2012山东高考数学课件及世纪金榜答案4.1

合集下载

2012年山东省高考数学试题(附答案和解释)(理科Word版)

2012年山东省高考数学试题(附答案和解释)(理科Word版)

2012年山东省高考数学试题(附答案和解释)(理科Word版)2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I卷和第II卷两部分,共4页。

满分150分。

考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。

注意事项: 1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。

2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:锥体的体积公式:V= Sh,其中S是锥体的底面积,h是锥体的高。

如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)•P(B)。

第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1 若复数x满足z(2-i)=11+7i(i为虚数单位),则z为 A 3+5i B 3-5i C -3+5i D -3-5i 解析: .答案选A。

另解:设,则根据复数相等可知,解得,于是。

2 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA) B为 A {1,2,4} B {2,3,4} C {0,2,4} D {0,2,3,4} 解析:。

答案选C。

3 设a>0 a≠1 ,则“函数f(x)= ax在R上是减函数”,是“函数g(x)=(2-a) 在R上是增函数”的 A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分也不必要条件解析:p:“函数f(x)= ax在R上是减函数”等价于;q:“函数g(x)=(2-a) 在R 上是增函数”等价于,即且a≠1,故p是q成立的充分不必要条件. 答案选A。

2012年山东省高考数学试题及答案

2012年山东省高考数学试题及答案

2012年普通高等学校招生全国统一考试(山东卷)理科数学一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1 若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为 A 3+5i B 3-5i C -3+5i D -3-5i2 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA ) B 为 A {1,2,4} B {2,3,4}C {0,2,4}D {0,2,3,4}3 设a >0 a ≠1 ,则“函数f(x)= a x 在R 上是减函数 ”,是“函数g(x)=(2-a) 3x 在R 上是增函数”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件(4)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C ) 10 (D )15(6)执行下面的程序图,如果输入a=4,那么输出的n 的值为(A )2(B )3(C )4(D )5(7)若42ππθ⎡⎤∈⎢⎥⎣⎦,, sin 2=θ,则sin θ=(A )35(B )45(C (D )34(8)定义在R 上的函数f (x )满足f (x+6)=f (x ),当-3≤x<-1时,f (x )=-(x+2)2,当-1≤x <3时,f (x )=x 。

则f (1)+f (2)+f (3)+…+f (2012)= (A )335(B )338(C )1678(D )2012 (9)函数的图像大致为(10)已知椭圆C:的离心率为,双曲线x²-y²=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆c的方程为(11)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为(A)232 (B)252 (C)472 (D)484(12)设函数f(x)=,g(x)=ax2+bx若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是A.当a<0时,x1+x2<0,y1+y2>0B.当a<0时, x1+x2>0, y1+y2<0C.当a>0时,x1+x2<0, y1+y2<0D. 当a>0时,x1+x2>0, y1+y2>0第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。

2012山东高考数学课件及世纪金榜答案4.1

2012山东高考数学课件及世纪金榜答案4.1

考 题 研 究 · 解 密 高 考 经 典 考 题 · 知 能 检 验 模 拟 考 场 · 实 战 演 练
考 纲 点 击 · 特 别 关 注 基 础 盘 点 · 警 示 提 醒 考 向 聚 焦 · 典 例 精 讲
2
向量的线性运算
【例2】(2010·四川高考改编)设点M是线段BC的中点,点A
uuu r uur uuu uuu r r uuu uuu r r 在直线BC外,BC = 4, + AC = AB - AC ,则 | AM | =( AB
(8) a = b 的充要条件是| a |=| b |且 a ∥ b .
考 纲 点 击 · 特 别 关 注 基 础 盘 点 · 警 示 提 醒 考 向 聚 焦 · 典 例 精 讲
【审题指导】以概念为判断依据,或通过举反例说明其不正 确. 【自主解答】(1)不正确,零向量的方向任意;(2)不正确,
考 题 研 究 · 解 密 高 考 经 典 考 题 · 知 能 检 验 模 拟 考 场 · 实 战 演 练
|a |=|b|说明它们的模相等,但 a 与 b 的方向不一定相 同,所以 a 与 b 不一定相等;(3)不正确,单位向量的模均
为1,方向任意;(4)不正确,有向线段是向量的一种表示形
r r 量 x =______, y =______. r r 【解析】由已知得6 x +8 y =2
考 题 研 究 · 解 密 高 考 经 典 考 题 · 知 能 检 验 模 拟 考 场 · 实 战 演 练
r 2 r 3 r 代入上面的任一式得 两式相减,化简得 y = a b, 17 17 r r 4 r 3 x= a+ b. 17 17 3 r 4 r 2 r 3 r 答案: a+ b ab 17 17 17 17

2012年山东高考文科数学带答案解析(精品版!吐血免费)

2012年山东高考文科数学带答案解析(精品版!吐血免费)

2012年普通高等学校招生全国统一考试(山东卷)文科数学锥体的体积公式:V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。

如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )·P (B )。

第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为 (A)3+5i (B)3-5i (C)-3+5i (D)-3-5i (2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为(A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4} (3)函数1()ln(1)f x x =++(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是 (A)众数 (B)平均数 (C)中位数 (D)标准差 (5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真 (6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2-(7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为 (A)2 (B)3 (C)4 (D)5(8)函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为(A)2 (B)0 (C)-1(D)1--(9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为 (A)内切 (B)相交 (C)外切 (D)相离 (10)函数cos622x xxy -=-的图象大致为(11)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 2x y =(B) 2x y = (C)28x y = (D)216x y = (12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 (A)12120,0x x y y +>+> (B)12120,0x x y y +>+< (C)12120,0x x y y +<+> (D)第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____.(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.(15)若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____. (16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一于(2,1)时,OP 的点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位坐标为____.三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列; (Ⅱ)若1,2a c ==,求△ABC 的面积S .袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2. (Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.(19) (本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点, 求证:DM ∥平面BEC .(20) (本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .(21) (本小题满分13分)如图,椭圆2222:1(0)x y M a b a b+=>>,直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ) 设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||PQ ST 的最大值及取得最大值时m 的值.已知函数ln ()(exx kf x k +=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为 (A)3+5i (B)3-5i (C)-3+5i (D)-3-5i 【解析】i ii i i i i i z 5352515)2)(2()2)(711(2711+=+=+-++=-+=.故选A. 【答案】A(2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则B A C U )(为 (A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4} 【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C. 【答案】C (3)函数1()ln(1)f x x =++(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-【解析】要使函数有意义则有⎪⎩⎪⎨⎧≥-≠+>+040)1ln(012x x x ,即⎪⎩⎪⎨⎧≤≤-≠->2201x x x ,即01<<-x 或20≤<x ,选B.【答案】B(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是 (A)众数 (B)平均数 (C)中位数 (D)标准差【解析】设A 样本的数据为变量为X ,B 样本的数据为变量为Y ,则满足2+=X Y ,根据方差公式可得DX X D DY =+=)2(,所以方差相同,标准差也相同,选D.【答案】D(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真 π2【答案】C(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2-【解析】做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)0,2(E 时,直线z x y -=3的截距最小,此时z 最大为63=-=y x z ,当直线经过C 点时,直线截距最大,此时z 最小,由⎩⎨⎧=+-=-4214y x y x ,解得⎪⎩⎪⎨⎧==321y x ,此时233233-=-=-=y x z ,所以y x z -=3的取值范围是]6,23[-,选A. 【答案】A(7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为 (A)2 (B)3 (C)4 (D)5【解析】当4=a 时,第一次1,3,140====n Q P ,第二次2,7,441====n Q P ,第三次3,15,1642====n Q P ,此时Q P <不满足,输出3=n ,选B.【答案】B(8)函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为(A)2 (B)0 (C)-1(D)1--【解析】因为90≤≤x ,所以6960ππ≤≤x ,369363πππππ-≤-≤-x ,即67363ππππ≤-≤-x ,所以当336πππ-=-x 时,最小值为3)3sin(2-=-π,当236πππ=-x 时,最大值为22sin2=π,所以最大值与最小值之和为32-,选A. 【答案】A【解析】两圆的圆心分别为)0,2(-,)1,2(,半径分别为2=r ,3=R 两圆的圆心距离为17)10()22(22=-+--,则r R r R +<<-17,所以两圆相交,选B. 【答案】B (10)函数cos622x xxy -=-的图象大致为【解析】函数为奇函数,所以图象关于原点对称,排除A,令0=y 得06cos =x ,所以ππk x +=26,ππ612kx +=,函数零点有无穷多个,排除C,且y 轴右侧第一个零点为)0,12(π,又函数x x y --=22为增函数,当120π<<x 时,022>-=-x x y ,06cos >x ,所以函数0226cos >-=-xx xy ,排除B ,选D.【答案】D(11)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 2x y =(B) 2x y = (C)28x y = (D)216x y = 【解析】抛物线的焦点 )2,0(p ,双曲线的渐近线为x a b y ±=,不妨取x aby =,即0=-ay bx ,焦点到渐近线的距离为2222=+⨯b a pa ,即cb a ap 4422=+=,所以4p a c =双曲线的离心率为2=a c ,所以24==pa c ,所以8=p ,所以抛物线方程为y x 162=,选D.【答案】D (12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 (A)12120,0x x y y +>+> (B)12120,0x x y y +>+< (C)12120,0x x y y +<+> (D)12120,0x x y y +<+<点A 关于原点的对称点C,则C 点坐标为),(11y x --,由图象知,,2121y y x x >-<-即0,02121<+>+y y x x ,故答案选B.方法二:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得b .不妨设12x x <,则223x b ==.所以21()()()F x x x x =-,比较系数得1x -=,故1x =.120x x +=>,由此知12121212110x x y y x x x x ++=+=<,故答案为B. 【答案】B第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____.【解析】以△1ADD 为底面,则易知三棱锥的高为1,故111111326V =⋅⋅⋅⋅=.【答案】61(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.【解析】最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9. 【答案】9函数,则a =____.【解析】当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =为减函数,不合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.【答案】14(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为____.【解析】因为圆心移动的距离为2,所以劣弧2=PA ,即圆心角2=∠PCA,,则22π-=∠PCA ,所以2c o s )22s i n(-=-=πPB ,2sin )22cos(=-=πCB ,所以2s i n 22-=-=CB x p ,2cos 11-=+=PB y p ,所以)2cos 1,2sin 2(--=OP .另解:根据题意可知滚动制圆心为(2,1)时的圆的参数方程为⎩⎨⎧+=+=θθsin 1cos 2y x ,且223,2-==∠πθPCD ,则点P 的坐标为⎪⎩⎪⎨⎧-=-+=-=-+=2cos 1)223sin(12sin 2)223cos(2ππy x ,即)2cos 1,2sin 2(--=OP .【答案】)2cos 1,2sin 2(--三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列; (Ⅱ)若1,2a c ==,求△ABC 的面积S . 【答案】(17)(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=, sin sin()sin sin B A C A C +=, 2所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==,∴2223cos 24a cb B ac +-==,sin C =,∴△ABC 的面积11sin 1222S ac B ==⨯⨯=.(18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2. (Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.【答案】(18)(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =. (II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =.(19) (本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点, 求证:DM ∥平面BEC .【答案】(19)(I)设BD 中点为O ,连接OC ,OE ,则由BC CD =知 ,CO BD ⊥,又已知CE BD ⊥,所以BD ⊥平面OCE . 所以BD OE ⊥,即OE 是BD 的垂直平分线, 所以BE DE =.∵M 是AE 的中点,∴MN ∥BE , ∵△ABD 是等边三角形,∴DN AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥, 所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC .(20) (本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S . 【答案】 (I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=. (II)由277m n a n =≤,得217m n -≤, 即217m m b -=. ∵211217497m k m k b b ++-==, ∴{}m b 是公比为49的等比数列,∴7(149)7(491)14948m m m S -==--.(21) (本小题满分13分)如图,椭圆2222:1(0)x y M a b a b+=>>直线x a =±和y b =±所围成的矩形ABCD 的面积为8. (Ⅰ)求椭圆M 的标准方程;(Ⅱ) 设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||PQ ST 的最大值及取得最大值时m 的值. 【答案】(21)(I)22234c a b e a a -==……①∴椭圆M 的标准方程是2214x y +=. (II)222244,58440,x y x mx m y x m ⎧+=⇒++-=⎨=+⎩,设1122(,),(,)P x y Q x y ,则21212844,55m x x m x x -+=-=,由226420(44)0m m ∆=-->得m .||PQ =. 当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST其中3t m =+,由此知当134t =,即45,(1)33t m ==-∈-时,||||PQ ST .②由对称性,可知若1m <<53m =时,||||PQ ST .③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||PQ ST .综上可知,当53m =±和0时,||||PQ ST .(22) (本小题满分13分) 已知函数ln ()(ex x k f x k +=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.【答案】(I)1ln ()e xx k x f x --'=, 由已知,1(1)0ek f -'==,∴1k =. (II)由(I)知,1ln 1()e xx x f x --'=. 设1()ln 1k x x x =--,则211()0k x x x'=--<,即()k x 在(0,)+∞上是减函数, 由(1)0k =知,当01x <<时()0k x >,从而()0f x '>,当1x >时()0k x <,从而()0f x '<.综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞. (III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立. 当01x <<时,e x >1,且()0g x >,∴1ln ()1ln e xx x x g x x x x --=<--. 设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+,当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<,所以当2e x -=时,()F x 取得最大值22()1e F e --=+.所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.。

2012年理数高考试题答案及解析-山东

2012年理数高考试题答案及解析-山东

2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页。

满分150分。

考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。

注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证、县区和科类填写在答题卡上和试卷规定的位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标,答案不能答在试卷上。

3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:锥体的体积公式:V=Sh ,其中S 是锥体的底面积,h 是锥体的高。

如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )·P (B )。

第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1 若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为 A 3+5i B 3-5i C -3+5i D -3-5i 解析:i ii i i i z 535)1114(7225)2)(711(2711+=++-=++=-+=.答案选A 。

另解:设),(R b a bi a z ∈+=,则i i a b b a i bi a 711)2(2)2)((+=-++=-+ 根据复数相等可知72,112=-=+a b b a ,解得5,3==b a ,于是i z 53+=。

2 已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA )B 为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4}解析:}4,2,0{)(},4,0{==B A C A C U U 。

2012年山东高考试题(文数,word解析版)

2012年山东高考试题(文数,word解析版)

2012年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第I 卷和第II 卷两部分,共4页。

满分150分。

考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。

注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若复数z 满足z(2-i)=11+7i(i 为虚数单位),则z 为A 3+5iB 3-5iC -3+5iD -3-5i 答案:A考点:复数的运算。

值得注意的是21i =-. 解析:因为z(2-i)=11+7i ,所以1172iz i+=-,分子分母同时乘以2i +, 得22(117)(2)221114722725152535(2)(2)4415i i i i i i iz i i i i +++++-++=====+-+-+ (2) 已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA )B 为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4} 答案:C考点:集合运算解析:}4,2,0{)(},4,0{==B A C A C U U 。

答案选C 。

(3)函数()()1ln 1f x x =++ )A [)(]2,00,2- B ()(]1,00,2- C []2,2- D (]1,2-答案:B考点:求函数的定义域,对指对幂函数性质的考察。

2012年山东省高考数学试卷(理科)答案与解析

2012年山东省高考数学试卷(理科)答案与解析

2012年山东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.2.(5分)(2012•山东)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则3.(5分)(2012•山东)设a>0且a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)34.(5分)(2012•山东)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,5.(5分)(2012•山东)设变量x,y满足约束条件,则目标函数z=3x﹣y的B(6.(5分)(2012•山东)执行程序框图,如果输入a=4,那么输出的n的值为()7.(5分)(2012•山东)若,,则sinθ=()B解:因为=﹣,,=8.(5分)(2012•山东)定义在R上的函数f(x)满足f(x+6)=f(x),当﹣3≤x<﹣1时,f(x)=﹣(x+2)2,当﹣1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2012)=9.(5分)(2012•山东)函数y=的图象大致为().B.D.,﹣y=10.(5分)(2012•山东)已知椭圆C:+=1(a>b>0)的离心率为,与双曲线x2﹣y2=1的渐近线有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程+=1 B+=1 +=1 +=1+=1.利用:=1+=111.(5分)(2012•山东)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种种取法,由此可得结论.种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有故所求的取法共有﹣﹣12.(5分)(2012•山东)设函数f(x)=,g(x)=ax2+bx(a,b∈R,a≠0)若y=f(x)的图象与y=g(x)图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正是奇函数,所以二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)(2012•山东)若不等式|kx﹣4|≤2的解集为{x|1≤x≤3},则实数k=2.,14.(4分)(2012•山东)如图,正方体ABCD﹣A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1﹣EDF的体积为.为顶点,则=,=××S故答案为:15.(4分)(2012•山东)设a>0,若曲线y=与直线x=a,y=0所围成封闭图形的面积为a2,则a=.==.故答案为:.16.(4分)(2012•山东)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为(2﹣sin2,1﹣cos2).=,即为向量的坐标.=﹣﹣的坐标为(三、解答题:本大题共6小题,共74分.17.(12分)(2012•山东)已知向量=(sinx,1),=(Acosx,cos2x)(A>0),函数f(x)=•的最大值为6.(Ⅰ)求A;(Ⅱ)将函数y=f(x)的图象像左平移个单位,再将所得图象各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[0,]上的值域.)的图象像左平移个单位,再将所得图象各点的横坐标倍,纵坐标不变,得到函数,•(2x+))的图象向左平移个单位后得到,)]2x+倍,4x+)的图象.因此4x+,==时函数取得最小值﹣]18.(12分)(2012•山东)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(Ⅰ)求证:BD⊥平面AED;(Ⅱ)求二面角F﹣BD﹣C的余弦值.,﹣,=,﹣,,的一个法向量为,则••x=z=,=,>==CG==CGFGC=的余弦值为19.(12分)(2012•山东)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.+,A=BB)(()))))×))﹣×)﹣﹣×)﹣))×﹣)((﹣××﹣﹣﹣×BC)B=××﹣)×=)××=×××+1×+2×+3×+4×+5×=20.(12分)(2012•山东)在等差数列{a n}中,a3+a4+a5=84,a9=73.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)对任意m∈N*,将数列{a n}中落入区间(9m,92m)内的项的个数记为b m,求数列{b m}的前m项和S m.,由可求公差可得==9≤21.(13分)(2012•山东)在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.(Ⅰ)求抛物线C的方程;(Ⅱ)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由;(Ⅲ)若点M的横坐标为,直线l:y=kx+与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当≤k≤2时,|AB|2+|DE|2的最小值.y=)时,)上,﹣)=得,=时,由(Ⅱ)的)r=的方程为,整理得(,==.⇒2t+2t+﹣t)t t=,k=的最小值为22.(13分)(2012•山东)已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g (x)<1+e﹣2.,(=(,((<>(精品文档考试教学资料施工组织设计方案。

2012年山东高考理科数学试题、答案、详细解析

2012年山东高考理科数学试题、答案、详细解析

2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页。

满分150分。

考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。

注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式: 锥体的体积公式:V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。

如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )·P (B )。

第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1 若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为 A 3+5i B 3-5i C -3+5i D -3-5i 解析:i ii i i i z 535)1114(7225)2)(711(2711+=++-=++=-+=.答案选A 。

另解:设),(R b a bi a z ∈+=,则i i a b b a i bi a 711)2(2)2)((+=-++=-+根据复数相等可知72,112=-=+a b b a ,解得5,3==b a ,于是i z 53+=。

2 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA ) B 为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4}解析:}4,2,0{)(},4,0{==B A C A C U U 。

2012年高考真题(山东卷) 有答案 有解析

2012年高考真题(山东卷) 有答案 有解析

绝密★启用并使用完毕前2012年普通高等学校招生全国统一考试(山东卷)英语本试卷分第I卷和第II卷两部分,共12页,满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第I卷每小题选出答案后,用2B铅笔在答题卡上对应题目的答案标号涂黑,如需要改动,用橡皮擦干净后,再选涂其他答案标号。

3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案然后再写上新的答案;不能使用涂改液、脐带纸、修正带。

不按以上要求作答的答案无效。

第I卷(共105分)第一部分:听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £19.5B. £9.15C. £9.18答案是B。

1. Where does this conversation probably take place?A. In a bookstore.B. In a classroom.C. In a library.2. At what time will the film begin?A. 7:20B. 7:15C. 7:003. what are the two speakers mainly talking aobut?A. Their friend JaneB. A weekend trip.C. A radio programme.4. What will the woman probably do?A. Catch a train.B. See the man offC. Go shopping.5. why did the woman apologize?A. She made a late deliveryB. She went to the wrong placeC. She couldn‟t take thecake back第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

2012年普通高等学校招生全国统一考试(山东卷)文科数学及答案

2012年普通高等学校招生全国统一考试(山东卷)文科数学及答案

2012年普通高等学校招生全国统一考试(山东卷)数 学(供文科考生使用)锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高.如果事件,A B 互斥,那么()()()P A B P A P B +=+.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z 满足()2117z i i -=+(i 为虚数单位),则z 为( )A.35i +B.35i -C.35i -+D.35i -- 2.已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则(C U A )B 为( )A.{}1,2,4B.{}2,3,4C.{}0,2,4D.{}0,2,3,43.函数()()1ln 1f x x =++( ) A.[)(]2,00,2- B.()(]1,00,2- C.[]2,2-D.(]1,2-4.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据.则,A B 两样本的下列数字特征对应相同的是( )A.众数B.平均数C.中位数D.标准差5.设命题:p 函数sin 2y x =的最小正周期为π2;命题:q 函数cos y x =的图象关于直线π2x =对称.则下列判断正确的是( )A.p 为真B.q ⌝为假C.p q ∧为假D.p q ∨为真 6.设变量,x y 满足约束条件2224,41x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是( )A.3[,6]2-B.3[,1]2--C.[1,6]-D.3[6,]2-7.执行如图的程序框图,如果输入4a =,那么输出的n 的值为( )A.2B.3C.4D.58.函数ππ2sin()(09)63x y x =-≤≤的最大值与最小值之和为( )A.2B.0C.1-D.1-- 9.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离10.函数cos622x xxy -=-的图象大致为( )11.已知双曲线()22122:10,0x y C a b a b-=>>的离心率为2,若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为( )A.2x y =B.2x y =C.28x y =D.216x y =12.设函数()()21,f x g x x bx x==-+,若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点()()1122,,,A x y B x y ,则下列判断正确的是( )A.12120,0x x y y +>+>B.12120,0x x y y +>+<C.12120,0x x y y +<+>D.12120,0x x y y +<+< 二、填空题(本大题共4小题,每小题4分,共16分) 13.如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上一点,则三棱锥1A DED -的体积为________14.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[]20.5,26.5.样本数据的分组为[)[)[)[)[)20.5,21.5,21.5,22.5,22.5,23.5,23.5,24.5,24.5,25.5,[]25.5,26.5.已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为________15.若函数()()0,1x f x a a a =>≠在[]1,2-上的最大值为4,最小值为m ,且函数()(14g x m =-[)0,+∞上是增函数,则a =________16.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在()0,1,此时圆上一点P 的位置在()0,0,圆在x 轴上沿正向滚动,当圆滚动到圆心位于()2,1时,OP的坐标为________三、解答题(本大题共6小题,共74分.解答题应写出文字说明,证明过程或演算步骤.)17.(本小题12分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知()s i n t a n t a n t a n t a n B A CA C +=. (1)求证:,,a b c 成等比数列;(2)若1,2a c ==,求ABC ∆的面积S .18.(本小题12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.DCB A平均气温/︒CC 1D 1B 1A 1E D CBA19.(本小题12分)如图,几何体E ABCD -是四棱锥,ABD ∆为正三角形,,CB CD EC BD =⊥(1)求证:BE DE =;(2)若120,BCD M ∠=︒为线段AE 的中点,求证:DM 平面BEC .20.(本小题12分)已知等差数列{}n a 的前5项和为105,且1052a a =,(1)求数列{}n a 的通项公式;(2)对任意m N *∈,将数列{}n a 中不大于27m 的项的个数记为m b ,求数列{}n b 的前m 项和m S .21.(本小题13分)如图,椭圆()2222:10x y M a b a b+=>>直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(1)求椭圆M 的标准方程;(2)设直线():l y x m m R =+∈与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||PQ ST 的最大值及取得最大值时m 的值.22.(本小题13分)已知函数()ln xx kf x e +=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线()yf x =在点()()1,1f 处的切线与x 轴平行.(1)求k 的值;(2)求()f x 的单调区间;(3)设()()'g x xf x =,其中()'f x 为()f x 的导函数.证明:对任意()20,1x g x e -><+.E D C B A一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

2012年山东高考数学真题及答案

2012年山东高考数学真题及答案

2012年普通高等学校招生全国统一考试(山东卷)理科数学参考公式:锥体的体积公式:V=Sh ,其中S 是锥体的底面积,h 是锥体的高。

如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )〃P (B )。

第I 卷(共60分)一. 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1 若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为 A 3+5i B 3-5i C -3+5i D -3-5i 解析:i ii i i i z 535)1114(7225)2)(711(2711+=++-=++=-+=.答案选A。

另解:设),(R b a bi a z Î+=,则i i a b b a i bi a 711)2(2)2)((+=-++=-+ 根据复数相等可知72,112=-=+a b b a ,解得5,3==b a ,于是i z 53+=。

2 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA ) B 为A {1,2,4} B {2,3,4} C {0,2,4} D {0,2,3,4} 解析:}4,2,0{)(},4,0{==B A C A C U U 。

答案选C 。

 3 设a >0 a 0 a≠≠1 ,则“函数f(x)= a x在R 上是减函数 ”,是“函数g(x)=(2-a) 3x 在R 上是增函数”的A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分也不必要条件 解析:p :“函数f(x)= a x 在R 上是减函数 ”等价于10<<a ;q :“函数g(x)=(2-a) 3x 在R 上是增函数”等价于02>-a ,即,20<<a 且a ≠1,故p 是q 成立的充分不必要条件. 答案选A 。

山东高考数学课件及世纪金榜答案6共81页

山东高考数学课件及世纪金榜答案6共81页

检 验
考 向
子,而要求的函数式中有单角也有半角,故应先将所求式子
模 拟




· 典
化半角为单角,将弦化切后再求解.
· 实












击 【自主解答】

·
·
















·
·
















·
·
















·
·










次数上看可降幂.
实 战




【规范解答】








·
·
















·
·















#2012学年理数高考试题答案及解析-山东

#2012学年理数高考试题答案及解析-山东

2012年普通高等学校招生全国统一测试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页。

满分150分。

测试用时120分钟,测试结束,务必将试卷和答题卡一并上交。

注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:锥体的体积公式:V=Sh ,其中S 是锥体的底面积,h 是锥体的高。

如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )·P (B )。

第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1 若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为 A 3+5i B 3-5i C -3+5i D -3-5i 分析:i ii i i i z 535)1114(7225)2)(711(2711+=++-=++=-+=.答案选A 。

另解:设),(R b a bi a z ∈+=,则i i a b b a i bi a 711)2(2)2)((+=-++=-+ 根据复数相等可知72,112=-=+a b b a ,解得5,3==b a ,于是i z 53+=。

2 已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA )B 为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4}分析:}4,2,0{)(},4,0{==B A C A C U U 。

山东高考数学课件及世纪金榜答案精品文档

山东高考数学课件及世纪金榜答案精品文档

第四步:从盒子中逐个抽取10个号签,并记录上面的编号.
拟 考


·
·














击 第五步:所得号码对应的志愿者,就是志愿小组的成员.

·
·


别 关
随机数表法:
密 高


基 第一步:将30名志愿者编号,编号为01,02,03,…,30. 经




点 第二步:在随机数表中任选一数开始,按某一确定方向读数. 题





点 成绩单,就这个问题来说,下面说法正确的是( )
·
题 ·


示 提
(A)1 000名学生是总体
能 检


考 (B)每个学生是个体





焦 ·
(C)1 000名学生的成绩是一个个体
场 ·


例 精
(D)样本的容量是100
战 演










·
·




关 注
【解析】选D.1 000名学生的成绩是总体,其容量是1 000,
高 考
基 础
100名学生的成绩组成样本,其容量是100.
经 典




·
·






2012山东省高考文科数学试题及答案

2012山东省高考文科数学试题及答案

2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为 (A)3+5i (B)3-5i (C)-3+5i (D)-3-5i (2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为(A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4} (3)函数1()ln(1)f x x =++(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是 (A)众数 (B)平均数 (C)中位数 (D)标准差 (5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真 (6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2-(7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为 (A)2 (B)3 (C)4 (D)5(8)函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为(A)2 (B)0 (C)-1(D)1--(9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为 (A)内切 (B)相交 (C)外切 (D)相离 (10)函数cos622x xxy -=-的图象大致为 (11)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C的渐近线的距离为2,则抛物线2C 的方程为(A) 2x y =(B) 2x y (C)28x y = (D)216x y = (12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是(A)12120,0x x y y +>+> (B)12120,0x x y y +>+< (C)12120,0x x y y +<+> (D)第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____.(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.(15)若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为____.三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列; (Ⅱ)若1,2a c ==,求△ABC 的面积S . (18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2. (Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.(19) (本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点, 求证:DM ∥平面BEC . (20) (本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S . (21) (本小题满分13分)如图,椭圆2222:1(0)x y M a b a b+=>>,直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ) 设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||PQ ST 的最大值及取得最大值时m 的值. (22) (本小题满分13分)已知函数ln ()(e xx kf x k +=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.参考答案:一、选择题:(1)A (2)C (3)B (4)D (5)C (6)A (7)B (8)A (9)B (10)D (11)D (12)B(12)解:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得b =.不妨设12x x <,则223x b =.所以21()()2)F x x x =-,比较系数得1x -=,故1x =120x x +>,由此知12121212110x x y y x x x x ++=+=<,故答案为B.二、填空题 (13)16 以△1ADD 为底面,则易知三棱锥的高为1,故111111326V =⋅⋅⋅⋅=. (14)9 最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9. (15)14 当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.(16)(2sin 2,1cos2)-- 三、解答题 (17)(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=, sin sin()sin sin B A C A C +=, 2sin sin sin B A C =,再由正弦定理可得:2b ac =, 所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==,∴2223cos 24a c b B ac +-==,sin C ∴△ABC的面积11sin 1222S ac B ==⨯⨯=. (18)(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =. (19)(I)设BD 中点为O ,连接OC ,OE ,则由BC CD =知,CO BD ⊥, 又已知CE BD ⊥,所以BD ⊥平面OCE . 所以BD OE ⊥,即OE 是BD 的垂直平分线, 所以BE DE =.(II)取AB 中点N ,连接,MN DN , ∵M 是AE 的中点,∴MN ∥BE , ∵△ABD 是等边三角形,∴DN AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥, 所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC . (20)(I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=. (II)由277m n a n =≤,得217m n -≤, 即217m m b -=. ∵211217497m k m k b b ++-==,∴{}m b 是公比为49的等比数列,∴7(149)7(491)14948m m m S -==--.(21)(I)22234c a b e a a -==⇒=……①矩形ABCD 面积为8,即228a b ⋅=……② 由①②解得:2,1a b ==,∴椭圆M 的标准方程是2214x y +=.(II)222244,58440,x y x mx m y x m ⎧+=⇒++-=⎨=+⎩, 设1122(,),(,)P x y Q x y ,则21212844,55m x x m x x -+=-=,由226420(44)0m m ∆=-->得m||PQ =.当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <<-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST =其中3t m =+,由此知当134t =,即45,(1)33t m ==-∈-时,||||PQ ST .②由对称性,可知若1m <53m =时,||||PQ ST .③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||PQ ST综上可知,当53m =±和0时,||||PQ ST .(22)(I)1ln ()e xx k x f x --'=,由已知,1(1)0ekf -'==,∴1k =. (II)由(I)知,1ln 1()e xx x f x --'=.设1()ln 1k x x x =--,则211()0k x x x'=--<,即()k x 在(0,)+∞上是减函数, 由(1)0k =知,当01x <<时()0k x >,从而()0f x '>, 当1x >时()0k x <,从而()0f x '<.综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞.(III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立. 当01x <<时,e x >1,且()0g x >,∴1ln ()1ln e xx x xg x x x x --=<--.设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+, 当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<, 所以当2e x -=时,()F x 取得最大值22()1e F e --=+. 所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
·
















·
·




关 注
1.数学中研究的向量是自由向量
高 考
基 础
两个向量只要它们的模相等、方向相同,它们就是相等向量,
经 典




· 而与它们的起点在哪里没有关系.这就为我们应用向量带来方 ·




提 醒
便,可以任意选取有向线段的起点,可以把向量自由平移等.
检 验
题 ·




提 醒
(3)利用向量共线证明平面几何中点共线或直线平行时注意强
检 验
能 检


考 向
a + b 的方向是东北方向.
模 拟


焦 ·
答案:8 2 km
东北方向
场 ·














击 · 特
5.已知3 x +4 y = a ,2 x -3 y = b ,其中 a ,b 为已知向量,则向
究 · 解


关 注
量 x =______,y =______.
高 考



(C) a 与 b 不共线,则 a 与 b 都是非零向量



聚 焦
(D)有相同起点的两个非零向量不平行
考 场
·
·








考 纲
【解析】选C.由于零向量与任一向量都共线,所以A不正确;
考 题


击 ·
由于数学中研究的向量是自由向量,所以两个相等的非零向
究 ·




关 注
量可以在同一直线上,而此时就构不成四边形,根本不可能
高 考
基 础
是一个平行四边形的四个顶点,所以B不正确;向量的平行只
经 典




· 要方向相同或相反即可,与起点是否相同无关,所以D不正确; ·




提 醒
对于C,其条件以否定形式给出,所以可从其逆否
检 验
考 向 聚
命题入手考虑,假若 a 与 b 不都是非零向量,即 a 与 b 至少
模 拟 考





·
·
















·
·
















·
·
特 别
1.下列命题正确的是( )
解 密




基 (A) a 与 b 共线,b 与 c 共线,则 a 与 c 也共线



盘 (B)任意两个相等的非零向量的起点与终点是一平行四边形



·
·
警 示
的四个顶点
知 能


2012山东高考数学课件及世纪金榜答案4.1
讲者








·
·
















·
·
















·
·
















·
·
















·
·
















·
·
















·
·





究 ·


别 关
(A)充分不必要条件
密 高


基 (B)必要不充分条件





点 (C)充要条件

·
·


示 提
(D)既不充分也不必要条件
能 检


考 【解析】选B.若点A、B、C共线,则不是三角形,反之,若





焦 ·
是三角形,则有 A B B C C A 0 .
场 ·


















·
·
















·
·
特 别
2.向量的线性运算规律
解 密




向量的加减法都可以推广到若干个向量间进行.加法的三角形




盘 法则关键是“首尾相接,指向终点”,减法的三角形法则关键 考


·
·
警 示
是“起点重合,指向被减向量”,用字母表示的向量进行线性
知 能












·
·
















·
·
















·
·
















·
·
















·
·
















·
·











·
·
















·
·
















·
·
















·
·
















·
·
















·
·








基 础
若把平面内所有的单位向量的起点移到同一个点,它
经 典




· 们的终点组成什么图形?
·




提 醒
提示:以所给点为圆心,以1为半径的圆.
检 验


· 警
(C) 1OA 1OB
示 提
2
2
(D) 1OA 1OB
2
2
· 知 能 检

【解析】选D.根据向量加法的平行四边形法则,



向 聚
O C1O AO B1 O A1 O B .
拟 考
焦 ·
2
22
场 ·






相关文档
最新文档