苏科版数学八年级上期末试卷(含答案)[1]

合集下载

苏科版八年级上册数学《期末考试试题》含答案解析

苏科版八年级上册数学《期末考试试题》含答案解析
[答案]50
[解析]
[分析]
因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;
[详解]底角:(180°−80°)÷2=100°÷2=50°
它的底角为50度
故答案为50.
[点睛]此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答.
12.已知一次函数 与 的图像交点坐标为(−1,2),则方程组 的解为____.
[答案] .
[解析]
[分析]
直接根据一次函数和二元一次方程组的关系求解.
[详解]解:∵一次函数 与 的图象的交点的坐标为(−1,2),
∴方程组 的解是 .
[点睛]本题考查了一次函数和二元一次方程(组)的关系:要准确的将一次函数问题的条件转化为二元一次方程(组),注意自变量取值范围要符合实际意义.
A. 甲和乙B. 甲和丙C. 乙和丙D. 只有乙
[答案]B
[解析]
[分析]
根据三角形全等的判定定理SSS、SAS、AAS、ASA、HL逐个进行分析即可.
[详解]解:甲三角形有两条边及夹角与△ABC对应相等,根据SAS可以判断甲三角形与△ABC全等;
乙三角形只有一条边及对角与△ABC对应相等,不满足全等判定条件,故乙三角形与△ABC不能判定全等;
丙三角形有两个角及夹边与△ABC对应相等,根据ASA可以判定丙三角形与△ABC全等;
所以与△ABC全等的有甲和丙,
故选:B.
[点睛]本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.
6.下列图形中,表示一次函数 与正比例函数 ( 、 为常数,且 )的图象的是()

苏科版八年级(上)期末数学试卷(含答案)

苏科版八年级(上)期末数学试卷(含答案)

苏科版八年级(上)期末数学试卷(含答案) 一、选择题 1.如图,△ABC ≌△ADE ,∠B=20°,∠E=110°,则∠EAD 的度数为( )A .80°B .70°C .50°D .130° 2.在平面直角坐标系中,下列各点位于第四象限的点是( ) A .(2,3)-B .()4,5-C .(1,0)D .(8,1)-- 3.1(1)1a a --变形正确的是( ) A .1-B .1a -C .1a --D .1a -- 4.在3π-,3127-,7,227-,中,无理数的个数是( ) A .1个B .2个C .3个D .4个 5.计算021( 3.14)()2π--+=( ) A .5 B .-3 C .54 D .14- 6.已知点P (1+m ,3)在第二象限,则m 的取值范围是( )A .1m <-B .1m >-C .1m ≤-D .1m ≥-7.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h8.在平面直角坐标系中,点()3,2P -关于x 轴对称的点的坐标是( )A .()3,2B .()2,3-C .()3,2-D .()3,2-- 9.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .以上都不对 10.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒11.如图,在平面直角坐标系中,A (0,3),B (5,3),C (5,0),点D 在线段OA 上,将△ABD 沿着直线BD 折叠,点A 的对应点为E ,当点E 在线段OC 上时,则AD 的长是( )A .1B .43C .53D .212.如图,若BD 是等边△ABC 的一条中线,延长BC 至点E ,使CE=CD=x ,连接DE ,则DE 的长为( )A .32xB .23xC .33xD 3x13.下列各数中,无理数的是( )A .0B .1.01001C .πD 414.小明体重为 48.96 kg ,这个数精确到十分位的近似值为( )A .48 kgB .48.9 kgC .49 kgD .49.0 kg 15.已知点(,)P a b 在第四象限,且点P 到x 轴的距离为3,到y 轴的距离为6,则点P 的坐标是( )A .(3,6)-B .(6,3)-C .(3,6)-D .()3,3-或(6,6)- 二、填空题16.如图所示的棋盘放置在某个平面直角坐标系内,棋子A 的坐标为(﹣2,﹣3),棋子B 的坐标为(1,﹣2),那么棋子C 的坐标是_____.17.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y (千米)与时间t (分钟)的关系如图所示,则上午8:45小明离家的距离是__千米.18.在平面直角坐标系xOy 中,点P 在第四象限内,且点P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标是_____.19.如图,点O 是边长为2的等边三角ABC 内任意一点,且OD AC ⊥,OE AB ⊥,OF BC ⊥,则OD OE OF ++=__________.20.因式分解:24ax ay -=__________.21.已知一次函数1y kx =+的图像经过点(1,0)P -,则k =________.22.在实数22,4π,227-,3.14,16中,无理数有______个. 23.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.24.如图,在长方形ABCD 中,5,6AB BC ==,将长方形ABCD 沿BE 折叠,点A 落在'A 处,若'EA 的延长线恰好过点C ,则AE 的长为__________.25.平行四边形的周长是20,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大2,则AB 的长为_____.三、解答题26.计算:2201931125272-⎛⎫-+-+- ⎪⎝⎭. 27.若△ABC 的三边分别为a ,b ,c ,其中a ,b 满足6a -+(b ﹣8)2=0.(1)求边长c 的取值范围,(2)若△ABC 是直角三角形,求△ABC 的面积.28.如图所示是甲乙两个工程队完成某项工程的进度图,首先是甲独做了10天,然后两队合做,完成剩下的工程.(1)甲队单独完成这项工程,需要多少天?(2)求乙队单独完成这项工程需要的天数;(3)实际完成的时间比甲独做所需的时间提前多少天?29.(本题满分10分) 如图,直线23y x =+与x 轴相交于点A ,与y 轴相交于点B .(1)求△AOB 的面积;(2)过B 点作直线BP 与x 轴相交于P ,△ABP 的面积是92,求点P 的坐标. 30.如图,在ABC ∆中,4AB =,8BC =,AC 的垂直平分线交AC 于点D ,交BC 于点E ,3CE =,连接AE .(1)求证:ABE ∆是直角三角形;(2)求ACE ∆的面积.31.某列车平均提速vkm/h,用相同的时间,列车提速前行驶150km,提速后比提速前多行驶50km,提速前列车的平均速度为多少?(用含v的式子表示)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据全等的性质知∠D=∠B=20°,再根据三角形的内角和即可求出∠EAD.【详解】∵△ABC≌△ADE,∠B=20°,∠E=110°,∴∠D=∠B=20°,∴∠EAD=180°-20°-110°=50°,故选C.【点睛】本题是对三角形全等知识的考查,熟练掌握全等知识及三角形的内角和是解决本题的关键. 2.A解析:A【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A.(2,-3)在第四象限,故本选项正确;B.(-4,5)在第二象限,故本选项错误;C.(1,0)在x轴正半轴上,故本选项错误;D.(-8,-1)在第三象限,故本选项错误.故选A.本题考查了平面直角坐标系中象限内点的坐标特征,解决本题的关键是熟练掌握每个象限的坐标特征.3.C解析:C【解析】【分析】先根据二次根式有意义有条件得出1-a>0,再由此利用二次根式的性质化简得出答案.【详解】 11a-有意义, 10a ∴->,10a ∴-<,(a ∴-== 故选C .【点睛】考查了二次根式的性质与化简,正确化简二次根式是解题关键. 4.B解析:B【解析】【分析】根据无理数的定义判断即可. 【详解】解:3π-1-3 ,227-可以化成分数,不是无理数. 故选 B【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数.5.A解析:A【解析】【分析】根据0指数幂和负整数幂定义进行计算即可.【详解】021( 3.14)()1452π--+=+=【点睛】考核知识点:幂的运算.理解0指数幂和负整数幂定义是关键.6.A解析:A【解析】【分析】令点P 的横坐标小于0,列不等式求解即可.【详解】解:∵点P P (1+m ,3)在第二象限,∴1+m <0,解得: m <-1.故选:A .【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.C解析:C【解析】甲的速度是:20÷4=5km/h ;乙的速度是:20÷1=20km/h ;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C .8.D解析:D【解析】【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点()3,2P -关于x 轴对称的点的坐标为()3,2--.故选:D .【点睛】本题考查坐标与图形变化——轴对称.熟记①关于x 轴对称的点,横坐标相同,纵坐标互为相反数;②关于y 轴对称的点,纵坐标相同,横坐标互为相反数.是解决此题的关键.9.A解析:A【解析】【分析】∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.10.B解析:B【解析】【分析】延长AO交BC于D,根据垂直平分线的性质可得到AO=BO=CO,再根据等边对等角的性质得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.【详解】延长AO交BC于D.∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.11.C解析:C【解析】【分析】先根据勾股定理求出EC的长,进而可得出OE的长,在Rt△DOE中,由DE=AD及勾股定理可求出AD 的长.【详解】解:根据各点坐标可得AB=OC=BE=5,AO=BC=3,设AD=x ,则DE=x ,DO=3-x∴=4,∴OE=1,在Rt △DOE 中,DO 2+OE 2=DE 2,解得x=53, ∴AD=53, 故选C.【点睛】本题考查了勾股定理的应用,找准直角三角形,设出未知数列出方程即可解答.12.D解析:D【解析】【分析】根据等腰三角形和三角形外角性质求出BD=DE ,求出BC ,在Rt △BDC 中,由勾股定理求出BD 即可.【详解】解:∵△ABC 为等边三角形,∴∠ABC=∠ACB=60°,AB=BC ,∵BD 为中线,1302DBC ABC ︒∴∠=∠= ∵CD=CE , ∴∠E=∠CDE ,∵∠E+∠CDE=∠ACB ,∴∠E=30°=∠DBC ,∴BD=DE ,∵BD 是AC 中线,CD=x ,∴AD=DC=x ,∵△ABC 是等边三角形,∴BC=AC=2x ,BD ⊥AC ,在Rt △BDC 中,由勾股定理得:BD ==DE BD ∴==故选:D .【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.13.C解析:C【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】解:A.0是整数,属于有理数;B.1.01001是有限小数,属于有理数;C.π是无理数;,是整数,属于有理数.2故选:C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有ππ的数.14.D解析:D【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】解:48.96≈49.0(精确到十分位).故选:D.【点睛】本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示,精确到哪位,就是对它后边的一位进行四舍五入.15.B解析:B【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度确定出点的横坐标与纵坐标,即可得解.【详解】∵点在第四象限且到x轴距离为3,到y轴距离为6,∴点的横坐标是6,纵坐标是-3,∴点的坐标为(6,-3).故选B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.二、填空题16.(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,解析:(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,1).【点睛】本题考查了坐标确定位置,根据点A、B的坐标确定平面直角坐标系是解题关键.17.5.【解析】【分析】首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k、b的方程组,解出k、b的值,进而可得函数解解析:5.【解析】【分析】首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k、b的方程组,解出k、b的值,进而可得函数解析式,再把t=45代入即可.【详解】设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b.∵图象经过(40,2)(60,0),∴240060k bk b=+⎧⎨=+⎩,解得:1106kb⎧=-⎪⎨⎪=⎩,∴y与t的函数关系式为y=﹣16 10t+,当t=45时,y=﹣110×45+6=1.5.故答案为1.5.【点睛】本题主要考查了一次函数的应用,关键是正确理解题意,掌握待定系数法求出函数解析式.18.(3,﹣2).【解析】【分析】根据点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,可得答案.【详解】设P(x,y),∵点P到x轴的距离为2,到y轴的距离为3,∴,∵点P解析:(3,﹣2).【解析】【分析】根据点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,可得答案.【详解】设P(x,y),∵点P到x轴的距离为2,到y轴的距离为3,∴32x y ==,, ∵点P 在第四象限内,即:00x y ><,∴点P 的坐标为(3,﹣2),故答案为:(3,﹣2).【点睛】本题主要考查平面直角坐标系中,点的坐标,掌握“点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值”,是解题的关键.19.【解析】【分析】 过点A 作AG⊥BC 于点G ,由等边三角形的性质求出BG 的长,再根据勾股定理求出AG 的长;连接OA ,OB ,OC ,根据三角形的面积公式即可得出结论.【详解】解:过点A 作AG⊥BC 解析:3【解析】【分析】过点A 作AG ⊥BC 于点G ,由等边三角形的性质求出BG 的长,再根据勾股定理求出AG 的长;连接OA ,OB ,OC ,根据三角形的面积公式即可得出结论.【详解】解:过点A 作AG ⊥BC 于点G ,连接OA ,OB ,OC ,∵AB=AC=BC=2,∴BG=12BC=1, ∴2221-3∵S △ABC =S △ABO +S △BOC +S △AOC ,∴12AB×(OD+OE+OF )=12BC•AG , ∴3.3【点睛】本题考查的是等边三角形的性质,以及勾股定理,熟知等边三角形三线合一的性质是解答此题的关键.20.【解析】【分析】运用提公因式法求解,公因式是2a.【详解】故答案为:【点睛】考核知识点:因式分解.掌握提公因式法是关键.解析:()22a x y -【解析】【分析】运用提公因式法求解,公因式是2a.【详解】()2422ax ay a x y -=-故答案为:()22a x y -【点睛】考核知识点:因式分解.掌握提公因式法是关键.21.1【解析】【分析】直接把点P (-1,0)代入一次函数y=kx+1,求出k 的值即可.【详解】∵一次函数y=kx+1的图象经过点P (-1,0),∴0=-k+1,解得k=1.故答案为1.【解析:1【解析】【分析】直接把点P (-1,0)代入一次函数y=kx+1,求出k 的值即可.【详解】∵一次函数y=kx+1的图象经过点P (-1,0),∴0=-k+1,解得k=1.故答案为1.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.22.2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】解:根据无理数的定义,属于无理数,所以无理数有2个.解析:2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】,4π属于无理数,所以无理数有2个. 故答案为:2.【点睛】本题考查无理数的定义.熟记无理数的定义并理解初中阶段无理数的几种表现形式是解决此题的关键.23.【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析:1y x =+【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k 的值不变.24.【解析】【分析】结合长方形与折叠的性质在在中根据勾股定理可得的长,设设,可知,中,由勾股定理得方程,求出x 值即可.【详解】解:四边形ABCD 是长方形由折叠的性质可得在中,根据勾股解析:6【解析】【分析】结合长方形与折叠的性质在在'Rt BAC 中根据勾股定理可得'AC 的长,设设AE x =,可知',6,A E x DE x CE x ==-=+Rt CDE △中,由勾股定理得方程222(6)5(x x -+=+,求出x 值即可.【详解】 解:四边形ABCD 是长方形90,5,6A D AB CD AD BC ︒∴∠=∠=====由折叠的性质可得''',5,90A E AE A B AB EA B A ︒===∠=∠=在'Rt BAC 中,根据勾股定理得'AC ==设AE x =,则',6,A E x DE x CE x ==-=+在Rt CDE △中,根据勾股定理得222DE CD CE +=即222(6)5(x x -+=+可得2236122511x x x -++=++12)50x ∴=6)6x ∴====-=故答案为:6【点睛】本题考查了勾股定理,灵活利用折叠三角形的性质结合勾股定理求线段长是解题的关键. 25.6【解析】【分析】由已知可得到AB 比BC 长2,根据平行四边形的周长可得到AB 与BC 的和,从而不难求得AB 的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-解析:6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-OC-BC=2,∵ABCD是平行四边形,∴OA=OC,∴AB-BC=2,∵平行四边形ABCD的周长是20,∴AB+BC=10,∴AB=6.故答案为:6.【点睛】此题主要考查学生对平行四边形的性质的理解及运用,熟记性质是解题的关键.三、解答题26.-5【解析】【分析】根据实数的运算法则进行计算.【详解】解:原式=-1+4-5-3=-5.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、算术平方根等考点的运算.27.(1)2<c<14;(2)△ABC的面积为24或.【解析】【分析】(1)先根据非负数的性质求出a、b的值,再由三角形的三边关系即可得出结论;(2)分b是直角边和斜边两种情况,利用勾股定理求出另一直角边,然后根据三角形的面积公式列式计算即可得解.【详解】解:(1)∵a ,b (b ﹣8)2=0,∴a ﹣6=0,b ﹣8=0,∴a =6,b =8,∴8﹣6<c <8+6,即2<c <14.故边长c 的取值范围为:2<c <14;(2)b =8是直角边时,6是直角边,△ABC 的面积=12×6×8=24;b =8,△ABC 的面积=12×6×.综上所述,△ABC 的面积为24或.【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.同时考查了勾股定理,难点在于要分情况讨论.28.(1)40天;(2)60天;(3)12天 .【解析】【分析】(1)由第一段图像可知,甲队独做10天完成总工作量的0.25,则可求出甲的工作效率,再用总量1除以这个效率即可得出甲队单独完成这项工程需要的天数;(2)由第二段图像可知,甲乙6天完成总量的(0.5-0.25)即0.25,甲6天做的工作量可求,于是求出乙6天的工作量,进而求出乙的工作效率,再用总量除以这个效率即可得出乙队单独完成这项工程需要的天数;(3)因为甲队独做用40天,再求出实际完成的时间,两个数相减即可,甲乙合作完成了总量的0.75,除以他们的效率和再加上10,即是实际完成的时间,用40减这个数值即可得出结论.【详解】(1)因为甲队独做10天完成总工作量的0.25,所以甲一天做了0.25÷10=140, 于是甲队单独完成这项工程需要的天数为:1÷140=40天; (2)甲乙6天完成总量的(0.5-0.25)即0.25, 则乙6天的工作量是0.25-140×6=110, 所以乙的效率是110÷6=160, 所以乙队单独完成这项工程需要的天数为1÷160=60天;(3)甲乙合作完成了总量的0.75,除以他们的效率和再加上10,即是实际完成的时间, 即0.75÷(140+160)+10=18+10=28(天),因为甲队独做需用40天,所以40-28=12天,故实际完成的时间比甲独做所需的时间提前12天.考点:实际问题与一次函数.29.(1)94 ;(2)P(1.5,0) 或 (-4.5,0)【解析】【分析】(1)分别求直线与x,y 轴交点坐标,再求面积.(2)利用面积,可求得P 点距离A 点的距离,求出P 点坐标.【详解】(1) 由x=0得:y=3,即:B (0,3).由y=0得:2x+3=0,解得:32x =-∴OA =32,OB =3 .∴△AOB 的面积: 1393224⨯⨯=.(2) ∵△ABP 的面积是92, OB =33922AP ∴=∴AP =3∴P (1.5,0) 或 (-4.5,0)【点睛】本题考查了一次函数图象上点的坐标特征.30.(1)详见解析;(2)185.【解析】【分析】(1)根据线段垂直平分线性质得AE=CE=3,利用勾股定理逆定理可得;(2)作AH ⊥BC,由1122AB AE BE AH •=•可得高AH ,再求面积.【详解】(1)因为AC 的垂直平分线交AC 于点D ,所以AE=CE=3因为BC=BE+CE所以BE=BC-CE=8-3=5因为32+42=52所以AB 2+AE 2=BE 2所以ABE ∆是直角三角形;(2)作AH ⊥BC由(1)可知1122AB AE BE AH •=• 所以435AH ⨯=所以AH=125所以ACE ∆的面积=11121832255EC AH •=⨯⨯= 【点睛】 考核知识点:线段垂直平分线、勾股定理逆定理.理解线段垂直平分线性质和勾股定理逆定理是关键.31.3vkm/h【解析】【分析】设提速前列车的平均速度为x /km h ,则依题意可得等量关系:提速前行驶150千米所用的时间=提速后行驶(15050)+千米所用的时间,根据等量关系列出方程即可.【详解】解:设提速前列车的平均速度为x /km h ,则依题意列方程得15015050x x v+=+, 解得:3x v =,经检验,3x v =是原分式方程的解,答:提速前列车的平均速度为3/vkm h .【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.。

苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版八年级数学上 期末测试题(Word 版含答案)一、选择题1.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( ) A .31y x =-+B .32y x =-+C .31y x =--D .32y x =--2.变量x 、y 有如下的关系,其中y 是x 的函数的是( ) A .28y x =B .||y x =C .1y x=D .412x y =3.7的平方根是( ) A .±7B .7C .-7D .±74.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为( )A .2,4x y =⎧⎨=⎩B .4,2x y =⎧⎨=⎩C .4,0x y =-⎧⎨=⎩D .3,0x y =⎧⎨=⎩5.下列四个实数中,属于无理数的是( ) A .0B .9C .23D .126.下列各组数不是勾股数的是( ) A .3,4,5B .6,8,10C .4,6,8D .5,12,137.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( ) A .31y x =-+ B .32y x =-+ C .31y x =-- D .32y x =-- 8.点P (1,﹣2)关于y 轴对称的点的坐标是( )A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)9.在△ABC 中,∠C =90°,∠B =60°,下列说法中,不一定正确的是( )A .BC 2+AC 2=AB 2 B .2BC =ABC .若△DEF 的边长分别为1,2,3,则△DEF 和△ABC 全等D .若AB 中点为M ,连接CM ,则△BCM 为等边三角形10.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ) A .15B .13C .58D .38二、填空题11.已知10个数据:0,1,2,6,2,1,2,3,0,3,其中 2 出现的频数为____. 12.在311,2π,122-,0,0.454454445…,319中,无理数有______个.13.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______. 14.若代数式321xx -+有意义,则x 的取值范围是______________. 15.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 16.函数y =-3x +2的图像上存在一点P ,点P 到x 轴的距离等于3,则点P 的坐标为________.17.已知以点C (a ,b )为圆心,半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2.例如:以A (2,3)为圆心,半径为2的圆的标准方程为(x -2)2+(y -3)2=4,则以原点为圆心,过点P (1,0)的圆的标准方程为____.18.如图,已知正方形ABCD 的边长为4cm ,则图中阴影部分的面积为__________2cm .19.如图,Rt △ABC 中,∠C =90°,AD 是∠BAC 的平分线,CD =4,AB =16,则△ABD 的面积等于_____.20.如图,在平面直角坐标系xOy 中,已知点A (3,4),将OA 绕坐标原点O 逆时针旋转90°至OA′,则点A′的坐标是 .三、解答题21.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x 张(x≥9).(1)分别用含x 的式子表示甲、乙两个厂家购买桌椅所需的金额; (2)购买的椅子至少多少张时,到乙厂家购买更划算.22.如图,在ABC ∆中,4AB =,8BC =,AC 的垂直平分线交AC 于点D ,交BC 于点E ,3CE =,连接AE . (1)求证:ABE ∆是直角三角形; (2)求ACE ∆的面积.23.如图,CA CD =,12∠=∠,BC EC =. (1)求证:AB DE =;(2)当21A ∠=︒,39E ∠=°时,求ACB ∠的度数.24.如图,平面直角坐标系中,直线AB :y =kx +3(k ≠0)交x 轴于点A (4,0),交y 轴正半轴于点B ,过点C (0,2)作y 轴的垂线CD 交AB 于点E ,点P 从E 出发,沿着射线ED 向右运动,设PE =n .(1)求直线AB的表达式;(2)当△ABP为等腰三角形时,求n的值;(3)若以点P为直角顶点,PB为直角边在直线CD的上方作等腰Rt△BPM,试问随着点P 的运动,点M是否也在直线上运动?如果在直线上运动,求出该直线的解析式;如果不在直线上运动,请说明理由.25.如图,点D是△ABC内部的一点,BD=CD,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF.求证:AB=AC.四、压轴题26.如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为轴和轴建立平-+-=.面直角坐标系,点A(0,a),C(b,0)满足a6b80(1)a= ;b= ;直角三角形AOC的面积为.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发以每秒1个单位长度的速度向点A匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠D CO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOD,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180).27.如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B ,O 重合,将线段AD 绕点A 逆时针旋转90°得线段AE ,使得AE ⊥AD ,且AE =AD ,连接BE 交y 轴于点M .(1)如图,当点D 在线段OB 的延长线上时, ①若D 点的坐标为(﹣5,0),求点E 的坐标. ②求证:M 为BE 的中点. ③探究:若在点D 运动的过程中,OMBD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO ,DO ,AM 之间的数量关系(不需要说明理由).28.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).(1)点M 、N 从移动开始到停止,所用时间为 s ; (2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值; ②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.29.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.30.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形, 如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC =∠DAE ,AB =AC ,AD =AE ,则△ABD ≌△ACE . (材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC 和△AED 是等边三角形,连接BD ,EC 交于点O ,连接AO ,下列结论:①BD =EC ;②∠BOC =60°;③∠AOE =60°;④EO =CO ,其中正确的有 .(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB =BC ,∠ABC =∠BDC =60°,试探究∠A 与∠C 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据左加右减,上加下减的平移规律解题. 【详解】解:把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为3(2)4y x =-++,整理得:32y x =--, 故选D. 【点睛】本题考查了直线的平移变换,属于简单题,熟悉直线的平移规律是解题关键.2.C解析:C 【解析】 【分析】根据函数的定义:对于x 的每一个取值,y 都有唯一确定的值与之对应即可确定有几个函数. 【详解】A. 28y x =,y 不是x 的函数,故错误;B. ||y x =,y 不是x 的函数,故错误;C. 1y x=,y 是x 的函数,故正确;D. 412x y =,y 不是x 的函数,故错误; 故选C. 【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.3.D解析:D 【解析】 【分析】根据乘方运算,可得一个正数的平方根. 【详解】)2=7, ∴7. 故选:D . 【点睛】本题考查了平方根,利用了乘方运算求一个正数的平方根,注意一个正数有两个平方根.4.A解析:A 【解析】 【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案. 【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4),∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩故选A. 【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.5.D解析:D 【解析】 【分析】根据无理数的定义,即可得到答案. 【详解】=D正确;03=,23是有理数,故ABC错误;故选择:D.【点睛】本题考查了无理数的定义,解题的关键是熟记定义.6.C解析:C【解析】【分析】根据勾股数的定义:有a、b、c三个正整数,满足a2+b2=c2,称为勾股数.由此判定即可.【详解】解:A、32+42=52,能构成勾股数,故选项错误;B、62+82=102,能构成勾股数,故选项错误C、42+62≠82,不能构成勾股数,故选项正确;D、52+122=132,能构成勾股数,故选项错误.故选:C.【点睛】本题考查勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.7.D解析:D【解析】【分析】求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.上下平移时只需让b的值加减即可.【详解】y=-3x+4的k=-3,b=4,沿x轴向左平移2个单位后,新直线解析式为:y=-3(x+2)+4=-3x-2.故选:D.【点睛】本题考查了一次函数的平移变换,属于基础题,关键掌握将直线上下平移时k的值不变,只有b发生变化.8.C解析:C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.9.C解析:C【解析】【分析】根据勾股定理、等边三角形的判定以及相似三角形的判定即可求出答案.【详解】A、由勾股定理可知BC2+AC2=AB2,故A正确;B、∵∠C=90︒,∠B=60︒,∴∠A=30︒,∴AB=2BC,故B正确;C、若△DEF的边长分别为1,2DEF和△ABC不一定全等,故C错误;D、∵CM是△ACB的中线,∴CM=BM=CB,∴△BCM是等边三角形,故D正确.故选:C.【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及相似三角形的判定,本题属于基础题型.10.C解析:C【解析】【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【详解】解:共8球在袋中,其中5个红球,故摸到红球的概率为58,故选:C.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= mn,难度适中.二、填空题11.3【解析】【分析】直接利用频数的定义得出答案.【详解】10个数据:0,1,2,6,2,1,2,3,0,3,其中2出现3次,所以2出现的频数为:3.故答案为:3.【点睛】此题主要考查解析:3【解析】【分析】直接利用频数的定义得出答案.【详解】10个数据:0,1,2,6,2,1,2,3,0,3,其中2出现3次,所以2出现的频数为:3.故答案为:3.【点睛】此题主要考查了频数,正确把握频数的定义是解题关键.12.3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,,0.454454445…,为无理数,共3个. 故答案为:3.【点睛】本题考查了无理数.解题的关键是掌握无解析:3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,2 ,0.4544544453个.故答案为:3.【点睛】本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.13.(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标解析:(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标为1−4=−3;即新点的坐标为(-1,-3),故填:(-1,-3).【点睛】本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.14.【解析】【分析】代数式有意义,则它的分母2x+1≠0,由此求得x的取值范围.【详解】∵代数式有意义,∴2x+1≠0,解得x≠.故答案为:x≠.【点睛】本题考查了分式有意义的条件.解析:12 x≠-【解析】【分析】代数式321x x -+有意义,则它的分母2x+1≠0,由此求得x 的取值范围. 【详解】 ∵代数式321x x -+有意义, ∴2x+1≠0, 解得x≠12-. 故答案为:x≠12-. 【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.15.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x --=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.或【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,解析:1,33⎛⎫⎪⎝⎭或533⎛⎫⎪⎝⎭,【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,∴点P的纵坐标为3或﹣3,当y=3时,﹣3x+2=3,解得,x=﹣13;当y=﹣3时,﹣3x+2=﹣3,解得x=53;∴点P的坐标为(﹣13,3)或(53,﹣3).故答案为(﹣13,3)或(53,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,利用数形结合思想解题是本题的关键,注意分类讨论.17.x2+y2=1【解析】因为原点为圆心,过点P(1,0)的圆即是以(0,0)半径为1的圆,则标准方程为: (x-0)2+(y-0)2=1,即x2+y2=1,故答案为: x2+y2=1.解析:x2+y2=1【解析】因为原点为圆心,过点P(1,0)的圆即是以(0,0)半径为1的圆,则标准方程为:(x-0)2+(y-0)2=1,即x2+y2=1,故答案为: x2+y2=1.18.8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S阴影=×4×4=8cm2.故答案为:8.解析:8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S阴影=12×4×4=8cm2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.19.【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,解析:【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,∴△ABD的面积=12×16×4=32.故答案为:32.【点睛】本题考查了角平分线的性质及三角形面积公式,熟练掌握“角的平分线上的点到角的两边的距离相等”是解题的关键.20.(﹣4,3).【解析】试题分析:解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′解析:(﹣4,3).【解析】试题分析:解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).故答案为(﹣4,3).考点:坐标与图形变化-旋转三、解答题21.(1)甲厂家所需金额为: 1680+80x;乙厂家所需金额为: 1920+64x;(2)16张.【解析】【分析】(1)根据甲乙两厂家的优惠方式,可表示出购买桌椅所需的金额;(2)令甲厂家的花费大于乙厂家的花费,解出不等式,求解即可确定答案.【详解】解:(1)根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x;(2)由题意,得:1680+80x>1920+64x,解得:x>15.答:购买的椅子至少16张时,到乙厂家购买更划算.【点睛】本题考查一元一次不等式的应用,正确理解题目中的数量关系是本题的解题关键.22.(1)详见解析;(2)18 5.【解析】【分析】(1)根据线段垂直平分线性质得AE=CE=3,利用勾股定理逆定理可得;(2)作AH⊥BC,由1122AB AE BE AH•=•可得高AH,再求面积.【详解】(1)因为AC的垂直平分线交AC于点D,所以AE=CE=3因为BC=BE+CE所以BE=BC-CE=8-3=5因为32+42=52所以AB2+AE2=BE2所以ABE∆是直角三角形;(2)作AH⊥BC由(1)可知1122AB AE BE AH •=• 所以435AH ⨯=所以AH=125所以ACE ∆的面积=11121832255EC AH •=⨯⨯= 【点睛】 考核知识点:线段垂直平分线、勾股定理逆定理.理解线段垂直平分线性质和勾股定理逆定理是关键.23.(1)详见解析;(2)120°【解析】【分析】(1)根据题意,由“SAS ”证明ABC DEC ∆≅∆即可得解;(2)由ABC DEC ∆≅∆及三角形的内角和定理即可求解.【详解】(1)∵12∠=∠∴12ACE ACE ∠+∠=∠+∠∴ACB DCE ∠=∠在ABC ∆与DEC ∆中CA CD ACB DCE BC EC =⎧⎪∠=∠⎨⎪=⎩∴ABC DEC ∆≅∆(SAS )∴AB DE =;(2)∵ABC DEC ∆≅∆,39E ∠=°∴39B ∠=︒∵21A ∠=︒∴1801803921120ACB B A ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题主要考查了三角形全等的判定及性质、三角形的内角和定理,熟练掌握三角形全等的证明方法是解决本题的关键.24.(1)y =﹣34x +3;(2)n =56或8343;(3)在直线上,理由见解析 【解析】【分析】(1)将点A 的坐标代入直线AB :y =kx +3并解得:k =﹣34,即可求解;(2)分AP=BP、AP=AB、AB=BP三种情况,分别求解即可;(3)证明△MHP≌△PCB(AAS),求出点M(n+73,n+103),即可求解.【详解】(1)将点A的坐标代入直线AB:y=kx+3并解得:k=﹣34,故AB的表达式为:y=﹣34x+3;(2)当y=2时,x=43,故点E(43,2),则点P(n+43,2),而点A、B坐标分别为:(4,0)、(0,3),则AP2=(43+n﹣4)2+4;BP2=(n+43)2+1,AB2=25,当AP=BP时,(43+n﹣4)2+4=(n+43)2+1,解得:n=56;当AP=AB时,同理可得:n=8213(不合题意值已舍去);当AB=BP时,同理可得:n=﹣43+26;故n=56或83+21或﹣43+26;(3)在直线上,理由:如图,过点M作MD⊥CD于点H,∵∠BPC+∠PBC=90°,∠BPC+∠MPH=90°,∴∠CPB=∠MPH,BP=PM,∠MHP=∠PCB=90°∴△MHP≌△PCB(AAS),则CP=MH=n+43,BC=1=PH,故点M(n+73,n+103),n+73+1= n+103,故点M在直线y=x+1上.【点睛】此题主要考查了平面直角坐标系中一次函数与全等三角形、等腰三角形的综合应用,熟练掌握,即可解题.25.证明见解析.【解析】【分析】欲证明AB=AC,只要证明∠ABC=∠ACB即可,根据“HL”证明Rt△BDE≌Rt△CDF,由全等三角形的性质可证∠EBD=∠FCD,再由等腰三角形的性质∠DBC=∠DCB,从而可证∠ABC=∠ACB.【详解】∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF(HL),∴∠EBD=∠FCD,∵BD=CD,∴∠DBC=∠DCB,∴∠DBC+∠EBD=∠DCB+∠FCD,即∠ABC=∠ACB,∴AB=AC.【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.四、压轴题t=时,使得△ODP与△ODQ的面积相等;(3)26.(1)6;8;24;(2)存在 2.4∠GOD+∠ACE=∠OHC,见解析【解析】【分析】(1)利用非负性即可求出a,b即可得出结论,即可求出△ABC的面积;(2)先表示出OQ,OP,利用那个面积相等,建立方程求解即可得出结论;(3)先判断出∠OAC=∠AOD,进而判断出OG∥AC,即可判断出∠FHC=∠ACE,同理∠FHO=∠GOD,即可得出结论.【详解】--=,解:(1) 解:(1)∵a6b80∴a-6=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);∴S △ABC=6×8÷2=24, 故答案为(0,6),(8,0); 6;8;24(2) ∵114222ODQ D S OQ x t t ∆=⋅=⋅⋅= 11(82)312322ODP D S OP y t t ∆=⋅=⋅-⋅=- 由2123t t =-时, 2.4t =∴存在 2.4t =时,使得△ODP 与△ODQ 的面积相等(3) )∴2∠GOA+∠ACE=∠OHC ,理由如下:∵x 轴⊥y 轴,∴∠AOC=∠DOC+∠AOD=90°∴∠OAC+∠ACO=90°又∵∠DOC=∠DCO∴∠OAC=∠AOD∵y 轴平分∠GOD∴∠GOA=∠AOD∴∠GOA=∠OAC∴OG ∥AC ,如图,过点H 作HF ∥OG 交x 轴于F ,∴HF ∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD ,∵OG ∥FH ,∴∠GOD=∠FHO ,∴∠GOD+∠ACE=∠FHO+∠FHC即∠GOD+∠ACE=∠OHC ,∴2∠GOA+∠ACE=∠OHC .∴∠GOD+∠ACE=∠OHC .【点睛】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.27.(1)①E (3,﹣2)②见解析;③12OM BD =,理由见解析;(2)OD+OA =2AM 或OA ﹣OD =2AM【解析】【分析】(1)①过点E 作EH ⊥y 轴于H .证明△DOA ≌△AHE (AAS )可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD= OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.综上:OA+OD=2AM或OA﹣OD=2AM.【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.28.(1)203;(2)①t=83;②a=185;(3)t=6.4或t=103【解析】【分析】(1)根据时间=路程÷速度即可求得答案;(2)①由题意得:BM=CN=3t,则只可以是△CMN≌△BAM,AB=CM,由此列出方程求解即可;②由题意得:CN≠BM,则只可以是△CMN≌△BMA,AB=CN=12,CM=BM,进而可得3t=10,求解即可;(3)分情况讨论,当△CMN≌△BPM时,BP=CM,若此时P由A向B运动,则12-2t=20-3t,但t=8不符合实际,舍去,若此时P由B向A运动,则2t-12=20-3t,求得t=6.4;当△CMN≌△BMP时,则BP=CN,CM=BM,可得3t=10,t=103,再将t=103代入分别求得AP,BP的长及a的值验证即可.【详解】解:(1)20÷3=203,故答案为:203;(2)∵CD∥AB,∴∠B=∠DCB,∵△CNM与△ABM全等,∴△CMN≌△BAM或△CMN≌△BMA,①由题意得:BM=CN=3t,∴△CMN≌△BAM∴AB=CM,∴12=20-3t,解得:t=83;②由题意得:CN≠BM,∴△CMN≌△BMA,∴AB=CN=12,CM=BM,∴CM=BM=12 BC,∴3t=10,解得:t=10 3∵CN=at,∴103a=12解得:a=185;(3)存在∵CD∥AB,∴∠B=∠DCB,∵△CNM与△PBM全等,∴△CMN≌△BPM或△CMN≌△BMP,当△CMN≌△BPM时,则BP=CM,若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,∴12-2t=20-3t,解得:t=8 (舍去)若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,∴2t-12=20-3t,解得:t=6.4,当△CMN≌△BMP时,则BP=CN,CM=BM,∴CM=BM=12 BC∴3t=10,解得:t=10 3当t=103时,点P的路程为AP=2t=203,此时BP=AB-AP=12-203=163,则CN=BP=16 3即at=163,∵t=103,∴a=1.6符合题意综上所述,满足条件的t 的值有:t =6.4或t =103【点睛】本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.29.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知,11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE A MC ︒∠+∠+∠=,112()90CMF ABE A MC ︒∴∠+∠+∠=,()1129090EMF AMC ︒︒∴-∠+∠=, ()112906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.30.(1)证明见解析;(2)①②③;(3)∠A +∠C =180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE ,即可得出结论;(2)同(1)的方法判断出△ABD ≌△ACE ,得出BD=CE ,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF ≌△ACO ,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF <CF ,进而判断出∠OBC >30°,即可得出结论;(3)先判断出△BDP 是等边三角形,得出BD=BP ,∠DBP=60°,进而判断出△ABD ≌△CBP (SAS ),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,AB ACBAD CAEAD AE⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△ACE;(2)如图2,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,AB ACBAD CAEAD AE⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△ACE,∴BD=CE,①正确,∠ADB=∠AEC,记AD与CE的交点为G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB上取一点F,使OF=OC,∴△OCF是等边三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF,要使OC=OE,则有OC=12 CE,∵BD=CE,∴CF=OF=12 BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.。

苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题1.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32 C .52D .1 2.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0<3.已知一次函数y=kx +3(k≠0)的图象经过点A ,且函数值y 随x 的增大而增大,则点A 的坐标可能是( ) A .(﹣2,﹣4) B .(1,2)C .(﹣2,4)D .(2,﹣1)4.若分式12xx -+的值为0,则x 的值为( ) A .1B .2-C .1-D .25.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B .2C .2D .66.下列标志中属于轴对称图形的是( ) A .B .C .D .7.用科学记数法表示0.000031,结果是( ) A .53.110-⨯ B .63.110-⨯ C .60.3110-⨯ D .73110-⨯ 8.64的立方根是( )A .4B .±4C .8D .±89.给出下列实数:227、25-、39、 1.44、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个0),其中无理数有( )A .2个B .3个C .4个D .5个 10.一次函数y =﹣2x+3的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题11.“徐宿淮盐”铁路是一条连接徐州与盐城的高速铁路,全长约为316000米.将数据316000用四舍五入法精确到万位,并用科学记数法表示为____________.12.将一次函数34y x =-的图象向上平移3个单位长度,相应的函数表达式为_____. 13.如图①的长方形ABCD 中, E 在AD 上,沿BE 将A 点往右折成如图②所示,再作AF ⊥CD 于点F ,如图③所示,若AB =2,BC =3,∠BEA =60°,则图③中AF 的长度为_______.14.如图,在△ABC 中,∠B=40°,BC 边的垂直平分线交BC 于D ,交AB 于E ,若CE 平分∠ACB,则∠A=______°.15.等腰三角形的顶角为76°,则底角等于__________.16.如图,在长方形ABCD 中,5,6AB BC ==,将长方形ABCD 沿BE 折叠,点A 落在'A 处,若'EA 的延长线恰好过点C ,则AE 的长为__________.17.已知直角三角形的两边长分别为3、4.则第三边长为________. 18.2______319.一次函数y 1=ax +3与y 2=kx ﹣1的图象如图所示,则不等式kx ﹣1<ax +3的解集是_____.20.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.三、解答题21.解方程:211 42x xx x --=-+22.已知y是x的函数,自变量x的取值范围是x >0,下表是y与x的几组对应值. x···123579···y··· 1.98 3.95 2.63 1.58 1.130.88···小腾根据学习一次函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x =4对应的函数值y 约为________; ②该函数的一条性质:__________________.23.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.24.计算:(1)32339(5)()4---+-; (2)12436122÷-⨯+. 25.在△ABC 中,AB 、AC 边的垂直平分线分别交BC 边于点M 、N(1)如图①,若∠BAC =110°,则∠MAN = °,若△AMN 的周长为9,则BC = (2)如图②,若∠BAC =135°,求证:BM 2+CN 2=MN 2;(3)如图③,∠ABC 的平分线BP 和AC 边的垂直平分线相交于点P ,过点P 作PH 垂直BA 的延长线于点H .若AB =5,CB =12,求AH 的长四、压轴题26.定义:在平面直角坐标系中,对于任意两点(),A a b ,(),B c d ,若点(),T x y 满足3a c x +=,3b dy +=那么称点T 是点A ,B 的融合点.例如:()1,8A -,()4,2B -,当点(),T x y 满足1413x -+==,()8223y +-==时,则点()1,2T 是点A ,B 的融合点.(1)已知点()1,5A -,()7,4B ,()2,3C ,请说明其中一个点是另外两个点的融合点.(2)如图,点()4,0D ,点(),25E t t +是直线l 上任意一点,点(),T x y 是点D ,E 的融合点.①试确定y 与x 的关系式;②在给定的坐标系xOy 中,画出①中的函数图象;③若直线ET 交x 轴于点H .当DTH 为直角三角形时,直接写出点E 的坐标.27.如图,在平面直角坐标系中,一次函数y x =的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______. (3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.28.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫⎪⎝⎭都是“白马有理数对”.(1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________; (2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)29.阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线ED 经过点C ,过A 作AD ⊥ED 于点D ,过B 作BE ⊥ED 于点E .求证:△BEC ≌△CDA . (模型应用)应用1:如图②,在四边形ABCD 中,∠ADC =90°,AD =6,CD =8,BC =10,AB 2=200.求线段BD 的长.应用2:如图 ③,在平面直角坐标系中,纸片△OPQ 为等腰直角三角形,QO =QP ,P (4,m ),点Q 始终在直线OP 的上方.(1)折叠纸片,使得点P 与点O 重合,折痕所在的直线l 过点Q 且与线段OP 交于点M ,当m =2时,求Q 点的坐标和直线l 与x 轴的交点坐标;(2)若无论m 取何值,点Q 总在某条确定的直线上,请直接写出这条直线的解析式 .30.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】图中直线y=x+b 与x 轴负半轴,y 轴正半轴分别交于A ,B 两点,可以根据两点的坐标得出OA=OB ,由此可证明△AOD ≌△OBE ,证出OC=AD ,BE=OD ,在Rt △OBE 中,运用勾股定理可求出BE 的长,再根据线段的差可求出DE 的长. 【详解】直线y=x+b(b >0)与x 轴的交点坐标A 为(-b ,0)与y 轴的交点坐标B 为(0,-b ), 所以,OA=OB , 又∵AD ⊥OC ,BE ⊥OC , ∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°, ∴∠DAO=∠DOB , 在△DAO 和△BOE 中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB , ∴OD=BE.AD=OE , ∵AD=4, ∴OE=4, ∵BE+BO=8, ∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+, ∴222(8)BE BE OE -=+ 解得,BE=3, ∴OD=3, ∴ED=OE-OD=4-3=1. 【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键.2.B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,∴k-2>0,∴k>2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y 随x的增大而增大;当k<0时,y随x的增大而减小.3.A解析:A【解析】【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【详解】∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A. ∵当x=-2,y=-4时,-2k+3=-4,解得k=3.5>0,∴此点符合题意,故本选项正确;B. ∵当x=1,y=2时, k+3=2,解得k=-1<0,∴此点不符合题意,故本选项错误;C. ∵当x=-2,y=4时,-2k+3=4,解得k=−0.5<0,∴此点不符合题意,故本选项错误;D. ∵当x=2,y=−1时,2k+3=−1,解得k=-2<0,∴此点不符合题意,故本选项错误.故答案选A..【点睛】本题考查的知识点是一次函数图像上点的坐标特征,解题的关键是熟练的掌握一次函数图像上点的坐标特征.4.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.解析:B【解析】【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC上截取AE=AN,连接BE,∵∠BAC的平分线交BC 于点D ,∴∠EAM=∠NAM ,在△AME 与△AMN中,===AE ANEAM NAMAM AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE,当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,∵2AB ,∠BAC=45°,此时△ABE为等腰直角三角形,∴2,即BE2,∴BM+MN2.故选:B.【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN进行转化,是解题的关键.6.C解析:C【解析】【分析】根据对称轴的定义,关键是找出对称轴即可得出答案.【详解】解:根据对称轴定义A、没有对称轴,所以错误B、没有对称轴,所以错误C、有一条对称轴,所以正确D 、没有对称轴,所以错误 故选 C 【点睛】此题主要考查了对称轴图形的判定,寻找对称轴是解题的关键.7.A解析:A 【解析】 【分析】根据科学记数法的表示形式10(1||10)na a ⨯≤<(n 为整数)即可求解 【详解】0.000031-5=3.110⨯, 故选:A . 【点睛】本题主要考查了绝对值小于1的数的科学记数法,熟练掌握科学记数法的表示方法是解决本题的关键.8.A解析:A 【解析】试题分析:∵43=64,∴64的立方根是4, 故选A 考点:立方根.9.B解析:B 【解析】 【分析】根据无理数是无限不循环小数,可得答案. 【详解】解:−5,实数:227、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个02π、-0.1010010001…(每相邻两个1之间依次多一个0)共3个. 故选:B . 【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.10.C解析:C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C .二、填空题11.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于解析:53.210⨯【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】316000≈320000=3.2×105.故答案为:3.2×105.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,正确确定a 的值以及n 的值是解题的关键.12.【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数的图象向上平移3个单位长度可得:.故答案为:【点睛】本题考查了函数图像平移,解决本解析:31y x =-【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数34y x =-的图象向上平移3个单位长度可得:34331y x x =-+=-. 故答案为:31y x =-【点睛】本题考查了函数图像平移,解决本题的关键是熟练掌握函数图像的平移规律,要与点的坐标平移区别开. 13.3-【解析】【分析】作AH ⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt △ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=,可求出HC 的长度即为AF 的长度.【详解】解析:3-3【解析】【分析】作AH ⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt △ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=3,可求出HC 的长度即为AF 的长度.【详解】解:如下图,作AH ⊥BC 于H .则∠AHC=90°,∵四边形形ABCD 为长方形,∴∠B=∠C=∠EAB=90°,∵AF ⊥CD ,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH =∵∠BEA =60°,∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt△ABH 中, AB=2,∴112AH AB ==,根据勾股定理BH ==∵BC=3,∴3AF HC BC BH ==-=-故填:3【点睛】本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.14.60【解析】∵E 在线段BC 的垂直平分线上,∴BE=CE ,∴∠ECB=∠B=40°,∵CE 平分∠ACB ,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=18解析:60【解析】∵E 在线段BC 的垂直平分线上,∴BE=CE ,∴∠ECB=∠B=40°,∵CE 平分∠ACB ,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=180°−∠B−∠ACB=60°,故答案为:60.15.52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:,故答案为:52°.【点睛】本题考查了等腰三角形性解析:52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°, ∴底角为:11=104=5222⨯︒︒⨯︒︒(180-76), 故答案为:52°.【点睛】 本题考查了等腰三角形性质,以及三角形内角和定理,解题的关键是掌握等腰三角形等边对等角计算角度.16.【解析】【分析】结合长方形与折叠的性质在在中根据勾股定理可得的长,设设,可知,中,由勾股定理得方程,求出x 值即可.【详解】解:四边形ABCD 是长方形由折叠的性质可得在中,根据勾股解析:6【解析】【分析】结合长方形与折叠的性质在在'Rt BAC 中根据勾股定理可得'AC 的长,设设AE x =,可知',6,A E x DE x CE x ==-=+Rt CDE △中,由勾股定理得方程222(6)5(x x -+=+,求出x 值即可.【详解】 解:四边形ABCD 是长方形90,5,6A D AB CD AD BC ︒∴∠=∠=====由折叠的性质可得''',5,90A E AE A B AB EA B A ︒===∠=∠=在'Rt BAC 中,根据勾股定理得'AC ==设AE x =,则',6,A E x DE x CE x ==-=+在Rt CDE △中,根据勾股定理得222DE CD CE +=即222(6)5(x x -+=+可得2236122511x x x -++=++12)50x ∴=6)6x ∴====-=故答案为:6【点睛】本题考查了勾股定理,灵活利用折叠三角形的性质结合勾股定理求线段长是解题的关键. 17.5或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:;②长为3、4的边都是直角边时:第三边的解析:5【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4=②长为3、45;∴或5.考点:1.勾股定理;2.分类思想的应用. 18.>【解析】, .解析:>【解析】23< ,>19.x <1.【解析】【分析】结合图象,写出直线y1=ax+3在直线y2=kx ﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y1=ax+3与y2=kx ﹣1的图象的交点坐标为(1,2),∴解析:x <1.【解析】【分析】结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴当x<1时,y1>y2,∴不等式kx﹣1<ax+3的解集为x<1.故答案为:x<1.【点睛】本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.20.50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三解析:50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.三、解答题x21.3【解析】【分析】将分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】21142x x x x --=-+, 方程两边同时乘以(2)(2)x x +-,得2(1)(2)4x x x x ---=-,解这个方程,得3x =.验证:当3x =时,(2)(2)0x x +-≠ ∴原方程的解为:3x =.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.(1)作图见解析;(2)①2(2.1到1.8之间都正确);②该函数有最大值(其他正确性质都可以).【解析】试题分析:(1)描点即可作出函数的图象;(2)①观察图象可得出结论;②观察图象可得出结论.试题解析:(1)如下图:(2)①2(2.1到1.8之间都正确)②该函数有最大值(其他正确性质都可以).考点:函数图象,开放式数学问题.23.BF 的长为32【解析】【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中,BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3 ∴222232BF BD FD BD =+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.24.(1)114;(2)2+3. 【解析】【分析】(1)先开方,再依次计算即可;(2)运用二次根式的乘除法法则计算,再根据二次根式的性质化简,最后合并即可.【详解】解:(1)323395)()4-+-=﹣3﹣(﹣5)+34 =114(2)12436122÷-⨯+ =22233-+=22+3【点睛】本题主要考查了实数的运算及二次根式的运算,熟练掌握开方运算及二次根式的乘除法法则是解题的关键.25.(1)40;9;(2)见详解;(3)3.5【解析】【分析】(1)根据线段垂直平分线的性质得到AM =BM ,NA =NC ,根据等腰三角形的性质得到BAM =∠B ,∠NAC =∠C ,结合图形计算即可;(2)连接AM 、AN ,仿照(1)的作法得到∠MAN =90°,根据勾股定理证明结论;(3)连接AP 、CP ,过点P 作PE ⊥BC 于点E ,根据线段垂直平分线的性质得到AP =CP ,根据角平分线的性质得到PH =PE ,证明Rt △APH ≌Rt △CPE 得到AH =CE ,证明△BPH ≌△BPE ,得到BH =BE ,结合图形计算即可.【详解】解:(1)∵∠BAC =110°,∴∠B+∠C =180°﹣110°=70°,∵AB 边的垂直平分线交BC 边于点M ,∴AM =BM ,∴∠BAM =∠B ,同理:NA =NC ,∴∠NAC =∠C ,∴∠MAN =110°﹣(∠BAM+∠NAC )=40°,∵△AMN 的周长为9,∴MA+MN+NA =9,∴BC =MB+MN+NC =MA+MN+NA =9,故答案为:40;9;(2)如图②,连接AM 、AN ,∵∠BAC=135°,∴∠B+∠C=45°,∵点M在AB的垂直平分线上,∴AM=BM,∴∠BAM=∠B,同理AN=CN,∠CAN=∠C,∴∠BAM+∠CAN=45°,∴∠MAN=∠BAC﹣(∠BAM+∠CAN)=90°,∴AM2+AN2=MN2,∴BM2+CN2=MN2;(3)如图③,连接AP、CP,过点P作PE⊥BC于点E,∵BP平分∠ABC,PH⊥BA,PE⊥BC,∴PH=PE,∵点P在AC的垂直平分线上,∴AP=CP,在Rt△APH和Rt△CPE中,PA PCPH PE=⎧⎨=⎩,∴Rt△APH≌Rt△CPE(HL),∴AH=CE,在△BPH和△BPE中,BHP BEPPBH PBEBP BP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BPH≌△BPE(AAS)∴BH=BE,∴BC=BE+CE=BH+CE=AB+2AH,∴AH=(BC﹣AB)÷2=3.5.【点睛】本题考查的是全等三角形的判定和性质、勾股定理、线段垂直平分线的性质、角平分线的性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.四、压轴题26.(1)点C 是点A 、B 的融合点;(2)①2-1y x =;②见详解;③点E 的坐标为:(2,9)或(8,21)【解析】【分析】(1)根据融合点的定义3a c x +=,3b d y +=,即可求解; (2)①由题意得:分别得到x 与t 、y 与t 的关系,即可求解;②利用①的函数关系式解答;③分∠DTH =90°、∠TDH =90°、∠HTD =90°三种情况,分别求解即可.【详解】解:(1)x =-17233a c ++==,y =54333b d ++==, 故点C 是点A 、B 的融合点; (2)①由题意得:x =433a c t ++=,y =2533b d t ++=,则3-4t x =, 则()23-452-13x y x +==; ②令x =0,y =-1;令y =0,x =12,图象如下:③当∠THD =90°时,∵点E (t ,2t +5),点T (t ,2t−1),点D (4,0),且点T (x ,y )是点D ,E 的融合点.∴t=13(t+4),∴t=2,∴点E(2,9);当∠TDH=90°时,∵点E(t,2t+5),点T(4,7),点D(4,0),且点T(x,y)是点D,E的融合点.∴4=13(4+t)∴t=8,∴点E(8,21);当∠HTD=90°时,由于EH与x轴不平行,故∠HTD不可能为90°;故点E的坐标为:(2,9)或(8,21).【点睛】本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.27.(1) (3,-2);(2) (n,m);(3)图见解析,点Q到E、F点的距离之和最小值为10【解析】【分析】(1)根据题意和图形可以写出C'的坐标;(2)根据图形可以直接写出点P关于直线l的对称点的坐标;(3)作点E关于直线l的对称点E',连接E'F,根据最短路径问题解答.【详解】(1)如图,C'的坐标为(3,-2),故答案为(3,-2);(2)平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为(n ,m ), 故答案为(n ,m );(3)点E 关于直线l 的对称点为E '(-3,2),连接E 'F 角直线l 于一点即为点Q ,此时点Q 到E 、F 点的距离之和最小,即为线段E 'F ,∵E 'F ()[]221(3)2(4)210=---+--=⎡⎤⎣⎦, ∴点Q 到E 、F 点的距离之和最小值为210.【点睛】此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.28.(1)35,2⎛⎫ ⎪⎝⎭;(2)2;(3)不是;(4)(6,75)【解析】【分析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab+=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132,∴5+32=5×32-1,∴35,2⎛⎫⎪⎝⎭是“白马有理数对”,故答案为:3 5,2⎛⎫ ⎪⎝⎭;(2)若(,3)a是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n是“白马有理数对”,则m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,∵-mn+1≠ mn-1∴(-n,-m)不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=75,∴(6,75)是“白马有理数对”,故答案为:(6,75).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.29.模型建立:见解析;应用1:2:(1)Q(1,3),交点坐标为(52,0);(2)y=﹣x+4【解析】【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP 相交于点H,易得:△OKQ≌△QHP,设H(4,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(4,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+4,进而即可得到结论.【详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=200,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=14,∵BH⊥DC,∴BD=应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H(4,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=4﹣KQ=6﹣y,又∵OK=y,∴6﹣y =y ,y =3,∴Q (1,3),∵折叠纸片,使得点P 与点O 重合,折痕所在的直线l 过点Q 且与线段OP 交于点M , ∴点M 是OP 的中点,∵P(4,2),∴M(2,1),设直线Q M 的函数表达式为:y =kx+b ,把Q (1,3),M(2,1),代入上式得:213k b k b +=⎧⎨+=⎩,解得:25k b =-⎧⎨=⎩∴直线l 的函数表达式为:y =﹣2x +5,∴该直线l 与x 轴的交点坐标为(52,0); (2)∵△OKQ ≌△QHP ,∴QK =PH ,OK =HQ ,设Q (x ,y ),∴KQ =x ,OK =HQ =y ,∴x +y =KQ +HQ =4,∴y =﹣x +4,∴无论m 取何值,点Q 总在某条确定的直线上,这条直线的解析式为:y =﹣x +4, 故答案为:y =﹣x +4.【点睛】本题主要考查三角形全等的判定和性质定理,勾股定理,一次函数的图象和性质,掌握“一线三垂直”模型,待定系数法是解题的关键.30.(1)45°;(2)PE 的值不变,PE=4,理由见详解;(3)D(828-,0).【解析】【分析】(1)根据(42,0)A ,(0,2)B ,得△AOB 为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB 的度数;(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC ⊥AB ,再证明△POC ≌△DPE ,根据全等三角形的性质得到OC=PE ,即可得到答案;(3)证明△POB ≌△DPA ,得到PA=OB=2,DA=PB ,进而得OD 的值,即可求出点D 的坐标.【详解】(1)A,(0,B ,∴OA=OB=∵∠AOB=90°,∴△AOB 为等腰直角三角形,∴∠OAB=45°;(2)PE 的值不变,理由如下:∵△AOB 为等腰直角三角形,C 为AB 的中点,∴∠AOC=∠BOC=45°,OC ⊥AB ,∵PO=PD ,∴∠POD=∠PDO ,∵D 是线段OA 上一点,∴点P 在线段BC 上,∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,∴∠POC=∠DPE ,在△POC 和△DPE 中,90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△POC ≅△DPE(AAS),∴OC=PE ,∵OC=12AB=12××=4, ∴PE=4;(3)∵OP=PD ,∴∠POD=∠PDO=(180°−45°)÷2=67.5°,∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,∴∠APD=∠BOP ,在△POB 和△DPA 中,OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△POB ≌△DPA(AAS),∴PA=OB=DA=PB ,∴DA=PB=-,∴OD=OA−DA=8-,∴点D 的坐标为(8,0).【点睛】本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.。

苏科版数学八年级上册《期末测试题》含答案

苏科版数学八年级上册《期末测试题》含答案

苏科版数学八年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是无理数的是()A.0 B.1.010010001C.πD.2.已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,已知△ABC的3条边和3个角,则能判断和△ABC全等的是()A.甲和乙B.乙和丙C.只有乙D.只有丙4.如图,正方形ABCD的边长为4,点C的坐标为(3,3),则点D的坐标为()A.(﹣1,3) B.(1,3) C.(3,1) D.(3,﹣1)5.下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=6﹣x;③y;④y=(1)x.A.1个B.2个C.3个D.4个6.如图,两个三角形是全等三角形,x的值是()A.30 B.45 C.50 D.857.如图,动点P从点A出发,按顺时针方向绕半圆O匀速运动到点B,再以相同的速度沿直径BA回到点A停止,线段OP的长度d与运动时间t的函数图象大致是()A.B.C.D.8.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.D.9.在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是()A.(﹣1,﹣2) B.(1,2) C.(1,﹣2) D.(﹣2,1)10.如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是()A.L l=L2B.L1>L2C.L2>L1D.无法确定第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2018的值为.12.将函数y=3x的图象向上平移2个单位,所得函数图象的解析式为.13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为.14.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是.(添一个即可)15.一个等腰三角形的顶角为80°,则它的一个底角为.16.如图,五边形ABCDE中有一等边三角形ACD.若AB=DE,BC=AE,∠E=115°,则∠BAE的度数是°.17.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(n,4),若直线y=2x与线段AB有公共点,则n的取值范围为.18.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.三.解答题(共10小题,满分96分)19.求x的值:(1)(x+1)2=64(2)8x3+27=0.20.已知点P(﹣m,﹣2m+1)是第二象限的点,求m的取值范围.21.如图,在△ABC中,AB=AC,分别以AB,AC为边作两个等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.求证:BD=CE.22.如图,在Rt△ABC中,∠ACB=90°.(1)用直尺和圆规作∠A的平分线交BC于点P(保留作图的痕迹,不写作法);(2)当∠CAB为度时,点P到A,B两点的距离相等.23.如图,已知AB=AC,AD=AE.求证:BD=CE.24.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.25.如图,把长方形纸片ABCD沿EF折叠后,使得点D落在点H的位置上,点C恰好落在边AD上的点G处,连接EG.(1)△GEF是等腰三角形吗?请说明理由;(2)若CD=4,GD=8,求HF的长度.26.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,且部分对应关系如表所示.x(kg) …30 40 50 …y(元) … 4 6 8 …(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量;(3)当行李费2≤y≤7(元)时,可携带行李的质量x(kg)的取值范围是.27.甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N两地相距km,设甲行驶的时间为x(h),甲、乙两人之间的距离为y(km),表示y与x函数关系的部分图象如图所示.请你解决以下问题:(1)求线段BC所在直线的函数表达式;(2)求点A的坐标,并说明点A的实际意义;(3)根据题目信息补全函数图象.(须标明相关数据)28.如图,一次函数y x+3的图象分别与x轴、y轴交于A、B两点.动点P从A点开始沿折线AO ﹣OB﹣BA运动,点P在AO,OB,BA上运动的速度分别为1,,2(长度单位/秒);动点E从O点开始以(长度单位/秒)的速度沿线段OB运动.设P、E两点同时出发,运动时间为t(秒), 当点P沿折线AO﹣OB﹣BA运动一周时,动点E和P同时停止运动.过点E作EF∥OA,交AB于点F.(1)求线段AB的长;(2)求证∠ABO=30°;(3)当t为何值时,点P与点E重合?(4)当t=时,PE=PF.答案与解析第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是无理数的是()A.0 B.1.010010001C.πD.[答案]C[解析]A.0是整数,属于有理数;B.1.010010001是有限小数,即分数,属于有理数;C.π是无理数;D.是分数,属于有理数;故选:C.[点睛]此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数以及像0.1010010001…,等有这样规律的数.2.已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限[答案]D[解析]∵a>0,b<0,∴点P(a,b)在第四象限.故选:D.[点睛]本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.3.如图,已知△ABC的3条边和3个角,则能判断和△ABC全等的是()A.甲和乙B.乙和丙C.只有乙D.只有丙[答案]B[解析]如图:在△ABC和△DEF中,,∴△ABC≌△EFD(SAS);在△ABC和△MNK中,,∴△ABC≌△MNK(AAS).∴甲、乙、丙三个三角形中和△ABC全等的图形是:乙或丙.故选:B.[点睛]此题考查了全等三角形的判定,解题的关键是注意掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.4.如图,正方形ABCD的边长为4,点C的坐标为(3,3),则点D的坐标为()A.(﹣1,3) B.(1,3) C.(3,1) D.(3,﹣1)[答案]A[解析]如图,∵正方形ABCD的边长为4,点C的坐标为(3,3),∴点D的纵坐标为3,点D的横坐标为3﹣4=﹣1,∴点D的坐标为(﹣1,3).故选:A.[点睛]本题考查了正方形的性质,坐标与图形的性质,根据图形明确正方形的边长与点的坐标的关系是解题的关键.5.下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=6﹣x;③y;④y=(1)x.A.1个B.2个C.3个D.4个[答案]D[解析]①y=﹣2x+1,k=﹣2<0;②y=6﹣x,k=﹣1<0;③y,k0;④y=(1)x,k=(1)<0.所以四函数都是y随x的增大而减小.故选:D.[点睛]本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.6.如图,两个三角形是全等三角形,x的值是()A.30 B.45 C.50 D.85[答案]A[解析]∠A=180°﹣105°﹣45°=30°,∵两个三角形是全等三角形,∴∠D=∠A=30°,即x=30,故选:A.[点睛]本题考查的是全等三角形的性质,三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.7.如图,动点P从点A出发,按顺时针方向绕半圆O匀速运动到点B,再以相同的速度沿直径BA回到点A停止,线段OP的长度d与运动时间t的函数图象大致是()A.B.C.D.[答案]B[解析]①当P点半圆O匀速运动时,OP长度始终等于半径不变,对应的函数图象是平行于横轴的一段线段,排除A答案;②当P点在OB段运动时,OP长度越来越小,当P点与O点重合时OP=0,排除C答案;③当P点在OA段运动时,OP长度越来越大,B答案符合.故选:B.[点睛]本题主要考查动点问题的函数图象,解决这类问题要考虑动点在不同的时间段所产生的函数意义,分情况讨论,动中找静是通用方法.8.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.D.[答案]C[解析]设CD=x,则DE=a﹣x,∵HG=b,∴AH=CD=AG﹣HG=DE﹣HG=a﹣x﹣b=x,∴x,∴BC=DE=a,∴BD2=BC2+CD2=()2+()2,∴BD,故选:C.[点睛]本题考查了勾股定理,全等三角形的性质,正确的识别图形是解题的关键.9.在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是()A.(﹣1,﹣2) B.(1,2) C.(1,﹣2) D.(﹣2,1)[答案]C[解析]∵点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',∴A′(1,2),∵将点A'向下平移4个单位,得到点A″,∴点A″的坐标是:(1,﹣2).故选:C.[点睛]此题主要考查了关于y轴对称点的性质以及平移变换,正确掌握相关平移规律是解题关键.10.如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是()A.L l=L2B.L1>L2C.L2>L1D.无法确定[答案]A[解析]∵等边三角形各内角为60°,∴∠B=∠C=60°,∵∠BPD=∠CPE=30°,∴在Rt△BDP和Rt△CEP中,∴BP=2BD,CP=2CE,∴BD+CE BC,∴AD+AE=AB+AC BC BC,∴BD+CE+BC BC,L1BC+DE,L2BC+DE,即得L1=L2,故选:A.[点睛]本题考查了直角三角形中特殊角的正弦函数值,考查了等边三角形各边相等的性质,本题中求证L1BC+DE,L2BC+DE是解题的关键.第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2018的值为.[答案]1[解析]∵点A(x,1)与点B(2,y)关于y轴对称,∴x=﹣2,y=1,故(x+y)2018=(﹣2+1)2018=1.故答案为:1.[点睛]此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.12.将函数y=3x的图象向上平移2个单位,所得函数图象的解析式为.[答案]y=3x+2[解析]由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位所得函数的解析式为y=3x+2.故答案为:y=3x+2.[点睛]本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为.[答案]2.5[解析]∵∠ACB=90°,AC=3,BC=4,由勾股定理得:AB5,∵CD是△ABC中线,∴CD AB5=2.5,故答案为:2.5.[点睛]本题主要考查对勾股定理,直角三角形斜边上的中线等知识点的理解和掌握,能推出CD AB是解此题的关键.14.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是.(添一个即可)[答案]AB=CD[解析]∵AB∥DC,∴∠ABD=∠CDB,又BD=BD,①若添加AB=CD,利用SAS可证两三角形全等;②若添加AD∥BC,利用ASA可证两三角形全等.(答案不唯一)故填AB=CD等(答案不唯一)[点睛]本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.15.一个等腰三角形的顶角为80°,则它的一个底角为.[解析]∵等腰三角形的顶角为80°,∴它的一个底角为(180°﹣80°)÷2=50°.故填50°[点睛]此题主要考查了等腰三角形的性质及三角形内角和定理.通过三角形内角和,列出方程求解是正确解答本题的关键.16.如图,五边形ABCDE中有一等边三角形ACD.若AB=DE,BC=AE,∠E=115°,则∠BAE的度数是°.[答案]125[解析]∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,在△ABC与△AED中,∴△ABC≌△AED(SSS),∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故答案为:125[点睛]此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.17.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(n,4),若直线y=2x与线段AB有公共点,则n的取值范围为.[解析]∵直线y=2x与线段AB有公共点,∴2n≥4,∴n≥2故答案为:n≥2[点睛]本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.18.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.[答案]20[解析]∵将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处,∴∠ADC=∠ADE=90°,DE=CD CE,∵BC=10,BE=2∴CE=8,∴CD=DE=4,BD=6,在Rt△ABD中,AB2=AD2+BD2,在Rt△ACD中,AC2=AD2+CD2,∴AB2﹣AC2=BD2﹣CD2=20,故答案为:20[点睛]本题考查了翻折变换,勾股定理,熟练运用折叠的性质是本题的关键.三.解答题(共10小题)19.求x的值:(1)(x+1)2=64(2)8x3+27=0.[解析](1)x+1=±8(2)8x3=﹣27x3x[点睛]本题考查立方根与平方根的定义,解题的关键是熟练运用平方根与立方根的定义,本题属于基础题型.20.已知点P(﹣m,﹣2m+1)是第二象限的点,求m的取值范围.[解析]∵点P(﹣m,﹣2m+1)在第二象限,∴,解不等式①得,m>0,解不等式②得,m,所以,不等式组的解集是0<m.故m的取值范围为:0<m.[点睛]本题主要考查解一元一次不等式组,解题的关键是掌握各象限内点的坐标的符号特点及解一元一次不等式组的能力.21.如图,在△ABC中,AB=AC,分别以AB,AC为边作两个等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.求证:BD=CE.[解答]证明:∵△ABD和△ACE是等腰直角三角形,∴AB=AD,AC=AE,∵AB=AC,∴AD=AE,在△ADB和△ACE中,∵,∴△ADB≌△ACE,∴BD=CE.[点睛]本题考查了全等三角形的判定和性质,解题的关键是找出SAS所需要的三个条件.22.如图,在Rt△ABC中,∠ACB=90°.(1)用直尺和圆规作∠A的平分线交BC于点P(保留作图的痕迹,不写作法);(2)当∠CAB为60度时,点P到A,B两点的距离相等.[解析](1)如图所示,点P即为所求.(2)当∠CAB=60°时,P A=PB,∵∠C=90°,∠CAB=60°,∴∠B=30°,∵AP平分∠CAB,∴∠P AB=30°,∴∠P AB=∠B=30°,∴P A=PB.故答案为:60.[点睛]本题主要考查作图﹣复杂作图,解题的关键是掌握角平分线的尺规作图和性质及三角形的内角和定理.23.如图,已知AB=AC,AD=AE.求证:BD=CE.[解答]证明:作AF⊥BC于F,∵AB=AC(已知),∴BF=CF(三线合一),又∵AD=AE(已知),∴DF=EF(三线合一),∴BF﹣DF=CF﹣EF,即BD=CE(等式的性质).[点睛]本题考查了等腰三角形的性质;做题中用到了等量减等量差相等得到答案.24.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.[解答]证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,∴∠AED=∠CFD=90°,∵D为AC的中点,∴AD=DC,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形.[点睛]本题考查全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.如图,把长方形纸片ABCD沿EF折叠后,使得点D落在点H的位置上,点C恰好落在边AD上的点G处,连接EG.(1)△GEF是等腰三角形吗?请说明理由;(2)若CD=4,GD=8,求HF的长度.[解析](1)∵长方形纸片ABCD,∴AD∥BC,∴∠GFE=∠FEC,∵∠FEC=∠GEF,∴∠GFE=∠GEF,∴△GEF是等腰三角形.(2)∵∠C=∠H=90°,HF=DF,GD=8,设HF长为x,则GF长为(8﹣x),在Rt△FGH中,x2+42=(8﹣x)2,解得x=3,∴HF的长为3.[点睛]本题主要考查的是翻折的性质、勾股定理的应用,掌握翻折的性质是解题的关键.26.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,且部分对应关系如表所示.x(kg) …30 40 50 …y(元) … 4 6 8 …(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量;(3)当行李费2≤y≤7(元)时,可携带行李的质量x(kg)的取值范围是.[解析](1)∵y是x的一次函数,∴设y=kx+b(k≠0)将x=30,y=4;x=40,y=6分别代入y=kx+b,得,解得:∴函数表达式为y=0.2x﹣2,(2)将y=0代入y=0.2x﹣2,得0=0.2x﹣2,∴x=10,(3)把y=2代入解析式,可得:x=20,把y=7代入解析式,可得:x=45,所以可携带行李的质量x(kg)的取值范围是20≤x≤45,故答案为:20≤x≤45.[点睛]本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.27.甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N两地相距km,设甲行驶的时间为x(h),甲、乙两人之间的距离为y(km),表示y与x函数关系的部分图象如图所示.请你解决以下问题:(1)求线段BC所在直线的函数表达式;(2)求点A的坐标,并说明点A的实际意义;(3)根据题目信息补全函数图象.(须标明相关数据)[解析](1)设线段BC所在直线的函数表达式为y=kx+b(k≠0),∵B(,0),C(,)在直线BC上,,得,即线段BC所在直线的函数表达式为y=20x;(2)设甲的速度为m km/h,乙的速度为n km/h,,得,∴点A的纵坐标是:3010,即点A的坐标为(,10),点A的实际意义是当甲骑电动车行驶h时,距离M地为10km;(3)由(2)可知,甲的速度为30km/h,乙的速度为50千米/小时,则乙从M地到达N地用的时间为:小时,∵,∴乙在图象中的时,停止运动,甲到达N地用的时间为:小时,补全的函数图象如右图所示.[点睛]本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.28.如图,一次函数y x+3的图象分别与x轴、y轴交于A、B两点.动点P从A点开始沿折线AO ﹣OB﹣BA运动,点P在AO,OB,BA上运动的速度分别为1,,2(长度单位/秒);动点E从O点开始以(长度单位/秒)的速度沿线段OB运动.设P、E两点同时出发,运动时间为t(秒), 当点P沿折线AO﹣OB﹣BA运动一周时,动点E和P同时停止运动.过点E作EF∥OA,交AB于点F.(1)求线段AB的长;(2)求证∠ABO=30°;(3)当t为何值时,点P与点E重合?(4)当t=或时,PE=PF.[解析](1)令y=0,得A(3,0),令x=0,求得B(0,3),∴OA=3,OB=3,∵∠AOB=90°,∴AB6,(2)证明:取AB的中点C,连接OC,∵∠AOB=90°,C为AB的中点,∴OC=BC=CA=3,∵OA=3,∴OC=CA=OA,∴△OAC是等边三角形,∴∠OAB=60°,∵∠AOB=90°,∴∠ABO=30°;(3)由题意得t(t﹣3),解得:t所以当t时,点P与点E重合;(4)取EF的中点H,过点H作PP′∥y轴,此时,P(P′)E=P(P′)F,①当点P在线段OA时,EH=OP,∵∠OBA=30°,设:EF=m,则FB=2m,BE m,即EF BE,EH EF BE•(3t)OP=OA﹣AP=3﹣t,解得:t,②当点P(点P′)在线段AB时,作P′O′⊥OB于点O′,此时点P′运动的时间为t,其中在AO、OB运动时间均为3,则在AB上运动的时间为t﹣6,则BP′=2(t﹣6),同理O′P′B′P′=t﹣6,由①得:EH(3t)=O′P′=t﹣6,同理可得:t,故答案是:或.[点睛]本题考查的是一次函数综合运用,涉及到解直角三角形、勾股定理运用等知识点,难度不大.。

苏科版数学八年级上册《期末检测题》含答案解析

苏科版数学八年级上册《期末检测题》含答案解析
[答案]1.682×1011
[解析]
科学记数法 表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,
1682=1.682×1011,
故答案为1.682×1011.
基本运用:
(2)请你利用第(1)题的解答思想方法,解答下面问题:
如图③,△ABC中,∠CAB=90°,AB=AC,E,F为BC上的点,且∠EAF=45°,判断BE,EF,FC之间的数量关系并证明;
能力提升:
(3)如图④,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为Rt△ABC的费马点,
( )观察图像,当 时,y的取值范围是______;
( )将直线 平移后经过点 ,求平移后的直线的函数表达式.
24.如图,已知一次函数 的图像与x轴交于点A ,交y轴于点B.
(1)求m的值与点B的坐标;
(2)若点C在y轴上,且使得△ABC 面积为12,请求出点C的坐标.
(3)若点P在x轴上,且△ABP为等腰三角形,请直接写出点P的坐标.
(1)请在如图所示的网格平面内,作出平面直角坐标系;
(2)请作出 关于 轴对称的 ;
(3)写出点 的坐标为_____;
(4)△ABC的面积为___.
21.如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E,
(1)求证:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度数.
[点睛]本题主要考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.

苏科版八年级上册数学《期末测试卷》及答案解析

苏科版八年级上册数学《期末测试卷》及答案解析
12.已知直线l1:y= x+4与y轴交于点A,直线l2经过点A,l1与l2在A点相交所形成的夹角为45°(如图所示),则直线l2的函数表达式为_____.
二、选择题
13.下列图形中,是轴对称图形的为()
A. B. C. D.
14.在下列实数中: , ,π, , ,﹣2.010010001…其中无理数有()
[答案]B
[解析]
试题解析:由题意可得:AM平分
∵AB//CD,
平分
故选B.
17.如图,AB//DE,AC//DF,AC=DF,下列条件中,不能判定△ABC≌△DEF的是
A AB=DEB. ∠B=∠EC.EF=BCD.EF//BC
[答案]C
[解析]
[详解]试题分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.
19.在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(3,0)是x轴上的两点,则PA+PB的最小值为()
A.3B. C. D.4
[答案]B
[解析]
试题解析:
如图所示:作A点关于直线y=x的对称点A′,连接A′B,交直线y=x于点P,
此时PA+PB最小,
由题意可得出:OA′=1,BO=3,PA′=PA,
A.1个B.2个C.3个D.4个
15.点P(m,﹣2m)是第二象限 点,则满足条件的所有实数m取值范围是()
A.m<0B.m>0C.0<m<2D.﹣2<m<0
16.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于 EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.若∠ACD=110°,则∠MAB的度数为()

《初二上学期期末试卷》(期末试卷)2(苏科版初二上)初中数学(1)

《初二上学期期末试卷》(期末试卷)2(苏科版初二上)初中数学(1)

《初二上学期期末试卷》(期末试卷)2(苏科版初二上)doc 初中数学八年级数学试题题号一二三四五总分1-1011-20 21-25 26 27 28 29 30 31 得分第一部分〔选择题,共 30 分〕本卷须知:答卷前将密封线内的项目填写清晰一、选择题:〔本大题共10小题,每题3分,共30分.在每题给出的4个选项中,只有1项是符合题目要求的,请正确答案的序号填写在下面的括号内〕.1.以下函数中,一次函数是A.x2y B.y=5x 2 C.y=1+5x D.y=x 2+x(x-1)2.假设x<-3,那么A .-2x>6B .2x>-6C .-2x<6D .2x<63.在坐标平面内有一点P(a ,b),且a 与b 的乘积为零,那么P 的位置一定在 A.原点 B.x 轴上 C.y 轴上 D.坐标轴上4.四边形ABCD 的对角线相交于O ,且OA=OB=OC=OD ,那么那个四边形 A.仅是轴对称图形 B.仅是中心对称图形C.即是轴对称图形又是中心对称图形 D.即不是轴对称图形,又不是中心对称图形 5.8的平方根是 A.22B.-22C.±22D.不存在6.在学校对学生进行的体温测量中,学生甲连续10天的体温与36℃的上下波动数据为0.2,0.3,0.1,0.1,0,0.2,0.1,0,0.1,0.1,那么在这10天中该学生的体温波动数据中不正确的选项......是.A.平均数为0.12 B.众数为0.1 C.中位数为0.1 D.平均数为0.027.五根小木棒,其长度分不为7、15、20、24、25,现想把它们摆成两个直角三角形,以下图中题号 1 2 3 4 5 6 7 8 9 10答案2024正确的选项是8a =,那么以下结论正确的选项是A.4.5 5.0a << B.5.0 5.5a <<C.5.5 6.0a << D.6.0 6.5a <<9.如图,点阵中以相邻4个点为顶点的小正方形的面积为1, 那么△ABC 的面积为 A .3 B .3.5 C .4 D .4.510.一列火车从盐城站动身,加速行驶一段时刻后开始匀速行驶,过了一段时刻,火车到达下一个车站.乘客上、下车后,火车又加速,一段时刻后再次开始匀速行驶.下面哪幅图能够近似地刻画出火车在这段时刻内的速度变化情形.第二部分〔非选择题,共 120 分〕本卷须知:第二部分试题答案用钢笔或圆珠笔直截了当写在试卷上。

苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题1.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32C .52D .12.下列调查中适合采用普查的是( )A .了解“中国达人秀第六季”节目的收视率B .调查某学校某班学生喜欢上数学课的情况C .调查我市市民知晓“礼让行人”交通新规的情况D .调查我国目前“垃圾分类”推广情况3.下列各数中,是无理数的是( )A .38B .39C .4-D .2274.如图,在ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若76BEC ∠=,则ABC ∠=( )A .70B .71C .74D .765.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.5.其中说法正确的是( )A .①②③B .①②④C .①③④D .①②③④6.下列各点中,在函数y=-8x 图象上的是( ) A .(﹣2,4) B .(2,4)C .(﹣2,﹣4)D .(8,1) 7.如图(1),在四边形ABCD 中,AB CD ∥,90ABC ∠=︒,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,ABP ∆的面积为y ,如果y 关于x 的函数图象如图(2)所示,则BCD ∆的面积是( )A .6B .5C .4D .3 8.点P (3,﹣4)关于y 轴的对称点P ′的坐标是( ) A .(﹣3,﹣4) B .(3,4) C .(﹣3,4) D .(﹣4,3) 9.如果m 是任意实数,则点()P m 4m 1-+,一定不在A .第一象限B .第二象限C .第三象限D .第四象限10.点P(-2,3)关于x 轴的对称点的坐标为( )A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2)二、填空题11.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为 .12.若关于x 的方程233x m x +=-的解不小于1,则m 的取值范围是_______. 13.已知一次函数()12y k x =-+,若y 随x 的增大而减小,则k 的取值范围是___.14.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.15.如图,在平面直角坐标系xOy 中,点A 的坐标为(1,3),点B 的坐标为(2,-1),点C 在同一坐标平面中,且△ABC 是以AB 为底的等腰三角形,若点C 的坐标是(x ,y ),则x 、y 之间的关系为y =______(用含有x 的代数式表示).16.若函数y=kx +3的图象经过点(3,6),则k=_____.17.如图,将长方形纸片ABCD 沿对角线AC 折叠,AD 的对应线段AD ′与边BC 交于点E .已知BE =3,EC =5,则AB =___.18.将矩形纸片ABCD 按如图所示的方式折叠,恰好得到菱形AECF .若AB=6,则菱形AECF 的面积为__________.19.如图,Rt △ABC 中,∠C =90°,AD 是∠BAC 的平分线,CD =4,AB =16,则△ABD 的面积等于_____.20.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.三、解答题21.小红驾车从甲地到乙地,她出发第xh时距离乙地ykm,已知小红驾车中途休息了1小时,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)B点的坐标为(,);(2)求线段AB所表示的y与x之间的函数表达式;(3)小红休息结束后,以60km/h的速度行驶,则点D表示的实际意义是.22.已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示:(1)乙年的速度为______千米/时,a=_____,b=______.(2)求甲、乙两车相遇后y与x之间的函数关系式,并写出相应的自变量x的取值范围. 23.如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长为15cm,AC=6cm,求DC长.24.如图,AD是△ABC的中线,AB=AC=13,BC=10,求AD长.25.已知甲,乙两名自行车骑手均从P地出发,骑车前往距P地60千米的Q地,当乙骑手出发了1.5小时,此时甲,乙两名骑手相距6千米,因甲骑手接到紧急任务,故甲到达Q地后立即又原路返回P地甲,乙两名骑手距P地的路程y(千米)与时间x(时)的函数图象如图所示.(其中折线O﹣A﹣B﹣C﹣D(实线)表示甲,折线O﹣E﹣F﹣G(虚线)表示乙)(1)甲骑手在路上停留小时,甲从Q地返回P地时的骑车速度为千米/时;(2)求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;(3)在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.四、压轴题26.如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为轴和轴建立平--=.面直角坐标系,点A(0,a),C(b,0a6b80(1)a= ;b= ;直角三角形AOC的面积为.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发以每秒1个单位长度的速度向点A匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠D CO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOD,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180).27.已知ABC是等腰直角三角形,∠C=90°,点M是AC的中点,延长BM至点D,使DM=BM,连接AD.(1)如图①,求证:DAM≌BCM;(2)已知点N是BC的中点,连接AN.①如图②,求证:ACN≌BCM;②如图③,延长NA至点E,使AE=NA,连接,求证:BD⊥DE.28.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.29.已知在△ABC中,AB=AC ,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.30.在Rt ABC中,90ACB∠=︒,30A∠=︒,BD是ABC的角平分线,DE AB⊥于点E.(1)如图1,连接EC,求证:EBC是等边三角形;(2)如图2,点M是线段CD上的一点(不与点,C D重合),以BM为一边,在BM下方作60BMG∠=︒,MG交DE延长线于点G.求证:AD DG MD=+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】图中直线y=x+b 与x 轴负半轴,y 轴正半轴分别交于A ,B 两点,可以根据两点的坐标得出OA=OB ,由此可证明△AOD ≌△OBE ,证出OC=AD ,BE=OD ,在Rt △OBE 中,运用勾股定理可求出BE 的长,再根据线段的差可求出DE 的长.【详解】直线y=x+b(b >0)与x 轴的交点坐标A 为(-b ,0)与y 轴的交点坐标B 为(0,-b ), 所以,OA=OB ,又∵AD ⊥OC ,BE ⊥OC ,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠DOB ,在△DAO 和△BOE 中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB ,∴OD=BE.AD=OE ,∵AD=4,∴OE=4,∵BE+BO=8,∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+,∴222(8)BE BE OE -=+解得,BE=3,∴OD=3,∴ED=OE-OD=4-3=1.【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE是解题的关键.2.B解析:B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、了解“中国达人秀第六季”节目的收视率适合采用抽样调查的方式;B、调查某学校某班学生喜欢上数学课的情况适合采用全面调查的方式;C、调查我市市民知晓“礼让行人”交通新规的情况适合采用抽样调查的方式;D、调查我国目前“垃圾分类”推广情况适合采用抽样调查的方式;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.B解析:B【解析】【分析】根据无理数的定义结合算术平方根和立方根逐一判断即可得.【详解】2=,为有理数,故该选项错误;D.2-,为有理数,故该选项错误;D. 227,为有理数,故该选项错误.故选B.【点睛】本题考查无理数的定义,立方根,算术平方根.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.B解析:B【解析】【分析】由垂直平分线的性质可得AE=BE,进而可得∠EAB=∠ABE,根据三角形外角性质可求出∠A的度数,利用等腰三角形性质求出∠ABC 的度数.【详解】∵DE 是AC 的垂直平分线,∴AE=BE ,∴∠A=∠ABE ,∵76BEC ∠=,∠BEC=∠EAB+∠ABE ,∴∠A=76°÷2=38°,∵AB=AC ,∴∠C=∠ABC=(180°-38°)÷2=71°,故选B.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质及外角性质.线段垂直平分线上的点到线段两端的距离相等;等腰三角形的两个底角相等;三角形的外角定义和它不相邻的两个内角的和,熟练掌握相关性质是解题关键.5.A解析:A【解析】【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④.【详解】由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160,②正确;当乙在B 休息1h 时,甲前进80km ,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.所以正确的有①②③,故选A.【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.6.A解析:A【解析】【分析】所有在反比例函数上的点的横纵坐标的积应等于比例系数.本题只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上【详解】解:-2×4=-8故选:A【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键.7.D解析:D【解析】【分析】根据图1可知,可分P 在BC 上运动和P 在CD 上运动分别讨论,由此可得BC 和CD 的值,进而利用三角形面积公式可得BCD ∆的面积.【详解】解:动点P 从直角梯形ABCD 的直角顶点B 出发,沿BC ,CD 的顺序运动,当P 在BC 段运动,△ABP 面积y 随x 的增大而增大;当P 在CD 段运动,因为△ABP 的底边不变,高不变,所以面积y 不变化.由图2可知,当0<x<2时,y 随x 的增大而增大;当2<x<5时,y 的值不随x 变化而变化. 综上所述,BC=2,CD=5-2=3, 故1123322BCDS CD BC ∆.故选:D .【点睛】本题考查动点问题的函数图象,动点的图象问题是中考的常考题型,做此类题需要弄清横纵坐标的代表量,并观察确定图象分为几段,弄清每一段自变量与因变量的变化情况及变化的趋势,主要是正负增减及变化的快慢等. 匀速变化呈现直线段的形式,平行于x 轴的直线代表未发生变化. 8.A解析:A【解析】试题解析:∵点P (3,-4)关于y 轴对称点P′,∴P′的坐标是:(-3,-4).故选A .9.D解析:D【解析】【分析】求出点P 的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.【详解】∵()()m 1m 4m 1m 450+--=+-+=>,∴点P的纵坐标一定大于横坐标..∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标.∴点P一定不在第四象限.故选D.10.B解析:B【解析】【分析】根据平面直角坐标系中关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.【详解】解:根据平面直角坐标系中对称点的规律可知,点P(-2,3)关于x轴的对称点坐标为(-2,-3).故选:B.【点睛】主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.二、填空题11.4【解析】如图,过点D作DE⊥BC于点E,当DP=DE时,DP最小,∵BD⊥DC,∠A=90°,∴∠DEB=∠DEC=90°=∠A,∠BDC=90°,∴∠C+∠CDE=90°,∠CDE+解析:4【解析】如图,过点D作DE⊥BC于点E,当DP=DE时,DP最小,∵BD⊥DC,∠A=90°,∴∠DEB=∠DEC=90°=∠A,∠BDC=90°,∴∠C+∠CDE=90°,∠CDE+∠BDE=90°,∴∠BDE=∠C,又∵∠ADB=∠C,∴∠ADB=∠BDE,∴在△ABD和△EBD中A DEBADB BDEBD BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DE=AD=4,即DP的最小值为4.12.m≥-8 且m≠-6【解析】【分析】首先求出关于x的方程的解,然后根据解不小于1列出不等式,即可求出. 【详解】解:解关于x的方程得x=m+9因为的方程的解不小于,且x≠3所以m+解析:m≥-8 且m≠-6【解析】【分析】首先求出关于x的方程233x mx+=-的解,然后根据解不小于1列出不等式,即可求出.【详解】解:解关于x的方程233x mx+=-得x=m+9因为x的方程233x mx+=-的解不小于1,且x≠3所以m+9≥1 且m+9≠3解得m≥-8 且m≠-6 .故答案为:m≥-8 且m≠-6【点睛】此题主要考查了分式方程的解,是一个方程与不等式的综合题目,重点注意分式方程存在的意义分母不为零.13.k<1.【解析】【分析】一次函数y=kx+b,当k<0时,y随x的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y随x的增大而减小,∴k-1<0,解得k解析:k<1.【解析】【分析】一次函数y=kx+b,当k<0时,y随x的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y随x的增大而减小,∴k-1<0,解得k<1,故答案是:k<1.【点睛】本题主要考查了一次函数的增减性.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.14.【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG 的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.15.【解析】【分析】设的中点为,过作的垂直平分线,通过待定系数法求出直线的函数表达式,根据可以得到直线的值,再求出中点坐标,用待定系数法求出直线的函数表达式即可.【详解】解:设的中点为,过作的解析:1548x + 【解析】【分析】设AB 的中点为D ,过D 作AB 的垂直平分线EF ,通过待定系数法求出直线AB 的函数表达式,根据EF AB ⊥可以得到直线EF 的k 值,再求出AB 中点坐标,用待定系数法求出直线EF 的函数表达式即可.【详解】解:设AB 的中点为D ,过D 作AB 的垂直平分线EF∵A(1,3),B(2,-1)设直线AB 的解析式为11y k x b =+,把点A 和B 代入得:321k b k b +=⎧⎨+=-⎩解得:1147k b =-⎧⎨=⎩ ∴47y x =-+∵D 为AB 中点,即D (122+,312-)∴D (32,1) 设直线EF 的解析式为22y k x b =+∵EF AB ⊥∴121k k =- ∴ 214k = ∴把点D 和2k 代入22y k x b =+可得:213142b =⨯+ ∴258b =∴1548y x =+ ∴点C(x ,y )在直线1548y x =+上 故答案为1548x + 【点睛】 本题主要考查了等腰三角形的性质,中垂线的性质,待定系数法求一次函数的表达式,根据题意作出中垂线,再用待定系数法求出一次函数的解析式是解题的关键.16.1【解析】∵函数y=kx+3的图象经过点(3,6),∴,解得:k=1.故答案为:1.解析:1【解析】∵函数y=kx+3的图象经过点(3,6),∴336k +=,解得:k=1.故答案为:1.17.4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC 是等腰三角形,EC =EA =4,在直角三角形ABE 中由勾股定理可求出AB .【详解】解:∵四边形ABCD是矩形,∴AB=CD,B解析:4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,BC=AD,∠A=∠B=∠C=∠D=90°,由折叠得:AD=AD′,CD=CD′,∠DAC=∠D′AC,∵∠DAC=∠BCA,∴∠D′AC=∠BCA,∴EA=EC=5,在Rt△ABE中,由勾股定理得,AB4,故答案为:4.【点睛】本题考查的知识点是矩形的性质以及矩形的折叠问题,根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形是解此题的关键.18.8【解析】【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形解析:【解析】【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形AECF是菱形,AB=6,∴设BE=x,则AE=6-x,CE=6-x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=6-x,解得:x=2,∴CE=AE=4.利用勾股定理得出: BC=22EC BE-=2242-=23,∴菱形的面积=AE•BC=83.故答案为:83.【点睛】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.19.【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,解析:【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,∴△ABD的面积=12×16×4=32.故答案为:32.【点睛】本题考查了角平分线的性质及三角形面积公式,熟练掌握“角的平分线上的点到角的两边的距离相等”是解题的关键.20.11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥A D,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是212,由B到C运动的路程为3,∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴2222345,CD CE DE=+=+=∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.三、解答题21.(1)点B 的坐标为(3,120);(2)y 与x 之间的函数表达式:y=-100x+420;(3)D 点表示此时小红距离乙地0km ,即小红到达乙地.【解析】分析:(1)由图象可知C 点坐标,根据小红驾车中途休息了1小时可得B 点坐标; (2)利用待定系数法,由A 、B 两点坐标可求出函数关系式;(3)D 点表示小红距离乙地0km ,即小红到达乙地.本题解析:(1)由图象可知,C (4,120),∵小红驾车中途休息了1小时,∴点B 的坐标为(3,120);(2)设y 与x 之间的函数表达式为y=kx+b .根据题意,当x=0时,y=420;当x=3时,y=120.∴42001203k b k b =+⎧⎨=+⎩ ,∴100420k b =-⎧⎨=⎩, ∴y 与x 之间的函数表达式:y=-100x+420.(3)D 点表示此时小红距离乙地0km ,即小红到达乙地.点睛:本题主要考查学生结合题意读懂图象的基本能力和待定系数法求函数表达式的技能,属基础题.22.(1)75;3.6;4.5;(2) 当2 3.6x <≤时,135270y x =-;当3.6 4.5x <≤时,60y x =.【解析】【分析】(1)根据图像可知两车2小时候相遇,根据路程和为270千米即可求出乙车的速度,然后根据“路程、速度、时间”的关系确定a 、b 的值;(2)根据图像可知相遇后图像分为两段,将相遇后点的坐标和分段处以及到达B 地后的坐标分别表示出来,然后运用待定系数法解决即可;【详解】解:(1)乙车的速度为:(270-60×2)÷2=75(千米/时);a =270÷75=3.6,b=270÷60=4.5故答案为:75;3.6;4.5;(2)60×3.6=216(千米),如图,可得(2,0)M ,(3.6,216)N ,(4.5,270)Q .设当2 3.6x <≤时的解析式为11y k x b =+,1111203.6216k b k b +=⎧⎨+=⎩, 解得11135270k b =⎧⎨=-⎩ ∴当2 3.6x <≤时,135270y x =-,设当3.6 4.5x <≤时的解析式为22y k x b =+,则22223.62164.5270k b k b +=⎧⎨+=⎩, 解得22600k b =⎧⎨=⎩, 当3.6 4.5x <≤时,60y x =.【点睛】本题考查了分段函数实际问题,解决本题的关键是能够读懂函数图像,从函数图像中找到相关的量,能够熟练运用待定系数法求函数解析式.23.(1)35°;(2)4.5cm.【解析】【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB=AE=CE ,求出∠AEB 和∠C=∠EAC ,即可得出答案;(2)根据已知能推出2DE+2EC=8cm ,即可得出答案.【详解】解:(1)∵AD ⊥BC ,BD=DE∴AD 垂直平分BE ,∵EF 垂直平分AC ,∴AB=AE=EC ,∴∠C=∠CAE ,∵∠BAE=40°,∴∠AED=70°,∴∠C=12∠AED=35°;(2)∵△ABC周长15cm,AC=6cm,∴AB+BE+EC=9cm,即2DE+2EC=9cm,∴DE+EC=DC=4.5cm.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力,题目比较好,难度适中.24.12【解析】【分析】利用勾股定理和等腰三角形的性质求得AD的长度即可.【详解】解:∵AB=AC=13,BC=10,AD是中线,∴AD⊥BC,BD=5,∴∠ADB=90°,∴AD2=AB2﹣BD2=144,∴AD=12.【点睛】本题考查的知识点是等腰三角形的性质以及勾股定理,利用等腰三角形的性质求出BD的长是解此题的关键.25.(1)1小时,30千米/时;(2)y=24x﹣24(1≤x≤3.5);(3)x=17 3 27【解析】【分析】(1)根据题意结合图象解答即可;(2)求出乙的速度,再利用待定系数法解答即可;(3)根据(2)的结论列方程解答即可.【详解】(1)由图象可知,甲骑手在路上停留1小时,甲从Q地返回P地时的骑车速度为:60÷(6﹣4)=30(千米/时),故答案为:1;30.(2)甲从P地到Q地的速度为20(千米/时),所以乙的速度为:(6+1.5×20)÷1.5=24(千米/时),60÷24=2.5(小时),设乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式为y =24x +b ,则24+b =0,解得b =﹣24.∴乙从P 地到Q 地骑车过程中(即线段EF )距P 地的路程y (千米)与时间x (时)的函数关系式为y =24x ﹣24(1≤x ≤3.5).(3)根据题意得,30(x ﹣4)+(24x ﹣24)=60﹣8,解得x =17327. 答:乙两人相遇前,当时间x =17327时,甲,乙两骑手相距8千米. 【点睛】此题考查了一次函数与一元一次方程的综合运用,熟练掌握,即可解题.四、压轴题26.(1)6;8;24;(2)存在 2.4t =时,使得△ODP 与△ODQ 的面积相等;(3)∠GOD+∠ACE=∠OHC ,见解析【解析】【分析】(1)利用非负性即可求出a ,b 即可得出结论,即可求出△ABC 的面积;(2)先表示出OQ ,OP ,利用那个面积相等,建立方程求解即可得出结论;(3)先判断出∠OAC=∠AOD ,进而判断出OG ∥AC ,即可判断出∠FHC=∠ACE ,同理∠FHO=∠GOD ,即可得出结论.【详解】解:(1) 解:(1)∵b 80-=, ∴a-6=0,b-8=0,∴a=6,b=8,∴A (0,6),C (8,0);∴S △ABC=6×8÷2=24,故答案为(0,6),(8,0); 6;8;24(2) ∵114222ODQ D S OQ x t t ∆=⋅=⋅⋅= 11(82)312322ODP D S OP y t t ∆=⋅=⋅-⋅=- 由2123t t =-时, 2.4t =∴存在 2.4t =时,使得△ODP 与△ODQ 的面积相等(3) )∴2∠GOA+∠ACE=∠OHC ,理由如下:∵x 轴⊥y 轴,∴∠AOC=∠DOC+∠AOD=90°∴∠OAC+∠ACO=90°又∵∠DOC=∠DCO∴∠OAC=∠AOD∵y轴平分∠GOD∴∠GOA=∠AOD∴∠GOA=∠OAC∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD,∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.∴∠GOD+∠ACE=∠OHC.【点睛】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.27.(1)见解析;(2)①见解析;②见解析【解析】【分析】(1)由点M是AC中点知AM=CM,结合∠AMD=∠CMB和DM=BM即可得证;(2)①由点M,N分别是AC,BC的中点及AC=BC可得CM=CN,结合∠C=∠C和BC=AC 即可得证;②取AD中点F,连接EF,先证△EAF≌△ANC得∠NAC=∠AEF,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE≌△DFE得∠EAD=∠EDA=∠ANC,从而由∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM即可得证.【详解】解:(1)∵点M是AC中点,∴AM=CM,在△DAM和△BCM中,∵AM CMAMD CMBDM BM=⎧⎪∠=∠⎨⎪=⎩,∴△DAM≌△BCM(SAS);(2)①∵点M 是AC 中点,点N 是BC 中点,∴CM=12AC ,CN=12BC , ∵△ABC 是等腰直角三角形,∴AC=BC ,∴CM=CN ,在△BCM 和△ACN 中,∵CM CN C C BC AC =⎧⎪∠=∠⎨⎪=⎩,∴△BCM ≌△ACN (SAS );②证明:取AD 中点F ,连接EF ,则AD=2AF ,∵△BCM ≌△ACN ,∴AN=BM ,∠CBM=∠CAN ,∵△DAM ≌△BCM ,∴∠CBM=∠ADM ,AD=BC=2CN ,∴AF=CN ,∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC ,由(1)知,△DAM ≌△BCM ,∴∠DBC=∠ADB ,∴AD ∥BC ,∴∠EAF=∠ANC ,在△EAF 和△ANC 中,AE AN EAF ANC AF NC =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△ANC (SAS ),∴∠NAC=∠AEF ,∠C=∠AFE=90°,∴∠AFE=∠DFE=90°,∵F 为AD 中点,∴AF=DF ,在△AFE 和△DFE 中,AF DF AFE DFE EF EF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFE (SAS ),∴∠EAD=∠EDA=∠ANC ,∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,∴BD ⊥DE .【点睛】本题是三角形的综合问题,解题的关键是掌握中点的性质、等腰直角三角形的性质、全等三角形的判定与性质等知识点.28.(1)60°;(2)EF=AF+FC ,证明见解析;(3)AF=EF+2DF ,证明见解析.【解析】【分析】(1)可设∠BAD =∠CAD =α,∠AEC =∠ACE =β,在△ACE 中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC 的度数;(2)在EC 上截取EG =CF ,连接AG ,证明△AEG ≌△ACF ,然后再证明△AFG 为等边三角形,从而可得出EF =EG +GF =AF +FC ;(3)在AF 上截取AG =EF ,连接BG ,BF ,证明方法类似(2),先证明△ABG ≌△EBF ,再证明△BFG 为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC ,AD 为BC 边上的中线,∴可设∠BAD =∠CAD =α,又△ABE 为等边三角形,∴AE=AB=AC ,∠EAB=60°,∴可设∠AEC =∠ACE =β,在△ACE 中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC ,证明如下:∵AB=AC ,AD 为BC 边上的中线,∴AD ⊥BC ,∴∠FDC=90°,∵∠CFD =60°,则∠DCF=30°,∴CF =2DF ,在EC 上截取EG =CF ,连接AG ,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF垂直平分BC,∴BF=CF,∴∠BFA=∠AFC=60°,∴△BFG为等边三角形,∴BG=BF,又BC⊥FG,∴FG=BF=2DF,∴AF=AG+GF=BF+EF=2DF+EF.【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.。

苏科版数学八年级上期末试卷(含答案)

苏科版数学八年级上期末试卷(含答案)

苏科版数学八年级上期末试卷(含答案)苏科版数学八年级上期末试卷班级:___________ 姓名:___________ 学号:___________ 成绩:___________一、选择题(每题2分,共12分)1.下列图形中,既是轴对称图形,又是中心对称图形的有(B、C)两个。

2.平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是(2,-3)。

3.若数据2,x,4,8的平均数是4,则这组数据的众数和中位数是(2和4)。

4.在π/3,4,√2,3.14,(2)。

xxxxxxxx…,中无理数的个数是(4个)。

5.下列说法:1)对角线相等的四边形是矩形;2)对角线互相垂直的四边形是菱形;3)有一个角为直角且对角线互相平分的四边形是矩形;4)菱形的对角线的平方和等于边长的平方的4倍。

其中,正确的说法有(1个)。

6.如图(1),在直角梯形ABCD中,AB∥CD,∠ABC=90º,动点P从点B出发,沿BC,CD运动至点D停止。

设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图(2)所示,则△BCD的面积是(5)。

二、填空题(每题2分,共24分)7.函数y=x-3中自变量x的取值范围是(全体实数)。

8.直线y=kx+b经过一、二、四象限,则k、b应满足k≠0,b≠0.9.点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是((-3,-1))。

10.XXX的体重约为51.549千克,保留两个有效数字是(51千克);近似数1.69万精确到位是()。

11.-6根是-4,49的平方根是7.12.已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60,AB=1,AE平分∠BAD交BC于点E。

则AC的长为√3,EC的长为1/2.13.如果平行四边形的四个内角的平分线能围成一个四边形,那么这个四边形一定是菱形。

14.如图DE是△ABC的中位线,FG是梯形BCED的中位线,如果DE=4,那么FG=5.15.若菱形的周长为40cm,两条对角线长的比为3:4,则此菱形的面积为96cm²。

苏科版数学八年级上册《期末检测试卷》及答案

苏科版数学八年级上册《期末检测试卷》及答案
(1)当∠ABຫໍສະໝຸດ =90°时(如图①),∠EBD=°;
(2)当∠ABC=n°(n≠90)时(如图②),求∠EBD的度数(用含n的式子表示).
23.已知直线 与x轴和y轴分别交与A,B两点,另一直线经过点B和点C(6,-5).
(1)求A,B两点的坐标;
(2)证明:△ABC是直角三角形;
(3)在x轴上找一点P,使△BCP是以BC为底边的等腰三角形,求出P点坐标.
A.a>0B.a<0C.a>1D.a<1
[答案]D
[解析]
[分析]
根据一次函数的图象y=(a-1)x+2,当a-1<0时,y随着x的增大而减小分析即可.
[详解]解:因为A(x1,y1)、B(x2,y2)是一次函数y=(a-1)x+2图象上的不同的两个点,当x1>x2时,y1<y2,
可得:a-1<0,
[答案]AB=CD等(答案不唯一)
[解析]
[分析]
由已知二线平行,得到一对角对应相等,图形中又有公共边,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.
[详解]解:∵AB∥DC,
∴∠ABD=∠CDB,又BD=BD,
①若添加AB=CD,利用SAS可证两三角形全等;
△ABC≌△ADC,∠ABC=118°,∠DAC=40°
[详解]解:∵△ABC≌△ADC,
∴∠DAC=∠BAC,∠BCA=∠DCA,
∵∠ABC=118°,∠DAC=40°,
∴∠BCA=180°-∠ABC-∠BAC=180°-118°-40°=22°,
∴∠BCD=∠BCA+∠DCA=44°,
故选B.
[点睛]本题考查了全等三角形的性质,三角形内角和定理的应用,能根据全等三角形的性质求出∠BCA=∠DCA是解题的关键.

苏科版八年级(上)期末数学试卷(含答案)

苏科版八年级(上)期末数学试卷(含答案)

苏科版八年级(上)期末数学试卷(含答案)一、选择题1.已知一次函数y=kx +3(k≠0)的图象经过点A ,且函数值y 随x 的增大而增大,则点A 的坐标可能是( )A .(﹣2,﹣4)B .(1,2)C .(﹣2,4)D .(2,﹣1)2.如图,ABC ∆中,90ACB ∠=︒,4AC =,3BC =,点E 是AB 中点,将CAE ∆沿着直线CE 翻折,得到CDE ∆,连接AD ,则线段AD 的长等于( )A .4B .165C .245D .53.如图,∠A =30°,∠C ′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B 度数为( )A .30B .60︒C .90︒D .120︒4.满足下列条件的△ABC ,不是直角三角形的是( )A .a :b :3c =:4:5B .A ∠:B ∠:9C ∠=:12:15 C .C A B ∠=∠-∠D .222b a c -= 5.已知:△ABC ≌△DCB ,若BC=10cm ,AB=6cm ,AC=7cm ,则CD 为( ) A .10cmB .7cmC .6cmD .6cm 或7cm 6.能表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 是常数且m ≠0)的图象的是( )A .B .C .D .7.在直角坐标系中,将点(-2, -3)向左平移2个单位长度得到的点的坐标是( ) A .(-2,-5) B .(-4,-3) C .(0,-3) D .(-2,1)8.如图,动点P 从点A 出发,按顺时针方向绕半圆O 匀速运动到点B ,再以相同的速度沿直径BA 回到点A 停止,线段OP 的长度d 与运动时间t 的函数图象大致是( )A.B.C.D.9.已知一次函数y=kx+b,函数值y随自变置x的增大而减小,且kb<0,则函数y=kx+b 的图象大致是()A.B.C.D.10.若点Α()m,n在一次函数y=3x+b的图象上,且3m-n>2,则b的取值范围为( ) A.b>2 B.b>-2 C.b<2 D.b<-211.在下列黑体大写英文字母中,不是轴对称图形的是()A.B.C.D.12.如图,在平面直角坐标系xOy中,直线y=﹣43x+4与x轴、y轴分别交于点A、B,M是y轴上的点(不与点B重合),若将△ABM沿直线AM翻折,点B恰好落在x轴正半轴上,则点M的坐标为()A.(0,﹣4 )B.(0,﹣5 )C.(0,﹣6 )D.(0,﹣7 )13.已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D的长度为()A .12cmB .1cmC .2cmD .32cm 14.满足下列条件的△ABC 是直角三角形的是( )A .∠A :∠B :∠C =3:4:5B .a :b :c =1:2:3C .∠A =∠B =2∠CD .a =1,b =2,c =3 15.将直线y =12x ﹣1向右平移3个单位,所得直线是( ) A .y =12x +2 B .y =12x ﹣4 C .y =12x ﹣52 D .y =12x +12二、填空题16.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____.17.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.18.如果点P (m+1,m+3)在y 轴上,则m=_____.19.2x -x 可以取的最小整数为______.20.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点,已知点A (0,4),点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m ,当m =3时,则点B 的横坐标是_____.21.公元前3世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全等的直角三角形(两直角边长分别为a 、b 且a <b )拼成的边长为c 的大正方形,如果每个直角三角形的面积都是3,大正方形的边长是13,那么b -a =____.22.在平面直角坐标系中,(2,3)A -、(4,4)B ,点P 是x 轴上一点,且PA PB =,则点P 的坐标是__________.23.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.24.在实数:311-50.2-803.010010001 (72)π、、、、、、中,无理数有______个. 25.如图,在ABC ∆中,AC AD BD ==,28B ∠=,则CAD ∠的度数为__________.三、解答题26.(问题背景)如图,在平面直角坐标系xOy 中,点A 的坐标是(0,1),点C 是x 轴上的一个动点.当点C 在x 轴上移动时,始终保持ACP ∆是等腰直角三角形,且90CAP ∠=︒(点A 、C 、P 按逆时针方向排列);当点C 移动到点O 时,得到等腰直角三角形AOB (此时点P 与点B 重合). (初步探究)(1)写出点B 的坐标______.(2)点C 在x 轴上移动过程中,当等腰直角三角形ACP 的顶点P 在第四象限时,连接BP . 求证:AOC ABP ∆∆≌;(深入探究)(3)当点C 在x 轴上移动时,点P 也随之运动.经过探究发现,点P 的横坐标总保持不变,请直接写出点P 的横坐标:______.(拓展延伸)(4)点C 在x 轴上移动过程中,当POB ∆为等腰三角形时,直接写出此时点C 的坐标.备用图27.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终到达C 港.设甲、乙两船行驶x (h )后,与B 港的距离分别为y 1 、y 2 (km ), y 1 、y 2 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为_______km ,a = _______;(2)求图中点P 的坐标;(3)若两船的距离不超过8km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.28.如图,四边形ABCD 中,AB CB AD CD ==,,对角线AC ,BD 相交于点O ,,OE AB OF CB ⊥⊥,垂足分别是E 、F ,求证:OE OF =.29.解分式方程(1)11322x x x-=--- (2)2121x x x =++- 30.已知坐标平面内的三个点(1,3)A ,(3,1)B ,(0,0)O ,把ABO ∆向下平移3个单位再向右平移2个单位后得DEF ∆.(1)画出DEF ∆;(2)DEF ∆的面积为 .31.先化简,再求值22333x x x x x ⎛⎫-+÷ ⎪++⎝⎭,其中2x =-【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【详解】∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A. ∵当x=-2,y=-4时,-2k+3=-4,解得k=3.5>0,∴此点符合题意,故本选项正确;B. ∵当x=1,y=2时, k+3=2,解得k=-1<0,∴此点不符合题意,故本选项错误;C. ∵当x=-2,y=4时,-2k+3=4,解得k=−0.5<0,∴此点不符合题意,故本选项错误;D. ∵当x=2,y=−1时,2k+3=−1,解得k=-2<0,∴此点不符合题意,故本选项错误.故答案选A..【点睛】本题考查的知识点是一次函数图像上点的坐标特征,解题的关键是熟练的掌握一次函数图像上点的坐标特征.2.C解析:C【解析】【分析】延长CE交AD于F,连接BD,先判定△ABC∽△CAF,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF为△ABD的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD的长.【详解】解:如图,延长CE交AD于F,连接BD,∵∠ACB=90°,AC=4,BC=3,∴AB=5,∵∠ACB=90°,CE为中线,∴CE=AE=BE=12.5 2AB ,∴∠ACF=∠BAC,又∵∠AFC=∠BCA=90°,∴△ABC∽△CAF,∴CF ACAC BA=,即445CF=,∴CF=3.2,∴EF=CF-CE=0.7,由折叠可得,AC=DC,AE=DE,∴CE垂直平分AD,又∵E为AB的中点,∴EF为△ABD的中位线,∴BD=2EF=1.4,∵AE=BE=DE,∴∠DAE=∠ADE,∠BDE=∠DBE,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt△ABD中,245==,故选:C.【点睛】本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题.3.C解析:C【解析】【分析】由已知条件,根据轴对称的性质可得∠C=∠C′=30°,利用三角形的内角和等于180°可求答案.【详解】∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=30°,∠C=∠C′=60°;∴∠B=180°−30°-60°=90°.故选:C.【点睛】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.4.B解析:B【解析】分析:根据三角形的内角和定理及勾股定理的逆定理进行分析,进而得到答案.详解:A.设三边分别为3k,4k,5k,因为(3k)2+(4k)2=(5k)2,所以是直角三角形;B.因为∠C=0015180909+12+15⨯<,所以不是直角三角形; C. ∠C=∠A ﹣∠B ,即∠B+∠C=∠A ,故∠A=090,所以是直角三角形;D.因为b 2﹣a 2=c 2,所以c 2+a 2= b 2,所以是直角三角形.故答案为B.点睛:此题考查勾股定理的逆定理的应用.判断三角形是不是直角三角形,已知三角形的三边的长,只要利用勾股定理的逆定理加以判断即可.5.C解析:C【解析】【分析】全等图形中的对应边相等.【详解】根据△ABC ≌△DCB ,所以AB=CD,所以CD=6,所以答案选择C 项.【点睛】本题考查了全等,了解全等图形中对应边相等是解决本题的关键.6.C解析:C【解析】【分析】对于各选项:先通过一次函数的性质确定m 、n 的符合,从而得到mn 的符合,然后根据正比例函数的性质对正比例函数图象进行判断,从而可确定该选项是否正确.【详解】A 、由一次函数图象得m >0,n >0,所以mn >0,则正比例函数图象过第一、三象限,所以A 选项错误;B 、由一次函数图象得m >0,n <0,所以mn <0,则正比例函数图象过第二、四象限,所以B 选项错误;C 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以C 选项正确;D 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以D 选项错误.故选:C .【点睛】本题考查了正比例函数图象:正比例函数y =kx 经过原点,当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限.也考查了一次函数的性质.7.B解析:B【解析】【分析】直接利用平移的性质得出答案.【详解】(−2,−3)向左平移2个单位长度得到的点的坐标是:(−4,−3).故选B.【点睛】考查点的平移,掌握上下改变纵坐标,左右横左标变化是解题的关键.8.B解析:B【解析】【分析】根据P 点半圆O 、线段OB 、线段OA 这三段运动的情况分析即可.【详解】解:①当P 点半圆O 匀速运动时,OP 长度始终等于半径不变,对应的函数图象是平行于横轴的一段线段,排除A 答案;②当P 点在OB 段运动时,OP 长度越来越小,当P 点与O 点重合时OP =0,排除C 答案; ③当P 点在OA 段运动时,OP 长度越来越大,B 答案符合.故选B .【点睛】本题主要考查动点问题的函数图象,熟练掌握是解题的关键.9.A解析:A【解析】试题分析:根据一次函数的性质得到k <0,而kb <0,则b >0,所以一次函数y=kx+b 的图象经过第二、四象限,与y 轴的交点在x 轴是方.解:∵一次函数y=kx+b ,y 随着x 的增大而减小,∴k <0,∴一次函数y=kx+b 的图象经过第二、四象限;∵kb <0,∴b >0,∴图象与y 轴的交点在x 轴上方,∴一次函数y=kx+b 的图象经过第一、二、四象限.故选A .考点:一次函数的图象.10.D解析:D【解析】分析:由点(m,n )在一次函数3y x b =+的图像上,可得出3m+b=n ,再由3m-n >2,即可得出b <-2,此题得解.详解:∵点A(m,n)在一次函数y=3x+b的图象上,∴3m+b=n.∵3m-n>2,∴3m-(3m+b)>2,即-b>2,∴b<-2.故选D.点睛:考查了一次函数图象上点的坐标特征:点的坐标满足函数的解析式,根据一次函数图象上点的坐标特征,再结合3m-n>2,得出-b>2是解题的关键.11.C解析:C【解析】【分析】根据轴对称图形的概念对各个大写字母判断即可得解.【详解】A.“E”是轴对称图形,故本选项不合题意;B.“M”是轴对称图形,故本选项不合题意;C.“N”不是轴对称图形,故本选项符合题意;D.“H”是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.C解析:C【解析】【分析】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,则有AB=AC,而AB的长度根据已知可以求出,所以C点的坐标由此求出;又由于折叠得到CM=BM,在直角△CMO中根据勾股定理可以求出OM,也就求出M的坐标.【详解】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,∵直线y=﹣43x+4与x轴、y轴分别交于点A、B,∴A(3,0),B(0,4),∴AB5,设OM=m,由折叠知,AC=AB=5,CM=BM=OB+OM=4+m,∴OC=8,CM=4+m,根据勾股定理得,64+m2=(4+m)2,解得:m=6,∴M(0,﹣6),故选:C.【点睛】本题主要考查一次函数的图象,图形折叠的性质以及勾股定理,通过勾股定理,列方程,是解题的关键.13.D解析:D【解析】【分析】先在直角△AOB中利用勾股定理求出AB=5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD=12AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1﹣OD=1.5cm.【详解】∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB22OA OB=5cm,∵点D为AB的中点,∴OD=12AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故选:D.【点睛】本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握“直角三角形斜边上的中线等于斜边的一半”是解题的关键.14.D解析:D【解析】【分析】根据三角形内角和定理判断A、C即可;根据勾股定理的逆定理判断B、D即可.【详解】A、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形;B、∵12+22≠32,∴△ABC不是直角三角形;C、∵∠A=∠B=2∠C,∠A+∠B+∠C=180°,∴∠A=∠B=75°,∠C=37.5°,∴△ABC不是直角三角形;D、∵12+)2=22,∴△ABC是直角三角形.故选:D.【点睛】此题主要考查利用三角形内角和定理和勾股定理判定直角三角形,熟练掌握,即可解题. 15.C解析:C【解析】【分析】直接根据“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=12x﹣1向右平移3个单位,所得直线的表达式是y=12(x﹣3)﹣1,即y=12x﹣52.故选:C.【点睛】此题主要考查一次函数的平移,熟练掌握平移规律,即可解题.二、填空题16.1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a ,b )代入一次函数解析:1【解析】∵点P (a ,b )在一次函数y=x +1的图象上,∴b=a+1,∴b -a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a ,b )代入一次函数的解析式.17.【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD⊥AB,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴22435∵C(0,-1),∴OC=1,∴BC=3+1=4,∴1122ABCS BC AO AB CD==,即1144=522CD⨯⨯⨯⨯,解得,165 CD=.故答案为:16 5.【点睛】此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD的长.18.﹣1.【解析】∵点P(m+1,m+3)在y轴上,∴m+1=0,∴m=-1.故答案为:-1.解析:﹣1.【解析】∵点P(m+1,m+3)在y轴上,∴m+1=0,∴m=-1.故答案为:-1.19.2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据解析:2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据被开方数大于等于列式求解即可,比较简单.20.3或4【解析】【分析】作出图形,然后根据图形判断出横坐标的可能值即可;【详解】解:如图当点B为(3,0),(4,0)记ΔAOB内部(不包括边界)的整点为(1,1),(1,2),(2,1解析:3或4【解析】【分析】作出图形,然后根据图形判断出横坐标的可能值即可;【详解】解:如图当点B为(3,0),(4,0)记内部(不包括边界)的整点为(1,1),(1,2),(2,1)共三个点,故当时,则点的横坐标可能是3,4.故填3,4.【点睛】此题考查了点的坐标,关键是根据题意画出图形,找出点B的横坐标与△AOB内部(不包括边界)的整点m之间的关系,考查数形结合的数学思想方法.21.1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解解析:1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知c =,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解】解:根据题意,可知,∵c =,132ab =, ∴221()42b a ab c -+⨯=,213c =, ∴2()13431b a -=-⨯=,∴1b a -=±;∵a b <,即0b a ->,∴1b a -=;故答案为:1.【点睛】此题主要考查了勾股定理、完全平方公式、四边形和三角形面积的计算,利用数形结合的思想是解题的关键.22.(,0)【解析】【分析】画图,设点的坐标是(x,0),因为PA=OB ,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点的坐标是(x,0),因为PA=OB根据勾解析:(1912,0) 【解析】【分析】画图,设点P 的坐标是(x,0),因为PA=OB ,根据勾股定理可得:AC 2+PC 2=BD 2+PD 2.【详解】 已知如图所示;设点P 的坐标是(x,0),因为PA=OB根据勾股定理可得:AC 2+PC 2=BD 2+PD 2所以32+(x+2)2=42+(4-x)2解得1912x = 所以点P 的坐标是(1912,0) 故答案为:(1912,0)【点睛】考核知识点:勾股定理.数形结合,根据勾股定理建立方程是关键.23.【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4).考点:象限内点的坐标解析:()3,4-【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4). 考点:象限内点的坐标特征.24.3【解析】【分析】根据无理数的三种形式求解即可.【详解】解:=-2,无理数有:,共3个.故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开解析:3【解析】【分析】根据无理数的三种形式求解即可.【详解】, 3.010010001 (2)π、、,共3个. 故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 25.68°【解析】【分析】由在△ABC 中,AC=AD=BD ,∠B=28°,根据等腰三角形的性质,即可求得∠ADC 的度数,接着求得∠C 的度数,可得结论.【详解】解:∵AD=BD,∴∠BAD=∠解析:68°【解析】【分析】由在△ABC 中,AC=AD=BD ,∠B=28°,根据等腰三角形的性质,即可求得∠ADC 的度数,接着求得∠C 的度数,可得结论.【详解】解:∵AD=BD ,∴∠BAD=∠B=28°,∴∠ADC=∠B+∠BAD=28°+28°=56°,∵AD=AC ,∴∠C=∠ADC=56°,∴∠CAD=180°-∠ADC-∠C=180°-56°-56°=68°,故答案为:68°.【点睛】此题考查了等腰三角形的性质与三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.三、解答题26.(1)(1,1);(2)证明见解析;(3)1;(4)(2,0)(2,0)(1,0)(2,0)---.【解析】【分析】根据等腰直角三角形的性质,OA=AB ,题干中已知A 点坐标,即可求得OB 的长度,表示出B 点坐标即可.根据等腰直角三角形的性质得到90CAP OAB ︒∠=∠=,再根据等角的余角相等,得出角12∠=∠,最后利用三角形全等的判定方法进行判定即可.根据(2)的结论△ABP 也为直角三角形,且AB 垂直BP ,且AB=OB=1,即可得出P 点的横坐标.先根据题意,确定B 点、A 点坐标,设出P 点和C 点坐标,分情况进行讨论,当OP=OB 时,当OB=BP 时,当OP=BP 时,分别利用两点间距离公式求出点P 点的坐标,然后分别算出AP 的长,最后利用AP=AC 计算出A 点坐标即可.【详解】解:(1)∵点A 的坐标为(0,1)△OAB 是等腰直角三角形,且OA=AB ,OA⊥BA∴B 点坐标为(1,1).(2)证明:在等腰直角三角形ACP 中,AC AP =,90CAP ∠=︒在等腰直角三角形AOB 中,AO AB =,90OAB ∠=︒90CAP OAB ︒∠=∠=CAP OAP OAB OAP ∴∠-∠=∠-∠12∠∠∴=在AOC ∆和ABP ∆中2AC AP AO AB =⎧⎪∠=∠⎨⎪=⎩()AOC ABP SAS ∴∆∆≌(3)AOC ABP ∆∆≌(已证)∴∠ABP=90°∴PB 垂直AB ,P 点在过B 点且垂直与AB 的垂线上,∵点B 的坐标为(1,1)∴P 点的横坐标为1.(4)由题意和(1)可知()01(11)A B ,,,, 设P (1,y ),C (x ,0),当OB=OP解得:1y =或1y =+,则AP ==AP ==解得:x =所以C点坐标为(0)同理当OB=OP 时,可得C 点坐标为(-2,0)当BP=OP 时,可得C 点坐标为(-1,0)故答案为:(2,0)(--【点睛】本题考查了等腰三角形的性质,三角形全的的判定方法,计算两点间距离,动点问题,解决本题的关键是熟练掌握等腰三角形的性质,能够得到相等的线段和角,动点问题要注意分类进行讨论,根据情况确定答案.27.(1)120,2;(2)(1,30);(3)1115≤x≤1915或4115≤x≤3 【解析】【分析】(1)由甲船行驶的函数图象可以看出,甲船从A 港出发,0.5h 后到达B 港,ah 后到达C 港,又由于甲船行驶速度不变,则可以求出a 的值;(2)分别求出0.5h 后甲乙两船行驶的函数表达式,联立即可求解;(3)将该过程划分为0≤x≤0.5、0.5<x≤1、x >1三个范围进行讨论,得到能够相望时x 的取值范围.【详解】解:(1)A 、C 两港口间距离s=30+90=120(km ),又由于甲船行驶速度不变,故30÷0.5=60(km/h ),则a=2(h).(2)由点(3,90)求得,y2=30x.当0.5<x≤2时,设解析式为y1=ax+c,由点(0.5,0),(2,90)则,0.50 290a ca c+=⎧⎨+=⎩解得:6030 ac=⎧⎨=-⎩∴y1=60x-30,当y1=y2时,60x-30=30x,解得,x=1.此时y1=y2=30.所以点P的坐标为(1,30).(3)))①当x≤0.5时,依题意,(-60x+30)+30x≤8.解得,x≥1115.不合题意.②当0.5<x≤1时,依题意,30x-(60x-30)≤8解得,x≥1115.所以1115≤x≤1.③当1<x≤2时,依题意,(60x-30)-30x≤8解得,x≤1915.所以1<x≤1915④当2<x≤3时,甲船已经到了而乙船正在行驶,∵90-30x≤8,解得x≥41 15,所以,当4115≤x≤3,甲、乙两船可以相互望见;综上所述,当1115≤x≤1915或4115≤x≤3时,甲、乙两船可以相互望见.【点睛】本题考查一次函数的应用以及函数方程、函数图象与实际结合的问题,解题关键是利用数形结合得出关键点坐标.28.证明见解析.【解析】【分析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.【详解】在△ABD和△CBD中,AB CB AD CD BD BD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△CBD (SSS ),∴∠ABD=∠CBD ,∴BD 平分∠ABC .又∵OE ⊥AB ,OF ⊥CB ,∴OE=OF .【点睛】本题考查了全等三角形的判定与性质,角平分线的性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.29.(1) 无解 (2) x=1-2【解析】【分析】(1) 利用分式方程的解法,解出即可;(2) 利用分式方程的解法,解出即可.【详解】 (1)11322x x x-=--- 1=x-1-3(x-2)1=-2x+52x=4x=2 检验:当x=2时,x-2=0 x=2为曾根所以原方程无解 (2)2121x x x =++- x(x-1)=2(x+2)+(x+2)(x-1)x 2-x=2x+4+x 2+x-24x=-2 x=1-2检验:当x=1-2时,x+2≠0 x-1≠0,所以x=1-2是解.【点睛】此题主要考查了解分式方程,关键点是要进行验证是否是方程的解.30.(1)见详解;(2)4.【解析】【分析】(1)根据点的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减可以直接算出A 、B 、O 三个对应点D 、E 、F 的坐标,然后画出图形即可;(2)把△DEF 放在一个矩形中,利用矩形的面积减去周围多余三角形的面积即可.【详解】解:(1)∵点A (1,3),B (3,1),O (0,0), ∴把△ABO 向下平移3个单位再向右平移2个单位后A 、B 、O 三个对应点D (1+2,3-3)、 E (3+2,1-3)、F (0+2,0-3),即D (3,0)、E (5,-2)、F (2,-3);如图:(2)△DEF 的面积:11133131322=9 1.5 1.52=4222⨯-⨯⨯-⨯⨯-⨯⨯---. 【点睛】此题主要考查了坐标与图形的变化,解题的关键是掌握平移后点的变化规律.31.29x ,92 【解析】【分析】 原式括号内两项通分并利用同分母分式的减法运算法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】22333x x x x x ⎛⎫-+÷ ⎪++⎝⎭, 22(3)(3)333x x x x x x x⎛⎫-++=-⋅ ⎪++⎝⎭ 2933x x x +=⋅+ 29x= 当2x =2992x ==【点睛】此题考查了分式的化简和求值,熟练掌握运算法则是解本题的关键.。

苏科版八年级(上)期末数学试卷(含答案)

苏科版八年级(上)期末数学试卷(含答案)

苏科版八年级(上)期末数学试卷(含答案)一、选择题1.如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,则点A 的对应点A 2的坐标是( )A .(-3,2)B .(2,-3)C .(1,-2)D .(-1,2) 2.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒ 3.下列四个实数:223,0.1010017π,3,,其中无理数的个数是( ) A .1个 B .2个 C .3个 D .4个4.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为( )A .82°B .78°C .68°D .62° 5.一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四 6.下列二次根式中属于最简二次根式的是( )A .8B .36C .a b(a >0,b >0) D .7 7.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .8.下列条件中,不能判断△ABC 是直角三角形的是( )A .a :b :c =3:4:5B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠CD .a :b :c =1:2:39.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .36B .33C .6D .310.在平面直角坐标系中,点()3,2P -关于x 轴对称的点的坐标是( )A .()3,2B .()2,3-C .()3,2-D .()3,2-- 11.下列说法正确的是( ) A .(﹣3)2的平方根是3 B .16=±4C .1的平方根是1D .4的算术平方根是2 12.如图,在平面直角坐标系中,A (0,3),B (5,3),C (5,0),点D 在线段OA 上,将△ABD 沿着直线BD 折叠,点A 的对应点为E ,当点E 在线段OC 上时,则AD 的长是( )A .1B .43C .53D .213.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点CB .过点P 作PC ⊥AB 于点C 且AC=BCC .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C14.关于等腰三角形,以下说法正确的是( )A .有一个角为40°的等腰三角形一定是锐角三角形B .等腰三角形两边上的中线一定相等C .两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D .等腰三角形两底角的平分线的交点到三边距离相等15.如图,若BD 为等边△ABC 的一条中线,延长BC 至点E ,使CE =CD =1,连接DE ,则DE 的长为( )A .3B .3C .5D .5二、填空题16.如图,ABC ADC ∆≅∆,40BCA ∠=︒,80B ∠=︒,则BAD ∠的度数为________________.17.若函数4y kx =-的图象平行于直线2y x =-,则函数的表达式是________.18.在311,2π,122-,0,0.454454445319______个. 19.地球上七大洲的总面积约为149480000km 2(精确到10000000 km 2),用四舍五入法按要求取近似值,并用科学记数法为_________ km 2.20.点()2,3A 关于y 轴对称点的坐标是______.21.一次函数32y x =-+的图象一定不经过第______象限.22.等腰三角形的顶角为76°,则底角等于__________.23.小明体重约为62.36千克,如果精确到0.1千克,其结果为____千克.24.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿y 轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为____.25.点P (3,-4)到 x 轴的距离是_____________.三、解答题26.如图,在ABC ∆中,AB AC =,ABC ∆的高BH ,CM 交于点P .(1)求证:PB PC =.(2)若5PB =,3PH =,求AB .27.(问题背景)如图,在平面直角坐标系xOy 中,点A 的坐标是(0,1),点C 是x 轴上的一个动点.当点C 在x 轴上移动时,始终保持ACP ∆是等腰直角三角形,且90CAP ∠=︒(点A 、C 、P 按逆时针方向排列);当点C 移动到点O 时,得到等腰直角三角形AOB (此时点P 与点B 重合). (初步探究)(1)写出点B 的坐标______.(2)点C 在x 轴上移动过程中,当等腰直角三角形ACP 的顶点P 在第四象限时,连接BP . 求证:AOC ABP ∆∆≌;(深入探究)(3)当点C 在x 轴上移动时,点P 也随之运动.经过探究发现,点P 的横坐标总保持不变,请直接写出点P 的横坐标:______.(拓展延伸)(4)点C 在x 轴上移动过程中,当POB ∆为等腰三角形时,直接写出此时点C 的坐标.备用图28.已知:如图,点E 在ABC ∆的边AC 上,且AEB ABC ∠=∠.(1)求证:ABE C ∠=∠;(2)若BAE ∠的平分线AF 交BE 于点F ,FD BC 交AC 于点D ,设8AB =,10AC =,求DC 的长.29.老师在黑板上写了一个代数式的正确计算结果,随后用“黑板擦”遮住原代数式的一部分,如图:232222x x x x x +⎫-÷=⎪-+-⎭ (1)求被“黑板擦”遮住部分的代数式,并将其化简;(2)原代数式的值能等于1-吗?请说明理由.30.如图,矩形ABCD 中,6AB =,8AD =,点P 从点A 出发,以每秒一个单位的速度沿A B C →→的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B C D →→的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒.(1)当t=______时,两点停止运动;∆是等腰三角形?(2)当t为何值时,BPQ31.已知甲,乙两名自行车骑手均从P地出发,骑车前往距P地60千米的Q地,当乙骑手出发了1.5小时,此时甲,乙两名骑手相距6千米,因甲骑手接到紧急任务,故甲到达Q地后立即又原路返回P地甲,乙两名骑手距P地的路程y(千米)与时间x(时)的函数图象如图所示.(其中折线O﹣A﹣B﹣C﹣D(实线)表示甲,折线O﹣E﹣F﹣G(虚线)表示乙)(1)甲骑手在路上停留小时,甲从Q地返回P地时的骑车速度为千米/时;(2)求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;(3)在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.如图所示:点A的对应点A2的坐标是:(2,﹣3).故选B.2.B解析:B【解析】【分析】延长AO交BC于D,根据垂直平分线的性质可得到AO=BO=CO,再根据等边对等角的性质得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.【详解】延长AO交BC于D.∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.解析:B【解析】【分析】根据无理数的定义解答即可.【详解】227,0.101001是有理数; 3π,3是无理数.故选B.【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3等;②开方开不尽的数,如2,35等;③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.4.B解析:B【解析】【分析】直接利用全等三角形的性质得出∠1=∠2进而得出答案.【详解】∵如图是两个全等三角形,∴∠1=∠2=180°−40°−62°=78°.故选:B .【点睛】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.5.C解析:C【解析】试题分析:直线y=﹣5x+3与y 轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限.考点:一次函数的图象和性质.6.D解析:D【解析】【分析】根据最简二次根式的定义即可求出答案.【详解】解:(A)原式=,故A不符合题意;(B)原式=6,故B不符合题意;(C)ab是分式,故C不符合题意;故选:D.【点睛】本题考查最简二次根式,解题的关键是熟练运用最简二次根式的定义,本题属于基础题型.7.D解析:D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.8.B解析:B【解析】【分析】A、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B、根据角的比值求出各角的度数,便可判断出三角形的形状;C、根据三角形的内角和为180度,即可计算出∠C的值;D、根据比值结合勾股定理的逆定理即可判断出三角形的形状.【详解】A、因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形,故A选项不符合题意;B、因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B选项符合题意;C、因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C选项不符合题意;D、因为a:b:c=1:2:3,所以设a=x,b=2x,c=3x,则x2+(3x)2=(2x)2,故为直角三角形,故D选项不符合题意,故选B.【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.9.D解析:D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=12OC=3,CH=3OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.10.D解析:D【解析】【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点()3,2P -关于x 轴对称的点的坐标为()3,2--.故选:D .【点睛】本题考查坐标与图形变化——轴对称.熟记①关于x 轴对称的点,横坐标相同,纵坐标互为相反数;②关于y 轴对称的点,纵坐标相同,横坐标互为相反数.是解决此题的关键.11.D解析:D【解析】【分析】根据平方根和算术平方根的定义解答即可.【详解】A 、(﹣3)2的平方根是±3,故该项错误;B 4,故该项错误;C 、1的平方根是±1,故该项错误;D 、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.12.C解析:C【解析】【分析】先根据勾股定理求出EC 的长,进而可得出OE 的长,在Rt △DOE 中,由DE=AD 及勾股定理可求出AD 的长.【详解】解:根据各点坐标可得AB=OC=BE=5,AO=BC=3,设AD=x ,则DE=x ,DO=3-x∴=4,∴OE=1,在Rt △DOE 中,DO 2+OE 2=DE 2,解得x=53,∴AD=53,故选C.【点睛】本题考查了勾股定理的应用,找准直角三角形,设出未知数列出方程即可解答.13.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.14.D解析:D【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A:如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误;B、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,∴等腰三角形的两条中线不一定相等,此选项错误;C、如图,△ABC和△ABD中,AB=AC=AD,CD∥AB,DG是△ABD 的AB边高,CH是是△ABC 的AB边高,则DG=CH,但△ABC和△ABD不全等;故此选项错误;D、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D.【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.15.B解析:B【解析】【分析】由等边三角形的性质及已知条件可证BD=DE,可知BC长及BD⊥AC,在Rt△BDC中,由勾股定理得BD长,易知DE长.【详解】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=12∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=CD=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,且BD⊥AC,在Rt△BDC中,由勾股定理得:BD==即DE=BD故选:B.【点睛】本题主要考查了等边三角形的性质,灵活利用等边三角形三线合一及三个角都是60度的性质是解题的关键.二、填空题16.【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠B解析:120【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠BCA=40°,∠B=80°,∴∠BAC=180°﹣∠BCA﹣∠B=180°﹣40°﹣80°=60°,∴∠BAD=∠BAC+∠CAD=2∠BAC=2×60°=120°.故答案为:120°.【点睛】本题考查了全等三角形的性质以及三角形内角和定理.掌握全等三角形的性质以及三角形内角和定理是解答本题的关键.17.y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2解析:y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2x-4.故答案为:y=-2x-4.【点睛】本题考查了两条直线平行的问题,一次函数平行系数的特点是解题的关键.18.3【解析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,,0.454454445…,为无理数,共3个.故答案为:3.【点睛】本题考查了无理数.解题的关键是掌握无解析:3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,2π,0.4544544453个. 故答案为:3.【点睛】本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 19.5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108. 故答案为:1.5×108.点睛:科学记数法的表示形式为的形式,其中 为整数.解析:5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108.故答案为:1.5×108.点睛:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<, n 为整数. 20.(−2,3)【解析】【分析】平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(−x ,y ),即关于y 轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y 轴对解析:(−2,3)【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),即关于y 轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对称的点的坐标是(−2,3),故答案为(−2,3).【点睛】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数,关于x轴对称的点,横坐标相同,纵坐标互为相反数.21.三【解析】【分析】根据一次函数的解析式中的k、b的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y轴的正半轴,解析:三【解析】【分析】根据一次函数的解析式中的k、b的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y轴的正半轴,k=-3<0,∴y随x的增大而减小,∴函数的图象经过第一、二、四象限,∴不经过第三象限.故答案为:三.【点睛】本题考查了一次函数的性质. 解题时可根据解析式中的k、b的值的正负作出草图,从而很容易判断函数经过(或不经过)那一象限.22.52°【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可. 【详解】解:∵等腰三角形的顶角为76°,∴底角为:,故答案为:52°.【点睛】本题考查了等腰三角形性解析:52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:11=104=52 22⨯︒︒⨯︒︒(180-76),故答案为:52°.【点睛】本题考查了等腰三角形性质,以及三角形内角和定理,解题的关键是掌握等腰三角形等边对等角计算角度.23.4.【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】62.36千克精确到0.1千克为62.4千克.故答案为:62.4.【点睛】本题考查了近似数和有效数字:近似数与精确数的解析:4.【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】62.36千克精确到0.1千克为62.4千克.故答案为:62.4.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.24.(2,).【解析】【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为解析:(22019).【解析】【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为1+2×1=2,点C到AB,2∴C(2,把等边△ABC先沿y轴翻折,得C’(-2,再向下平移1个单位得C’’( -2故经过一次变换后,横坐标变为相反数,纵坐标减1,故第2020次变换后的三角形在y轴右侧,点C的横坐标为2,+1﹣﹣2019,所以,点C的对应点C'的坐标是(22019).故答案为:(22019).【点睛】本题考查了坐标与图形变化−平移,等边三角形的性质,读懂题目信息,确定出连续2020次这样的变换得到三角形在y轴右侧是解题的关键.25.4【解析】试题解析:根据点与坐标系的关系知,点到x轴的距离为点的纵坐标的绝对值,故点P(3,﹣4)到x轴的距离是4.【解析】试题解析:根据点与坐标系的关系知,点到x 轴的距离为点的纵坐标的绝对值,故点P (3,﹣4)到x 轴的距离是4.三、解答题26.(1)证明见解析;(2)10【解析】【分析】(1)利用AAS 定理证明MBC HCB ∆∆≌,从而求得PBC PCB ∠=∠,使问题得解;(2)利用勾股定理求HC 的长度,然后在ABH ∆中,设设AB AC x ==,则()4AH x =-,利用勾股定理列方程求解.【详解】证明:(1)∵AB AC =∴A ABC CB =∠∠∵BH 、CM 为ABC ∆的高∴90BMC CHB ∠=∠=︒又∵BC CB =(公共边)∴MBC HCB ∆∆≌(AAS )∴PBC PCB ∠=∠,∴PB PC =(2)∵5PC PB ==,3PH =,∴在Rt △PCH 中,4HC =,8BH =设AB AC x ==,则()4AH x =-,ABH ∆中由勾股定理可得方程:222AB AH BH =+,即()22248x x =-+解方程得:10x =∴10AB =【点睛】本题考查全等三角形的判定及勾股定理的应用,数形结合思想解题,正确列出方程是本题的解题关键.27.(1)(1,1);(2)证明见解析;(3)1;(4)(2,0)(--.【解析】【分析】根据等腰直角三角形的性质,OA=AB ,题干中已知A 点坐标,即可求得OB 的长度,表示出B 点坐标即可.根据等腰直角三角形的性质得到90CAP OAB ︒∠=∠=,再根据等角的余角相等,得出角12∠=∠,最后利用三角形全等的判定方法进行判定即可.根据(2)的结论△ABP也为直角三角形,且AB垂直BP,且AB=OB=1,即可得出P点的横坐标.先根据题意,确定B点、A点坐标,设出P点和C点坐标,分情况进行讨论,当OP=OB 时,当OB=BP时,当OP=BP时,分别利用两点间距离公式求出点P点的坐标,然后分别算出AP的长,最后利用AP=AC计算出A点坐标即可.【详解】解:(1)∵点A的坐标为(0,1)△OAB是等腰直角三角形,且OA=AB,OA⊥BA∴B点坐标为(1,1).(2)证明:在等腰直角三角形ACP中,AC AP=,90CAP∠=︒在等腰直角三角形AOB中,AO AB=,90OAB∠=︒90CAP OAB︒∠=∠=CAP OAP OAB OAP∴∠-∠=∠-∠12∠∠∴=在AOC∆和ABP∆中2AC APAO AB=⎧⎪∠=∠⎨⎪=⎩()AOC ABP SAS∴∆∆≌(3)AOC ABP∆∆≌(已证)∴∠ABP=90°∴PB垂直AB,P点在过B点且垂直与AB的垂线上,∵点B的坐标为(1,1)∴P点的横坐标为1.(4)由题意和(1)可知()01(11)A B,,,,设P(1,y),C(x,0),当OB=OP()()221-1+12y-=解得:21y=或21y=+,则AP ==AP ==解得:x =所以C 点坐标为(0)同理当OB=OP 时,可得C 点坐标为(-2,0)当BP=OP 时,可得C 点坐标为(-1,0)故答案为:(2,0)(--【点睛】本题考查了等腰三角形的性质,三角形全的的判定方法,计算两点间距离,动点问题,解决本题的关键是熟练掌握等腰三角形的性质,能够得到相等的线段和角,动点问题要注意分类进行讨论,根据情况确定答案.28.(1)详见解析;(2)2.【解析】【分析】(1)在三角形ABE 与三角形ABC 中,由一对公共角相等,以及已知角相等,利用内角和定理即可得证;(2)由FD 与BC 平行,得到一对同位角相等,再由第一问的结论等量代换得到一对角相等,根据AF 为角平分线得到一对角相等,再由AF=AF ,利用ASA 得到三角形ABE 与三角形ADF 全等,利用全等三角形对应边相等得到AB=AD ,由AC-AD 求出DC 的长即可.【详解】(1)证明:在ABE ∆中,180ABE BAE AEB ∠=-∠-∠︒,在ABC ∆中,180C BAC ABC ∠=︒-∠-∠,∵AEB ABC ∠=∠,BAE BAC ∠=∠,∴ABE C ∠=∠;(2)解:∵FD BC ,∴ADF C =∠∠,又ABE C ∠=∠,∴ABE ADF ∠=∠,∵AF 平分BAE ∠,∴BAF DAF ∠=∠,在ABE ∆和ADF ∆中,ABE ADF AF AFBAF DAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABE ADF ASA ∆∆≌, ∴AB AD =,∵8AB =,10AC =,∴1082DC AC AD =-=-=.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.29.(1)232x x --;(2)原代数式的值不能等于1-;理由详见解析 【解析】【分析】 (1)设被遮住的部分为A ,进而通过分式的化简即可得解;(2)令212x x +=--,求得x 的值,进行判断即可的解. 【详解】 (1)设被遮住的部分为A ,即232()222x x A x x x +-÷=-+- ∴2232323+=222222x x x x A x x x x x x +-=⋅-=-+----; (2)令212x x +=--,解得0x =,当0x =时,02x x =+ ∵除数不能为0∴原代数式的值不能等于1-. 【点睛】本题主要考查了分式的化简及分式的意义,熟练掌握分式的相关计算是解决本题的关键.30.(1)7秒;(2)当t 为2秒或225秒时,BPQ ∆是等腰三角形. 【解析】【分析】(1)分别计算P 、Q 到达终点的时间,根据当其中一点到达终点后两点都停止运动,取时间较短的;(2)分三种情况讨论,利用等腰三角形的定义可求解.【详解】解:(1)∵四边形ABCD 为矩形,6AB =,8AD =,∴6DC AB ==,8BC AD ==,∴点P 运动到终点所需(6+8)÷1=14秒,Q 运动到终点所需(6+8)÷2=7秒,∴当t =7时,两点停止运动;(2)①当t ≤4时,P 点在线段AB 上,Q 点在线段BC 上时,若Rt BPQ ∆是等腰三角形,则BP=BQ,即6-t=2t ,解得t=2秒;②当P 点在线段AB 上,Q 点在线段CD 上时,此时4<t≤6,如下图,若BPQ∆是等腰三角形,则PQ=BQ,此时作PE⊥DC,∵四边形ABCD为矩形,∴∠C=∠ABC=90°,∴四边形BCEP为矩形,∴EC=PB=6-t,EP=BC,∵PQ=BQ,∴Rt△EPQ≌Rt△CBQ(HL),∴EQ=QC,即6282tt-=-,解得225t=,③当P点在线段BC上,Q点在线段CD上时,此时6<t≤7如下图,BP=t-6,QC=2t-8,∵当6<t≤7时,QC-BP=2t-8-(t-6)=t-2>0,∴BQ>QP>QC>BP,BPQ∆不可能是等腰三角形,综上所述,当t为2秒或225秒时,BPQ∆是等腰三角形.【点睛】本题考查矩形的性质和判定,全等三角形的性质和判定,一元一次方程的应用,等腰三角形的定义.掌握方程思想和分类讨论思想是解决此题的关键.31.(1)1小时,30千米/时;(2)y=24x﹣24(1≤x≤3.5);(3)x=17 3 27【解析】【分析】(1)根据题意结合图象解答即可;(2)求出乙的速度,再利用待定系数法解答即可;(3)根据(2)的结论列方程解答即可.【详解】(1)由图象可知,甲骑手在路上停留1小时,甲从Q地返回P地时的骑车速度为:60÷(6﹣4)=30(千米/时),故答案为:1;30.(2)甲从P地到Q地的速度为20(千米/时),所以乙的速度为:(6+1.5×20)÷1.5=24(千米/时),60÷24=2.5(小时),设乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式为y=24x+b,则24+b=0,解得b=﹣24.∴乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式为y=24x﹣24(1≤x≤3.5).(3)根据题意得,30(x﹣4)+(24x﹣24)=60﹣8,解得x=17327.答:乙两人相遇前,当时间x=17327时,甲,乙两骑手相距8千米.【点睛】此题考查了一次函数与一元一次方程的综合运用,熟练掌握,即可解题.。

苏科版数学八年级上学期《期末考试卷》(含答案)

苏科版数学八年级上学期《期末考试卷》(含答案)

苏科版八年级上册期末考试数 学 试 卷一、选择题(本大题共8小题,每小题3分,共24分。

每小题只有一个正确答案,请把你认为正确答案的代号填入下表相应的空格内)1.下列四个图形中,不是轴对称图形的是( ) A. B. C. D.2.点()1,3M m m ++在y 轴上,则点M 的坐标为( )A. ()0,4-B. ()4,0C. ()2,0-D. ()0,2 3.下列各数中,大小在﹣1和﹣2之间的数是( )A. ﹣3B. ﹣2C. 0D. |﹣3|4.如图,已知AE=CF ,BE=DF ,要证△ABE ≌△CDF ,还需添加的一个条件是( )A. ∠BAC=∠ACDB. ∠ABE=∠CDFC. ∠DAC=∠BCAD. ∠AEB=∠CFD 5.下列各组数中不能作为直角三角形的三边长的是( )A. 1.5,2, 3B. 7,24,25C. 6,8,10D. 9,12,15 6.若直线y=kx+b 经过第一、二、四象限,则直线y=bx+k 的图象大致是( ) A. B. C. D. 7.已知一个等腰三角形一内角的度数为80,则这个等腰三角形顶角的度数为( )A. 100B. 80C. 50或80D. 20或808.如图,在Rt ABO 中,90OBA ∠=︒,()4,4A ,点C 在边AB 上,且13AC CB =,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A. ()2,2B. 55,22⎛⎫ ⎪⎝⎭C. 88,33⎛⎫⎪⎝⎭ D. ()3,3二、填空题(本大题共8小题,每小题3分,共24分) 9.8-的立方根是__________.10.将23 700精确到千位并用科学记数法表示_______________11.长方形的一条对角线的长为10cm ,一边长为6cm ,它的面积是________cm 2.12.下列实数:12,-3π,|﹣1|,327,0.1010010001…,37,0(2)中,有理数有______个. 13.把直线21y x =-向下平移1个单位,平移后直线的关系式为______________.14.一个汽车牌照号码在水中的倒影为,则该车牌照号码为_________.15.无论a 取什么实数,点A (2a ,6a +1)都在直线l 上,则直线l 的表达式是______.16.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.三、解答题(本大题共10小题,共72分,解答要求写出文字说明,证明过程或计算步骤)17.计算1019(5)5π-⎛⎫+ ⎪⎝⎭ 18.(1)解方程: 3x 2-12=0(2)在实数范围内分解因式:2315-a19.如图,l 1、l 2交于A 点,P 、Q 的位置如图所示,试确定M 点,使它到l 1、l 2的距离相等,且到P 、Q 两点的距离也相等.(用直尺和圆规)20.如图,AD 为△ABC 的中线,AB=AC ,∠BAC=45º.过点C 作CE ⊥AB ,垂足为E ,CE 与AD 交于点F.(1)求证: △AEF ≌△CEB;(2)试探索AF 与CD 的数量关系,并说明理由.21.如图,正方形网格的每个小方格都是边长为1的正方形,△ABC 的顶点都在格点上.(1)分别求出AB ,BC ,AC 的长;(2)试判断△ABC 是什么三角形,并说明理由.22.已知3x+1的算术平方根是4,x+2y 的立方根是-1,(1)求x 、y 的值; (2)求2x-5y 的平方根.23. 某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少? (2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?24.如图,AB=AC,∠A=120º,BC=6cm,ED、FG分别是AB,AC的垂直平分线,求BE的长.25. 如图,已知直线y=﹣2x+8与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式;(3)在(2)的条件下,坐标平面内是否存在点P(除点B外),使得△APC与△ABC全等?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.26.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,,若动点P从点C开始,按C→A→B→C路径运动,且速度为.每秒1cm,设出发的时间为t秒(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?答案与解析一、选择题(本大题共8小题,每小题3分,共24分。

【阶段检测】苏科版数学八年级上册 期末测试题 (1) 含答案

【阶段检测】苏科版数学八年级上册   期末测试题 (1)  含答案

苏科版数学 八年级上学期 期末测试题1、下列说法中,正确的个数是( )(1)轴对称图形只有一条对称轴,(2)轴对称图形的对称轴是一条线段,(3)两个图形成轴对称,这两个图形是全等图形,(4)全等的两个图形一定成轴对称,(5)轴对称图形是指一个图形,而轴对称是指两个图形而言。

A 1个B 2个C 3个D 4个2、轴对称图形的对称轴的条数( )A 只有一条B 2条C 3条D 至少一条3、下列图形中,不是轴对称图形的是( )A. 两条相交直线B. 线段C.有公共端点的两条相等线段D.有公共端点的两条不相等线段4、到三角形的三个顶点距离相等的点是( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点5、 在△ABC 中,AB=AC ,BC=5cm ,作AB 的垂直平分线交另一腰AC 于D ,连结BD ,如果△BCD 的周长是17cm ,则腰长为( )A 、12cmB 、6 cmC 、 7 cmD 、5 cm6、如图,⊿ABC 中,BC =10,边BC 的垂直平分线分别交AB 、AC 于点E 、F ,BE =7,⊿BCE 的周长为_____。

7、如图,A 、B 是公路边两个新建的居民小区,某镇需在公路边增加一个公共汽车站,这个公共汽车站建在什么位置,才能使两个小区到车站的路程一样,找出汽车站的位置并说明理由。

8、点Q 在∠AOB 的平分线上,QA ⊥OA 于A ,QB ⊥OB 于B ,则AQ =____ ,理由是_____________________________________。

9、如图,∠C=900,∠1=∠2,若BC=10,BD=6,则D到边AB的距离为_____。

10、如图,点P在∠AOB内,PM⊥OA于M,PN⊥OB于N,且PM=PN,连结OP,则OP是________________。

依据是_______________________________。

苏科版八年级上册数学《期末测试卷》附答案

苏科版八年级上册数学《期末测试卷》附答案
(1)求证:△ABQ≌△CAP;
(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.
27.如图,在平面直角坐标系xOy中,直线 与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,直线AB与直线DC相交于点E.
∴关于x、y的二元一次方程组 的解是 .
故答案为 .
25.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.
(1)求y与x之间的函数表达式,并写出x的取值范围;
在Rt△ABM中,AB=5,BM=3,
∴根据勾股定理得:AM=
=
=4,
又S△AMC= MN•AC= AM•MC,
∴MN=
= .
故选A.
[点睛]综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.
二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,认把答案直接写在答题纸相应的位置上.)
[答案]A
[解析]
[分析]
根据立方根、无理数的定义即可得.
[详解] 是无理数,
,是无限循环小数,属于有理数,
是有限小数,属于有理数,
,小数点后的 是无限循环的,是无限循环小数,属于有理数,

苏科版数学八年级上册《期末测试卷》含答案

苏科版数学八年级上册《期末测试卷》含答案

苏科版数学八年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________第Ⅰ卷(选择题共30分一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列运算正确的是()A. 2 B.|﹣3|=﹣3 C.±2 D. 32.传统佳节“春节”临近,剪纸民俗魅力四射,对称现象无处不在.观察下面的四幅剪纸,其中不是轴对称图形的是()A.B.C.D.3.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC4.点A(3,5)关于x轴的对称点的坐标为()A.(3,﹣5) B.(﹣3,﹣5) C.(﹣3,5) D.(﹣5,3)5.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣76.下列各组数中,是勾股数的为()A.1,1,2 B.1.5,2,2.5 C.7,24,25 D.6,12,137.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()A.x<5 B.x>5 C.x<﹣4 D.x>﹣48.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm9.如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接P A、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个10.已知一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,有y1<y2,那么m的取值范围是() A.m>0 B.m<0 C.m>1 D.m<1第Ⅱ卷(非选择题共120)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.若一个数的立方根是﹣3,则这个数是.12.如图,已知:AB=AC,D是BC边的中点,则∠1+∠C=度.13.若12.6389823,则.(精确到0.01).14.小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成.15.将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为.16.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为.17.如图,点O为线段AB上的任意一点(不与A,B重合),分别以AO,BO为一腰在AB的同侧作等腰△AOC和△BOD,OA=OC,OB=OD,∠AOC与∠BOD都是锐角,且∠AOC=∠BOD,AD与BC相交于点P,∠COD=110°,则∠APB=°.18.如图,直线y=x+6与x轴、y轴分别交于点A和点B,x轴上有一点C(﹣4,0),点P为直线一动点,当PC+PO 值最小时点P的坐标为.三.解答题(共10小题,满分96分)19.(1)已知:2(x﹣3)2=50,求x;(2)计算:20.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.21.已知y﹣1与x+2成正比例,且x=﹣1时,y=3.(1)求y与x之间的关系式;(2)它的图象经过点(m﹣1,m+1),求m的值.22.如图,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E、交AC于D,连接BD.(1)若∠A=40°,求∠DBC的度数;(2)若△BCD的周长为16cm,△ABC的周长为26cm,求BC的长.23.如图,已知△ABC中,AB=AC,BD=CE,(1)求证:△ABE≌△ACD.(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度数.24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△ACQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.25.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数) 需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.26.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.27.基本图形:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=3,CD=1,则AD的长为.28.阅读下面材料:小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系.小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).请回答:(1)在图2中,小明得到的全等三角形是△≌△;BC和AC、AD之间的数量关系是.(2)参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.求AB的长.(3)如图4,在平面直角坐标系中,直线y=﹣x+4交x轴于点A,交y轴于点B,C是OA的中点,D为AB上一点,且∠DCA=∠BCO,连接OD,CD,求.答案与解析第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列运算正确的是()A. 2 B.|﹣3|=﹣3 C.±2 D. 3[答案]A[解析]A、2,此选项计算正确;B、|﹣3|=3,此选项计算错误;C、2,此选项计算错误;D、不能进一步计算,此选项错误;故选:A.[点睛]本题主要考查算术平方根,解题的关键是掌握算术平方根和立方根的定义、绝对值性质.2.传统佳节“春节”临近,剪纸民俗魅力四射,对称现象无处不在.观察下面的四幅剪纸,其中不是轴对称图形的是()A.B.C.D.[答案]C[解析]A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,不符合题意.故选:C.[点睛]此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.3.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC[答案]C[解析]A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.[点睛]本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.4.点A(3,5)关于x轴的对称点的坐标为()A.(3,﹣5) B.(﹣3,﹣5) C.(﹣3,5) D.(﹣5,3)[答案]A[解析]点A(3,5)关于x轴的对称点的坐标为:(3,﹣5).故选:A.[点睛]此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的符号是解题关键.5.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣7[答案]B[解析]∵一次函数y=﹣2x+3中k=﹣2<0,∴y的值随x的值增大而减小,∴在0≤x≤5范围内,x=0时,函数值最大﹣2×0+3=3.故选:B.[点睛]一次函数y=kx+b的图象的性质:①当k>0,y的值随x的值增大而增大;②当k<0,y的值随x的值增大而减小.6.下列各组数中,是勾股数的为()A.1,1,2 B.1.5,2,2.5 C.7,24,25 D.6,12,13[答案]C[解析]A、∵12+12≠22,∴不是勾股数,此选项错误;B、1.5和2.5不是整数,此选项错误;C、∵72+242=252,∴是勾股数,此选项正确;D、∵62+122≠132,∴不是勾股数,此选项错误.故选:C.[点睛]此题考查了勾股数,说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…7.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()A.x<5 B.x>5 C.x<﹣4 D.x>﹣4[答案]A[解析]由题意可得:一次函数y=kx+b中,y<0时,图象在x轴下方,x<5,则关于x的不等式kx+b<0的解集是x<5,故选:A.[点睛]此题主要考查了一次函数与一元一次不等式,关键是掌握数形结合思想.认真体会一次函数与一元一次不等式之间的内在联系.8.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm[答案]C[解析]连接AM、AN、过A作AD⊥BC于D,∵在△ABC中,AB=AC,∠A=120°,BC=6cm,∴∠B=∠C=30°,BD=CD=3cm,∴AB2cm=AC,∵AB的垂直平分线EM,∴BE AB cm同理CF cm,∴BM2cm,同理CN=2cm,∴MN=BC﹣BM﹣CN=2cm,故选:C.[点睛]本题考查了线段垂直平分线性质,等腰三角形的性质,含30度角的直角三角形性质,解直角三角形等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力.9.如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接P A、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个[答案]B[解析]如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.[点睛]本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.10.已知一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,有y1<y2,那么m的取值范围是() A.m>0 B.m<0 C.m>1 D.m<1[答案]D[解析]∵一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),且x1>x2时,有y1<y2∴m﹣1<0∴m<1故选:D.[点睛]本题考查了一次函数图象上点的坐标特征,利用一次函数增减性解决问题是本题的关键.第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.若一个数的立方根是﹣3,则这个数是.[答案]﹣27.[解析]∵(﹣3)3=﹣27,∴﹣27的立方根是﹣3.∴这个数是﹣27.故答案为:﹣27.[点睛]本题主要考查的是立方根的定义,掌握立方根的定义是解题的关键.12.如图,已知:AB=AC,D是BC边的中点,则∠1+∠C=度.[答案]90[解析]∵AB=AC,∴∠B=∠C,∵D是BC边的中点,∴AD⊥BC,∴∠1+∠B=90°,∴∠1+∠C=90°.故答案为:90.[点睛]本题考查了等腰三角形的性质;等腰三角形底边上的中线、高线以及顶角的平分线三线合一的熟练应用是正确解答本题的关键.13.若12.6389823,则.(精确到0.01).[答案]12.64.[解析]∵12.6389823,∴12.64.故答案为:12.64.[点睛]考查了立方根,近似数,关键是熟练掌握四舍五入法求近似数.14.小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成.[答案](3,4).[解析]∵用(1,4)表示一只眼,用(2,2)表示嘴,∴另一只眼的位置可以表示成:(3,4).故答案为:(3,4).[点睛]此题主要考查了坐标确定位置,利用点的对称性得出对应点坐标是解题关键.15.将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为[答案]y=5x﹣3.[解析]将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为:y=5x﹣3,故答案为:y=5x﹣3.[点睛]本题考查了一次函数图象与几何变换,利用函数图象的平移规律是解题关键.16.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为[答案]40°或100°[解析]△ABC,AB=AC.有两种情况:(1)顶角∠A=40°,(2)当底角是40°时,∵AB=AC,∴∠B=∠C=40°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣40°﹣40°=100°,∴这个等腰三角形的顶角为40°和100°.故答案为:40°或100°.[点睛]本题考查了等腰三角形的性质和三角形的内角和定理的理解和掌握,能对有的问题正确地进行分类讨论.17.如图,点O为线段AB上的任意一点(不与A,B重合),分别以AO,BO为一腰在AB的同侧作等腰△AOC和△BOD,OA=OC,OB=OD,∠AOC与∠BOD都是锐角,且∠AOC=∠BOD,AD与BC相交于点P,∠COD=110°,则∠APB=145°.[答案]145.[解析]如图,∵∠AOC=∠BOD,∴∠AOC+∠COD=∠BOD+∠COD,∴∠AOD=∠COB,在△AOD和△COB中,,∴△AOD≌△COB.∵∠COD=110°,∠AOC=∠BOD,∴∠AOC=∠BOD=(180°﹣110°)÷2=35°,∵△AOD≌△COB,∴∠OAD=∠OCB,∴∠CMP=∠AMO,∴∠CPM=∠AOC=35°,∴∠APB=180°﹣∠CPM=180°﹣35°=145°.故答案为:145.[点睛]本题考查了全等三角形的性质与判定,解决本题的关键是证明△AOD≌△COB.18.如图,直线y=x+6与x轴、y轴分别交于点A和点B,x轴上有一点C(﹣4,0),点P为直线一动点,当PC+PO 值最小时点P的坐标为[答案](,)[解析]如图,作点C关于直线y=x+6的对称点C′,连接AC′,OC′交直线y=x+6于点P,则点P即为所求,∵直线y=x+6与x轴、y轴分别交于点A和点B,∴A(﹣6,0),B(0,6),∴∠BAO=45°.∵CC′⊥AB,∴∠ACC′=45°.∵点C,C′关于直线AB对称,∴AB是线段CC′的垂直平分线,∴△ACC′是等腰直角三角形,∴AC=AC′=2,∴C′(﹣6,2).设直线OC′的解析式为y=kx(k≠0),则2=﹣6k,解得k,∴直线OC′的解析式为y x,∴,解得,∴P(,).故答案为:(,).[点睛]本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三.解答题(共10小题)19.(1)已知:2(x﹣3)2=50,求x;(2)计算:[分析](1)直接利用平方根的定义计算得出答案;(2)直接利用立方根以及绝对值的性质分别化简得出答案.[解析](1)(x﹣3)2=25,则x﹣3=±5,解得:x=8或x=﹣2;(2)原式=2﹣3﹣(1)=﹣1 1.[点睛]此题主要考查了实数运算,正确化简各数是解题关键.20.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.[分析](1)根据点A及点C的坐标,易得y轴在C的右边一个单位,x轴在C的下方3个单位,建立直角坐标系即可;(2)根据对称轴垂直平分对应点连线,可得各点的对称点,顺次连接即可;(3)根据勾股定理的逆定理判断即可;[解析](1)如图所示:(2)如图所示:△A'B'C'即为所求:C'的坐标为(﹣5,5);(3)∵AB2=1+4=5,AC2=4+16=20,BC2=9+16=25,∴AB2+AC2=BC2,∴△ABC是直角三角形.[点睛]本题考查了轴对称作图的知识及直角坐标系的建立,解答本题的关键是掌握轴对称的性质,准确作图.21.已知y﹣1与x+2成正比例,且x=﹣1时,y=3.(1)求y与x之间的关系式;(2)它的图象经过点(m﹣1,m+1),求m的值.[答案](1)根据y﹣1与x+2成正比例,设y﹣1=k(x+2),把x与y的值代入求出k的值,即可确定出关系式;(2)把点(m﹣1,m+1)代入一次函数解析式求出m的值即可.[解析](1)根据题意:设y﹣1=k(x+2),把x=﹣1,y=3代入得:3﹣1=k(﹣1+2),解得:k=2.则y与x函数关系式为y=2(x+2)+1=2x+5;(2)把点(m﹣1,m+1)代入y=2x+5得:m+1=2(m﹣1)+5解得m=﹣2.[点睛]此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.22.如图,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E、交AC于D,连接BD.(1)若∠A=40°,求∠DBC的度数;(2)若△BCD的周长为16cm,△ABC的周长为26cm,求BC的长.[分析](1)首先计算出∠ABC的度数,再根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AD =BD,进而可得∠ABD=∠A=40°,然后可得答案;(2)根据线段垂直平分线的性质可得AD=DB,AE=BE,然后再计算出AC+BC的长,再利用△ABC的周长为26cm可得AB长,进而可得答案.[解析](1)∵AB=AC,∴∠ABC=∠C,∠A=40°,∴∠ABC70°,∵DE是边AB的垂直平分线,∴DA=DB,∴∠DBA=∠A=40°,∴∠DBC=∠ABC﹣∠DBA=70°﹣40°=30°;(2)∵△BCD的周长为16cm,∴BC+CD+BD=16,∴BC+CD+AD=16,∴BC+CA=16,∵△ABC的周长为26cm,∴AB=26﹣BC﹣CA=26﹣16=10,∴AC=AB=10,∴BC=26﹣AB﹣AC=26﹣10﹣10=6cm.[点睛]此题主要考查了线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.23.如图,已知△ABC中,AB=AC,BD=CE,(1)求证:△ABE≌△ACD.(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度数.[分析](1)由等腰三角形的性质可得∠B=∠C,由BD=CE可得BE=CD,根据“SAS”可证△ABE≌△ACD;(2)根据全等三角形的性质可得∠BAE=∠CAD,可得∠BAD=∠CAE=30°,即可求∠DAE的度数.[解答]证明:(1)∵AB=AC∴∠B=∠C∵BD=CE∴BE=CD,且AB=AC,∠B=∠C,∴△ABE≌△ACD(SAS)(2)由(1)得,△ABE≌△ACD∴∠BAE=∠CAD∴∠BAD=∠CAE=30°∴∠DAE=150[点睛]本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练运用全等三角形的判定是本题的关键.24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△ACQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.[分析](1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠P AQ=60°,从而得出△APQ是等边三角形.[解答]证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠P AQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.[点睛]本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证△ABP≌△ACQ是解题的关键.25.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数) 需付费y元,则y与x的函数表达式为y=4x﹣4;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.[分析](1)连续骑行5h,要分两个阶段计费:前两个小时,按每个小时2元计算,后3个小时按每个小时计算,可得结论;(2)根据超过2h的计费方式可得:y与x的函数表达式;(3)根据题意可知:里程超过2个小时,根据(2)的表达式可得结果.[解析](1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.[点睛]本题是一次函数的应用,考查了分段函数的知识,属于基础题,解答本题的关键是仔细审题,得出各段的收费标准.26.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.[分析](1)由图象可知:汽车行驶400千米,剩余油量30升,行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升),故加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70,求出解析式,当y=5 时,可得x=650.[解析](1)由图象可知:汽车行驶400千米,剩余油量30升,∵行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升)∴加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,30)坐标代入可得:k=﹣0.1,b=70∴y=﹣0.1x+70,当y=5 时,x=650即已行驶的路程的为650千米.[点睛]该题是根据题意和函数图象来解决问题,考查学生的审题识图能力和待定系数法求解析式以及根根解析式求值.27.基本图形:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=3,CD=1,则AD的长为2.[分析](1)结论:BC=DC+EC.证明△BAD≌△CAE(SAS)即可解决问题.(2)结论:BD2+CD2=DE2.由△BAD≌△CAE,推出BD=CE,∠ACE=∠B,可得∠DCE=90°,利用勾股定理即可解决问题.(3)法一:构造如图所示图形,△ADE是等腰直角三角形,易得△ABE≌△ACD,BE=CD,∠BEA=∠ADC=45°,再得△BED是直角三角形,得,所以AD=2.法二:作AE⊥AD,使AE=AD,连接CE,DE.由△BAD≌△CAE(SAS),推出BD=CE=3,由∠ADC=45°,∠EDA=45°,可得∠EDC=90°,再利用勾股定理即可解决问题.[解析](1)结论:BC=DC+EC.理由:如图①中,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∴BC=BD+CD=EC+CD,即:BC=DC+EC;(2)结论:BD2+CD2=DE2.理由:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2.(3)法一:构造如图所示图形,△ADE是等腰直角三角形,易得△ABE≌△ACD,BE=CD,∠BEA=∠ADC=45°,再得△BED是直角三角形,得,所以AD=2.法二:作AE⊥AD,使AE=AD,连接CE,DE.∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=3,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE,∵∠DAE=90°,∴AD2+AE2=DE2∴AD=2.故答案为2.[点睛]本题属于几何变换综合题,考查了等腰直角三角形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.28.阅读下面材料:小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系.小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).请回答:(1)在图2中,小明得到的全等三角形是△ADC≌△A′DC;BC和AC、AD之间的数量关系是BC=AC+AD.(2)参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.求AB的长.(3)如图4,在平面直角坐标系中,直线y=﹣x+4交x轴于点A,交y轴于点B,C是OA的中点,D为AB上一点,且∠DCA=∠BCO,连接OD,CD,求.[分析](1)由CD平分∠ACB知∠ACD=∠A′CD,结合CA=CA′,CD=CD即可判定△ADC≌△A′DC;由全等性质知AC=A′C,AD=A′D,再证A′B=AD可得答案;(2)在AB上截取AE=AD,连接CE,先证△ADC≌△AEC得AE=AD=9,CE=CD=10=BC,作CF⊥AB,设EF=BF=x,利用勾股定理求得x=6,根据AB=AE+EF+FB可得答案;(3)在BC上取D′,使得CD=CD′,先证△ACD≌△OCD′得AD=OD′,∠CAD=∠COD′,再证△OBD′≌△AOD得BD′=OD,根据BC=BD′+CD′=OD+CD代入求解可得.[解析](1)在图2中,∵CD平分∠ACB,∴∠ACD=∠A′CD,∵CA=CA′,CD=CD,∴△ADC≌△A′DC(SAS),即小明得到的全等三角形是△ADC≌△A′DC,∴AC=A′C,AD=A′D,∠A=∠CA′D=60°,∵∠ACB=90°,∠A=60°,∴∠B=30°,∴∠A′DB=∠B=30°,∴A′D=A′B,∴A′B=AD,∵BC=A′C+A′B,∴BC=AC+AD,故答案为:ADC,A′DC,BC=AC+AD.(2)在AB上截取AE=AD,连接CE,如图3所示:∵AC平分∠BAD,∴∠DAC=∠EAC.在△AEC和△ADC中,∵∴AE=AD=9,CE=CD=10=BC,过点C作CF⊥AB于点F,∴EF=BF,设EF=BF=x.在Rt△CFB中,∠CFB=90°,由勾股定理得CF2=CB2﹣BF2=102﹣x2,在Rt△CF A中,∠CF A=90°,由勾股定理得CF2=AC2﹣AF2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2.解得:x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB的长为21.(3)在BC上取D′,使得CD=CD′,∵C是OA中点,∴CO=CA,∵∠ACD=∠OCD′,∴△ACD≌△OCD′(SAS),∴AD=OD′,∠CAD=∠COD′,∵y=﹣x+4与x轴的交点A(4,0),与y轴的交点B(0,4),∴OA=OB=4,∠OAB=∠OBA=45°=∠COD′,∴∠BOD′=∠OAD=45°,在△OBD′和△AOD中,∵,∴BD′=OD,则BC=BD′+CD′=OD+CD,∴1.[点睛]本题是一次函数的综合问题,解题的关键是掌握全等三角形的判定与性质,勾股定理的运用及一次函数图象上点的坐标特征等知识点.。

苏科版八年级上册数学《期末检测题》含答案解析

苏科版八年级上册数学《期末检测题》含答案解析
4.下列四组线段 、 、 ,不能组成直角三角形的是( )
A. B.
C. D.
[答案]D
[解析]
[分析]
根据勾股定理逆定理,即若三角形中两边到的平方和等于第三边的平方,那么这个三角形是直角三角形,对每项进行计算判断即可.
[详解]解:A. ,
B. ,
C. ,
.
[点睛]本题考查了勾股定理的逆定理,解决本题的关键是熟练掌握勾股定理逆定理,正确计算出每项的结果.
(2)在射线 上找一点 ,使 .
19.已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠H.求证:BC=DH.
20.如图,在 中, , , , .求 的长.
21.如图,在 网格中,每个小正方形 边长都为1,画图请加粗加黑.
(1)图中格点 的面积为______.
(2)在图中建立适当 平面直角坐标系,使点 , .
24.一次函数 的图象经过点 和点 .
(1)求一次函数的表达式;
(2)若此一次函数的图像与 轴交于点 ,求 的面积.
25.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.
x
···
1
2
3
5
7
9
···
y
···
1.98
3.95
2.63
1.58
1.13
0.88
···
小腾根据学习一次函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.
A. B. C. D.
4.下列四组线段 、 、 ,不能组成直角三角形的是( )
A. B.
C. D.
5.若 , 是一次函数 的图象上的两个点,则 与 的பைடு நூலகம்小关系是( )

苏科版八年级(上)期末数学试卷(含答案)

苏科版八年级(上)期末数学试卷(含答案)

苏科版八年级(上)期末数学试卷(含答案) 一、选择题 1.下列各组数中互为相反数的是( )A .2-与2B .2-与38-C .2-与12-D .2-与()22-2.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .36B .332C .6D .33.已知一次函数y=kx +3(k≠0)的图象经过点A ,且函数值y 随x 的增大而增大,则点A 的坐标可能是( )A .(﹣2,﹣4)B .(1,2)C .(﹣2,4)D .(2,﹣1)4.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为( )A .31︒B .62︒C .87︒D .93︒5.如图,CD 是Rt△ABC 斜边AB 上的高,将△BCD 沿CD 折叠,点B 恰好落在AB 的中点E 处,则∠A 等于( )A .25°B .30°C .45°D .60° 6.若等腰三角形的一个内角为92°,则它的顶角的度数为( )A .92°B .88°C .44°D .88°或44° 7.下列标志中属于轴对称图形的是( )A .B .C .D .8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD 9.如果等腰三角形两边长是5cm 和2cm ,那么它的周长是( ) A .7cmB .9cmC .9cm 或12cmD .12cm 10.点M (3,-4)关于y 轴的对称点的坐标是( )A .(3,4)B .(-3,4)C .(-3,-4)D .(-4,3) 11.下列电视台的台标中,是轴对称图形的是( )A .B .C .D .12.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )A .x >-1B .x <-1C .x <-2D .无法确定13.估算x =5值的大小正确的是( ) A .0<x <1B .1<x <2C .2<x <3D .3<x <4 14.如图,若BD 为等边△ABC 的一条中线,延长BC 至点E ,使CE =CD =1,连接DE ,则DE 的长为( )A 3B 3C 5D 515.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题16.4的算术平方根是 .17.函数1y=x 2-中,自变量x 的取值范围是 ▲ . 18.若函数4y kx =-的图象平行于直线2y x =-,则函数的表达式是________.19.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 20.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.21.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______.22.如图,等边△OAB 的边长为2,以它的顶点O 为原点,OB 所在的直线为x 轴,建立平面直角坐标系.若直线y =x +b 与△OAB 的边界总有两个公共点,则实数b 的范围是____.23.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y24.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.25.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________三、解答题26.如图,在四边形ABCD 中,90ABC ∠=︒,过点B 作BE CD ⊥,垂足为点E ,过点A 作AF BE ⊥,垂足为点F ,且BE AF =.(1)求证:ABF BCE ∆≅∆;(2)连接BD ,且BD 平分ABE ∠交AF 于点G .求证:BCD ∆是等腰三角形.27.阅读下面的情景对话,然后解答问题:老师:我们定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.小华:等边三角形一定是奇异三角形!小明:那直角三角形中是否存在奇异三角形呢?问题(1):根据“奇异三角形”的定义,请你判断小华提出的猜想:“等边三角形一定是奇异三角形”是否正确?___________填“是”或“否”)问题(2):已知Rt ABC 中,两边长分别是5,52第三边长是_____________;问题(3):如图,以AB 为斜边分别在AB 的两侧作直角三角形,且AD BD =,若四边形ADBC 内存在点E ,使得AE AD =,CB CE =.试说明:ACE △是奇异三角形.28.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:7×13-6×14=7,17×23-16×24=7,不难发现,结果都是7.①请你再选择一个类似的部分试一试,看看是否符合这个规律;②请你利用整式的运算对以上的规律加以证明.29.如图,一辆货车和一辆轿车先后从甲地开往乙地,线段OA 表示货车离开甲地的距离y (km )与时间x (h )之间的函数关系;折线BCD 表示轿车离开甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象解答下列问题:(1)甲、乙两地相距 km ,轿车比货车晚出发 h ;(2)求线段CD 所在直线的函数表达式;(3)货车出发多长时间两车相遇?此时两车距离甲地多远?30.(阅读·领会) (0)a a ≥的式子叫做二次根式,其中a 叫做被开方数.其中,被开方数相同的二次根式叫做同类二次根式.像同类项一样,同类二次根式也可以合并,合并方法类似合并同类项,是把几个同类二次根式前的系数相加,作为结果的系数,即((0).x x m n x x =+≥利用这个式子可以化简一些含根式的代数式. .(0,0)a b ab a b =≥≥我们可以利用以下方法证明这个公式:一般地,当0,0a b ≥≥时, 根据积的乘方运算法则,可得222()(()a b a b ab =⨯=, ∵2)(0)a a a =≥,∴2()ab ab =a b ab ab 的算术平方根, ∴.(0,0)a b ab a b =≥≥利用这个式子,可以进行一些二次根式的乘法运算..(0,0)ab a b a b =≥≥它可以用来化简一些二次根式. 材料三:一般地,化简二次根式就是使二次根式:(I )被开方数中不含能开得尽方的因数或因式;(II )被开方数中不含分母;(III )分母中不含有根号.这样化简完后的二次根式叫做最简二次根式.(积累·运用)(1)仿照材料二中证明二次根式乘法公式那样,试推导二次根式的除法公式. (2)化简:2325(2)(0,0,0)a b c a b c -≥≥≥=______.(3)当0a b <<时,化简2232232,a b b ab a a b a b a b +-+-+并求当7,9a b =⎧⎨=⎩时它的值. 31.如图,已知直线l 1:y 1=x +b 经过点A (﹣5,0),交y 轴于点B ,直线l 2:y 2=﹣2x ﹣4与直线l 1:y 1=x +b 交于点C ,交y 轴于点D .(1)求b 的值;(2)求△BCD 的面积;(3)当0≤y 2<y 1时,则x 的取值范围是 .(直接写出结果)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据相反数的性质判断即可;【详解】A 中-2=2,不是互为相反数;B 382-=-,不是相反数;C 中两数互为倒数;D 中两数互为相反数;故选:D .【点睛】本题主要考查了相反数的性质应用,准确分析是解题的关键.2.D解析:D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=12OC=3,CH=3OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.3.A解析:A【解析】【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【详解】∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A. ∵当x=-2,y=-4时,-2k+3=-4,解得k=3.5>0,∴此点符合题意,故本选项正确;B. ∵当x=1,y=2时, k+3=2,解得k=-1<0,∴此点不符合题意,故本选项错误;C. ∵当x=-2,y=4时,-2k+3=4,解得k=−0.5<0,∴此点不符合题意,故本选项错误;D. ∵当x=2,y=−1时,2k+3=−1,解得k=-2<0,∴此点不符合题意,故本选项错误. 故答案选A..【点睛】本题考查的知识点是一次函数图像上点的坐标特征,解题的关键是熟练的掌握一次函数图像上点的坐标特征.4.C解析:C【解析】【分析】根据垂直平分线的性质,可以得到∠C=∠ABC ,再根据角平分线的性质,得到∠ABC 的度数,最后利用三角形内角和即可解决.【详解】∵DE 垂直平分BC ,DB DC ∴=,31C DBC ︒∴∠=∠=,∵BD 平分ABC ∠,262ABC DBC ︒∴∠=∠=,180A ABC C ︒∴∠+∠+∠=,180180623187A ABC C ︒︒︒︒︒∴∠=-∠-∠=--=故选C【点睛】本题考查了垂直平分线的性质,角平分线的性质和三角形内角和,解决本题的关键是熟练掌握三者性质,正确理清各角之间的关系.5.B解析:B【解析】【分析】先根据图形折叠的性质得出BC=CE ,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE ,进而可判断出△BEC 是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【详解】解:∵△ABC 沿CD 折叠B 与E 重合,∴BC=CE ,∵E 为AB 中点,△ABC 是直角三角形,∴CE=BE=AE ,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选B.【点睛】本题考查折叠的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握折叠的性质:折叠前后的对应边相等,对应角相等.6.A解析:A【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】解:(1)若等腰三角形一个底角为92°,因为92°+92°=184°>180°,所以这种情况不可能出现,舍去;(2)等腰三角形的顶角为92°.因此这个等腰三角形的顶角的度数为92°.故选A.【点睛】本题考查了等腰三角形的性质.如果已知等腰三角形的一个内角要求它的顶角,需要分该内角是顶角和这个内角是底角两种情况讨论.本题能根据92°角是钝角判断出92°只能是顶角是解题关键.7.C解析:C【解析】【分析】根据对称轴的定义,关键是找出对称轴即可得出答案.【详解】解:根据对称轴定义A、没有对称轴,所以错误B、没有对称轴,所以错误C、有一条对称轴,所以正确D、没有对称轴,所以错误故选 C【点睛】此题主要考查了对称轴图形的判定,寻找对称轴是解题的关键.8.D解析:D【解析】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.9.D解析:D【解析】【分析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论.【详解】解:当三边是2cm,2cm,5cm时,不符合三角形的三边关系;当三角形的三边是5cm,5cm,2cm时,符合三角形的三边关系,此时周长是5+5+2=12cm.故选:D.【点睛】考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.10.C解析:C【解析】【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y 轴的对称点P′的坐标是(−x,y).【详解】∵点M(3,−4),∴关于y轴的对称点的坐标是(−3,−4).故选:C.【点睛】此题主要考查了关于x轴、y轴对称点的坐标特点,熟练掌握关于坐标轴对称的特点是解题关键.11.A解析:A【解析】【详解】B,C,D不是轴对称图形,A是轴对称图形.故选A.12.B解析:B【解析】【分析】如图,直线l1:y1=k1x+b与直线l2:y2=k2x在同一平面直角坐标系中的图像如图所示,则求关于x的不等式k1x+b>k2x的解集就是求:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围.【详解】解:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围是x<-1.故关于x的不等式k1x+b>k2x的解集为:x<-1.故选B.13.C解析:C【解析】【分析】.【详解】∴23,故选:C.【点睛】此题主要考查无理数的估值,熟练掌握,即可解题.14.B解析:B【解析】【分析】由等边三角形的性质及已知条件可证BD=DE,可知BC长及BD⊥AC,在Rt△BDC中,由勾股定理得BD长,易知DE长.【详解】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=12∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD =CD =1,∵△ABC 是等边三角形,∴BC =AC =1+1=2,且BD ⊥AC ,在Rt △BDC 中,由勾股定理得:BD ==即DE =BD故选:B .【点睛】本题主要考查了等边三角形的性质,灵活利用等边三角形三线合一及三个角都是60度的性质是解题的关键. 15.D解析:D【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题16.【解析】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【解析】试题分析:∵224=,∴4算术平方根为2.故答案为2.考点:算术平方根.17..【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.解析:x 2≠.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.18.y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x ,∴k=-2,函数的表达式为y=-2解析:y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x ,∴k=-2,函数的表达式为y=-2x-4.故答案为:y=-2x-4.【点睛】本题考查了两条直线平行的问题,一次函数平行系数的特点是解题的关键.19.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根,∴x=2,即a-2=2,解得:a=4,故答案为:4. 【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD⊥AB,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴22435 ∵C (0,-1),∴OC=1,∴BC=3+1=4,∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯,解得,165 CD=.故答案为:16 5.【点睛】此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD的长.21.(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标解析:(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标为1−4=−3;即新点的坐标为(-1,-3),故填:(-1,-3).【点睛】本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.22.【解析】【分析】由题意,可知点A坐标为(1,),点B坐标为(2,0),由直线与△OAB的边界总有两个公共点,有截距b在线段CD之间,然后分别求出点C坐标和点D坐标,即可得到答案.【详解】解解析:21b-<<【解析】【分析】由题意,可知点A坐标为(1),点B坐标为(2,0),由直线y x b=+与△OAB 的边界总有两个公共点,有截距b在线段CD之间,然后分别求出点C坐标和点D坐标,即可得到答案.【详解】解:如图,过点A 作AE ⊥x 轴,.∵△ABC 是等边三角形,且边长为2, ∴OB=OA=2,OE=1,∴22213AE -=∴点A 为(13B 为(2,0);当直线y x b =+经过点A (13ABC 边界只有一个交点, 则13b +=31b =,∴点D 的坐标为(31);当直线y x b =+经过点B (2,0)时,与△ABC 边界只有一个交点,则20b +=,解得:2b =-,∴点C 的坐标为(0,2-);∴直线y x b =+与△OAB 的边界总有两个公共点时,截距b 在线段CD 之间,∴实数b 的范围是:231b -<<; 故答案为:231b -<<.【点睛】本题考查了等边三角形的性质,一次函数的图形和性质,解题的关键是掌握一次函数的图像和性质,掌握直线与等边三角形有一个交点是临界点,注意分类讨论. 23.<【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小即可判断.【详解】∵一次函数中k=<0,∴y 随x 的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛解析:<【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小即可判断.【详解】 ∵一次函数312y x =-+中k=32-<0, ∴y 随x 的增大而减小,∵x 1>x 2,∴y 1<y 2.故答案为:<.【点睛】 此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b ,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.24..【解析】【分析】根据一次函数,,时图象经过第二、三、四象限,可得,,即可求解;【详解】经过第二、三、四象限,∴,,∴,,∴,故答案为.【点睛】本题考查一次函数图象与系数的关系解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.25.2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比解析:2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比例函数的定义,形如y =kx (k 是常数,k ≠0)的函数,其中k 叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.三、解答题26.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据ASA 证明ΔABF ≌ΔBCE 即可;(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC =∠BDE ,根据等角对等边即可得到BC =CD ,从而得到结论.【详解】(1)∵BE ⊥CD ,AF ⊥BE ,∴∠BEC =∠AFB =90°,∴∠ABE +∠BAF =90°.∵∠ABC =90°,∴∠ABE +∠EBC =90°,∴∠BAF =∠EBC .在ΔABF 和ΔBCE 中,∵∠AFB =∠BEC ,AF =BE ,∠BAF =∠EBC ,∴ΔABF ≌ΔBCE .(2)∵∠ABC =90°,∴∠ABD +∠DBC =90°.∵∠BED =90°,∴∠DBE +∠BDE =90°.∵BD 分∠ABE ,∴∠ABD =∠DBE ,∴∠DBC =∠BDE ,∴BC =CD ,即ΔBCD 是等腰三角形.【点睛】本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明ΔABF ≌ΔBCE .27.(1)是;(2);(3)见解析【解析】【分析】问题(1)根据题中所给的奇异三角形的定义直接进行判断即可.问题(2)分c 是斜边和b 是斜边两种情况,再根据勾股定理判断出所给的三角形是否符合奇异三角形的定义.问题(3)利用勾股定理得AC 2+BC 2=AB 2,AD 2+BD 2=AB 2,由AD=BD ,则AD=BD ,所以2AD 2=AB 2,加上AE=AD ,CB=CE ,所以AC 2+CE 2=2AE 2,然后根据新定义即可判断△ACE 是奇异三角形.【详解】(1)解:设等边三角形的一边为a ,则a 2+a 2=2a 2,∴符合奇异三角形”的定义.∴“等边三角形一定是奇异三角形”是真命题;故答案为:是;(2)解:①当225255, ∵22255252(或22255225)∴Rt △ABC 不是奇异三角形,②当5,2252553 ∵22553=100,2252100∴222553=252, ∴Rt △ABC 是奇异三角形,故答案为53;(3)证明∵∠ACB=∠ADB=90°,∴AC 2+BC 2=AB 2,AD 2+BD 2=AB 2,∵AD=BD ,∴2AD 2=AB 2,∵AE=AD ,CB=CE ,∴AC 2+CE 2=2AE 2,∴△ACE 是奇异三角形.【点睛】本题属于四边形综合题,考查了解直角三角形,勾股定理,奇异三角形的定义等知识,解题的关键是理解题意,灵活运用.28.(1)见解析;(2)证明见解析.【解析】【分析】(1)直接利用已知数据求出即可;(2)利用数字之间的变化规律得出一般式,进而验证即可.【详解】(1)例如11×17-10×18=7;3×9-2×10=7;(2)设最小的一个数为x ,其他三个分别为x+1,x+7,x+8,则:(x+1)(x+7)-x (x+8),=x 2+8x+7-x 2-8x ,=7.【点睛】此题考查了数字的变化规律,整式的混合运算,由特殊到一般,利用日历表中数字的特点得出一般性结论解决问题.29.(1)300;1.2 (2)y =110x ﹣195 (3)3.9;234千米【解析】【分析】(1)由图象可求解;(2)利用待定系数法求解析式;(3)求出OA 解析式,联立方程组,可求解.【详解】解:(1)由图象可得:甲、乙两地相距300km ,轿车比货车晚出发1.2小时; 故答案为:300;1.2;(2)设线段CD 所在直线的函数表达式为:y =kx +b ,由题意可得:300=4.580 2.5k b k b +⎧⎨=+⎩解得:110195k b =⎧⎨=-⎩ ∴线段CD 所在直线的函数表达式为:y =110x ﹣195;(3)设OA 解析式为:y =mx ,由题意可得:300=5m ,∴m =60,∴OA 解析式为:y =60x ,∴60110195y x y x =⎧⎨=-⎩∴ 3.9234x y =⎧⎨=⎩ 答:货车出发3.9小时两车相遇,此时两车距离甲地234千米.【点睛】本题考查了一次函数的应用,理解图象,是本题的关键.30.(1)见解析;(2)2abc ;(3)ab -,463- 【解析】【分析】(1)仿照材料二中证明二次根式乘法公式的方法,推导二次根式的除法公式 (2)根据二次根式乘法公式进行计算即可(3)先根据二次根式除法公式进行化简,再把a 和b 的值代入即可【详解】解:(10,0)a b =≥> 证明如下:一般地,当0,0a b ≥>时,根据商的乘方运算法则,可得22a b ==∵2(0)a a =≥,∴2a b =a b 的算术平方根,∴0,0)a b =≥>利用这个式子,可以进行一些二次根式的除法运算.0,0)a b=≥>它可以用来化简一些二次根式.(20,0,0)2a b c abc ≥≥≥==故答案为:2abc (3)当0a b <<时,1a b b a a b ab a ab+-===--+当79a b =⎧⎨=⎩时,原式=46363-=- 【点睛】本题考查二次根式的乘法和除法法则,,解题的关键是熟练运用公式以及二次根式的性质,本题属于中等题型.31.(1)b =5;(2)272;(3)﹣3<x ≤﹣2 【解析】【分析】(1)把点A 的坐标代入直线l 1:y 1=x +b ,列出方程并解答;(2)利用两直线相交求得点C 的坐标,由直线l 2、l 1求得点B 、D 的坐标,根据三角形的面积公式解答;(3)结合图形直接得到答案.【详解】(1)把A (﹣5,0)代入y 1=x +b ,得﹣5+b =0解得b =5;(2)由(1)知,直线l 1:y 1=x +5,且B (0,5). 根题意知,524y x y x =+⎧⎨=--⎩. 解得32x y =-⎧⎨=⎩,即C (﹣3,2). 又由y 2=﹣2x ﹣4知,D (0,﹣4).所以 BD =9.所以S △BCD =12BD •|x C |=1932⨯⨯=272; (3)由(2)知,C (﹣3,2).当y=0时,﹣2x﹣4=0,此时x=﹣2.所以由图象知,当0≤y2<y1时,则x的取值范围是﹣3<x≤﹣2.故答案是:﹣3<x≤﹣2.【点睛】此题主要考查一次函数性质的综合应用,熟练掌握,即可解题.。

苏科版八年级(上)期末数学试卷(含答案)[1]

苏科版八年级(上)期末数学试卷(含答案)[1]

苏科版八年级(上)期末数学试卷(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(苏科版八年级(上)期末数学试卷(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为苏科版八年级(上)期末数学试卷(含答案)(word版可编辑修改)的全部内容。

八年级数学期末考试一、选择题(每小题2分,共16分)1。

点P ( 2,-3 )关于x 轴的对称点是( ▲ )A . (-2, 3 )B . (2,3)C .(-2, 3 )D .(2,-3 ) 2。

若2=a ,则a 的值为 ( ▲ )A.2B.2± C 。

4 D.±43.把0.697按四舍五入法精确到0.01的近似值是 ( ▲ )A. 0.6B. 0.7 C 。

0。

67 D. 0。

70 4。

一次函数y =2x +1的图像不经过( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限 5.若440-=m ,则估计m 的值所在的范围是 ( )A .1<m <2B .2<m <3C .3<m <4D .4<m <56。

若点A (-3,y 1),B(2,y 2),C (3,y 3)是函数2+-=x y 图像上的点,则( )A .321y y y >>B .321y y y <<C .231y y y <<D .132y y y >>7。

某电视台“走基层"栏目的一位记者乘汽车赴320km 外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结论正确的是( )A .汽车在高速公路上的行驶速度为100km/hB .乡村公路总长为90kmC .汽车在乡村公路上的行驶速度为60km/hD .该记者在出发后5h 到达采访地8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版数学八年级上期末练习班级 姓名 学号 成绩一、选择题(每题2分,共12分) 1.下列图形中,既是轴对称图形,又是中心对称图形的是 ( )A 、1个B 、2个C 、3个D 、4个 >2.平面直角坐标系内一点P (-2,3)关于原点对称的点的坐标是 ( )A 、(3,-2)B 、(2,3)C 、(-2,-3)D 、(2,-3) 3.若数据2,x ,4,8的平均数是4,则这组数据的众数和中位数是 ( ) A 、3和2 B 、2和3 C 、2和2 D 、2和4 4.在88885858858885.0,)2(,14.3,22,4,30π-…,中无理数的个数是( ) A 、2个 B 、3个 C 、4个 D 、5个 5.下列说法:(1)对角线相等的四边形是矩形; (2)对角线互相垂直的四边形是菱形;(3)有一个角为直角且对角线互相平分的四边形是矩形; ·(4)菱形的对角线的平方和等于边长的平方的4倍。

其中,正确的说法有 ( )A 、1个B 、2个C 、3个D 、4个 6.如图(1),在直角梯形ABCD 中,AB ∥CD ,∠ABC =90º,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ ABP 的面积为y ,如果y 关于x 的函数图象如图(2)所示,则△BCD 的面积是( ) A 、3 B 、4 C 、5 D 、6 二、填空题(每题2分,共24分)7.函数y =x -3中自变量x 的取值范围是___________。

8.直线y =kx +b 经过一、二、四象限,则k 、b 应满足k _____0, b ____0 (填“>”、“=”或“<”)。

9.点C 到x 轴的距离为1,到y 轴的距离为3,且在第三象限,则C 点坐标是 . *10.小明的体重约为千克,保留两个有效数字是__________;近似数万精确到 位。

11.-64的立方根是 ,49的平方根是 。

12.已知:如图,矩形ABCD 的两条对角线相交于点O ,060=∠AOB ,1=AB ,AE平分BAD ∠交BC 于点E .则AC 的长为 ,EC 的长为 。

13.如果平行四边形的四个内角的平分线能围成一个四边形,那么这个四边形一定是 。

14.如图DE 是△ABC 的中位线,FG 是梯形BCED 的中位线,如果DE=4,那么FG= 。

15.若菱形的的周长为40cm ,两条对角线长的比为3:4,则此菱形的面积为 。

16.一次函数的图象平行于y=2x 且与x 轴交于点(-3,0),则这个函数的关系式为 。

17.已知直线y=kx+b 经过点(0,1)且与坐标轴所围成的三角形的面积是2,则该直线的解析式为 。

18.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =8,点M 在BC 上,且BM =2,N 是AC上一动点,则BN +MN 的最小值为 。

三、解答题(本大题共8小题,共64分) \ 19.(本题共两小题,每题4分,共8分)(1)已知:(x +5)2=16,求x ;;(2)计算:223(6)27(5)-+-(第18题) C B A NM 》第12题A F ED B 第14题'20.(本题满分8分) 镇江市教育局为了了解本市中小学实施素质教育的情况,抽查了某校初一年级甲、乙两个班的部分学生,了解他们在一周内(星期一至星期五)参加课外活动的次数情况,抽查结果统计如下:(1)在这抽查中,甲班被抽查了 人;乙班被抽查了 人.(2)在被抽查的学生中,甲班学生参加课外活动的平均次数为 次,中位数是 次;乙班学生参加课外活动的平均次数为 次,中位数是 次. (3)根据以上信息,用你学过的知识,估计甲、乙两班在开展课外活动方面哪个班更好一些答 . <(4)从图中你还能得到哪些信息(写一个即可)21.(本题满分7分) 已知y-1与x -3成正比例,当x=4时,y=3. (1)试求y 与x 的函数关系式.并作出图象 (2)根据图象回答x 为何值时, 73≤≤-y(22.(6分)如图在四边形ABCD 中,点E 、F 是对角线BD 上的两点,且BE=DF , (1)若四边形AECF 是平行四边形,求证四边形ABCD 是平行四边形 (2)若四边形AECF 是菱形,那么四边形ABCD 也是菱形吗为什么。

(3)若四边形AECF 是矩形,试判断四边形ABCD 的形状(不必写理由)。

ABCD E F·23.(本题7分)如图,直线l 1的解析表达式为y =12x +1,且l 1与x 轴交于点D ,直线l 2经过定点A ,B ,直线l 1与l 2交于点C . (1)求直线l 2的函数关系式; (2)求△ADC 的面积;(3)在直线l 2上存在异于点C 的另一点P ,使得△ADP与△ADC 的面积相等,请直接..写出点P 的坐标.%24.(8分)有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.如图是反映所挖河渠长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题:(1)乙队开挖到30米时,用了 小时.开挖6小时时,甲队比乙队多挖了 米; (2)请你求出:①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式;②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式;)③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队y ~A BOCl 1l 2D54>(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米.25.(10分) 如图,四边形OABC 为直角梯形,已知AB ∥OC ,BC ⊥OC ,A 点坐标为(3,4),AB =6。

(1)求出直线OA 的函数解析式; (2)求出梯形OABC 的周长;(3)若直线l 经过点D (3,0),且直线l 将直角梯形OABC 的面积分成相等的两部分,试求出直线l 的函数解析式。

(4)若直线l 经过点D (3,0),且直线l 将直角梯形OABC 的周长分为5:7两部分,试求出直线l 的函数解析式。

)…26.(本题满分10分) 如图:已知OE ⊥OF ,OP 平分∠EOF ,边长为2的正方形OABC 的两顶点A 、C 分别在OE 、OF 上,现将正方形OABC 绕O 点顺时针旋转,当A 点落在OP上时停止旋转,旋转过程中,AB 边交OP 于点M ,BC 边交OF 于点N 。

|(1)旋转过程中,当MN 和AC 平行时,求正方形OABC 旋转的度数; (2)在(1)的情况下,求MBN ∆的周长{参考答案一、选择题(本大题共6小题,每小题2分,共12分) 1.C 2.D 3.B 4.B 5.B 6.A 二、填空题(本大题有12小题,,每题2分,共24分)7.x ≥3 8.< > 9.(-3,-1) 10.52; 百 11.-4 7±12.213- 13.矩形 14.6 15.96 16.y=2x+6 17.141+±=x y18.10三、解答题(本大题共8小题,共64分) 19.(本题共两小题,每题4分,共8分) ((1)x +5=±4 ………………(2分) (2)原式=6+3-5 …(3分) x =—1或x = —9 ………(4分) = 4 ……(4分) 20.(本题满分8分)(1)10 10 (2) 3 2 (3)甲 (4) 两个班参加2~3次活动的人数多一些,参加1次或5次课外活动的人数少一些。

(答案)不唯一21.(本题满分7分)(1)解:设y-1=k(x-3),代入x=4时,y=3. ------(1分) k=2 y=2x-5 --------------- (2分)作出图象 ---------------(4分)(2) 61≤≤x ---------(7分)%22.(本题满分6分)(1)证明:连接AC 交BD 于点O. ∵四边形AECF 是平行四边形,∴AO=CO ,EO=FO.又∵BE=DF ,而BO=EO+BE ,DO=FO+DF , ∴BO=DO.∴四边形ABCD 是平行四边形. ---------(3分) (2)∵四边形AECF 是菱形 ∴AC ⊥EF 即AC ⊥BD ∴平行四边形ABCD 是菱形 ---------(5分) (3)四边形ABCD 是平行四边形 --------(6分) 23.(本题7分)(1)解:设求直线2l 的函数关系式为)0(≠+=k b kx y[∵点A (4,0)和点B (-1,5)在直线2l 上,∴ 0=4k +b ,5=-k +b ∴k =-1,b =4∴y =-x +4 …………………… (2分)(2) 点D 的坐标为(-2,0). ∵121,4x x y x ⎧=+⎪⎨⎪=-+⎩ ∴2,2.x y =⎧⎨=⎩ ∴点C 的坐标为(2,2)…………………(4分)∴S △ADC =6×2÷2=6.………………………(5分) (3)P (6,-2).…………………………(7分)24.(本题满分8分) 解:(1)2,10 …………………………(2分) *(2)○1y=10x …………………………(3分) ○2y=5x+20 …………………………(4分) ○310x=5x+20 解得x=4 由图象可知当x>4时,即开挖4小时后,甲队所挖掘河渠的长度开始超过乙队。

…………………………(6分) (3)设甲队从开始挖到完工所挖河渠的长度为x 米1250610-+=x x 解此方程,得x=110 答:甲队从开挖到完工所挖河渠的长度为110米 ……………(8分) 25.(本题满分10分)解:(1)设OA 的解析式为y=kx ,则3k=4,(∴34=k . ∴ OA 的解析式为.x y 34=…………………… (2分) (2)延长BA 交y 轴于点D , ∵BA ∥OC ,∴AD ⊥y 轴.且AD=3,OD=4.∴AO=5,∴DB=3+6=9. ∴OC=9,又BC=OD=4.∴C OABC =OA +AB +BC +OC=5+6+4+9=24. …………………… (4分)(3)30=OABC S ,设P 为AB 上一点,15=OAPD S则P (215,4) 设y=kx+b ⎪⎩⎪⎨⎧=+=+421503b k b k⎪⎪⎩⎪⎪⎨⎧-==3898b k3898-=x y …………………… (6分)(4)∵C OABC =24,故被分成的两部分分别为10和14.。

若左边部分为10,设P 为AB 上一点,∴p(5,4).……………………(10分)26. (本题满分10分) 解:(1)∵MN ∥AC ,∴45BMN BAC ∠=∠=︒,45BNM BCA ∠=∠=︒. ∴BMN BNM ∠=∠.∴BM BN =.又∵BA BC =,∴AM CN =.又∵OA OC =,OAM OCN ∠=∠,∴OAM OCN ∆≅∆.∴AOM CON ∠=∠.∴1(90452AOM ∠=︒-︒)=22.5︒.∴旋转过程中,当MN 和AC 平行时,正方形OABC 旋转的度数为45︒-22.5︒=22.5︒.…………………………………(5分)(2) 证明:延长BA 交OE 于D 点∵∠EOP=45° 由(1)得∠AOD=°∴∠AOD=°∵∠OAM=∠OAD=90° OA=OA ∴△OAD ≌△OAM ∴AD=AM OD=OM又∵OAM OCN ∆≅∆ ∴OM=ON AM=CN ∴OD=ON AD=AM=CN ∠DOM=∠NOM=45° ∴ MD=MN∴MBN ∆的周长:BM+MN+BN=BM+DM+BN=BM+AM+AD=AB+BC=4 ………………(10分)FE PD。

相关文档
最新文档