圆锥曲线中的四种经典模型
圆锥曲线中的定点定值问题的四种模型
圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k -+=-⋅=++22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-⋅=+⋅+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k --+++=+++,整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220ba b a y b a b a x +-+-。
圆锥曲线中的定点定值问题的四种模型
圆锥曲线中的定点定值问题的四种模型Last revision on 21 December 2020圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线如何转化题目条件圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7km k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。
圆锥曲线的解题方法
圆锥曲线的解题方法圆锥曲线是解析几何中的重要概念,它涵盖了圆、椭圆、双曲线和抛物线等形态。
在解题时,我们需要了解每种圆锥曲线的特点,并熟悉解析几何中的基本公式和性质。
本文将详细介绍圆锥曲线的解题方法,包括定义、方程形式、基本性质和解题技巧等内容,希望能对读者的学习和应用提供帮助。
一、圆锥曲线的概念和方程形式圆锥曲线是由一个平面与一个固定点(焦点)和一个固定直线(准线)相交所得到的曲线。
它根据平面与准线的位置关系可以分为四种形态:圆、椭圆、双曲线和抛物线。
1.圆:当平面与准线相交于准线上的一个点时,所得到的曲线为圆。
2.椭圆:当平面与准线相交于两个不同点时,所得到的曲线为椭圆。
椭圆的一个特点是焦点到准线上任意一点的距离之和是一个常数,称为椭圆的半长轴;而焦点到准线的垂直距离之和是一个常数,称为椭圆的半短轴。
3.双曲线:当平面与准线相交于两个相异实点或两个虚点时,所得到的曲线为双曲线。
双曲线的一个特点是焦点到准线上任意一点的距离之差是一个常数,称为双曲线的焦距;而焦点到准线的垂直距离之差是一个常数,称为双曲线的准线间距。
4.抛物线:当平面与准线相交于一个点且平行于焦准线时,所得到的曲线为抛物线。
抛物线的一个特点是焦点到准线上任意一点的距离等于焦点到焦准线的垂直距离。
根据圆锥曲线的定义和形态特点,我们可以得到其标准方程形式如下:1.圆的方程:(x-h)²+(y-k)²=r²,其中(h,k)为圆心坐标,r为半径。
2.椭圆的方程:(x-h)²/a²+(y-k)²/b²=1,当椭圆的长轴平行于x轴时;(x-h)²/b²+(y-k)²/a²=1,当椭圆的长轴平行于y轴时。
3.双曲线的方程:(x-h)²/a²-(y-k)²/b²=1,当双曲线的准线平行于x轴时;(y-k)²/b²-(x-h)²/a²=1,当双曲线的准线平行于y轴时。
(完整版)圆锥曲线知识点归纳总结
完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。
三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。
构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。
2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。
椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。
椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。
重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。
抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。
重要公式:抛物线的标准方程为(x^2/4a) = y。
4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。
双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。
双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。
椭圆的应用包括轨道运动、天体力学以及密码学等领域。
抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。
双曲线的应用包括电磁波的传播、双曲线钟的标定等。
6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。
对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。
切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。
焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。
此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。
熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。
圆锥曲线中的定点问题模型一
当m
2k 2 2 时, l : y k ( x ) ,直线过定点 ( , 0) 7 7 7 2 7
综上可知,直线 l 过定点,定点坐标为 ( , 0). ◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点 P 做相互垂直的直线交圆锥曲线于 AB,则 AB 必过定点 (
4
,故 0 ,
4
,所以直线 AB 的斜率存在,否则,OA,OB 直线的倾斜
2 y12 y2 , x2 角之和为 从而设 AB 方程为 y kx b ,显然 x1 , 2p 2p
将 y kx b 与 y 2 px( P 0) 联立消去 x ,得 ky 2 py 2 pb 0
AD AE ( x1 1)( x2 1) ( y1 2)( y2 2) x1 x2 ( x1 x2 ) 1 y1 y2 2( y1 y2 ) 4
2 2 y12 y2 y12 y2 ( ) y1 y2 2( y1 y2 ) 5 4 4 4 4
2 即t 2 6t 9 4m 2 8m 4即(t 3) 4(m 1) 2 t 3 2(m 1)
t 2m 5或t 2m 1, 代入(*)式检验均满足 0 直线DE的方程为x m( y 2) 5或x m( y 2) 1 直线DE过定点(5,2). (定点( 1, 2)不满足题意 )
2 y3 (Ⅲ)设点 Q ( , y 3 ), M 、B、Q 三点共线, k BQ k QM , 4
圆锥曲线的经典模型
圆锥曲线中的定点定值问题的四种经典模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型: 模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx mx y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-,1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7km k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220ba b a y b a b a x +-+-。
高三数学圆锥曲线知识点
高三数学圆锥曲线知识点在高中数学中,圆锥曲线是一个重要的概念。
它由圆、椭圆、双曲线和抛物线四种曲线构成。
掌握圆锥曲线的知识对于解决各种数学问题和应用是至关重要的。
本文将介绍高三数学圆锥曲线的知识点。
一、圆锥曲线的定义和性质圆锥曲线是一个平面上到一个定点和一个定直线的距离之比保持不变的点的轨迹。
圆锥曲线分为四种类型:圆、椭圆、双曲线和抛物线。
1. 圆:圆是所有到一个点的距离相等的点的轨迹。
圆的特点是中心坐标为(h, k),半径为r。
2. 椭圆:椭圆是所有到两个定点之和的距离之比为定值的点的轨迹。
椭圆的特点是有两个焦点F1和F2,两个焦点之间的距离为2a,离心率为e,长轴的长度为2a,短轴的长度为2b。
3. 双曲线:双曲线是所有到两个定点之差的距离之差为定值的点的轨迹。
双曲线的特点是有两个焦点F1和F2,两个焦点之间的距离为2a,离心率为e,离心率小于1。
4. 抛物线:抛物线是所有到一个定直线的距离与到一个定点的距离相等的点的轨迹。
抛物线的特点是焦点为F,准线为L,焦距为p,焦点到准线的距离为x,焦点到点P的距离为y。
二、圆锥曲线的方程1. 圆的方程:$(x-h)^2 + (y-k)^2 = r^2$,其中(h, k)为圆心的坐标,r为半径。
2. 椭圆的方程:$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$,其中(h, k)为椭圆中心的坐标,a和b分别为椭圆长半轴和短半轴的长度。
3. 双曲线的方程:$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} =1$,其中(h, k)为双曲线中心的坐标,a和b分别为双曲线长半轴和短半轴的长度。
4. 抛物线的方程:$y^2 = 4ax$,其中焦点为原点,准线为x轴,焦距为p。
三、圆锥曲线的性质和应用1. 圆的性质:圆的切线与半径垂直,圆的弦与半径垂直于弦的中点。
2. 椭圆的性质:椭圆的离心率介于0和1之间,焦点和对称轴平行。
圆锥曲线知识点清单
圆锥曲线知识点清单1.圆锥曲线定义:圆锥曲线可以定义为平面上一条曲线,是由一个平面与一个双曲面(或抛物面、圆锥、椭球)相交而得到的曲线。
2.圆锥曲线的分类:根据双曲面的切割方式,圆锥曲线可以分为圆、椭圆、双曲线和抛物线四种。
3.圆:圆是一种特殊的圆锥曲线,是由一个平面与圆锥体的底面相交而得到的曲线。
圆的特点是所有的点到圆心的距离都相等。
4.椭圆:椭圆是圆锥曲线中除了圆之外最为常见的一种形式。
椭圆的特点是到两个焦点的距离之和等于定长的点构成的轨迹。
5.双曲线:双曲线是圆锥曲线中的一种形式,具有两个分离的点,称为焦点。
双曲线的特点是到两个焦点的距离之差等于定长的点构成的轨迹。
6.抛物线:抛物线是圆锥曲线中的一种形式,具有一个焦点和一个定点。
抛物线的特点是到焦点和定点的距离相等的点构成的轨迹。
7.圆锥曲线的方程:每种圆锥曲线都有其特定的方程形式。
例如,椭圆的方程可以表示为x^2/a^2+y^2/b^2=1,其中a和b分别代表椭圆的长半轴和短半轴长度。
8.圆锥曲线的焦点和准线:每种圆锥曲线都具有焦点和准线,它们在曲线的定义中起到重要作用。
焦点是曲线的特定点,而准线是曲线的特定直线。
9.圆锥曲线的参数方程:除了直角坐标系方程外,圆锥曲线还可以使用参数方程来表示。
参数方程由参数t控制,使我们可以通过调整参数值来改变曲线的形状。
10.圆锥曲线的基本性质:每种圆锥曲线都具有一些基本的性质,如对称性、渐近线、离心率等。
这些性质有助于我们更好地理解和分析圆锥曲线。
11.圆锥曲线的应用:圆锥曲线在现实生活和工程领域中有着广泛的应用,如天体轨道、卫星通信、汽车运动轨迹等。
了解圆锥曲线的性质和方程形式有助于我们更好地理解和应用它们。
12.圆锥曲线的研究方法:研究圆锥曲线的方法包括几何方法和解析几何方法。
几何方法主要是通过几何性质和图形推理来研究曲线的特性,而解析几何方法则是通过代数和数学计算来推导圆锥曲线的方程和性质。
以上是圆锥曲线的一些主要知识点,通过学习和了解这些知识点,我们可以更好地理解和应用圆锥曲线。
1.圆锥曲线中的四种经典模型
=
y 12 4
y22 4
− ( y12 4
+
y22 ) + 4
y1 y2
− 2( y1 +
y2 ) + 5
=
( y1 y2 )2 16
−
( y1
+
y2 )2 − 4
2 y1
y2
+
y1
y2
− 2( y1
+
y2 )
+5
= (−4t)2 − (4m)2 − 2(−4t) + (−4t) − 2(4m) + 5 = 0化简得t 2 − 6t + 5 = 4m2 + 8m
y1 x1 + 1
=
− x2
y2 +1
y1 y12 + 8
=
− y2 y22 + 8
8( y1
+
y2 ) +
y1 y2 ( y2
+
y1 )
= 0 8+
y1 y2
= 0 直线
PQ
方程为: y −
y1
=
y2 x2
− y1 − x1
(x − x1)
y−
y1
=
y2
1 +
y1
(8x −
y12 )
y( y2 + y1) − y1( y2 + y1) = 8x − y12 y( y2 + y1) + 8 = 8x y = 0, x = 1
= +
kx + m 4 y2 = 12
得
(3
+
圆锥曲线中的定点定值问题的四种模型
圆锥曲线中的定点定值问题的四种模型圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx mx y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340km +->212122284(3),3434mkm x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+Q以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BDk k ⋅=-, 1212122y y x x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++,整理得:2271640mmk k ++=,解得:1222,7k m k m=-=-,且满足22340k m +->当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((22222222ba b a y b a b a x +-+-。
圆锥曲线的一些经典结论
圆锥曲线的一些经典结论1. 圆锥曲线有四种类型:椭圆、抛物线、双曲线和圆。
2. 椭圆:椭圆是圆锥曲线的一种,它由离心率小于1的点构成。
椭圆具有两个焦点和一个长轴和短轴。
3. 抛物线:抛物线是圆锥曲线的一种,它具有一个焦点和一个直线作为其轴线。
所有的点到焦点的距离都等于其到轴线的距离。
4. 双曲线:双曲线是圆锥曲线的一种,它由离心率大于1的点构成。
双曲线具有两个焦点和两个分离的曲线枝。
5. 圆:圆是圆锥曲线的一种特殊情况,它的离心率为零,所有的点到圆心的距离相等。
6. 圆锥曲线的方程:圆锥曲线可以通过方程来表示。
例如,椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心点,a 和b分别是长轴和短轴的长度。
7. 长轴和短轴:圆锥曲线具有两个轴,它们都通过曲线的中心点。
长轴是椭圆或双曲线的主轴,它的长度是贯穿曲线的最长距离。
短轴是与长轴垂直的轴,它的长度是贯穿曲线的最短距离。
8. 离心率:离心率是一个非常重要的指标,用来描述圆锥曲线的形状。
离心率通常用字母e表示,可以通过离心率的定义公式e =c/a来计算,其中c是焦点离中心的距离,a是长轴的长度。
9. 集点定理:集点定理是圆锥曲线研究的基本定理之一。
它表明,对于一个椭圆或双曲线,所有点到两个焦点的距离之和是常数,等于长轴的长度。
10. 曲率:曲率是描述曲线弯曲程度的属性。
圆锥曲线的曲率在不同点上有不同的值,它可以通过曲线的方程来计算。
这些是圆锥曲线的一些经典结论,它们是圆锥曲线理论的基础,可以应用在许多科学和工程领域,如天文学、物理学和工程学等。
圆锥曲线方法类型
圆锥曲线方法类型
圆锥曲线是二次曲线的一种,表示为
ax^2+bxy+cy^2+dx+ey+f=0,其中a、b、c、d、e、f
为常数。
根据a、b、c的取值不同,圆锥曲线可以分为以下四
种类型:
1.椭圆(Ellipse):当a、b、c的符号相同且a、b、c都
不为零时,表示一个椭圆。
椭圆是一条封闭的曲线,具有两个
轴(长轴和短轴),且两个焦点的距离之和是固定值。
椭圆在
几何学和工程学中有广泛的应用,例如地球绕太阳的轨道。
2.双曲线(Hyperbola):当a、b、c的符号相异时,表示一个双曲线。
双曲线有两个分支,分别向两个方向延伸。
双曲
线的定义特征是两个焦点的距离差是固定值。
双曲线在物理学、电磁学和光学等领域中具有重要的应用,例如电场和磁场的传播。
3.抛物线(Parabola):当a为零时,b不为零,表示一个抛物线。
抛物线具有对称轴和焦点,其形状类似于开口向上或
向下的弧线。
抛物线在物理学中常用来描述抛射物的运动轨迹。
4.直线(Line):当a、b、c、d、e都为零时,表示一条直线。
直线是最简单的圆锥曲线,具有无穷远的两个端点。
直线
在几何学、物理学和工程学中有广泛应用,例如描述平面上两
点之间的最短路径。
这些不同类型的圆锥曲线在数学和实际应用中都有着重要的地位,研究它们的性质和应用是数学和科学领域的重要内容。
圆锥曲线中的垂直模型
圆锥曲线中的垂直模型
圆锥曲线是平面上的一类曲线,它们可以通过截取一个圆锥体
而得到。
圆锥曲线包括圆、椭圆、双曲线和抛物线。
在这些曲线中,垂直模型是指曲线在某点处的切线与该点处的纵坐标轴垂直。
下面
我将从各种圆锥曲线的角度来讨论垂直模型。
首先是圆的情况。
圆的所有点到圆心的距离都相等,因此在任
何一点处,切线都与该点处的纵坐标轴垂直。
其次是椭圆。
椭圆的性质决定了在椭圆上的点处,切线与该点
处的纵坐标轴并不一定垂直。
只有在椭圆的端点处,切线与纵坐标
轴才是垂直的。
接着是双曲线。
双曲线的性质与椭圆有些相似,只有在双曲线
的端点处,切线与纵坐标轴才是垂直的。
最后是抛物线。
抛物线的性质决定了在抛物线上的点处,切线
与该点处的纵坐标轴始终垂直。
这是因为抛物线的几何定义决定了
其在焦点处与直角相交。
总的来说,圆锥曲线中的垂直模型在不同类型的曲线上有不同的表现。
这些性质对于解决与圆锥曲线相关的数学问题和实际应用具有重要意义。
希望这些信息能够对你有所帮助。
圆锥曲线的方程与像
圆锥曲线的方程与像圆锥曲线是二维平面中的一类曲线,它的形状可以描述为圆锥与平面的相交曲线。
在数学中,常见的圆锥曲线包括椭圆、双曲线和抛物线。
每一个圆锥曲线都有其特定的方程形式,这个方程能够帮助我们准确地描述和理解这些曲线的性质。
一、椭圆的方程与像椭圆是一个有两个焦点的闭合曲线,它的形状类似于拉长的圆。
椭圆的方程一般有两种形式:标准形和一般形。
1. 标准形方程标准形方程如下:(x-h)²/a² + (y-k)²/b² = 1其中(h, k)为椭圆的中心坐标,a为长半轴的长度,b为短半轴的长度。
2. 一般形方程一般形方程如下:Ax² + By² + Cxy + Dx + Ey + F = 0其中A、B、C、D、E和F为实数,并且A和B不能同时为0。
在图像上观察,椭圆是一个对称的曲线,它的两个焦点与椭圆上的每一点的距离之和为常数。
通过椭圆的方程,我们可以计算出椭圆的焦点位置、长短轴长度,从而准确地绘制出椭圆的图像。
二、双曲线的方程与像双曲线是一个有两个分离的不相交的曲线分支的曲线。
双曲线的方程也有两种形式:标准形和一般形。
1. 标准形方程标准形方程如下:(x-h)²/a² - (y-k)²/b² = 1其中(h, k)为双曲线的中心坐标,a为与x轴的距离,b为与y轴的距离。
2. 一般形方程一般形方程如下:Ax² + By² + Cxy + Dx + Ey + F = 0其中A、B、C、D、E和F为实数,并且A和B的符号相反。
双曲线具有两个渐近线,它的两个分支与这两条渐近线趋于无穷远,而且其形状比椭圆更加“开放”。
通过双曲线的方程,我们可以计算出双曲线的焦点位置、长短轴长度以及渐近线的方程,从而准确地绘制出双曲线的图像。
三、抛物线的方程与像抛物线是一个开口朝上或朝下的曲线,它的形状类似于喷泉的水流。
(2021年整理)圆锥曲线解题模型
(完整)圆锥曲线解题模型
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)圆锥曲线解题模型)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)圆锥曲线解题模型的全部内容。
圆锥曲线五个方程模型
圆锥曲线五个方程模型圆锥曲线是数学中非常重要的一类曲线,包括椭圆、双曲线和抛物线。
这些曲线在几何、物理和工程等领域都有广泛的应用。
圆锥曲线可以通过不同的方程来描述,下面将介绍五种常见的圆锥曲线方程模型。
一、标准椭圆方程标准椭圆方程是最常见的圆锥曲线方程之一。
在平面直角坐标系中,标准椭圆方程可以表示为:( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 )(( a > b > 0 ))其中,( a ) 和( b ) 分别是椭圆的长半轴和短半轴的长度。
这个方程描述了一个中心在原点、长轴与x轴重合的椭圆。
椭圆是一种闭合曲线,具有两个对称轴,分别是x轴和y轴。
二、标准双曲线方程标准双曲线方程是另一种常见的圆锥曲线方程。
在平面直角坐标系中,标准双曲线方程可以表示为:( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 )(( a, b > 0 ))其中,( a ) 和( b ) 分别是双曲线的实半轴和虚半轴的长度。
这个方程描述了一个中心在原点、实轴与x轴重合的双曲线。
双曲线是一种开放曲线,具有两个分支,分别位于x轴的两侧。
双曲线也有两个对称轴,分别是x轴和y轴。
三、抛物线标准方程抛物线是一种特殊的圆锥曲线,它的方程可以表示为:( y^2 = 2px )(( p > 0 ))这个方程描述了一个开口向右的抛物线。
抛物线是一种开放曲线,具有一个对称轴,即y轴。
在抛物线上,任意一点到焦点的距离等于该点到准线的距离。
这个性质使得抛物线在物理和工程中有广泛的应用,例如抛物线运动、抛物面反射镜等。
除了上述开口向右的抛物线方程外,还有开口向左、向上和向下的抛物线方程,它们可以通过旋转或平移得到。
例如,开口向左的抛物线方程可以表示为( y^2 = -2px ),开口向上的抛物线方程可以表示为( x^2 = 2py ),开口向下的抛物线方程可以表示为( x^2 = -2py )。
圆锥曲线最值问题模型
圆锥曲线最值问题模型圆锥曲线是数学中的一个重要分支,它涉及到许多实际问题的建模和解决。
其中,最值问题是圆锥曲线中的一个重要问题,它在实际应用中具有广泛的应用。
本文将从椭圆、双曲线和抛物线三个方面,介绍圆锥曲线最值问题的模型。
一、椭圆椭圆是圆锥曲线中的一种,它的最值问题模型主要涉及到椭圆的离心率和焦点。
椭圆的离心率是一个重要的参数,它描述了椭圆的扁平程度。
当离心率越接近于0时,椭圆越接近于圆形;当离心率越接近于1时,椭圆越扁平。
因此,椭圆的最值问题模型可以通过离心率来描述。
另外,椭圆的焦点也是一个重要的参数,它描述了椭圆的形状。
当焦点越靠近椭圆的中心时,椭圆越接近于圆形;当焦点越远离椭圆的中心时,椭圆越扁平。
因此,椭圆的最值问题模型可以通过焦点来描述。
二、双曲线双曲线是圆锥曲线中的另一种,它的最值问题模型主要涉及到双曲线的离心率和渐近线。
双曲线的离心率也是一个重要的参数,它描述了双曲线的扁平程度。
当离心率越接近于1时,双曲线越接近于抛物线;当离心率越大时,双曲线越扁平。
因此,双曲线的最值问题模型可以通过离心率来描述。
另外,双曲线的渐近线也是一个重要的参数,它描述了双曲线的形状。
当渐近线的斜率越接近于0时,双曲线越接近于抛物线;当渐近线的斜率越大时,双曲线越扁平。
因此,双曲线的最值问题模型可以通过渐近线来描述。
三、抛物线抛物线是圆锥曲线中的最后一种,它的最值问题模型主要涉及到抛物线的焦点和顶点。
抛物线的焦点是一个重要的参数,它描述了抛物线的形状。
当焦点越靠近抛物线的顶点时,抛物线越接近于直线;当焦点越远离抛物线的顶点时,抛物线越扁平。
因此,抛物线的最值问题模型可以通过焦点来描述。
另外,抛物线的顶点也是一个重要的参数,它描述了抛物线的形状。
当顶点越靠近坐标轴时,抛物线越扁平;当顶点越远离坐标轴时,抛物线越陡峭。
因此,抛物线的最值问题模型可以通过顶点来描述。
综上所述,圆锥曲线最值问题模型涉及到椭圆、双曲线和抛物线三个方面。
圆锥曲线表示正方形的方法
圆锥曲线表示正方形的方法
圆锥曲线是指在平面上以一定方式切割圆锥而得到的曲线。
正方形是一种具有四条相等边和四个直角的几何图形。
那么,如何用圆锥曲线来表示正方形呢以下是详细的回答:
一、圆锥曲线的基本概念
在回答如何用圆锥曲线表示正方形之前,我们需要先了解一些圆锥曲线的基本概念。
圆锥曲线主要包括以下四种:
1. 椭圆:在圆锥上以一个小于圆锥高的距离切割圆锥所得的曲线。
2. 双曲线:在圆锥上以一个大于圆锥高的距离切割圆锥所得的曲线。
3. 抛物线:在圆锥上以一个等于圆锥高的距离切割圆锥所得的曲线。
4. 圆:在圆锥上以一个与圆锥高相等的距离切割圆锥所得的曲线。
二、如何用圆锥曲线表示正方形
正方形是一种具有四条相等边和四个直角的几何图形。
如果我们要用圆锥曲线来
表示正方形,可以采用以下两种方法:
1. 椭圆法
我们可以在圆锥上以一个小于圆锥高的距离切割圆锥,得到一个椭圆。
然后,我们可以在椭圆上选取一个长轴和短轴相等的矩形,这个矩形就是一个正方形。
2. 双曲线法
我们可以在圆锥上以一个大于圆锥高的距离切割圆锥,得到一个双曲线。
然后,我们可以在双曲线上选取一个距离双曲线两个分支的距离相等的矩形,这个矩形就是一个正方形。
总结:
以上就是如何用圆锥曲线表示正方形的方法。
无论是采用椭圆法还是双曲线法,都需要在圆锥上进行切割,并选取相应的矩形。
这些方法都可以用来解决一些几何问题,但在实际应用中,需要根据具体情况选择合适的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线中的定点定值问题的四种经典模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k -+=-⋅=++22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-⋅=+⋅+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k --+++=+++,整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220ba b a y b a b a x +-+-。
(参考百度文库文章:“圆锥曲线的弦对定点张直角的一组性质”)◆模型拓展:本题还可以拓展为“手电筒”模型:只要任意一个限定AP 与BP 条件(如=•BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点(因为三条直线形似手电筒,固名曰手电筒模型)。
(参考优酷视频资料尼尔森数学第一季第13节)此模型解题步骤:Step1:设AB 直线m kx y +=,联立曲线方程得根与系数关系,∆求出参数范围;Step2:由AP 与BP 关系(如1-=•BP AP k k ),得一次函数)()(k f m m f k ==或者; Step3:将)()(k f m m f k ==或者代入m kx y +=,得定定y x x k y +-=)(。
◆迁移训练练习1:过抛物线M:px y 22=上一点P (1,2)作倾斜角互补的直线PA 与PB ,交M 于A 、B 两点,求证:直线AB 过定点。
(注:本题结论也适用于抛物线与双曲线) 练习2:过抛物线M:x y 42=的顶点任意作两条互相垂直的弦OA 、OB ,求证:直线AB 过定点。
(经典例题,多种解法)练习3:过1222=-y x 上的点作动弦AB 、AC 且3=•AC AB k k ,证明BC 恒过定点。
(本题参考答案:)51,51(-) 练习:4:设A 、B 是轨迹C :22(0)y px P =>上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当,αβ变化且4παβ+=时,证明直线AB 恒过定点,并求出该定点的坐标。
(参考答案()2,2p p -)【答案】设()()1122,,,A x y B x y ,由题意得12,0x x ≠,又直线OA,OB 的倾斜角,αβ满足4παβ+=,故0,4παβ<<,所以直线AB 的斜率存在,否则,OA,OB 直线的倾斜角之和为πAB 方程为y kx b =+,显然221212,22y y x x p p ==, 将y kx b =+与22(0)y px P =>联立消去x ,得2220ky py pb -+=由韦达定理知121222,p pby y y y k k+=⋅=① 由4παβ+=,得1=tan tan()4παβ=+=tan tan 1tan tan αβαβ+-=122122()4p y y y y p +-将①式代入上式整理化简可得:212pb pk=-,所以22b p pk =+, 此时,直线AB 的方程可表示为y kx =+22p pk +即()(2)20k x p y p +--=所以直线AB 恒过定点()2,2p p -.练习5:已知动圆过定点A (4,0), 且在y 轴上截得的弦MN 的长为8. (Ⅰ)求动圆圆心的轨迹C 的方程;(Ⅱ)已知点B (-1,0), 设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P , Q , 若x 轴是PBQ ∠的角平分线, 证明直线l 过定点.【答案】解:(Ⅰ) A (4,0),设圆心C2222,2),,(EC ME CM CA MNME E MN y x +===,由几何图像知线段的中点为x y x y x 84)422222=⇒+=+-⇒((Ⅱ) 点B (-1,0),222121212122118,8,00),,(),,(x y x y y y y y y x Q y x P ==<≠+,由题知设.080)()(88811211221212222112211=+⇒=+++⇒+-=+⇒+-=+⇒y y y y y y y y y y y y x y x y 直线PQ方程为:)8(1)(21121112121y x y y y y x x x x y y y y -+=-⇒---=-1,088)(8)()(122112112==⇒=++⇒-=+-+⇒x y x y y y y x y y y y y y所以,直线PQ 过定点(1,0)练习6:已知点()()1,0,1,0,B C P -是平面上一动点,且满足||||PC BC PB CB ⋅=⋅(1)求点P 的轨迹C 对应的方程;(2)已知点(,2)A m 在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD AE ⊥,判断:直线DE 是否过定点?试证明你的结论.【解】(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入 (5分)).2,1(,14)2,()2(2的坐标为点得代入将A m x y m A ∴== ,044,422=--=+=t mt y x y t my x DE 得代入的方程为设直线)((,则设*016)44,4),(),,(221212211>+-=∆-=⋅=+t m t y y m y y y x E y x D4)(21)()2)(2()1)(1(212121212121++-⋅+++-=--+--=⋅∴y y y y x x x x y y x x AE AD5)(2)44(44212122212221++-⋅++-⋅=y y y y y y y y 5)(242)(16)(212121221221++-⋅+⋅-+-⋅=y y y y y y y y y ym m t t m t t m t 845605)4(2)4(4)4(2)4(16)4(2222+=+-=+--+----=化简得)1(23)1(43484962222+±=-∴+=-++=+-m t m t m m t t )即(即 0*,1252>∆+-=+=∴)式检验均满足代入(或m t m t 1)2(5)2(+-=++=∴y m x y m x DE 或的方程为直线 )不满足题意,定点((过定点直线21).2,5(-∴DE )练习7:已知点A (-1,0),B (1,-1)和抛物线.x y C 4:2=,O 为坐标原点,过点A 的动直线l交抛物线C 于M 、P ,直线MB 交抛物线C 于另一点Q ,如图.(I )证明: OM OP ⋅为定值; (II )若△POM 的面积为25,求向量OM 与OP 的夹角; (Ⅲ)证明直线PQ 恒过一个定点.解:(I )设点P y y P y y M ),,4(),,4(222121、M 、A 三点共线, ,4414,222121211y y y y y y k k DM AM --=+=∴即 4,142121211=∴+=+y y y y y y 即 .544212221=+⋅=⋅∴y y y y OP OM(II)设∠POM =α,则.5cos ||||=⋅⋅αOP OM.5sin ||||,25=⋅⋅∴=∆αOP OM S ROM 由此可得tan α=1. 又.45,45),,0(︒︒=∴∈的夹角为与故向量OP OM απα(Ⅲ)设点M y y Q ),,4(323、B 、Q 三点共线,,QM BQ k k =∴ 3133222233131323133131311,,41444(1)()4,40.11y y y y y y y y y y y y y y y y y y -+==-++-∴++=-+++=即即即分,0444,4,432322121=+++⋅∴==y y y y y y y y 即即.(*)04)(43232=+++y y y y第22题,44432232232y y y y y y k PQ +=--=)4(422322y x y y y y PQ -+=-∴的方程是直线即.4)(,4))((323222322x y y y y y y x y y y y =-+-=+-即由(*)式,,4)(43232++=-y y y y 代入上式,得).1(4))(4(32-=++x y y y 由此可知直线PQ 过定点E (1,-4).模型二:切点弦恒过定点例题:有如下结论:“圆222r y x =+上一点),(00y x P 处的切线方程为200r y y y x =+”,类比也有结论:“椭圆),()0(1002222y x P b a by a x 上一点>>=+处的切线方程为12020=+b y y a x x ”,过椭圆C :1422=+y x 的右准线l 上任意一点M 引椭圆C 的两条切线,切点为 A 、B. (1)求证:直线AB 恒过一定点;(2)当点M 在的纵坐标为1时,求△ABM 的面积。