浙江省杭州市临安市2018年中考数学试卷及答案解析(word版)
2018年杭州中考数学试卷含答案解析Word版
2018年中考数学试题浙江省杭州市一、选择题1.= )( D. A. 3B. -3C.2.1800000 )数据用科学计数法表示为(6656 D. 18×1010 A. 1.8B. 1.8×10C. 18× 3. )下列计算正确的是(D.B.A.C.4.“”成绩,得到五个各不相同的数据,统计时,出现了一处错误:一分钟跳绳测试五位学生)将最高成绩写得更高了。
计算结果不受影响的是(A.B. C. D. 平均数标准差方差中位数5.AMANABC )分别是△,边上的高线和中线,则(若线段A.B.C.D.6.20+5-2分,不答的题得道题,规定:每答对一题得某次知识竞赛共有分,每答错一题得060 )道题,答错了分。
已知圆圆这次竞赛得了道题,则(分,设圆圆答对了 D.C.A.B.7.3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数一个两位数,它的十位数字是1—63的倍数的概率等于)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是字)( D.B. A.C.ABCD8.P,,矩形内一点(不含边界),设如图,已知点)(,若,,则,B. A.C.D.bc9. 时,函数有最(是常数)时,甲发现当四位同学在研究函数, 3 ;丁发现当的一个根;丙发现函数的最小值为是方程小值;乙发现)时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是( A.B. C. D. 丁乙甲丙10.DEBCABCDABACEBEADE,连结与边记△∥在△,交于点中,点,在,边上,如图,BCESS )(的面积分别为,△,21A. B. ,则若,则若C. D. ,则,则若若二、填空题11.a-3a=________ 。
计算:12.abcabAB1=45°2=________。
,,若∠如图,直线分别交于∥,则∠,直线与直线,________ 13. 因式分解:14.ABCOACDEABODE,是半径,交的中点,过点是⊙的直径,点作于点如图,⊥DEA=________DDFAF。
2018年杭州市中考数学试卷含答案解析(Word版)
浙江省杭州市2018年中考数学试题一、选择题1、=( )A、 3B、 -3C、D、2、数据用科学计数法表示为( )A、 1、86B、 1、8×106C、 18×105D、 18×1063、下列计算正确得就是( )A、 B、 C、 D、4、测试五位学生“一分钟跳绳”成绩,得到五个各不相同得数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响得就是( )A、方差B、标准差C、中位数D、平均数5、若线段AM,AN分别就是△ABC边上得高线与中线,则( )A、 B、 C、 D、6、某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答得题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则( )A、 B、 C、 D、7、一个两位数,它得十位数字就是3,个位数字就是抛掷一枚质地均匀得骰子(六个面分别有数字1—6)朝上一面得数字。
任意抛掷这枚骰子一次,得到得两位数就是3得倍数得概率等于( )A、 B、 C、 D、8、如图,已知点P矩形ABCD内一点(不含边界),设, , , ,若, ,则( )A、 B、C、 D、9、四位同学在研究函数(b,c就是常数)时,甲发现当时,函数有最小值;乙发现就是方程得一个根;丙发现函数得最小值为3;丁发现当时, .已知这四位同学中只有一位发现得结论就是错误得,则该同学就是( )A、甲B、乙C、丙D、丁10、如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE 得面积分别为S1, S2, ( )A、若,则B、若,则C、若,则D、若,则二、填空题11、计算:a-3a=________。
12、如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。
13、因式分解: ________14、如图,AB就是⊙得直径,点C就是半径OA得中点,过点C作DE⊥AB,交O于点D,E两点,过点D作直径DF,连结AF,则∠DEA=________。
2018年浙江省杭州市中考数学试卷含答案解析(Word版)
浙江省杭州市2018年中考数学试题一、选择题1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若,则B. 若,则C. 若,则D. 若,则二、填空题11.计算:a-3a=________。
12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。
13.因式分解:________14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E 两点,过点D作直径DF,连结AF,则∠DEA=________。
2018年杭州市中考数学试卷及答案(word解析版)
2018年浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(2018杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.(2018杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6 C.(1﹣m)(1+m)=m2﹣1 D.考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A.不是同类项,不能合并,故选项错误;B.m3m2=m5,故选项错误;C.(1﹣m)(1+m)=1﹣m2,选项错误;D.正确.故选D.点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.3.(2018杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(2018杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.专题:计算题.分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.5.(2018杭州)根据2018-2019年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2018-2019年杭州市每年GDP增长率相同B.2018年杭州市的GDP比2018年翻一番C.2018年杭州市的GDP未达到5500亿元D.2018-2019年杭州市的GDP逐年增长考点:条形统计图.分析:根据条形统计图可以算2018年-2019年GDP增长率,2018年-2019年GDP增长率,进行比较可得A的正误;根据统计图可以大约得到2018年和2018年GDP,可判断出B的正误;根据条形统计图可得2018年杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到2018-2019年杭州市的GDP逐年增长.解答:解:A.2018年-2019年GDP增长率约为:=,2018年-2019年GDP增长率约为=,增长率不同,故此选项错误;B.2018年杭州市的GDP约为7900,2018年GDP约为4900,故此选项错误;C.2018年杭州市的GDP超过到5500亿元,故此选项错误;D.2018-2019年杭州市的GDP逐年增长,故此选项正确,故选:D.点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(2018杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.考点:分式的乘除法.专题:计算题.分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.解答:解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,故选B.点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.7.(2018杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.8.(2018杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.考点:由三视图判断几何体.分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.故选C.点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.9.(2018杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A.B.C.D.考点:解直角三角形.专题:计算题.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.10.(2018杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④B.错误的命题是②③④ C.正确的命题是①②D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.解答:解:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(2018杭州)32×3.14+3×(﹣9.42)= .考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42﹣3×(﹣9.42)即可求解.解答:解:原式=3×9.42﹣3×(﹣9.42)=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.12.(2018杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.(2018杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(2018杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2018年和2018年的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低录取分数线统计表考点:算术平均数.分析:先算出2018年的平均最低录取分数线和2018年的平均最低录取分数线,再进行相减即可.解答:解:2018年的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),2018年的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5﹣435.75=4.75(分);故答案为:4.75.点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.15.(2018杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD 分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16.(2018杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm 为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)考点:切线的性质;等边三角形的性质.专题:分类讨论.分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;解答:解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=m,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.点评:本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(2018杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.18.(2018杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.考点:解一元二次方程-公式法;解一元一次不等式组.分析:通过解一元一次方程组求得2<x<4.然后利用求根公式x=求得方程程x2﹣2x﹣4=0的根,由x的取值范围来取舍该方程的根.解答:解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+,x2=1﹣,∵2<<3,∴3<1+<4,符合题意∴x=1+.点评:本题考查了解一元二次方程﹣﹣公式法,解一元一次不等式组.要会熟练运用公式法求得一元二次方程的解.19.(2018杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.解答:证明:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.20.(2018杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y 轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.考点:二次函数的性质;抛物线与x轴的交点.专题:分类讨论.分析:根据OC的长度确定出n的值为8或﹣8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=﹣8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.解答:解:根据OC长为8可得一次函数中的n的值为8或﹣8.分类讨论:①n=8时,易得A(﹣6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(﹣6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=﹣8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(﹣10,0),而A、B关于对称轴对称,∴对称轴直线x==﹣2,要使y1随着x的增大而减小,且a>0,∴x<﹣2.点评:本题考查了二次函数的性质,主要利用了一次函数图象上的点的坐标特征,二次函数的增减性,难点在于要分情况讨论.21.(2018杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.考点:游戏公平性.分析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;(2)由无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.解答:解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平,∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22.(2018杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x 轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1,+2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.23.(2018杭州)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E 在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.考点:四边形综合题.分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式.①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;②注意中心对称、轴对称的几何性质.解答:(1)证明:∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CPF,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣﹣2x,∴y===+﹣1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=﹣8a2+8a﹣1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.∴y关于x的函数解析式为:y=+﹣1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=﹣2.点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度.本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错.。
2018年浙江省杭州市临安市中考数学试卷(带解析)
A.2 B.3 C.4 D.5 【解答】解:设一个球体重 x,圆柱重 y,正方体重 z. 根据等量关系列方程 2x=5y;2z=3y,消去 y 可得:x= z, 则 3x=5z,即三个球体的重量等于五个正方体的重量. 故选:D.
第 5页(共 14页)
14.(3 分)如图,⊙O 的半径 OA=6,以 A 为圆心,OA 为半径的弧交⊙O 于 B、 C 点,则 BC=( )
∴
=,
解得:x=1, ∴袋中蓝球的个数为 1;
(2)画树状图得:
第 11页(共 14页)
∵共有 12 种等可能的结果,两次都是摸到白球的有 2 种情况, ∴两次都是摸到白球的概率为: = .
25.(6 分)已知:如图,E、F 是平行四边形 ABCD 的对角线 AC 上的两点,AE=CF. 求证:(1)△ADF≌△CBE; (2)EB∥DF.
17.(3 分)用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻 轻拉紧、压平就可以得到如图(2)所示的正五边形 ABCDE,其中∠BAC= 36 度.
第 7页(共 14页)
【解答】解:∵∠ABC= ∴∠BAC=∠BCA=36 度.
⺁ ha =108°,△ABC 是等腰三角形,
18.(3 分)为了估计池塘里有多少条鱼,从池塘里捕捞了 1000 条鱼做上标记, 然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞
2.(3 分)小明从正面观察如图所示的两个物体,看到的是( )
A.
B.
C.
D.
【解答】解:A、从上面看到的图形;
B、从右面看到的图形;
C、从正面看到的图形;
D、从左面看到的图形.
故选:C.
3.(3 分)我市 2018 年的最高气温为 39℃,最低气温为零下 7℃,则计算 2018
完整word版,2018中杭州中考数学(含答案)
2018 年浙江省杭州市中考数学试卷一、选择题:本大题有10 个小题,每题 3 分,共 30 分。
在每题给出的四个选项中,只有一项为哪一项切合题日要求的。
1. |-3|=()A. 3B.-3C. 1/3D.-1/32.数据 1800000用科学记数法表示为()A . 1.86B . 1.8 ×106C . 18 ×105D . 18 ×1063.以下计算正确的选项是()A. √(22 ) =2B. √(22 ) = ±2C.. √(42 ) =2D. √(42 ) = ±24.测试五位学生的“一分钟跳绳”成绩,获得五个各不同样的数据、在统计)时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是(方差B.标准差C.中位数D.均匀数5.若线段 AM ,AN分别是△ABC的BC边上的高线和中线,则()A. AM >AN B. AM ≥AN C. AM <AN D.AM ≤AN6.某次知识比赛共有 20 道题,现定:每答对一道题得+5分,每答错一道题得-2 分,不答的题得 0 分,已知圆圆这次竞赛得了 60 分,设圆圆答对了 x 道题,答错了 y 道题,则()A . x-y=20 B.x+y=20C. 5x-2y=60 D . 5x+2y=607.一个两位数,它的十位数字是 3,个位数字是投掷一枚质地均匀的骰子(六个面分别标有数字 1-6 )向上一面的数字,随意投掷这枚骰子一次,获得的两位数是 3 的倍数的概率等于()A. 1/6B. 1/3C. 1/2D.2/38.如图,已知点 P 是矩形 ABCD内一点(不含界限),设∠PAD=1 ,∠PBA=θθ,∠PCB= θ,∠PDC=θ,若∠APB=80 °,∠CPD=50 °,则()234A .(θ1+θ4 ) - (θ2+θ3 ) =30°B .(θ2+ θ4 ) - (θ1+ θ3 ) =40 °C.(θ1+θ2 ) - (θ3+θ4 ) =70° D .(θ1+ θ2 ) + (θ3+θ4 ) =180 °9 .四位同学在研究函数 y=x 2 +bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现-1是方程 x2 +bx+c=0的一个根;丙发现函数的最小值为 3;丁发现当 x=2 时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲 B.乙 C.丙 D.丁10.如图,在△ABC 中,点 D 在 AB 边上,DE∥BC,与边 AC交于点 E,连接BE.记△ADE ,△BCE 的面积分别为 S1,S2()A.若 2AD>AB,则3S 1>2S2B.若 2AD>AB,则 3S1<2S2C.若 2AD<AB,则 3S1>2S2D.若 2AD<AB,则 3S1<2S2二、填空题:本大题有 6 个小题,每题 4 分,共 24 分。
【精校】2018年浙江省杭州市临安市中考真题数学
2018年浙江省杭州市临安市中考真题数学一、选择题(本大题共15小题,每小题3分,共45分。
下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内)1.如果a与-2互为相反数,那么a等于( )A.-2B.2C.-1 2D.1 2解析:-2的相反数是2,那么a等于2.答案:B2.小明从正面观察如图所示的两个物体,看到的是( )A.B.C.D.解析:A、从上面看到的图形;B、从右面看到的图形;C、从正面看到的图形;D、从左面看到的图形.答案:C3.我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的( )A.(+39)-(-7)B.(+39)+(+7)C.(+39)+(-7)D.(+39)-(+7)解析:根据题意得:(+39)-(-7). 答案:A4.( )A.-2B.±2C.2D.4=答案:C5.下列各式计算正确的是( ) A.a 12÷a 6=a 2B.(x+y)2=x 2+y 2C.22142x x x-=-+5= 解析:A 、a 12÷a 6是同底数幂的除法,指数相减而不是相除,所以a 12÷a 6=a 6,错误;B 、(x+y)2为完全平方公式,应该等于x 2+y 2+2xy ,错误; C 、()()()()()22221422222x x x x x x x x x----===---+-++,错误; D 、正确. 答案:D6.抛物线y=3(x-1)2+1的顶点坐标是( ) A.(1,1) B.(-1,1) C.(-1,-1) D.(1,-1)解析:∵抛物线y=3(x-1)2+1是顶点式,∴顶点坐标是(1,1). 答案:A7.如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是( )A.2B.4C.8D.10解析:阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一,正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4.答案:B8.某青年排球队12名队员的年龄情况如表:则这个队队员年龄的众数和中位数是( )A.19,20B.19,19C.19,20.5D.20,19解析:数据19出现了四次最多为众数;20和20处在第6位和第7位,其平均数是20,所以中位数是20.所以本题这组数据的中位数是20,众数是19.答案:A9.某校九(1)班的全体同学最喜欢的球类运动用如图所示的统计图来表示,下面说法正确的是( )A.从图中可以直接看出喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系 解析:因为扇形统计图直接反映部分占总体的百分比大小,不能反映具体数量的多少和变化情况,所以A 、B 、C 都错误. 答案:D10.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )A.B.C.D.解析:由正方形的性质可知,∠ACB=180°-45°=135°,A 、C 、D 图形中的钝角都不等于135°,由勾股定理得,,AC=2,对应的图形B 中的边长分别为1,∵122,∴图B 中的三角形(阴影部分)与△ABC 相似.答案:B11.如图,在△ABC 中,DE ∥BC ,DE 分别与AB ,AC 相交于点D ,E ,若AD=4,DB=2,则DE :BC 的值为( )A.2 3B.1 2C.3 4D.3 5解析:∵DE∥BC,∴△ADE∽△ABC,∴4263 DE AD ADBC AB AD DB====+.答案:A12.10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是( )A.84 2 x+B.1042015x+C.108415x+D.1042015+解析:先求出这15个人的总成绩10x+5×84=10x+420,再除以15可求得平均值为1042015x+.答案:B13.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.A.2B.3C.4解析:设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程2x=5y;2z=3y,消去y可得:x=53z,则3x=5z,即三个球体的重量等于五个正方体的重量.答案:D14.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=( )解析:设OA与BC相交于D点.∵AB=OA=OB=6,∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得=所以. 答案:A15.如图直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是( )A.1B.2D.不能确定解析:如图所示,作EF ⊥AD 交AD 延长线于F ,作DG ⊥BC ,∵CD 以D 为中心逆时针旋转90°至ED ,∴∠EDF+∠CDF=90°,DE=CD , 又∵∠CDF+∠CDG=90°,∴∠CDG=∠EDF ,在△DCG 与△DEF 中,90CDG EDF EFD CGD DE CD ∠=∠∠=∠=⎪︒=⎧⎨⎪⎩,,,∴△DCG ≌△DEF(AAS),∴EF=CG ,∵AD=2,BC=3,∴CG=BC-AD=3-2=1,∴EF=1,∴△ADE 的面积是:1122AD EF ⨯⨯=×2×1=1.答案:A二、填空题(本大题共5小题,每小题3分,共15分)16.P(3,-4)到x 轴的距离是 .解析:根据点在坐标系中坐标的几何意义可知,P(3,-4)到x 轴的距离是|-4|=4. 答案:417.用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE ,其中∠BAC= 度.解析:∵∠ABC=()521805-⨯︒=108°,△ABC 是等腰三角形,∴∠BAC=∠BCA=36度.答案:3618.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼 条.解析:捕捞200条,其中有标记的鱼有10条,即在样本中有标记的所占比例为10200,而在整体中有标记的共有1000条,根据所占比例即可解答.1000÷10200=20000(条). 答案:2000019.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示) .解析:由平面图形的折叠及正方体的展开图解题. 答案:如图.20.已知:22222233445522334455338815152424+=⨯+=⨯+=⨯+=⨯,,,,…,若21010b ba a+=⨯符合前面式子的规律,则a+b= . 解析:根据题中材料可知2210101b a b ba a a a =+=⨯-Q ,,∴b=10,a=99,a+b=109.答案:109三、解答题(本大题共6小题,共40分。
2018年杭州市中考数学试卷含答案解析(Word版)
2018年杭州市中考数学试卷含答案解析(Word版)浙江省杭州市2018年中考数学试题一、选择题1.等式-3×(-1)-2×(-2)的值是(。
)。
A。
3.B。
-3.C。
4.D。
-42.数据xxxxxxx用科学计数法表示为(。
)。
A。
1.86×106.B。
1.8×106.C。
18×105.D。
18×1063.下列计算正确的是(。
)。
A.(-0.3)×(-0.4)=0.12.B。
0.8÷(-0.2)=-4.C.(-1.5)÷0.5=-3.D.(-0.6)+0.2=-0.44.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是(。
)。
A.方差B.标准差C.中位数D.平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则(。
)。
A。
B。
C。
D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知XXX这次竞赛得了60分,设XXX答对了XXX题,答错了b道题,则(。
)。
A。
a+b=16.B。
a-b=12.C。
a+b=12.D。
a-b=167.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于(。
)。
A。
1/6.B。
1/3.C。
1/2.D。
2/38.如图,已知点P在矩形ABCD内一点(不含边界),设PA=x,PB=y,PC=z,PD=w,若,x+y=10,z+w=12,则(。
)。
A。
xz=15.yw=20.B。
xz=20.yw=15.C。
xz=10.yw=24.D。
xz=24.yw=109.四位同学在研究函数y=ax²+bx+c(a>0)的性质。
甲发现当a=2时,函数有最小值;乙发现当y=3x²+bx+c(b,c是常数)时,函数有最小值;丙发现函数的最小值为3;丁发现当y=x²+bx+c时,函数有最小值。
2018年杭州市中考数学试卷含答案解析(Word版)
浙江省杭州市2018年中考数学试题一、选择题 (∙∙∙ )✌∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙∙∙∙∙数据 用科学计数法表示为(∙∙∙ )✌∙ ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙ ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙ ∙∙∙∙∙∙∙∙∙∙∙ ∙∙∙∙ ∙下列计算正确的是(∙ ∙∙)✌∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙∙∙∙∙∙∙∙∙测试五位学生❽一分钟跳绳❾成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是( ∙∙∙) ✌∙方差∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙标准差∙∙∙∙∙∙∙∙ ∙中位数∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙平均数若线段✌,✌☠分别是△✌边上的高线和中线,则(∙∙∙ ) ✌∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙∙∙某次知识竞赛共有 道题,规定:每答对一题得 分,每答错一题得 分,不答的题得 分。
已知圆圆这次竞赛得了 分,设圆圆答对了 道题,答错了 道题,则(∙ ∙∙)✌∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙∙ ∙ ∙∙∙∙∙ ∙∙∙ ∙一个两位数,它的十位数字是 ,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字 )朝上一面的数字。
中考真题:浙江省杭州市2018年中考数学试卷(word解析版)
浙江省杭州市2018年中考数学试题(解析版)一、选择题1.=()A. 3B. -3C.D.【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】解:|-3|=3【分析】根据负数的绝对值等于它的相反数,即可求解。
2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×106【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1800000=1.8×106【分析】根据科学计数法的表示形式为:a×10n。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。
3.下列计算正确的是()A. B. C. D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB、∵,因此A符合题意;B不符合题意;CD、∵,因此C、D不符合题意;故答案为:A【分析】根据二次根式的性质,对各选项逐一判断即可。
4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差 C 中位数 D. 平均数【答案】C【考点】中位数【解析】【解答】解:∵五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了∴中位数不会受影响故答案为:C【分析】抓住题中关键的已知条件:五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了,可知最高成绩提高,中位数不会变化。
5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.【答案】D【考点】垂线段最短【解析】【解答】解:∵线段AM,AN分别是△ABC边上的高线和中线,当BC边上的中线和高重合时,则AM=AN当BC边上的中线和高不重合时,则AM<AN∴AM≤AN故答案为:D【分析】根据垂线段最短,可得出答案。
6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
(word完整版)2018年浙江杭州市中考数学试卷及答案,推荐文档
2018浙江杭州中考数学 试题卷答案见后文、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个错误:将最高成绩写得更高了 .计算结果不受影响的是(5.若线段AM , AN 分别是 ABC 的BC 边上的高线和中线,则A. AM AN B . AM AN C . AM AN D 6.某次知识竞赛共有 20道题,规定:每答对一道题得 5分,每答错一道题得 2分,不答 的题得0分.已知圆圆这次竞赛得了 60分.设圆圆答对了 x 道题,答错了 y 道题,则( ) A. x y 20 B . x y 20 C . 5x 2y 60 D . 5x 2y 607. 一个两位数,它的十位数字是 3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有 数字1〜6)朝上一面的数字.任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()1112A.-B. -CD6323选项中,只有一项是符合题目要求的1.A. 3 .-32.数据1800000用科学记数法表示为(A. 1.866.1.8 105.18 106.18 103.下列计算正确的是( A.222 B.存24.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处A.方差.标准差 C .中位数.平均数.AM AN8.如已知点P是矩形ABCD内一点(不含边界),设PAD 1 , PBA 2, 图,PCB3, PDC 4.若APB80o, CPD 50o,则( )70°•( 2 4) 3) 40°4) 180°9.四位同学在研究函数 y x 2 bx c(b , c 是常数) 时, 甲发现当 x 1时,函数有最小值;乙发现-1是方程x 2 bxc 0的一个根;丙发现函数的最小值为3; 丁发现当x 2时,y 4.已知这四位同学中只有一位发现的结论是错误的,则该同学是( .乙 •丙在 ABC 中,点D 在AB 边上, DE//BC , 与边 AC 交于点 连结BE .记10.如图, 2 S i , S 2 , 2AD AB , 2S 2 C.若 2AD AB ,则 3S 2S 2 2AD AB , 则3S ,2S 2、填空题: 本大题有 6个小题,每小题 4 分, 11.计算:a 3a 12.如图,直线a//b ,直线c 与直线a , b 分别交于点 A , B .若 1 45。
浙江省杭州市中考数学真题试卷(word版,含解析)
浙江省杭州市2018年中考数学试题(解析版)一、选择题1.=()A. 3B. -3C.D.【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】解:|-3|=3【分析】根据负数的绝对值等于它的相反数,即可求解。
2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×106【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1800000=1.8×106【分析】根据科学计数法的表示形式为:a×10n。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。
3.下列计算正确的是()A. B. C. D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB、∵,因此A符合题意;B不符合题意;CD、∵,因此C、D 不符合题意;故答案为:A【分析】根据二次根式的性质,对各选项逐一判断即可。
4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数【答案】C【考点】中位数【解析】【解答】解:∵五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了∴中位数不会受影响故答案为:C【分析】抓住题中关键的已知条件:五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了,可知最高成绩提高,中位数不会变化。
5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.【答案】D【考点】垂线段最短【解析】【解答】解:∵线段AM,AN分别是△ABC边上的高线和中线,当BC边上的中线和高重合时,则AM=AN当BC边上的中线和高不重合时,则AM<AN∴AM≤AN故答案为:D【分析】根据垂线段最短,可得出答案。
6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
2018年杭州市中考数学试卷含答案解析(Word版)
2018年杭州市中考数学试卷含答案解析(Word版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年杭州市中考数学试卷含答案解析(Word版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年杭州市中考数学试卷含答案解析(Word版)(word版可编辑修改)的全部内容。
浙江省杭州市2018年中考数学试题一、选择题1.=( )A。
3 B. -3 C. D。
2.数据1800000用科学计数法表示为( )A. 1。
86 B。
1.8×106 C. 18×105 D. 18×1063.下列计算正确的是( )A. B。
C.D。
4。
测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差 B。
标准差 C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则( )A. B。
C.D.6。
某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则( ) A。
B. C。
D.7。
一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字.任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( )A。
B.C. D.8。
如图,已知点P矩形ABCD内一点(不含边界),设, ,,,若,,则( )A。
B.C。
D。
9。
2018年浙江省杭州市临安市中考数学试卷含答案解析(word版)
2018 年浙江省杭州市临安市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分。
下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内)1.(3 分)如果a 与﹣2 互为相反数,那么a 等于()A.﹣2B.2 C.﹣D.2.(3 分)小明从正面观察如图所示的两个物体,看到的是()A.B.C.D.3.(3 分)我市2018 年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7)D.(+39)﹣(+7)4.(3 分)化简的结果是()A.﹣2B.±2 C.2 D.45.(3 分)下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.6.(3 分)抛物线y=3(x﹣1)2+1 的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)7.(3 分)如图,正方形硬纸片ABCD 的边长是4,点E、F 分别是AB、BC 的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2 B.4 C.8 D.108.(3 分)某青年排球队12 名队员的年龄情况如表:年龄18 19 20 21 22人数 1 4 3 2 2则这个队队员年龄的众数和中位数是()A.19,20 B.19,19 C.19,20.5 D.20,199.(3 分)某校九(1)班的全体同学最喜欢的球类运动用如图所示的统计图来表示,下面说法正确的是()A.从图中可以直接看出喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系10.(3 分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A.B.C.D.11.(3 分)如图,在△ABC 中,DE∥BC,DE 分别与AB,AC 相交于点D,E,若AD=4,DB=2,则DE:BC 的值为()A.B.C.D.12.(3 分)10 名学生的平均成绩是x,如果另外5 名学生每人得84 分,那么整个组的平均成绩是()A.B.C.D.13.(3 分)中央电视台2 套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.514.(3 分)如图,⊙O 的半径OA=6,以A 为圆心,OA 为半径的弧交⊙O 于B、C 点,则BC=()A.B.C.D.15.(3 分)如图直角梯形ABCD 中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D 为中心逆时针旋转90°至ED,连AE、CE,则△ADE 的面积是()A.1 B.2 C.3 D.不能确定二、填空题(本大题共5小题,每小题3分,共15分)16.(3 分)P(3,﹣4)到x 轴的距离是.17.(3 分)用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC=度.18.(3 分)为了估计池塘里有多少条鱼,从池塘里捕捞了1000 条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200 条,若其中有标记的鱼有10 条,则估计池塘里有鱼条.19.(3 分)马小虎准备制作一个封闭的正方体盒子,他先用5 个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).20 .(3 分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=.三、解答题(本大题共6小题,共40分。
2018年浙江省杭州市中考数学试卷含解析(完美打印版)
2018年浙江省杭州市中考数学试卷(含解析)一、选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)|﹣3|=()A.3B.﹣3C.D.﹣2.(3分)数据1800000用科学记数法表示为()A.1.86B.1.8×106C.18×105D.18×1063.(3分)下列计算正确的是()A.=2B.=±2C.=2D.=±24.(3分)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是()A.方差B.标准差C.中位数D.平均数5.(3分)若线段AM,AN分别是△ABC的BC边上的高线和中线,则()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN6.(3分)某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20B.x+y=20C.5x﹣2y=60D.5x+2y=607.(3分)一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.8.(3分)如图,已知点P是矩形ABCD内一点(不含边界),设∠P AD=θ1,∠PBA=θ2,∠PCB=θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则()A.(θ1+θ4)﹣(θ2+θ3)=30°B.(θ2+θ4)﹣(θ1+θ3)=40°C.(θ1+θ2)﹣(θ3+θ4)=70°D.(θ1+θ2)+(θ3+θ4)=180°9.(3分)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁10.(3分)如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2,()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S2二、填空题:本大题有6个小题,每小题4分,共24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年浙江省杭州市临安市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分。
下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内)1.(3分)如果a与﹣2互为相反数,那么a等于()A.﹣2 B.2 C.﹣ D.2.(3分)小明从正面观察如图所示的两个物体,看到的是()A.B.C.D.3.(3分)我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7) D.(+39)﹣(+7)4.(3分)化简的结果是()A.﹣2 B.±2 C.2 D.45.(3分)下列各式计算正确的是()A.a12÷a6=a2B.(x+y)2=x2+y2C.D.6.(3分)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)7.(3分)如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2 B.4 C.8 D.108.(3分)某青年排球队12名队员的年龄情况如表:则这个队队员年龄的众数和中位数是()A.19,20 B.19,19 C.19,20.5 D.20,199.(3分)某校九(1)班的全体同学最喜欢的球类运动用如图所示的统计图来表示,下面说法正确的是()A.从图中可以直接看出喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系10.(3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.11.(3分)如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A.B.C.D.12.(3分)10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()A.B.C.D.13.(3分)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.514.(3分)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.15.(3分)如图直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是()A.1 B.2 C.3 D.不能确定二、填空题(本大题共5小题,每小题3分,共15分)16.(3分)P(3,﹣4)到x轴的距离是.17.(3分)用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC=度.18.(3分)为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼条.19.(3分)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).20.(3分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=.三、解答题(本大题共6小题,共40分。
解答应写出文字说明,证明过程或推演步骤)21.(6分)(1)化简÷(x﹣).(2)解方程:+=3.22.(6分)阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.23.(7分)某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?24.(7分)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.25.(6分)已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.26.(8分)如图,△OAB是边长为2+的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E∥x轴时,求点A′和E的坐标;(2)当A′E∥x轴,且抛物线y=﹣x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.2018年浙江省杭州市临安市中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分。
下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内)1.(3分)如果a与﹣2互为相反数,那么a等于()A.﹣2 B.2 C.﹣ D.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣2的相反数是2,那么a等于2.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)小明从正面观察如图所示的两个物体,看到的是()A.B.C.D.【分析】分别找出四个选项中图形是从哪个方位看到的,此题得解.【解答】解:A、从上面看到的图形;B、从右面看到的图形;C、从正面看到的图形;D、从左面看到的图形.故选:C.【点评】本题考查了简单组合体的三视图,观察组合体,找出它的三视图是解题的关键.3.(3分)我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7) D.(+39)﹣(+7)【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.4.(3分)化简的结果是()A.﹣2 B.±2 C.2 D.4【分析】本题可先将根号内的数化简,再开根号,根据开方的结果为正数可得出答案.【解答】解:==2.故选:C.【点评】本题考查了二次根式的化简,解此类题目要注意算术平方根为非负数.5.(3分)下列各式计算正确的是()A.a12÷a6=a2B.(x+y)2=x2+y2C.D.【分析】此类题目难度不大,可用验算法解答.【解答】解:A、a12÷a6是同底数幂的除法,指数相减而不是相除,所以a12÷a6=a6,错误;B、(x+y)2为完全平方公式,应该等于x2+y2+2xy,错误;C、===﹣,错误;D、正确.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n,②÷=(a≥0,b>0).6.(3分)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解答】解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.【点评】本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.7.(3分)如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2 B.4 C.8 D.10【分析】本题考查空间想象能力.【解答】解:阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一,正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4.故选:B.【点评】解决本题的关键是得到阴影部分的组成与原正方形面积之间的关系.8.(3分)某青年排球队12名队员的年龄情况如表:则这个队队员年龄的众数和中位数是()A.19,20 B.19,19 C.19,20.5 D.20,19【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【解答】解:数据19出现了四次最多为众数;20和20处在第6位和第7位,其平均数是20,所以中位数是20.所以本题这组数据的中位数是20,众数是19.故选:A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.9.(3分)某校九(1)班的全体同学最喜欢的球类运动用如图所示的统计图来表示,下面说法正确的是()A.从图中可以直接看出喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系【分析】利用扇形统计图的特点,可以得到各类所占的比例,但总数不确定,不能确定每类的具体人数.【解答】解:因为扇形统计图直接反映部分占总体的百分比大小,不能反映具体数量的多少和变化情况,所以A、B、C都错误,故选:D.【点评】本题考查了扇形统计图的知识,扇形统计图直接反映部分占总体的百分比大小.解题的关键是能够读懂扇形统计图并从中整理出进一步解题的有关信息.10.(3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【分析】根据正方形的性质求出∠ACB,根据相似三角形的判定定理判断即可.【解答】解:由正方形的性质可知,∠ACB=180°﹣45°=135°,A、C、D图形中的钝角都不等于135°,由勾股定理得,BC=,AC=2,对应的图形B中的边长分别为1和,∵=,∴图B中的三角形(阴影部分)与△ABC相似,故选:B.【点评】本题考查的是相似三角形的判定,掌握两组对应边的比相等且夹角对应相等的两个三角形相似是解题的关键.11.(3分)如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A.B.C.D.【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例解则可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴===.故选:A.【点评】本题考查了相似三角形的判定和相似三角形的性质,对应边不要搞错.12.(3分)10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()A.B.C.D.【分析】整个组的平均成绩=15名学生的总成绩÷15.【解答】解:先求出这15个人的总成绩10x+5×84=10x+420,再除以15可求得平均值为.故选B.【点评】此题考查了加权平均数的知识,解题的关键是求的15名学生的总成绩.13.(3分)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.5【分析】由图可知:2球体的重量=5圆柱体的重量,2正方体的重量=3圆柱体的重量.可设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程即可得出答案.【解答】解:设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程2x=5y;2z=3y,消去y可得:x=z,则3x=5z,即三个球体的重量等于五个正方体的重量.故选:D.【点评】此题的关键是找到球,正方体,圆柱体的关系.14.(3分)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.【分析】根据垂径定理先求BC一半的长,再求BC的长.【解答】解:设OA与BC相交于D点.∵AB=OA=OB=6∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得BD==3所以BC=6.故选:A.【点评】本题的关键是利用垂径定理和勾股定理.15.(3分)如图直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD 以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是()A.1 B.2 C.3 D.不能确定【分析】如图作辅助线,利用旋转和三角形全等证明△D CG与△DEF全等,再根据全等三角形对应边相等可得EF的长,即△ADE的高,然后得出三角形的面积.【解答】解:如图所示,作EF⊥AD交AD延长线于F,作DG⊥BC,∵CD以D为中心逆时针旋转90°至ED,∴∠EDF+∠CDF=90°,DE=CD,又∵∠CDF+∠CDG=90°,∴∠CDG=∠EDF,在△DCG与△DEF中,,∴△DCG≌△DEF(AAS),∴EF=CG,∵AD=2,BC=3,∴CG=BC﹣AD=3﹣2=1,∴EF=1,∴△ADE的面积是:×AD×EF=×2×1=1.故选:A.【点评】本题考查梯形的性质和旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.二、填空题(本大题共5小题,每小题3分,共15分)16.(3分)P(3,﹣4)到x轴的距离是4.【分析】根据点在坐标系中坐标的几何意义即可解答.【解答】解:根据点在坐标系中坐标的几何意义可知,P(3,﹣4)到x轴的距离是|﹣4|=4.故答案为:4.【点评】本题考查的是点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离.17.(3分)用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC=36度.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【解答】解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.【点评】本题主要考查了多边形的内角和定理和等腰三角形的性质.n边形的内角和为:180°(n﹣2).18.(3分)为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼20 000条.【分析】捕捞200条,其中有标记的鱼有10条,即在样本中有标记的所占比例为,而在整体中有标记的共有1000条,根据所占比例即可解答.【解答】解:1000=20 000(条).故答案为:20000.【点评】本题考查的是通过样本去估计总体.19.(3分)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:,故答案为:.【点评】本题通过考查正方体的侧面展开图,展示了这样一个教学导向,教学中要让学生确实经历活动过程,而不要将活动层次停留于记忆水平.我们有些老师在教学“展开与折叠”时,不是去引导学生动手操作,而是给出几种结论,这样教出的学生肯定遇到动手操作题型时就束手无策了.20.(3分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=109.【分析】要求a+b的值,首先应该认真仔细地观察题目给出的4个等式,找到它们的规律,即中,b=n+1,a=(n+1)2﹣1.【解答】解:根据题中材料可知=,∵10+=102×,∴b=10,a=99,a+b=109.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出式子的规律.三、解答题(本大题共6小题,共40分。