(完整版)2016年山东省高考数学试卷(理科解析)

合集下载

2016年高考理科数学山东卷及答案解析

2016年高考理科数学山东卷及答案解析

数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页)绝密★启用前2016年普通高等学校招生全国统一考试(上海卷)理科数学注意事项:1.本试卷共6页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内,直接填写结果,每个空格填对得4分,否则一律得零分. 1.设x ∈R ,则不等式|3|1x -<的解集为 .2.设32i iz +=,其中i 为虚数单位,则Imz= .3.已知平行直线1l :210x y +-=,2l :210x y ++=,则1l 与2l 的距离是 .4.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是 (米).5.已知点(3,9)在函数()1x f x a =+的图象上,则()f x 的反函数1()f x -= .6.如图,在正四棱柱1111ABCD A B C D -中,底面ABCD 的边长为3,1BD 与底面所成的角的大小为2arctan 3,则该正四棱柱的高等于 .7.方程3sin 1cos2x x =+在区间[]0,2π上的解为 .8.在2)n x的二项展开式中,所有项的二项式系数之和为256,则常数项等于 .9.已知ABC △的三边长分别为3,5,7,则该三角形的外接圆半径等于 .10.设0a >,0b >.若关于x ,y 的方程组1,1,ax y x by +=⎧⎨+=⎩无解,则a b +的取值范围是 .11.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意的*n ∈N ,{23}n S ∈,,则k 的最大值为 .12.在平面直角坐标系中,已知(1,0)A ,(0,1)B -,P是曲线y =上一个动点,则·BP BA 的取值范围是 .13.设,a b R ∈,[)0,2c π∈,若对任意实数x 都有2sin(3)sin()3x a bx c π-=+,则满足条件的有序实数组(,,)a b c 的组数为 .14.如图,在平面直角坐标系xOy 中,O 为正八边形128A A A 的中心,1(1,0)A .任取不同的两点i A ,j A ,点P 满足i j OP OA OA ++=0,则点P 落在第一象限的概率是 .二、选择题(本大题共4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.设a ∈R ,则“1a >”是“21a >”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件16.下列极坐标方程中,对应的曲线为如图所示的是( )A .65cos ρθ=+B .65sin ρθ=+C .65cos ρθ=-D .65sin ρθ=-17.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且lim n n S S →∞=.下列条件中,使得2()n S S n N *<∈恒成立的是( )A .10a >,0.60.7q <<B .10a <,0.70.6q -<<-C .10a >,0.70.8q <<D .10a <,0.80.7q -<<-18.设)(f x ,()g x ,()h x 是定义域为R 的三个函数.对于命题:①若)(()x f g x +,)()(x f h x +,)()(x g h x +均是增函数,则)(f x ,()g x ,()h x 中至少有一个增函数;②若(())x f g x +,)(()f x h x +,)()(x g h x +均是以T 为周期的函数,则)(f x ,()g x ,()h x 均是以T 为周期的函数,下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题三、解答题(本大题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本小题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.将边长为1的正方形11AAO O (及其内部)绕1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧.(Ⅰ)求三棱锥111C O A B -的体积;(Ⅱ)求异面直线1B C 与1AA 所成的角的大小.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共18页) 数学试卷 第5页(共18页) 数学试卷 第6页(共18页)20.(本小题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.有一块正方形菜地EFGH ,EH 所在直线是一条小河.收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等.现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图.(Ⅰ)求菜地内的分界线C 的方程;(Ⅱ)菜农从蔬菜运量估计出1S 面积是2S 面积的两倍,由此得到1S 面积的“经验值”为83.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于1S 面积的“经验值”.21.(本小题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b-=>的左、右焦点分别为1F ,2F ,直线l 过2F 且与双曲线交于A ,B两点.(Ⅰ)若l 的倾斜角为2π,1F AB △是等边三角形,求双曲线的渐近线方程;(Ⅱ)设b =.若l 的斜率存在,且11()0F A F B AB +=,求l 的斜率.22.(本小题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知a R ∈,函数21()log ()f x a x=+.(Ⅰ)当5a =时,解不等式()0f x >;(Ⅱ)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰有一个元素,求a 的取值范围;(Ⅲ)设0a >,若对任意1,12t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在区间[],1t t +上的最大值与最小值的差不超过1,求a 的取值范围.23.(本小题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P . (Ⅰ)若{}n a 具有性质P ,且11a =,22a =,43a =,52a =,67821a a a ++=,求3a ; (Ⅱ)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+判断{}n a 是否具有性质P ,并说明理由;(Ⅲ)设{}n b 是无穷数列,已知1sin ()n n n a b a n +=+∈*N .求证:“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”.2016年普通高等学校招生全国统一考试(山东卷)理科数学答案解析(0,A B=+∞【提示】求解指数函数的值域化简案.【答案】B【解析】()n tm n⊥+,()0n tm n∴+=,2||||cos,||0t m n m n n∴<>+=,4||3||m n=,1cos,3m n<>=,21||||||043t n n n∴+=,104∴+=,4t∴=-.【提示】若(π)n t n⊥+,则(π)0n t n+=,进而可得实数【考点】平面向量数量积的运算【解析】输入的数学试卷第7页(共18页)数学试卷第8页(共18页)数学试卷第9页(共18页)数学试卷 第10页(共18页) 数学试卷 第11页(共18页) 数学试卷 第12页(共18页)22232b c a =,即为a2b24,x mx m x m-+>⎩x m >时,程(f 3m >(Ⅱ)2a b +=22)b a =+号,231122c ab -≥G 、H 为GQ EF ∴∥又EF BO ∥GQ BO ∥且平面GQH GH ⊂面GH ∴∥平面数学试卷 第13页(共18页) 数学试卷 第15页(共18页)(Ⅱ)AB BC =AC ⊥,又OO '⊥面为原点,OA 为x 轴,建立空间直角坐标系,则(23,0,0)C -,(0,23,0)B 3,0),(23,3,FC =---(23,2CB =,由题意可知面的法向量为(0,0,OO '=,设(,,n x y z FCB 的法向量,00n FC n CB ⎧=⎪⎨=⎪⎩,即,取0x 则1,2,n ⎛=-- ⎝7,7||||OO n OO n OO n ''<>==-'二面角--F BC A 的平面角是锐角,的余弦值为77n n a b =+1n n a b -∴=11a b =+1112b =+14b ∴=,4n b ∴=+1)2n , 126[2232(1)2]n n ++++…①,2316[22322(1)2]n n n n ++++++…②,②可得:231112222(1)2]1)2)232n n n n n n n +++++++-+=-…,232n n +.【提示】(Ⅰ)求出数列{}a 的通项公式,再求数列(Ⅱ)求出数列{c 22112233232211443433C ⎛⎫⎛⎫⎛⎫⎛⎫⎛-+-+ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭⎝队”两轮得分之和为X 可能为2232113⎛⎫-= ⎪⎝⎭22332322101111443433144⎤⎛⎫⎛⎫⎛⎫⎛⎫--+--=⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦3232323232323232111111114343434343434343144⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+--+--+--= ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭3232114343144⎛⎫⎛⎫--=⎪ ⎪⎝⎭⎝⎭23322236011443334144⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-=⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦222363144⎛⎫= ⎪⎝⎭,的分布列如下图所示:x 1)2x数学试卷 第16页(共18页) 数学试卷 第17页(共18页) 数学试卷 第18页(共18页)1a =21)1x x+-++--()F x f =0001122y FG x x =⎛⎫+= ⎪⎝⎭30000000022004441111424148x y x x x y PM x y x x +-⎛⎫-=+= ⎪++⎝⎭22022)(41)1)x x x ++,令11)x +21111140001212FG x x y ⎛⎫+ ⎪⎝⎭=00414x y x x -+,整理可得t 的二次方程,进而得到最大值及此时。

2016年高考数学真题山东理科解析

2016年高考数学真题山东理科解析

c1 c2 c3 cn ,
3 [2 22 3 23 4 24 (n 1) 2n1 ] ,
2Tn 3 [2 23 3 24 4 25 (n 1) 2n2 ] ,
两式作差,得
Tn 3 [2 22 23 24 2n1 (n 1) 2n 2 ]
专注数学成就梦想

普通高等学校招生全国统一考试山东卷答案
理科数学
一、选择题 1. B. 解析 设 z a bi,(a, b R) , 则 2z z z z(z )a b ia 2 所以 a 1, b 2 ,即 z 1 2i .故选 B.
专注数学成就梦想

行.故选 A.
2 2 7. B. 解析 由 f ( x) 2sin x cos x 3 cos x sin x sin 2 x 3 cos 2 x


π 2sin 2x ,所以最小正周期是 π . 故选 B. 3
3a b i 3 2 i

(0, ) ,B ( 1, 1) ( 1, +) 2. C. 解析 由题意, A ,所以 A B = .故选 C.
3. D. 解析 由图可知组距为 2.5 ,每周的自习时间少于 22.5 小时的频率为
(0.02 + 0.1) ×2.5 = 0.30 , 所以每周自习时间不少于 22.5 小时的人数是
由 f x

1 1 1 当 x 时, f ( x) 的周期为 1 , 所以 f (6) f (1) . f x 知, 2 2 2
又当 1 x 1时, f ( x) f ( x) ,所以 f (1) f (1) . 于是 f (6) f (1) f (1) [(1)3 1] 2 .故 的公差为 d ,由

(精校版)2016年山东理数高考试题文档版(含答案)

(精校版)2016年山东理数高考试题文档版(含答案)
绝密★启用前 2016 年普通高等学校招生全国统一考试(山东卷) 理科数学
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共 4 页。满分 150 分。考试用时 120 分钟。考试结束后,将将本试
卷和答题卡一并交回。 注意事项:

功 1.答卷前,考生务必用 0.5 毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和
(14)在[- 1,1] 上随机地取一个数 k,则事件“直线 y=kx 与圆 (x - 5)2 + y2 = 9 相交”发生的概率为 .
! (15)已知函数
f
(x)
| x x2
|,
2mx
4m,
xm xm
其中
m
0
,学.科网若存在实数
b,使得关于
x
的方程
f(x)
=b 有三个不同的根,则 m 的取值范围是________________.
三、解答题:本答题共 6 小题,共 75 分。

(16)(本小题满分 12 分)

到 在△ABC 中,角 A,B,C 的对边分别为 a,b,c,已知 2(tan A tan B) tan A tan B. cos B cos A
(Ⅰ)证明:a+b=2c;
(Ⅱ)求 cosC 的最小值. 17(本小题满分 12 分)
(i)求证:点 M 在定直线上;
(ii)直线 l 与 y 轴交于点 G,记
PFG 的面积为 S1 ,
PDM
的面积为 S2 ,求
S1 S2
的最大值及取得最大值
时点 P 的坐标.
! 功 成 到 马 考 高 您 祝
2016 年普听高等学校招生全国统一考试(山东卷)
理科数学试题参考答案

2016年高考理科数学山东卷(含答案解析)

2016年高考理科数学山东卷(含答案解析)

数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号填写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件,A B 互斥,那么P (A+B )=P (A )+P (B );如果事件,A B 独立,那么P (AB )=P (A )·P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足其中i 为虚数单位,则z =( )A. 12i +B. 12i -C. 12i -+D. 12i --2. 设集合{}{}22,,10xA y y xB x x ==∈=-<R ,则AB =( )A. 1,1-()B. 0,1()C. 1,-+∞()D. 0,+∞()3. 某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5[,30],样本数据分组为17.5[,20),20,2[ 2.5),22.5[,25),25,2[7.5),27.5[,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A. 56B. 60C. 120D. 1404. 若变量x ,y 满足+2,2-39,0,x y x y x ⎧⎪⎨⎪⎩≤≤≥则22+x y 的最大值是( )A. 4B. 9C. 10D. 125. 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.12+33π B.12+33π C.12+36π D. 216π+6. 已知直线a ,b 分别在两个不同的平面αβ,内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 函数()(3sin cos )(3cos sin )f x x x x x =+-的最小正周期是( )A.2πB. πC. 32πD. 2π8. 已知非零向量m ,n 满足4|m |=3|n |,cos <m ,n >=13,若n ⊥(t m+n ),则实数t 的值为( )A. 4B. 4-C.94 D. 94-9. 已知函数()f x 的定义域为R .当0x <时,()1f x x -3=;当x -1≤≤1时,()f x -=()f x -;当12x >时,11(+)()22f x f x -=.则(6)f = ( )A. 2-B. 1-C. 0D. 210. 若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )A. y=sin xB. y=ln xC. x y=eD. 3y=x232i,z z +=--------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)第II 卷(共100分)二、选择题:本大题共5小题,每小题5分,共25分. 11. 执行如图所示的程序框图,若输入的a b ,的值分别为0和9,则输出的i 的值为 .12. 若251)ax x+(的展开式中5x 的系数是80-,则实数a =________.13. 已知双曲线2222y 100E a b a bx =>>-:(,).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是_______.14. 在[]1,1-上随机的取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相交”发生的概率为_______. 15. 已知函数2|| ()24 x x m x mx m x m f x ⎧⎨-+⎩=,≤,,>,其中0m >.若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是_______. 三、解答题:本大题共6小题,共75分. 16. (本小题满分12分)在ABC △中,角,,A B C 的对边分别为a,b,c ,已知2(tanA+tanB)=tanA tanB+cosB cosA. (Ⅰ)证明:2a b c +=; (Ⅱ)求cos C 的最小值.17. (本小题满分12分)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(Ⅰ)已知G,H 分别为EC,FB 的中点.求证:GH ∥平面ABC ;(Ⅱ)已知1232EF =FB =AC =,AB =BC ,求二面角F -BC -A 的余弦值.18. (本小题满分12分)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+. (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+,求数列{}n c 的前n 项和n T .19. (本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(Ⅰ)“星队”至少猜对3个成语的概率;(Ⅱ)“星队”两轮得分之和X 的分布列和数学期望EX .20. (本小题满分13分)已知221()(ln ),R x f x a x x a x -=-+∈. (Ⅰ)讨论()f x 的单调性; (Ⅱ)当1a =时,证明3()()2f x f x '>+对于任意的[]1,2x ∈成立.21. (本小题满分14分)平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的离心率是32,抛物线2:2E x y =的焦点F 是C 的一个顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点,A B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M .(ⅰ)求证:点M 在定直线上;(ⅱ)直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.2016年普通高等学校招生全国统一考试(山东卷)理科数学答案解析(0,A B=+∞【提示】求解指数函数的值域化简案.【考点】并集及其运算【答案】D【答案】B【解析】()n tm n⊥+,()0n tm n∴+=,2||||cos,||0t m n m n n∴<>+=,4||3||m n=,1,3m n<>=,231||||||043t n n n∴+=,104t∴+=,4t∴=-.【提示】若(π)n t n⊥+,则(π)0n t n+=,进而可得实数t的值.【考点】平面向量数量积的运算【答案】D12x>时,1122f x f x⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,11x-≤≤【解析】输入的数学试卷第7页(共18页)数学试卷第8页(共18页)数学试卷第9页(共18页)数学试卷 第10页(共18页)数学试卷 第11页(共18页)数学试卷 第12页(共18页)22232b c a =,即为a.2b24,x mx m x m-+>⎩x m >时,程()f x b =m ∴的取值范围是【提示】作出函数(Ⅱ)2a b +=22)b a b =+0b >,∴由余弦定理231cos 122c ab -≥sin tan cos A A A =cos cos A B +G 、H 为GQ EF ∴∥又EF BO ∥GQ BO ∴∥且∴平面GQH GH ⊂面GQH GH ∴∥平面(Ⅱ)AB BC =数学试卷 第13页(共18页)数学试卷 第14页(共18页)数学试卷 第15页(共18页),又OO '⊥面OA 为x 轴,建立空间直角坐标系,则(23,0,0)C -,(0,23,0)B 3,0),(23,3,FC =---(23,23,0)CB =,由题意可知面的法向量为(0,0,3)OO '=,设000(,,)n x y z FCB 的法向量,则00n FC n CB ⎧=⎪⎨=⎪⎩,即0=⎪⎩,取01x =,则1,2,n ⎛=-- ⎝7cos ,7||||OO n OO n OO n ''∴<>==-'二面角--F BC A 的平面角是锐角,二面角--F BC A 的余弦值为77n n a b =+1n n a b -∴=1n n a a -∴-11a b =+1112b =+14b ∴=,4n b ∴=+(Ⅱ)1)2nn C ,126[2232(1)2]n n T n ∴=++++…①,2316[22322(1)2]n n n n ++++++…②,②可得:231112222(1)2]2(12)6(1)212)232n n n n n n n n n ++++++++-+--+-=-…,232n n +.【提示】(Ⅰ)求出数列{}n a 的通项公式,再求数列(Ⅱ)求出数列{}n c 的通项,利用错位相减法求数列【考点】数列的求和,数列递推式【答案】(Ⅰ)“星队”至少猜对22112233232211443433C ⎛⎫⎛⎫⎛⎫⎛⎫⎛-+-+ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭⎝队”两轮得分之和为X 可能为22321143144⎫⎛⎫--=⎪ ⎪⎭⎝⎭,22332322101111443433144⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯--+--=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦323232323232323225111111114343434343434343144⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+--+--+--= ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭3232114343144⎛⎫⎛⎫--=⎪ ⎪⎝⎭⎝⎭223322236011443334144⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-=⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦222363144⎛⎫= ⎪⎝⎭,的分布列如下图所示: 12346572 25144x 1)2x数学试卷 第16页(共18页)数学试卷 第17页(共18页)数学试卷 第18页(共18页)1a =32ln x x =-()F x f =0001122y FG x x =⎛⎫+= ⎪⎝⎭30000000022004441111424148x y x x x y PM x y x x +-⎛⎫-=+= ⎪++⎝⎭220220)(41)(21)x x x ++,令12x +22221(122)(1)(21)2122t t t t t t t t t -⎫++-⎪+-+-⎭===0001212FG x x y ⎛⎫+ ⎪⎝⎭=00414x y x x -+,整理可得t 的二次方程,进而得到最大值及此时【考点】椭圆的简单性质。

(完整版)2016年山东省高考数学试卷(理科解析)

(完整版)2016年山东省高考数学试卷(理科解析)

2016年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求. 1.若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=( )A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.2.设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1) B.(0,1) C.(﹣1,+∞)D.(0,+∞)解:∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2﹣1<0}=(﹣1,1),∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).故选:C.3.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17。

5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22。

5小时的人数是()A.56 B.60 C.120 D.140解:自习时间不少于22.5小时的频率为:(0。

16+0.08+0。

04)×2。

5=0.7,故自习时间不少于22.5小时的频率为:0.7×200=140,故选:D4.若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.12解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.故选:C.5.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+π C.+π D.1+π解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=.故R=,故半球的体积为:=π,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+π,故选:C6.已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当“直线a和直线b相交"时,“平面α和平面β相交”成立,当“平面α和平面β相交"时,“直线a和直线b相交”不一定成立,故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件,故选:A7.函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.πC. D.2π解:数f(x)=(sinx+cosx)(cosx﹣sinx)=2sin(x+)•2cos(x+)=2sin(2x+),∴T=π,故选:B8.已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,故选:B.9.已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.﹣1 C.0 D.2解:∵当x>时,f(x+)=f(x﹣),∴当x>时,f(x+1)=f(x),即周期为1.∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2.故选:D.10.若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T 性质.下列函数中具有T性质的是( )A.y=sinx B.y=lnx C.y=e x D.y=x3解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,当y=sinx时,y′=cosx,满足条件;当y=lnx时,y′=>0恒成立,不满足条件;当y=e x时,y′=e x>0恒成立,不满足条件;当y=x3时,y′=3x2>0恒成立,不满足条件;故选:A二、填空题:本大题共5小题,每小题5分,共25分。

2016年山东高考数学理word版含答案解析祥解

2016年山东高考数学理word版含答案解析祥解

绝密★启用前本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=- 其中i 为虚数单位,则z =(A )1+2i(B )1-2i(C )12i -+ (D )12i --【答案】B考点:注意共轭复数的概念.(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则AB =(A )(1,1)-(B )(0,1) (C )(1,)-+∞ (D )(0,)+∞【答案】C 【解析】试题分析:}0|{>=y y A ,}11|{<<-=x x B ,则}1|{->=x x B A ,选C. 考点:本题涉及到求函数值域、解不等式以及集合的运算.(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是 (A )56(B )60(C )120(D )140【答案】D考点:频率分布直方图【答案】C【解析】试题分析:不等式组表示的可行域是以A (0,-3),B (0,2),C (3, -1)为顶点的三角形区域,22x y +表示点(x ,y )到原点距离的平方,最大值必在顶点处取到,经验证最大值210OC =,故选C.考点:线性规划求最值(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )1233+π (B )133+π (C )136+π (D )16+π 【答案】C考点:根据三视图求体积.(6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A 【解析】试题分析:直线a 与直线b 相交,则,αβ一定相交,若,αβ相交,则a ,b 可能相交,也可能平行,故选A.考点:直线与平面的位置关系;充分、必要条件的判断.(7)函数f (x )=x +cos x )(x –sin x )的最小正周期是(A )2π(B )π (C )23π(D )2π 【答案】B 【解析】试题分析:()2sin 2cos 2sin 2663f x x x x πππ⎛⎫⎛⎫⎛⎫=+⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故最小正周期22T ππ==,故选B. 考点:三角函数化简求值,周期公式(8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为(A )4 (B )–4 (C )94 (D )–94【答案】B考点:平面向量的数量积(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= (A )−2(B )−1(C )0(D )2 【答案】D 【解析】 试题分析:当12x >时,11()()22f x f x +=-,所以当12x >时,函数()f x 是周期为1的周期函数,所以(6)(1)f f =,又因为函数()f x 是奇函数,所以()3(1)(1)112f f ⎡⎤=--=---=⎣⎦,故选D.考点:本题考查了函数的周期性、奇偶性,灵活变换求得函数性质是解题的关键.(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是 (A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3 【答案】A 【解析】试题分析:当sin y x =时,cos y x '=,cos0cos 1π⋅=-,所以在函数sin y x =图象存在两点0,x x π==使条件成立,故A 正确;函数3ln ,,x y x y e y x ===的导数值均非负,不符合题意,故选A.考点:本题注意实质上是检验函数图像上存在两点的导数值乘积等于-1.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

(精校版)2016年山东理数高考试题文档版(含答案)

(精校版)2016年山东理数高考试题文档版(含答案)

高中数学学习材料(灿若寒星精心整理制作)绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).如果事件A,B独立,那么P(AB)=P(A)·P(B)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =( )(A )1+2i (B )1-2i (C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( ) (A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()(A )56(B )60 (C )120(D )140(4)若变量x ,y 满足2,239,0,x y x y x ì+?ïïïï-?íïï锍ïî则22x y +的最大值是( ) (A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π(B )1233+π(C )1236+π(D )216+π (6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件(B )必要不充分条件学.科.网(C )充要条件(D )既不充分也不必要条件(7)函数f (x )=(3sin x +cos x )(3cos x –sin x )的最小正周期是( )(A )2π(B )π (C )23π(D )2π (8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,学科.网使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016年普通高等学校招生全国统一考试数学理山东卷试题及答案

2016年普通高等学校招生全国统一考试数学理山东卷试题及答案

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,zz +=-其中i 为虚数单位,则z =(A )1+2i(B )1-2i(C )12i -+ (D )12i --(2)设集合2{|2,},{|10},xA y y xB x x ==∈=-<R 则AB=(A )(1,1)- (B )(0,1) (C )(1,)-+∞(D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )140(4)若变量x ,y 满足则22x y+的最大值是(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )1233+π(B )133+π(C )136+π(D )16+π(6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(7)函数f (x )=x +cos x )x –sin x )的最小正周期是(A )2π(B )π (C )23π(D )2π(8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为(A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=-.则f (6)=(A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是 (A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016年高考山东卷理数试题(解析版)

2016年高考山东卷理数试题(解析版)

绝密★启用前本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么P (A +B )=P (A )+P (B );如果事件A ,B 独立,那么P (AB )=P (A )·P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的(1)若复数z 满足232i,z z +=- 其中i 为虚数单位,则z =( ) (A )1+2i (B )1-2i (C )12i -+ (D )12i --【答案】B 【解析】试题分析:设bi a z +=,则i bi a z z 2332-=+=+,故2,1-==b a ,则i z 21-=,选B.考点:1.复数的运算;2.复数的概念.【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时运算与概念、复数的几何意义综合考查,也是考生必定得分的题目之一.(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( ) (A )(1,1)-(B )(0,1)(C )(1,)-+∞(D )(0,)+∞【答案】C考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( ) (A )56(B )60(C )120(D )140【答案】D【解析】试题分析:由频率分布直方图知,自习时间不少于22.5小时为后三组,有200(0.160.080.04) 2.5140⨯++⨯=(人),选D. 考点:频率分布直方图【名师点睛】本题主要考查频率分布直方图,是一道基础题目.从历年高考题目看,图表题已是屡见不鲜,作为一道应用题,考查考生的视图、用图能力,以及应用数学解决实际问题的能力.(4)若变量x ,y 满足2,239,0,x y x y x ì+?ïïïï-?íïï锍ïî则22x y +的最大值是( )(A )4 (B )9 (C )10 (D )12【答案】C 【解析】试题分析:不等式组表示的可行域是以A (0,-3),B (0,2),C (3,-1)为顶点的三角形区域,22x y +表示点(x ,y )到原点距离的平方,最大值必在顶点处取到,经验证最大值为210OC =,故选C.考点:简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间距离等,考查考生的绘图、用图能力,以及应用数学解决实际问题的能力. (5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )13+ (C )13+ (D )1+ 【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等. (6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) (A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件【答案】A 【解析】试题分析:“直线a 和直线b 相交”⇒“平面α和平面β相交”,但“平面α和平面β相交”⇒“直线a 和直线b 相交”,所以“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件,故选A .考点:1.充要条件;2.直线与平面的位置关系.【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及直线与平面的位置关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、空间想象能力等.(7)函数f (x )=x +cos x )x –sin x )的最小正周期是( ) (A )2π(B )π (C )23π(D )2π【答案】B 【解析】试题分析:()2sin 2cos 2sin 2663f x x x x πππ⎛⎫⎛⎫⎛⎫=+⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故最小正周期22T ππ==,故选B. 考点:1.和差倍半的三角函数;2.三角函数的图象和性质.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.(8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4(B )–4(C )94(D )–94【答案】B 【解析】试题分析:由43m n = ,可设3,4(0)m k n k k ==> ,又()n tm n ⊥+,所以22221()cos ,34(4)41603n tm n n tm n n t m n m n n t k k k tk k ⋅+=⋅+⋅=⋅<>+=⨯⨯⨯+=+= 所以4t =-,故选B. 考点:平面向量的数量积【名师点睛】本题主要考查平面向量的数量积、平面向量的坐标运算.解答本题,关键在于能从()n tm n ⊥+出发,转化成为平面向量的数量积的计算.本题能较好的考查考生转化与化归思想、基本运算能力等.(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) (A )−2(B )−1(C )0(D )2【答案】D 【解析】 试题分析:当12x >时,11()(22f x f x +=-,所以当12x >时,函数()f x 是周期为1 的周期函数,所以(6)(1)f f =,又函数()f x 是奇函数,所以()3(1)(1)112f f ⎡⎤=--=---=⎣⎦,故选D.考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等. (10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) (A )sin y x =(B )ln y x =(C )e x y =(D )3y x =【答案】A考点:1.导数的计算;2.导数的几何意义.【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)执行右边的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.【答案】3 【解析】试题分析:第一次循环:a 1,b 8==;第二次循环:a 3,b 6==;第三次循环:a 6,b 3==;满足条件,结束循环,此时,i 3=.考点:循环结构的程序框图【名师点睛】自新课标学习算法以来,程序框图成为常见考点,一般说来难度不大,易于得分.题目以程序运行结果为填空内容,考查考生对各种分支及算法语言的理解和掌握,本题能较好的考查考生应用知识分析问题解决问题的能力等. (12)若(a x 25的展开式中x 5的系数是—80,则实数a =_______. 【答案】-2 【解析】试题分析:因为5102552155()rrrrr rr T C ax C ax---+==,所以由510522r r -=⇒=,因此252580 2.C a a -=-⇒=-考点:二项式定理【名师点睛】本题是二项式定理问题中的常见题型,二项展开式的通项公式,往往是考试的重点.本题难度不大,易于得分.能较好的考查考生的基本运算能力等.(13)已知双曲线E :22221x y a b-= (a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 【答案】2 【解析】试题分析:假设点A 在第一象限,点B 在第二象限,则2b A(c,)a ,2b B(c,)a-,所以22b |AB |a=,|BC |2c =,由2AB 3BC =,222c a b =+得离心率e 2=或1e 2=-(舍去),所以E 的离心率为2. 考点:双曲线的几何性质【名师点睛】本题主要考查双曲线的几何性质.本题解答,利用特殊化思想,通过对特殊情况的讨论,转化得到一般结论,降低了解题的难度.本题能较好的考查考生转化与化归思想、一般与特殊思想及基本运算能力等.(14)在[1,1]-上随机地取一个数k ,则事件“直线y =kx 与圆22(5)9x y -+=相交”发生的概率为 . 【答案】34考点:1.直线与圆的位置关系;2. 几何概型.【名师点睛】本题是高考常考知识内容.本题综合性较强,具有“无图考图”的显著特点,几何概型概率的计算问题,涉及圆心距的计算,与弦长相关的问题,往往要关注“圆的特征直角三角形”,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等. (15)已知函数2||,()24,x x m f x x mx m x m≤⎧=⎨-+>⎩ 其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________. 【答案】()3,+∞ 【解析】 试题分析:画出函数图象如下图所示:由图所示,要()f x b =有三个不同的根,需要红色部分图像在深蓝色图像的下方,即2224,30m m m m m m m >-⋅+->,解得3m >考点:1.函数的图象与性质;2.函数与方程;3.分段函数【名师点睛】本题主要考查二次函数函数的图象与性质、函数与方程、分段函数的概念.解答本题,关键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.本题能较好的考查考生数形结合思想、转化与化归思想、基本运算求解能力等.三、解答题:本答题共6小题,共75分.(16)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A BA B B A+=+(Ⅰ)证明:a +b =2c ;(Ⅱ)求cos C 的最小值. 【答案】(Ⅰ)见解析;(Ⅱ)12【解析】试题分析:(Ⅰ)根据两角和的正弦公式、正切公式、正弦定理即可证明; (Ⅱ)根据余弦定理公式表示出cosC ,由基本不等式求cos C 的最小值. 试题解析:()I 由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B⎛⎫+=+⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=+, 即()2sin sin sin A B A B +=+. 因为A B C π++=,所以()()sin sin sin A B C C π+=-=. 从而sin sin =2sin A B C +. 由正弦定理得2a b c +=.()∏由()I 知2a bc +=,故 cos C 的最小值为12. 考点:1.和差倍半的三角函数;2. 正弦定理、余弦定理;3. 基本不等式.【名师点睛】此类题目是解三角形问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到证明目的;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题覆盖面较广,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.(17)(本小题满分12分)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(I )已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(II )已知EF =FB =12AC =,AB =BC .求二面角F BC A --的余弦值.【答案】(Ⅰ)见解析;(Ⅱ)7【解析】试题分析:(Ⅰ)根据线线、面面平行可得与直线GH 与平面ABC 平行;(Ⅱ)立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,其中解法一建立空间直角坐标系求解;解法二则是找到FNM ∠为二面角F BC A --的平面角直接求解. 试题解析:(I )证明:设FC 的中点为I ,连接,GI HI ,在CEF △,因为G 是CE 的中点,所以,GI F //E又,F E //OB 所以,GI //OB在CFB △中,因为H 是FB 的中点,所以//HI BC ,又HI GI I ⋂=,所以平面//GHI 平面ABC ,因为GH ⊂平面GHI ,所以//GH 平面ABC .(II )解法一:连接'OO ,则'OO ⊥平面ABC ,又,AB BC =且AC 是圆O 的直径,所以.BO AC ⊥以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,由题意得B ,(C -,过点F 作FM OB 垂直于点M ,所以3,FM ==可得F故((0,BC BF =--= .设(,,)m x y z = 是平面BCF 的一个法向量.由0,0m BC m BF ⎧⋅=⎪⎨⋅=⎪⎩解法二:连接'OO ,过点F 作FM OB ⊥于点M ,则有//'FM OO ,又'OO ⊥平面ABC ,所以FM ⊥平面ABC,可得3,FM ==过点M 作MN BC 垂直于点N ,连接FN ,考点:1.平行关系;2. 异面直线所成角的计算.【名师点睛】此类题目是立体几何中的常见问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,给出规范的证明.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好的考查考生的空间想象能力、逻辑推理能力\转化与化归思想及基本运算能力等.(18)(本小题满分12分)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式; (Ⅱ)令1(1).(2)n n n n n a c b ++=+ 求数列{}n c 的前n 项和T n . 【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T .【解析】试题分析:(Ⅰ)根据1--=n n n S S a 及等差数列的通项公式求解;(Ⅱ)根据(Ⅰ)知数列{}n c 的通项公式,再用错位相减法求其前n 项和.试题解析:(Ⅰ)由题意知当2≥n 时,561+=-=-n S S a n n n ,当1=n 时,1111==S a ,所以56+=n a n .设数列{}n b 的公差为d ,由⎩⎨⎧+=+=322211b b a b b a ,即⎩⎨⎧+=+=d b d b 321721111,可解得3,41==d b , 所以13+=n b n . (Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n n n c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯224(21)3[4(1)2]2132n n n n n ++-=⨯+-+⨯-=-⋅ 所以223+⋅=n n n T考点:1.等差数列的通项公式;2.等差数列、等比数列的求和;3.“错位相减法”.【名师点睛】本题主要考查等差数列的通项公式及求和公式、等比数列的求和、数列求和的“错位相减法”.此类题目是数列问题中的常见题型.本题覆盖面广,对考生计算能力要求较高.解答本题,布列方程组,确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题能较好的考查考生的逻辑思维能力及基本计算能力等.(19)(本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求: (I )“星队”至少猜对3个成语的概率;(Ⅱ)“星队”两轮得分之和为X 的分布列和数学期望EX .【答案】(Ⅰ)23(Ⅱ)分布列见解析,236=EX 【解析】试题分析:(Ⅰ)找出“星队”至少猜对3个成语所包含的基本事件,由独立事件的概率公式和互斥事件的概率加法公式求解;(Ⅱ)由题意,随机变量X 的可能取值为0,1,2,3,4, 6.由事件的独立性与互斥性,得到X 的分布列,根据期望公式求解.试题解析:(Ⅰ)记事件A:“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”. 由题意,.E ABCD ABCD ABCD ABCD ABCD =++++由事件的独立性与互斥性, ()()()()()()P E P ABCD P ABCD P ABCD P ABCD P ABCD =++++()()()()()()()()()()()()()()()()()()()()P A P B P C P D P A P B P C P D P A P B P C P D P A P B P P A P B P C P D C P D =++++ 323212323132=24343434343432.3⎛⎫⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯ ⎪⎝⎭= , 所以“星队”至少猜对3个成语的概率为23. (Ⅱ)由题意,随机变量X 的可能取值为0,1,2,3,4,6.由事件的独立性与互斥性,得()1111104343144P X ==⨯⨯⨯= , ()31111211105124343434314472P X ⎛⎫==⨯⨯⨯⨯+⨯⨯⨯== ⎪⎝⎭,()31313112123112122524343434343434343144P X ==⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯= , ()32111132134343434312P X ==⨯⨯⨯+⨯⨯⨯= ,考点:1.独立事件的概率公式和互斥事件的概率加法公式;2.随机变量的分布列和数学期望.【名师点睛】本题主要考查独立事件的概率公式和互斥事件的概率加法公式、随机变量的分布列和数学期望.解答本题,首先要准确确定所研究对象的基本事件空间、基本事件个数,利用独立事件的概率公式和互斥事件的概率加法公式求解.本题较难,能很好的考查考生数学应用意识、基本运算求解能力等.(20) (本小题满分13分)已知()221()ln ,R x f x a x x a x-=-+∈. (I )讨论()f x 的单调性;(II )当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立. 【答案】(Ⅰ)见解析;(Ⅱ)见解析【解析】试题分析:(Ⅰ)求()f x 的导函数,对a 进行分类讨论,求()f x 的单调性;(Ⅱ)要证()3()'2f x f x +>对于任意的[]1,2x ∈成立,即证23)()(/>-x f x f ,根据单调性求解.试题解析:(Ⅰ))(x f 的定义域为),0(+∞;3232/)1)(2(22)(x x ax x x x a a x f --=+--=. 当0≤a , )1,0(∈x 时,0)(/>x f ,)(x f 单调递增;/(1,),()0x f x ∈+∞<时,)(x f 单调递减.当0>a 时,/3(1)()(a x f x x x x -=. (1)20<<a ,12>a, 当)1,0(∈x 或x ∈),2(+∞a 时,0)(/>x f ,)(x f 单调递增; 当x ∈)2,1(a时,0)(/<x f , )(x f 单调递减; (2)2=a 时,12=a,在x ∈),0(+∞内,0)(/≥x f ,)(x f 单调递增; (3)2>a 时,120<<a , 当)2,0(ax ∈或x ∈),1(+∞时,0)(/>x f ,)(x f 单调递增; 当x ∈)1,2(a 时,0)(/<x f ,)(x f 单调递减. 综上所述,当0≤a 时,函数)(x f 在)1,0(内单调递增,在),1(+∞内单调递减;当20<<a 时,)(x f 在)1,0(内单调递增,在)2,1(a 内单调递减,在),2(+∞a内单调递增;当2=a 时,)(x f 在),0(+∞内单调递增;当2>a ,)(x f 在)2,0(a 内单调递增,在)1,2(a内单调递减,在),1(+∞内单调递增. (Ⅱ)由(Ⅰ)知,1=a 时,/22321122()()ln (1)x f x f x x x x x x x --=-+---+23312ln 1x x x x x=-++--,]2,1[∈x , 令1213)(,ln )(32--+=-=x x x x h x x x g ,]2,1[∈x . 则)()()()(/x h x g x f x f +=-, 由01)(/≥-=xx x g 可得1)1()(=≥g x g ,当且仅当1=x 时取得等号. 又24326'()x x h x x--+=, 设623)(2+--=x x x ϕ,则)(x ϕ在x ∈]2,1[单调递减,考点:1.应用导数研究函数的单调性、极值;2.分类讨论思想.【名师点睛】本题主要考查导数的计算、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.(21)(本小题满分14分)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>的离心率是2,抛物线E :22x y =的焦点F 是C 的一个顶点.(I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S的最大值及取得最大值时点P 的坐标.【答案】(Ⅰ)1422=+y x ;(Ⅱ)(i )见解析;(ii )12S S 的最大值为49,此时点P 的坐标为41,22( 【解析】试题分析:(Ⅰ)根据椭圆的离心率和焦点求方程;(Ⅱ)(i )由点P 的坐标和斜率设出直线l 的方程和抛物线联立,进而判断点M 在定直线上;(ii )分别列出1S ,2S 面积的表达式,根据二次函数求最值和此时点P 的坐标.试题解析:(Ⅰ)由题意知2322=-a b a ,可得:b a 2=. 因为抛物线E 的焦点为)21,0(F ,所以21,1==b a , 所以椭圆C 的方程为1422=+y x . (Ⅱ)(i )设)02,(2>m m m P ,由y x 22=可得x y =/, 所以直线l 的斜率为m ,因此直线l 的方程为)(22m x m m y -=-,即22m mx y -=. 设),(),,(),,(002211y x D y x B y x A ,联立方程222241m y mx x y ⎧=-⎪⎨⎪+=⎩得014)14(4322=-+-+m x m x m ,由0>∆,得520+<<m 且1442321+=+m m x x , 因此142223210+=+=m m x x x , 将其代入22m mx y -=得)14(2220+-=m m y , 因为mx y 4100-=,所以直线OD 方程为x m y 41-=.所以)1(41||2121+==m m m GF S , )14(8)12(||||2122202++=-⋅=m m m x m PM S , 所以222221)12()1)(14(2+++=m m m S S , 令122+=m t ,则211)1)(12(2221++-=+-=tt t t t S S , 当211=t ,即2=t 时,21S S 取得最大值49,此时22=m ,满足0>∆, 所以点P 的坐标为)41,22(,因此12S S 的最大值为49,此时点P 的坐标为)41,22(. 考点:1.椭圆、抛物线的标准方程及其几何性质;2.直线与圆锥曲线的位置关系;3. 二次函数的图象和性质.【名师点睛】本题对考生计算能力要求较高,是一道难题.解答此类题目,利用,,,a b c e 的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,应用确定函数最值的方法---如二次函数的性质、基本不等式、导数等求解.本题易错点是复杂式子的变形能力不足,导致错漏百出..本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.。

2016年高考理科数学山东卷-答案

2016年高考理科数学山东卷-答案
【提示】可令 ,代入双曲线的方程,求得 ,再由题意设出 , , , 的坐标,由 ,可得 , , 的方程,运用离心率公式计算即可得到所求值.
【考点】双曲线的简单性质
14.【答案】
【解析】直线 与圆 相交,所以圆心 到直线 距离小于半径 ,
, , , , .
【提示】利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的 ,最后根据几何概型的概率公式可求出所求.
(ⅱ)由直线 的方程为 ,令 ,可得 ,运用三角形的面积公式,可得 , ,化简整理,再 ,整理可得 的二次方程,进而得到最大值及此时 的坐标.
【考点】椭圆的简单性质
【提示】求得函数的周期为1,再利用当 时, ,得到 ,当 时, ,得到 ,即可得出结论.
【考点】抽象函数及其应用
10.【答案】A
【解析】(A)函数的特征是存在两点切线垂直,既存在两点导数值相乘为 ;
(B)选项中 的导数是 恒大于 ,斜率成绩不可能为 ;
(C)选项中 的导函数 恒大于 ,斜率成绩不可能为 ;
【考点】并集及其运算
3.【答案】D
【解析】由频率分布直方图可知:组距为2.5,故这200名学生中每周的自பைடு நூலகம்时间不少于22.5小时的频率为: , 人数是 人.
【提示】根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数.
【考点】频率分布直方图
4.【答案】C

(Ⅱ) ,
, ,且 ,当且仅当 时取等号,
又 , , ,
由余弦定理 ,
的最小值为 .
【提示】(Ⅰ)由切化弦公式 , ,带入 并整理可得 ,这样根据两角和的正弦公式即可得到 ,从而根据正弦定理便可得出 ;

山东省2016年高考理科数学试题及答案(Word版)

山东省2016年高考理科数学试题及答案(Word版)

2016年山东省高考理科数学试题与答案本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回. 参考公式: 如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足i -z z 232=+,其中i 为虚数为单位,则=z(A )i 21+ (B )i -21 (C )i -21+ (D )i --21(2)已知集合{}{}0122<=,∈,==A -x x B R x y y x ,则=B A(A )),(11- (B )),(10 (C ))+∞,(1- (D ))+,(∞0 (3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )1400.040.08 0.100.16(4)若变量y x ,满足⎪⎩⎪⎨⎧≥≤-≤+09322x y x y x ,则22y x +的最大值是(A )4 (B )9 (C )10 (D )12 (5)有一个半球和四棱锥组成的几何体,其三 视图如右图所示,则该几何体的体积为(A )π32+31 (B )π32+31 (C )π62+31 (D )π62+1 (6)已知直线b a ,分别在两个不同的平面βα、内,则“直线a 和直线b 相交”是“平面α和平面α相交”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(7)函数)sin cos )(cos +sin (=)(x x -x x x f 33的最小正周期是(A )2π (B )π (C )2π3 (D )π2(8)已知非零向量n m ,满足313>=,<cos ,=4n m n m ,若)+(⊥n tm n 则实数t 的值为 (A )4 (B )—4(C )49 (D )—49(9)已知函数)(x f 的定义域为R ,当0<x 时,1-x x f 3=)(;当11≤≤x -时,)(—=)(x f -x f ;当21>x 时,)(=)+(2121x -f x f ,则=)(6f (A )—2 (B )—1(C )0 (D )2(10)若函数)(=x f y 的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称)(=x f y 具有T 性质.下列函数具有T 性质的是(A )x y sin = (B )x y ln = (C )xe y = (D )3x y =.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. (11)执行右边的程序框图,若输入的的值分别为0和9则输出i 的值为(12)若5)+xax 1(2的展开式中5x 的系数是80-,则实数=a (13)已知双曲线)>,>(=:0012222b a by -a x E ,若矩形ABCD 的四个顶点在E 上,CD AB ,的中点为E 的两个焦点,且BC 3=AB 2,则E 的离心率为(14)在],[11-上随机的取一个数k ,则事件“直线kx y =与圆9522=+)(y x -相交”发生的概率为(15)在已知函数=)(x f ,其中0>m ,若存在实数b ,使得关于x 的方程b x f =)(有三个不同的根,则m 的取值范围是 三、解答题:本答题共6小题,共75分. (16)(本小题满分12分)在ABC 中,角C B,A,的对边分别为a,b,c ,已知cosAtanB+cosB tanA =tanB)+2(tanA (Ⅰ)证明:c b a 2=+; (Ⅱ)求C cos 的最小值. (17)(本小题满分12分)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(Ⅰ)已知H G,分别为FB EC,的中点,求证:GH//平面ABC ;(Ⅱ)已知BC =AB ,32=AC 21=FB =EF ,求二面角A -BC -F 的余弦值.(18)(本小题满分12分)已知数列{}n a 的前n 项和n n S n 832+=,{}n b 是等差数列,且1++=n n n b b a .(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令nn n n n b a c )2()1(1++=+.求数列{}n c 的前n 项和n T .(19)(本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是43,乙每轮猜对的概率是32;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响.假设“星队”参加两轮活动,求:(Ⅰ) “星队”至少猜对3个成语的概率;(Ⅱ) “星队”两轮得分之和X 的分布列和数学期望EX . (20)(本小题满分13分) 已知.,12)ln ()(2R a xx x x a x f ∈-+-= (Ⅰ) 讨论)(x f 的单调性;(Ⅱ) 当1=a 时,证明23)()(+'>x f x f 对于任意的]2,1[∈x 成立. (21)(本小题满分14分)平面直角坐标系xOy 中,椭圆)0>>(1=+:2222b a b y a x C 的离心率是23,抛物线y x E 2=:2的焦点F 是C 的一个顶点.(Ⅰ) 求椭圆C 的方程;(Ⅱ) 设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点B A ,,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG ∆的面积为1S ,PDM ∆的面积为2S ,求21S S 的最大值及取得最大值时点P 的坐标.参考答案:1、B2、C3、D4、C5、C6、A7、B8、B9、D 10、A 11、 3 12、2- 13、2 14、4315、),(∞+316、(Ⅰ)由cosAtanB+cosB tanA =tanB)+2(tanA 得 cosAcosBsinBcosAcosB sinA cosAcosB sinC 2+=⨯,所以C B C sin sin sin +=2,由正弦定理,得c b a 2=+.(Ⅱ)由abc ab b a ab c b a C 22222222--+=-+=)(cos211231223123222=-=-≥-=)(c ab c .所以C cos 的最小值为21. 17、(Ⅰ)连结FC ,取FC 的中点M ,连结HM GM,, 因为GM//EF ,EF 在上底面内,GM 不在上底面内, 所以GM//上底面,所以GM//平面ABC ; 又因为MH//BC ,⊂BC 平面ABC ,⊄MH 平面ABC ,所以MH//平面ABC ; 所以平面GHM//平面ABC ,由⊂GH 平面GHM ,所以GH//平面ABC . (Ⅱ) 连结OB ,BC AB = OB A ⊥∴O以为O 原点,分别以O O OB,OA,'为z y,x,轴, 建立空间直角坐标系.BBC AB ,32AC 21FB EF ==== , 3)(22=--='FO BO BF O O ,于是有)0,0,3A(2,)0,0,3C(-2,)0,3B(0,2,)3,3F(0,, 可得平面FBC 中的向量)3,(30,-BF =,)0,,(3232CB =, 于是得平面FBC 的一个法向量为)1,3,3(1-=n , 又平面ABC 的一个法向量为)1,0,0(2=n , 设二面角A -BC -F 为θ,则7771cos ===θ. 二面角A -BC -F 的余弦值为77.18、(Ⅰ)因为数列{}n a 的前n 项和n n S n 832+=, 所以111=a ,当2≥n 时,56)1(8)1(383221+=----+=-=-n n n n n S S a n n n ,又56+=n a n 对1=n 也成立,所以56+=n a n .又因为{}n b 是等差数列,设公差为d ,则d b b b a n n n n +=+=+21. 当1=n 时,d b -=1121;当2=n 时,d b -=1722, 解得3=d ,所以数列{}n b 的通项公式为132+=-=n da b n n . (Ⅱ)由1112)33()33()66()2()1(+++⋅+=++=++=n nn n n n n n n n n b a c , 于是14322)33(2122926+⋅+++⋅+⋅+⋅=n n n T ,两边同乘以2,得21432)33(2)3(29262++⋅++⋅++⋅+⋅=n n n n n T ,两式相减,得214322)33(23232326++⋅+-⋅++⋅+⋅+⋅=-n n n n T2222)33(21)21(2323+⋅+---⋅+⋅=n n n222232)33()21(2312++⋅=⋅++-⋅+-=n n n n n n T .19、(Ⅰ) “至少猜对3个成语”包括“恰好猜对3个成语”和“猜对4个成语”. 设“至少猜对3个成语”为事件A ;“恰好猜对3个成语”和“猜对4个成语”分别为事件C B ,,则1253232414331324343)(1212=⋅⋅⋅⋅+⋅⋅⋅⋅=C C B P ; 4132324343)(=⋅⋅⋅=C P . 所以3241125)()()(=+=+=C P B P A P . (Ⅱ) “星队”两轮得分之和X 的所有可能取值为0,1,2,3,4,6 于是144131413141)0(=⋅⋅⋅==X P ; 725144103143314131413241)1(1212==⋅⋅⋅+⋅⋅⋅==C C X P ;14425313243413131434332324141)2(12=⋅⋅⋅+⋅⋅⋅+⋅⋅⋅==C X P ; 1211441231413243)3(12==⋅⋅⋅==C X P ; 12514460)31433241(3243)4(12==⋅+⋅⋅⋅==C X P ; 411443632433243)6(==⋅⋅⋅==X P ; X 的分布列为:X 的数学期望62314455264141253121214425172501441==⨯+⨯+⨯+⨯+⨯+⨯=EX .20、(Ⅰ) 求导数322)11(=)(′x x x a x f --- 322)(1(=x ax x )--当0≤a 时,(0,1)∈x ,0>)(′x f ,)(x f 单调递增, )(1,∈+∞x ,0<)(′x f ,)(x f 单调递减;当0>a 时,3322+(2)(1(=2)(1(=)(′x ax a x x a x ax x x f ))--)--(1) 当<2<a 0时,1>2a, (0,1)∈x 或),(∈+∞2ax ,0>)(′x f ,)(x f 单调递增, )(1,∈ax 2,0<)(′x f ,)(x f 单调递减; (2) 当2=a 时,1=2a, )(0,∈+∞x ,0≥)(′x f ,)(x f 单调递增, (3) 当2>a 时,1<2<0a, )(0,∈ax 2或∞)(1,∈+x ,0>)(′x f ,)(x f 单调递增, ,1)(∈ax 2,0<)(′x f ,)(x f 单调递减;(Ⅱ) 当1=a 时,212+ln =)(x x x x x f --,32322+11=2)(1(=)(′x x x x x x x f 2--)--于是)2+1112+ln =)(′)(322x x x x x x x x f x f 2---(---,-1-1-322+3+ln =xx x x x ,]2,1[∈x令x x x ln =)g(- ,322+3+=)h(xx x x -1-1,]2,1[∈x , 于是)(+(g =)(′)(x h x x f x f )-, 0≥1=1=)(g ′xx x x -1-,)g(x 的最小值为1=g(1);又42432+=+=)(h ′x x x x x x x 6-2-362-3-设6+23=)(θ2x x x --,]2,1[∈x ,因为1=)1(θ,10=)2(θ-, 所以必有]2,1[0∈x ,使得0=)(θ0x ,且0<<1x x 时,0>)(θx ,)(x h 单调递增; 2<<0x x 时,0<)(θx ,)(x h 单调递减;又1=)1(h ,21=)2(h ,所以)(x h 的最小值为21=)2(h . 所以23=21+1=)2(+1(g >)(+(g =)(′)(h x h x x f x f ))-. 即23)()(+'>x f x f 对于任意的]2,1[∈x 成立. 21、(Ⅰ) 由离心率是23,有224=b a ,又抛物线y x 2=2的焦点坐标为)21,0(F ,所以21=b ,于是1=a , 所以椭圆C 的方程为1=4+22y x . (Ⅱ) (i )设P 点坐标为)0>(),2m m,P 2m (, 由y x 2=2得x y =′,所以E 在点P 处的切线l 的斜率为m , 因此切线l 的方程为2=2m m x -y , 设),(),,(2211y x B y x A ,),(00y x D , 将2=2m m x -y 代入1=4+22y x ,得 0=1+4)4+12322-m x m -x m (. 于是23214+14=+m m x x ,232104+12=2+=m m x x x , 又)4+1(2=2=22200m -m m -mx y , 于是 直线OD 的方程为x m-y 41=. 联立方程x m -y 41=与m x =,得M 的坐标为)41M(m,-. 所以点M 在定直线41=y -上. (ii )在切线l 的方程为2=2m m x -y 中,令0=x ,得2m =y 2-, 即点G 的坐标为)2m G(0,-2,又)2m P(m,2,)21F(0,, 所以4)1+(=×21=S 21m m GF m ;再由)1)+2(4m -m ,1+4m 2m D(2223,得 )1+4(8)1+2(=1+4+2×41+2×21=S 2222322m m m m m m m 于是有 222221)1+2()1+)(1+4(2=S S m m m . 令1+2=2m t ,得222111+2=)1+)(21(2=S S t -t t t t - 当21=1t 时,即2=t 时,21S S 取得最大值49. 此时21=2m ,22=m ,所以P 点的坐标为)41,22P(. 所以21S S 的最大值为49,取得最大值时点P 的坐标为)41,22P(.。

2016年高考山东理科数学试题及答案(解析版)

2016年高考山东理科数学试题及答案(解析版)

2016年普通高等学校招生全国统一考试(山东卷)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2016年山东,理1,5分】若复数z 满足232i zz,其中i 为虚数为单位,则z ()(A )12i (B )12i (C )12i (D )12i 【答案】B 【解析】设,,zabi a bR ,则2()i23i32i zzz zz ab aab ,所以1,2a b,故选B .【点评】本题考查复数的代数形式混合运算,考查计算能力.(2)【2016年山东,理2,5分】已知集合22,,10xAy yxR B x x ,则A BU ()(A )1,1(B )0,1(C )1,(D )0,【答案】C【解析】由题意0,A,1,1B,所以1,A BU ,故选C .【点评】本题考查并集及其运算,考查了指数函数的值域,考查一元二次不等式的解法,是基础题.(3)【2016年山东,理3,5分】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20,20,22.5,22.5,25,25,27.5,27.5,30.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()(A )56(B )60(C )120(D )140 【答案】D【解析】由图可知组距为 2.5,每周的自习时间少于22.5小时的频率为(0.020.1) 2.50.30,所以,每周自习时间不少于22.5小时的人数是20010.30140人,故选D .【点评】本题考查的知识点是频率分布直方图,难度不大,属于基础题目.(4)【2016年山东,理4,5分】若变量x ,y 满足22390xy x y x,则22xy 的最大值是()(A )4 (B )9 (C )10(D )12【答案】C 【解析】由22xy 是点,x y 到原点距离的平方,故只需求出三直线的交点0,2,0,3,3,1,所以3,1是最优解,22xy 的最大值是10,故选C .【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.(5)【2016年山东,理5,5分】有一个半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为()(A )1233(B )1233(C )1236(D )216【答案】C【解析】由三视图可知,半球的体积为26,四棱锥的体积为13,所以该几何体的体积为1236,故选C .【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.(6)【2016年山东,理6,5分】已知直线,a b 分别在两个不同的平面,内,则“直线a 和直线b 相交”是“平面和平面相交”的()(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件【答案】A【解析】由直线a 和直线b 相交,可知平面、有公共点,所以平面和平面相交.又如果平面和平面相交,直线a 和直线b 不一定相交,故选A .【点评】本题考查的知识点是充要条件,空间直线与平面的位置关系,难度不大,属于基础题.(7)【2016年山东,理7,5分】函数()3sin cos 3cos sin f x xxx x 的最小正周期是()(A )2(B )(C )32(D )2【答案】B 【解析】由()2sin cos 3cos22sin 23f x x xxx,所以,最小正周期是,故选B .【点评】本题考查的知识点是和差角及二倍角公式,三角函数的周期,难度中档.(8)【2016年山东,理8,5分】已知非零向量,m n 满足143,cos ,3m n m n,若ntmn 则实数t 的值为()(A )4 (B )4(C )94(D )94【答案】B 【解析】因为21cos ,4nmm n m nn ,由ntmn ,有20n tmn tmn n ,即2104t n,4t ,故选B .【点评】本题考查的知识点是平面向量数量积的运算,向量垂直的充要条件,难度不大,属于基础题.(9)【2016年山东,理9,5分】已知函数()f x 的定义域为R ,当0x时,3()1f x x;当11x 时,()()f x f x ;当12x时,1122f xf x,则6f ()(A )2(B )1(C )0(D )2【答案】D 【解析】由1122f x f x,知当12x时,f x 的周期为1,所以61f f .又当11x 时,f xf x ,所以11f f.于是3611112f f f ,故选D .【点评】本题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题.(10)【2016年山东,理10,5分】若函数yf x 的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y f x 具有T 性质.下列函数具有T 性质的是()(A )sin y x(B )ln yx(C )xye(D )3yx【答案】A 【解析】因为函数ln yx ,xye 的图象上任何一点的切线的斜率都是正数;函数3y x 的图象上任何一点的切线的斜率都是非负数.都不可能在这两点处的切线互相垂直,即不具有T 性质,故选A .【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档.第II 卷(共100分)二、填空题:本大题共5小题,每小题5分(11)【2016年山东,理11,5分】执行右边的程序框图,若输入的的值分别为0和9,则输出i 的值为.【答案】 3【解析】i 1时,执行循环体后1,8a b ,a b 不成立;i 2时,执行循环体后3,6a b,a b不成立;i 3时,执行循环体后6,3a b ,a b 成立;所以i 3,故填 3. 【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.(12)【2016年山东,理12,5分】若521ax x的展开式中5x 的系数是80,则实数a.【答案】2【解析】由23222355551C C 80axa xx x,得2a,所以应填2.【点评】考查了利用二项式定理的性质求二项式展开式的系数,属常规题型.(13)【2016年山东,理13,5分】已知双曲线2222:10,0xyE a ba b,若矩形ABCD 的四个顶点在E 上,,AB CD的中点为E 的两个焦点,且23ABBC ,则E 的离心率为.【答案】 2 【解析】由题意BC 2c ,所以2AB3BC ,于是点3,2c c 在双曲线E 上,代入方程,得2222914c c ab,在由222ab c 得E 的离心率为2c ea.【点评】本题考查双曲线的离心率的求法,注意运用方程的思想,正确设出A B C D ,,,的坐标是解题的关键,考查运算能力,属于中档题.(14)【2016年山东,理14,5分】在1,1上随机的取一个数k ,则事件“直线y kx 与圆2259x y相交”发生的概率为.【答案】34【解析】首先k 的取值空间的长度为2,由直线ykx 与圆22(5)9xy相交,得事件发生时k 的取值空间为33,44,其长度为32,所以所求概率为33224.【点评】本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.(15)【2016年山东,理15,5分】在已知函数2,24,x x m f xxmxm xm,其中0m ,若存在实数b ,使得关于x 的方程f xb 有三个不同的根,则m 的取值范围是.【答案】3,【解析】因为224g x x mxm 的对称轴为xm ,所以xm 时224f x x mx m 单调递增,只要b 大于224g xxmxm 的最小值24m m 时,关于x 的方程f x b 在x m 时有一根;又h xx 在x m ,0m 时,存在实数b ,使方程f x b 在xm 时有两个根,只需0b m ;故只需24m mm即可,解之,注意0m ,得3m ,故填3,.【点评】本题考查根的存在性及根的个数判断,数形结合思想的运用是关键,分析得到24m mm 是难点,属于中档题.三、解答题:本大题共6题,共75分.(16)【2016年山东,理16,12分】在ABC 中,角,,A B C 的对边分别为a,b,c ,已知tan tan 2tan tan cos cos A B A BBA.(1)证明:2a b c ;(2)求cosC 的最小值.解:(1)由tan tan 2tan tan cos cos A BABB A得sin sin sin 2cos cos cos cos cos cos C A B A BA BA B,2sin sin sin C B C ,由正弦定理,得2ab c .(2)由222222cos 22a bab cabcCab ab222333111122222cc aba b.所以cosC 的最小值为12.【点评】考查切化弦公式,两角和的正弦公式,三角形的内角和为,以及三角函数的诱导公式,正余弦定理,不等式222a b ab 的应用,不等式的性质.(17)【2016年山东,理17,12分】在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O 的直径,FB 是圆台的一条母线.(1)已知,G H 分别为,EC FB 的中点,求证://GH 平面ABC ;(2)已知123,2EFFBAC ABBC ,求二面角FBCA 的余弦值.解:(1)连结FC ,取FC 的中点M ,连结,GM HM ,因为//GM EF ,EF 在上底面内,GM 不在上底面内,所以//GM 上底面,所以//GM 平面ABC ;又因为//MH BC ,BC 平面ABC ,MH 平面ABC ,所以//MH 平面ABC ;所以平面//GHM 平面ABC ,由GH 平面GHM ,所以//GH 平面ABC .(2)连结OB ,AB BC Q OA OB ,以为O 原点,分别以,,OA OB OO 为,,x y z 轴,建立空间直角坐标系.123,2EFFBAC ABBC Q ,22()3OOBFBO FO ,于是有23,0,0A ,23,0,0C ,0,23,0B ,0,3,3F ,可得平面FBC 中的向量0,3,3BF uu u r,23,23,0CB u u u r ,于是得平面FBC 的一个法向量为13,3,1n u u r,又平面ABC 的一个法向量为20,0,1n u u r,设二面角F BC A 为,则121217cos 77n n n n u u r u u r u u r u u r.二面角F BC A 的余弦值为77.【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.(18)【2016年山东,理18,12分】已知数列n a 的前n 项和238nS nn ,n b 是等差数列,且1n n n a b b .(1)求数列n b 的通项公式;(2)令1(1)(2)n n nnna cb .求数列n c 的前n 项和n T .解:(1)因为数列n a 的前n 项和238n S nn ,所以111a ,当2n时,221383(1)8(1)65nnna S S nn n n n,又65na n 对1n 也成立,所以65na n .又因为n b 是等差数列,设公差为d ,则12nn nna b b b d .当1n 时,1211b d ;当2n时,2217b d ,解得3d,所以数列n b 的通项公式为312nn a db n .(2)由111(1)(66)(33)2(2)(33)n n n nnnn n a n c n b n ,于是23416292122(33)2n nT n L ,两边同乘以2,得341226292(3)2(33)2n n n T n n L ,两式相减,得2341262323232(33)2n n n T nL 22232(12)32(33)212nn n 2221232(12)(33)232nn n nT nn .【点评】本题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题.(19)【2016年山东,理19,12分】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望EX .解:(1)“至少猜对3个成语”包括“恰好猜对3个成语”和“猜对4个成语”.设“至少猜对3个成语”为事件A ;“恰好猜对3个成语”和“猜对4个成语”分别为事件C B,,则1122332131225()4433443312P B C C;33221()44334P C .所以512()()()1243P A P B P C .(2)“星队”两轮得分之和X 的所有可能取值为0,1,2,3,4,6,于是11111(0)4343144P X ;112212111131105(1)4343434314472P X C C;1211223311132125(2)443344334433144P X C;123211121(3)434314412P XC ;12321231605(4)()43434314412P XC ;3232361(6)43431444P X ;X 的分布列为:X12346P11445722514411251214X 的数学期望15251515522301234614472144121241446EX.【点评】本题考查离散型随机变量的分布列和数学期望,属中档题.(20)【2016年山东,理20,13分】已知221()(ln ),x f x a x x a R x.(1)讨论f x 的单调性;(2)当1a时,证明3()()2f x f x 对于任意的[1,2]x成立.解:(1)求导数3122()(1)x f x a x x---23(1)(2x ax x--),当0a时,x (0,1),()0f x ,()f x 单调递增,x ∈(1,),()0f x ,()f x 单调递减当0a时,23322112()a x x xx axa af x xx①当02a时,21a,x (0,1)或2x a∈,,()0f x ,()f x 单调递增,2x a∈1,,()0f x ,、()f x 单调递减;②当a 2时,21a,x (0,),()0f x ,()f x 单调递增,③当a 2时,201a,2xa 0,或x1,,()0f x ,()f x 单调递增,2xa,1,()0f x ,()f x 单调递减.(2)当1a时,221()ln x f x x x x--,2323(1)(212()1x x f x xx xx--)2--,于是2232112()()ln 1)x f x f x x xx x x x -2---(--23312ln 1x x x x x ,[1,2]x 令g ln xxx ,2332h()x x x x11,[1,2]x ,于是()()g(()f x f x x h x ),1g ()10x x xx1,g x 的最小值为11g ;又22344326326()xx h x xxxx,设2326xxx ,[1,2]x,因为11,210,所以必有0[1,2]x ,使得0x ,且01x x 时,0x,h x 单调递增;02x x 时,0x,h x 单调递减;又11h ,122h ,所以h x 的最小值为122h .所以13()()g(()g(1(2)122f x f x x h x h ))-.即3()()2f x f x 对于任意的[1,2]x 成立.【点评】本题考查利用导数加以函数的单调性,考查了利用导数求函数的最值,考查了分类讨论的数学思想方法和数学转化思想方法,是压轴题.(21)【2016年山东,理21,14分】平面直角坐标系xOy 中,椭圆2222:10x y C a b ab的离心率是32,抛物线2:2E xy 的焦点F 是C 的一个顶点.(1)求椭圆C 的方程;(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点,A B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG 的面积为1S ,PDM 的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.解:(1)由离心率是32,有224ab ,又抛物线22xy 的焦点坐标为10,2F ,所以12b,于是1a ,所以椭圆C 的方程为2241xy .(2)(i )设P 点坐标为2,02mP m m,由22x y 得y x ,所以E 在点P 处的切线l 的斜率为m ,因此切线l 的方程为22mymx,设1122,,,A x y B x y ,00,D x y ,将22mymx代入2241xy,得223214410m xm xm.于是3122414mx x m,31222214x x mx m,又2222214mm y mx m,于是直线OD 的方程为14yx m.联立方程14yx m与xm ,得M 的坐标为1,4M m .所以点M 在定直线14y上.(ii )在切线l 的方程为22mymx 中,令0x ,得22my,即点G 的坐标为20,2mG ,又2,2mP m ,10,2F ,所以211(1)24m mS mGF;再由32222,41241mmDmm,得22232222112122441841m m m mm S mm于是有221222241121m mS S m .令221t m,得12221211122tt S S tt t ,当112t 时,即2t 时,12S S 取得最大值94.此时212m ,22m ,所以P 点的坐标为21,24P.所以12S S 的最大值为94,取得最大值时点P 的坐标为21,24P.【点评】本题考查椭圆的方程的求法,注意运用椭圆的离心率和抛物线的焦点坐标,考查直线和抛物线斜的条件,以及直线方程的运用,考查三角形的面积的计算,以及化简整理的运算能力,属于难题.。

(精校版)2016年山东理数高考试题文档版(含答案)

(精校版)2016年山东理数高考试题文档版(含答案)

绝密★启用前2016 年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4 页。

满分150 分。

考试用时120 分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5 毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5 毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).如果事件A,B 独立,那么P(AB)=P(A)·P(B)第Ⅰ卷(共 50 分)一、选择题:本大题共10 小题,每小题5 分,共50 分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足2z +z = 3 - 2i, 其中i 为虚数单位,则z=()(A)1+2i (B)1 -2i (C)-1+ 2i (D)-1-2i(2)设集合A ={y | y = 2x , x ∈R}, B ={x | x2 -1< 0},则A B =()(A)(-1,1)(B)(0,1) (C)(-1, +∞) (D)(0, +∞)(3)某高校调查了200 名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30] ,样本数据分组为[17.5, 20),[20, 22.5),[22.5, 25),[25, 27.5),[27.5,30] .根据直方图,这200 名学生中每周的自习时间不少于22.5 小时的人数是()锍ï x(A )56(B )60(C )120(D )140ìï x + y ? 2,ï ïí 2x - ï (4)若变量 x ,y 满足î 3y ? 9, 0,则 x 2 + y 2 的最大值是()(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()1 +2 1 2 1 2 2(A ) π (B ) + π (C ) + π (D )1+ π3 3 3 3 3 6 6(6)已知直线 a ,b 分别在两个不同的平面 α,β 内.则“直线 a 和直线 b 相交”是“平面 α 和平面 β 相交”的()(A )充分不必要条件(B )必要不充分条件学.科.网(C )充要条件(D )既不充分也不必要条件(7)函数f(x)=(πsin x+cos x)(3πcos x –sin x)的最小正周期是()(A)2(B)π(C)2(D)2π1(8)已知非零向量m,n 满足4│m│=3│n│,cos<m,n>=3.若n⊥(t m+n),则实数t 的值为()(A)4 (B)–4 (C)94(D )–94(9)已知函数f(x)的定义域为R.当x<0 时,f (x) =x3 -1 ;当-1 ≤x ≤ 1时,f (-x) =-f (x) ;当x >1 时,2f (x +1) =f (x -1)2 2.则f(6)= ()(A)−2(B)−1(C)0(D)2(10)若函数y=f(x)的图象上存在两点,学科.网使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T 性质.下列函数中具有T 性质的是()(A)y=sin x(B)y=ln x(C)y=e x(D)y=x3第Ⅱ卷(共 100 分)二、填空题:本大题共 5 小题,每小题 5 分,共 25 分。

2016年高考理科数学山东卷-答案

2016年高考理科数学山东卷-答案
故概率 ;
(Ⅱ)“星队”两轮得分之和为 可能为:0,1,2,3,4,6,则 ,





故 的分布列如下图所示:
X
0
1
2
3
4
6
P
数学期望 .
【提示】(Ⅰ)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,进而可得答案;
(Ⅱ)由已知可得:“星队”两轮得分之和为 可能为:0,1,2,3,4,6,进而得到 的分布列和数学期望.
【考点】几何概型
15.【答案】
【解析】当 时,函数 的图象如下:
时, , 要使得关于 的方程 有三个不同的根,必须 ,即 ,解得 , 的取值范围是 .
【提示】作出函数 的图象,依题意,可得 ,解之即可.
【考点】根的存在性及根的个数判断
三、解答题
16.【答案】(Ⅰ)由 得: ,
两边同乘以 得, ,
,即 ①,根据正弦定理, , , , ,带入①得 ,
2016年普通高等学校招生全国统一考试(山东卷)
理科数学答案解析
第Ⅰ卷
一、选择题
1.【答案】B
【解析】设 , ,则 , , , , .
【提示】设出复数 ,通过复数方程求解即可.
【考点】复数代数形式的乘除运算
2.【答案】C
【解析】 , , , , .
【提示】求解指数函数的值域化简 ,求解一元二次不等式化简 ,再由并集运算得出答案.
【提示】求得函数的周期为1,再利用当 时, ,得到 ,当 时, ,得到 ,即可得出结论.
【考点】抽象函ห้องสมุดไป่ตู้及其应用
10.【答案】A

山东省高考理科数学试题及答案精编版

山东省高考理科数学试题及答案精编版

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =(A )1+2i (B )1-2i (C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60(C )120 (D )140(4)若变量x ,y 满足2,239,0,x y x y x ì+?ïïïï-?íïï锍ïî则22x y +的最大值是(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )1233+π(B )1233+π(C )1236+π(D )216+π (6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件学.科.网(C )充要条件(D )既不充分也不必要条件(7)函数f (x )=(3sin x +cos x )(3cos x –sin x )的最小正周期是(A )2π(B )π (C )23π(D )2π (8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为 (A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,学科.网使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016年高考真题理科数学山东卷 Word版含答案

2016年高考真题理科数学山东卷 Word版含答案

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =(A )1+2i (B )1-2i (C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60(C )120 (D )140(4)若变量x ,y 满足则22x y +的最大值是(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )1233+π(B )13+(C )13+(D )1+ (6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件(7)函数f (x )=x +cos x )x –sin x )的最小正周期是(A )2π(B )π (C )23π(D )2π (8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为(A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016年高考理科数学试题山东卷答案

2016年高考理科数学试题山东卷答案

2016年普通高等学校招生全国统一考试(山东卷)理科数学答案(1)【解析】通解设z a bi =+(,)a b R ∈,则z a bi =-.故22()z z a bi a bi +=++-=3a bi +=3-2i ,所以错误!未找到引用源。

,解得错误!未找到引用源。

,所以12z i =-.故选B . 光速解法:设z a bi =+(,)a b R ∈,由复数的性质可得2z z a +=,故2()z z z z z +=++,故2z z +的虚部就是z 的虚部,实部是z 的实部的3倍.故12z i =-,选B .(2)【解析】集合A 表示函数2x y =的值域,故(0,)A =+∞.由210x -<,得11x -<<,故(1,1)B =-,所以(1,)A B =-+∞.故选C .(3)【解析】由频率分布直方图可知,这200名学生每周的自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,故这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140.故选D .(4)【解析】作出不等式组所表示的平面区域如图中阴影部分所示,设P (x ,y )为平面区域内任意一点,则22x y +表示2||OP .显然,当点P 与点A 重合时,2||OP 即22x y +取得最大值.由2239x y x y +=⎧⎨-=⎩错误!未找到引用源。

,解得31x y =⎧⎨=-⎩,错误!未找到引用源。

故A (3,-1).所以22x y +的最大值为32+2(1)-=10.故选C .(5)【解析】由三视图可知,四棱锥的底面是边长为1的正方形,高为1,其体积21111133V =⨯⨯=.设半球的半径为R ,则22R =2R =,所以半球的体积32142326V π=⨯⨯=.故该几何体的体积12136V V V =+=+.故选C . (6)【解析】若直线,a b 相交,设交点为P ,则,P a P b ∈∈,又,a b αβ⊂⊂,所以,P P αβ∈∈,故,αβ相交.反之,若,αβ相交,则,a b 可能相交,也可能异面或平行.故“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选A . (7)【解析】由题意得()2sin()2cos()2sin(2)663f x x x x πππ=+⨯+=+,故该函数的最小正周期22T ππ==.故选B . (8)【解析】由()t ⊥+n m n 可得()0t ⋅+=n m n ,即20t ⋅+=m n n ,所以222||31|cos |||3||t |||<,>|||=-=-=-=-⋅⋅⨯⨯n n n n m n m n m n m m n 4343=-⨯=-.故选B . (9)【解析】当11x -时,()f x 为奇函数,且当12x >时,(1)()f x f x +=,所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=,所以(6)2f =,故选D .(10)【解析】设函数()y f x =的图象上两点11(,)P x y ,22(,)Q x y ,则由导数的几何意义可知,点P ,Q 处切线的斜率分别为11()k f x '=,22()k f x '=若函数具有T 性质,则12k k ⋅=1()f x '2()f x '=-1.对于A 选项,()cos f x x '=,显然12k k ⋅=12cos cos x x =-1有无数组解,所以该函数具有T 性质;对于B 选项,1()(0)f x x x'=>,显然12k k ⋅=1211x x ⋅=-1无解,故该函数不具有T 性质;对于C 选项,()x f x e '=>0,显然12k k ⋅=12x x e e ⋅=-1无解,故该函数不具有T 性质;对于D 选项,2()3f x x '=≥0,显然12k k ⋅=221233x x ⋅=-1无解,故该函数不具有T 性质.故选A .(11)【解析】输入a =0,b =9,第一次循环:a =0+1=1,b =9-1=8,i =1+1=2;第二次循环:a =1+2=3,b =8-2=6,i =2+1=3;第三次循环:a =3+3=6,b =6-3=3,a >b 成立,所以输出i 的值为3.(12)【解析】(ax 2+x错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:∵输入的a,b的值分别为0和9,i=1.
第一次执行循环体后:a=1,b=8,不满足条件a<b,故i=2;
第二次执行循环体后:a=3,b=6,不满足条件a<b,故i=3;
第三次执行循环体后:a=6,b=3,满足条件a<b,
故输出的i值为:3,
故答案为:3
12.若(ax2+ )5的展开式中x5的系数是﹣80,则实数a=.
解:令x=c,代入双曲线的方程可得y=±b =± ,
由题意可设A(﹣c, ),B(﹣c,﹣ ),C(c,﹣ ),D(c, ),
由2|AB|=3|BC|,可得
2• =3•2c,即为2b2=3ac,
由b2=c2﹣a2,e= ,可得2e2﹣3e﹣2=0,
解得e=2(负的舍去).
故答案为:2.
14.在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为
可得:2a&得a=1,b=﹣2.
z=1﹣2i.
故选:B.
2.设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()
A.(﹣1,1)B.(0,1)C.(﹣1,+∞)D.(0,+∞)
解:∵A={y|y=2x,x∈R}=(0,+∞),
B={x|x2﹣1<0}=(﹣1,1),
C.充要条件D.既不充分也不必要条件
解:当“直线a和直线b相交”时,“平面α和平面β相交”成立,
当“平面α和平面β相交”时,“直线a和直线b相交”不一定成立,
故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件,
故选:A
7.函数f(x)=( sinx+cosx)( cosx﹣sinx)的最小正周期是()
解:∵4| |=3| |,cos< , >= , ⊥(t + ),
∴ •(t + )=t • + 2=t| |•| |• +| |2=( )| |2=0,
解得:t=﹣4,
故选:B.
9.已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x> 时,f(x+ )=f(x﹣ ).则f(6)=()
2016年山东省高考数学试卷(理科)
一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.
1.若复数z满足2z+ =3﹣2i,其中i为虚数单位,则z=()
A.1+2iB.1﹣2iC.﹣1+2iD.﹣1﹣2i
解:复数z满足2z+ =3﹣2i,
设z=a+bi,
∴f(6)=2.
故选:D.
10.若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是( )
A.y=sinxB.y=lnxC.y=exD.y=x3
解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,
则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,
A.56B.60C.120D.140
解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,
故自习时间不少于22.5小时的频率为:0.7×200=140,
故选:D
4.若变量x,y满足 ,则x2+y2的最大值是()
A.4B.9C.10D.12
解:由约束条件 作出可行域如图,
∵A(0,﹣3),C(0,2),
∴|OA|>|OC|,
联立 ,解得B(3,﹣1).
∵ ,
∴x2+y2的最大值是10.
故选:C.
5.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()
A. + πB. + πC. + πD.1+ π
解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,
解:圆(x﹣5)2+y2=9的圆心为(5,0),半径为3.
解:(ax2+ )5的展开式的通项公式Tr+1= (ax2)5﹣r = a5﹣r ,
令10﹣ =5,解得r=2.
∵(ax2+ )5的展开式中x5的系数是﹣80
∴ a3=﹣80,
得a=﹣2.
13.已知双曲线E: ﹣ =1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是
∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).
故选:C.
3.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()
半球的直径为棱锥的底面对角线,
由棱锥的底底面棱长为1,可得2R= .
故R= ,故半球的体积为: = π,
棱锥的底面面积为:1,高为1,
故棱锥的体积V= ,
故组合体的体积为: + π,
故选:C
6.已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()
A.充分不必要条件B.必要不充分条件
当y=sinx时,y′=cosx,满足条件;
当y=lnx时,y′= >0恒成立,不满足条件;
当y=ex时,y′=ex>0恒成立,不满足条件;
当y=x3时,y′=3x2>0恒成立,不满足条件;
故选:A
二、填空题:本大题共5小题,每小题5分,共25分.
11.执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为
A.﹣2B.﹣1C.0D.2
解:∵当x> 时,f(x+ )=f(x﹣ ),
∴当x> 时,f(x+1)=f(x),即周期为1.
∴f(6)=f(1),
∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),
∴f(1)=﹣f(﹣1),
∵当x<0时,f(x)=x3﹣1,
∴f(﹣1)=﹣2,
∴f(1)=﹣f(﹣1)=2,
A. B.πC. D.2π
解:数f(x)=( sinx+cosx)( cosx﹣sinx)=2sin(x+ )•2cos(x+ )=2sin(2x+ ),
∴T=π,
故选:B
8.已知非零向量 , 满足4| |=3| |,cos< , >= .若 ⊥(t + ),则实数t的值为()
A.4B.﹣4C. D.﹣
相关文档
最新文档