电气工程及其自动化专业英语第一章课文翻译(最新整理)
电气工程与自动化专业英语第一章课文翻译
第一章第一篇sectiongTwo variables u(t) and i(t) are the most basic concepts in an electric circuit, they characterize the various relationships in an electric circuitu(t)和i(t)这两个变量是电路中最基本的两个变量,它们刻划了电路的各种关系。
Charge and CurrentThe concept of electric charge is the underlying principle for explaining all electrical phenomena. Also, the most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter consists, measured in coulombs (C). 电荷和电流电荷的概念是用来解释所有电气现象的基本概念。
也即,电路中最基本的量是电荷。
电荷是构成物质的原子微粒的电气属性,它是以库仑为单位来度量的。
We know from elementary physics that all matter is made of fundamental building blocks known as atoms and that each atom consists of electrons, protons, and neutrons. We also know that the charge e on an electron is negative and equal in magnitude to 1.60210×10 19C, while a proton carries a positive charge of the same magnitude as the electron. The presence of equal numbers of protons and electrons leaves an atom neutrally charged. 我们从基础物理得知一切物质是由被称为原子的基本构造部分组成的,并且每个原子是由电子,质子和中子组成的。
电气工程及其自动化专业英语 Chapter 1 Fundamentals of Electric Circuits
Section1 Current and Voltage
flow as the movement of positive charges, that is, opposite to the flow of negative charges, as Fig.l-1 illustrates. This convention was introduced by Benjamin Franklin (l706 ~ l790), the American scientist and inventor. Although we now know that current in metallic conductors is due to negatively charged electrons, we will follow the universally accepted convention that current is the net flow of positive charges. Thus, Electric current is the time rate of charge, measured in amperes (A). Mathematically, the relationship among current i, charge q, and time t is
Section1 Current and Voltage
i
The charge transferred between time t0 and t is obtained by integrating both sides of Eq. (1-1). We obtain t
dq dt
(1-1)
q idt
专业英语翻译第一章
注:电气工程及其自动化专业英语翻译 1~7面班级:1002班学号:20姓名:王定瑞PART 1 FUNDAMENTALS OF ELECTRIC ENGINEERINGChapter 1 Circuit Fundamentals第1部分的电气工程基础第1章电路原理Electrostatic Charges静电荷Protons and electrons are parts of atoms that make up all things in our world. The positive charge of a proton is similar to the negative charge of an electron. However, a positive charge is the opposite of a negative charge. These charges are called electrostatic charges. Each charged particle is surrounded by an electrostatic field.质子和电子部件的原子构成一切事物在我们的世界。
正电荷的质子是类似于负电荷的电子。
然而,一个正电荷的反面是一个负电荷。
这些指控被称为静电荷。
每个带电粒子周围是一个静电场。
The effect that electrostatic charges have on each other is very important. They either repel (move away) or attract (come together) each other. It is said that like charges repel and unlike charges attract.这个效应,静电指控对方是非常重要的。
他们要么排斥(离开)或吸引(一起)每个其他。
中国矿业大学电气工程及自动化专业英语第六版 考试章节第一。二篇课文翻译
Section 1 Introduction 第一节介绍The modern society depends on the electricity supply more heavily than ever before.现代社会比以往任何时候对电力供应的依赖更多。
It can not be imagined what the world should be if the electricity supply were interrupted all over the world. 如果中断了世界各地的电力供应,无法想像世界会变成什么样子Electric power systems (or electric energy systems), providing electricity to the modern society, have become indispensable components of the industrial world. 电力系统(或电力能源系统),提供电力到现代社会,已成为产业界的不可缺少的组成部分。
The first complete electric power system (comprising a generator, cable, fuse, meter, and loads) was built by Thomas Edison –the historic Pearl Street Station in New York City which began operation in September 1882. 托马斯爱迪生建立了世界上第一个完整的电力系统(包括发电机,电缆,熔断器,计量,并加载)它就是位于纽约市具有历史意义的珍珠街的发电厂始于1882年9月运作。
This was a DC system consisting of a steam-engine-driven DC generator supplying power to 59 customers within an area roughly 1.5 km in radius. The load, which consisted entirely of incandescent lamps, was supplied at 110 V through an underground cable system. 这是一个直流系统,由一个蒸汽发动机驱动的直流发电机其供电面积约1.5公里至59范围内的客户。
电气自动化专业英语全文翻译
电气自动化专业英语全文翻译第一部分:电子技术第一章电子测量仪表电子技术人员使用许多不同类型的测量仪器.一些工作需要精确测量面另一些工作只需粗略估计rough estimates.有些仪器被使用be used to仅仅solely是确定线路是否完整.最常用的测量测试仪表有:电压测试仪voltage testers,电压表voltmeters,欧姆表ammeters, ohmmeters 连续性测试仪continuity testers,兆欧表megohmmeters,瓦特表wattmeters还有瓦特小时表所有测量电值的表基本上都是电流表. 他们测量或是比较通过他们的电流值. 这些仪表可以被校准calibrate并且设计了不同的量程scale,以便to读出期望的数值.1.1 安全预防safety precaution仪表的正确连接对于使用者的安全预防和仪表的正确维护是非常重要的. 仪表的结构construction和操作的基本知识能帮助使用者按安全工作程序safe working order来对他们正确连接和维护.许多仪表被设计的只能用于直流或只能用于交流,而其它的则可交替使用interchangeably.注意:每种仪表只能用来测量符合设计要求的电流类型. 如果用在不正确的电流类型中可能对仪表有危险并且可能对使用者引起伤害.许多仪表被设计成are constructed to只能测量很低的数值,还有些能测量非常大的数值.警告: 仪表不允许超过它的额定rated最大值maximum limit. 不允许被测的实际数值超过exceed仪表最大允许值的要求再强调也不过分overemphasized.超过最大值对指针indicating needle有伤害,有害于interfere正确校准proper calibration,并且在某种情况下and in some instances 能引起仪表爆炸explode造成result in对作用者的伤害.许多仪表装备了are equippedwith过载保护over correct protection.然而,通常情况下电流大于仪表设计的限定仍然是危险的hazardous.1.2 基本仪表的结构和操作许多仪表是根据电磁相互作用electromagnetic interaction的原理动作的.这种相互作用是通过流过导体的电流引起的(导体放置在永久磁铁permanent magnet的磁极poles之间) .这种类型的仪表专门适合于is suit for直流电direct current.不管什么时候电流流过导体, 磁力magnetic force总会围绕导体形成is developed. 磁力是由在永久磁铁力的作用下起反应react的电流引起.这就引起指针的移动.导体可以制成线圈coil,放置在永久磁铁磁极之间的枢钮(pivot 中心)上.线圈通过两个螺旋型spiral弹簧springs连在仪器的端子上.这些弹簧提供了与偏差成正比proportional的恢复力deflection.当没有电流通过时,弹簧使指针回复到零.表的量程被设计来指明被测量的电流值.线圈的移动(或者是指针的偏移)与线圈的电流值成正比.如果必须要测量一个大于线圈能安全负载的电流,仪表要包含旁路bypass circuit 或者分流器shunt.分流器被容纳在仪表盒内或者连接到外部.例子一个仪表被设计成最大量程scale是10A.线圈能安全负载0.001A,那分流器必须被设计成能负载9.999A.当时.001A 流过线圈时指针指示10A.图1.1(A)说明了一个永久磁铁类型仪表.图1.1(B)显示了一个外部分流器连接到仪表端子上. 永久磁铁类型仪表可以被用作安培表或者电压表. 当量程被设计成指示电流并且内阻internal resistance保持最小时, 这个表可以作为安培表用. 当量程被设计成指示电压, 内阻相对relatively高一些时, 这个表可以用来测量电压值.注意:不管如何设计,指针移动的距离取决于线圈的电流值.为了让这类表用在交流电中,在设计时必须作微小的改动.整流器rectifier可以把交流变成直流电. 整流器合并incorporate进仪表中并且量程要指示出正确的交流电压值. 整流器类型的仪表不能用于直流电中并且它一般被设计成电压表.如图1.2,电测力计electrodynamometer是另一种能用于交流电alternating current的既能作安培表也能作电压表的仪器.它由两个固定线圈stationary coils和一个移动线圈movable coil构成consist of. 这三个线圈通过两个螺旋型spiral弹簧串联in series with在一起. 这个弹簧支撑住移动线圈.当电流流行性过线圈时移动线圈顺时针方向in clockwise direction移动.电测力计因为属永久磁铁型仪表it is in permanent magnet-type meters, 量程不是均匀分布的the scale is not divided uniformly. 作用在动线圈上的力根据流过该线圈的电流平方the square of the current flowing through the coil来变化vary with.有必要在量程开始比量程结束分割的密一点.分割点之间距离越大, 仪表的读数越精确.争取strive for 精确的读值an accurate reading是重要的.移动叶片moving-vane结构是仪表的另一种类型.电流流过线圈引起cause两个铁片iron stripes(叶片)磁化to become magnetized.一个叶片是可动的,另一个是固定的sationary.在两个叶片间的磁的作用引起可动叶片扭转turn.移动的数值取决于线圈的电流值.警告:所有描述的取决于磁力作用的仪器,都不要放置在另一个磁性物质附近.它的磁力可能对引起仪表故障或者导致测量值不准确.1.3 测量仪器的使用电压表a voltmeter是设计来is designed to测量measure电路applied a current的电压electrical pressure或者通过元器件across a component的压降voltage drop. 电压表必须与被测量的电路或元器件并联in parallel with.1.3.1 压力检验计(电压检测计)交-直流电压检验计是一种相当粗糙crude但对电工electrician来说很有用的仪器.这种仪器指示电压的近似值.更常见类型指示的电压值如下:AC,110,220,440,550V,DC,125,250,600V. 许多这种仪器也指示indicate直流电的极性polarity.那就是说(i.e=that is)电路中的导体是阳性positively(正)的还是阴性negatively(负) .电压检验计通常用来检验check公共电压common voltages,识别identify接地导体grounded conductor,检查to check for被炸毁的保险丝blown fuses,区分distinguish AC 和DC. 电压检验计很小很坚固rugged,比一般的电压表average voltmeter容易携带和保存.图1.31.4 描述了depict用电压检验计检查保险丝的用法methods.为了确定电路或系统中的导体接地, 把测试仪连接在导体和已建立的地之间. 如果测试仪指示了一个电压值,导体没有接地.对每一个导体重复这个步骤continue this procedure直到until零电压zero voltage出现is indicated(见图1.5) .为了确定任意两个导体间的近似电压值,把测试仪连接在导体之间.警告:要认真读并遵守电压检验计提供supplied的说明书instructions.1.3.2 电压表电压表比电压检验计测量更精确. 因为电压表与被测量的电路或元件并联, 必须有相对高一点的电阻. 内阻要保证通过仪表的电流最小. 流过仪表的电流越小, 对电路特性electrical characteristics的影响effect越小.仪表的灵敏度sensitivity用符号O/V 表示is stated.这个数值越高仪表的质量越好.高灵敏度可使电路特性的改变减到最小.电工使用的仪表精确度在95%到98%之间.这个精确度范围对大多数应用是满意的.然而, 电力工作者力求strive to obtain最精确的可能读数是重要的. 一个精确读数可以在仪表盘上显示standing directly in front of the meter face也可以直接读出来.如果在指针后面有镜子,调整视线的角度直到指针在镜子中看不到映象.如要更精确可以使用数字表.电压表有与电压检验计同样的应用. 电压表比电压检验计更精确. 因而, 也支持更多的应用. 例如,如果一个建筑物的供电电压低于正常值slightly below normal,电压表能指示出这个问题.电压表也用来确定馈电线on feeder和支线电路导体branch circuit conductors的压降值voltage drop.电压表有时有不只一个量程. 选择一个能更精确测量的量程很重要. 选择器开关范围达到这个目的.注意:开始用一个适当的高一点的量程,然后逐渐降低到在限定范围之内的最低量程.设定选择器开关在可用的最低量程上能使读数达到最精确.使用仪表之前,要检查仪表确保指针指在零上.在仪表盘下面有一个调整螺钉an adjustment screw.一个轻微的扭动就能使指针偏移.扭转调整螺钉使指针对准零线.当在DC 中使用电压表时,保持maintain正确proper的极性是很重要的.大多数的直流电源和仪表都用颜色标记color coded极性polarity.红色指示阳极,黑色指示阴极.如果电路和元件的极性未知,触一下端子的导线leads观察observing指针indicating needle.如果指针犹豫着试图attempts to摆动,仪表导线连接就要颠倒一下be reversed.警告:不要让仪表连接反的极性polarity reversed.1.3.3 安培表安培表是用来测量电路或部分电路的电流数量的. 他与被测电路元件串联连接. 仪表的电阻必须非常低这样不会影响restrict流过电路的电流. 当测量很灵敏的设备的电流, 安培表电流的轻微改变可能会引起设备的故障.安培表象电压表一样, 也有一个调零的调整螺钉. 许多仪表也有镜子帮助assist使用者保证读数精确in obtaining an accurate reading.安培表常用来找出过载或者开路.他们也用来平衡线路的负荷loads on multiwire circuits 和确定故障位置malfunctions.安培表总是与被测电路或元件串联连接.如果使用在DC 下要检查极性.图 1.6(A)显示了安培表测量电路的电流.图 1.6(B)显示的是AC 安培表.Chap2 固体功率器件的基本原理2.1 引言(绪论) 本章将集中讨论固态功率器件或功率半导体器件,并且只研究它们在采用相控(电压控制) 或频率控制(速度控制)的三相交流鼠笼式感应电机的功率电路中的应用.2.2 固态功率器件有五种用于固体交流电机控制中的功率元器件: (1) 二极管(2) 晶闸管(例如:可控硅整流器SCR) (3) 电子晶体管(4) 门极可关断晶闸管(GTO) (5) 双向可控硅晶闸管SCR 和双向可控硅一般用于相位控制(相控) .各种二极管,晶闸管SCR,电子晶体管,门极可关断晶闸管的联合体用于频控.这些器件的共性是:利用硅晶体形成的薄片构成P-N 结的各种组合.对二极管,SCR, GTO 一般P 结叫正极N 结叫负极;相应的电子晶体管叫集电极和发射极.这些器件的区别在于导通和关断的方法及电流和电压的容量. 让我们根据他们的参数简单看一下这些元器件. 2.2.1 二极管图 2.1 显示了一个二极管,左边部分显示的是在硅晶体中的一个PN 结,右边显示的是二极管的原理图符号. 当P 相对于N 是正时,由于节上有一个相当低的压降,前向电流开始流动.当极性相反时, 只有一个极小的反向漏电流流动.这些用图 2.2 阐明.前向电压通常大约有1V,不受电流额定值的影响. 二极管正向导通电流的额定值取决于其尺寸和设计, 而这二者是根据器件散热的要求来确定的,以保证器件不超过最大结温(通常为200C) . 反向击穿电压是二极管的另一个重要参数. 它的值更取决于二极管的内部设计而不是它的物理尺寸. 注意:一个二极管只有当加上正向电压时才会正向导通.它没有任何固有(内在的)的方法控制导通的电流和电压值. 二极管主要用在交流电路中作整流器,这意味着它们把AC 整流成DC,同时产生的直流电流和电压值没有固有的控制方法.单二极管可用额定值到4800A 和最大反向电压1200V, 2000A 最大反向电压4400V. 2.2.2 晶闸管图 2.3 显示了晶闸管(一般也叫可控硅)的PN 结排列和它的原理图符号.注意这不同的结从正到负是PNPN,还有一个门极连到了内部的P 层. 如果没有连门极,并且阳极加反向电压,从正极到负极就没有电流通过.这是因为内部P 结由于未通电而工作在阻断电路.这种情况对于正向阻断状态也是正确的.然而,当阳极是正的并且正信号作用到门上,则电流将从正极一直流向负极即使门极没有正信号. 换言之, 门极能打开晶闸管但不能关断它. 关断晶闸管的唯一方法是通过外部方式在正极强加上一个零电流. 因此在前向导通只能通过强加零电流停止方面, 晶闸管与二极管是相似的.然而,晶闸管与二极管在如何启动前向导通方面是不同的. (1)阳极是正(2)门时刻是正.这个特性暗指了术语"可控硅" . 图 2.4 阐明了晶闸管的稳态伏安特性.注意反向电压和反向泄漏电流的形状与二极管的很相似.反向电压导通时比二极管的高,通常有 1.4V.阻断状态也有一个极小的前向泄漏电流. 在二极管中,稳态电流值是由器件的性能和底座(散热器)散发的热量确定的.晶闸管的最大结温比二极管要低,大约在125C.这意味着在同样的额定电流下,加上 1.4V 的前向压降,晶闸管比二极管的前向压降大的多.单晶闸管可用额定值在最大反向电压2200V 超过2000A,在在最大反向电压4000V 超过1400A. 2.2.3 电子晶体管(电子管) 图2.5 列出了一个典型功率电子管的结排列,原理符号图和伏安特性.如果集电极为正, 除非在基电极和发射极间有电流才有电流从集电极到发射极. 与晶闸管比较, 只有在基极有电流时, 电子管没有从集电极到发射极的自锁电流. 基极开路, 集电极到发射极将阻断电流. 功率电子管与晶闸管在控制前向导通的启动时相似. 它与晶闸管不同的地方在于它能控制关断和交流电机频率控制所必需的换向. 注意伏安特性没有显示反向特性.一般的,一个反向分流二极管连在发射极和集电极之间, 以保护电子管受反向电压伤害.功率电子管的可用额定值是最高反向电压1000V400A. 2.2.4 门极可关断晶闸管GTO 图 2.6 显示了GTO 的原理符号.GTO 与晶闸管的相似处在于PNPN 结的排列和前向电流的操作.如果阳极是正的,导体的启动是通过作用在门上的正脉冲.然而硅片和结是利用特殊特性设计的,所以即使阳极保持正值,加到门上的强负电流作用迫使前向电流阻断.GTO 常用的瞬间额定值是PRV1200V2400A.2.2.5 双向可控硅图2.7 显示了双向可控硅的原理符号图.一个双向可控硅由一个特殊的晶闸管包(包含前向和反向晶闸管)组成,它的操作由一个门极控制.他们常用在调光器电路中或者作为继电器的开关, 这样截止态下很小的泄漏电流不会引起其它控制器的误操作. 随着增加电流容量可控硅的可用性使他们用于交流电机的相位控制中. 2.3 功率半导体容量功率器件在稳态交流电机马力范围大于600V 时如何用,用在哪里摘要显示在表 2.1 中. 马力额定值基于没有并联的器件. 2.4 功率半导体的物理特性在物理特性条件下,有三类最常用的功率半导体: (1)栓接式(2)薄片或冰球式(3)绝缘散热器类型.他们的共同特征是需要与其它器件有物理联系.这器件叫散热器,为了保持结温在设计值内把内部热量散发出去.散热器吸收结的热量通过散热片,轮片(螺旋桨叶片) 或者液体冷却剂发散出去.液体冷却剂几乎从不用于600V 级的固态交流电动机控制中,而且也不包含在我们的讨论中. 这三类功率半导体的不同在于它们如何安装, 他们如何与散热器连接. 2.4.1 栓接式螺纹部分可能是PN 结的一部分,或者是与有源电子部分电子绝缘.在任一种情况下,螺纹部分常常插入散热器的螺纹孔. 栓接式器件在小马力额定值下常用来作为直接功率控制器件, 在大马力额定值下常用来作为辅助保护器件.在后一种情况下,它们常直接安装在较大器件使用的散热器上,如冰球式设计. 2.4.2 冰球式器件典型冰球式功率器件可能是二极管, 可控硅或GTO. 尺寸范围直径从近似25MM 到100MM. 每一个平坦的面即不是P 也不是N 结.热传递和导电从这表面产生.冰球式器件典型安装是联接铝型材的散热器.特别的箝位电路,联接绝缘混合剂和扭矩扳手都是需要的,用来确定光热传递和电导率. 由于栓接式和冰球式器件的散热器都能传递电流, 他们必须与机械底托电子绝缘. 轮片能加到散热器上增加热量排放并且增大固定负荷状态的完成. 由于散热器能在同样电压水平下作为功率器件, 冰球式和栓接式的固态AC 电动机控制必须通过附件(外壳)供给.附件(外壳)必须有合适的通风口或热交换器使得热量能散发.它不会用在放在安全封套中的用法,例如象NEMA12 的密封盒或相似的外围物. 2.4.3 绝缘散热器件绝缘散热器功率器件可能是二极管,可控硅,GTO,三极管或双向可控硅.单个的包包含器件的联合体,在内部以线加固.区别的特征是术语"绝缘散热器" .有一个铝底盘在每个包下面.这个底板与功率器件之间是导热并绝缘的.结的大部分热量传给了铝盘.这个底板依次安装在第二个更大的散热底板上.这个更大的散热底板在对面有鳍状表面. 绝缘散热器的设计使它自己是个完全封闭的设计. 他们也有经过预包装的已经内部加固过的复合器件的优点. 他们的缺点是通过底部安装的底板散热的能力有限, 所以固定负荷状态必须小于开放的散热器—安装在冰球式器件上. 尽管如此, 绝缘散热器在一般应用和器件容量的使用上迅速增长. 在较高的左上角的排列是唯一的, 同样它联合了有所有封闭设计的绝缘散热器概念的冰球式的优点(例如,易替换,易互换) .它也被恰当的称为"开放块状"模式. 2.5 换流在深入的讨论实际的固态交流电机的控制之前, 将换流的概念和种类阐述清楚是必要的. 换流的不同类型指所有讨论的固态电动机控制. 换流是功率半导体器件中负载电流被截止或停止流动或转换到另一回路的过程. 有以下三种换流方式: (1)自然或线电压换流(2)负载换流和(3)强制换流. 2.5.1 自然或线换流图 2.8 显示了功率半导体电路把AC 转换成DC.这个列举chap 3 模拟电子3.1 介绍3.1.1 模拟和数字电子的对比我们已经研究了晶体管和二极管作为开关设备怎样处理被以数字形式描述的信息(数字信息) .数字电子象用电力控制开关那样使用晶体管: 晶体管被饱和或者切断.动态区域只是从一个状态到另一个状态的过渡. 对比起来, 模拟电子取决于晶体管和其他类型放大器的动态区域. 希腊词根"analog" 意味着" 以一定的比例" ,在这里表示信息被编码成与被描述的量(被表达量) 成正比的电信号. 在图 3.1 中我们的信息是某种音乐,是乐器的激励和回响自然发起(引起) .被传播出的声音在于空气分子的有规则的运动并且被最好作为声波理解. 在话筒(扩音器)的振动膜里的这些产生的运动,依次产生一个电信号.电信号的变化与声波成比例(在电信号方面的变化是声波的成比例表现) .电信号被通过电子放大,即利用输入放大器的交流电能将信号的功率放大. 放大器的输出驱动一个录音磁头并且在磁盘上产生波浪状的槽沟. 如果整个系统是好的,空气的一切声变将被记录在磁盘上,当记录被通过一个相似的系统播放时,信号通过一个扬声器作为声音能量再传播出来,结果原始音乐被如实的再现了. 基于模拟原则的电子系统形成一类重要的电子仪器. 收音机和电视的广播是模拟系统的典型例子,许多电子仪器也是模拟系统,它们的应用包括偏差检测(应变计量器) ,运动控制(测速机)和温度测量(热电耦) .许多电子仪器---电压表,欧姆表,安培表和示波器利用了模拟技术,至少部分利用了模拟技术. 在数字电子计算机被发展之前,模拟计算机一直使用.在模拟计算机中,微分方程里的未知量被用电信号来模拟. 这些信号被用电子的方法积分,比例变换和求和以获得方程的解,比起解析或数值运算的求解方法要容易一些. 3.1.2 本章的主要内容模拟技术广泛地运用频域的观点.我们首先扩大我们的频域的概念包括周期,非周期和随机信号. 我们将看到大多数模拟信号和过程可以被表示为频域. 我们将介绍频谱的概念, 也就是,用同时存在的很多频率来表达一个信号.带宽(频宽)(频谱的宽度) 在频域上将与时间域上的信息率有关. 频域的这个被阐述的概念也帮助我们区分线和非线性的模拟设备的影响. 线性电路被显示有"滤波器" 的能力而不需要频率组件.对比起来,新频率可以被象二极管和晶体管那样的非线性的设备产生.这种性能允许我们通过调幅和调频调制技术在频域上转换模拟信号, 这种调制技术已被公开广泛地使用公用和私人通信系统. 作为一个例子我们将描述一台调幅收音机的操作. 下面我们研究一下反馈的概念, 在模拟系统中通过反馈可以交换到象线性或者更宽的带宽那样合乎需要的质量. 如果没有反馈, 象音频放大器或者电视接收机那样的模拟系统最多提供了一个糟糕的性能. 理解反馈的好处可以提供正确评价模拟电子中运算放大器的很多用途的基础(提高对模拟电子中运算放大器的很多用途的认识) . 运算放大器(简写OP amps) 是模拟电路的基本组成部分,正如NOR 或非和NAND 与非门电路是数字电路的基本单元一样. 我们将介绍一些运算放大器一般应用, 以在模拟计算机里的他们的用途来结束. 3.2 运算放大器电路3.2.1 介绍(1) 运算放大器的重要性.运算放大器是一个在受负反馈控制的高增益的电子放大器,用来在模拟电路中完成很多运算功能.这样的放大器最初被发展完成运算,例如在模拟计算机里为微分方程的求解的积分和求和. 运算放大器的应用被增加了, 直到目前为止, 大多数模拟电子电路基于运算放大器技术.例如,你需要一个放大器获得10 倍的增益,便利, 可靠性, 费用考虑将确定使用一个运算放大器. 因此, 运算放大器形成模拟电路的基本构件, 正如NOR 或非和NAND 与非门电路是数字电路的基本单元一样. (2) 运算放大器模型典型的特性.典型的运算放大器是利用十多个晶体管,几个二极管和很多电阻器的一个复杂的晶体管放大器. 这样的放大器被在半导体芯片上批量生产并且售价少于 1 美元一个.这些部件是可靠,耐用的,并且在他们的电子特性接近理想. 图 3.2 显示一台运算放大器的基本特性和符号.有两个输入电压u+和u _ ,用大的电压增益差分放大, 通常达105 - 106. 输入电阻R 也很大, K -100 M 欧. 100 输出电阻Ro 很小, 10-100 欧. 放大器经常用正极(+ Ucc) 和负极(-Ucc) 电源提供直流电源. 对这个情况来说,输出电压在供电电压之间,- Ucc<Uo<+ Ucc. 有时一个电源接地( 即,"-Ucc" =0). 这样的话输出电压在0<Uo<+ Ucc 之间.电源连接很少被画进电路图,可以认为运算放大器和合适的电源连结起来.因此运算放大器接近一个理想的电压放大器,有高的输入电阻,低的输出抵抗和高的增益. 高增益通过使用强大的负反馈变为其他有用的特征.负反馈的全部好处被运算放大器电路利用了. 对那些早在这章里列举, 我们将为运算放大器电路还增加 3 个好处: 低扩张性, 便于设计,和简单的构造. (3) 这节的内容.我们首先分析两个普通运算放大器应用,反相和同相放大器.我们通过一个简单而有效对任何运算放大器电路使用的一种方法,推导出这些放大器的增益. 我们然后讨论有源滤波器.这是有(带了)增加了频率响应的电容器的运算放大器.然后我们简单讨论模拟计算机,以讨论运算放大器的一些非线性的应用来结束. 3.2.2 运算放大器(1) 反相放大器. 反相放大器,用图 3.3 显示,使用一个运算放大器和两个电阻. 运算放大器的输入是地(零信号) ; 负(-) 电源连接输入信号(通过Ri) 并且(通过RF) 反馈到输出信号.在下列讨论中容易混淆的是我们必须同时谈到两个放大器.运算放大器是在负反馈放大器里形成放大要素的一种放大器, 负反馈放大器包含运算放大器加上相关电阻. 为了减少混乱,我们保留术语" 放大器" 只用在反馈放大器的总体上.运算放大器绝不是一个放大器;而被叫为运算放大器.例如,如果我们对放大器提及输入电流,我们指通过R1 的电流,并非进运算放大器的电流. 我们在图里能求出 3.3 反相放大器的增益,通过求解基本的电路法则(KCL 和KVL) 或者通过试图把电路分成主要放大器和反馈系统模块.不过,我们将提出另一方法,这种方法基于运算放大器增益很高,接近无限.在如下内容里,我们将给一般的假设,这可提供给任何运算放大器电路;然后我们将把特定假设用于目前的电路.因此,我们将建立反相放大器的增益和输入电阻. (1) 我们假定输出表现良好不试图达到无限.因此我们假定负反馈使放大器稳定, 因此适度的输入电压产生适度的输出电压.如果电源是+ 10 和-10 V,例如,那些输出必须位于这些有限值之间. (2)因此,运算放大器的输入电压非常小,基本上零,因为它是输出电压除以运算放大器的大的电压增益U+-U _ =0 = 》U+= U _ 例如,如果lUol<10 V 并且A= l05, 然后我u+ u _ l<10 /lOs = 100 UV. 因此对任何运算放大器电路通常u + 和u _ 在100 uV 或更少内相等. 对在图3.3 的反相放大器来说, u+接地; 因此,u _ =0. 从而,放大器的输入电流将为Ui-u _ Ui 见(3.1) il = Ri ~ R 1 (3) 因为u+=u _ 并且Ri 很大,进入放大器的+极和-极的运算放大器的输入电流将非常小,基本上零见(3.2) 例如, Ri = 100 k, {i _ }<10-4 /lOs = 10-9 A. 对于反相放大器,公式(3.2) 暗示输入端的电流I 流过RF, 如图。
电气自动化专业英语1,2,3,5,8,13章翻译
第一章电子测量仪表电子技术人员使用许多不同类型的测量仪器。
一些工作需要精确测量面另一些工作只需粗略估计。
有些仪器被使用仅仅是确定线路是否完整。
最常用的测量测试仪表有:电压测试仪,电压表,欧姆表,连续性测试仪,兆欧表,瓦特表还有瓦特小时表。
所有测量电值的表基本上都是电流表。
他们测量或是比较通过他们的电流值。
这些仪表可以被校准并且设计了不同的量程,以便读出期望的数值。
1.1安全预防仪表的正确连接对于使用者的安全预防和仪表的正确维护是非常重要的。
仪表的结构和操作的基本知识能帮助使用者按安全工作程序来对他们正确连接和维护。
许多仪表被设计的只能用于直流或只能用于交流,而其它的则可交替使用。
注意:每种仪表只能用来测量符合设计要求的电流类型。
如果用在不正确的电流类型中可能对仪表有危险并且可能对使用者引起伤害。
许多仪表被设计成只能测量很低的数值,还有些能测量非常大的数值。
警告:仪表不允许超过它的额定最大值。
不允许被测的实际数值超过仪表最大允许值的要求再强调也不过分。
超过最大值对指针有伤害,有害于正确校准,并且在某种情况下能引起仪表爆炸造成对作用者的伤害。
许多仪表装备了过载保护。
然而,通常情况下电流大于仪表设计的限定仍然是危险的。
1.2基本仪表的结构和操作许多仪表是根据电磁相互作用的原理动作的。
这种相互作用是通过流过导体的电流引起的(导体放置在永久磁铁的磁极之间)。
这种类型的仪表专门适合于直流电。
不管什么时候电流流过导体,磁力总会围绕导体形成。
磁力是由在永久磁铁力的作用下起反应的电流引起。
这就引起指针的移动。
导体可以制成线圈,放置在永久磁铁磁极之间的枢钮(pivot中心)上。
线圈通过两个螺旋型弹簧连在仪器的端子上。
这些弹簧提供了与偏差成正比的恢复力。
当没有电流通过时,弹簧使指针回复到零。
表的量程被设计来指明被测量的电流值。
线圈的移动(或者是指针的偏移)与线圈的电流值成正比。
如果必须要测量一个大于线圈能安全负载的电流,仪表要包含旁路或者分流器。
电气工程及其自动化专业英语翻译
第一章电路基本原理第一节电流和电压u(t)和i(t)这两个变量是电路中最基本的两个变量,它们刻划了电路的各种关系。
电荷和电流电荷的概念是用来解释所有电气现象的基本概念。
也即,电路中最基本的量是电荷。
电荷是构成物质的原子微粒的电气属性,它是以库仑为单位来度量的。
我们从基础物理得知一切物质是由被称为原子的基本构造部分组成的,并且每个原子是由电子,质子和中子组成的。
我们还知道电子的电量是负的并且在数值上等于1.602100×10-12C,而质子所带的正电量在数值上与电子相等。
质子和电子数量相同使得原子呈现电中性。
让我们来考虑一下电荷的流动。
电荷或电的特性是其运动的特性,也就是,它可以从一个地方被移送到另一个地方,在此它可以被转换成另外一种形式的能量。
当我们把一根导线连接到某一电池上时(一种电动势源),电荷被外力驱使移动;正电荷朝一个方向移动而负电荷朝相反的方向移动。
这种电荷的移动产生了电流。
我们可以很方便地把电流看作是正电荷的移动,也即,与负电荷的流动方向相反,如图1-1所示。
这一惯例是由美国科学家和发明家本杰明-富兰克林引入的。
虽然我们现在知道金属导体中的电流是由负电荷引起的,但我们将遵循通用的惯例,即把电流看作是正电荷的单纯的流动。
于是电流就是电荷的时率,它是以安培为单位来度量的。
从数学上来说,电流i、电荷q以及时间t之间的关系是:从时间t0到时间t所移送的电荷可由方程(1-1)两边积分求得。
我们算得:我们通过方程(1-1)定义电流的方式表明电流不必是一个恒值函数,电荷可以不同的方式随时间而变化,这些不同的方式可用各种数学函数表达出来。
电压,能量和功率在导体中朝一个特定的方向移动电荷需要一些功或者能量的传递,这个功是由外部的电动势来完成的。
图1-1所示的电池就是一个典型的例子。
这种电动势也被称为电压或电位差。
电路中a、b两点间的电压等于从a到b移动单位电荷所需的能量(或所需做的功)。
数学表达式为:式中w是单位为焦耳的能量而q是单位为库仑的电荷。
电气工程及其自动化专业英语课文翻译
unit1 taxe A 电力变压器的结构和原理在许多能量转换系统中,变压器是一个不了缺少的原件。
它使得在经济的发电机所产生电能并以最经历的传输电压传输电能,同时对于特定的使用者合适的电压使用电能成为可能。
变压器同样广泛的应用于低功率低电流的电子电路和控制电路中,来执行像匹配电源组抗和负载以求得最大的传输效率。
隔离一个电路与另一个电路在两个电路之间隔离直流电而保证交流电继续通道的功能。
在本质上,变压器是一个由两个或多个绕组通过相互的磁通耦合而组成的,如果这其中的一个绕组,原边连接到交流电压源将产生交流磁通它的幅值决定于原边的电压所提供的电压频率及匝数。
感应磁通将与其他绕组交链,在副边中将感应出一个电压其幅值将取决于副边的匝数及感应磁通量和频率。
通过使原副边匝数比例适应,任何所期望的电压比例或转换比例都可以得到。
变压器工作的本质仅要求存在与两个绕组相交链的时变的感应磁通。
这样的作用也可以发生在通过空气耦合的两组绕组中,但用铁心或其他铁磁材料可以使绕组之间的耦合作用增强,因为一大部分磁通被限制在与两个绕组交链的高磁导率的路径中。
这种变压器通常被称作为心式变压器。
大部分变压器都是这种类型。
以下的讨论几乎全部围绕心事变压器。
为减少铁心中的涡流所产生的损耗,磁路通常由一叠薄的叠片所组成。
如图1.1所示两种常见的结构形式用示意图表示出来。
芯式变压器的绕组绕在两个矩形铁心柱上,壳式变压器的绕组绕在三个铁心柱中间的那个铁心柱上,。
0.14毫米厚的硅钢片通常被用于在低频率低于几百Hz下运行的变压器中,硅钢片具有价格低铁心损耗小,在高磁通密度下,磁导率高的理想性能,能用做高频率低能耗的标准的通讯电路中的小型变压器的铁心是由被称为铁氧体的粉末压缩制成的铁磁合金所构成的。
在这些结构中,大部分的磁通被限制在固定的铁心中与两个绕组相交链。
绕组也产生多余的磁通,像漏磁通,只经过一个绕组和另外的绕组不相交链。
虽然漏磁通只是所有磁通的一小部分,但它在决定变压器的运行情况中起着重要的作用。
电气工程及其自动化专业英语翻译(精选多篇)
电气工程及其自动化专业英语翻译(精选多篇)第一篇:电气工程及其自动化专业英语翻译Electric Power Systems.The modern society depends on the electricity supply more heavily than ever before.It can not be imagined what the world should be if the electricity supply were interrupted all over the world.Electric power systems(or electric energy systems), providing electricity to the modern society, have become indispensable components of the industrial world.The first complete electric power system(comprising a generator, cable, fuse, meter, and loads)was built by Thomas Edison – the historic Pearl Street Station in New York City which began operation in September 1882.This was a DC system consisting of a steam-engine-driven DC generator supplying power to 59 customers within an area roughly 1.5 km in radius.The load, which consisted entirely of incandescent lamps, was supplied at 110 V through an underground cable system..Within a few years similar systems were in operation in most large cities throughout the world.With the development of motors by Frank Sprague in 1884, motor loads were added to such systems.This was the beginning of what would develop into one of the largest industries in the world.In spite of the initial widespread use of DC systems, they were almost completely superseded by AC systems.By 1886, the limitations of DC systems were becoming increasingly apparent.They could deliver power only a short distance from generators.To keep transmission power losses(I 2 R)and voltage drops to acceptable levels, voltage levels had to be high for long-distance power transmission.Such high voltages were not acceptable for generation and consumption of power;therefore, a convenient means for voltage transformationbecame a necessity.The development of the transformer and AC transmission by L.Gaulard and JD Gibbs of Paris, France, led to AC electric power systems.In 1889, the first AC transmission line in North America was put into operation in Oregon between Willamette Falls and Portland.It was a single-phase line transmitting power at 4,000 V over a distance of 21 km.With the development of polyphase systems by Nikola Tesla, the AC system became even more attractive.By 1888, Tesla held several patents on AC motors, generators, transformers, and transmission systems.Westinghouse bought the patents to these early inventions, and they formed the basis of the present-day AC systems.In the 1890s, there was considerable controversy over whether the electric utility industry should be standardized on DC or AC.By the turn of the century, the AC system had won out over the DC system for the following reasons:(1)Voltage levels can be easily transformed in AC systems, thusproviding the flexibility for use of different voltages for generation, transmission, and consumption.(2)AC generators are much simpler than DC generators.(3)AC motors are much simpler and cheaper than DC motors.The first three-phase line in North America went into operation in 1893——a 2,300 V, 12 km line in southern California.In the early period of AC power transmission, frequency was not standardized.This poses a problem for interconnection.Eventually 60 Hz was adopted as standard in North America, although 50 Hz was used in many other countries.The increasing need for transmitting large amounts of power over longer distance created an incentive to use progressively high voltage levels.To avoid the proliferation of anunlimited number of voltages, the industry has standardized voltage levels.In USA, the standards are 115, 138, 161, and 230 kV for the high voltage(HV)class, and 345, 500 and 765 kV for the extra-high voltage(EHV)class.In China, the voltage levels in use are 10, 35, 110 for HV class, and 220, 330(only in Northwest China)and500 kVforEHVclass.Thefirst750kVtransmission line will be built in the near future in Northwest China.With the development of the AC/DC converting equipment, high voltage DC(HVDC)transmission systems have become more attractive and economical in special situations.The HVDC transmission can be used for transmission of large blocks of power over long distance, and providing an asynchronous link between systems where AC interconnection would be impractical because of system stability consideration or because nominal frequencies of the systems are different.The basic requirement to a power system is to provide an uninterrupted energy supply to customers with acceptable voltages and frequency.Because electricity can not be massively stored under a simple and economic way, the production and consumption of electricity must be done simultaneously.A fault or misoperation in any stages of a power system may possibly result in interruption of electricity supply to the customers.Therefore, a normal continuous operation of the power system to provide a reliable power supply to the customers is of paramount importance.Power system stability may be broadly defined as the property of a power system that enables it to remain in a state of operating equilibrium under normal operating conditions and to regain an acceptable state of equilibrium after being subjected to a disturbance..Instability in a power system may be manifested in many different ways depending on the system configurationand operating mode.Traditionally, the stability problem has been one of maintaining synchronous operation.Since power systems rely on synchronous machines for generation of electrical power, a necessary condition for satisfactory system operation is that all synchronous machines remain in synchronism or, colloquially “in step”.This asp ect of stability is influenced by the dynamics of generator rotor angles and power-angle relationships, and then referred to “ rotor angle stability ”译文:电力系统现代社会比以往任何时候更多地依赖于电力供应。
电气工程及其自动化英语英译汉
1```In the generator mode ,it,s operating speed isslightly higger than it,s synchronous speed and ie needs magnetizing revctive pover form the symtem that it is connected to in order to suuply pover .在发电方式下他的工作速度比同步转速稍高些,并了解供电力,他需要他所连接的系统吸收磁化无功功率。
2```in the barking mode of operyetion ,a three –phase indection motor running at a steady –speedcan be brought to a quick stop by interchanging two of stator leads感应电机运行电动状态时,其转速低于同步转速,运行在发电状态时,其转速高于同步转速,这就需要从与之间相连的系统电源提供励磁的无功功率。
3```obviously ,dc machine applications are very significant,but the advantages of the dc machinemmust be weighed against its greatr initial investment cost and the maintenance problems associated with its brush-commutator system..同步是指状态运行时点击以恒定的转速和频率运行。
4```with a cylindyical rotor the reluctance of the magnetic circuit of the field is independent of itsactual diretion and relative to the direct axis.圆柱形转子的磁场磁路的磁阻与直轴有关,而与磁场的实际方向无关。
电气工程及其自动化专业英语翻译
电气工程及其自动化专业英语翻译Last revision on 21 December 2020Semiconductor switches are very important and crucial components in power electronic switches are meant to be the substitutions of the mechanical switches,but they are severely limited by the properties of the semiconductor materials and process of manufacturing. 在电力电子系统,中半导体开关是非常重要和关键部件。
半导体开关将要替换机械开关,但半导体材料的性质和生产过程严重限制了他们。
Switching losses开关损耗Power losses in the power eletronic converters are comprised of the Switching losses and parasitic losses. 电力电子转换器的功率损耗分为开关损耗和寄生损耗the parasitic losses account for the losses due to the winding resistances of the inductors and transformers,the dielectric losses of capacitors,the eddy and the hysteresis losses. 寄生损失的绕组电感器、变压器的阻力、介电损耗的电容器,涡流和磁滞损耗the switching losses are significant and can be managed. 这个开关损耗是非常重要的,可以被处理。
电气工程及其自动化专业英语翻译
Semiconductor switches are very important and crucial components inpower electronic systems.these switches are meant to be the substitutionsof the mechanical switches,but they are severely limited by the properties of the semiconductor materials and process of manufacturing.在电力电子系统,中半导体开关是特别重要和重点零件。
半导体开关将要替代机械开关,但半导体资料的性质和生产过程严重限制了他们。
Switching losses开关消耗Power losses in the power eletronic converters are comprised of the Switching losses and parasitic losses.电力电子变换器的功率消耗分为开关消耗和寄生消耗the parasitic losses account for the losses due to the winding resistances of the inductors and transformers,the dielectric losses ofcapacitors,the eddy and the hysteresis losses.寄生损失的绕组电感器、变压器的阻力、介电消耗的电容器, 涡流和磁滞消耗the switching losses are significant and can be managed.这个开关消耗是特别重要的, 能够被办理。
they can be further divided into three components:(a)the on-state losses,(b)the off-state losses and the losses in the transition states.他们能够分为三个部分:通态消耗,断态消耗和转换过程中产生的消耗。
电气工程及其自动化专业英语翻译
Electrical Energy TransmissionFrom reference 1Growing populations and industrializing countries create huge needs for electrical energy. Unfortunately, electricity is not always used in the same place that it is produced, meaning long-distance transmission lines and distribution systems are necessary. But transmitting electricity over distance and via networks involves energy loss.So, with growing demand comes the need to minimize this loss to achieve two main goals: reduce resource consumption while delivering more power to users. Reducing consumption can be done in at least two ways: deliver electrical energy more efficiently and change consumer habits.Transmission and distribution of electrical energy require cables and power transformers, which create three types of energy loss:the Joule effect, where energy is lost as heat in the conductor (a copper wire, for example);magnetic losses, where energy dissipates into a magnetic field;the dielectric effect, where energy is absorbed in the insulating material.The Joule effect in transmission cables accounts for losses of about 2.5 % while the losses in transformers range between 1 % and 2 % (depending on the type and ratings of the transformer). So, saving just 1 % on the electrical energy produced by a power plant of 1 000 megawatts means transmitting 10 MW more to consumers, which is far from negligible: with the same energy we can supply 1 000 - 2 000 more homes.Changing consumer habits involves awareness-raising programmers, often undertaken by governments or activist groups. Simple things, such as turning off lights in unoccupied rooms, or switching off the television at night (not just putting it into standby mode), or setting tasks such as laundry for non-peak hours are but a few examples among the myriad of possibilities.On the energy production side, building more efficient transmission anddistribution systems is another way to go about it. High efficiency transformers, superconducting transformers and high temperature superconductors are new technologies which promise much in terms of electrical energy efficiency and at the same time, new techniques are being studied. These include direct current and ultra high voltage transmission in both alternating current and direct current modes.Keywords: electrical energy transmissionFrom reference 2Disturbing loads like arc furnaces and thyristor rectifiers draw fluctuating and harmonic currents from the utility grid. These non sinusoidal currents cause a voltage drop across the finite internal grid impedance, and the voltage waveform in the vicinity becomes distorted. Hence, the normal operation of sensitive consumers is jeopardized.Active filters are a means to improve the power quality in distribution networks. In order to reduce the injection of non sinusoidal load currents shunt active filters are connnected in parallel to disturbing loads (Fig. 1). The active filter investigated in this project consists of a PWM controlled three-level VSI with a DC link capacitor.The VSI is connected to the point of common coupling via a transformer. The configuration is identical with an advanced static var compensator.The purpose of the active filter is to compensate transient and harmonic components of the load current so that only fundamental frequency components remain in the grid current. Additionally, the active filter may provide the reactive power consumed by the load. The control principle for the active filter is rather straightforward: The load current ismeasured, the fundamental active component is removed from the measurement, and the result is used as the reference for the VSI output current.In the low voltage grid, active filters may use inverters based on IGBTs with switching frequencies of 10 kHz or more. The harmonics produced by those inverters are easily suppressed with small passive filters. The VSI can be regarded nearly as an ideally controllable voltage source. Inmedium voltage applications with power ratings of several MVA, however, the switching frequency of today’s VSIs is limited to somehundred Hertz. Modern high power IGCTs can operate at around 1 kHz. Therefore, large passive filters are needed in order to remove the current ripple generated by the VSI. Furthermore, in fast control schemes the VSI no longer represents an ideal voltage source because the PWM modulator produces a considerable dead-time.In this project a fast dead-beat algorithm for PWM operated VSIs is developed [1].This algorithm improves the load current tracking performance and the stability of the active filter. Normally, for a harmonics free current measurement the VSI current would be sampled synchronously with the tips of the triangular carriers. Here, the current acquisition is shifted in order to minimize the delays in the control loop. The harmonics now included in themeasurement can be calculated and subtracted from the VSI current. Thus, an instantaneous current estimation free of harmonics is obtained.Keywords: active filtersFrom reference 3This report provides background information on electric power transmission and related policy issues. Proposals for changing federal transmission policy before the 111th Congress include S. 539, the Clean Renewable Energy and Economic Development Act, introduced on March 5, 2009; and the March 9, 2009, majority staff transmission siting draft of the Senate Energy and Natural Resources Committee. The policy issues identified and discussed in this report include:Federal Transmission Planning: several current proposals call for the federal government to sponsor and supervise large scale, on-going transmission planning programs. Issues for Congress to consider are the objectives of the planning process (e.g., a focus on supporting the development of renewable power or on a broader set of transmission goals), determining how much authority new interconnection-wide planning entities should be granted, the degree to which transmission planning needs to consider non-transmission solutions to power market needs, what resources the executive agencies will need to oversee the planning process, and whether the benefits for projects included in the transmission plans (e.g., a federal permitting option) will motivate developers to add unnecessary features and costs to qualify proposals for the plan.Permitting of Transmission Lines: a contentious issue is whether the federal government should assume from the states the primary role in permitting new transmission lines. Related issues include whether Congress should view management and expansion of the grid as primarily a state or national issue, whether national authority over grid reliability (which Congress established in the Energy Policy Act of 2005) can be effectively exercised without federal authority over permitting, if it is important to accelerate the construction of new transmission lines (which is one of the assumed benefits of federal permitting), and whether the executive agencies are equipped to take on the task of permitting transmission lines.Transmission Line Funding and Cost Allocation: the primary issues are whether the the federal government should help pay for new transmission lines, and if Congress should establish a national standard for allocating the costs of interstate transmission lines to ratepayers.Transmission Modernization and the Smart Grid: issues include the need for Congressional oversight of existing federal smart grid research, development, demonstration, and grant programs; and oversight over whether the smart grid is actually proving to be a good investment for taxpayers and ratepayers.Transmission System Reliability: it is not clear whether Congress and the executive branch have the information needed to evaluate the reliability of the transmission system. Congress may also want to review whether the power industry is striking the right balance between modernization and new construction as a means of enhancing transmission reliability, and whether the reliability standards being developed for the transmission system are appropriate for a rapidly changing power system.2 中文翻译及分析出资文献 1:人口增长和工业化国家导致电力能源的庞大需求量. 不幸的是, 电力的使用和生产常常不是在相同的地方,意味着长距离传输线路配电系统是必需的. 然而长距离输电以及通过网络这就涉及到能量损耗的问题。
电气工程及其自动化专业英语翻译
Semiconductor switches are very important and crucial components in power electronic systems.these switches are meant to be the substitutions of the mechanical switches,but they are severely limited by the properties of the semiconductor materials and process of manufacturing. 在电力电子系统,中半导体开关是非常重要和关键部件。
半导体开关将要替换机械开关,但半导体材料的性质和生产过程严重限制了他们。
Switching losses开关损耗Power losses in the power eletronic converters are comprised of the Switching losses and parasitic losses. 电力电子转换器的功率损耗分为开关损耗和寄生损耗the parasitic losses account for the losses due to the winding resistances of the inductors and transformers,the dielectric losses of capacitors,the eddy and the hysteresis losses. 寄生损失的绕组电感器、变压器的阻力、介电损耗的电容器,涡流和磁滞损耗the switching losses are significant and can be managed. 这个开关损耗是非常重要的,可以被处理。
they can be further divided into three components:(a)the on-state losses,(b)the off-state losses and the losses in the transition states. 他们可以分为三个部分: 通态损耗,断态损耗和转换过程中产生的损耗。
电气工程及其自动化专业英语翻译
Semiconductor switches are very important and crucial components in powerelectronic systems.these switches are meant to be the substitutions of the mechanical switches,but they are severely limited by the properties of the semiconductor materials and process of manufacturing. 在电力电子系统,中半导体开关是非常重要和关键部件。
半导体开关将要替换机械开关,但半导体材料的性质和生产过程严重限制了他们。
Switching losses开关损耗Power losses in the power eletronic converters are comprised of the Switching losses and parasitic losses. 电力电子转换器的功率损耗分为开关损耗和寄生损耗the parasitic losses account for the losses due to the winding resistances of the inductors and transformers,the dielectric losses of capacitors,the eddy and the hysteresis losses. 寄生损失的绕组电感器、变压器的阻力、介电损耗的电容器,涡流和磁滞损耗the switching losses are significant and can be managed. 这个开关损耗是非常重要的,可以被处理。
they can be further divided into three components:(a)the on-state losses,(b)the off-state losses and the losses in the transition states. 他们可以分为三个部分: 通态损耗,断态损耗和转换过程中产生的损耗。
(完整版)电气工程及其自动化专业英语第一章课文翻译
第一章第一篇sectiongTwo variables u(t) and i(t) are the most basic concepts in an electric circuit, they characterize the various relationships in an electric circuitu(t)和i(t)这两个变量是电路中最基本的两个变量,它们刻划了电路的各种关系。
Charge and CurrentThe concept of electric charge is the underlying principle for explaining all electrical phenomena. Also, the most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter consists, measured in coulombs (C).电荷和电流电荷的概念是用来解释所有电气现象的基本概念。
也即,电路中最基本的量是电荷。
电荷是构成物质的原子微粒的电气属性,它是以库仑为单位来度量的。
We know from elementary physics that all matter is made of fundamental building blocks known as atoms and that each atom consists of electrons, protons, and neutrons. We also know that the charge e on an electron is negative and equal in magnitude to 1.60210×10 19C, while a proton carries a positive charge of the same magnitude as the electron. The presence of equal numbers of protons and electrons leaves an atom neutrally charged.我们从基础物理得知一切物质是由被称为原子的基本构造部分组成的,并且每个原子是由电子,质子和中子组成的。
电气自动化专业英语 翻译 中文译文
电气自动化专业英语(翻译1-3)第一部分:电子技术第一章电子测量仪表电子技术人员使用许多不同类型的测量仪器。
一些工作需要精确测量面另一些工作只需粗略估计。
有些仪器被使用仅仅是确定线路是否完整。
最常用的测量测试仪表有:电压测试仪,电压表,欧姆表,连续性测试仪,兆欧表,瓦特表还有瓦特小时表。
所有测量电值的表基本上都是电流表。
他们测量或是比较通过他们的电流值。
这些仪表可以被校准并且设计了不同的量程,以便读出期望的数值。
1.1安全预防仪表的正确连接对于使用者的安全预防和仪表的正确维护是非常重要的。
仪表的结构和操作的基本知识能帮助使用者按安全工作程序来对他们正确连接和维护。
许多仪表被设计的只能用于直流或只能用于交流,而其它的则可交替使用。
注意:每种仪表只能用来测量符合设计要求的电流类型。
如果用在不正确的电流类型中可能对仪表有危险并且可能对使用者引起伤害。
许多仪表被设计成只能测量很低的数值,还有些能测量非常大的数值。
警告:仪表不允许超过它的额定最大值。
不允许被测的实际数值超过仪表最大允许值的要求再强调也不过分。
超过最大值对指针有伤害,有害于正确校准,并且在某种情况下能引起仪表爆炸造成对作用者的伤害。
许多仪表装备了过载保护。
然而,通常情况下电流大于仪表设计的限定仍然是危险的。
1.2基本仪表的结构和操作许多仪表是根据电磁相互作用的原理动作的。
这种相互作用是通过流过导体的电流引起的(导体放置在永久磁铁的磁极之间)。
这种类型的仪表专门适合于直流电。
不管什么时候电流流过导体,磁力总会围绕导体形成。
磁力是由在永久磁铁力的作用下起反应的电流引起。
这就引起指针的移动。
导体可以制成线圈,放置在永久磁铁磁极之间的枢钮(pivot中心)上。
线圈通过两个螺旋型弹簧连在仪器的端子上。
这些弹簧提供了与偏差成正比的恢复力。
当没有电流通过时,弹簧使指针回复到零。
表的量程被设计来指明被测量的电流值。
线圈的移动(或者是指针的偏移)与线圈的电流值成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章第一篇 sectiongTwo variables u(t) and i(t) are the most basic concepts in an electric circuit, they characterize the various relationships in an electric circuitu(t)和 i(t)这两个变量是电路中最基本的两个变量,它们刻划了电路的各种关系。
C h a r g e a nd C u rre n tThe concept of electric charge is the underlying principle for explaining all electrical phenomena. Also, the most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter consists, measured in coulombs (C).电荷和电流电荷的概念是用来解释所有电气现象的基本概念。
也即,电路中最基本的量是电荷。
电荷是构成物质的原子微粒的电气属性,它是以库仑为单位来度量的。
We know from elementary physics that all matter is made of fundamental building blocks known as atoms and that each atom consists of electrons, protons, and neutrons. We also know that the charge e on an electron is negative and equal in magnitude to 1.60210×10 19C, while a proton carries a positive charge of the same magnitude as the electron. The presence of equal numbers of protons and electrons leaves an atom neutrally charged.我们从基础物理得知一切物质是由被称为原子的基本构造部分组成的,并且每个原子是由电子,质子和中子组成的。
我们还知道电子的电量是负的并且在数值上等于1.602100×10-12C,而质子所带的正电量在数值上与电子相等。
质子和电子数量相同使得原子呈现电中性。
We consider the flow of electric charges. A unique feature of electric charge or electricity is the fact that it is mobile; that is, it can be transferred from one place to another, where it can be converted to another form of energy让我们来考虑一下电荷的流动。
电荷或电的特性是其运动的特性,也就是,它可以从一个地方被移送到另一个地方,在此它可以被转换成另外一种形式的能量。
When a conducting wire is connected to a battery (a source of electromotive force), the charges are compelled to move; positive charges move in one direction while negative charges move in the opposite direction. This motion of charges creates electric current. It is conventional to take the currentflow as the movement of positive charges, that is, opposite to the flow of negative charges, as Fig.l-1 illustrates. This convention was introduced by Benjamin Franklin (l706~l790), the American scientist and inventor. Although we now know that current in metallic conductors is due to negatively charged electrons, we will follow the universally accepted convention that current is the net flow of positive charges. Thus, Electric current is the time rate of charge, measured in amperes (A). Mathematically, the relationship among current i,charge q,and time= ⎰t t is当我们把一根导线连接到某一电池上时(一种电动势源),电荷被外力驱使移动;正电荷朝一个方向移动而负电荷朝相反的方向移动。
这种电荷的移动产生了电流。
我们可以很方便地把电流看作是正电荷的移动,也即,与负电荷的流动方向相反,如图 1-1 所示。
这一惯例是由美国科学家和发明家本杰明-富兰克林引入的。
虽然我们现在知道金属导体中的电流是由负电荷引起的,但我们将遵循通用的惯例,即把电流看作是正电荷的单纯的流动。
于是电流就是电荷的时率,它是以安培为单位来度量的。
从数学上来说,电流 i 、电荷 q 以及时间 t 之 间的关系是: i = dq dt(1-1) The charge transferred between time t 0 and t is obtained byintegrating both sides of Eq. (1-1). We obtain从时间 t0 到时间 t 所移送的电荷可由方程(1-1)两边积分求得。
我们算得:t q idt(1- 2) The way we define current as i in Eq. (1-l) suggests that current neednot be a constant-valued function, charge can vary with time in severalways that may be represented by different kinds of mathematical functions我们通过方程(1-1)定义电流的方式表明电流不必是一个恒值函数,电荷可以不同的方式随时间而变化,这些不同的方式可用各种数学函数表达出来。
电压,能量和功率To move the electron in a conductor in a particular directionrequires some work or energy transfer. This work is performed by anexternal electromotive force (emf), typically represented by the batteryin Fig.l-1. This emf is a d l w so known as voltage or potential difference. The voltage u u ab = dq (1- 3) ab between two points a and b in an electric circuit is the energy (or work) needed to move a unit charge from a to b; mathematically在导体中朝一个特定的方向移动电荷需要一些功或者能量的传递,这个功是由外部的电动势来完成的。
图 1-1 所示的电池就是一个典型的例子。
这种电动势也被称为电压或电位差。
电路中 a 、b 两点间的电压等于从 a 到 b 移动单位电荷所需的能量(或所需做的功)。
数学表达式为:where w is energy in joules (J) and q is charge in coulombs (C). The voltageu ab is measured in volts (V), named in honor of the Italian physicistAlessandro Antonio Volta (l745~l827), who invented the first voltaicbattery. Thus, Voltage (or potential difference) is the energy requiredto move a unit charge through an element, measured in volts (V).式中 w 是单位为焦耳的能量而 q 是单位为库仑的电荷。
电压 Uab 是以伏特为单位来度量的,它是为了纪念意大利物理学家 Alessandro Antonio Volta 而命名的,这位意大利物理学家发明了首个伏达电池。
于是电压(或电压差)等于将单位电荷在元件中移动所需的能量,它是以伏特为单位来度量的。
Fig.l-2 shows the voltage across an element (represented by a rectangularblock ) connected to points a and b . The plus (+) and minus (-) signs areused to define reference direction or voltage polarity. The u ab can beinterpreted in two ways: ①point a is at a potential of u ab volts higher than point b; ②the potential at point a with respect to point b is u ab. It follows logically that in general图1-2 显示了某个元件(用一个矩形框来表示)两端 a、b 之间的电压。