想是随机选出两个城市,两城市 之间的城市同意向右移一位。如:随机选出城 市Wk和Wm(假设k<m),则将原路径 W1,W2·· · ·W(k-1) ,Wk , W(k+1),· · ·W(m-1),Wm , W(m+1),· · · Wn 变为新路径: W1,W2·· · ·W(k-1) ,Wm+1 , Wk,· · ·W(m-1),Wm , W(m+1),· · · Wn
旅行商问题
模拟退火解决TSP的思路:
1. 产生一条新的遍历路径P(i+1),计算路径 P(i+1)的长度L( P(i+1) ); 2. 若L(P(i+1)) < L(P(i)),则接受P(i+1)为新的路 径,否则以模拟退火的概率接受P(i+1) ,然后 降温; 3. 重复步骤1,2直到满足退出条件
模拟退火算法描述:
爬山算法
仍以上图为例,模拟退火算法在搜索到局部最优解 A后,会以一定的概率接受到E的移动。也许经过几次这 样的不是局部最优的移动后会到达D点,于是就跳出了局 部最大值A。 关于爬山算法与模拟退火,有一个有趣的比喻:
爬山算法:兔子朝着比现在高的地方跳去。它找到了不 远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是 爬山算法,它不能保证局部最优值就是全局最优值。 模拟退火:兔子喝醉了。它随机地跳了很长时间。这期 间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒 了并朝最高方向跳去。这就是模拟退火。
Swap.m
• • • • • • • function [ newpath , position ] = swap( oldpath , number ) % 对 oldpath 进 行 互 换 操 作 % number 为 产 生 的 新 路 径 的 个 数 % position 为 对 应 newpath 互 换 的 位 置 m = length( oldpath ) ; % 城 市 的 个 数 newpath = zeros( number , m ) ; position = sort( randi( m , number , 2 ) , 2 ); % 随 机 产 生 交 换 的 位置 for i = 1 : number newpath( i , : ) = oldpath ; %交换路径中选中的城市 newpath( i , position( i , 1 ) ) = oldpath( position( i , 2 ) ) ; newpath( i , position( i , 2 ) ) = oldpath( position( i , 1 ) ) ; End
假设C点为当前解,爬山算法搜索到A点这个局 部最优解就会停止搜索,因为在A点无论向那个 方向小幅度移动都不能得到更优的解
爬山算法
爬山法是完完全全的贪心法,每次都鼠目寸光 的选择一个当前最优解,因此只能搜索到局部 的最优值。模拟退火其实也是一种贪心算法, 但是它的搜索过程引入了随机因素。模拟退火 算法以一定的概率来接受一个比当前解要差的 解,因此有可能会跳出这个局部的最优解,达 到全局的最优解。
原理
模拟退火的原理也和金属退火的原理近似:将热力学 的理论套用到统计学上,将搜寻空间内每一点想像成 空气内的分子;分子的能量,就是它本身的动能;而 搜寻空间内的每一点,也像空气分子一样带有“能量 ”,以表示该点对命题的合适程度。演算法先以搜寻 空间内一个任意点作起始:每一步先选择一个“邻居 ”,然后再计算从现有位置到达“邻居”的概率。 定义:将固体加温至充分高,再让其徐徐冷却,加温 时,固体内部粒子随温升变为无序状,内能增大,而 徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态, 最后在常温时达到基态,内能减为最小。
流程图
外循环终止准则
1、设置终止温度的阈值 2、设置外循环迭代次数 3、算法搜索到的最优值连续若干步保持不变 4、概率分析方法
内循环终止准则
常用Metropolis抽样稳定准则
1、检验目标函数的均值是否稳定 2连续若干步的目标值变化较小 3、按一定的步数抽样
模拟退火算法的参数控制问题
模拟退火算法的应用很广泛,可以求解NP完全问题,但其参数难以控制,其 主要问题有以下三点: (1) 温度T的初始值设置问题。 温度T的初始值设置是影响模拟退火算法全局搜索性能的重要因素之一、 初始温度高,则搜索到全局最优解的可能性大,但因此要花费大量的计算时 间;反之,则可节约计算时间,但全局搜索性能可能受到影响。实际应用过 程中,初始温度一般需要依据实验结果进行若干次调整。 (2) 退火速度问题。 模拟退火算法的全局搜索性能也与退火速度密切相关。一般来说,同一 温度下的“充分”搜索(退火)是相当必要的,但这需要计算时间。实际应用 中,要针对具体问题的性质和特征设置合理的退火平衡条件。 (3) 温度管理问题。 温度管理问题也是模拟退火算法难以处理的问题之一。实际应用中,由 于必须考虑计算复杂度的切实可行性等问题,常采用如下所示的降温方式: T(t+1)=K*T(t) 式中k为正的略小于1.00的常数,t为降温的次数。
Anneal Arithmetic,SAA)最早
物理退火
退火是将材料加热后再经特定速率冷却,目的是增大晶粒 的体积,并且减少晶格中的缺陷。材料中的原子原来会停 留在使内能有局部最小值的位置,加热使能量变大,原子 会离开原来位置,而随机在其他位置中移动。退火冷却时 速度较慢,使得原子有较多可能可以找到内能比原先更低 的位置。
模拟退火来自冶金学的专有名词退火。 什么是退火呢?
物理退火
物理退火过程: 加温过程----增强粒子的热运动,消除系统原先 可能存在的非均匀态; 等温过程----对于与环境换热而温度不变的封闭 系统,系统状态的自发变化总是朝自由能减少 的方向进行,当自由能达到最小时,系统达到 平衡。 冷却过程----是例子热运动减弱并渐趋于有序, 系统能量逐渐下降,从而得到低能的晶体结构。
什么是模拟退火算法呢?
简介
模拟退火算法 (Simulate
的思想是由N. Metropolis等人于1953年提出。 1983 年,S. Kirkpatrick 等成功地将退火思想引 入到组合优化领域。它是基于Monte-Carlo(蒙 特卡罗)迭代求解策略的一种随机寻优算法, 其出发点是基于物理中固体物质的退火过程与 一般组合优化问题之间的相似性。 模拟退火算法从某一较高初温出发,伴随温度 参数的不断下降,结合概率突跳特性在解空间中 随机寻找目标函数的全局最优解,即在局部最 优解能概率性地跳出并最终趋于全局最优。
模拟退火算法
姓名:盛媛媛 班级:研控计1322 学号:1132227140 指导老师:黄从智
模拟退火算法的简介和原理
模拟退火的基本思想和步骤 模拟退火算法的基本程序讲解
爬山算法
介绍模拟退火前,先介绍爬山算法。爬山算法 是一种简单的贪心搜索算法,该算法每次从当 前解的临近解空间中选择一个最优解作为当前 解,直到达到一个局部最优解。
置换
置换的主要思想是:随即在路径中选出两个城 市,然后将两个城市之间的城市顺序完全倒置 得出新的路径。如上例:产生两个相异数k和m (假设k<m),则将原路径 W1,W2·· · ·W(k-1) ,Wk , W(k+1),· · ·W(m-1),Wm , W(m+1),· · · Wn 变为新路径: W1,W2·· · ·W(k-1) ,Wm , W(m-1),· · ·W(k+1),Wk , W(m+1),· · · Wn
实例
• 用模拟退火算法解决如下10个诚实的TSP问题
城市 1 2 3 4 5 x坐标 0.6683 0.1695 0.4000 0.2439 0.1707 y坐标 0.2536 0.2634 0.4439 0.1463 0.2293 城市 6 7 8 9 10 x坐标 0.2293 0.5171 0.8732 0.6878 0.8488 y坐标 0.7610 0.9414 0.6536 0.5219 0.3609
产生新的遍历路径的方法有很多,下面列举其中3种:
1. 随机选择2个节点,交换路径中的这2个节点 的顺序。 2. 随机选择2个节点,将路径中这2个节点间的
交换
交换又称2-OPT算法,是最常用的一种算法, 其主要思想是在所有城市中随机选取两个城市, 然后将2个城市在路径中的序列交换位置产生新 的路径。 例如:解空间S是边防每个城市恰好一次的所有 路径,解乐意表示为{W1,W2,· · ·Wn}是 1,2,· · ·的一个排列,表明W1城市出发, 经过W2,· · ·Wn城市,在返回W1城市。 新路径的产生:随机产生1和n之间的两相异数k 和m。不妨设k<m,则将原路径 W1,W2·· · · ,Wk , W(k+1),· · ·,Wm , W(m+1),· · · Wn
模拟退火算法思想
若J( Y(i+1) )>= J( Y(i) ) (即移动后得到更优解),则总是接受该移动 若J( Y(i+1) )< J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动, 而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定) 这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法 名称的由来。 根据热力学的原理,在温度为T时,出现能量差为ΔE的降温的概率为P(ΔE),表 示为: P(ΔE) = exp(ΔE/(kT) ) 其中k是一个常数,exp表示自然指数,且ΔE<0。这条公式说白了就是:温度越 高,出现一次能量差为ΔE的降温的概率就越大;温度越低,则出现降温的概率就越 小。又由于ΔE总是小于0(否则就不叫退火了),因此ΔE/kT < 0 ,所以P(ΔE)的函 数取值范围是(0,1) 。 随着温度T的降低,P(ΔE)会逐渐降低。 我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(ΔE)来接受这 样的移动。
相关文档
最新文档