高一数学不等式解法经典例题

合集下载

不等式解法15种典型例题

不等式解法15种典型例题

不等式解法15种典型例题典型例题一解15种典型例题的不等式,需要注意处理好有重根的情况。

例如,如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>(或f(x)<)可用“穿根法”求解。

对于偶次或奇次重根,可以转化为不含重根的不等式,也可直接用“穿根法”,但要注意“奇穿偶不穿”,其法如图。

下面分别解两个例题:例题一:解不等式2x-x²-15x>0;(x+4)(x+5)(2-x)<231)原不等式可化为x(2x+5)(x-3)>0.把方程x(2x+5)(x -3)=0的三个根5,-1,3顺次标上数轴。

然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分。

∴原不等式解集为{x|-5<x<0}∪{x|x>3}。

2)原不等式等价于(x+4)(x+5)(x-2)>23.用“穿根法”得到原不等式解集为{x|x<-5或-5<x<-4或x>2}。

典型例题二解分式不等式时,要注意它的等价变形。

当分式不等式化为f(x)/g(x)<(或≤)时,可以按如下方法解题。

1)解:原不等式等价于3(x+2)-x(x-2)-x²+5x+6/3x(x+2)<1-2x+2.化简后得到原不等式等价于(x-6)(x+1)(x-2)(x+2)≥0.用“穿根法”得到原不等式解集为{x|x<-2或-1≤x≤2或x≥6}。

2)解法一:原不等式等价于2x²-3x+1/2x²-9x+14>0.化简后得到原不等式等价于(x-1)(2x-1)(3x-7)<0.用“穿根法”得到原不等式解集为{x|x<1/2或7/3<x<1}。

解法二:原不等式等价于(2x-1)(x-1)<0.用“穿根法”得到原不等式解集为{x|x<1/2或x>1}。

例7解不等式2ax-a2>1-x(a>0)。

分析:将不等式移项整理得到2ax+x>a2+1,然后按照无理不等式的解法化为两个不等式组,再分类讨论求解。

解:原不等式等价于(1) 2ax-a2>1-x,或(2) 2ax-a2<1-x。

高一基本不等式例题

高一基本不等式例题

高一基本不等式例题
高一的基本不等式是数学中的重要概念,它在解决实际问题和
证明数学定理中起着重要作用。

以下是一些高一基本不等式的例题:
1. 证明,对任意实数x,都有x^2 ≥ 0。

解答,要证明x^2 ≥ 0,我们可以通过两种方法来证明。

一种
是利用平方的非负性质,即任何实数的平方都大于等于0。

另一种
是利用不等式的性质,即如果a ≥ b且c ≥ 0,则ac ≥ bc。

因此,我们有x^2 = xx ≥ 00 = 0,所以x^2 ≥ 0。

2. 解不等式,2x 5 > 3。

解答,要解这个不等式,我们首先将不等式转化为标准形式,
得到2x > 3 + 5,即2x > 8。

然后将不等式两边都除以2,得到x > 4。

所以不等式2x 5 > 3的解集为x > 4。

3. 求证,对任意实数x,都有x + 1/x ≥ 2。

解答,要证明x + 1/x ≥ 2,我们可以利用平均值不等式。


据平均值不等式,对任意两个正实数a和b,有(a + b)/2 ≥
√(ab)。

将a取为x,b取为1/x,代入平均值不等式得到(x +
1/x)/2 ≥ √(x1/x) = 1。

因此,x + 1/x ≥ 2。

以上是一些关于高一基本不等式的例题,希望能够帮助你更好地理解和掌握这一知识点。

如果你有其他关于基本不等式的问题,也欢迎随时向我提问。

高一数学不等式练习题

高一数学不等式练习题

高一数学不等式练习题在高中数学的学习中,不等式是基础而重要的概念之一,它在解决实际问题中有着广泛的应用。

以下是一些高一数学不等式的练习题,供同学们练习和巩固知识。

练习题一:解绝对值不等式1. 解不等式 |x - 3| < 2。

2. 解不等式|x + 4| ≥ 5。

练习题二:解一元一次不等式3. 解不等式 3x - 5 > 10。

4. 解不等式 -2x + 1 ≤ -4。

练习题三:解一元二次不等式5. 解不等式 x^2 - 4x + 3 > 0。

6. 解不等式 2x^2 + 5x - 3 ≤ 0。

练习题四:解含有分式的不等式7. 解不等式 \(\frac{x - 1}{x + 2} > 0\)。

8. 解不等式 \(\frac{2x - 3}{x^2 - 1} < 0\)。

练习题五:解含有根式的不等式9. 解不等式 \(\sqrt{x} - 2 < 0\)。

10. 解不等式 \(\sqrt{2x + 3} ≥ x\)。

练习题六:解含有指数和对数的不等式11. 解不等式 \(2^x > 8\)。

12. 解不等式 \(\log_2(x - 1) < 1\)。

练习题七:解不等式组13. 解不等式组:\[\begin{cases}x + 2 > 0 \\3 - 2x ≥ 4\end{cases}\]14. 解不等式组:\[\begin{cases}3x - 1 < 5x + 2 \\x^2 - 4x + 4 ≤ 0\end{cases}\]练习题八:应用题15. 某工厂需要生产一批零件,每件零件的成本为 \(c\) 元,售价为\(s\) 元。

若工厂希望每件零件的利润不低于 5 元,求 \(c\) 和\(s\) 之间的关系。

16. 某公司计划购买一批电脑,每台电脑的价格不超过 3000 元。

如果公司希望每台电脑的利润率不低于 20%,求电脑的最低进价。

完整版)高一不等式及其解法习题及答案

完整版)高一不等式及其解法习题及答案

完整版)高一不等式及其解法习题及答案教学目标】1.能够熟练解一元二次不等式、高次不等式和分式不等式2.理解分类讨论的数学思想并能够应用于解含参不等式教学重难点】分类讨论的数学思想教学过程】题型一:解一元二次不等式例1:解下列不等式1)2x²-3x-2>0;(2)-6x²-x+2≥0;(3)2x²-4x+70方法总结:对于一元二次不等式ax²+bx+c>0或ax²+bx+c<0,可以通过求出其判别式Δ=b²-4ac的值,来判断其解的情况。

1.当Δ>0时,方程有两个不相等的实数根,解集为x根2;2.当Δ=0时,方程有两个相等的实数根,解集为x=根1=根2;3.当Δ<0时,方程无实数根,解集为空集。

变式练】1-1.已知不等式ax²+bx+c的解集为(2,3),求不等式cx²+bx+a的解集。

题型二:解高次不等式例2:求不等式(x-4)(x-6)≤0的解集。

方法总结:对于高次不等式,可以通过将其化为一元二次不等式的形式,再利用一元二次不等式的解法来求解。

变式练】2-1.解不等式x(x-1)(x+1)(x+2)≥0.题型三:解分式不等式例3-1:解下列不等式1) 23/(x²-4x+1) < 1;(2) 23/(x²-4x+1) ≤ 2;(3) 23x-7/(x²-2x+1)。

方法总结:对于分式不等式,可以通过将其化为分子分母同号的形式,再利用一元二次不等式的解法来求解。

题型四:解含参数的一元二次不等式例4-1:解关于x的不等式2x+ax+2>(a∈R)。

方法总结:对于含参不等式,可以通过分类讨论的思想来解决。

首先讨论a的值,然后根据a的取值再讨论不等式的解集。

变式练】1.已知a∈R,解关于x的不等式ax-(a+1)x+1<2.2.解不等式a(x-1)/(x-2)。

高一数学含参数不等式的解法

高一数学含参数不等式的解法

解: 原不等式可化为:
(x a)( x a2 ) 0
当a 0时,则a a2,原不等式的解集为 {x | x a或x a2}
当a 0时,则a a2 0,原不等式的解集为 {x | x 0}
当0 a 1时,则a2 a,原不等式的解集为 {x | x a2或x a}
若b 0,则原不等式的解集为
若b 0, 则原不等式的解集为R
综上所述原不等式的解集为:
当a 0时, 解集为{x | x b}
a 当a 0时, 解集为{x | x b}
a
当a 0且b 0时, 解集为
当a 0且b 0时, 解集为R
例2.解关于x的不等式
x2 (a a2 )x a3 0(a R)
|

a 7

x

a 8

(2) ax2 (2a 1)x 2 0
当a

0时,
解集为x
|
1 a

x

2
当a 0时, 解集为x | x | x 2
当0

a

1 2
时,
解集为x
|
x

1 a
或x

2
当a 1 时, 解集为x | x 2
log
a
(1

1 x
)

1
分析: 因为a作为对数的底数,故a的取值为 a 1或0 a 1
所以要分成 a 1或0 a 1
两种情况进行讨论.
解:
原不等式可化为:
log
a
(1

1 x

高一基本不等式典型例题

高一基本不等式典型例题

高一基本不等式典型例题咱们可以从简单的说起,比如说“算术几何不等式”,这就像是把两个世界放在一起。

想象一下,你和你的朋友比赛,谁能吃掉更多的冰淇淋。

你有个平整的碗,他却用一个歪歪扭扭的杯子,这可就显现出你们之间的差距了吧。

算术不等式就像在告诉我们,平均水平不一定是最好的。

追求均匀反而会让我们失去更多的乐趣。

大家都知道“冰淇淋越多越好”,但如果你的朋友吃到了一堆融化的冰淇淋,那可真是让人心疼了。

再来看看“柯西施瓦兹不等式”,哎,这个名字听起来就很高大上。

它的意思简单得不能再简单了。

想象你和你的另一半一起去逛街,你们买了两样东西。

结果,你买了很多小东西,他却只买了一个大包包。

你可能会觉得你们的选择有点不太对等。

这个不等式就像是在说,两个变量的乘积,其实不一定比各自的和要小。

听起来复杂,其实就是告诉我们,合作的力量比单打独斗要强大得多。

接着说说“赫尔德不等式”,这真的是个妙不可言的东西。

咱们假设有个小团队,大家各自分工,最后合力把事情做好。

就像一群小蚂蚁,虽然每只蚂蚁的力量微不足道,但它们合在一起,简直能搬起比自己大好几倍的东西。

赫尔德不等式就是在提醒我们,团结的力量是无限的,简直就是“众人拾柴火焰高”的真实写照。

不等式的世界里,总是充满了惊喜。

想象一下,如果有一天你发现你的成绩居然能通过不等式来提升,那感觉简直爽翻了。

只要你能掌握这些不等式,仿佛打开了一个新的大门,所有的数学问题都在向你招手,等待着你去探索。

说不定,这些公式和定理还能帮你在考试中逆袭,成为大家口中的“数学天才”。

理解不等式并不容易。

学习的过程就像走在沙滩上,脚下的沙子不断滑动,让你时而有点失去平衡。

不过没关系,咱们都知道,走路嘛,总是要有跌跌撞撞的。

重要的是,别放弃,要勇敢地走下去。

毕竟,“不经历风雨,怎能见彩虹”嘛!每一次的尝试都是一次成长,每一个错误都是一次进步。

想说的是,不等式就像是一把钥匙,打开了通往数学王国的大门。

只要你用心去理解,去感受,那些原本复杂的公式,都会变得简单明了。

高中不等式例题(超全超经典)

高中不等式例题(超全超经典)

一.不等式的性质:二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。

其中比较法(作差、作商)是最基本的方法。

三.重要不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x+≥ (当且仅当1x =时取“=”); 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 2ab a +b ≤ab ≤ a +b 2 ≤ a 2+b 22 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x 解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。

解不等式例题50道

解不等式例题50道

解不等式例题50道一、一元一次不等式1. 解不等式:2x + 5>9- 解析:- 首先对不等式进行移项,将常数项移到右边,得到2x>9 - 5。

- 计算右边式子得2x>4。

- 两边同时除以2,解得x > 2。

2. 解不等式:3x-1<8- 解析:- 移项可得3x<8 + 1。

- 即3x<9。

- 两边同时除以3,解得x<3。

3. 解不等式:5x+3≤slant2x + 9- 解析:- 移项,把含x的项移到左边,常数项移到右边,得到5x-2x≤slant9 - 3。

- 计算得3x≤slant6。

- 两边同时除以3,解得x≤slant2。

4. 解不等式:4x-7≥slant3x+1- 解析:- 移项得4x - 3x≥slant1+7。

- 即x≥slant8。

5. 解不等式:(1)/(2)x+3>x - 1- 解析:- 移项可得(1)/(2)x-x>-1 - 3。

- 通分计算,((1)/(2)-(2)/(2))x>-4,即-(1)/(2)x>-4。

- 两边同时乘以 - 2,不等号变向,解得x < 8。

6. 解不等式:(2)/(3)x-1≤slant(1)/(3)x+2- 解析:- 移项得(2)/(3)x-(1)/(3)x≤slant2 + 1。

- 计算得(1)/(3)x≤slant3。

- 两边同时乘以3,解得x≤slant9。

7. 解不等式:2(x + 3)>3(x - 1)- 解析:- 先展开括号,得到2x+6>3x - 3。

- 移项得2x-3x>-3 - 6。

- 计算得-x>-9。

- 两边同时乘以 - 1,不等号变向,解得x < 9。

8. 解不等式:3(x - 2)≤slant2(x+1)- 解析:- 展开括号得3x-6≤slant2x + 2。

- 移项得3x-2x≤slant2+6。

- 计算得x≤slant8。

【其中复习】高一数学不等式解法经典例题

【其中复习】高一数学不等式解法经典例题

【其中复习】高一数学不等式解法经典例题解下列分式不等式:(1);(2)分析:当分式不等式化为时,要注意它的等价变形①②(1)解:原不等式等价于用“穿根法”∴原不等式解集为。

(2)解法一:原不等式等价于∴原不等式解集为。

解法二:原不等式等价于用“穿根法”∴原不等式解集为典型例题三例3 解不等式分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义二是根据绝对值的性质:或,因此本题有如下两种解法、解法一:原不等式即∴或故原不等式的解集为、解法二:原不等式等价于即∴、典型例题四例4 解不等式、分析:这是一个分式不等式,其左边是两个关于二次式的商,由商的符号法则,它等价于下列两个不等式组:或所以,原不等式的解集是上面两个不等式级的解集的并集、也可用数轴标根法求解、解法一:原不等式等价下面两个不等式级的并集:或或或或或、∴原不等式解集是、解法二:原不等式化为、画数轴,找因式根,分区间,定符号、符号∴原不等式解集是、说明:解法一要注意求两个等价不等式组的解集是求每组两个不等式的交集,再求两组的解的并集,否则会产生误解、解法二中,“定符号”是关键、当每个因式的系数为正值时,最右边区间一定是正值,其他各区间正负相间;也可以先决定含0的区间符号,其他各区间正负相间、在解题时要正确运用、典型例题五例5 解不等式、分析:不等式左右两边都是含有的代数式,必须先把它们移到一边,使另一边为0再解、解:移项整理,将原不等式化为、由恒成立,知原不等式等价于、解之,得原不等式的解集为、说明:此题易出现去分母得的错误解法、避免误解的方法是移项使一边为0再解、另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理、典型例题六例6 设,解关于的不等式、分析:进行分类讨论求解、解:当时,因一定成立,故原不等式的解集为、当时,原不等式化为;当时,解得;当时,解得、∴当时,原不等式的解集为;当时,原不等式的解集为、说明:解不等式时,由于,因此不能完全按一元二次不等式的解法求解、因为当时,原不等式化为,此时不等式的解集为,所以解题时应分与两种情况来讨论、在解出的两根为,后,认为,这也是易出现的错误之处、这时也应分情况来讨论:当时,;当时,、典型例题七例7 解关于的不等式、分析:先按无理不等式的解法化为两个不等式组,然后分类讨论求解、解:原不等式或由,得:由判别式,故不等式的解是、当时,,,不等式组(1)的解是,不等式组(2)的解是、当时,不等式组(1)无解,(2)的解是、综上可知,当时,原不等式的解集是;当时,原不等式的解集是、说明:本题分类讨论标准“,”是依据“已知及(1)中‘,’,(2)中‘,’”确定的、解含有参数的不等式是不等式问题中的难点,也是近几年高考的热点、一般地,分类讨论标准(解不等式)大多数情况下依“不等式组中的各不等式的解所对应的区间的端点”去确定、本题易误把原不等式等价于不等式、纠正错误的办法是熟练掌握无理不等式基本类型的解法、典型例题八例8 解不等式、分析:先去掉绝对值号,再找它的等价组并求各不等式的解,然后取它们的交集即可、解答:去掉绝对值号得,∴原不等式等价于不等式组∴原不等式的解集为、说明:解含绝对值的不等式,关键是要把它化为不含绝对值的不等式,然后把不等式等价转化为不等式组,变成求不等式组的解、典型例题九例9 解关于的不等式、分析:不等式中含有字母,故需分类讨论、但解题思路与一般的一元二次不等式的解法完全一样:求出方程的根,然后写出不等式的解,但由于方程的根含有字母,故需比较两根的大小,从而引出讨论、解:原不等式可化为、(1)当(即或)时,不等式的解集为:;(2)当(即)时,不等式的解集为:;(3)当(即或1)时,不等式的解集为:、说明:对参数进行的讨论,是根据解题的需要而自然引出的,并非一开始就对参数加以分类、讨论、比如本题,为求不等式的解,需先求出方程的根,,因此不等式的解就是小于小根或大于大根、但与两根的大小不能确定,因此需要讨论,,三种情况、典型例题例10 已知不等式的解集是、求不等式的解集、分析:按照一元二次不等式的一般解法,先确定系数的正负,然后求出方程的两根即可解之、解:(解法1)由题可判断出,是方程的两根,∴,、又的解集是,说明、而,,∴、∴,即,即、又,∴,∴的解集为、(解法2)由题意可判断出,是方程的两根,∴、又的解集是,说明、而,、对方程两边同除以得、令,该方程即为,它的两根为,,∴,、∴,,∴方程的两根为,、∵,∴、∴不等式的解集是、说明:(1)万变不离其宗,解不等式的核心即是确定首项系数的正负,求出相应的方程的根;(2)结合使用韦达定理,本题中只有,是已知量,故所求不等式解集也用,表示,不等式系数,,的关系也用,表示出来;(3)注意解法2中用“变换”的方法求方程的根、典型例题二例12 若不等式的解为,求、的值、分析:不等式本身比较复杂,要先对不等式进行同解变形,再根据解集列出关于、式子、解:∵,,∴原不等式化为、依题意,∴、说明:解有关一元二次方程的不等式,要注意判断二次项系数的符号,结合韦达定理来解、典型例题三例13 不等式的解集为,求与的值、分析:此题为一元二次不等式逆向思维题,要使解集为,不等式需满足条件,,的两根为,、解法一:设的两根为,,由韦达定理得:由题意:∴,,此时满足,、解法二:构造解集为的一元二次不等式:,即,此不等式与原不等式应为同解不等式,故需满足:∴,、说明:本题考查一元二次方程、一元二次不等式解集的关系,同时还考查逆向思维的能力、对有关字母抽象问题,同学往往掌握得不好、典型例题四例14 解关于的不等式、分析:本题考查一元一次不等式与一元二次不等式的解法,因为含有字母系数,所以还考查分类思想、解:分以下情况讨论(1)当时,原不等式变为:,∴(2)当时,原不等式变为:①①当时,①式变为,∴不等式的解为或、②当时,①式变为、②∵,∴当时,,此时②的解为、当时,,此时②的解为、说明:解本题要注意分类讨论思想的运用,关键是要找到分类的标准,就本题来说有三级分类:分类应做到使所给参数的集合的并集为全集,交集为空集,要做到不重不漏、另外,解本题还要注意在讨论时,解一元二次不等式应首选做到将二次项系数变为正数再求解、典型例题五例15 解不等式、分析:无理不等式转化为有理不等式,要注意平方的条件和根式有意义的条件,一般情况下,可转化为或,而等价于:或、解:原不等式等价于下面两个不等式组:①②由①得,∴由②得∴,所以原不等式的解集为,即为、说明:本题也可以转化为型的不等式求解,注意:,这里,设全集,,则所求不等式的解集为的补集,由或、即,∴原不等式的解集是、。

高一数学一元二次不等式解法经典例题

高一数学一元二次不等式解法经典例题

例1若OVaVl,则不等式(x-a)(x--)<0的解是a[]1A・ a<x< 一1B・一Vx<aaC・ x>1 或xVaaD・ x< -或x>aa分析比较a与丄的大小后雪出答案.a解VO<a<l, Aa<-,解应当在“两根之间”,得aVxV丄.a a选A.例2 Jx2-x-6有意义,贝收的取值范围是___________ .分析求算术根,被开方数必须是非负数.解据题意有,x2-x-620,即(x—3)(x+2)20,解在“两根之外”,所以xN3或xW—2.例 3 若ax2+bx-l<0 的解集为{xl~l<x<2},则a= _______ , b= _________ .分析根据一元二次不等式的解公式可知,一1和2是方程ax?+bx—l= 0的两个根,考虑韦达定理.解根据题意,一1, 2应为方程ax2+bx—1= 0的两根,则由韦达定理知b__ =(_l)+ 2 = 1< : 得—— =(—l)X2 = —2a1 1 ap,b—亍例4解下列不等式(1)(x-l)(3-x)<5-2x(2)x(x+ll)23(x+l)2(3)(2x +l)(x-3)> 3(x2+2), 3 , (4)3x~ -3x + 1> - —9 1(5)x~ -x + 1> -x(x- 1)分析将不等式适当化简变为ax^+bx+c>0(<0)形式, 然后根据“解公式”给出答案(过程请同学们自己完成).答(l){xlx<2 或x>4}3(2){xllWxW 寸(3)0(4)R(5)R说明:不能使用解公式的时候要先变形成标准形式.例5不等式l+x> 丄的解集为1-X[A.{xlx>0}B.{xIxNl}C. {xlx>l}D. {xlx>l 或 x=0}分析直接去分母需要考虑分母的符号,所以通常是采用移项后通分.解不等式化为1+X —丄>0,通分得三即土>。

高一数学不等式解法经典例题92436

高一数学不等式解法经典例题92436

典型例题一例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x 分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x x x x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

高中一年级数学不等式解法经典例题

高中一年级数学不等式解法经典例题

∴ 或
故原不等式的解集为 .
解法二:原不等式等价于
即 ∴ .
典型例题四
例4解不等式 .
分析:这是一个分式不等式,其左边是两个关于 二次式的商,由商的符号法则,它等价于下列两个不等式组:

所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.
解法一:原不等式等价下面两个不等式级的并集:
而 , .
对方程 两边同除以 得

令 ,该方程即为
,它的两根为 , ,
∴ , .∴ , ,
∴方程 的两根为 , .
∵ห้องสมุดไป่ตู้,∴ .
∴不等式 的解集是 .
说明:(1)万变不离其宗,解不等式的核心即是确定首项系数的正负,求出相应的方程的根;(2)结合使用韦达定理,本题中只有 , 是已知量,故所求不等式解集也用 , 表示,不等式系数 , , 的关系也用 , 表示出来;(3)注意解法2中用“变换”的方法求方程的根.
典型例题五
例5解不等式 .
分析:不等式左右两边都是含有 的代数式,必须先把它们移到一边,使另一边为0再解.
解:移项整理,将原不等式化为 .
由 恒成立,知原不等式等价于 .
解之,得原不等式的解集为 .
说明:此题易出现去分母得 的错误解法.避免误解的方法是移项使一边为0再解.
另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理.

(3)当 (即 或1)时,不等式的解集为:

说明:对参数进行的讨论,是根据解题的需要而自然引出的,并非一开始就对参数加以分类、讨论.比如本题,为求不等式的解,需先求出方程的根 , ,因此不等式的解就是 小于小根或 大于大根.但 与 两根的大小不能确定,因此需要讨论 , , 三种情况.

高一数学的不等式证明经典例题

高一数学的不等式证明经典例题

典型例题一例1 假如10<<x ,证明)1(log )1(log x x a a +>-〔0>a 且1≠a 〕.分析1 用作差法来证明.需分为1>a 和10<<a 两种情况,去掉绝对值符号,然后比拟法证明.解法1 〔1〕当1>a 时,因为 11,110>+<-<x x , 所以 )1(log )1(log x x a a +--)1(log )1(log x x a a +---=0)1(log 2>--=x a .〔2〕当10<<a 时, 因为 11,110>+<-<x x 所以 )1(log )1(log x x a a +--)1(log )1(log x x a a ++-=0)1(log 2>-=x a .综合〔1〕〔2〕知)1(log )1(log x x a a +>-.分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比拟法.因为 )1(log )1(log x x a a +--a x a x lg )1lg(lg )1lg(+--=[])1lg()1lg(lg 1x x a+--=[])1lg()1lg(lg 1x x a+---=0)1lg(lg 12>--=x a, 所以)1(log )1(log x x a a +>-.说明:解法一用分类相当于增设了条件,便于在变形中脱去绝对值符号;解法二用对数性质〔换底公式〕也能达到同样的目的,且不必分而治之,其解法自然简捷、明快.典型例题二例2 设0>>b a ,求证:.abba b a b a >分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式.证明:b a a b ba ab b a b a b aba b a ---=⋅=)( ∵0>>b a ,∴.0,1>->b a ba∴1)(>-b a b a . ∴a b ba ba b a .1> 又∵0>abb a , ∴.abba b a b a >.说明:此题考查不等式的证明方法——比拟法(作商比拟法).作商比拟法证明不等式的步骤是:判断符号、作商、变形、判断与1的大小.典型例题三例3 对于任意实数a 、b ,求证444()22a b a b ++≥〔当且仅当a b =时取等号〕 分析 这个题假如使用比拟法来证明,将会很麻烦,因为,所要证明的不等式中有4()2a b +,展开后很复杂。

高一数学不等式解法经典例题

高一数学不等式解法经典例题

学习必备欢迎下载
典型例题一
例1解不等式:(1)015223x x x
;(2)0)2()5)(4(32x x x .分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(x f (或0)(x f )可用“穿根法”求解,但要注意处理好有重根的情况.
解:(1)原不等式可化为
0)
3)(52(x x x 把方程0)3)(52(x x x 的三个根3,25,0321x x x 顺次标上数轴.然后从右上
开始画线顺次经过三个根,其解集如下图的阴影部分.
∴原不等式解集为
3
025x x x 或(2)原不等式等价于2450)2)(4(050)2()5)(4(32x x
x x x x
x x
x 或∴原不等式解集为2
455x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或
奇次重根可转化为不含重根的不等式,也可直接用“穿根法”
,但注意“奇穿偶不穿”,其法如下图.
典型例题二
例2 解下列分式不等式:
(1)22
123
x x ;(2)1
2731422
x x x x 分析:当分式不等式化为)0(0)()
(或x g x f 时,要注意它的等价变形。

高一数学不等式经典例题与解析

高一数学不等式经典例题与解析

高一数学不等式经典例题与解析
对于即将升入高中的同学来说,高中数学是一个让人比较头疼的科
目,下面是小编为大家整理的高一数学不等式经典例题与解析,希望能对大
家有所帮助。

 高一数学不等式经典例题与解析 例1 解下列不等式(1)(x-1)(3-x);3(x2+2)分
析将不等式适当化简变为ax2+bx+c>;0(;4}解关于x的不等式(x-2)(ax-2)>;0.
分析不等式的解及其结构与a相关,所以必须分类讨论.解1° 当a=0时,
原不等式化为x-2;0,其解集是{x|x≠2};从而可以写出不等式的解集为:a=0
时,{x|x 例2 若不等式ax2+bx+c>;0的解集为{x|α分析
 由一元二次函数、方程、不等式之间关系,一元二次不等式的解集实质上
是用根来构造的,这就使“解集”通过“根”实现了与“系数”之间的联系.考虑使
用韦达定理:解法一由解集的特点可知a;0,c;0解为α说明:要在一题多解
中锻炼自己的发散思维.分析将一边化为零后,对参数进行讨论.进一步化为
(ax+1-a)(x-1);0时,不等式化为(2)a=0时,不等式化为x-1 例3 绝对值大
于2且不大于5的最小整数是[ ]A.3 B2C.-2 D5分析列出不等式.解根据题意得2 例5 实数a,b满足ab;|a-
b|C.|a+b|;0,原不等式的解集为{x|a-b答选D.说明:本题实际上是利用端点
的位置关系构造新不等式组.以上是小编整理的《高一数学不等式经典例题与
解析》,了解更多关于高中数学的最新资讯,请随时关注!。

高一数学不等式经典例题

高一数学不等式经典例题

高一数学不等式经典例题数学嘛,有时候就像个神秘的盒子,让人既爱又恨。

你知道吗,特别是高一的同学们,面对那些不等式题,心里总是嘀咕:这到底是什么鬼!这就像是你要在一个迷宫里找出口,前面有个大叔在那儿笑眯眯地指路,结果说的全是些晦涩难懂的术语。

哎,真是让人哭笑不得。

今天咱们就来聊聊这不等式,轻松一下,让你们在考试时不至于抓狂。

想象一下,有一天你走进教室,老师在黑板上写下一个大大的不等式,像个大石头压在心头。

你可能心里想:这是什么情况,简直是天书!别担心,咱们先来拆解一下。

就拿“(a > b)”这事儿来说。

你可以把它想象成两个小朋友在赛跑,(a) 小朋友跑得飞快,而 (b) 小朋友慢得像个乌龟。

结果大家都知道,(a) 先到终点,(b) 只能在后面追着嚷:“慢点啊,别跑那么快!”不等式的魅力就在于它的灵活性。

你可以像变魔术一样,把它们变来变去,比如说,如果你把两边都加上一个数字,情况就会变化。

这就像你给两位小朋友都加上一块蛋糕,嘿,谁还不是个小富翁呢?可是呢,别忘了,减去的操作也是可以的。

就像你把小朋友的玩具藏起来,那就麻烦了,大家都要小心翼翼,不然就容易发生“争抢”事件。

说到不等式,咱们还得提到一个超级英雄,叫做“三角不等式”。

听上去很高大上,其实它就是在说:“两个边加起来大于第三边。

”简单来说,就是你跟朋友一起出去玩,两个小伙伴的力气加起来总得大于你一个人的力气,这样才能一起把大西瓜搬回家!想想那场景,几个小伙伴围着大西瓜,笑得像花儿一样,真是个欢乐的夏天!还有一个特别好玩的东西,叫做“均值不等式”。

这玩意儿告诉我们,平均数总是比最小值大。

就好比班里有几个小伙伴考得特别差,结果平均下来,大家的分数却居然还不错!这时候,大家可能会说:“哎,看看,那些学霸果然是拖了后腿啊!”可见,团队的力量是多么强大,有时候大家一起努力,分数能比单打独斗高出一截。

面对这些不等式,常常有同学会感到无从下手。

解题的关键在于细心和耐心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型例题一例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x 分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形①0)()()()(<⋅⇔<xgxfxgxf②0)()()()()()()()()()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤xgxfxfxgxfxgxgxfxgxf或或(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-)2)(2()2)(2)(1)(6()2)(2()1)(6()2)(2(65)2)(2()2()2(32232232xxxxxxxxxxxxxxxxxxxxxxxxx用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

(2)解法一:原不等式等价于027313222>+-+-xxxx212131273132273132)273)(132(222222><<<⇔⎪⎩⎪⎨⎧<+-<+-⎪⎩⎪⎨⎧>+->+-⇔>+-+-⇔xxxxxxxxxxxxxxx或或或∴原不等式解集为),2()1,21()31,(+∞⋃⋃-∞。

解法二:原不等式等价于0)2)(13()1)(12(>----xxxx)2()13)(1)(12(>-⋅---⇔xxxx用“穿根法”∴原不等式解集为),2()1,21()31,(+∞⋂⋃-∞典型例题三例3 解不等式242+<-x x分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义⎩⎨⎧<-≥=)0()0(a a a a a二是根据绝对值的性质:a x a x a x a a x >⇔<<-⇔<.,或a x -<,因此本题有如下两种解法.解法一:原不等式⎪⎩⎪⎨⎧+<-<-⎪⎩⎪⎨⎧+<-≥-⇔240424042222x x x x x x 或 即⎩⎨⎧>-<<<-⎩⎨⎧<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<<x故原不等式的解集为{}31<<x x .解法二:原不等式等价于 24)2(2+<-<+-x x x即⎪⎩⎪⎨⎧+->-+<-)2(42422x x x x ∴312132<<⎩⎨⎧-<><<-x x x x 故或.典型例题四例4 解不等式04125622<-++-x x x x . 分析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号法则,它等价于下列两个不等式组:⎪⎩⎪⎨⎧>-+<+-041205622x x x x 或⎪⎩⎪⎨⎧<-+>+-041205622x x x x 所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解. 解法一:原不等式等价下面两个不等式级的并集:⎪⎩⎪⎨⎧>-+<+-0412,05622x x x x 或⎪⎩⎪⎨⎧<-+>+-0412,05622x x x x ⎩⎨⎧<-+<--⇔;0)6)(2(,0)5)(1(x x x x 或⎩⎨⎧>-+>--;0)6)(2(,0)5)(1(x x x x;⎩⎨⎧<<-<<⇔62,51x x 或⎩⎨⎧>-<><6,2,5,1x x x x 或或 ,51<<⇔x 或2-<x 或6>x .∴原不等式解集是}6512{><<-<x x x x ,或,或.解法二:原不等式化为0)6)(2()5)(1(>-+--x x x x .画数轴,找因式根,分区间,定符号.)6)(2()5)(1(-+--x x x x 符号∴原不等式解集是}6512{><<-<x x x x ,或,或.说明:解法一要注意求两个等价不等式组的解集是求每组两个不等式的交集,再求两组的解的并集,否则会产生误解. 解法二中,“定符号”是关键.当每个因式x 的系数为正值时,最右边区间一定是正值,其他各区间正负相间;也可以先决定含0的区间符号,其他各区间正负相间.在解题时要正确运用.典型例题五例5 解不等式x x x x x <-+-+222322. 分析:不等式左右两边都是含有x 的代数式,必须先把它们移到一边,使另一边为0再解.解:移项整理,将原不等式化为0)1)(3()1)(2(2>+-++-x x x x x . 由012>++x x 恒成立,知原不等式等价于0)1)(3()2(>+--x x x .解之,得原不等式的解集为}321{><<-x x x 或.说明:此题易出现去分母得)23(2222x x x x x -+<-+的错误解法.避免误解的方法是移项使一边为0再解.另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理.典型例题六例6 设R m ∈,解关于x 的不等式03222<-+mx x m . 分析:进行分类讨论求解.解:当0=m 时,因03<-一定成立,故原不等式的解集为R . 当0≠m 时,原不等式化为0)1)(3(<-+mx mx ;当0>m 时,解得m x m 13<<-; 当0<m 时,解得mx m 31-<<.∴当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-m x m x 13;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<m x mx31. 说明:解不等式时,由于R m ∈,因此不能完全按一元二次不等式的解法求解.因为当0=m 时,原不等式化为03<-,此时不等式的解集为R ,所以解题时应分0=m 与0≠m 两种情况来讨论.在解出03222=-+mx x m 的两根为m x 31-=,m x 12=后,认为mm 13<-,这也是易出现的错误之处.这时也应分情况来讨论:当0>m 时,mm 13<-;当0<m 时,m m 13>-.典型例题七例7 解关于x 的不等式)0(122>->-a x a ax .分析:先按无理不等式的解法化为两个不等式组,然后分类讨论求解.解:原不等式⎪⎩⎪⎨⎧->-≥->-⇔;)1(2,01,02)1(222x a ax x a ax 或⎩⎨⎧<-≥-.01,02)2(2x a x由0>a ,得:⎪⎪⎩⎪⎪⎨⎧<+++-≤>⇔;01)1(2,1,2)1(22a x a x x a x ⎪⎩⎪⎨⎧>≥⇔.1,2)2(x a x由判别式08)1(4)1(422>=+-+=∆a a a ,故不等式01)1(222<+++-a x a x 的解是a a x a a 2121++<<-+.当20≤<a 时,1212≤-+≤a a a,121>++a a ,不等式组(1)的解是121≤<-+x a a ,不等式组(2)的解是1>x .当2>a 时,不等式组(1)无解,(2)的解是2a x ≥. 综上可知,当20≤<a 时,原不等式的解集是[)+∞-+,21a a ;当2>a 时,原不等式的解集是⎪⎭⎫⎢⎣⎡+∞,2a .说明:本题分类讨论标准“20≤<a ,2>a ”是依据“已知0>a 及(1)中‘2ax >,1≤x ’,(2)中‘2ax ≥,1>x ’”确定的.解含有参数的不等式是不等式问题中的难点,也是近几年高考的热点.一般地,分类讨论标准(解不等式)大多数情况下依“不等式组中的各不等式的解所对应的区间的端点”去确定.本题易误把原不等式等价于不等式)1(22x a ax ->-.纠正错误的办法是熟练掌握无理不等式基本类型的解法.典型例题八例8 解不等式331042<--x x .分析:先去掉绝对值号,再找它的等价组并求各不等式的解,然后取它们的交集即可. 解答:去掉绝对值号得3310432<--<-x x , ∴原不等式等价于不等式组⇒⎪⎩⎪⎨⎧<-->-⇒⎪⎩⎪⎨⎧<----<-06104010433104310432222x x x x x x x x ⎪⎪⎩⎪⎪⎨⎧<<-><⇒⎩⎨⎧<+->-.321,2500)12)(3(20)52(2x x x x x x x 或 ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<<<-325021x x x 或.说明:解含绝对值的不等式,关键是要把它化为不含绝对值的不等式,然后把不等式等价转化为不等式组,变成求不等式组的解.典型例题九例9 解关于x 的不等式0)(322>++-a x a a x .分析:不等式中含有字母a ,故需分类讨论.但解题思路与一般的一元二次不等式的解法完全一样:求出方程0)(322=++-a x a a x 的根,然后写出不等式的解,但由于方程的根含有字母a ,故需比较两根的大小,从而引出讨论.解:原不等式可化为0))((2>--a x a x .(1)当2a a <(即1>a 或0<a )时,不等式的解集为:{}2a x a x x ><或;(2)当2a a >(即10<<a )时,不等式的解集为:{}a x a x x><或2;(3)当2a a =(即0=a 或1)时,不等式的解集为:{}a x R x x≠∈且.说明:对参数进行的讨论,是根据解题的需要而自然引出的,并非一开始就对参数加以分类、讨论.比如本题,为求不等式的解,需先求出方程的根a x =1,22a x =,因此不等式的解就是x 小于小根或x 大于大根.但a 与2a 两根的大小不能确定,因此需要讨论2a a <,2a a >,2a a =三种情况.典型例题十例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.分析:按照一元二次不等式的一般解法,先确定系数c 的正负,然后求出方程02=++a bx cx 的两根即可解之.解:(解法1)由题可判断出α,β是方程02=++c bx ax 的两根, ∴a b -=β+α,ac =β⋅α. 又02>++c bx ax 的解集是{}β<<αx x ,说明0<a .而0>α,0>β000<⇒>⇒>αβ⇒c a c, ∴0022<++⇔>++cax c b x a bx cx .⎪⎪⎩⎪⎪⎨⎧--==--=+-=⇒⎪⎪⎩⎪⎪⎨⎧=⋅-=+),1)(1(1,11βααββααββαβαβαa c c b a c ab ∴02<++cax c b x ,即0)1)(1()11(2<β-α-+β-α-+x x ,即0)1)(1(<β-α-x x .又β<α<0,∴β>α11,∴0)1)(1(<β-α-x x 的解集为⎭⎬⎫⎩⎨⎧α<<β11x x . (解法2)由题意可判断出α,β是方程02=++c bx ax 的两根,∴ac=β⋅α. 又02>++c bx ax 的解集是{}β<<αx x ,说明0<a . 而0>α,0>β000<⇒>⇒>αβ⇒c ac. 对方程02=++a bx cx 两边同除以2x 得0)1()1(2=+⋅+⋅c x b x a .令xt 1=,该方程即为02=++c t b t a ,它的两根为α=1t ,β=2t ,∴α=11x ,β=21x .∴α=11x ,β=12x ,∴方程02=++a bx cx 的两根为α1,β1. ∵β<α<0,∴β>α11. ∴不等式02>++a bx cx 的解集是⎭⎬⎫⎩⎨⎧α<<β11x x.说明:(1)万变不离其宗,解不等式的核心即是确定首项系数的正负,求出相应的方程的根;(2)结合使用韦达定理,本题中只有α,β是已知量,故所求不等式解集也用α,β表示,不等式系数a ,b ,c 的关系也用α,β表示出来;(3)注意解法2中用“变换”的方法求方程的根.典型例题十二例12 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值. 分析:不等式本身比较复杂,要先对不等式进行同解变形,再根据解集列出关于a 、b 式子.解:∵043)21(122>++=++x x x ,043)21(122>+-=+-x x x ,∴原不等式化为0)()2(2>-++--+b a x b a x b a .依题意⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++=-+->-+34231202b a b a b a ba b a , ∴⎪⎪⎩⎪⎪⎨⎧==2325b a . 说明:解有关一元二次方程的不等式,要注意判断二次项系数的符号,结合韦达定理来解.典型例题十三例13 不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值.分析:此题为一元二次不等式逆向思维题,要使解集为{}21<<-x x ,不等式022<-+bx ax 需满足条件0>a ,0>∆,022=-+bx ax 的两根为11-=x ,22=x .解法一:设022=-+bx ax 的两根为1x ,2x ,由韦达定理得:⎪⎪⎩⎪⎪⎨⎧-=⋅-=+a x x ab x x 22121 由题意:⎪⎪⎩⎪⎪⎨⎧⨯-=-+-=-21221aa b∴1=a ,1-=b ,此时满足0>a ,0)2(42>-⨯-=∆a b . 解法二:构造解集为{}21<<-x x 的一元二次不等式:0)2)(1(<-+x x ,即022<--x x ,此不等式与原不等式022<-+bx ax 应为同解不等式,故需满足:2211--=-=b a ∴1=a ,1-=b . 说明:本题考查一元二次方程、一元二次不等式解集的关系,同时还考查逆向思维的能力.对有关字母抽象问题,同学往往掌握得不好.典型例题十四例14 解关于x 的不等式01)1(2<++-x a ax .分析:本题考查一元一次不等式与一元二次不等式的解法,因为含有字母系数,所以还考查分类思想.解:分以下情况讨论(1)当0=a 时,原不等式变为:01<+-x ,∴1>x (2)当0≠a 时,原不等式变为:0)1)(1(<--x ax ①①当0<a 时,①式变为0)1)(1(>--x a x ,∴不等式的解为1>x 或a x 1<.②当0>a 时,①式变为0)1)(1(<--x ax . ②∵a a a -=-111,∴当10<<a 时,11>a ,此时②的解为a x 11<<.当1=a 时,11=a,此时②的解为11<<x a.说明:解本题要注意分类讨论思想的运用,关键是要找到分类的标准,就本题来说有三级分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧>=<<><≠=∈11100000a a a a a a a R a 分类应做到使所给参数a 的集合的并集为全集,交集为空集,要做到不重不漏.另外,解本题还要注意在讨论0<a 时,解一元二次不等式01)1(2<++-x a ax 应首选做到将二次项系数变为正数再求解.典型例题十五例15 解不等式x x x ->--81032. 分析:无理不等式转化为有理不等式,要注意平方的条件和根式有意义的条件,一般情况下,)()(x g x f ≥可转化为)()(x g x f >或)()(x g x f =,而)()(x g x f >等价于:⎩⎨⎧<≥0)(0)(x g x f 或⎪⎩⎪⎨⎧>≥≥2)]([)(0)(0)(x g x f x g x f . 解:原不等式等价于下面两个不等式组:①⎩⎨⎧≥--<-0103082x x x ②⎪⎩⎪⎨⎧->--≥--≥-222)8(103010308x x x x x x由①得⎩⎨⎧-≤≥>258x x x 或,∴8>x 由②得∴⎪⎪⎩⎪⎪⎨⎧>-≤≥≤.1374258x x x x 或 81374≤<x , 所以原不等式的解集为⎭⎬⎫⎩⎨⎧>≤<881374x x x 或,即为⎭⎬⎫⎩⎨⎧>1374x x . 说明:本题也可以转化为)()(x g x f ≤型的不等式求解,注意:⎪⎩⎪⎨⎧≤≥≥⇔≤2)]([)(0)(0)()()(x g x f x g x f x g x f , 这里,设全集}52{}0103{2≥-≤=≥--=x x x x x x U 或,⎭⎬⎫⎩⎨⎧-≤--=x x x x A 81032, 则所求不等式的解集为A 的补集A ,由2)8(10301030881032222-≤⇒⎪⎩⎪⎨⎧-≤--≥--≥-⇔-≤--x x x x x x x x x x 或13745≤≤x . 即⎭⎬⎫⎩⎨⎧≤≤≤=137452x x x A 或,∴原不等式的解集是⎭⎬⎫⎩⎨⎧>=1374x x A .友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

相关文档
最新文档