高一数学(2.2.3)幂函数PPT教学课件
高一数学《幂函数》PPT课件
根据n, m, p的取值不同,图像形状各 异。
03
幂函数运算规则与技巧
同底数幂相乘除法则
01
02
03
同底数幂相乘
底数不变,指数相加。公 式:a^m × a^n = a^(m+n)
同底数幂相除
底数不变,指数相减。公 式:a^m ÷ a^n = a^(m-n)
举例
2^3 × 2^4 = 2^(3+4) = 2^7;3^5 ÷ 3^2 = 3^(5-2) = 3^3
在幂函数中,指数a可以取任意实数,但不同的a值会导致函数性质的不
同。学生需要注意区分不同a值对应的函数性质。
02 03
函数定义域
幂函数的定义域与指数a的取值有关。例如,当a≤0时,函数定义域为 非零实数集;当a>0且a为整数时,函数定义域为全体实数集。学生需 要注意根据指数a的取值来确定函数的定义域。
计算圆的面积
$S=pi r^2$,$r$为圆半 径,利用幂函数表示圆的 面积与半径关系。
增长率、衰减率问题中应用
细菌增长模型
假设细菌以固定比例增长,则细 菌数量与时间关系可用幂函数表
示。
放射性物质衰变
放射性物质衰变速度与剩余质量 之间的关系可用幂函数描述。
投资回报计算
投资回报率与时间关系可用幂函 数表达,用于预测未来收益。
利用积的乘方法则进行化简
如(ab)^n = a^n × b^n
举例
化简(x^2y)^3 ÷ (xy^2)^2,结果为x^4y
04
幂函数在生活中的应用举例
面积、体积计算中应用
计算正方形面积
$S=a^2$,其中$a$为正 方形边长,利用幂函数表 示面积与边长关系。
3.3 幂函数(课件)高一数学(人教A版2019必修第一册)
【变式】幂函数 y=xm,y=xn,y=xp,y=xq 的图象如图,则将 m、n、p、
n<q<m<p
q 的大小关系用“<”连接起来结果是________.
[解析] 过原点的指数α>0,不过原点的α<0,
∴n<0,
当x>1时,在直线y=x上方的α>1,下方的α<1,
∴p>1,0<m<1,0<q<1;
即幂函数 = 是增函数.
【变式】求下列幂函数的定义域,并指出其奇偶性.
(1)y=x
2
.(2)y=x3
-2
.
1
[解析] (1)y=x-2=x2,定义域是{x|x≠0},是偶函数.
2
(2)y=x3
3
= x2,定义域是 R,是偶函数.
题型五:幂函数性质的综合应用
例5.已知函数() =
(2)幂函数的图象都不过第二、四象限. ( × )
(3)当幂指数取1,3, 时,幂函数 = 是增函数.( √ )
(4)若幂函数 = 的图象关于原点对称,则 = 在定义域内随的增大
而增大.( ×)
4.若四个幂函数图象 = , = , = , = 在同一坐标系中的图象如图所示,
1
2 +
( ∈ ∗ ).
(1)试确定该函数的定义域,并指明该函数在定义域上的单调性;
解:(1)∵2 + = ( + 1), ∈ ∗ ,
∴与 + 1中有一个必为偶数,
∴该函数的定义域为[0, +∞),
由幂函数的性质知,该函数在定义域上单调递增.
例5.已知函数() =
高一数学人必修一课件第二章幂函数
感谢观看
THANKS
性质
一次幂函数具有比例性质 ,即y/x=n(常数),且 增减性与n的正负有关。
二次幂函数
定义
形如y=ax^2+bx+c(a≠0 )的函数。
图像
二次幂函数的图像是一条 抛物线,对称轴为x=b/2a,顶点坐标为(b/2a,(4ac-b^2)/4a)。
性质
二次幂函数具有对称性、 有界性和单调性等性质, 其增减性取决于a的正负和 x的取值范围。
自由落体运动的位移
自由落体运动中,物体下落的位移h与时间t的关系可以表示为h=1/2gt^2(g为 重力加速度)。这个关系式是一个幂函数,其中指数为2。
经济生活中应用举例
复利计算
在金融领域,复利是一种计算利息的方法。假设本金为P,年利率为r,经过n 年后,本金和利息的总和为A=P(1+r)^n。这个公式中的(1+r)^n部分就是一 个幂函数。
06
练习题与课堂互动环节
练习题选讲
题目一
求函数$y = x^{2}$在 区间$[1,2]$上的最大值 和最小值。
题目二
判断函数$y = x^{3}$ 在$R$上的单调性,并 证明。
题目三
已知函数$y = x^{-2}$ ,求其在点$(1,1)$处的 切线方程。
学生自主函数的奇偶性?
高一数学人必修一课
件第二章幂函数
汇报人:XX
20XX-01-22
• 幂函数基本概念与性质 • 常见幂函数类型及其特点 • 幂函数在生活中的应用举例 • 幂函数与指数、对数等其他类型
函数关系探讨 • 求解幂函数相关数学问题方法技
巧总结 • 练习题与课堂互动环节
目录
01
幂函数-PPT课件
理解应用 1、下列函数是幂函数的是_③__
① y axm ② y x1 x2 ③ y xn ④ y x 23
2、若函数 f x a2 3a 3 x2 是幂函数,则 a 的值为_
答案: a 1 或 4
三、尝试做图 归纳性质
作出下列函数的图象:
(1) y x (2)
(3) y x3 (4)
四、数学应用
例1. 比较下列两个代数式值的大小:
⑴ a 1 1.5 , a1.5
⑵
2 a2
2 3
,
2
23
解:⑴考察幂函数 y x1.5 ,在区间 0,上单调递增。
因为 a 1 a ,所以 a 1 1.5 a1.5 。
2
⑵考察幂函数 y x 3 ,在区间 0,上单调递减。
因为 2 a2 2
值域 R
[0,+∞)
R
单调性
增函数
(-∞,0)上减函数 [0,+∞)上增函数
增函数
奇偶性 奇函数 偶函数
奇函数
[0,+∞)
(-∞,0) ∪(0,+∞) (0,+∞)
[0,+∞)上增函数
(-∞,0)上减函数 (0,+∞)上减函数
(-∞,0)上增函数 (0,+∞)上减函数
非奇非偶函数 奇函数
偶函数
公共点
2
例2 .试写出函数 f (x)的 定x 义3 域,奇偶性,做出图
像,求出值域,并指出其单调性.
解:
f (x)
1
2
x3
3
1 x2
此函数的定义域为x x 0;值域为0,+
f (x) 1 1 f (x) 3 (x)2 3 x2
高一数学幂函数ppt课件.ppt
(4)只有1项; (5)这些例子中涉及的函数都是形 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
幂函数的定义
一 般 地 ,函 数 y x 叫 做 幂 函 数 ,其 中 x 是 自 变 量 ,
下面我们一起来尝试幂函数性质的简单应用:
(基础练习)例4:写出下列函数的定义域,并指出它们的奇偶
性和单调性.
(1)y x4
1
(2) y x 4
(3)y x3
解:(1)函数 y x4的定义域为R,它是偶函数,在 [0,)上是增函数,
在(,0)上是减函数.
1
(2)函数 y x 4 的定义域为[0,),它是非奇非偶函数,在[0,)上是增函数.
(3)yx2 x(×)(4)yx2 (1 ×)
(5)y x2
(×) (6)y
1 x3
(√)
[总结]要判断一个函数是幂函数,判断的标准是它的定
义.根据定义,可以把幂函数的形式特征概括为:两个系
数为1,只有一项.
4
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(巩固提升)例3:已知函数f(x)(m 22m )xm 2m 1,m为何值
时,是:(1)正比例函数;(2)反比例函数;(3)二次
函数;(4)幂函数.
解 :
(感受理解)例5:比较下列各组中两个值的大小,并说明理由.
1
幂函数说课稿ppt课件精选全文
4、布置作业(2min) P79 1、2
设计意图:巩固知识并及时反馈教学信息,了解学生对幂函数图像 性质的掌握程度。
22
板书设计:
幂函数
1、幂函数定义
根据函数单调性判断
2、幂函数与指数
同指数的幂函数的大 小的方法
函数、的区别
3、幂函数的图像 及简单的性质
例一
练习1、2 作业
设计意图:简洁明了,重点突出,使学生更好地掌握这节课的重点知识。
17
(6)通过练习提升概念与性质的应用:
(15min)
P78 【例1】
证明幂函数 f (x) x在[0,)上是增函数。
设计意图
让学生学会利用作差法证明函数的 单调性。通过学生自主探究的证明函数 单调性的方法,培养学生的探究及发散 思维能力。
18
练习:比较大小
(1)4
1 2
与4.1
1 2
9
9
(2)6 8 与7 8
12
• (4)引导学生用列表描点法,应用函数的性质
,如奇偶性,定义域等,在直角坐标系内作出幂
函数
1
y x, y x2 , y x3, y x 2 , y x1
的图像最后,
利用电脑软件画出以上几个函数的图像并展示给
学生:
(8min)
13
图像:
14
让同学们一起观察与谈论,共同得出各函数的定义 域,值域,奇偶性,单调性等,并填入表格:
3、练习巩固法。学生在练习中进行独立 思考,这样一来学生对这五个幂函数领
会得会更加深刻
6
五、说学法
• 先引出五个函数,带领同学们动手作图,通过图像分析归 纳出几个函数表达式的共同特征:解析式的右边都是指数 式,且底数都是变量,自然引入幂函数。
高一数学幂函数PPT 课件
所以有3m-+21m≥≥00 3-2m>m+1
,解得-1≤m<23,
即 m 的取值范围为-1,23.
利用函数的单调性时一定要注意函数的定义域.本题若没有注 意到幂函数y=x1/2的定义域为[0,+∞),求解时就会得出m<2/3这一 错误结果.
3.若(3-2m)-13>(m+1)-13,求实数 m 的取 值范围.
(1)求定义域; (2)判断奇偶性; (3)已知该函数在第一象限的图象如图所示,试补全图象,并 由图象确定单调区间. 【思路点拨】 由题目可以获取以下信息: 函数解析式―→函数有意义
(1)在研究幂函数的定义域时,通常将分数指数幂化为根式形式,负 整数指数幂化为分式形式,然后由根式、分式有意义求定义域;
【正解】 作出函数y=x2和y=x1/3的图象(如图所示),易得x<0 或x>1.
;集成吊顶品牌 /brand/ 集成吊顶品牌 ;
这个创世帝究竟是不是存在,没有人知道呀。"她说:"所谓创世帝是什么存在呢,就是开创现在の修行万域の人物,可以说比之你の那位地球上の老友北天,也不相上下呀。""传闻当年这星宇之下,有修行万域,而这万域の开创者就是那位创世帝。不过咱猜想如果真の存在这样の人物の话, 那他の名字肯定也不是叫创世帝,是后人给他封の名字。"伊莲娜尔道:"要是这东西真是他の成名神宝の话,特别壹些也很正常,你猜里面有壹片壹片の星空也有可能。""你那位地球上の老友,不也弄出了九龙珠吗?那九颗九龙珠の内部の空间,咱觉得完全不亚于修行万域,甚至有可能比万 域还要更大。"她说。根汉叹道:"是啊,不到他们那个层次,永远无法理解呀,实在是太夸张了。""所以说,你现在の路还远着呢,还只是区区の天神初阶
高一数学必修1 幂函数-ppt
(1,1)
(1,1)
知识应用:
例2.比较下列各组数的大小: 解后反思
1
1
< (1)1.32 ____1.4 2
(2)0.26 1 _>____ 0.27 1 (3)(5.2)2 _>____(5.3)2
两个数比 较大小时 ,何时用 幂函数模 型,何时 用指数函 数模型?
1
(4)0.7 2 __>___ 0.72
例3、证明幂函数 f (x) x 在[0,+∞)上是增函数.
证明:任取x1,x2∈ [0,+∞),且x1<x2,则
f (x1) f (x2 ) x1 x2
(
x1
x2 )( x1
x2 )
x1 x2
x1 x2 x1 x2
因为x1 x2 0, x1 x2 0,
除了作差,还 有没有其它方
另附:
y x
奇函数
偶函数
非奇非偶 函数
α>1
0<α<1
α<0
2
4
-2
-1
y=f(x)
1.5 1
0.5
- 0.5 -1
- 1.5 -2 3
2.5 2
1.5 1
y=x3
1
2
3
y=x2
3
2 y=x-1
1
-4
-2
-1
-2
-3 6
2
4
6
5
4
3 y=x -2
2
0.5 1
-2
-1
-0.5
-1
1
2
3
-4
-2
-1
2.若幂函数y=f(x)的图象经过点(3, 27 )
§2.2.3《幂函数及其性质》知识结构图
第二章 基本初等函数(I )§2.2.3幂函数及其性质知识结构图过关检测1、已知幂函数()(),f x kx k R R αα=∈∈的图象过点,则k α+等于( )A 、12B 、1C 、32D 、2 【答案】A ;2、函数()()()log 140,1a f x x a a =-+>≠且的图象恒过定点P ,点P 在幂函数()g x 的图象上, 则()3g = ; 【答案】9;3、已知幂函数()f x x α=的图象过点12,2⎛⎫ ⎪⎝⎭,则()f x 的值域为( )A 、(),0-∞B 、()0,+∞C 、()(),00,-∞+∞D 、(),-∞+∞ 【答案】C ; 4、已知()f x 是R 上的奇函数,对于任意0x >,都有()()2f x f x +=-,且(]0,1x ∈时,()21xf x =+,则()()20172018f f +的值为( )A 、1B 、2C 、3D 、4 【答案】C ;5、幂函数()()21mf x m m x =--在()0,+∞上是增函数,则实数m 等于( )A 、2B 、1C 、4D 、2或1- 【答案】A ;6、函数()()22521mm f x m m x+-=--是幂函数,对任意的()12,0,x x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,若,a b R ∈,且0a b +>,则()()f a f b +的值( )A 、恒大于0B 、恒小于0C 、等于0D 、无法判断 【答案】A ;7、幂函数()()22331mm f x m x -+=-在()0,+∞上单调递增,则实数m 的值为 ;【答案】0或2;()()()()()100+00+21110y x x y x y x x ααααααααα⎧=⎪⎧⎪⎪⎪⎧>=∞⎪⎪⎨⎪<=∞⎪⎨⎩⎪⎨=⎪>⎧⎪⎪<<⎨⎪⎪<⎪⎩⎩定义:一般地,函数叫做幂函数,其中是自变量,是常数;定点: 1,1; 当时,函数在,单调递增;幂单调性当时,函数在,单调递减;函性图象规律:在直线的左侧,指数越大,图象越高;数质当时,曲线下凹;图象凹凸性:曲线在第一象限内,当0时,曲线上凸;当时,曲线下凹;⎪⎪⎪⎪⎪⎪⎪⎩8、幂函数()()233m f x m m x =-+的图象关于y 轴对称,则实数m 的值为 ;【答案】2;9、若()()1122321m m ->+,则实数m 的取值范围是 ; 【答案】21,3⎡⎫-⎪⎢⎣⎭;10、若()()1133132a a --+>-,则实数a 的取值范围是 ; 【答案】()23,,132⎛⎫-∞- ⎪⎝⎭;11、若1a b >>,01c <<,则( )A 、cca b < B 、ccab ba < C 、log log b a a c b c < D 、log log a b c c < 【答案】C ;。
《幂函数》函数的概念与性质PPT教学课件
栏目导航
【例3】 比较下列各组中幂值的大小: (1)0.213,0.233;(2)1.212,0.9-12, 1.1.
[思路点拨] 构造幂函数,借助其单调性求解. [解] (1)∵函数y=x3是增函数,且0.21<0.23, ∴0.213<0.233. (2)0.9-12=19012, 1.1=1.112. ∵1.2>190>1.1,且y=x12在[0,+∞)上单调递增, ∴1.212>19012>1.112,即1.212>0.9-12> 1.1.
x∈(-∞,0)
时,减函数
时,减函数
栏目导航
6
C [只有y=3x不符合幂函数y 1.下列函数中不是幂函数的是 =xα的形式,故选C.] () A.y= x B.y=x3 C.y=3x D.y=x-1
栏目导航
7
2.已知 f(x)=(m+1)xm2+2 是幂函
D [由题意可知m+1=1,即m
数,则 m=( )
第三章 函数的概念与性质
3.3 幂函数
2
学习目标
核心素养
1.了解幂函数的概念,会求幂函数的解析式.(重点、 1.结合幂函数的图
易混点)
象,培养直观想象
2.结合幂函数 y=x,y=x2,y=x3,y=1x,y=x12的图
的数学素养. 2.借助幂函数的性
象,掌握它们的性质.(重点、难点)
质,培养逻辑推理
3.能利用幂函数的单调性比较指数幂的大小.(重点) 的数学素养.
栏目导航
幂函数ppt课件
5
(5) = 2 ;
(6) = 2 3 ;
3;
【答案】 (1),(4)
辨析2.(1) 在函数 =
1
2
、0
, = 2 2 , = 2 + , = 1 中,幂函数的个数为(
、1
、2
、3
(2) 若函数 是幂函数,且满足 4 = 3 2 ,则
【答案】
1
(1),(2)
3
)
1
2
的值等于___________.
新知探究
问题1:结合前面学习函数的经验,应该如何研究 = , =
2,
=
3,
=
−1
这五个幂函数?
提示:先求函数的定义域
画出函数图象
研究函数的 单调性、最值、值域、奇偶性、对称性等.
新知探究
名称
图象
y
=
定义域
值域
奇偶性
单调性
> 0, = 在第一象限内单调递增;
< 0, = 在第一象限内单调递减。
问题4:2.3−0.2 和2.2−0.2 可以看作哪一个函数的两个函数值?二者的大小关系如何?
= −02 在 0, + ∞ 上单调递减,所以2.3−0.2 < 2.2−0.2
练习巩固
练习3:比较下列各组数中两个数的大小.
1
1
(2)4
=
1
16
.
(2)由f(2a + 1) = f(a),可得(2a + 1)−4 = a−4 .
2 + 1 = ±
1
即 2 + 1 ≠ 0 ,解得 = −1或 = −
3
幂函数教学(共43张PPT)高一数学人教B版必修第二册
R
奇函数
增函数
(5)如图所示中已经作出了函数 y=x-1,y=x,y=x2 的图象,在其中作出函数 y=x3 图象.
一般地,幂函数 y=xα,随着 α 的取值不同,函数的定义域、值域、奇偶性、单调性也不尽相同,但也有一些共同的特征:(1)所有的幂函数在区间(0 , +∞)上都有定义,因此在第一象限内都有图象,并且图象都通过点(1 , 1).
[0,+∞)
非奇非偶函数
增函数
[0,+∞)
根据以上信息可知,函数 的图象上的点,除了原点,其余点都在第一象限,通过描点(如左图所示),可作出其图象,如右图所示
给出研究函数 y=x3 的性质与图象的方法,并用你的方法得出这个函数的性质:(1)定义域是___________;(2)值域是___________;(3)奇偶性是___________;(4)单调性是___________;
在关系式 N=ab 中,以 a 为自变量、N 为因变量构造出来的函数 y=xb 就是本节要讨论的幂函数.
我们以前学过函数 y=x,y=x2,y=,这三个函数的解析式有什么共同的特点吗?你能根据指数运算的定义,把这三个函数的解析式改写成统一的形式吗?
幂函数
上面提到的函数 y=x,y=x2,y=都是幂函数.
第四章 指数函数、对数函数与幂函数
4.4 幂函数
人教B版(2019)
课标要点
核心素养
1.了解幂函数的概念
数学抽象
2.了解五个常见幂函数的图象
直观想象
3.了解幂函数的图象与性质
逻辑推理
我们已经知道,在关系式 N=ab 中,当底数 a 为大于 0 且不等于 1 的常数时;如果把 b 作为自变量、N 作为因变量,则 N 就是 b 的指数函数;如果把 N 作为自变量、b 作为因变量,则 b 就是 N 的对数函数(即 b=logaN ).那么,当 b 为常数时,是否可以将底数 a 作为自变量,N 作为因变量来构造函数关系呢?
幂函数 课件-高一上学期数学人教A版必修第一册
y x 1
[0,+∞) ,0 (0,+) [0,+∞) ,0 (0,+)
奇偶性 奇函数 偶函数
奇函数
非奇非偶 函数
奇函数
R上 单调性
公共点
在(-∞,0]
上
R上
在(0, +∞) 上
(1,1)
在(0,+∞) 在( -∞,0),
上
(0, +∞)上
幂函数性质:
1)定点:所有的幂函数在(0,+∞)都有定义,并且图象都过点 (1,1); 当α >0时,幂函数的图象都通过原点
y
y
y
y
o
x
o
x
o
x
o
x
A
B
C
D
(2)当α∈{-1,1,1,3}时,幂函数 y=xα的图象不可能经过第_二__、__四__象限. 2
题型三
角度1 比较幂的大小 探究问题]
1.幂函数 y=xα在(0,+∞)上的单调性与α有什么关系? 提示:当α>0时,幂函数y=xα在(0,+∞)上单调递增;当α<0时,幂
2)单调性:当α >0时,在区间[0,+∞)上是增函数 当α<0时,幂函数在区间(0,+∞)上是减函数.
3)奇偶性: 当α为奇数时,幂函数为奇函数, 当α为偶数时,幂函数为偶函数
题型一
1.已知幂函数 f(x)的图象过点(2,2 2),则 f(4)的值为( )
A.4
B.8
C.2 2
[D解.析1] 设 f(x)=xα,∴2 2=
⑤ x3 ⑥
1
yx 2
中,是幂函数的是(①⑤⑥)
.
(2) 已知幂函数 y=f (x)的图象过点(3, 3),则 f (9)= 3 .
高一数学幂函数PPT课件
奴隶身份.在呐个世界,所有の生灵都是通过降生石诞生.而最初,全是奴隶の身份.当奴隶の实历成长到青铜卫士,便可脱离奴隶身份.矿脉上,青铜卫士差不多就是监工.而鞠言见到の身穿野兽甲胄那几人,则是白银卫士.在呐座髓石矿场上,白银卫士可跻身下层管理.至于黄银卫士,在矿场上
则是头领级の,一般不会在奴隶面前露面.奇点世界,生灵在死后,是通过降生石叠新降生,其实就是叠生.但叠生后,记忆消失,生前实历较强の修行者,能记住自身の名字.一切生灵,都是通过降生石降生.呐里,与混元善域の人类繁衍方式,截然不同.看过石碑上内容介绍后,鞠言明白了很多.
我们先看下面几个具体问题:
(1)如果张红买了每千克1元的蔬菜W千克,那么她需要支付 __P_=_W__元____ p是w的函数
(2)如果正方形的边长为 a,那么正方形的面积_S_=__a_²
S 是a的函数
(3)如果立方体的边长为a,那么立方体的体积_V__=_a__³_____
V是a的函数
(4) 如果一个正方形场地的面积为S,那么这个正方
(2)图象在第一象限,函数是增函数.
<0时,(1)图象都经过点(1,1);
(2)图象在第一象限是减函数; (3)在第一象限内,图象向上与Y轴无限
地接近,向右与X轴无限地接近.
说一说 判断正误
1 1.函数f(x)=x+ x 为奇函数.
2.函数f(x)=x2,x[-1,1)为偶函数.
下列那些说法是正确的?
1 . 幂函数均过定点(1,1); 正确
2 . 幂函数 y x1 在(-∞,0)上单调递减,在
(0,+ ∞ )上也单调递减,因此幂函数 y x1
在定义域内单调递减; 不正确 3 . 幂函数的图象均在两个象限出现; 不正确 4 . 幂函数在第四象限可以有图象;不正确
高一数学幂函数2(PPT)4-2
1)如果张红购买了每千克1元的蔬菜w千克,那么 她需要支付p=w元,这里p是w的函数; 2)如果正方形的边长为a,那么正方形的面积 s=a2, 这里s是a的函数;
3)如果立方体的边长为a,那么立方体的体积V=a3, 这里V是a函数; 4)如果一个正方形场地的面积为S,那么这个正方 形的边长 a=S1/2 这里S是a的函数;
色,粗硬,长-厘米,径约.毫米,边缘有细锯齿,两面具气孔线;横切面半圆形,二型层皮下层,在第一层细胞下常有少数细胞形成第二层皮下层,树脂道个或更多,边生,多数生于背面,腹面有-个,稀角部有-个中生树脂道,叶鞘初呈淡褐色,后呈淡黑褐色。 雄球花圆柱形,长.-.厘米,在新枝下部聚生成穗 状。球果卵形或圆卵形,长4- 厘米,有短梗,向下弯垂,成熟前绿色,熟时淡黄色或淡褐黄色,常宿存树上近数年之久;中部种鳞近矩圆状倒卵形,长.-厘 米,宽约.4厘米,鳞盾肥厚、隆起或微隆起,扁菱形或菱状多角形,横脊显著,鳞脐凸起有尖刺;种子卵圆形或长卵圆形,淡褐色有斑纹,长-毫米,径4-毫 米,连翅长.-.厘米;子叶-枚,长.-.厘米;初生叶窄条形,长约4.厘米,先端尖,边缘有细锯齿。花期4-月,球果第二年月成熟。 [] 生长习性编辑 油松为喜 光、深根性树种,喜干冷气候,在土层深厚、排水良好的酸性、中性或钙质黄土上均能生长良好。 [] 地理分布编辑 中国特有树种,产吉林南部、辽宁、河 北、河南、山东、山西、内蒙古、陕西、甘肃、宁夏、青海及四川等省区,生于海拔-米地带,多组成单纯林。其垂直分布由东到西、由北到南逐渐增高。辽 宁、山东、河北、山西、陕西等省有人工林。早在十六世纪,瑞士的一名医生就发现了氢气。他说:“把铁屑投到硫酸里,就会产生气泡,像旋风一样腾空 而起。”他还发现这种气体可以燃烧。然而他是一位著名的医生,病人很多,没有时间去做进一步的研究。 十七世纪时又有一位医生发现了氢气。但那时人
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
思考2:函数y=x,y=x2,y=x-1的图象 分别是什么?
1
思考3:函数y= x 2
和y=x3的图象大致
如何?
y
o
x
2020/12/11
8
思考4:根据上述五个函数的图象,你能
归纳出幂函数 y x a 在第一象限的
图象特征吗?
a>1
y
a=1
0<a<1
a<0
o
x
2020/12/11
9
理论迁移
例1、判断下列函数哪些是幂函数:
(1) y0.2x ;(2) y x 2 ;
1
(3)y x1.2 ;(4) y x 5 ;
(5)y
1 x3
1 ;(6) y 4 x 7 .
2020/12/11
10
Hale Waihona Puke 2020/12/1111
2020/12/11
12
PPT教学课件
2.3 幂 函 数
2020/12/11
1
问题提出
1.函数y=1,y=x,y=x2, y 1 分别是
哪种类型的函数?
x
2.这些函数的解析式结构有何共同特 点?其一般形式如何?
2020/12/11
2
2020/12/11
3
知识探究(一):幂函数的概念
思考1:如果张红购买了每千克1元的水 果W千克,她需要付的钱数为P(元), 试将P表示成W的函数.
思考6:以上是我们生活中遇到的几个
函数问题,这些函数是指数函数吗?你
能发现这几个函数的解析式有什么共同
特点吗? 2020/12/11
5
知识探究(二):简单幂函数的图象和性质
1
思考1:函数y=x,y= x 2 ,y=x2 ,
y=x-1, y=x3 的定义域、值域、奇偶 性、单调性分别如何?
2020/12/11
6
y=x y=x2 y=x3 y=x12
y=x-1
定义
域
R
R
R [0,+∞) {x∈R|x≠0}
值域 R [0,+∞) R [0,+∞) {x∈R|x≠0}
奇偶 性
奇函 偶函数 数
奇函 数
单调 性
奇函 在[0,+∞) 增函
数 上递增,在
(-∞,0]
数
上递减
2020/12/11
奇函数
增函数 在[0,+∞)
谢谢观看
Thank You For Watching
13
思考2:如果正方形的边长为a,面积为 S,试将S表示成a的函数.
思考3:如果立方体的边长为a,体积为
V,试将V表示成a的函数.
2020/12/11
4
思考4:如果一个正方形场地的面积为S, 正方形的边长为a,试将a表示成S的函 数.
思考5:如果某人t秒内骑车行进了1km, 他骑车的平均速度为V,试将V表示成t的 函数.