【最新】2018年北师大版八年级数学下册第二次月考测试题含答案
北师大版八年级下册数学第二章一元一次不等式与一元一次不等式组测试题
7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18B. x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D. x2+3x+16=0
②购买多少本书法练习本时,两种方案所花费的钱是一样多?
③购买多少本书法练习本时,按方案二付款更省钱?
18、为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:
故答案为:5x+200,4.5x+225;
②依题意可得,5x+200=4.5x+225,
解得:x=50.
答:购买50本书法练习本时,两种方案所花费的钱是一样多;
③依题意可得,5x+200>4.5x+225,
解得:x>50.
答:购买超过50本书法练习本时,按方案二付款更省钱
18、解:(1)设甲、乙两种型号的挖掘机各需x台、y台.
(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?
24.△ABC中,AC=BC,∠ACB=α,点D是平面内不与点A和点B重合 一点,连接DB,将线段DB绕点D顺时针旋转α得到线段DE,连接AE、BE、CD.
(1)如图①,点D与点A在直线BC 两侧,α=60°时, 的值是;直线AE与直线CD相交所成的锐角的度数是度;
北师大版八年级数学下册第二章测试题及答案
北师大版八年级数学下册第二章测试题及答案一.选择题(每题3分,共30分)1.下列数学式子中:①﹣3<0,②2x+3y≥0,③x=1,④x2﹣2xy+y2,⑤x+1>3中,不等式有( ) A.3个B.4个C.5个D.6个2.下列各式中正确的是( )A.若a>b,则a+2>b+2B.若a>b,则a2>b2C.若a>b,且c≠0,则2ac>2bcD.若a>b,则﹣3a>﹣3b3.下列不等式的变形不一定成立的是( )A.若x>y,则﹣x<﹣y B.若x>y,则x2>y2C.若x<y,则D.若x+m<y+m,则x<y4.关于x的一元一次不等式组的解集如图所示,则它的解集是( )A.﹣1<x≤2B.﹣1≤x<2C.x≥﹣1D.x<25.若不等式组的解是x≥a,则下列各式正确的是( )A.a>b B.a≥b C.a<b D.a≤b6.某商店为了促销一种定价为20元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小颖有200元钱,那么她最多可以购买该商品( )A.5件B.6件C.7件D.11件7.若关于x的不等式2﹣m﹣x>0的正整数解共有3个,则m的取值范围是( )A.﹣1≤m<0B.﹣1<m≤0C.﹣2≤m<﹣1D.﹣2<m≤﹣18.一次函数y1=ax+b与y2=mx+n在同一平面直角坐标系内的图象如图所示,则不等式组的解集为( )A.x<﹣2B.﹣2<x<3C.x>3D.以上答案都不对9.若关于x的一元一次不等式组的解集是x≤k,且关于y的方程2y=3+k有正整数解,则符合条件的所有整数k的和为( )A.5B.8C.9D.1510.已知关于x.y的方程组,其中﹣3≤a≤1,给出下列说法:①当a=1时,方程组的解也是方程x+y=2﹣a的一个解;②当a=﹣2时,x.y的值互为相反数;③若x≤1,则1≤y≤4;④是方程组的解.其中说法错误的是( )A.①②③④B.①②③C.②④D.②③二.填空题(每题3分,共24分)11.若﹣a<﹣b,那么﹣2a+9 ﹣2b+9(填">""<"或"=").12.若关于x的不等式组的解集是x<4,则P(2﹣m,m+2)在第 象限.13.若不等式组无解,则a的取值范围是 .14.不等式(m﹣2)x<3的解集是,则m的取值范围是 .15.一次竞赛中,一共有10道题,5分,答错(或不答)一题扣1分,则小明至少答对 道题,成绩超过30分.16.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款:若一次性购买5件以上,超过部分打八折.现有32元钱,最多可以购买该商品 件.17.2019年春节期间,为提倡文明,环保祭祖,某烟花销售商拟今年不再销售烟花爆竹,改为销售鲜花,经过市场调查,发现有甲乙丙丁四种鲜花组合比较受顾客的喜爱,于是制定了进货方案,其中甲丙的进货量相同,乙丁的进货量相同,甲与丁单价相同,甲乙与丙丁的单价和均为88元/束,且甲乙的进货总价比丙丁的进货总价多800元,由于年末资金紧张,所以临时决定只进购甲乙两种组合,甲乙的进货量与原方案相同,且进货量总数不超过500束,则该经销商最多需要准备 元进货资金.18.某校奖励学生,初一获奖学生中,有一人获奖品3件,其余每人获奖品7件;初二获奖学生中,有一人获奖品4件,其余每人获奖品9件.如果两个年级获奖人数不等,但奖品数目相等,且每个年级奖品数大于50而不超过100,那么两个年级获奖学生共有 ————人.三.解答题(共66分)19.解不等式组:(1)解不等式组,并将解集在数轴上表示出来.(2)求不等式组的整数解.20.阅读下列材料:问题:已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围解:∵x﹣y=2,∴x=y+2,又∵x>1,∴y+2>1,∴y>﹣1,又∵y<0,∴﹣1<y<0①∴﹣1+2<y+2<0+2即1<x<2②①+②得﹣1+1<x+y<0+2,∴x+y的取值范围是0<x+y<2.请按照上述方法,完成下列问题:(1)已知x﹣y=5,且x>﹣2,y<0,①试确定y的取值范围;②试确定x+y的取值范围;(2)已知x﹣y=a+1,且x<﹣b,y>2b,若根据上述做法得到3x﹣5y的取值范围是﹣10<3x﹣5y<26,请直接写出a.b的值.21.已知关于x,y的方程满足方程组.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣5|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.22.已知关于x,y的二元一次方程ax+2y=a﹣1.(1)若是该二元一次方程的一个解,求a的值;(2)若x=2时,y>0,求a的取值范围;(3)不论实数a(a≠0)取何值,方程ax+2y=a﹣1总有一个公共解,试求出这个公共解.23.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:若a﹣b>0,则a>b;若a﹣b=0,则a=b;若a﹣b<0,则a<b.反之也成立.这种比较大小的方法称为"求差法比较大小".请运用这种方法尝试解决下面的问题:(1)比较4+3a2﹣2b+b2与3a2﹣2b+1的大小;(2)若2a+2b>3a+b,比较a.b的大小.24.阅读题.小明在数学课外小组活动时遇到这样一个问题:如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>3的解集,小明同学的思路如下:先根据绝对值的定义,求|x|=3时x的值,并在数轴上表示为点A,B,如图所示:观察数轴发现:以点A,B为分界点把数轴分为三部分,点A左边的点表示的数的绝对值大于3,点A.B之间的点表示的数的绝对值小于3,点B右边表示的数的绝对值大于3,因此,小明得出结论绝对值不等式|x|>3的解集为:x<﹣3或x>3参照小明的思路,解决下列问题:(1)请你直接写出下列绝对值不等式|x|>1的解集是 ;(2)求绝对值不等式|x﹣3|>4的解集;(3)求绝对值不等式|x﹣1|<2的解集.25.一个汽车零件制造车间可以生产甲,乙两种零件,生产4个甲种零件和3个乙种零件共获利120元;生产2个甲种零件和5个乙种零件共获利130元.(1)求生产1个甲种零件,1个乙种零件分别获利多少元?(2)若该汽车零件制造车间共有工人30名,每名工人每天可生产甲种零件6个或乙种零件5个,每名工人每天只能生产同一种零件,要使该车间每天生产的两种零件所获总利润超过2800元,至少要派多少名工人去生产乙种零件?26.某商场用60个A型包装袋与90个B型包装袋对甲,乙两类农产品进行包装出售(两种型号包装袋都用完),每个A型包装袋装2千克甲类农产品或装3千克乙类农产品,每个B型包装袋装3千克甲类农产品或装5千克乙类农产品,设有x个A型包装袋包装甲类农产品,有y个B型包装袋包装甲类农产品.(1)请用含x或y的代数式填空完成表:包装袋型号A B甲类农产品质量(千克)2x 乙类农产品质量(千克) 5(90﹣y)(2)若甲.乙两类农产品的总质量分别是260千克与210千克,求x,y的值.(3)若用于包装甲类农产品的B型包装袋数量是用于包装甲类农产品的A型包装袋数量的两倍,且它们数量之和不少于90个,记甲.乙两类农产品的总质量之和为m千克,求m的最小值与最大值.27.新农村实行大面积机械化种植,为了更好地收割庄稼,农田承包大户张大叔决定购买8台收割机,现有久保田和春雨两种品牌的收割机,其中每台收割机的价格.每天的收割面积如下表.销售商又宣传说,购买一台久保田收割机比购买一台春雨收割机多8万元,购买2台久保田收割机比购买3台春雨收割机多4万元.久保田收割机春雨收割机价格(万元/台)x y收割面积(亩/天)2418(1)求两种收割机的价格;(2)如果张大叔购买收割机的资金不超过125万元,那么有哪几种购买方案?(3)在(2)的条件下,若每天要求收割面积不低于150亩,为了节约资金,那么有没有一种最佳购买方案呢? 28."中国人的饭碗必须牢牢掌握在咱们自己手中".为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲.乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲.乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲.乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?答案一.选择题1.A.2.A.3.B.4.B.5.A.6.D.7.C.8.C.9.B.10.A.二.填空题11.<.12.二.13.a≥4.14.m<2.15.7.16.12.17.22400.18.25.三.解答题(共10小题)19.解:(1),解不等式①得:x>﹣4,解不等式②得:x≤2,∴不等式组的解集为:﹣4<x≤2,数轴表示如下:(2),解不等式①得:x>﹣1,解不等式②得:x≤5,∴不等式组的解集为:﹣1<x≤5,∴整数解为0,1,2,3,4,5.20.解:(1)①∵x﹣y=5,∴x=y+5,∵x>﹣2,∴y+5>﹣2,∴y>﹣7,∵y<0,∴﹣7<y<0,②由①得﹣7<y<0,∴﹣2<y+5<5,即﹣2<x<5②,∴﹣7﹣2<y+x<0+5,∴x+y的取值范围是﹣9<x+y<5;(2)∵x﹣y=a+1,∴x=y+a+1,∵x<﹣b,∴y+a+1<﹣b,∴y<﹣a﹣b﹣1,∴﹣y>a+b+1,∵y>2b,∴﹣y<﹣2b,∴a+b+1<﹣y<﹣2b①,∴10b<5y<﹣5a﹣5b﹣5,∵2b+a+1<y+a+1<﹣b,∴2b+a+1<x<﹣b,∴6b+3a+3<3x<﹣3b②,∴11b+8a+8<3x﹣5y<﹣13b,∴①+②得:5b+5a+5+6b+3a+3<3x﹣y<﹣10b﹣3b,∵3x﹣y的取值范围是﹣10<3x﹣5y<2,∴,解得:.21解:(1),①﹣②×2得:﹣x=﹣m+3,即x=m﹣3,把x=m﹣3代入②得:2m﹣6+y=m﹣1,即y=﹣m+5,把x=m﹣3,y=﹣m+5代入x﹣y=2中,得:m﹣3+m﹣5=2,即m=5;(2)由题意得:,解得:3≤m≤5,∴m﹣3≥0,m﹣5≤0,则原式=m﹣3+5﹣m=2;(3)根据题意得:s=2x﹣3y+m=2(m﹣3)﹣3(﹣m+5)+m=6m﹣21,∵3≤m≤5,∴当m=3时,s=18﹣21=﹣3;m=5时,s=30﹣21=9,则s的最小值为﹣3,最大值为9.22.解:(1)∵是ax+2y=a﹣1的一个解,∴2a﹣2=a﹣1,解得a=1;(2)x=2时,2a+2y=a﹣1,∴y=∵x=2时,y>0,∴>0,解得a<﹣1;(3)ax+2y=a﹣1变形为(x﹣1)a+2y=﹣1,∵不论实数a(a≠0)取何值,方程ax+2y=a﹣1总有一个公共解,∴x﹣1=0,此时2y=﹣1,∴这个公共解为.23.解:(1)4+3a2﹣2b+b2﹣(3a2﹣2b+1)=4+3a2﹣2b+b2﹣3a2+2b﹣1=b2+3>0,∴4+3a2﹣2b+b2>3a2﹣2b+1;(2)∵2a+2b>3a+b,∴(2a+2b)﹣(3a+b)>0,∴2a+2b﹣3a﹣b>0,∴﹣a+b>0,∴a<b.24.解:(1)根据阅读材料可知:①|x|>1的解集是x<﹣1或x>1;故答案为:x<﹣1或x>1;(2)∵|x﹣3|>4∴x﹣3<﹣4或x﹣3>4解得:x<﹣1或x>7;(3)|x﹣1|<2,∵﹣2<x﹣1<2,解得:﹣1<x<3.25.解:(1)设生产1个甲种零件获利x元,生产1个乙种零件获利y元,根据题意得:,解得:.答:生产1个甲种零件获利15元,生产1个乙种零件获利20元.(2)设要派a名工人去生产乙种零件,则(30﹣a)名工人去生产甲种零件,根据题意得:15×6(30﹣a)+20×5a>2800,解得:a>10.∵a为正整数,∴a的最小值为11.答:至少要派11名工人去生产乙种零件.26.解:(1)由题意可以填表如下:包装袋型号A B 甲类农产品质量(千克)2x3y 乙类农产品质量(千克)3(60﹣x) 5(90﹣y)故答案为:3y;3(60﹣x).(2)由题意可得,,解得.∴即x的值为40;y的值为60.(3)设有x个A型包装袋包装甲类农产品,则有y=2x个B型包装袋包装甲类农产品.∵用于包装甲类的A,B型包装袋的数量之和不少于90个,∴x+2x≥90,∴x≥30.∵90﹣2x≥0,∴x≤45;∴30≤x≤45,∴m=2x+3(60﹣x)+6x+5( 90﹣2x)=﹣5x+630,∵﹣5<0,∴当30≤x≤45时,m随x增大而减小,∴当x=45时,m有小值405,当x=30时,m有最大值480,∴m的最大值为480,最小值为405.27.解:(1)设两种收割机的价格分别为x万元,y万元,依题意得,解得故久保田收割机的价格为每台20万元,春雨收割机的价格为每台12万元;(2)设购买久保田收割机m台,依题意得20m+12(8﹣m)≤125 解得m≤3,故有以下4种购买方案:①久保田收割机3台,春雨收割机5台;②久保田收割机2台,春雨收割机6台;③久保田收割机1台,春雨收割机7台;④久保田收割机0台,春雨收割机8台;(3)由题意可得24m+18(8﹣m)≥150,解得m≥1,由(1)得购买久保田收割机越少越省钱,所以最佳购买方案为久保田收割机1台,春雨收割机7台.28.解:(1)设购进1件甲种农机具x万元,1件乙种农机具y万元.根据题意得:,解得:,答:购进1件甲种农机具1.5万元,1件乙种农机具0.5万元.(2)设购进甲种农机具m件,购进乙种农机具(10﹣m)件,根据题意得:,解得:4.8≤m≤7.∵m为整数.∴m可取5.6.7.∴有三种方案:方案一:购买甲种农机具5件,乙种农机具5件.方案二:购买甲种农机具6件,乙种农机具4件.方案三:购买甲种农机具7件,乙种农机具3件.设总资金为w万元.w=1.5m+0.5(10﹣m)=m+5.∵k=1>0,∴w随着m的减少而减少,=1×5+5=10(万元).∴m=5时,w最小∴方案一需要资金最少,最少资金是10万元.(3)设节省的资金用于再次购买甲种农机具a件,乙种农机具b件,由题意得:(1.5﹣0.7)a+(0.5﹣0.2)b=0.7×5+0.2×5,其整数解:或,∴节省的资金全部用于再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件.方案二:购买甲种农机具3件,乙种农机具7件.。
北师大版八年级下册数学期中测试题含答案及全册单元测试题(含答案)
北师大版八年级数学下册期中测试题班级姓名学号得分一、选择题1.无论取何值时,下列分式一定有意义的是()A.B.C.D.2.下列因式分解正确的是()A.B.C.D.3.实数a、b、c在数轴上对应的点位置如图所示,下列式子正确的是()①b+c>0 ②a+b>a+c ③bc<ac ④ab>acA.1个B.2个C.3个D.4个4.下列运算正确的是()A. B.C. D.5、如果把分式中的 x,y都扩大7倍,那么分式的值()。
A、扩大7倍B、扩大14倍C、扩大21倍D、不变6.关的分式方程,下列说法正确的是()A.<一5时,方程的解为负数B.方程的解是x=+5C.>一5时,方科的解是正数D.无法确定7.将不等式的解集在数轴上表示出米,正确的是()a221aa+21aa+112+-aa112+-aa()222baba-=-()22224yxyx+=+()()aaa21212822-+=-()()yxyxyx44422-+=-abab11+-=+-babababa321053.02.05.0-+=-+12316+=+aaxyxyyxyx+-=+-yxx25-x15=-xmm mm⎪⎩⎪⎨⎧-≤-<+xxxx238211488.“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( ) A .B .C .D .9.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤.价格为每斤y 元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是( ) A .<B .>C .≤D .≥10.在盒子里放有三张分别写有整式+1、+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ). A .B .C .D .11.关的不等式组有四个整数解,则的取值范同是( )A .B .C .D . 二、填空题12、 一项工程,A 单独做m 小时完成。
新北师大版八年级数学下测试题及答案
新北师大版八年级数学下测试题及答案Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】第一章检测题一 选择题 1已知等腰三角形的两条边长是7和3,那么第三条边长是 ( )A 8B 7C 4D 32、如图,由∠1=∠2,BC=DC ,AC=EC ,得△ABC ≌△EDC 的根据是( )A 、SASB 、ASAC 、AASD 、SSS3、等腰三角形底边长为7,一腰上的中线把其周长分成两部分的差为3,则腰长是( )A 、4B 、10C 、4或10D 、以上答案都不对4、如图,△ABC 中,∠ACB=90°,BA 的垂直平分线交CB 边于D ,若AB=10,AC=5,则图中等于60°的角的个数为( ) A 、2 B 、3 C 、4 D 、5(第2题图)5.如图1,AB =AC ,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,则图中全等三角形的对数为( )A .1 B .2 C .3 D .46.在△ABC 和△DEF 中,已知∠C =∠D ,∠B =∠E ,要判定这两个三角形全等,还需要条件( )A .AB =ED B .AB =FDC .AC =FD D .∠A =∠F7.一个三角形的三边长分别为a ,b ,c ,且()()()0a b b c c a ---=,则该三角形必为( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形8.如图2所示, △ABC 为直角三角形,BC 为斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合.如果AP =3,那么PP ′的长等于( )A .3B .23C .32D .49、如图,在等边ABC ∆中,,D E 分别是,BC AC 上的点,且BD CE =,AD 与BE 相交于点P ,则12∠+∠的度数是( ).A .045B .055C .060D .075(第9题图) (第10题图)10、如图,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( ).A .1处B .2处C .3处D .4处 二、填空题1.如图3,等腰三角形ABC 的顶角为120°,腰长为10,则底边上的高AD = .2.已知等腰三角形的一个内角是100°,则其余两个角的度数分别为 .3.如图5,△ABC 中,AB =AC ,点D 在AC 边上,且BD =BC =AD ,则∠A 等于 .4.如图,D,E 分别为AB,AC 的中点,将△ABC 沿线段DE 折叠,使点A 落在点F 处,若∠B=50°,则∠BDF= .5.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其腰上的高是 .6.如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 的长为三.解答题1.已知:如图8,D 是△ABC 的边AB 上一点,AB ∥FC ,DF 交AC 于点E ,DE =FE . 求证:AE =CE .2.如图12,ABCD 是一张长方形的纸片,折叠它的一边AD ,使点D 落在BC 边上的F 点处,AB =8cm ,BC =10cm ,那么EC 等于多少3.已知:如图,∠A=∠D=90°,AC=BD. 求证:OB=OC4.如图,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM、CN交与F点。
北师大版八年级数学下册 2 (2)
2022-2023学年北师大版八年级数学下册《1.1等腰三角形》同步测试题(附答案)一.选择题(共7小题,满分28分)1.等腰三角形的两边长分别为2和5,则这个等腰三角形的周长为()A.12B.9C.9或12D.10或122.等腰三角形的一个内角为50°,它的顶角的度数是()A.65°B.80°C.65°或80°D.50°或80°3.用反证法证明“若ab=0,则a,b中至少有一个为0”时,第一步应假设()A.a=0,b=0B.a≠0,b≠0C.a≠0,b=0D.a=0,b≠0 4.如图,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED的周长为()A.2B.3C.4D.55.如图,已知△ABC的面积为24,AB=AC=8,点D为BC边上一点,过点D分别作DE ⊥AB于E,DF⊥AC于F,若DF=2DE,则DF长为()A.4B.5C.6D.86.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A6B6A7的边长为()A.16B.32C.64D.1287.如图,平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8二.填空题(共7小题,满分28分)8.等腰三角形一底角平分线与其对边所成的锐角为84°,则等腰三角形的顶角大小为.9.如图,△ABC中,BO平分∠ABC,CO平分∠ACB,MN经过点O,与AB,AC相交于点M、N,且MN∥BC,AB=7cm,AC=9cm,则△AMN的周长为.10.等腰三角形的底边长为9cm,一腰上的中线把其周长分成两部分的差为4cm,则腰长是.11.如图,在△ABC中,过点B作△ABC的角平分线AD的垂线,垂足为F,FG∥AB交AC于点G,若AB=4,则线段FG的长为.12.已知△ABC为等边三角形,AB=10,M在AB边所在直线上,点N在AC边所在直线上,且MN=MC,若AM=16,则CN的长为.13.如图,在△ABC中,AB=AC,D为BC边上一点,且∠BAD=30°,若AD=DE,∠DAE=72°,则∠EDC的度数为.14.如图,AB、CD相交于点E,AD=DE,BC=BE,F、G、H分别为AE、CE、BD的中点,∠A=α.则∠FHG=.(用含α的代数式表示)三.解答题(共6小题,满分64分)15.如图,在△ABC中,∠A=36°,AB=AC,BM平分∠ABC交AC于点M,求证:AM =BM.16.如图,在△ABC中,∠C=90°,BD分∠ABC交AC于点D,过点D作DE∥AB交BC 于点E,DF⊥AB,垂足为点F.(1)求证:BE=DE;(2)若DE=2,,求BD的长.17.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.18.如图,在△ABC中,∠ABC=2∠ACB,BD为△ABC的角平分线;(1)若AB=BD,则∠A的度数为°(直接写出结果);(2)如图1,若E为线段BC上一点,∠DEC=∠A;求证:AB=EC.(3)如图2,若E为线段BD上一点,∠DEC=∠A,求证:AB=EC.19.在边长为9的等边三角形ABC中,点Q是BC上一点,点P是AB上一动点,以每秒1个单位的速度从点A向点B移动,设运动时间为t秒.(1)如图1,若BQ=6,PQ∥AC,求t的值;(2)如图2,若点P从点A向点B运动,同时点Q以每秒2个单位的速度从点B经点C 向点A运动,当t为何值时,△APQ为等边三角形?20.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒时,M、N两点重合?(2)点M、N运动几秒时,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.参考答案一.选择题(共7小题,满分28分)1.解:①当2为底时,三角形的三边分别为2、5、5,因为2+5>5,所以可以构成三角形,周长为=2+5+5=12;②当2为腰时,三角形的三边分别为2、2、5,因为2+2<5,所以不能构成三角形,故舍去.综上所述,三角形的周长为12,故选:A.2.解:如图所示,△ABC中,AB=AC.有两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣50°﹣50°=80°,∴这个等腰三角形的顶角为50°或80°.故选:D.3.解:“若ab=0,则a,b中至少有一个为0.”第一步应假设:a≠0,b≠0.故选:B.4.解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵ED∥BC,∴∠CBD=∠BDE,∴∠ABD=∠BDE,∴BE=DE,∴△AED的周长=AE+DE+AD=AE+BE+AD=AB+AD,∵AB=3,AD=1,∴△AED的周长=3+1=4.故选:C.5.解:连接AD,则:S△ABD+S△ACD=S△ABC,即:×8•DF+8•DE=24,可得:DE+DF=6,∵DF=2DE,∴DF=4,故选:A.6.解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,A1B1=A1A2,∴∠A1B1O=∠B1A1A2﹣∠MON=60°﹣30°=30°,∴∠A1B1O=∠MON,∴A1B1=OA1,∴A1B1=A1A2=OA1,同理可得A2B2=A2A3=OA2=2OA1,∴A3B3=A3A4=OA3=2OA2=22•OA1,A4B4=A4A5=OA4=2OA3=23•OA1,…∴A n B n=A n A n+1=2n﹣1•OA1=2n,∴△A6B6A7的边长:A6B6=26=64,故选:C.7.解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即(0,0)、(4,0),∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与x轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与x轴,y轴各有一个有1个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选:A.二.填空题(共7小题,满分28分)8.解:设∠ABC=∠C=2x°,∵BD平分∠ABC,∴∠ABD=∠CBD=x°,则∠A=180°﹣4x°,①当∠ADB=84°时,在△ABD中,x+180﹣4x+84=180,解得:x=28,∴∠A=180°﹣4×28°=68°;②当∠CDB=84°时,∵∠CDB=∠A+∠ABD,∴84=180﹣4x+x,解得:x=32,∴∠A=180°﹣4×32°=52°;综上所述:∠A的度数为52°或68°,故答案为:52°或68°.9.解:∵BO平分∠ABC,CO平分∠ACB,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵AB=7cm,AC=9cm,∴△AMN的周长=AM+MN+AN=AB+AC=7+9=16(cm).故答案为:16cm.10.解:如图,AB=AC,BD是中线,根据题意得:(AB+AD)﹣(BC+CD)=4cm或(BC+CD)﹣(AB+AD)=4cm,则AB﹣BC=4cm或BC﹣AB=4cm,∵BC=9cm,∴AB=13cm或5cm.∴腰长为:13cm或5cm.故答案为:13cm或5cm.11.解:延长BF交AC于E,∵AD平分∠BAC,∴∠BAD=∠CAD,∵BF⊥AD,∴∠AFB=∠AFE=90°,∵AF=AF,∴△ABF≌△AEF(ASA),∴AE=AB=4,∵FG∥AB,∴∠BAF=∠AFG,∴∠GAF=∠F AG,∴AG=FG,∵∠F AG+∠AEF=∠AFG+∠EFG=90°,∴∠GFE=∠GEF,∴FG=GE,∴FG=AE=2,故答案为:2.12.解:由题意可知,BM=AN=6,①如图,当点M在AB的延长线上时,作MD⊥AC于D.在Rt△AMD中,∵∠ADM=90°,∠A=60°,AM=16,∴AD=AM=8,∴CD=AC﹣AD=2,∵MN=MC,MD⊥CN,∴DN=CD,∴CN=2CD=4.②如图,当点M在BA的延长线上时,作MD⊥CN于D,在Rt△AMD中,∵∠ADM=90°,∠DAM=60°,AM=16,∴AD=AM=8,∴CD=AD+AC=18,∵MN=MC,MD⊥CN,∴DN=CD,∴CN=2CD=36,故答案为:4或36.13.解:∵∠BAD=30°,∠DAE=72°,AB=AC,∴∠B=∠C==39°,∵AD=DE,∴∠DAE=∠DEA=72°,∵∠AED=∠C+∠EDC,∴∠EDC=∠AED﹣∠C=72°﹣39°=33°,故答案为:33°.14.解:如图,连接DF,BG.∵DA=DE,BE=BC,AF=EF,EG=CG,∴DF⊥AE,BG⊥EC,∴∠DFB=∠DGB=90°,∵DH=BH,∴FH=DH=BH=GH,∴∠HFB=∠HBF,∠HDG=∠HGD,∵DA=DE,∴∠A=∠DEA=α,∵∠AED=∠EDB+∠EBD,∴∠EDB+∠EBD=α,∴∠FHG=180°﹣∠FHD﹣∠GHB=180°﹣2∠HBF﹣2∠HDG=180°﹣2α,故答案为180°﹣2α.三.解答题(共6小题,满分64分)15.证明:在△ABC中,∠A=36°,AB=AC,∴∠ABC=∠C=72°,∵BM平分∠ABC交AC于点M,∴∠ABM=∠MBC=36°,∴∠A=∠MBC,∴AM=BM.16.(1)证明:∵BD分∠ABC,∴∠ABD=∠CBD.∵DE∥AB,∴∠EDB=∠ABD.∴∠CBD=∠EDB.∴DE=EB.(2)解:∵∠C=90°,∴DC⊥BC.又∵BD分∠ABC交AC于点D,DF⊥AB,∴CD=DF=.在Rt△CDE中,CE==1.∵DE=EB=2,∴BC=CE+EB=3.在Rt△CDB中,BD===2.17.解:(Ⅰ)∵三角形ABC为等边三角形,∴∠BAE=60°,∵∠BAD=15°,∴∠DAC=60°﹣15°=45°,∵∠DAE=80°,∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE,∴∠ADE=(180°﹣80°)=50°,∠ADC=∠BAD+∠B=15°+60°=75°,又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.18.(1)解:如图1中,设∠C=x.∵∠ABC=2∠C,∴∠ABC=2x,∵BD平分∠ABC,∴∠ABD=∠CBD=x,∵AB=BD,∴∠A=∠ADB=∠DBC+∠C=2x,∵∠A+∠ABC+∠C=180°,∴2x+2x+x=180°,∴x=36°,∴∠A=2x=72°,故答案为:72.(2)证明:如图1中,∵∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(AAS),∴AB=EC.(3)证明:如图2中,延长BD到T,使得CD=CT.∵CD=CT,∴∠T=∠CDT=∠ADB,∵BD=CD,∴BD=CT,在△ABD和△ECT中,,∴△ABD≌△ECT(AAS),∴AB=EC.19.解:(1)如图1,∵△ABC是等边三角形,PQ∥AC,∴∠BQP=∠C=60°,∠BPQ=∠A=60°,又∠B=60°,∴∠B=∠BQP=∠BPQ,∴△BPQ是等边三角形,∴BP=BQ,由题意可知:AP=t,则BP=9﹣t,∴9﹣t=6,解得:t=3,∴当t的值为3时,PQ∥AC;(2)如图2,①当点Q在边BC上时,此时△APQ不可能为等边三角形;②当点Q在边AC上时,若△APQ为等边三角形,则AP=AQ,由题意可知,AP=t,BC+CQ=2t,∴AQ=BC+AC﹣(BC+CQ)=9+9﹣2t=18﹣2t,即:18﹣2t=t,解得:t=6,∴当t=6时,△APQ为等边三角形.20.解:(1)设点M、N运动x秒时,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒时,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒时,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN(AAS),∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N运动的时间为16秒.。
数学(北师大版)八年级下册第一~第六章单元测试题-含答案
第一章:一元一次不等式一、填空题(每小题3分,共30分)1.若代数式2151--+t t 的值不小于-3,则t 的取值范围是_________. 2.不等式03≤-k x 的正数解是1,2,3,那么k 的取值范围是________. 3.若0)3)(2(>-+x x ,则x 的取值范围是________. 4.若b a <,用“<”或“>”号填空:2a______b a +,33ab -_____. 5.若11|1|-=--x x ,则x 的取值范围是_______. 6.如果不等式组⎩⎨⎧><m x x 5有解,那么m 的取值范围是_______.7.若不等式组⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,那么)3)(3(+-b a 的值等于_______.8.函数2151+-=x y ,1212+=x y ,使21y y <的最小整数是________. 9.如果关于x 的不等式5)1(+<-a x a 和42<x 的解集相同,则a 的值为________. 10.一次测验共出5道题,做对一题得一分,已知26人的平均分不少于4.8分,最低的得3分,至少有3人得4分,则得5分的有_______人.二、选择题(每小题3分,共30分)1.当21-=x 时,多项式12-+kx x 的值小于0,那么k 的值为 [ ]. A .23-<k B .23<k C .23->k D .23>k2.同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 [ ].A .1,2,3B .0,1,2,3C .1,2,3,4D .0,1,2,3,43.若三个连续正奇数的和不大于27,则这样的奇数组有 [ ]. A .3组 B .4组 C .5组 D .6组 4.如果0>>a b ,那么 [ ]. A .b a 11->-B .b a 11<C .ba 11-<- D .a b ->-5.某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是 [ ].A .9>xB .9≥xC .9<xD .9≤x 6.不等式组⎩⎨⎧<>+72013x x 的正整数解的个数是 [ ].A .1B .2C .3D .47.关于x 的不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,则a 的取值范围是 [ ].A .25411-≤<-a B .25411-<≤-a C .25411-≤≤-a D .25411-<<-a 8.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b的值为 [ ].A .-2B .21-C .-4D .41- 9.不等式组⎩⎨⎧>-<+-mx x x 62的解集是4>x ,那么m 的取值范围是 [ ].A .4≥mB .4≤mC .4<mD .4=m10.现用 甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排 [ ].A .4辆B .5辆C .6辆D .7辆 三、解答题(本大题,共40分) 1.(本题8分)解下列不等式(组): (1)1312523-+≥-x x ;(2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x2.(本题8分)已知关于x ,y 的方程组⎩⎨⎧=+=+3135y x my x 的解为非负数,求整数m 的值.3.(本题6分)若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.4.(本题8分)有人问一位老师,他所教的班有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生念外语,还剩下不足6位同学在操场踢足球”.试问这个班共有多少位学生?5.(本题10分)某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种:方案一:若直接给本厂设在武汉的门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2400元;方案二:若直接批发给本地超市销售,则出厂价为每千克28元.若每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为xkg.(1)你若是厂长,应如何选择销售方案,可使工厂当月所获利润更大?(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(下表),发现该表填写的销售量...与实际有不符之处,请找出不符之处,并计算第一季度的实际销量总量.四、探索题(每小题10,共20分)1.甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条2ba元的价格把鱼全部卖给了乙,请问甲会赚钱还是赔钱?并说明原因.2.随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月产量范围.第一章一元一次不等式和一元一次不等式组单元测试参考答案一、填空题 1.337≤t 2.129<≤k提示:不等式03≤-k x 的解集为 3k x ≤.因为不等式03≤-k x 的正数解是1,2,3,所以 433<≤k.所以129<≤k . 3.3>x 或2-<x 提示:由题意,得 ⎩⎨⎧>->+0302x x 或⎩⎨⎧<-<+0302x x前一个不等式的解集为3>x ,后一个不等式的解集为2-<x 4.<,> 5.1<x 6.5<m 7.-2提示:不等式组⎩⎨⎧>-<-3212b x a x 的解集为 2123+<<+a x b ,由题意,得⎪⎩⎪⎨⎧=+-=+121123a b 解得 ⎩⎨⎧-==21b a 所以2)32()31()3)(3(-=+-⨯-=+-b a . 8.0 9.7 10.22提示:设得5分的有x 人,若最低得3分的有1人,得4分的有3人,则22≤x ,且8.4284)25(35⨯≥⨯-++x x ,解得 8.21≥x .应取最小整数解,得 x=22.二、选择题 1.C2.B 3.B提示:设三个连续奇数中间的一个为x ,则 27)2()2(≤+++-x x x . 解得 9≤x .所以72≤-x .所以 2-x 只能取1,3,5,7. 4.C 5.B 6.C 7.B提示:不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32的解集为a x 428-<<.因为不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,所以134212≤-<a .解得25411-<≤-a . 8.A提示:不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为212++<≤+b a x b a .由题意,得⎪⎩⎪⎨⎧=++=+52123b a b a 解得⎩⎨⎧=-=63b a .则2163-=-=a b . 9.B 10.C 三、解答题1.解:(1)去分母,得 15)12(5)23(3-+≥-x x . 去括号,得1551069-+≥-x x 移项,合并同类项,得 4-≥-x . 两边都除以-1,得4≤x .(2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x解不等式①,得 2>x . 解不等式②,得25>x . 所以,原不等式组的解集是25>x . 2.解:解方程组⎩⎨⎧=+=+3135y x m y x 得⎪⎪⎩⎪⎪⎨⎧-=-=23152331m y m x .由题意,得⎪⎪⎩⎪⎪⎨⎧≥-≥-0231502331m m解得 331531≤≤m . 因为m 为整数,所以m 只能为7,8,9,10.3.解:因为方程52)4(3+=+a x 的解为372-=a x ,方程3)43(4)14(-=+x a x a 的解为a x 316-=.由题意,得a a 316372->-.解得 187>a . 4.解:设该班共有x 位同学,则 6)742(<++-x x x x .∴6283<x .∴56<x .又∵x ,2x ,4x ,7x都是正整数,则x 是2,4,7的最小公倍数.∴28=x .故该班共有学生28人. 5.解:(1)设利润为y 元.方案1:240082400)2432(1-=--=x x y , 方案2:x x y 4)2428(2=-=. 当x x 424008>-时,600>x ; 当x x 424008=-时,600=x ; 当x x 424008<-时,600<x . 即当600>x 时,选择方案1; 当600=x 时,任选一个方案均可; 当600<x 时,选择方案2.① ②(2)由(1)可知当600=x 时,利润为2400元.一月份利润2000<2400,则600<x ,由4x=2000,得 x=500,故一月份不符. 三月份利润5600>2400,则600>x ,由560024008=-x ,得 x=1000,故三月份不符.二月份600=x 符合实际.故第一季度的实际销售量=500+600+1000=2100(kg ). 四、探索题1.解:买5条鱼所花的钱为:b a 23+,卖掉5条鱼所得的钱为:2)(525b a b a +=+⨯.则2)23(2)(5ab b a b a -=+-+. 当b a >时,02<-ab ,所以甲会赔钱. 当b a <时,02>-ab ,所以甲会赚钱. 当b a =时,02=-ab ,所以甲不赔不赚. 2.解:设下个月生产量为x 件,根据题意,得⎪⎩⎪⎨⎧≥⨯+≤⨯≤.,,160001000)30060(202001922x x x 解得 1800016000≤≤x .即下个月生产量不少于16000件,不多于18000件.第二章因式分解单元测试AB 卷仔细审题,细心答题,相信你一定会有出色的表现! (时间90分钟 满分120分)一、精心选一选(每题4分,总共32分)1.下列各式中从左到右的变形属于分解因式的是( ).A.2(1)a a b a ab a +-=+-B.22(1)2a a a a --=--C.2249(23)(23)a b a b a b -+=-++D.121(2)x x x+=+2.把多项式-8a 2b 3c +16a 2b 2c 2-24a 3bc 3分解因式,应提的公因式是( ), A.-8a 2bc B. 2a 2b 2c 3C.-4abcD. 24a 3b 3c 33. 下列因式分解错误的是()A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+4.下列多项式中,可以用平方差公式分解因式的是( ) A.x 2+1 B.-x 2+1 C.x 2-2 D.-x 2-1 5.把-6(x -y)2-3y(y -x)2分解因式,结果是( ). A.-3(x -y)2(2+y) B. -(x -y)2(6-3y) C.3(x -y)2(y +2)D. 3(x -y)2(y -2)6.下列各式中,能用完全平方公式分解因式的是( ). A.4x 2-2x +1 B.4x 2+4x -1 C.x 2-xy +y 2 D .x 2-x +127.把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-8.式分解公式( ). A.))((22b a b a b a -+=-B.(a +C.2222)(b ab a b a +-=- D.)(2b a a ab a -=- 二、耐心填一填(每空4分,总共32分)1.2a 2b -6ab 2分解因式时,应提取的公因式是 . 2.-x -1=-(____________).3. 因式分解:=-822a .4.多项式92-x 与962++x x 的公因式是 . 5.若a +b=2011,a -b=1,z 则a 2-b 2=_________________. 6.因式分解:1+4a 2-4a=______________________.7.已知长方形的面积是2916a -(43a >),若一边长为34a +,则另一边长为________________.8.如果a 2+ma +121是一个完全平方式,那么m =________或_______. 三、用心算一算(共36分) 1.(20分)因式分解:(1)4x 2-16y 2; (2)()()()()a b x y b a x y ----+(3)x 2-10x +25; (4)()22241x x -+2.(5分)利用因式分解进行计算:(1)0.746×136+0.54×13.6+27.2;3.(满分5分)若2m n -=-,求m n n m -+222的值?4.(6分)3221-可以被10和20之间某两个数整除,求这两个数.八年级数学下册第二章整章水平测试(B )仔细审题,细心答题,相信你一定会有出色的表现! (时间90分钟 满分120分)一、精心选一选(每题4分,总共32分)1.下列各式从左到右的变形中,是因式分解的为( )A.bx ax b a x -=-)(B.222)1)(1(1y x x y x ++-=+-C.)1)(1(12-+=-x x xD.c b a x c bx ax ++=++)( 2.下列多项式,不能运用平方差公式分解的是( )A.42+-m B.22y x -- C.122-y x D.412-x 3.若4x 2-mxy +9y 2是一个完全平方式,则m 的值为( ) A.6 B.±6 C.12 D.±12 4.下列多项式分解结果为()()y x y x -+-22的是( )A.224y x +B.224y x -C.224y x +-D.224y x -- 5.对于任何整数m ,多项式2(45)9m +-都能( )A.被8整除B.被m 整除C.被(m -1)整除D.被(2m -1)整除6.要在二次三项式x 2+□x-6的□中填上一个整数,使它能按x 2+(a +b )x +ab 型分解为(x +a )(x +b )的形式,那么这些数只能是 ( )A .1,-1;B .5,-5;C .1,-1,5,-5;D .以上答案都不对7.已知a=2012x+2009,b=2012x+2010,c=2012x+2011,则多项式a 2+b 2+c 2-ab-bc-ca 的值为( )A.0B.1C.2D.38.满足m 2+n 2+2m -6n +10=0的是( )A.m=1, n=3B.m=1,n=-3C.m=-1,n=-3D.m=-1,n=3 二、耐心填一填(每空4分,总共36分)1.分解因式a 2b 2-b 2= .2.分解因式2x 2-2x +21=______________ 3.已知正方形的面积是2269y xy x ++ (0x >,0y >),利用分解因式,写出表示该正方形的边长的代数式 . 4.若x 2+mx +16=(x -4)2,那么m =___________________.5.若x -y=2,xy=3则-x 2y +xy 2的值为________ . 6.学习了用平方差公式分解因式后,在完成老师布置的练习时,小明将一道题记错了一个符号,他记成了-4x 2-9y 2,请你帮小明想一想,老师布置的原题可能是________. 7.如果多项式142+x 加上一个单项式以后,将成为一个整式完全平方式,那么加上的单项式是 .8.请写出一个三项式,使它能先“提公因式”,再“运用公式”来分解.你编写的三项式是________,分解因式的结果是________. 三、用心算一算(共44分)1.(16分)分解因式(1)-x 3+2x 2-x (2) a 2-b 2+2b -12.(8分) 利用分解因式计算:20112010201020082010220102323-+-⨯-3.(10分)在三个整式2222,2,x xy y xy x ++中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解4.(10分)若3-=+b a ,1=ab ,求32232121ab b a b a ++的值四、拓广探索(共28分)1. (14分)阅读下题的解题过程:已知a 、b 、c 是△ABC 的三边,且满足222244a cbc a b -=-,试判断△ABC 的形状. 解:∵ 222244a cbc a b -=- (A )∴ 2222222()()()c a b a b a b -=+- (B ) ∴ 222c a b =+ (C )∴ △ABC 是直角三角形 (D ) 问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号 ; (2)错误的原因为 ; (3)本题正确的结论是 ;参考答案:一、1.C 2.A 3.D 4.B 5.A 6.D 7.D 8.A二、1. 2ab 2. x +1 3. 2(a +2)(a -2) 4. x +3 5. 2011 6. (2a-1)27. 3a-4 8.22 、-22三、1.(1)解原式=4(x 2-4y 2)=4(x +2y)(x -2y) (2)解原式=(a -b)(x -y +x +y)=2x(a -b)(3)解原式=(x -5)2(4)解原式=(x 2+1+2x)(x 2+1-2x)=(x +1)2(x -1)22.解原式=13.6(7.46+0.54+2)13.6×10=1363.解当m -n=-2时,原式=22)2(2)(222222=-=-=+-n m n mn m 4.因为()()()()()161616882121212121+-=++-,()()()()1684421212121=+++-,又因为42117+=,42115-=,所以3221-可以被10和20之间的15,17两个数整除.四、1.长为a +2b ,宽为a +b2. 解:(1)原式=x 2-4x +4-1=(x -2)2-1=(x -2+1)(x -2-1)=(x -1)(x -3)(2) 原式=x 2+2x +1+1=(x +1)2+1 因为(x +1)2≥0 所以原式有最小值,此时,x=-1参考答案:一、1.C 2.B 3.D 4.C 5.A 6.C 7.D 8.D 二、1.b2(a +1)(a -1) 2. 2(x -21)23. 3x +y4. -85.-66. -4x 2+9y 2或4x 2-9y 27. -4x 2、4x 、-4x 、4x 4、-18.答案不唯一如:a 2x -2ax +x x(a -1)2三、1.解原式=-x(x 2-2x +1)=-x(x -1)22. 解原式=a 2-(b 2-2b +1)=a 2-(b -1)2=(a +b -1)(a -b +1)3.解:222(2)222();x xy x x xy x x y ++=+=+ 或222(2)();y xy x x y ++=+或2222(2)(2)()();x xy y xy x y x y x y +-+=-=+- 或2222(2)(2)()().y xy x xy y x y x y x +-+=-=+- 4.解:当a +b=-3,ab=1时, 原式=21ab(a 2+2ab +b 2)=21ab(a +b)2=21×1×(-3)2=29 四、 1. (1)(C )(2)()22a b -可以为零(3)本题正确的结论是:由第(B )步2222222()()()c a b a b a b -=+-可得:()()222220a bca b ---=所以△ABC 是直角三角形或等腰三角第三章分式单元测试一、选择题(每小题3分,共30分)1.在下列各式mam x x b a x x a ,),1()3(,43,2,3222--÷++π中,是分式的有( ) A.2个 B.3个 C.4个 D.5个 2.要使分式733-x x有意义,则x 的取值范围是( )A.x=37B.x>37C.x<37D.x ≠=373.若分式4242--x x 的值为零,则x 等于( )A.2B.-2C.2±D.0 4.如果分式x+16的值为正整数,则整数x 的值的个数是( ) A.2个 B.3个 C.4个 D.5个5.有游客m 人,若果每n 个人住一个房间,结果还有一个人无房住,这客房的间数为( )A.n m 1- B.1-n m C.n m 1+ D.1+nm6.把a 千克盐溶于b 千克水中,得到一种盐水,若有这种盐水x 千克,则其中含盐( )A.b a ax +千克 B.b a bx +千克 C.b a x a ++千克 D.b ax 千克 7.计算)1(1x x x x -÷-所得的正确结论wei ( ) A.11-x B.1 C.11+x D.-1 8.把分式2222-+-+-x x x x 化简的正确结果为( ) A.482--x x B.482+-x x C.482-x x D.48222-+x x 9.当x=33时,代数式)23(232x x x x x -+÷--的值是( ) A.213- B.213+ C.313- D.313+ 10.某工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走。
北师大版2021-2022学年八年级数学下册第二次月考测试题(附答案) (2)
2021-2022学年八年级数学下册第二次月考测试题(附答案)一、选择题(共30分)1.把a2﹣a分解因式,正确的是()A.a(a﹣1)B.a(a+1)C.a(a2﹣1)D.a(1﹣a)2.如图,数轴上所表示的不等式的解集是()A.x≥2B.x>2C.x<2D.x≤23.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为()A.105°B.100°C.95°D.90°5.要使分式有意义,则x的取值范围是()A.x=1B.x≠1C.x=﹣1D.x≠﹣16.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.217.若(a+3)x>a+3的解集为x<1,则a必须满足()A.a<0B.a>﹣3C.a<﹣3D.a>38.如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=()A.30°B.45°C.60°D.75°9.如图,一次函数y1=x+b与一次函数y2=kx+3的图象交于点P(1,2),则关于不等式x+b>kx+3的解集是()A.x>0B.x>1C.x<1D.x<010.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A.B.3C.4D.5二、填空题(共24分)11.分解因式:ab2﹣9a=.12.若一个多边形的每一个内角都是150°,则它是边形.13.如图所示,△DEF是由△ABC通过平移得到的,且点B,E,C,F在同一条直线上,若BF=14,EC=8,则从△ABC到△DEF的平移距离为.14.若分式有意义,则x的取值范围为.15.平行四边形ABCD中,E、F是对角线BD上不同的两点,写出一个能使四边形AECF 一定为平行四边形的条件.(用题目中的已知字母表示)16.如图,∠AOB=120°,点P为∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN;②OM+ON=OP;③四边形PMON的面积保持不变;④△PMN的周长保持不变.其中说法正确的是(填序号).三、计算题(共18分)17.解方程:.18.解不等式组并把解集在数轴上表示出来.19.先化简:,再选一个你喜欢的a的值代入求值.四、解答题(共48分)20.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于原点对称的△A1B1C1;(2)请画出△ABC绕点B逆时针旋转90°后的△A2B2C2,并写出A2的坐标.21.如图,在等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE=CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF.22.如图:在Rt△ABC中,∠A=90°,过B作BH∥AC.(1)按尺规作图要求作BC的垂直平分线,交AC于E,交BH于D,(保留作图痕迹,不写作法),连接BE、CD.(2)求证:四边形BECD是平行四边形.23.为了做好防疫工作,学校准备购进一批消毒液.已知每瓶B型消毒液比A型贵2元,用56元购A型消毒液与72元购B型消毒液的瓶数相同.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用.24.如图,在▱ABCD中,对角线AC,BD相交于点O,BD=2AD,点E在线段OC上,且OE=CE.(1)求证:∠OBE=∠ADO;(2)若F,G分别是OD,AB的中点,且BC=10,①求证:△EFG是等腰三角形;②当EF⊥EG时,求▱ABCD的面积.25.如图,在平面直角坐标系xOy中,已知点A(5,1),B(1,1),C(0,5).直线m平行于x轴且经过C,D,E三点.直线l的关系式为y=﹣2x+b.(1)若△ABD是以AB为底的等腰三角形,且直线l过点D,求b的值;(2)若b=9,直线l与▱ABDE的边DE相交时,求点E的横坐标n的取值范围;(3)若点F为▱ABDE的对角线BE与DA的交点,当直线l经过点F时,求点D的横坐标q与b之间的函数关系式.参考答案与试题解析一、选择题(共30分)1.解:a2﹣a=a(a﹣1).故选:A.2.解:∵2处是实心圆点且折线向右,∴不等式的解集是x≥2.故选:A.3.解:A.该图形既不是轴对称图形,又不是中心对称图形,故此选项不合题意;B.该图形既不是轴对称图形,又不是中心对称图形,故此选项不合题意;C.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;D.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D.4.解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°﹣50°﹣25°=105°.故选:A.5.解:∵分式有意义,∴x﹣1≠0.解得;x≠1.故选:B.6.解:由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴△ADE的周长为6×3=18,故选:C.7.解:∵(a+3)x>a+3的解集为x<1,∴a+3<0,解得:a<﹣3.故选:C.8.解:∵AC∥EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,故选:C.9.解:当x>1时,x+b>kx+3,即不等式x+b>kx+3的解集为x>1.故选:B.10.解:由作法得EF垂直平分AB,∴MB=MA,∴BM+MD=MA+MD,连接MA、DA,如图,∵MA+MD≥AD(当且仅当M点在AD上时取等号),∴MA+MD的最小值为AD,∵AB=AC,D点为BC的中点,∴AD⊥BC,∵S△ABC=•BC•AD=10,∴AD==5,∴BM+MD长度的最小值为5.二、填空题(共24分)11.解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).12.解:360÷30=12,则它是12边形.13.解:∵△DEF是由△ABC通过平移得到,∴BE=CF,∴BE=BF﹣EC,∵BF=14,EC=8,∴BE=14﹣8=3.故答案为:3.14.解:∵分式有意义,∴x2﹣4≠0,∴x≠±2.故答案为:x≠±2.15.解:连接AC交BD于点O,如图:在平行四边形ABCD中,OA=OC,OB=OD,∵AE∥CF,∴∠OAE=∠OCF,∵∠AOE=∠COF,AO=CO,∴△AOE≌COF(ASA),∴OE=OF,∴四边形AECF为平行四边形;故答案为:AE∥CF.16.解:过点P作PE⊥OA,垂足为E,过点P作PF⊥OB,垂足为F,∴∠PEO=90°,∠PFO=90°,∵∠AOB=120°,∴∠EPF=360°﹣∠AOB﹣∠PEO﹣∠PFO=60°,∵∠MPN+∠AOB=180°,∴∠MPN=180°﹣∠AOB=60°,∴∠MPN﹣∠EPN=∠EPF﹣∠EPN,∴∠MPE=∠NPF,∵OP平分∠AOB,PE⊥OA,PF⊥OB,∴PE=PF,∵∠MEP=∠NFP=90°,∴△MEP≌△NFP(ASA),∴PM=PN,ME=NF,故①正确;∵OP=OP,∴Rt△PEO≌Rt△PFO(HL),∴OE=OF,∴OM+ON=OE+ME+OF﹣NF=2OE,∵OP平分∠AOB,∴∠EOP=∠AOB=60°,∴∠EPO=90°﹣∠EOP=30°,∴PO=2OE,∴OM+ON=OP,故②正确;∵△MEP≌△NFP,∴四边形PMON的面积=四边形PEOF的面积,∴四边形PMON的面积保持不变,故③正确;∵PM=PN,∠MPN=60°,∴△PMN是等边三角形,∵MN的长度是变化的,∴△PMN的周长是变化的,故④错误;所以,说法正确的是:①②③,故答案为:①②③.三、计算题(共18分)17.解:方程两边同乘以(x+1)(x﹣1)得(x+1)2﹣6=(x+1)(x﹣1)(2分)整理,得2x=4x=2(4分)检验,把x=2代入(x+1)(x﹣1)=3≠0.所以,原方程的根是x=2.(5分)18.解:解不等式x+4≤3(x+2),得:x≥﹣1,解不等式3x﹣3<2x,得:x<3,则不等式组的解集为﹣1≤x<3,将不等式的解集表示在数轴上如下:19.解:原式=[﹣]•=•=•=,当a=﹣1时,原式=﹣1.四、解答题(共48分)20.解:(1)如图,△A1B1C1;即为所求;(2)如图,△A2B2C2即为所求,A2的坐标(﹣2,2).21.(1)解:∵△ABC是等边三角形,∴∠BCD=60°,AB=BC=AC=6,又∵AB=6,点D为AC的中点,∴CD=3,BC⊥CD,∴BD===3;(2)证明:∵△ABC是等边三角形,D为AC的中点,∴∠CBD=,又∵CE=CD,∴∠CDE=∠E,又∵∠BCD=60°,∴∠E=,∴∠CBD=∠E,∴BD=DE,又∵DF⊥BC,垂足为F.∴BF=EF.22.(1)解:如图,直线DE为所求;(2)证明:DE交BC于F,如图,∵DE垂直平分BC,∴BF=CF,EB=EC,又∵BH∥AC,∴∠1=∠2,∠3=∠4在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形.23.解:(1)设A型消毒液的单价是x元,B型消毒液的单价是y元,得,解得.答:A型消毒液的单价是7元;B型消毒液的单价是9元.(2)设购进A型消毒液a瓶,则购进B型消毒液(90﹣a)瓶,费用为w元,依题意可得:w=7a+9(90﹣a)=﹣2a+810,∵k=﹣2<0,∴w随a的增大而减小.∵B型消毒液的数量不少于A型消毒液数量的,∴90﹣a≥a.解得a≤67 ,∴当a=67时,w取得最小值,此时w=﹣2×67+810=676,90﹣a=23.答:最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶;最低费用为676元.24.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,DO=BO=BD,∴∠ADB=∠DBC,∵BD=2AD,∴AD=DO,∴BC=BO,∵E是CO中点,∴∠OBE=∠OBC,∴∠OBE=∠ADO;(2)①证明:∵BC=BO,∴△BOC是等腰三角形,∵E是CO中点,∴EB⊥CO,∴∠BEA=90°,∵G为AB中点,∴EG=AB,∵四边形ABCD是平行四边形,∴AB=CD,∵E、F分别是OC、OD的中点,∴EF=CD∴EG=EF,∴△EFG是等腰三角形;②解:由①得EF∥AB,∵EF⊥EG,∴EG⊥AB,∵G是AB的中点,∴AE=BE,设CE=x,则AO=CO=2CE=2x,∴BE=AE=3x,在Rt△BEC中,BC=10,∴EC2+BE2=BC2,即x2+(3x)2=102,解得x=,∴AC=,BE=,∴S▱ABCD=2S△ABC=.25.解:(1)∵A(5,1),B(1,1),DA=DB,∴D(3,5),将x=3,y=5代入y=﹣2x+b,∴b=11;(2)∵四边形ABDE为平行四边形,∴DE=AB=4,∵E(n,5),∴D(n﹣4,5),当5=﹣2x+9时,x=2,∵直线y=﹣2x+9与边DE有交点,∴2≤n≤6;(3)∵四边形ABDE为平行四边形,∴DF=F A,∵D(q,5),A(5,1),∴,即,将,y=3代入y=﹣2x+b,∴q=b﹣8.。
最新北师大版八年级数学下册第二章同步测试题及答案全套
最新北师大版八年级数学下册第二章同步测试题及答案全套第二章 一元一次不等式与一元一次不等式组1 不等关系知能演练提升能力提升1.下面给出了6个式子:①3>0;②4x+3>0;③x=3;④x -1;⑤x+2≤3;⑥2x ≠0. 其中不等式共有( ) A .2个 B .3个 C .4个 D .5个2.根据下列数量关系列出相应的不等式,其中错误的是( ) A.a 与3的和大于1:a+3>1 B.a 与2的差不小于3:a -2≥3C.b 与1的和的3倍是一个非负数:3(b+1)>0D.b 的2倍与3的差是负数:2b -3<03.如图,对a ,b ,c 三种物体的质量判断正确的是( )A.a<cB.a<bC.a>cD.b<c4.在开山工程爆破时,已知导火索燃烧的速度为0.5 cm/s,人跑开的速度是4 m/s,为了使放炮的人在爆破时能安全跑到100 m 以外(不包括100 m)的安全区,导火索的长度x (cm)应满足的不等式是( ) A.4×x0.5≥100 B.4×x0.5≤100 C.4×x 0.5<100D.4×x0.5>1005.如图,左托盘物体x 的质量与右托盘两个砝码的质量之间的大小关系是:x 80.6.某饮料瓶上有这样的字样:保质期18个月.如果用x (月)表示保质期,那么该饮料的保质期可以用不等式表示为 .7.某班同学外出春游,要拍照合影留念,若一张彩色底片需0.57元,冲印一张需0.35元.每人预定一张,出钱不超过0.45元.设合影的同学有x 人,则可列不等式为 .8.在“庆祝世界反法西斯战争胜利70周年”知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题. (1)根据所给条件,完成下表:答题情况 答对 答错或不答 题 数 x每题分值 10 -5得 分 10x(2)小明同学的竞赛成绩超过100分,写出满足关系的不等式.创新应用9.如图,用锤子以相同的力将铁钉钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的13.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是a cm .若铁钉总长度是 6 cm,试求a 的取值范围.答案: 能力提升1.C2.C3.C4.D5.>6.x ≤187.0.57+0.35x ≤0.45x8.解 (1)25-x -5(25-x )(2)根据题意,得10x -5(25-x )>100. 创新应用9.解 若敲击2次后铁钉恰好全部进入木块,则有a+13a=6,解得a=92,而实际这个铁钉被敲击3次后全部进入木块,所以a<92.若敲击 3次后恰好全部进入木块,则有 a+13a+19a=6,解得a=5413.综上可知,a 的取值范围是5413≤a<92.2 不等式的基本性质知能演练提升能力提升1.已知a ,b ,c 均为实数,若a>b ,c ≠0,则下列结论不一定正确的是( )A.a+c>b+cB.c -a<c -bC.a c2>b c2D.a 2>ab>b 22.已知实数a ,b 在数轴上的位置如图,则a -ba+b 0.(填“>”“<”或“=”)3.下列四个判断:①若ac 2>bc 2,则a>b ;②若a>b ,则a|c|>b|c|;③若a>b ,则b a<1;④若a>0,则b -a<b.其中正确的是 .(填序号)4.已知-m+5>-n+5,试比较10m+8与10n+8的大小.5.如图,有四个小朋友在公园玩跷跷板,他们的体重分别为P ,Q ,R ,S.请你根据图中的情境确定他们的体重大小关系.(用“>”连接起来)6.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,请问在哪家超市购买这种商品更合算?创新应用7.阅读下列材料:试判断a 2-3a+7与-3a+2的大小.分析:要判断两个数的大小,我们往往使用作差法,即若a -b>0,则a>b ;若a -b<0,则a<b ;若a -b=0,则a=b. 解:∵(a 2-3a+7)-(-3a+2)=a 2-3a+7+3a -2=a 2+5,且a 2≥0, ∴a 2+5>0.∴a 2-3a+7>-3a+2.阅读后,应用这种方法比较a 2-b 2+22与a 2-2b 2+13的大小.答案:能力提升 1.D2.< 由数轴知0<a<1,b<-1,故a -b>0,a+b<0.由不等式的基本性质3,a -b>0两边除以a+b ,得a -b a+b<0.3.①④4.解 根据不等式的基本性质1,不等式-m+5>-n+5的两边都减去5,得-m>-n ,根据不等式的基本性质3,不等式的两边都乘-1,得m<n ;根据不等式的基本性质2,不等式的两边都乘10,得 10m<10n ,根据不等式的基本性质1,不等式的两边都加上8,得10m+8<10n+8.5.解 由题中第一个图知S>P ;由题中第二个图知P>R ,故S>P>R.又由题中第三个图知P+R>S+Q ,而由S>P ,得S+Q>P+Q ,所以P+R>P+Q ,故R>Q.因此,S>P>R>Q.6.解 设这种商品的价格为a (a>0)元,在甲超市购买需付款a (1-10%)·(1-10%)元,即0.81a 元.在乙超市购买需付款a (1-20%)元,即0.8a 元.∵0.81>0.8,且a>0,∴0.81a>0.8a ,∴在乙超市购买更合算. 创新应用 7.解a 2-b 2+22−a 2-2b 2+13=3a 2-3b 2+66−2a 2-4b 2+26=3a 2-3b 2+6-2a 2+4b 2-26=a 2+b 2+46,由a 2≥0,b 2≥0,得a 2+b 2≥0, 故a 2+b 2+4≥4.故a 2+b 2+46≥46.∵46>0,∴a 2-b 2+22>a 2-2b 2+13.3 不等式的解集知能演练提升能力提升1.下列数值不是不等式5x ≥2x+9的解的是( )A.5B.4C.3D.22.如果式子√2x +6 有意义,那么x 的取值范围在数轴上表示出来正确的是( )3.若关于x 的不等式x -b>0恰有两个负整数解,则b 的取值范围是( ) A.-3<b<-2 B.-3<b ≤-2C.-3≤b≤-2D.-3≤b<-24.已知关于x的不等式的解集如图,则这个不等式的非负整数解是.5.如果a与12的差小于a的9倍与8的和,那么请写出一个符合题意的a的值.6.已知x=3是方程x=x-a-1的解,求关于x的不等式ax+5<0的解集.27.是否存在整数m,使关于x的不等式mx-m>3x+2的解集为x<-4?若存在,求出整数m的值;若不存在,请说明理由.创新应用8.现有A,B两种型号的钢管,每根A型钢管的长度比每根B型钢管的长度的2倍少5 cm.现取这两种型号的钢管分别做长方形的钢框的长与宽,焊成周长大于2.9 m的长方形钢框.(1)B型钢管至少有多长才合适?列出不等式.(2)如果每根B型钢管的长度有以下四种选择:45 cm,55 cm,48 cm,50 cm,那么哪些合适?哪些不合适?答案:能力提升1.D2.C3.D4.0,1,2题中数轴表示的解集是x<3,满足x<3的非负整数有0,1,2,故这个不等式的非负整数解是0,1,2.5.答案不唯一,如0,1,2.只要满足a>-5即可.26.分析本题是方程与不等式的综合运用,通过解方程求出a的值,把a的值代入不等式,然后求不等式的解集.解由x=x-a-1,得2x=x-a-2,2∵x=3是原方程的解,∴a=-x-2=-3-2=-5.∴不等式ax+5<0可化为-5x+5<0,利用不等式的性质,得x>1.7.解∵mx-m>3x+2,∴(m-3)x>m+2.=-4,要使x<-4,必须m-3<0,且m+2m-3解得m<3,m=2,∴存在整数m=2,使关于x 的不等式mx -m>3x+2的解集为x<-4.创新应用8.解 (1)设B 型钢管的长为x cm,则A 型钢管的长为(2x -5) cm .根据题意,得2(x+2x -5)>290.(2)把45 cm,55 cm,48 cm,50 cm 分别代入(1)中的不等式,得x=55是该不等式的解,所以 55 cm 合适,45 cm,48 cm ,50 cm 不合适.4 一元一次不等式第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.不等式2(x+1)<3x 的解集在数轴上表示为 ( )2.不等式x -72+1<3x -22的负整数解有( )A.1个B.2个C.3个D.4个3.若不等式ax>b 的解集是x<ba,则a 的取值范围是( )A.a ≤0B.a<0C.a ≥0D.a>04.定义新运算:对于任意实数a ,b 都有:a b=a (a -b )+1,其中等式右边是通常的加法、减法及乘法运算,如:2 5=2×(2-5)+1=2×(-3)+1=-5.则不等式3 x<13的解集为 .5.若(m -2)x 2m+1-1>5是关于x 的一元一次不等式,则该不等式的解集是 .6.解不等式x -1≤1+x3,并把解集在数轴上表示出来.7.已知不等式x+8>4x+m (m 是常数)的解集是x<3,求m 的值.8.当1≤x ≤2时,ax+2>0,试求a 的取值范围.创新应用9.已知关于x ,y 的方程组{x -y =3,2x +y =6a的解满足不等式x+y<3,求实数a 的取值范围.答案: 能力提升1.D2.A3.B4.x>-15.x<-3 根据一元一次不等式的定义,可知2m+1=1,且m -2≠0,即m=0.把m=0 代入不等式,得-2x -1>5.解这个不等式,得x<-3.6.解 去分母,得3(x -1)≤1+x.去括号,得3x -3≤1+x.移项、合并同类项,得2x ≤4. 两边同除以2,得x ≤2.该不等式的解集用数轴表示如图所示:7.解 移项,得4x -x<8-m.合并同类项,得 3x<8-m.两边同除以3,得x<8-m 3.∵不等式的解集为x<3,∴8-m 3=3,解得m=-1.8.解 由题可知,当1≤x ≤2时,ax+2>0恒成立.①当a>0时,得x>-2a ,故-2a <1,故a>-2,又∵a>0,∴a>0;②当a=0时,原不等式为2>0,故当1≤x ≤2时,不等式恒成立;③当a<0时,得x<-2a ,故-2a >2,故a>-1,又∵a<0,∴-1<a<0.综上所述,a 的取值范围是a>-1. 创新应用9.解 把方程组中的两个方程相加,得3x=3+6a ,得x=1+2a,代入x-y=3,得y=x-3=2a-2.故x+y=4a-1,于是有4a-1<3,解得a<1.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.某种商品的进价为800元,出售标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,最多可打()A.6折B.7折C.8折D.9折2.老王家上个月付电话费31元以上,其中月租费21元.已知市内通话如果每次不超过3分钟,则话费为0.18元.如果老王家上个月打的全部是市内电话,且每次都不超过3分钟,那么老王家上个月通话次数最少为()A.55次B.56次C.57次D.58次3.小宏准备用50元买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买甲饮料.4.一只纸箱的质量为1 kg,放入一些苹果(每个苹果的质量约为0.25 kg)后,箱子和苹果的总质量不超过10 kg.这只箱子内最多能装个苹果.5.为绿化校园,某校计划购进A,B两种树苗,共21棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B 种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.6.某超市有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1 600元,问购进甲、乙两种商品各多少件?(2)若该超市要使两种商品共80件的购进费用不超过1 640元,且总利润(利润=售价-进价)不少于600元,请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.7.某城市平均每天产生垃圾700 t,由甲、乙两个处理厂处理.已知甲厂每小时可处理垃圾55 t,需费用550元;乙厂每小时可处理垃圾45 t,需费用495元.问:(1)甲、乙两厂同时处理该城市的垃圾,每天需多长时间完成?(2)如果规定该城市每天用于处理垃圾的费用不得超过7 370元,那么甲厂每天处理垃圾至少需要多长时间?创新应用8.为了提倡低碳经济,某公司为了更好地节约能源,决定购买节省能源的10台新机器.现有甲、乙两种型号的设备供选择,其中每台的价格、工作量如下表:(1)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择;(2)在(1)的条件下,若每月要求产量不低于2 040吨,为了节约资金,请你设计一种最省钱的购买方案.答案:能力提升1.B2.B3.3瓶 设小宏买x 瓶甲饮料.列不等式为7x+4(10-x )≤50,解得x ≤313,即最多能买3瓶甲饮料.4.36 设这只纸箱内装x 个苹果.根据题意得0.25x+1≤10,解得x ≤36, 所以x 的最大值是36.5.解 (1)y=-20x+1 890 y=90(21-x )+70x=-20x+1 890.(2)由题意,得x<21-x ,解得x<10.5.又∵x ≥1,∴1≤x<10.5,且x 为整数.由(1)中一次函数知,y 随x 的增大而减小,故当x=10时,y 取最小值-20×10+1 890=1 690,因此,费用最省的方案是购买B 种树苗10棵,A 种树苗11棵,所需费用为1 690元.6.解 (1)设该超市购进甲商品x 件,乙商品(80-x )件.由题意,得10x+30(80-x )=1 600.解得x=40,80-x=40.因此,购进甲、乙两种商品各40件.(2)设该超市购进甲商品x 件,乙商品(80-x )件.由题意,得{10x +30(80-x )≤1 640,(15-10)x +(40-30)(80-x )≥600.解得38≤x ≤40.∵x 为整数,∴x=38,39,40,相应的y=42,41,40.从而利润分别为5×38+10×42=610,5×39+10×41=605,5×40+10×40=600. 因此,使该超市利润最大的方案是购进甲商品38件,乙商品42件.7.解 (1)设甲、乙两厂同时处理垃圾,每天需x h .依题意,得(55+45)x=700.解这个方程,得x=7.所以,甲、乙两厂同时处理垃圾,每天需7 h 完成. (2)设甲厂每天处理垃圾需要y h . 依题意,得55y×55055+(700-55y )×49545≤7 370,解得y ≥6.所以,甲厂每天处理垃圾至少需要6 h . 创新应用8.解 (1)设购买节省能源的甲型新设备x 台,乙型新设备(10-x )台.根据题意得12x+10(10-x )≤110, 解得x ≤5,∵x 取非负整数, ∴x=0,1,2,3,4,5, ∴有6种购买方案.(2)由题意得240x+180(10-x )≥2 040, 解得x ≥4, 则x 为4或5.当x=4时,购买资金为12×4+10×6=108(万元), 当x=5时,购买资金为12×5+10×5=110(万元),则最省钱的购买方案为选购甲型设备4台,乙型设备6台.5 一元一次不等式与一次函数第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.如图,已知直线y=kx+b 交坐标轴于A (-3,0),B (0,5)两点,则不等式-kx -b<0 的解集为( ) A.x>-3 B.x<-3 C.x>3 D.x<3 2.如图,函数y 1=|x|和y 2=13x+43的图象相交于(-1,1),(2,2)两点.当y 1>y 2时,x 的取值范围是( ) A.x<-1 B.-1<x<2 C.x>2 D.x<-1或x>23.如图,已知直线y 1=x+b 与y 2=kx -1相交于点P ,点P 的横坐标为-1,则关于x 的不等式x+b>kx -1的解集在数轴上表示正确的是( )4.在一次800 m 的长跑比赛中,甲、乙两人所跑的路程s (m)与各自所用时间t (s)之间的函数图象分别为线段OA 和折线OBCD ,下列说法正确的是( )A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后180 s 时,两人相遇D.在起跑后50 s 时,乙在甲的前面5.如图,已知一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中说法正确的有.(把你认为说法正确的序号都填上)6.若直线y=kx+b经过A(-2,-1)和B(-3,0)两点,则不等式2x<kx+b的解集为.7.当x为何值时,一次函数y=-2x+3的值小于一次函数y=3x-5的值?(1)一变:当x为何值时,一次函数y=-2x+3的值等于一次函数y=3x-5的值?(2)二变:当x为何值时,一次函数y=-2x+3的图象在一次函数y=3x-5的图象的上方?(3)三变:已知一次函数y1=-2x+a,y2=3x-5a,当x=3时,y1>y2,求a的取值范围.8.x+3的图象,观察图象回答下列问题:如图,直线l是函数y=12(1)当x取何值时,1x+3>0?2x+3<5?(2)当x取何值时,12x+3,则点P的坐标可能是(-2,1)吗?(3)若点P(x,y)满足x<5,且y>129.我边防局接到情报,在离海岸5海里处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶.如图,l A,l B分别表示两船相对于海岸的距离s(海里)与追赶时间t(min)之间的关系.(1)A,B哪个速度更快?(2)B能否追上A?创新应用10.甲有存款600元,乙有存款2 000元,从本月开始,他们进行零存整取储蓄,甲每月存款500元,乙每月存款200元.(1)列出甲、乙的存款额y1,y2(元)与存款月数x(月)之间的函数关系式,并画出函数图象;(2)请问到第几个月,甲的存款额超过乙的存款额?答案:能力提升1.A2.D3.A4.D5.①②③6.x<-1易知y=-x-3,所以2x<-x-3,解得x<-1.7.解由题意,可知-2x+3<3x-5,.即-5x<-8,得x>85(1)由题意,可知-2x+3=3x-5,.即-5x=-8,得x=85(2)由题意,可知-2x+3>3x-5,.即-5x>-8,得x<85(3)当x=3时,y1=-6+a,y2=9-5a,∵y1>y2,∴-6+a>9-5a,.即6a>15,得a>528.解由题图可以看出函数与x轴的交点为(-6,0).x+3>0.(1)当x>-6时,12(2)由题图可以看出,当y=5时,x=4,x+3<5.所以当x<4时,12(3)由题意,得点P 满足横坐标x<5的同时,对应的点P 的位置要在直线的上方,而点(-2,1)在直线的下方, 故点P 的坐标不可能是(-2,1).9.分析 根据题图提供的信息,分别求出l A ,l B 的关系式,根据k 值的大小来判断谁的速度快,B 能否追上A.实际上,根据图象就可以直接作出判断.解 (1)∵直线l A 过(0,5),(10,7)两点,设直线l A 的函数表达式为s=k 1t+b ,则{5=b ,7=10k 1+b ,∴{k 1=15,b =5.∴s=15t+5. ∵直线l B 过(0,0),(10,5)两点,设直线l B 的函数表达式为s=k 2t ,则5=10k 2,∴k 2=12.∴s=12t.∵k 1<k 2,∴B 的速度快. (2)∵k 1<k 2,∴B 能追上A.创新应用10.解 (1)y 1=600+500x ;y 2=2 000+200x.函数图象如图.(2)令600+500x>2 000+200x ,解得x>423, 所以到第5个月甲的存款额超过乙的存款额.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.某市打市话的收费标准是:每次3 min 以内(含3 min)收费0.2元,以后每 min 收费0.1元(不足1 min 按1 min 计).某天小芳给同学打了一个6 min 的市话,所用电话费为0.5元;小刚现准备给同学打市话6 min,他经过思考以后,决定先打3 min,挂断后再打3 min,这样只需电话费0.4元.若你想给某同学打市话,准备通话10 min,则你所需要的电话费至少为( ) A.0.6元 B.0.7元 C.0.8元 D.0.9元2.声音在空气中的传播速度y (m/s)(简称音速)与气温x (℃)满足关系式:y=35x+331.当音速超过340 m/s 时,气温 .3.某医药公司要把药品运往外地,现有两种运输方式可供选择.方式一:使用快递公司的邮车运输,装卸收费400元,另外每千米再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每千米再加收2元.当运输路程时,选择邮车运输较好.4.某单位需刻录一批光盘,若在电脑公司刻录每张需8元(包括空白光盘费);若单位自制,除租用刻录机需120元外,每张还需成本4元(包括空白光盘费).问刻录这批光盘是到电脑公司刻录费用省,还是自制费用省?请说明理由.5.某商场计划投入一笔资金采购一批商品,经市场调研发现,如果本月初出售,那么可获利10%,然后将本利再投资其他商品,到下月初又可获利10%;如果下月初出售,那么可获利25%,但要支付仓储费8 000元.请你根据商场的资金情况,向商场提出合理化建议,说明何时出售获利较多.6.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A地区x台乙型联合收割机,农机租赁公司这50台联合收割机一天获得的租金为y(元),求y与x 之间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.7.甲、乙两家体育器材商店出售同样的乒乓球拍和乒乓球,球拍每副定价60元,乒乓球每盒定价10元.世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买1副乒乓球拍赠2盒乒乓球;乙商店规定所有商品9折优惠.某校乒乓球队需要买2副乒乓球拍,乒乓球若干盒(不少于4盒).设该校要买乒乓球x盒,所需商品在甲商店购买需用y1元,在乙商店购买需用y2元.(1)请分别写出y1,y2与x之间的函数关系式(不必注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;(3)若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案.创新应用8.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/m2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元.已知该楼盘每套楼房面积均为120 m2.若购买者一次性付清所有房款,则开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/m2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.答案:能力提升1.B2.超过15 ℃3.小于210千米4.解设需刻录x张光盘,单位自制的总费用为y1元,电脑公司刻录的总费用为y2元.由题意,得y1=4x+120,y2=8x.(1)当y1>y2,即4x+120>8x时,解得x<30;(2)当y1=y2,即4x+120=8x时,解得x=30;(3)当y1<y2,即4x+120<8x时,解得x>30.所以,当刻录光盘少于30张时,到电脑公司刻录费用省;当刻录光盘等于30张时,两个地方都行;当刻录光盘多于30张时,单位自制费用省.5.解设商场投入资金x元,如果本月初出售,到下月初可获利y1元,则y1=10%x+(1+10%)x·10%=0.1x+0.11x=0.21x;如果下月初出售,可获利y2元,则y2=25%x-8 000=0.25x-8 000.当y1=y2,即0.21x=0.25x-8 000时,x=200 000;当y1>y2,即0.21x>0.25x-8 000时,x<200 000;当y1<y2,即0.21x<0.25x-8 000时,x>200 000.所以,若商场投入资金20万元,两种销售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多;若商场投入资金多于20万元,下月初出售获利较多.6.解(1)派往A地区的乙型收割机为x台,则派往A地区的甲型收割机为(30-x)台,派往B地区的乙型收割机为(30-x)台,派往B地区的甲型收割机为(x-10)台.则y=1 600x+1 800(30-x)+1 200(30-x)+1 600(x-10)=200x+74 000(10≤x≤30,x是正整数).(2)由题意,得200x+74 000≥79 600,解得x≥28.由于10≤x≤30,所以,x取28,29,30三个值.因此有三种分配方案.(3)由于一次函数y=200x+74 000的值是随着x的增大而增大的,故当x=30时,y取最大值.建议农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,可使公司获得的租金最高.7.解(1)y1=10(x-4)+120=10x+80,y2=(10x+120)×90%=9x+108,x≥4,且x是整数.(2)若y1>y2,即10x+80>9x+108,解得x>28;若y1=y2,即10x+80=9x+108,解得x=28;若y1<y2,即10x+80<9x+108,解得x<28.故当x>28时,在乙商店购买所需的商品比较便宜;当4≤x<28时,在甲商店购买所需的商品比较便宜;当x=28时,在两家商店购买所需商品价钱一样.(3)若所需商品全部在一家商店购买,由(2)知,购买2副球拍和20盒乒乓球时,在甲商店购买比乙商店购买便宜,需10×20+80=280(元).若所需商品在两家商店购买,可以到甲商店购买2副乒乓球拍,需要2×60=120(元),同时获得4盒乒乓球;到乙商店购买16盒乒乓球,需16×10×90%=144(元),共需120+144=264(元).∵264元<280元,∴最佳的购买方案是:到甲商店购买2副乒乓球拍,获赠4盒乒乓球,到乙商店购买16盒乒乓球. 创新应用8.解 (1)当1≤x ≤8时,每平方米的售价应为y=4 000-(8-x )×30=30x+3 760(元/m 2),当9≤x ≤23时,每平方米的售价应为y=4 000+(x -8)×50=50x+3 600(元/m 2).故y={30x +3 760(1≤x ≤8),50x +3 600(9≤x ≤23).(2)第十六层楼房的每平方米的价格为50×16+3 600=4 400(元/m 2), 按照方案一所交房款为W 1=4 400×120×(1-8%)-a=485 760-a (元), 按照方案二所交房款为W 2=4 400×120×(1-10%)=475 200(元), 当W 1>W 2时,即485 760-a>475 200,解得0<a<10 560, 当W 1<W 2时,即485 760-a<475 200,解得a>10 560,故当0<a<10 560时,方案二合算;当a>10 560时,方案一合算;当a=10 560时,两种方案一样合算.6 一元一次不等式组第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.若一个关于x 的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是( )A.-2<x<1B.-2<x ≤1C.-2≤x<1D.-2≤x ≤12.如图,天平右盘中的每个砝码的质量都是1 g,则物体A 的质量m (g)的取值范围在数轴上可表示为 ( )3.不等式组{4x -3>2x -6,25-x ≥-35的整数解的个数为( )A.1B.2C.3D.44.已知不等式组{x >2,x <a 的解集中共有5个整数,则a 的取值范围为( )A.7<a ≤8B.6<a ≤7C.7≤a<8D.7≤a ≤85.如果不等式组{3-2x ≥0,x ≥m ①②有解,那么m 的取值范围是 .6.不等式组{3x +4≥0,12x -24≤1的所有整数解的积为 .7.将一箱苹果分给若干名小朋友,若每名小朋友分5个苹果,则还剩12个苹果,若每名小朋友分8个苹果,则有一名小朋友分到了苹果但不足5个,则有小朋友 名,苹果 个.8.已知三个一元一次不等式:2x>6,2x ≥x+1,x -4<0,请从中选择你喜欢的两个不等式,组成一个不等式组,求出这个不等式组的解集,并把解集在数轴上表示出来.9.解不等式组{4(x +1)≤7x +10,x -5<x -83,并写出它的所有非负整数解.创新应用10.一个长方形足球场的长为x m,宽为70 m.如果它的周长大于350 m,面积小于7 560 m 2,求x 的取值范围,并判断这个足球场是否可以用作国际足球比赛.(注:用于国际足球比赛的足球场地的长在100 m 到110 m 之间,宽在64 m 到75 m 之间)答案: 能力提升1.C2.A3.C4.A5.m ≤32 首先将不等式组化简,由不等式①解得x ≤32,∵不等式组有解,∴m 的取值范围为m ≤32.6.07.6 428.解 答案不唯一,如(1)2x>6与x -4<0结合,组成不等式组{2x >6,x -4<0.①②解不等式①,得x>3;解不等式②,得x<4. 故不等式组的解集为3<x<4.不等式组的解集在数轴上表示如图.(2)2x ≥x+1与x -4<0结合,组成不等式组{2x ≥x +1,x -4<0.①②解不等式①,得x ≥1;解不等式②,得x<4.故不等式组的解集为1≤x<4.不等式组的解集在数轴上表示如图.9.解 {4(x +1)≤7x +10,x -5<x -83.①②由①得4x+4≤7x+10,-3x ≤6,x ≥-2. 由②得3x -15<x -8,2x<7,x<72.把不等式①②的解集在数轴上表示如图.所以不等式组的解集为-2≤x<72,其非负整数解为0,1,2,3. 创新应用10.解 由题意,得{2(x +70)>350,70x <7 560,解得105<x<108.所以可以用作国际足球比赛.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.不等式组{2x +12<12x -4,3x -1≤2x的解集在数轴上表示正确的是( )2.关于x 的不等式组{3x -1>4(x -1),x <m的解集为x<3,则m 的取值范围为( )A.m=3B.m>3C.m<3D.m ≥33.生物兴趣小组要在温箱里培养A,B 两种菌苗.已知A 种菌苗的生长温度x (℃)的范围是35≤x ≤38,B 种菌苗的生长温度y (℃)的范围是34≤y ≤36.则温箱里的温度T (℃)的范围是( ) A.34≤T ≤38 B.35≤T ≤38C.35≤T ≤36D.36≤T ≤384.若不等式组{x <m +1,x >2m -1无解,则m 的取值范围是 . 5.若ab>0,根据学过的知识可将其转化为{a >0,b >0或{a <0,b <0.若x -2与x -3的乘积为正数,则x 的取值范围是 .6.关于x 的不等式组{x+152>x -3,2x+23<x +a 只有4个整数解,求a 的取值范围.7.一种药品的说明书上写着:“每日用量60~120 mg,分3~4次服用.”一次服用这种药品的剂量在什么范围?创新应用8.南海地质勘探队在一次勘探中发现了很有价值的A,B 两种矿石,A 矿石大约565 t,B 矿石大约500 t .要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1 000元,乙货船每艘运费1 200元.(1)设运送这些矿石的总运费为y 元,若使用甲货船x 艘,请写出y 和x 之间的函数关系式.(2)如果甲货船最多可装A 矿石20 t 和B 矿石15 t,乙货船最多可装A 矿石15 t 和B 矿石25 t,装矿石时按此要求安排甲、乙两种货船,共有几种安排方案?哪种安排方案运费最低并求出最低运费.答案:能力提升1.C2.D3.C4.m ≥2 不等式组{x <m +1,x >2m -1无解, 因此,2m -1≥m+1,解这个不等式得m ≥2.5.x>3或x<2 由(x -2)(x -3)>0得{x -2>0,x -3>0或{x -2<0,x -3<0.解第一个不等式组得x>3,解第二个不等式组得x<2.故x 的取值范围是x>3或x<2.6.解 解不等式组{x+152>x -3,2x+23<x +a ,得{x <21,x >2-3a . 由不等式组有4个整数解,可知这4个解应是20,19,18,17,则 16≤2-3a<17,解得a 的取值范围为-5<a ≤-143.7.解 设一次服用的剂量为x mg .若分3次服用,则{3x ≥60,3x ≤120,解得20≤x ≤40; 若分4次服用,则{4x ≥60,4x ≤120,解得15≤x ≤30. 创新应用8.解 (1)y=1 000x+1 200(30-x ).(2){20x +15(30-x )≥565,15x +25(30-x )≥500,解得23≤x ≤25.因为x 为整数,所以x 可取23,24,25.因此共有3种方案. 方案一:甲货船23艘、乙货船7艘,运费y=1 000×23+1 200×7=31 400元; 方案二:甲货船24艘、乙货船6艘,运费y=1 000×24+1 200×6=31 200元; 方案三:甲货船25艘、乙货船5艘,运费y=1 000×25+1 200×5=31 000元. 所以,方案三运费最低,最低运费为31 000元.。
北师大版八年级数学下册《第2章 一元一次不等式与一元一次不等式组》单元测试题(含答案)
第二章 一元一次不等式(组) 单元检测卷(全卷满分100分 限时90分钟) 一.选择题:(每小题3分共36分)1. 若b a <,则下列各不等式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac < 2.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -<3.已知x y >,则下列不等式不成立的是( ).A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+ 4. 如果1-x 是负数,那么x 的取值范围是( )A .x >0B .)x <0C .x >1D .x <1 5. 若1-=aa ,则a 只能是:( ) ( )A .1-≤aB .0<aC .1-≥aD .0≤a6. 某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.一次函数y =2x -4与x 轴的交点坐标为(2,0),则一元一次不等式2x -4≤0的解集应是( )A .x ≤2B .x <2C .x ≥2D .x >28. 小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每个笔记本2元,那么小明最多能买______支钢笔.A.12B.13C.14D.159.已知关于x 的不等式组0220x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是A. 65a -<<-B. 65a -≤<-C. 65a -<≤-D. 65a -≤≤- 10. 不等式2(1)3x x +<的解集在数轴上表示出来应为 ( )11.给出四个命题:①若a>b ,c=d , 则ac>bd ;②若ac>bc ,则a>b ;③若a>b 则ac 2>bc 2;④若ac 2>bc 2,则a>b 。
2024-2025学年北师大版八年级数学上册第一次月考综合测试卷(含答案)
八年级上学期第一次月考综合测试卷时间:100分钟 满分:120分 考试范围:北师大版八年级上册第一章~第二章一、选择题(每小题3分,共30分)1.下列是无理数的是( )A.-13B.4C.3.141 592 6D.-π2.下列几组数中,是勾股数的是( )A.1,2,3B.0.3,0.4,0.5C.15,8,17D.35,45,13.下列各式中正确的是( )A.16=±4B.3-27=-9C.(-3)2=-3D.94=324.已知下列各式:23,0.1,35,12,6,其中不是最简二次根式的有( )A.2个B.3个C.4个D.5个5.在如图所示的数轴上,表示数3-7的点应在( )A.A ,O 之间B.O ,B 之间C.B ,C 之间D.C ,D 之间6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6km 处往东拐,仅走了1 km,就找到了宝藏,则门口A 到藏宝点B 的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.如图,一场暴雨过后,垂直于地面的一棵大树在距地面5米的C 处折断,树尖B 恰好碰到地面,经测量树尖B 与树桩A 相距12米,则大树折断前高为( )A.13米 B.17米 C.18米 D.22米8.如图,是一种筷子的收纳盒,长、宽、高分别为4 cm,3 cm,12 cm,现有一长为16 cm 的筷子插入到盒的底部,则筷子露在盒外的部分h (cm)的取值范围( )A.3<h<4 B.3≤h ≤4 C.2≤h ≤4 D.5≤h ≤69.把两块同样大小的含45°角的直角三角尺按如图所示放置,其中一块的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上,若AC=22,则CD的长是( )A.3B.5C.25+2D.23+210.如图,有一根高为2.1 m的木柱,它的底面周长为40 cm,在准备元旦联欢晚会时,为了营造喜庆的氛围,小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( ) A.1 400 cm B.350 cm C.840 cm D.300 cm二、填空题(每小题3分,共15分)11. 写出一个在3和4之间的无理数:12.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是 .13.若m,n为实数,且m=1―n+n-1+8,则mn的立方根为 .14 .如图,有一块一边长为24 m的长方形绿地,在绿地旁边B处有健身器材.由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走 步,踏草何忍”,但小颖不知应填什么数,请你帮她填上.(假设2步为1 m)15.有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,且这3个正方形所围成的三角形是直角三角形.再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”.请你算出“生长”了2 021次后形成的图形中所有的正方形的面积和是 .三、解答题(共8小题,共75分)16.(8分)把下列各数填入相应的集合内:227,π5,0,3.14,-5,0.313 131…,38,-64,7.151 551…(相邻两个1之间5的个数逐次加1).有理数集合{ …};无理数集合{ …};正数集合{ …};负数集合{ …}.17.(每小题3分,共12分)解答下列各题.(1)(x+5)2=16(2)8(x-1)3=-1258(3)48-27+13 (4)(-2+6)(-2-6)-(3-13)2.18.(8分)如图,一个梯子AB,顶端A 靠在墙AC 上,这时梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米到E 点,底端则水平滑动8米到D 点,求滑动前梯子底端与墙的距离CB 是多少.19.(8分)如图,在四边形ABDC中,∠A=90°,AB=6,AC=8,BD=5,CD2=125.(1)连接BC,求BC的长;(2)求△BCD的面积.20.(8分)已知a-2的平方根是±2,a-3b-3的立方根是3,整数c满足c<12<c+1.(1)求a,b,c的值;(2)求a2+b2+c3+17的算术平方根.21.(10分)为了积极响应国家新农村建设,某镇政府采用了移动宣讲的广播形式进行宣传.如图,笔直公路MN的一侧有一报亭A,报亭A到公路MN的距离AB 为600米,且宣讲车P周围1 000米以内能听到广播宣传,宣讲车P在公路MN 上沿PN方向行驶.(1)请问报亭的人能否听到广播宣传,并说明理由;(2)如果能听到广播宣传,已知宣讲车的速度是200米/分,那么报亭的人总共能听到多长时间的广播宣传?22.(10分)八年级某班开展了手工制作比赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的前两个步骤如下:①如图,先裁下一张长20 cm,宽16 cm 的长方形纸片ABCD;②将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处.请你根据①②步骤分别计算FC,EC 的长.23.(11分)小明在解决问题:已知a=12+3,求2a 2-8a+1的值.他是这样分析与解答的:因为a=12+3=2―3(2+3)(2-3)=2-3,所以a-2=-3.所以(a-2)2=3,即a 2-4a+4=3.所以a 2-4a=-1.所以2a 2-8a+1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:12+1= .(2)计算:12+1+13+2+14+3+…+1100+99.(3)若a=12-1,求4a 2-8a+1的值.参考答案12345678910DCDBBDCB DB11.1112.513.214.1615.2022解析:6.D 如图,过点B 作BC⊥AC ,垂足为C,过点N 作NM⊥AC ,垂足为M.由题意可知AC=AF-MF+MC=8-3+1=6(km),BC=2+6=8(km),在Rt△ACB中,AB=AC 2+BC 2=62+82=10(km).解析:9.D 如图,作AF⊥BC 于点F,∵△AED 和△ACB 是一样的等腰直角三角形,AC=22,∴BC=AD=4,∴AF=12BC=2,BF=CF=2,∴DF=AD 2-AF 2=42-22=23,∴CD=DF+CF=23+2.三、解答题16.有理数集合{227,0,3.14,0.313 131…,38,-64,…};无理数集合{π5,-5,7.151 551…(相邻两个1之间5的个数逐次加1),…};正数集合{227,π5,3.14,0.313 131…,38,7.151 551…(相邻两个1之间5的个数逐次加1),…};负数集合{-5,-64,…}.17.(1)x=-1或x=-9.(2)因为8(x-1)3=-1258,所以(x-1)3=-12564,所以x-1=-54,所以x=1-54,所以x=-14(3)原式=43-33+33=433.(4)原式=4-6-(3-2+13)=-2-43=-103.18.∵AC⊥BC ,∴AC 2+CB 2=AB 2,CE 2+CD 2=DE 2,由题意知AB=DE ,AC=24米,AE=4米,BD=8米,∴CE=24-4=20(米),CD=CB+8,∴242+CB 2=202+(CB+8)2,解得CB=7(米).答:滑动前梯子底端与墙的距离CB 是7米.19.(1)∵在△ABC 中,∠A=90°,AB=6,AC=8,∴BC 2=AB 2+AC 2=100,∴BC=10.(2)在△BCD 中,BC=10,BD=5,CD 2=125,∵BC 2+BD 2=102+52=125=CD 2,∴△BCD 是直角三角形,且∠CBD=90°,∴△BCD 的面积为12BD·BC=12×5×10=25. 20.(1)根据题意,得a-2=4,a-3b-3=27,所以a=6,b=-8.12=23≈3.46,所以3<12<4,所以c=3.(2)由(1)知a=6,b=-8,c=3,所以a 2+b 2+c 3+17=62+(-8)2+33+17=144.因为122=144,所以a 2+b 2+c 3+17的算术平方根为12.21.(1)报亭的人能听到广播宣传.理由:∵600米<1 000米,∴报亭的人能听到广播宣传.(2)如图,假设当宣讲车P 行驶到P 1点时,报亭的人开始听到广播宣传,当宣讲车P 行驶过P 2点时,报亭的人开始听不到广播宣传,连接AP 1,AP 2.易知AP 1=AP 2=1 000米,AB=600米,AB ⊥MN ,∴BP 1=BP 2=1 0002-6002=800(米),∴P 1P 2=1 600米.∵1 600÷200=8(分),∴报亭的人总共能听到8分钟的广播宣传.22.∵ 将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处,∴DE=FE ,AF=AD.在Rt△ABF 中,由勾股定理,得BF 2=AF 2-AB 2=202-162=144,∴BF=12 cm .∴FC=20-12=8(cm).设CE=x cm,则EF=DE=(16-x )cm .在Rt△CEF 中,由勾股定理,得EF 2=FC 2+CE 2,即(16-x )2=82+x 2,解得x=6,∴EC=6 cm .23.(1)2-1 解法提示:12+1=2-1(2+1)(2-1)=2-1.(2)原式=(2-1)+(3-2)+(4-3)+…+(100-99)=100-1=10-1=9.(3)因为a=12-1=2+1(2-1)(2+1)=2+1,所以a-1=2.所以(a-1)2=2,即a 2-2a +1=2.所以a 2-2a=1.所以4a 2-8a +1=4(a 2-2a )+1=4×1+1=5.。
北师大版八年级数学下册第二章综合素质评价附答案 (2)
北师大版八年级数学下册第二章综合素质评价一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列式子:①3>0;②4x +6>0;③x <2;④x 2+x ;⑤x ≠-5;⑥x +2>x +1,其中不等式有( )A .3个B .4个C .5个D .6个2.若x <y ,且(a -3)x >(a -3)y ,则a 的取值范围是( )A .a <3B .a >3C .a ≥3D .a ≤33.下列说法中,错误的是( )A .不等式x <2的正整数解只有一个B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x >-3D .不等式x <10的整数解有无数个4.已知点P (x -2,6-2x )是平面直角坐标系第二象限上一点,则x 的取值范围在数轴上表示正确的是( )5.【2021·娄底】如图,直线y =x +b 和y =kx +4与x 轴分别相交于点A (-4,0),点B (2,0),则⎩⎨⎧x +b >0,kx +4>0的解集为( )A .-4<x <2B .x <-4C .x >2D .x <-4或x >2 6.【2022·佛山南海区校级月考】某种商品的进价为400元,出售时标价为500元,由于换季,商店准备打折销售该种商品,但要保证利润率不低于10%,那么至多打( )A .8折B .8.5折C .8.8折D .9折7.已知不等式组⎩⎨⎧x +a >1,2x +b <2的解集为-2<x <3,则(a +b )2 023的值为( ) A .1 B .2 023 C .-1 D .-2 0238.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x ,则可以列不等式组为( )A.⎩⎨⎧(4x +19)-6(x -1)≥1(4x +19)-6(x -1)≤6B.⎩⎨⎧(4x +19)-6(x -1)≤1(4x +19)-6(x -1)≥6 C.⎩⎨⎧(4x +19)-6(x -1)≤1(4x +19)-6(x -1)≥5 D.⎩⎨⎧(4x +19)-6(x -1)≥1(4x +19)-6(x -1)≤59.若关于x ,y 的方程组⎩⎨⎧2x +y =4,x +2y =-3m +2的解满足x -y >-32,则m 的最小整数解为( )A .-3B .-2C .-1D .010.对于任意实数m 、n ,定义一种新运算:m ※n =mn -m -n +3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a <4※x <7,且解集中有两个整数解,则a 的取值范围是( )A .-1<a ≤4B .-1≤a <2C .-4≤a <-1D .-4<a ≤-1二、填空题:本大题共5小题,每小题3分,共15分.11.语句“x 的18与x 的和不超过5”可以表示为____________.12.若不等式(m -3)x |m -2|+2>0是关于x 的一元一次不等式,则m 的值为____________.13.不等式组⎩⎨⎧x -2<3a ,-2x >-2a +8的解集是x <a -4,则a 的取值范围是_____________. 14.对一个实数x ,按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190”为一次操作,如果操作恰好进行两次停止,那么x 的取值范围是____________.15.定义:对于实数a ,b ,符号max{a ,b }表示:当a ≥b 时,max{a ,b }=a ,当a <b 时,max{a ,b }=b .例如max{-3,5}=5,max{2,1}=2.若关于x 的函数y =max{x -2,-2x +1},则该函数的最小值为______________.三、解答题(一):本大题共3小题,每小题8分,共24分.16.【2022·宜昌】解不等式x -13≥x -32+1,并在如图所示的数轴上表示解集.17.【2022·毕节】解不等式组⎩⎪⎨⎪⎧x -3(x -2)≤8,12x -1<3-32x ,并把解集在数轴上表示出来.18.(1)解不等式5x +2≥3(x -1),并把它的解集在如下数轴上表示出来;(2)写出一个实数k ,使得不等式x <k 和(1)中的不等式组成的不等式组恰有3个整数解.四、解答题(二):本大题共3小题,每小题9分,共27分.19.已知关于x ,y 的方程组⎩⎨⎧2x +2y =4m ,x -y =3m -4,且x >0,y >0. (1)试用含m 的式子表示方程组的解;(2)求实数m 的取值范围.20.每年11月份脐橙和蜜桔进入销售旺季.某商家购进脐橙和蜜桔共1 000箱.设购进蜜桔x 箱,这两种水果的售价与进价如下表所示:(1)请用含x 的代数式表示该商家售完这1 000箱水果所获得的利润;(2)为了迎接“双11”活动,商家决定进行组合促销活动:两种水果各一箱打包成一组,售价为55元/组,其组数为购进蜜桔箱数的15,未打包的按原价出售.若这两种水果全部卖出,利润不少于6 500元,则该商家至少要购进蜜桔多少箱?21.对x ,y 定义一种新运算T ,规定:T (x ,y )=(mx +ny )(x +2y )(其中m ,n 均为非零常数).例如:T (1,1)=3m +3n .已知T (1,-1)=0,T (0,2)=8.(1)求m ,n 的值;(2)若关于p 的不等式组⎩⎨⎧T (2p ,2-p )>4,T (4p ,3-2p )≤a恰好有3个整数解,求a 的取值范围.五、解答题(三):本大题共2小题,每小题12分,共24分.22.某学校需要采购一批演出服装,A ,B 两家制衣公司都愿意成为这批服装的供应商.经了解,两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商,A 公司给出的优惠条件是全部服装按单价打七折,但校方需承担2 200元的运费;B 公司给出的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应比男生人数的2倍少100人,设参加演出的男生有x 人.(1)设学校购买A ,B 两家公司服装所付的总费用分别是y 1元,y 2元,用含x 的代数式分别表示y 1和y 2;(2)该学校购买哪家制衣公司的服装比较合算?23.先阅读下面的例题,再按要求解决问题.例题:解一元二次不等式x 2-9>0.解:∵x 2-9=(x +3)(x -3),∴(x +3)(x -3)>0.由有理数的乘法法则“两数相乘,同号得正”,有①⎩⎨⎧x +3>0,x -3>0,解不等式组①,得x >3, ②⎩⎨⎧x +3<0,x -3<0,解不等式组②,得x <-3, 故原不等式的解集为x >3或x <-3.问题:(1)求关于x 的不等式(x +1)(x -2)>0的解集;(2)求关于x 的两个多项式的商组成的不等式3x -72x -9<0的解集;(3)若a是(2)中不等式的整数解,b=4,a,b,c为△ABC的三条边长,c是△ABC中的最长的边长(△ABC非等边三角形).①求c的取值范围;②若c为整数,求这个等腰三角形ABC的周长.答案一、1.C 2.A 3.C 4.C 5.A 6.C 7.C 8.D9.C 提示:⎩⎨⎧2x +y =4,①x +2y =-3m +2,②①-②得x -y =3m +2,∵关于x ,y 的方程组⎩⎨⎧2x +y =4,x +2y =-3m +2的解满足x -y >-32,∴3m +2>-32,解得m >-76, ∴m 的最小整数解为-1.10.B 提示:根据题意,得4※x =4x -4-x +3=3x -1.∴a <3x -1<7,解得a +13<x <83.∵解集中有两个整数解,∴0≤a +13<1,解得-1≤a <2.二、11.18x +x ≤5 12.113.a ≥-3 14.22<x ≤6415.-1 提示:当x -2≥-2x +1时,解得x ≥1,此时y =x -2,且y 随x 的增大而增大,∴当x ≥1时,y ≥-1;当x -2<-2x +1时,解得x <1,此时y =-2x +1,且y 随x 的减少而增大,∴x <1时,y >-1.综上可知,函数的最小值为-1.三、16.解:x -13≥x -32+1,去分母,得2(x -1)≥3(x -3)+6,去括号,得2x -2≥3x -9+6,移项,得2x -3x ≥-9+6+2,合并同类项,得-x ≥-1,系数化为1,得x ≤1.这个不等式的解集在数轴上表示如下:17.解:⎩⎪⎨⎪⎧x -3(x -2)≤8,①12x -1<3-32x ,② 解不等式①得x ≥-1,解不等式②得x <2,∴原不等式组的解集为-1≤x <2.该不等式组的解集在数轴上表示如下:18.解:(1)5x +2≥3(x -1),去括号,得5x +2≥3x -3,移项,得5x -3x ≥-3-2,合并同类项,得2x ≥-5,两边都除以2,得x ≥-2.5,这个不等式的解集在数轴上表示为:(2)∵存在一个实数k ,使得不等式x <k 和(1)中的不等式组成的不等式组恰有3个整数解,∴0<k ≤1,∴k =1满足条件(答案不唯一).四、19.解:(1)方程组整理,得⎩⎨⎧x +y =2m , ①x -y =3m -4,② ①+②,得2x =5m -4,∴x =5m -42,①-②,得2y =-m +4,∴y =-m +42,∴原方程组的解为⎩⎪⎨⎪⎧x =5m -42,y =4-m 2;(2)∵x >0,y >0,∴⎩⎪⎨⎪⎧5m -42>0,③4-m 2>0,④解不等式③,得m >45,解不等式④,得m <4,∴不等式组的解集为45<m <4,即实数m 的取值范围为45<m <4.20.解:(1)由题意可得,售完1 000箱水果所获得的利润为(28-20)x +(31-25)×(1 000-x )=2x +6 000,即该商家售完这1 000箱水果所获得的利润为(2x +6 000)元;(2)由题意可知,购进蜜桔x 箱,则购进脐橙(1 000-x )箱,(28-20)×45x +(31-25)×(1 000-x -15x )+(55-20-25)×15x ≥6 500,解得x ≥41623,∵x 为整数,且为5的倍数,∴该商家至少要购进蜜桔420箱.21.解:(1)由题意,得⎩⎨⎧-(m -n )=0,8n =8,∴⎩⎨⎧m =1,n =1; (2)由题意,得⎩⎨⎧(2p +2-p )(2p +4-2p )>4,①(4p +3-2p )(4p +6-4p )≤a ,②解不等式①,得p >-1.解不等式②,得p ≤a -1812.∴-1<p ≤a -1812.∵恰好有3个整数解,∴2≤a -1812<3.∴42≤a <54.五、22.解:(1)由题意得y 1=0.7[120x +100(2x -100)]+2 200=224x -4 800(x ≥50),即y 1=224x -4 800(x ≥50),y 2=0.8[100(3x -100)]=240x -8 000(x ≥50),即y 2=240x -8 000(x ≥50);(2)当y 1>y 2时,即224x -4 800>240x -8 000,解得x <200,由(1)得x ≥50,∴50≤x <200;当y 1=y 2时,即224x -4 800=240x -8 000,解得x =200;当y 1<y 2时,即224x -4 800<240x -8 000,解得x >200;综上,当参加演出的男生少于200人且大于等于50人时,购买B 公司的服装比较合算;当参加演出的男生等于200人时,购买两家公司的服装总费用相同,可任选一家公司购买;当参加演出的男生多于200人时,购买A 公司的服装比较合算.23.解:(1)由有理数的乘法法则“两数相乘,同号得正”,有①⎩⎨⎧x +1>0,x -2>0,解不等式组①,得x >2, ②⎩⎨⎧x +1<0,x -2<0,解不等式组②,得x <-1, 故原不等式的解集为x >2或 x <-1;(2)∵3x -72x -9<0, ∴由“两数相除,异号得负”,有①⎩⎨⎧3x -7>0,2x -9<0,解不等式组①,得73<x <92, ②⎩⎨⎧3x -7<0,2x -9>0,解不等式组②,无解, ∴原不等式的解集为73<x <92;(3)①∵a 是(2)中不等式的整数解,∴a =3或a =4,∵c是△ABC的最大边,且△ABC非等边三角形,∴当a=3,b=4时,4≤c<7;当a=4,b=4时,4<c<8;②∵△ABC为等腰三角形,c为整数,∴当a=3,b=4时,4≤c<7,∴c=4,∴C△ABC=11;∴当a=4,b=4时,4<c<8,∴c=5或6或7,∴C△ABC=13或14或15.综上所述,这个等腰三角形ABC的周长为11或13或14或15.。
初中数学北师大版八年级下册期末-章节测试习题(2)
章节测试题1.【题文】(1)计算(2)解不等式组,并写出不等式组的非负整数解。
(3)解分式方程:【答案】①+2;②0、1;③原方程无解【分析】(1)首先计算负指数次幂,0次幂,二次根式的混合运算,去掉绝对值符号,化简二次根式,然后合并同类二次根式即可求解;(2)首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集.(3)中因为x2-4=(x+2)(x-2),所以最简公分母为(x+2)(x-2),确定方程的最简公分母后,方程两边乘最简公分母,把分式方程转化为整式方程求解..【解答】解(1)原式=3-1-(1-)+-1=3-1-1++2-1=+2(2)解不等式①得,x≤1,解不等式②得,x<4,所以不等式组的解集是x≤1,所以不等式组的非负整数解是0、1.故答案为:0、1.(3)方程两边同乘(x+2)(x-2),得:(x-2)2=(x+2)2+16,整理解得x=-2.经检验x=-2是增根,故原方程无解.2.【题文】已知,求的值. 【答案】-【分析】将分式通分、化简,再将已知条件变形,整体代入.【解答】解:=-÷=-=-∵∴1-即1-=1-∴-=-∴原式=-3.【题文】对x,y定义一种新运算T,规定:T(x,y)=(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b,已知T(1,1)=2.5,T(4,-2)=4.(1)求a,b的值;(2)若关于m的不等式组恰好有2个整数解,求实数P的取值范围.【答案】(1)a,b的值分别为3和2;(2)实数P的取值范围是≤p<2【分析】(1)根据题意把T(1,1)=2.5,T(4,-2)=4代入T(x,y)=即可求出ab的值;(2)根据题意列出关于m的不等式,分别解出来再根据m有两个整数解来确定p的取值.【解答】(1)根据题意得:,①+②得:3a=9,即a=3,把a=3代入①得:b=2,故a,b的值分别为3和2;(2)根据题意得:,由①得:m≤,由②得:m>p-3,∴不等式组的解集为p-3<m≤,∵不等式组恰好有2个整数解,即m=0,1,∴-1≤p-3<0,解得≤p<2,即实数P的取值范围是≤p<2.4.【题文】如图所示,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0),(1)请直接写出点A关于原点O对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,求出A′点的坐标。
最新北师大版八年级数学下册单元测试题全套及答案
最新北师大版八年级数学下册单元测试题全套及答案第1章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心,适当长为半径画弧,分别交直线l 1,l 2于点B ,C ,连接AC ,BC.若∠ABC =67°,则∠1的度数为( B )A .23°B .46°C .67°D .78°2.如图,在△ABC 中,AB =AC ,D 为BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F.则下列结论错误的是( D )A .AD ⊥BCB .∠BAD =∠CADC .DE =DFD .BE =DE,第2题图) ,第3题图) ,第4题图)3.如图,在△ABC 中,∠C =90°,∠B =30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD =3,则BC 的长为( C )A .6B .6 3C .9D .3 34.如图,在△ABC 中,∠B =40°,∠BAC =75°,AB 的垂直平分线交BC 于点D ,垂足为E.则∠CAD 等于( B )A .30°B .35°C .40°D .50°5.如图,AC =BD ,则补充下列条件后仍不能判定△ABC ≌△BAD 的是( D ) A .AD =BC B .∠BAC =∠ABD C .∠C =∠D =90° D .∠ABC =∠BAD6.已知三角形三内角之间有∠A =12∠B =13∠C ,它的最长边为10,则此三角形的面积为( D )A .20B .10 3C .5 3 D.2532,第5题图) ,第7题图) ,第8题图) ,第10题图)7.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠B =90°时,如图①,测得AC =2,当∠B =60°时,如图②,AC 等于( A )A. 2 B .2 C. 6 D .2 28.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C.若P 是BC边上一动点,则DP 长的最小值为( C )A .2B .2 2C .4D .4 29.下列说法:①斜边和一条直角边分别相等的两个直角三角形全等;②两个锐角分别相等的两个直角三角形全等;③有一个角和底边分别相等的两个等腰三角形全等;④一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等.其中正确的有( B )A .1个B .2个C .3个D .4个10.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接BD ,BE.下列四个结论:①BD =CE ;②BD ⊥CE ;③∠ACE +∠DBC =45°;④BE 2=2(AD 2+AB 2).其中结论正确的个数是( C )A .1B .2C .3D .4二、填空题(每小题3分,共24分)11.如图,在△ABC 中,∠C =90°,∠A =30°,若AB =6 cm ,则BC =__3__cm .12.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,CD =4,则点D 到AB 的距离为__4__.,第11题图 第12题图 第13题图 第14题图)13.如图,已知点B ,C ,F ,E 在同一条直线上,∠1=∠2,BC =EF ,要使△ABC ≌△DEF ,还需添加一个条件,这个条件可以是__AC =DF (答案不唯一)__.(只需写出一个)14.如图,△ABC 的周长为22 cm ,AB 的垂直平分线交AC 于点E ,垂足为D ,若△BCE 的周长为14 cm ,则AB =__8__cm .15.如图,在等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M.若AB =4 cm ,则DE =__23__cm .,第15题图) ,第16题图) ,第17题图)16.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边上的中点,E 是AB 边上一动点,则EC +ED 的最小值是__5__.17.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A =30°,∠B =90°,BC =6米.当正方形DEFH 运动到什么位置,即当AE =__143__米时,有DC 2=AE 2+BC 2.18.下列命题:①到三角形三边距离相等的点是这个三角形三条角平分线的交点;②三角形三边的垂直平分线的交点到这个三角形的三个顶点的距离相等;③一个锐角和一条边分别相等的两个直角三角形全等;④顶角和底边对应相等的两个等腰三角形全等.其中真命题是__①②④__(填序号)三、解答题(共66分)19.(8分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.解:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D20.(8分)如图,在△ABC中,AB=AC,AB的垂直平分线交AC于点E,垂足为D.若△ABC的周长为20 cm,△BCE的周长为12 cm,求BC的长.解:∵DE垂直平分AB,∴AE=BE,∵△BCE的周长为12 cm,即BC+BE+CE=12,∴BC+AE +CE=12,即BC+AC=12,又∵△ABC的周长为20 cm,即AB+BC+AC=20,∴AB+12=20,则AB =8,∴AC=8,∴BC=20-AB-AC=20-8-8=4(cm)21.(8分)如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.解:(1)∵OB=OC,∴∠OBC=∠OCB,∵BE,CD是两条高,∴∠BDC=∠CEB=90°,又∵BC =CB,∴△BDC≌△CEB(AAS),∴∠DBC=∠ECB,∴AB=AC,∴△ABC是等腰三角形(2)点O 在∠BAC 的平分线上.理由:如图,连接AO.∵△BDC ≌△CEB ,∴DC =EB ,∵OB =OC ,∴OD =OE ,∵∠BDC =∠CEB =90°,∴点O 在∠BAC 的平分线上(或通过证Rt △ADO ≌Rt △AEO (HL ),得出∠DAO =∠EAO 也可)22.(8分)如图,∠AOB =90°,OM 平分∠AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA ,OB 相交于点C ,D ,问PC 与PD 相等吗?试说明理由.解:PC =PD.理由:过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,∵OM 平分∠AOB ,点P 在OM 上,∴PE =PF ,又∵∠AOB =90°,∴∠EPF =90°,∴∠EPF =∠CPD ,∴∠EPC =∠FPD.又∵∠PEC =∠PFD =90°,∴△PCE ≌△PDF (ASA ),∴PC =PD23.(10分)如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角仪测得塔顶D 的仰角为30°,在A ,C 之间选择一点B(A ,B ,C 三点在同一直线上).用测角仪测得塔顶D 的仰角为75°,且AB 间的距离为40 m .(1)求点B 到AD 的距离;(2)求塔高CD.(结果用根号表示)解:(1)过点B 作BE ⊥AD ,垂足为E ,∴∠AEB =90°,又∵∠A =30°,∴BE =12AB =12×40=20 m(2)AE =AB 2-BE 2=203,∵∠A +∠ADB =∠DBC =75°,∴∠ADB =75°-∠A =45°,∵BE ⊥AD ,∴∠BED =90°,∴∠DBE =∠ADB =45°,∴DE =BE =20,∴AD =AE +DE =203+20,∵CD ⊥AC ,∴∠C =90°,又∵∠A =30°,∴CD =12AD =12(203+20)=(103+10) m24.(12分)在△ABC 中,∠B =22.5°,边AB 的垂直平分线DP 交AB 于点P ,交BC 于点D ,且AE ⊥BC 于点E ,DF ⊥AC 于点F ,DF 与AE 交于点G ,求证:EG =EC.解:如图所示:连接AD ,∵∠B =22.5°,且DP 为AB 的垂直平分线,∴DB =DA ,∴∠B =∠BAD ,∴∠ADE =2∠B =45°,在Rt △ADE 中,∠ADE =45°,∴∠DAE =45°,∴AE =DE ,∵AE ⊥DE ,∴∠1+∠2=90°,∵DF ⊥AC ,∴∠2+∠C =90°,∴∠1=∠C.在△DEG 和△AEC 中,⎩⎨⎧∠1=∠C ,∠DEG =∠AEC =90°,DE =AE ,∴△DEG ≌△AEC (AAS ),∴EG =EC25.(12分)如图,已知△ABC 是边长为6 cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是1 cm /s ,点Q 运动的速度是2 cm /s ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t s ,解答下列问题:(1)当点Q 到达点C 时,PQ 与AB 的位置关系如何?请说明理由;(2)在点P 与点Q 的运动过程中,△BPQ 是否能成为等边三角形?若能,请求出t 的值;若不能,请说明理由.解:(1)当点Q 到达点C 时,PQ 与AB 垂直,即△BPQ 为直角三角形.理由:∵AB =AC =BC =6 cm ,∴当点Q 到达点C 时,AP =3 cm ,∴点P 为AB 的中点.∴QP ⊥BA (等腰三角形三线合一的性质) (2)假设在点P 与点Q 的运动过程中,△BPQ 能成为等边三角形,则有BP =BQ ,∴6-t =2t ,解得t =2,又∠B =60°,∴当t =2时,△BPQ 是等边三角形第2章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.据中央气象台报道,某日上海最高气温是22 ℃,最低气温是11 ℃,则当天上海气温t (℃)的变化范围是( D )A .t >22B .t ≤22C .11<t <22D .11≤t ≤222.(2016·新疆)不等式组⎩⎪⎨⎪⎧3x <2x +4,x -1≥2的解集是( C )A .>4B .x ≤3C .3≤x <4D .无解3.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( A ) A .3<x <5 B .-3<x <5 C .-5<x <3 D .-5<x <-34.如图a ,b ,c 分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是( C )A .a >c >bB .b >a >cC .a >b >cD .c >a >b5.如果点P(3-m ,1)在第二象限,那么关于x 的不等式(2-m)x +2>m 的解集是( B ) A .x >-1 B .x <-1 C .x >1 D .x <16.如图是一次函数y =kx +b 的图象,当y <2时,x 的取值范围是( C ) A .x <1 B .x >1 C .x <3 D .x >37.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,则实数a 的取值范围是( D )A .a ≥-1B .a <-1C .a ≤1D .a ≤-18.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥b ,2x -a <2b +1的解集为3≤x <5,则a ,b 的值为( A )A .a =-3,b =6B .a =6,b =-3C .a =1,b =2D .a =0,b =39.如图,函数y =2x 和y =ax +4的图象相交于点A(m ,3),则不等式2x <ax +4的解集为( A )A .x <32 B .x <3C .x >32D .x >310.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( B )A .买甲站的B .买乙站的C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二、填空题(每小题3分,共24分)11.(2016·绍兴)不等式3x +134>x3+2的解是__x >-3__.12.(2016·巴中)不等式组⎩⎪⎨⎪⎧3x -1<x +1,2(2x -1)≤5x +1的最大整数解为__0__.13.如果关于x 的不等式组⎩⎪⎨⎪⎧x >m -1,x >m +2的解集是x >-1,那么m =__-3__.14.要使关于x 的方程5x -2m =3x -6m +1的解在-3与4之间,m 的取值范围是__-74<m <74__.15.如图,函数y =ax -1的图象经过点(1,2),则不等式ax -1>2的解集是__x >1__.,第15题图),第16题图)16.已知不等式组⎩⎪⎨⎪⎧x +2a ≥1,2x -b <3的解集如图所示,则a -b 的值为__0__.17.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =3k -1,x +2y =-2的解满足x +y >1,则k 的取值范围是__k >2__.18.商店购进一批文具盒,进价每个4元,零售价每个6元,为促进销售,决定打折销售,但利润率仍不低于20%,那么该文具盒实际价格最多可打__8__折销售.三、解答题(共66分)19.(10分)解下列不等式组,并把解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2(x +1)≤x +3,x -4<3x ; (2)⎩⎪⎨⎪⎧2x >3x -2,①2x -13≥12x -23.② 解:-2<x ≤1 数轴表示略 解:-2≤x <2 数轴表示略20.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧5x +2y =11a +18,2x -3y =12a -8的解满足x >0,y >0,求实数a 的取值范围.解:解方程组得⎩⎨⎧x =3a +2,y =4-2a ,∵x >0,y >0,∴⎩⎨⎧3a +2>0,4-2a >0,解得-23<a <221.(8分)解不等式组⎩⎪⎨⎪⎧3(x -2)≥x -4,①2x +13>x -1,②并写出它所有的整数解.解:解不等式①得x ≥1,解不等式②得x <4,∴原不等式的解集是1≤x <4,∴原不等式组的整数解是x =1,2,322.(8分)若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,3x +5a +4>4(x +1)+3a 恰有三个整数解,求实数a 的取值范围. 解:解不等式x 2+x +13>0得x >-25,解不等式3x +5a +4>4(x +1)+3a 得x <2a ,∵不等式组恰有三个整数解,∴2<2a ≤3,∴1<a ≤3223.(9分)如图,一次函数y 1=kx -2和y 2=-3x +b 的图象相交于点A(2,-1).(1)求k ,b 的值;(2)利用图象求当x 取何值时,y 1≥y 2?(3)利用图象求当x 取何值时,y 1>0且y 2<0?解:(1)将A 点坐标代入y 1=kx -2,得2k -2=-1,即k =12;将A 点坐标代入y 2=-3x +b 得-6+b=-1,即b =5 (2)从图象可以看出当x ≥2时,y 1≥y 2 (3)直线y 1=12x -2与x 轴的交点为(4,0),直线y 2=-3x +5与x 轴的交点为(53,0),从图象可以看出当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<024.(12分)甲,乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x 元,其中x >100.(1)根据题意,填写下表(物购计累 费花际实 130 290 … x 在甲商场127…在乙商场 126 …(2)当x 取何值时,(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?解:(1)271 100+(x -100)×90% 278 50+(x -50)×95% (2)根据题意得100+(x -100)×90%=50+(x -50)×95%,解得x =150.即当x =150时,小红在甲、乙两商场的实际花费相同 (3)由100+(x -100)×90%<50+(x -50)×95%,解得x >150;由100+(x -100)×90%>50+(x -50)×95%,解得x <150.∴当小红累计购物超过150元时,选择甲商场实际花费少,当小红累计购物超过100元而不到150元时,选择乙商场实际花费少25.(12分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲,乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件,则运输部门安排甲,乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x 件,则蔬菜有(x -80)件,由题意得x +(x -80)=320,解得x =200,∴x -80=120.则饮用水和蔬菜分别为200件和120件 (2)设租用甲种货车m 辆,则租用乙种货车(8-m )辆,由题意得⎩⎨⎧40m +20(8-m )≥200,10m +20(8-m )≥120,解得2≤m ≤4.∵m 为正整数,∴m =2或3或4.故安排甲、乙两种货车时有3种方案,设计方案分别为①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆 (3)3种方案的运费分别为①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.则运输部门应安排甲车2辆,乙车6辆,可使运费最少,最少运费是2960元第3章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B ,则点B 的坐标是( B ) A .(-5,3) B .(1,3) C .(1,-3) D .(-5,-1)2.如图,下列四个图形中,△ABC 经过旋转之后不能得到△A ′B ′C ′的是( D )3.(2016·青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是( B )4.如图,△OAB 绕点O 逆时针旋转80°得到△OCD ,若∠A =110°,∠D =40°,则∠α的度数是( C )A .30°B .40°C .50°D .60°5.一个图形无论经过平移还是旋转,下列说法:①对应线段相等;②对应线段平行;③对应角相等;④图形的形状和大小都没有发生变化.其中正确的有( C )A.①②③B.①②④C.①③④D.②③④6.(2016·枣庄)已知点P(a+1,-a2+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( C )7.如图,将△ABC沿射线BC向右平移到△DCE的位置,连接AD,则下列结论:①AB∥CD;②AC=DE;③AD=BC;④∠B=∠ADC;⑤△ACD≌△EDC.其中正确的结论有( A )A.5个B.4个C.3个D.2个,第7题图),第8题图),第9题图),第10题图)8.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2.△A′B′C可以由△ABC绕点C 顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A,B′,A′在同一条直线上,则AA′的长为( A )A.6 B.4 3 C.3 3 D.39.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′是点B的对应点,点C′是点C的对应点),连接CC′,则∠CC′B′的度数是( D ) A.45°B.30°C.25°D.15°10.将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为( C )A.(1,1) B.(2,2) C.(-1,1) D.(-2,2)二、填空题(每小题3分,共24分)11.如图,点D是等边三角形ABC内的一点,如果△ABD绕点A逆时针旋转后能与△ACE重合,那么旋转了__60__度.12.如图,△A′B′C′是由△ABC沿BC方向平移得到的,若BC=5 cm,AC=4.5 cm,B′C=2 cm,那么A′C′=__4.5__cm,A,A′两点之间的距离为__3__cm.,第11题图),第12题图),第14题图),第15题图)13.在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C,的对应点分别是A1,B1,C1,若点A1的坐标为(3,1),则点C1的坐标为__(7,-2)__.14.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为__2α__.15.如图,在△ABC中,∠BAC=115°,∠ACB=25°,把△ABC以AC为对称轴作对称变换得△ADC,又把△ABC绕点B逆时针旋转55°得△FBE,则∠α的度数为__145°__.16.如图,等腰直角三角形ABC的直角边AB的长为6 cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,则图中阴影部分的面积等于__63__cm2.,第16题图),第17题图),第18题图)17.如图是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的阴影部分构成一个中心对称图形,则这个白色小正形内的数字是__3__.18.如图,在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕点C按逆时针方向旋转α(0°<α<90°)后得到△DEC,设CD交AB于点F,连接AD,当旋转角α的度数为__40°或20°__时,△ADF是等腰三角形.三、解答题(共66分)19.(7分)如图,将△ABC沿直线AB向右平移后到达△BDE的位置.(1)若AC=6 cm,则BE=__6__cm;(2)若∠CAB=50°,∠BDE=100°,求∠CBE的度数.解:根据平移的性质得AC∥BE,∠ABC=∠BDE=100°,∴∠C=180°-∠CAB-∠ABC=180°-50°-100°=30°,由AC∥BE得∠CBE=∠C=30°20.(7分)如图,边长为4的正方形ABCD绕点D旋转30°后能与四边形A′B′C′D重合.(1)旋转中心是哪一点?(2)四边形A ′B ′C ′D 是什么图形?面积是多少?(3)求∠C ′DC 和∠CDA ′的度数;(4)连接AA ′,求∠DAA ′的度数.解:(1)点D (2)四边形A ′B ′C ′D ′是正方形,面积为4×4=16 (3)由题意得∠C ′DC =30°,∠CDA ′=90°-∠C ′DC =60° (4)∵AD =A ′D ,∠ADA ′=30°,∴∠DAA ′=(180°-30°)×12=75°21.(8分)(1)在平面直角坐标系中找出点A(-3,4),B(-4,1),C(-1,1),D(-2,3)并将它们依 次连接;(2)将(1)中所画图形先向右平移4个单位,再向下平移3个单位,画出第二次平移后的图形;(3)如何将(1)中所画图形经过一次平移得到(2)中所画图形?平移前后对应点的横坐标有什么关系?纵坐标呢?解:(1)画图略 (2)画图略 (3)将A 点与它的对应点A ′连接起来,则AA ′=32+42=5,∴将(1)中所画图形沿A 到A ′的方向平移5个单位长度得到(2)中所画图形.四边形A ′B ′C ′D ′与四边形ABCD 相比,对应点的横坐标分别增加了4,纵坐标分别减少了322.(10分)(2016·巴中)如图,方格中,每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图.(1)画出将△ABC 向右平移2个单位得到的△A 1B 1C 1;(2)画出将△ABC 绕点O 顺时针方向旋转90°得到的△A 2B 2C 2;(3)画出△ABC 关于原点对称的△A 3B 3C 3.解:图略23.(10分)如图,在△ABC中,∠BAC=120°,以BC为边向图形外作等边△BCD,把△ABD绕点D按顺时针方向旋转60°到△ECD的位置,若AB=3,AC=2.(1)求∠BAD的度数;(2)求AD的长.解:(1)因为△DCE是由△DBA旋转后得到的,∴DE=DA,∵∠BDC=60°,∴∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=60°,∠BAD=∠BAC-∠DAE=120°-60°=60°(2)AD=AE =AC+CE=AC+AB=2+3=524.(12分)如图,在平面直角坐标系xOy中,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5,∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中△OMN的边NM重合;(3)求OE的长.解:(1)△OMN如图所示(2)△A′B′C′如图所示(3)设OE=x,则ON=x,作MF⊥A′B′于点F,由作图可知B′C′平分∠A′B′O,且C′O⊥OB ′,∴B ′F =B ′O =OE =x ,FC ′=OC ′=OD =3.∵A ′C ′=AC =5,∴A ′F =52-32=4,∴A ′B ′=x +4,A ′O =5+3=8.在Rt △A ′B ′O 中,x 2+82=(4+x )2,解得x =6,即OE =625.(12分)如图,小明将一张长方形纸片沿对角线剪开,得到两张三角形纸片(如图②),量得它们的斜边长为10 cm ,较小的锐角为30°,再将这两张三角形纸片摆成如图③的形状,且点B ,C ,F ,D 在同一条直线上,且点C 与点F 重合(在图③至图⑥中统一用F 表示).小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮忙解决:(1)将图③中的△ABF 沿BD 向右平移到图④的位置,使点B 与点F 重合,请你求出平移的距离;(2)将图③中的△ABF 绕点F 顺时针方向旋转30°到图⑤的位置,A 1F 交DE 于点G ,请你求出线段FG 的长度;(3)将图③中的△ABF 沿直线AF 翻折到图⑥的位置,AB 1交DE 于点H ,请证明:AH =DH.解:(1)图形平移的距离就是线段BC 的长,∵在Rt △ABC 中,斜边长为10 cm ,∠BAC =30°,∴BC =5 cm.∴平移的距离为5 cm (2)∵∠A 1FA =30°,∴∠GFD =60°,又∵∠D =30°,∴∠FGD =90°.在Rt △DFG 中,由勾股定理得FD =5 3 cm ,∴FG =12FD =532cm (3)在△AHE 与△DHB 1中,∵∠FAB 1=∠EDF =30°,FD =FA ,EF =FB =FB 1,∴FD -FB 1=FA -FE ,即AE =DB 1.又∵∠AHE =∠DHB 1.∴△AHE ≌△DHB 1(AAS ).∴AH =DH期中检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2016·哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是( D )2.若a >b ,则下列不等式变形错误的是( D )A .a +3>b +3 B.a 3>b 3C .2a -3>2b -3D .3-2a >3-2b3.(2016·临沂)不等式组⎩⎪⎨⎪⎧3x <2x +4,3-x 3≥2的解集,在数轴上表示正确的是( A )4.在平面直角坐标系中,将点A(x ,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A 的坐标是( D )A .(2,5)B .(-8,5)C .(-8,-1)D .(2,-1)5.如图,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′等于( A )A .30°B .35°C .40°D .50°,第5题图) ,第6题图) ,第7题图),第8题图)6.在△ABC 中,∠C =90°,AD 平分∠BAC ,DE 垂直平分AB ,垂足为E.若CD =2,则BD 的长为( C )A .2B .3C .4D .57.如图,AD ⊥CD ,AE ⊥BE ,垂足分别为D ,E ,且AB =AC ,AD =AE.则下列结论:①△ABE ≌△ACD ;②AM =AN ;③△ABN ≌△ACM ;④BO =EO.其中正确的有( B )A .4个B .3个C .2个D .1个8.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC =5 cm ,△ADC 的周长为17 cm ,则BC 的长为( C )A .7 cmB .10 cmC .12 cmD .22 cm9.如图,已知MN 是△ABC 的边AB 的垂直平分线,垂足为点F ,∠CAB 的平分线AD 交BC 于点D ,且MN 与AD 交于点O ,连接BO 并延长交AC 于点E ,则下列结论中不一定成立的是( B ) A .∠CAD =∠BAD B .OE =OF C .AF =BF D .OA =OB,第9题图) ,第10题图)10.如图,将边为3的正方形ABCD 绕点A 沿逆时针方向旋转30°后得到正方形AEFH ,则图中阴影部分的面积为( B ) A.32- 3 B .3- 3 C .2- 3 D .2-32 二、填空题(每小题3分,共24分)11.如图,已知∠B =∠C ,添加一个条件使△ABD ≌△ACE(不标注新的字母,不添加辅助线).则添加的条件是__AB =AC (答案不唯一)__.12.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,若AB =10 cm ,BC =8 cm ,BD =5 cm ,则△ABD 的面积为__15_cm 2__.,第11题图) ,第12题图) ,第13题图),第14题图)13.如图,在等边△ABC 中,AB =6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为__33__.14.如图,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a +b =__2__.15.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2有解,则a 的取值范围__a >-1__. 16.如图,OA ⊥OB ,△CDE 的边CD 在OB 上,∠ECD =45°,CE =4,若将△CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC 的长度为__2__.,第16题图) ,第17题图),第18题图)17.如图,点E 是正方形ABCD 内的一点,连接AE ,BE ,CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE =1,BE =2,CE =3,则∠BE ′C =__135__°.18.如图,在△ABC 中,∠ACB =90°,AC =BC ,O 是AB 的中点,点D 在AC 上,点E 在BC 上,且∠DOE =90°.则下列结论:①OA =OB =OC ;②CD =BE ;③△ODE 是等腰直角三角形;④四边形CDOE 的面积等于△ABC 的面积的一半;⑤AD 2+BE 2=2OD 2;⑥CD +CE =2OA.其中正确的有__①②③④⑤⑥__(填序号)三、解答题(共66分)19.(8分)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E.(1)求证:△ACD ≌△AED ;(2)若∠B =30°,CD =1,求BD 的长.解:(1)∵AD 平分∠CAB ,∴∠CAD =∠EAD ,∵∠C =90°,DE ⊥AB ,∴∠C =∠DEA =90°,又∵AD =AD ,∴△ACD ≌△AED (AAS ) (2)∵DE ⊥AB ,∴∠DEB =90°,又∵由(1)得△ACD ≌△AED ,∴DE =CD =1,在Rt △BDE 中,∵∠B =30°,∴BD =2DE =220.(8分)解不等式组⎩⎪⎨⎪⎧3(x -1)<5x +1,x -12≥2x -4,并指出它的所有非负整数解. 解:解不等式组得-2<x ≤73,∴不等式组的非负整数解是0,1,221.(8分)如图,△ABO 与△CDO 关于O 点中心对称,点E ,F 在线段AC 上,且AF =CE.求证:FD =BE.解:根据中心对称的性质可得BO =DO ,AO =CO ,又∵AF =CE ,∴AO -AF =CO -CE ,即OF =OE.在△ODF 和△OBE 中,DO =BO ,∠DOF =∠BOE (对顶角相等),OF =OE ,∴△ODF ≌△OBE (SAS ),∴FD =BE22.(8分)如图,OA ⊥OB ,OA =45海里,OB =15海里,我国某岛位于O 点,我国渔政船在点B 处发现有一艘不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向该岛所在地O 点,我国渔政船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国渔政船行驶的航程BC.解:(1)如答图,连接AB,作AB的垂直平分线与OA交于点C.点C即为所求(2)连接BC,设BC=x海里,则CA=x海里,OC=(45-x)海里,在Rt△OBC中,BO2+OC2=BC2,即152+(45-x)2=x2,解得x=25.则我国渔政船行驶的航程BC为25海里23.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标.解:(1)图略(2)(2,-1)24.(12分)已知△ABC是等边三角形,将一块含有30°角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角形的斜边DF上.(1)利用图①证明:EF=2BC;(2)在三角板的平移过程中,在图②中线段EB =AH 是否始终成立(假定AB ,AC 与三角板斜边的交点为G ,H)?如果成立,请证明;如果不成立,请说明理由.解:(1)∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC.∵∠F =30°,∴∠CAF =60°-30°=30°,∴∠CAF =∠F ,∴CF =AC.∴CF =AC =BC ,∴EF =2BC (2)成立.∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC ,∵∠F =30°,∴∠CHF =60°-30°=30°.∴∠CHF =∠F .∴CH =CF .∵EF =2BC ,∴EB +CF =BC.又∵AH +CH =AC ,AC =BC ,∴EB =AH25.(12分)某文具商店销售功能相同的A ,B 两种品牌的计算器,购买2个A 品牌和3个B 品牌的计算器共需156元;购买3个A 品牌和1个B 品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售.设购买x 个A 品牌的计算器需要y 1元,购买x 个B 品牌的计算器需要y 2元,分别求出y 1,y 2关于x 的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.解:(1)设A 品牌计算器的单价为x 元,B 品牌计算器的单价为y 元,根据题意得⎩⎨⎧2x +3y =156,3x +y =122, 解得⎩⎨⎧x =30,y =32 (2)根据题意得y 1=0.8×30x ,即y 1=24x.当0≤x ≤5时,y 2=32x ;当x >5时,y 2=32×5+32(x -5)×0.7,即y 2=22.4x +48 (3)当购买数量超过5个时,y 2=22.4x +48.①当y 1<y 2时,24x <22.4x +48,解得x <30,即当购买数量超过5个而小于30个时,购买A 品牌的计算器更合算;②当y 1=y 2时,24x =22.4x +48,解得x =30,即当购买数量为30个时,购买A 品牌和B 品牌的计算器花费相同;③当y 1>y 2时,24x >22.4x +48,解得x >30,即当购买数量超过30个时,购买B 品牌的计算器更合算第4章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列从左边到右边的变形,属于因式分解的是( C )A .(3-x )(3+x )=9-x 2B .(y +1)(y -3)=-(3-y )(y +1)C .m 4-n 4=(m 2+n 2)(m +n )(m -n )D .4yz -2y 2z +z =2y (2z -yz )+z2.多项式mx 2-m 与多项式x 2-2x +1的公因式是( A )A .x -1B .x +1C .x 2-1D .(x -1)2 3.下列各式中,能用公式法分解因式的有( B )①-x 2-y 2;②-14a 2b 2+1;③a 2+ab +b 2;④-x 2+2xy -y 2;⑤14-mn +m 2n 2.A .2个B .3个C .4个D .5个4.把代数式3x 3-12x 2+12x 分解因式,结果正确的是( D ) A .3x (x 2-4x +4) B .3x (x -4)2 C .3x (x +2)(x -2) D .3x (x -2)25.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是( B ) A .4x 2-4x +1=(2x -1)2 B .x 3-x =x (x 2-1) C .x 2y -xy 2=xy (x -y ) D .x 2-y 2=(x +y )(x -y ) 6.若a 2-b 2=14,a -b =12,则a +b 的值为( B )A .-12 B.12C .1D .27.已知多项式2x 2+bx +c 因式分解后为2(x -3)(x +1),则b ,c 的值为( D )A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-6 8.计算(-2)99+(-2)100的结果为( A ) A .299 B .2100 C .-299 D .-29.若多项式x 2-2(k -1)x +4是一个完全平方式,则k 的值为( D ) A .3 B .-1 C .3或0 D .3或-110.若三角形的三边长分别是a ,b ,c ,且满足a 2b -a 2c +b 2c -b 3=0,则这个三角形是( A ) A .等腰三角形 B .直角三角形C .等边三角形D .三角形的形状不确定 二、填空题(每小题3分,共24分)11.分解因式:4+12(x -y)+9(x -y)2=__(2+3x -3y )2__.12.若2a -b +1=0,则8a 2-8ab +2b 2的值为__2__.13.已知实数x ,y 满足x 2+4x +y 2-6y +13=0,则x +y 的值为__1__. 14.多项式2ax 2-8a 与多项式2x 2-8x +8的公因式为__2(x -2)__.15.若多项式(3x +2)(2x -5)+(5-2x)(2x -1)可分解为(2x +m)(x +n),其中m ,n 均为整数,则mn 的值为__-15__.16.已知长方形的面积为6m 2+60m +150(m >0),长与宽的比为3∶2,则这个长方形的周长为__10m +50__.17.已知代数式a 2+2a +2,当a =__-1__时,它有最小值,最小值为__1__.18.从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,如图甲,然后拼成一个平行四边形,如图乙,那么通过计算两个图形阴影部分的面积,可以验证成立的为__a 2-b 2=(a +b )(a -b )__.三、解答题(共66分)19.(12分)将下列各式分解因式:(1)2x 2y -8xy +8y; (2)a 2(x -y)-9b 2(x -y); 解:2y (x -2)2 解:(x -y )(a +3b )(a -3b )(3)9(m +2n )2-4(m -2n )2; (4)(y 2-1)2+6(1-y 2)+9. 解:(5m +2n )(m +10n ) 解:(y +2)2(y -2)220.(10分)先分解因式,再求值:(1)已知x -y =-23,求(x 2+y 2)2-4xy(x 2+y 2)+4x 2y 2的值;解:原式=(x -y )4,当x -y =-23时,原式=1681(2)已知x +y =1,xy =-12,求x (x +y )(x -y )-x (x +y )2的值.解:原式=-2xy (x +y ),当x +y =1,xy =-,原式=-2×(-12)×1=121.(6分)下列三个多项式:12x 3+2x 2-x ,12x 3+4x 2+x ,12x 3-2x 2,请选择你喜欢的两个多项式进行加法运算,再将结果因式分解.解:12x 3+2x 2-x +12x 3+4x 2+x =x 3+6x 2=x 2(x +6)(答案不唯一)22.(8分)甲,乙两同学分解因式x 2+mx +n ,甲看错了n ,分解结果为(x +2)(x +4);乙看错了m ,分解结果为(x +1)(x +9),请分析一下m ,n 的值及正确的分解过程.解:∵(x +2)(x +4)=x 2+6x +8,甲看错了n 的值,∴m =6,又∵(x +1)(x +9)=x 2+10x +9,乙看错了m 的值,∴n =9,∴原式为x 2+6x +9=(x +3)223.(8分)阅读下列解题过程:已知a,b,c为三角形的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4, (A)∴c2(a2-b2)=(a2+b2)(a2-b2), (B)则c2=a2+b2, (C)∴△ABC为直角三角形. (D)(1)上述解题过程中,从哪一步开始出现错误?请写出该步的代号__C__;(2)错误的原因__忽略了a2-b2=0,即a=b的可能__;(3)请写出正确的解答过程.解:∵a2c2-b2c2=a4b4,∴c2(a2-b2)=(a2+b2)(a2-b2),即c2(a2-b2)-(a2+b2)(a2-b2)=0,∴(a2-b2)(c2-a2-b2)=0,∴a2-b2=0或c2-a2-b2=0,即a=b或c2=a2+b2,∴△ABC为等腰三角形或直角三角形24.(10分)有足够多的长方形和正方形的卡片,如图①(1)如果选取1号,2号,3号卡片分别为1张,2张,3张(如图②),可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系将多项式a2+3ab+2b2分解因式;(2)小明想用类似的方法将多项式2a2+7ab+3b2分解因式,那么需要1号卡片__2__张,2号卡片__3__张,3号卡片__7__张.试画出草图,写出将多项式2a2+7ab+3b2分解因式的结果.解:(1)画图略.a2+3ab+2b2=(a+b)(a+2b)(2)2,3,7.画图略.2a2+7ab+3b2=(2a+b)(a+3b)25.(12分)阅读下列计算过程:多项式x2-11x+24分解因式,可以采取以下两种方法:①将-11x拆成两项,即-6x-5x;将24拆成两项,即9+15,则:x2-11x+24=x2-6x+9-5x+15=(x2-6x+9)-5(x-3)=(x-3)2-5(x-3)=(x-3)(x-3-5)=(x-3)(x-8);②添加一个数(112)2,再减去这个数(112)2,则:x 2-11x +24=x 2-11x +(112)2-(112)2+24=[x 2-11x +(112)2]-254=(x -112)2-(52)2=(x -112+52)(x -112-52)=(x -3)(x -8). (1)根据上面的启发,请任选一种方法将多项式x 2+4x -12分解因式;(2)已知A =a +10,B =a 2-a +7,其中a >3,指出A 与B 哪个大,并说明理由.解:(1)x 2+4x -12=x 2+4x +4-16=(x +2)2-16=(x +6)(x -2) (2)B >A.理由:B -A =a 2-a +7-a -10=a 2-2a +1-4=(a -3)(a +1),∵a >3,∴a -3>0,a +1>0,∴B -A >0,即B >A第5章单元检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( B )A .5B .4C .3D .22.若分式x 2-1x +1的值为零,则x 的值为( B )A .0B .1C .-1D .±1 3.在下列分式中,最简分式是( B ) A.x +1x 2-1 B.x +2x 2+1 C.y 2y 2 D.63y +34.下列各式从左到右的变形中正确的是( A ) A.x -12y12xy =2x -y xy B.0.2a +b a +2b =2a +b a +2b C .-x +1x -y =x -1x -y D.a +b a -b =a -b a +b5.计算a b +b a -a 2-b 2ab 的结果是( B )A.2a bB.2ba C.-2ab D.-2b a6.分式方程2x -2+3x 2-x =1的解为( A )A .1B .2 C.13D .0。
北师大版九年级上册第二次月考数学模拟试题及答案 (精选5套试题)
北师大版九年级上学期第二次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.sin30°的值为()A.B.C.D.2.一个圆柱体钢块,正中央被挖去了一个长槽,其俯视图如图所示,则此圆柱体钢块的左视图是()A.B.C.D.3.若反比例函数y=(k≠0)的图象经过点(﹣1,2),则这个函数的图象一点经过()A.(﹣2,1)B.(,2)C.(﹣2,﹣1)D.(,2)4.近视眼镜的度数s(度)是镜片焦距d(米)的反比例函数,其大致图象是()A.B.C.D.5.下列投影中,是平行投影的是()A.B.C.D.6.若关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,则k的值可以是()A.3 B.4 C.5 D.67.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,在原点的同一旁,把△ABO缩小,相似比为,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣4,1) D.(﹣2,2)8.如图,点B,C分别是锐角∠A两边上的点,AB=AC,分别以点B,C为圆心,以AB的长为半径画弧,两弧相交于点D,连接BD,C D.则根据作图过程判定四边形ABDC是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形; D.对角线平分一组对角的四边形是菱形9.某商场将每件进价为20元的玩具以30元的价格出售时,每天可售出300件.经调查当单价每涨1元时,每天少售出10件.若商场想每天获得3750元利润,设每件玩具涨x 元,可列方程为:(30+x﹣20)=3750.对所列方程中出现的代数式,下列说法错误的是()A.(30+x)表示涨价后玩具的单价B.10x表示涨价后少售出玩具的数量C.表示涨价后销售玩具的数量D.(30+x﹣20)表示涨价后的每件玩具的单价10.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x >0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小二、填空题(本大题共6小题,每小题2分,共12分.请将答案填入答题卡的相应位置)11.若,则=.12.如图,Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB=.13.如图,李明晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知李明的身高是1.5米,则BC=米.14.反比例函数y=在每一个象限内,y的值随x值的增大而增大,则满足条件的一个数值k为.15.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F,若△EDF的周长为9,则△BCF的周长为.16.如图,反比例函数y=(x>0)的图象和矩形ABCD都在第一象限内,AD与x轴平行,已知点A的坐标是(2,6),AB=2,AD=4.现将矩形ABCD向下平移m个单位,要使矩形ABCD与反比例函数y=(x>0)的图象有交点,则m的取值范围是.三、解答题(本大题有9小题,共58分.请在答题卡的相应位置作答)17.解方程:x2﹣2x﹣1=0.18.“低碳生活,绿色出行”,自行车日益成为人们喜爱的交通工具.某商场2013年销售自行车3万辆,2015年销售自行车3.63万辆.求这两年的年均增长率.19.用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起配成了紫色).小亮和小刚同时转动两个转盘,若配成紫色,小亮获胜,否则小刚获胜.这个游戏对双方公平吗?画树状图或列表说明理由.20.如图,菱形ABCD的对角线AC,BD相交于点O,且AC=16,BD=12.(1)求菱形ABCD的周长;(2)过点O作OE⊥AB于点E,求sin∠BOE的值.21.如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A(﹣1,m),B(n,﹣1)两点.(1)若C(x1,y1),D(x2,y2)是反比例函数的图象上的两点,且0<x1<x2,试比较y1,y2的大小得y1y2;(2)求这个一次函数点的表达式.22.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.23.如图,已知四边形ABCD中,∠B=∠C,AB=8,BC=10,CD=3,E是BC上一点,BE=4.(1)求证:△ABE∽△ECD;(2)求证:∠AED=∠B;(3)已知点F在BC上,且∠AFD=∠AE D.请画出∠AFD,并简要叙述画法,说明理由.24.(1)问题情境,如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)探究发现:如图2,直线y=ax+b(a<0)与反比例函数y=(k>0)的图象交于M,N两点,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E、F,连接EF.你发现(1)EF与MN有怎样位置关系?(2)ME与NF有什么数量关系?)第二次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.sin30°的值为()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值,可以求得sin30°的值.【解答】解:sin30°=,故选A.2.一个圆柱体钢块,正中央被挖去了一个长槽,其俯视图如图所示,则此圆柱体钢块的左视图是()A.B. C.D.【考点】由三视图判断几何体.【分析】左视图是从物体左面看所得到的图形.【解答】解:从物体左面看,是一个矩形,因为里面有一个长方体孔,所以有一条虚线表示的看不到的棱,故选D.3.若反比例函数y=(k≠0)的图象经过点(﹣1,2),则这个函数的图象一点经过()A.(﹣2,1)B.(,2)C.(﹣2,﹣1)D.(,2)【考点】反比例函数图象上点的坐标特征.【分析】先利用待定系数法求出反比例函数比例系数k的值,再根据反比例函数图象上点的坐标特征求解即可.【解答】解:∵反比例函数y=(k≠0)的图象经过点(﹣1,2),∴k=﹣1×2=﹣2.A、∵﹣2×1=﹣2,∴这个函数的图象一点经过(﹣2,1);B、∵﹣×2=﹣1≠﹣2,∴这个函数的图象一点不经过(﹣,2);C、∵﹣2×(﹣1)=2≠﹣2,∴这个函数的图象一点不经过(﹣2,﹣1);D、∵×2=1≠﹣2,∴这个函数的图象一点不经过(,2);故选A.4.近视眼镜的度数s(度)是镜片焦距d(米)的反比例函数,其大致图象是()A.B.C.D.【考点】反比例函数的图象.【分析】根据反比例函数的图象可排除A、B选项,再根据s、d均为正值,由此即可得出结论.【解答】解:∵近视眼镜的度数s(度)是镜片焦距d(米)的反比例函数,∴A、B不符合题意.又∵s、d均为大于0的数,∴反比例函数图象在第一象限.故选C.5.下列投影中,是平行投影的是()A.B.C.D.【考点】平行投影.【分析】连接影子的顶端和树的顶端得到投影线,若投影线平行则为平行投影.【解答】解:如图,只有B中的投影线是平行的,故选B.6.若关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,则k的值可以是()A.3 B.4 C.5 D.6【考点】根的判别式.【分析】根据判别式的意义得到△=(﹣4)2﹣4k>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,∴△=(﹣4)2﹣4k>0,解得k<4.k的值可以是3,故选A.7.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,在原点的同一旁,把△ABO缩小,相似比为,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣4,1)D.(﹣2,2)【考点】位似变换;坐标与图形性质.【分析】利用位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,把A点的横纵坐标分别乘以即可得到点A的对应点A′的坐标.【解答】解:点A(﹣4,2)的对应点A′的坐标是(﹣2,1).故选A.8.如图,点B,C分别是锐角∠A两边上的点,AB=AC,分别以点B,C为圆心,以AB的长为半径画弧,两弧相交于点D,连接BD,C D.则根据作图过程判定四边形ABDC是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线平分一组对角的四边形是菱形【考点】菱形的判定.【分析】由AE=AF=ED=DF,根据四条边都相等的四边形是菱形,即可证得:四边形AEDF 是菱形.【解答】解:根据作图过程判定四边形ABDC是菱形的依据是:四边相等的四边形是菱形,理由如下:∵根据题意得:AE=AF=ED=DF,∴四边形AEDF是菱形,故选B.9.某商场将每件进价为20元的玩具以30元的价格出售时,每天可售出300件.经调查当单价每涨1元时,每天少售出10件.若商场想每天获得3750元利润,设每件玩具涨x元,可列方程为:(30+x﹣20)=3750.对所列方程中出现的代数式,下列说法错误的是()A.(30+x)表示涨价后玩具的单价B.10x表示涨价后少售出玩具的数量C.表示涨价后销售玩具的数量D.(30+x﹣20)表示涨价后的每件玩具的单价【考点】由实际问题抽象出一元二次方程.【分析】设涨价x元,然后分别表示出销量和涨价后的单价即可列出方程求解.【解答】解:设涨价x元,根据题意可得:A、∵(30+x)表示涨价后玩具的单价,∴A选项正确;B、∵10x表示涨价后少售出玩具的数量,∴B选项正确;C、∵表示涨价后销售玩具的数量,∴C选项正确;D、∵(30+x﹣20)表示涨价后的每件玩具的利润,故D选项错误,故选D.10.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x >0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大 B.不变 C.逐渐减小 D.先增大后减小【考点】反比例函数系数k的几何意义.【分析】由双曲线y=(x>0)设出点P的坐标,运用坐标表示出四边形OAPB的面积函数关系式即可判定.【解答】解:设点P的坐标为(x,),∵PB⊥y轴于点B,点A是x轴正半轴上的一个定点,∴四边形OAPB是个直角梯形,∴四边形OAPB的面积=(PB+AO)•BO=(x+AO)•=+=+•,∵AO是定值,∴四边形OAPB的面积是个减函数,即点P的横坐标逐渐增大时四边形OAPB的面积逐渐减小.故选:C.二、填空题(本大题共6小题,每小题2分,共12分.请将答案填入答题卡的相应位置)11.若,则=.【考点】比例的性质.【分析】根据分比定理【分比定理:如果a:b=c:d,那么(a﹣b):b=(c﹣d):d(b、d≠0)】解答.【解答】解:∵,∴==.故答案为:.12.如图,Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB=4cm.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2C D.【解答】解:∵∠ACB=90°,D是AB的中点,∴AB=2CD=2×2=4cm.故答案为:4cm.13.如图,李明晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知李明的身高是1.5米,则BC=3米.【考点】相似三角形的应用;中心投影.【分析】根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的光线三者构成的两个直角三角形相似解答.【解答】解:∵=,当李明在CG处时,Rt△DCG∽Rt△DBA,即=,当李明在EH处时,Rt△FEH∽Rt△FBA,即==,∴=,∵CG=EH=1.5米,CD=1米,CE=3米,EF=2米,设AB=x,BC=y,∴=,解得:y=3,经检验y=3是原方程的根.则BC=3(m).故答案为:3.14.反比例函数y=在每一个象限内,y的值随x值的增大而增大,则满足条件的一个数值k为﹣1.【考点】反比例函数的性质.【分析】根据反比例函数的单调性即可得出k<0,取其内的任意一个数即可得出结论.【解答】解:∵反比例函数y=在每一个象限内,y的值随x值的增大而增大,∴k<0.∵﹣1<0,∴可以取k=﹣1.故答案为:﹣1.15.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F,若△EDF的周长为9,则△BCF的周长为18.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】只要证明△FED∽△FBC,推出=,再证明BC=2DE,即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴DE∥BC,AD=BC,∴△FED∽△FBC,∴=∵AE=DE,∴BC=2DE,∵△EDF的周长为9,∴△FBC的周长为18.故答案为18.16.如图,反比例函数y=(x>0)的图象和矩形ABCD都在第一象限内,AD与x轴平行,已知点A的坐标是(2,6),AB=2,AD=4.现将矩形ABCD向下平移m个单位,要使矩形ABCD与反比例函数y=(x>0)的图象有交点,则m的取值范围是1≤m≤5.【考点】反比例函数图象上点的坐标特征.【分析】根据矩形性质得出AB=CD=2,AD=BC=4,即可得出B(2,4),C(6,4),D(6,6),根据向下平移横坐标不变,分别代入B的横坐标和D的横坐标求得对应的函数值,即可求得m的取值范围.【解答】解:∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).∴AB=CD=2,AD=BC=4,∴B(2,4),C(6,4),D(6,6);当B点落在反比例函数的图象上时,把x=2代入y=得,y=3,∴m=4﹣3=1,当D点落在反比例函数的图象上时,把x=6代入y=得,y=1,∴m=6﹣1=5,∴要使矩形ABCD与反比例函数y=(x>0)的图象有交点,则m的取值范围是1≤m≤5.故答案为1≤m≤5.三、解答题(本大题有9小题,共58分.请在答题卡的相应位置作答)17.解方程:x2﹣2x﹣1=0.【考点】解一元二次方程﹣公式法.【分析】先整理成一元二次方程的一般形式再利用求根公式求解,或者利用配方法求解皆可.【解答】解:解法一:∵a=1,b=﹣2,c=﹣1∴b2﹣4ac=4﹣4×1×(﹣1)=8>0∴∴,;解法二:(x﹣1)2=2∴∴,.18.“低碳生活,绿色出行”,自行车日益成为人们喜爱的交通工具.某商场2013年销售自行车3万辆,2015年销售自行车3.63万辆.求这两年的年均增长率.【考点】一元二次方程的应用.【分析】设这两年的年均增长率为x.等量关系为:2013年的销售量×(1+增长率)2=2015年的销售量,把相关数值代入求解即可.【解答】解:设这两年的年均增长率为x,根据题意列方程:3(1+x)2=3.63,解得x1=﹣210%(不合题意,舍去),x2=10%.答:这两年的年均增长率为10%.19.用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起配成了紫色).小亮和小刚同时转动两个转盘,若配成紫色,小亮获胜,否则小刚获胜.这个游戏对双方公平吗?画树状图或列表说明理由.【考点】游戏公平性;列表法与树状图法.【分析】游戏是否公平,关键要看游戏双方取胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等即可.【解答】解:游戏不公平,理由如下:游戏结果分析如下:“√”表示配成紫色,“×”表示不能够配成紫色.红蓝绿红×√×蓝√××P(配紫色)=,P(没有配紫色)=,∵,∴这个游戏对双方不公平.20.如图,菱形ABCD的对角线AC,BD相交于点O,且AC=16,BD=12.(1)求菱形ABCD的周长;(2)过点O作OE⊥AB于点E,求sin∠BOE的值.【考点】菱形的性质;解直角三角形.【分析】(1)由已知条件可求出菱形的边长,进而可求出其周长;(2)由△AOB的面积为菱形面积的四分之一,可求出OE的长,进而可求出sin∠BOE的值.【解答】解:(1)∵四边形ABCD是菱形,AC=16,BD=12,∴AC⊥BD,AO=OC=AC=8,BO=BD=BD=6,在Rt△AOB中,由勾股定理得:AB==10,∴菱形ABCD的周长=4AB=40;(2)∵菱形ABCD的面积=AC•BD=96,∴△AOB的面积=×96=24,∴OE==4.8,∴BE=3.6,∴sin∠BOE==.21.如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A(﹣1,m),B(n,﹣1)两点.(1)若C(x1,y1),D(x2,y2)是反比例函数的图象上的两点,且0<x1<x2,试比较y1,y2的大小得y1<y2;(2)求这个一次函数点的表达式.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数的性质即可直接判断;(2)首先把A和B的坐标代入反比例函数解析式求得m和n的值,然后利用待定系数法求得函数解析式.【解答】解:(1)∵比例系数k=﹣2<0,∴当且0<x1<x2时,y1<y2.故答案是:<;(2)把A(﹣1,m)和B(n,﹣1)代入y=﹣得:m=2,n=2.则A的坐标是(﹣1,2),B的坐标是(2,﹣1).根据题意得,解得:,则一次函数的解析式是y=﹣x+1.22.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.【考点】作图﹣位似变换;作图﹣旋转变换.【分析】(1)由A(﹣1,2),B(﹣3,4)C(﹣2,6),可画出△ABC,然后由旋转的性质,即可画出△A1B1C1;(2)由位似三角形的性质,即可画出△A2B2C2.【解答】解:如图:(1)△A1B1C1即为所求;(2)△A2B2C2即为所求.23.如图,已知四边形ABCD中,∠B=∠C,AB=8,BC=10,CD=3,E是BC上一点,BE=4.(1)求证:△ABE∽△ECD;(2)求证:∠AED=∠B;(3)已知点F在BC上,且∠AFD=∠AE D.请画出∠AFD,并简要叙述画法,说明理由.【考点】相似三角形的判定与性质;作图—相似变换.【分析】(1)由AB=8,BC=10,CD=3,BE=4,易得AB:EC=BE:CD,又由∠B=∠C,即可证得:△ABE∽△ECD;(2)由△ABE∽△ECD,可得∠BAE=∠CED,然后由三角形外角的性质,证得结论;(3)根据同弧所对的圆周角相等,可得作△ADE的外接圆⊙O,则⊙O与BC的交点即为点F.【解答】证明:(1)∵BC=10,BE=4,∴EC=BC﹣BE=6,∵AB=8,CD=3,∴AB:EC=8:6=4:3,BE:CD=4:3,∴AB:EC=BE:CD,∵∠B=∠C,∴△ABE∽△ECD;(2)∵△ABE∽△ECD,∴∠BAE=∠CED,∵∠B+∠BAE=∠AED+∠CED,∴∠AED=∠B;(3)如图,作△ADE的外接圆⊙O,则⊙O与BC的交点即为点F.24.(1)问题情境,如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)探究发现:如图2,直线y=ax+b(a<0)与反比例函数y=(k>0)的图象交于M,N两点,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E、F,连接EF.你发现(1)EF与MN有怎样位置关系?(2)ME与NF有什么数量关系?【考点】反比例函数综合题.【分析】(1)分别过点C、D作CG⊥AB、DH⊥AB,垂足为G、H,根据三角形的面积求出CG=DH,推出平行四边形CGDH即可;(2)①证△EMF和△NEF的面积相等,根据(1)即可推出答案;②设出M、N的坐标,根据M、N分别为直线与反比例函数的交点,代入两解析式可得到ME和NF的关系.【解答】(1)证明:分别过点C、D作CG⊥AB、DH⊥AB,垂足为G、H,如图①,则∠CGA=∠DHB=90°.∵CG⊥AB、DH⊥AB,∴∠CGA=∠DHA=90°,∴∠CGA+∠DHA=180°,∴CG∥DH.∵△ABC与△ABD的面积相等,∴CG=DH,∴四边形CGHD为平行四边形,∴AB∥CD;(2)①证明:连接MF,NE,如图②,设点M的坐标为(x1,y1),点N的坐标为(x2,y2),∵点M,N在反比例函数y=(k>0)的图象上,∴x1y1=k,x2y2=k,∵ME⊥y轴,NF⊥x轴,∴OE=y1,OF=x2,∴S△EFM=x1y1=k,S△EFN=x2y2=k,∴S△EFM=S△EFN,由(1)中的结论可知:MN∥EF;②设点M的坐标为(x1,y1),点N的坐标为(x2,y2),∵直线y=ax+b(a<0)与反比例函数y=(k>0)的图象交于M,N两点,∴,消去b可得y1﹣y2=a(x1﹣x2)(*),且,图1代入(*)式可得﹣=a (x 1﹣x 2),整理可得k (x 2﹣x 1)=a (x 1﹣x 2)x 1x 2,∴k =﹣ax 1x 2, ∴=﹣ax 1,即y 2=﹣ax 1,∴NF =﹣aME .北师大版九年级上学期第二次月考数学试卷(考试时间:100分钟,满分:120分)一、选择题(每小题3分,共30分)1.下列方程是关于x 的一元二次方程的是( ) A .02=++c bx ax B .162-+x xC .02142333=--x x D .032)3(22=-++x x m 2.分别以下列四组数为一个三角形的边长① 6,8,10 ② 5,12,13 ③ 8,15,16④ 4,5,6,其中能构成直角三角形的有( )A .①④B .②③C .①②D .②④3.有三条公路相交如图1,现计划修建一个油库,要求到三条公路的距离相等,则符合条件的油库的位置有( )A .1处B .2处C .3处D .4处4.根据下表的对应值,判断方程02=++c bx ax (c b a a ,,,0≠为常数)的一个解x 的范围是( )x3.23 3.24 3.25 3.26 c bx ax ++2-0.06-0.020.030.09A .3<x <3.33B .3.23<x <3.24C .3.24<x <3.25 D. 3.25<x <3.26 5.方程0422=-+x x 的根的情况是( )A .有两个不相等实数根 B. 有两个相等实数根C. 有一个实数根D.没有实数根6.关于x 的一元二次方程0122=-+x kx 有两个不相等的实数根,则k 的取值范围是( )A .1->k B. 1>k C. 0≠k D. 1->k 且0≠k 7.已知等腰三角形的一个内角为30°,则这个等腰三角形的顶角..为( ) A. 30° B. 75° C. 75°或120° D. 30°或120°8.九年级(2)的每个同学都将自己的照片向全班其他同学各送一张表示留念,全班共送了2550张,若全班有x 名学生,根据题意列方程为( ) A.2550)1(=+x x B.2550)1(=-x x C.2550)1(2=+x xD.25502)1(⨯=-x x9.如图2,在△ABC 与△DEF 中,已有条件AB =DE ,还需添加两个条件才能使△ABC ≌△DEF ,不能..添加的一组条件是( ) A .∠B =∠E ,BC =EF B. BC =EF ,AC =DFC . ∠A =∠D ,∠B =∠E D. ∠A =∠D ,BC =EF10.如图3,在等腰△ABC 中,AB =AC ,∠A =30°,线段AC 的垂直平分线交AC 于D ,交AB 于E ,连接CE ,则∠BCE 等于( )A.70°B.60°C.45°D.50° 二、填空题(每小题4分,共24分)11.22____)(_____8-=+-x x x12.已知等腰△ABC 的腰AB =AC =10㎝,底BC =12㎝,则∠A 的平分线长是________㎝。
【新】北师大版八年级下册第一次月考数学试卷含答案 (2)
八年级(下)第一次月考数学试卷一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里.每小题4分,共40分.1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C. D.﹣3x>﹣3y2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或123.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>44.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个5.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣26.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.57.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.68.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个9.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k 的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥310.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.12.设a、b是直角三角形的两条直角边,若该直角三角形的周长为6,斜边长为2.5,则ab的值是.13.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是.(填写所有真命题的序号)14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.15.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE 为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.16.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三.解答题:本大题共6小题,满分56分.17.解不等式:.18.若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.19.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.20.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.21.某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?22.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里.每小题4分,共40分.1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C. D.﹣3x>﹣3y【考点】不等式的性质.【分析】根据不等式的性质1,可判断A、B;根据不等式的性质2,可判断C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都减3,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号的方向不变,故B正确;C、不等式的两边都乘以,不等号的方向不变,故C正确;D、不等式的两边都乘以﹣3,不等号的方向改变,故D错误;故选:D.【点评】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或12【考点】等腰三角形的性质;三角形三边关系.【分析】分2是腰长与底边长两种情况讨论求解.【解答】解:①2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,综上所述,它的周长是10.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系进行判定.3.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>4【考点】解一元一次不等式;一元一次方程的解.【分析】把m看作常数,根据一元一次方程的解法求出x的表达式,再根据方程的解是负数列不等式并求解即可.【解答】解:由2x+4=m﹣x得,x=,∵方程有负数解,∴<0,解得m<4.故选C.【点评】本题考查了一元一次方程的解与解不等式,把m看作常数求出x的表达式是解题的关键.4.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.5.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2【考点】一元一次不等式的整数解.【分析】表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.【解答】解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<﹣2故选D.【点评】此题考查了一元一次不等式的整数解,弄清题意是解本题的关键.6.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.5【考点】勾股定理;等腰三角形的性质.【专题】动点型.【分析】过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.【解答】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.【点评】本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.7.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.6【考点】含30度角的直角三角形;等腰三角形的性质.【专题】计算题.【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD 的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故选:C.【点评】此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.8.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质;角平分线的性质;相似三角形的判定与性质.【分析】根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.9.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k 的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥3【考点】一次函数与一元一次不等式.【分析】把点的坐标代入直线方程得到a=﹣,然后将其代入不等式组﹣3≤a<0,通过不等式的性质来求k的取值范围.【解答】解:把点(0,3)(a,0)代入y=kx+b,得b=3.则a=﹣,∵﹣3≤a<0,∴﹣3≤﹣<0,解得:k≥1.故选C.【点评】本题考查了一次函数与一元一次不等式.把点的坐标代入直线方程得到a=﹣是解题的关键.10.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选:A.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为4.【考点】解一元一次不等式.【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【解答】解:去分母得,x﹣m>3(3﹣m),去括号得,x﹣m>9﹣3m,移项,合并同类项得,x>9﹣2m,∵此不等式的解集为x>1,∴9﹣2m=1,解得m=4.故答案为:4.【点评】考查了解一元一次不等式,解答此题的关键是掌握不等式的性质,(1)不等式两边同加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边同乘(或同除以)同一个正数,不等号的方向不变;(2)不等式两边同乘(或同除以)同一个负数,不等号的方向改变.12.设a、b是直角三角形的两条直角边,若该直角三角形的周长为6,斜边长为2.5,则ab的值是3.【考点】勾股定理.【分析】根据勾股定理得出a2+b2的值,再利用完全平方公式求出ab的值.【解答】解:∵a、b是直角三角形的两条直角边,直角三角形的周长为6,斜边长为2.5,∴a+b=3.5,a2+b2=2.52=6.25,(a+b)2=12.25,∴a2+b2+2ab=12.25,∴2ab=6,解得:ab=3.故答案为:3.【点评】此题主要考查了勾股定理以及完全平方公式,正确应用完全平方公式是解题关键.13.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是①②④.(填写所有真命题的序号)【考点】命题与定理;平行线的判定与性质.【专题】推理填空题.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①如果a∥b,a⊥c,那么b⊥c是真命题,故①正确;②如果b∥a,c∥a,那么b∥c是真命题,故②正确;③如果b⊥a,c⊥a,那么b⊥c是假命题,故③错误;④如果b⊥a,c⊥a,那么b∥c是真命题,故④正确.故答案为:①②④.【点评】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,难度适中.14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为x>.【考点】一次函数与一元一次不等式.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x>ax+4的解集即可.【解答】解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=,∴A(,3),∴不等式2x>ax+4的解集为x>.故答案为:,【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.15.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE 为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【考点】等边三角形的判定与性质;三角形的重心;三角形中位线定理.【专题】压轴题.【分析】根据等边三角形的性质,可得AD的长,∠ABG=∠HBD=30°,根据等边三角形的判定,可得△MEH的形状,根据直角三角形的判定,可得△FIN的形状,根据面积的和差,可得答案.【解答】解:如图所示:,由△ABC是等边三角形,高AD、BE相交于点H,BC=4,得AD=BE=BC=6,∠ABG=∠HBD=30°.由直角三角的性质,得∠BHD=90°﹣∠HBD=60°.由对顶角相等,得∠MHE=∠BHD=60°由BG=2,得EG=BE﹣BG=6﹣2=4.由GE为边作等边三角形GEF,得FG=EG=4,∠EGF=∠GEF=60°,△MHE是等边三角形;S△ABC=AC•BE=AC×EH×3EH=BE=×6=2.由三角形外角的性质,得∠BIG=∠FGE﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,IN=.=S△EFG﹣S△EMH﹣S△FINS五边形NIGHM=×42﹣×22﹣××1=,故答案为:.【点评】本题考查了等边三角形的判定与性质,利用了等边三角形的判定与性质,直角三角形的判定,利用图形的割补法是求面积的关键.16.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为或.【考点】勾股定理;等腰直角三角形.【专题】分类讨论.【分析】分①点A、D在BC的两侧,设AD与边BC相交于点E,根据等腰直角三角形的性质求出AD,再求出BE=DE=AD并得到BE⊥AD,然后求出CE,在Rt△CDE中,利用勾股定理列式计算即可得解;②点A、D在BC的同侧,根据等腰直角三角形的性质可得BD=AB,过点D作DE⊥BC 交BC的反向延长线于E,判定△BDE是等腰直角三角形,然后求出DE=BE=2,再求出CE,然后在Rt△CDE中,利用勾股定理列式计算即可得解.【解答】解:①如图1,点A、D在BC的两侧,∵△ABD是等腰直角三角形,∴AD=AB=×2=4,∵∠ABC=45°,∴BE=DE=AD=×4=2,BE⊥AD,∵BC=1,∴CE=BE﹣BC=2﹣1=1,在Rt△CDE中,CD===;②如图2,点A、D在BC的同侧,∵△ABD是等腰直角三角形,∴BD=AB=2,过点D作DE⊥BC交BC的反向延长线于E,则△BDE是等腰直角三角形,∴DE=BE=×2=2,∵BC=1,∴CE=BE+BC=2+1=3,在Rt△CDE中,CD===,综上所述,线段CD的长为或.故答案为:或.【点评】本题考查了勾股定理,等腰直角三角形的性质,难点在于要分情况讨论,作出图形更形象直观.三.解答题:本大题共6小题,满分56分.17.解不等式:.【考点】解一元一次不等式.【分析】利用不等式的基本性质,即可求得原不等式的解集.【解答】解:去分母得:6(5x+1)﹣3(x﹣2)>2(5x﹣1)+4(x﹣3),去括号得:0x+6﹣3x+6>10x﹣2+4x﹣12,移项得:30x﹣3x﹣10x﹣4x>﹣2﹣12﹣6﹣6,合并同类项得:13x>﹣26,系数化为1得:x>﹣13.【点评】本题考查了解一元一次不等式,熟练掌握不等式的性质是解题的关键.18.若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.【考点】二元一次方程组的解;解一元一次不等式.【专题】计算题;一次方程(组)及应用;一元一次不等式(组)及应用.【分析】把a看做已知数表示出方程组的解,代入已知不等式求出a的范围即可.【解答】解:方程组,解得:,∴x+y=1+a,∵x+y<2,∴1+a<2,解得:a<4.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.【考点】全等三角形的判定与性质;平行线的性质;等腰三角形的判定与性质.【分析】(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.首先根据OC是∠AOB的平分线,CD∥OB,判断出∠DOC=∠DC0,所以OD=CD=DM+CM;然后根据E是线段OC的中点,CD∥OB,推得CM=ON,即可判断出OD=DM+ON,据此解答即可.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.由(1),可得OD=DC=CM﹣DM,再根据CM=ON,推得OD=ON﹣DM即可.【解答】解:(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.证明:如图1,,∵OC是∠AOB的平分线,∴∠DOC=∠C0B,又∵CD∥OB,∴∠DCO=∠C0B,∴∠DOC=∠DC0,∴OD=CD=DM+CM,∵E是线段OC的中点,∴CE=OE,∵CD∥OB,∴,∴CM=ON,又∵OD=DM+CM,∴OD=DM+ON.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.证明:如图2,,由(1),可得OD=DC=CM﹣DM,又∵CM=ON,∴OD=DC=CM﹣DM=ON﹣DM,即OD=ON﹣DM.【点评】(1)此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.(2)此题还考查了等腰三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.20.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.【考点】全等三角形的判定与性质.【分析】连接BE,根据已知条件先证出∠BCE=∠ACD,根据SAS证出△ACD≌△BCE,得出AD=BE,再根据勾股定理求出AB,然后根据∠BAC=∠CAE=45°,求出∠BAE=90°,在Rt△BAE中,根据AB、AE的值,求出BE,从而得出AD.【解答】解:如图,连接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE====9,∴AD=9.【点评】此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、勾股定理,关键是根据题意作出辅助线,证出△ACD≌△BCE.21.某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?【考点】一次函数的应用.【分析】(1)根据题意可知进行加工的人数为(30﹣x)人,采摘的数量为0.4x吨,加工的数量为(9﹣0.3x)吨,直接出售的数量为0.4x﹣(9﹣0.3x)=(0.7x﹣9)吨,由此可得出y与x的关系式;(2)先求出x的取值范围,再由x为整数即可得出结论.【解答】解:(1)根据题意得,进行加工的人数为(30﹣x)人,采摘的数量为0.4x吨,加工的数量为(9﹣0.3x)吨,直接出售的数量为0.4x﹣(9﹣0.3x)=(0.7x﹣9)吨,y=4000×(0.7x﹣9)+10000×(9﹣0.3x)=﹣200x+54000;(2)根据题意得,0.4x≥9﹣0.3x,解得x≥12,∴x的取值是12≤x≤30的整数.∵k=﹣200<0,∴y随x的增大而减小,∴当x=13时利润最大,即13名工人进行苹果采摘,17名工人进行加工,获利最大.【点评】本题考查的是一次函数的应用,根据题意列出关于x、y的关系式是解答此题的关键.22.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.【考点】全等三角形的判定与性质;角平分线的性质;等腰直角三角形.【专题】证明题;几何综合题.【分析】(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等证明即可;(2)①过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可;②求出∠CAE=∠CEA=67.5°,根据等角对等边可得AC=CE,再利用“HL”证明Rt△ACM和Rt△ECM 全等,根据全等三角形对应角相等可得∠ACM=∠ECM=22.5°,从而求出∠DAE=∠ECM,根据等腰直角三角形的性质可得AD=CD,再利用“角边角”证明△ADE和△CDN全等,根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出等腰直角三角形和全等三角形是解题的关键,难点在于最后一问根据角的度数得到相等的角.。
新北师大版八年级数学下册各章测试题附答案(全册)
第一章《三角形的证明》水平测试一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配. A. ① B. ②C.③D. ①和②2.下列说法中,正确的是().A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3.如图2,AB ⊥CD ,△ABD 、△BCE 都是等腰三角形,如果CD =8cm ,BE=3cm ,那么AC长为().A .4cmB .5cmC .8cmD .34cm4.如图3,在等边ABC 中,,D E 分别是,BC AC 上的点,且BD CE ,AD 与BE 相交于点P ,则12的度数是(). A .045B .055C .060D .0755.如图4,在ABC 中,AB=AC ,36A ,BD 和CE 分别是ABC 和ACB 的平分线,且相交于点P. 在图4中,等腰三角形(不再添加线段和字母)的个数为().A .9个B .8个C .7个D .6个6.如图5,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有().A .1处B .2处C .3处D .4处7.如图6,A 、C 、E 三点在同一条直线上,△DAC 和△EBC 都是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AC =DN. 其中,正确结论的个数是().A .3个B .2个C .1个D .0个8.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在同一条直线上(如图7),可以证明ABC ≌EDC ,得ED=AB. 因此,测得DE 的长就是AB 的长,在这里判定ABC ≌EDC 的条件是().A .ASAB .SASC .SSSD .HL9.如图8,将长方形ABCD 沿对角线BD 翻折,点C 落在点E 的位置,BE 交AD 于点F. 求证:重叠部分(即BDF )是等腰三角形.证明:∵四边形ABCD 是长方形,∴AD ∥BC又∵BDE 与BDC 关于BD 对称,∴23. ∴BDF 是等腰三角形.请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?().①12;②13;③34;④BDC BDEA .①③B .②③C .②①D .③④10.如图9,已知线段a ,h 作等腰△ABC ,使AB =AC ,且BC =a ,BC 边上的高AD =h. 张红的作法是:(1)作线段BC =a ;(2)作线段BC 的垂直平分线MN ,MN 与BC 相交于点D ;(3)在直线MN 上截取线段h ;(4)连结AB ,AC ,则△ABC 为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是().A. (1)B. (2)C. (3)D. (4)二、细心填一填,一锤定音(每小题2分,共20分)1.如图10,已知,在△ABC 和△DCB 中,AC=DB ,若不增加任何字母与辅助线,要使△ABC ≌△DCB ,则还需增加一个条件是____________.2.如图11,在Rt ABC 中,090,BAC ABAC ,分别过点,B C 作经过点A 的直线的垂线段BD ,CE ,若BD=3厘米,CE=4厘米,则DE 的长为_______.3.如图12,P ,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ ,则∠ABC 等于_________度.4.如图13,在等腰ABC 中,AB=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若BCE 的周长为50,则底边BC 的长为_________. 5.在ABC 中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得的锐角为50,则图8底角B 的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,点 B与点A 重合,折痕为DE ,则CD 的长为________.8.如图15,在ABC 中,AB=AC ,120A ,D 是BC 上任意一点,分别做DE ⊥AB于E ,DF ⊥AC 于F ,如果BC=20cm ,那么DE+DF= _______cm.9.如图16,在Rt △ABC 中,∠C=90°,∠B=15°,DE 是AB 的中垂线,垂足为D ,交BC于点E ,若4BE,则AC_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?三、耐心做一做,马到成功(本大题共48分)1.(7分)如图18,在ABC 中,090ACB,CD 是AB 边上的高,30A . 求证:AB= 4BD.2.(7分)如图19,在ABC 中,090C ,AC=BC ,AD 平分CAB 交BC 于点D ,DE ⊥AB 于点E ,若AB=6cm. 你能否求出BDE 的周长?若能,请求出;若不能,请说明理由.3.(10分)如图20,D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点. 现有四个条件:①AB =AC ;②OB =OC ;③∠ABE =∠ACD ;④BE =CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正.确.的命题:命题的条件是和,命题的结论是和(均填序号).(2)证明你写出的命题.已知:求证:证明:4.(8分)如图21,在ABC 中,90A ,AB=AC ,ABC 的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点 E.求证:12CEBD .5.(8分)如图22,在ABC 中,90C .(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.6.(8分)如图23,90AOB ,OM 平分AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.四、拓广探索(本大题12分)如图24,在ABC 中,AB=AC ,AB 的垂直平分线交AB 于点N ,交BC 的延长线于点M ,若40A .(1)求NMB 的度数;(2)如果将(1)中A 的度数改为070,其余条件不变,再求NMB 的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A 改为钝角,你对这个规律性的认识是否需要加以修改?图21图24图23答案:一、精心选一选,慧眼识金1.C ;2.B ;3.D .点拨:BC=BE=3cm ,AB=BD=5cm ;4.C .点拨:利用ABD ≌BCE ;5.B ;6.D .点拨:三角形的内角平分线或外角平分线的交点处均满足条件;7.B .点拨:①②正确;8.A ;9.C ;10.C .点拨:在直线MN 上截取线段h ,带有随意性,与作图语言的准确性不相符.二、细心填一填,一锤定音1.答案不惟一.如ACBDBC ;2.7厘米. 点拨:利用ABD ≌CAE ;3.030;4.23.点拨:由27BE CE ACAB,可得502723BC;5.070或020.点拨;当ABC 为锐角三角形时,70B;当ABC 为钝角三角形时,20B ;6.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;7.154cm . 点拨:设CDx ,则易证得10BDAD x .在Rt ACD 中,222(10)5x x ,解得154x.8.10.点拨:利用含030角的直角三角形的性质得,1122DE DFBD CDBC .9.2. 点拨:在Rt AEC 中,030AEC,由AE=BE= 4,则得AC=2;10.16.点拨:AB=26米,AC+BC=34米,故少走8米,即16步. 三、耐心做一做,马到成功1.∵90ACB ,30A ,∴AB=2BC ,60B .又∵CD ⊥AB ,∴030DCB ,∴BC=2BD.∴AB= 2BC= 4BD.2.根据题意能求出BDE 的周长. ∵090C ,90DEA,又∵AD 平分CAB ,∴DE=DC.在Rt ADC 和Rt ADE 中,DE=DC ,AD=AD ,∴Rt ADC ≌Rt ADE (HL ).∴AC=AE ,又∵AC=BC ,∴AE=BC.∴BDE 的周长DE DB EB BC EB AE EB AB .∵AB=6cm ,∴BDE 的周长=6cm.3.(1)①,③;②,④.(2)已知:D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点,且AB =AC ,∠ABE =∠ACD. 求证:OB =OC ,BE =CD.证明:∵AB=AC ,∠ABE =∠ACD ,∠A =∠A ,∴△ABE ≌△ACD (ASA ).∴BE=CD.又∵ABC ACB ,∴BCD ACB ACD ABC ABE CBE∴BOC 是等腰三角形,∴OB =OC.4.延长CE 、BA 相交于点 F.∵090,90EBF F ACF F ,∴EBF ACF .在Rt ABD 和Rt ACF 中,∵DBA ACF ,AB=AC ,∴Rt ABD ≌Rt ACF (ASA ). ∴BD CF .在Rt BCE 和Rt BFE 中,∵BE=BE ,EBC EBF ,∴RtBCE ≌Rt BFE (ASA ).∴CEEF. ∴1122CECFBD .5.(1)图略. 点拨:作线段AB 的垂直平分线.(2)连结BP.∵点P 到AB 、BC 的距离相等,∴BP 是ABC 的平分线,∴ABPPBC .又∵点P 在线段AB 的垂直平分线上,∴PA=PB ,∴A ABP .∴190303AABPPBC.6.过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点 F.∵OM 平分AOB ,点P 在OM 上,∴PE=PF.又∵090AOB ,∴90EPF .∴EPF CPD ,∴E P CF P D.∴Rt PCE ≌Rt PDF (ASA ),∴PC=PD. 四、拓广探索(1)∵AB=AC ,∴BACB .∴11180180407022BA.∴90907020NMB B. (2)解法同(1).同理可得,035NMB.(3)规律:NMB 的度数等于顶角A 度数的一半.证明:设A.∵AB=AC ,∴BC ,∴11802B .∵090BNM ,∴11909018022NMB B.即NMB 的度数等于顶角A 度数的一半. (4)将(1)中的A 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.全品中考网全品第二章一元一次不等式(组)检测试题一、选择题(每小题3分,共36分)1.x 与y 的差的5倍与2的和是一个非负数,可表示为()(A )025y x (B )025y x(C )025y x (D )0225y x 2.下列说法中正确的是()(A )3x 是32x 的一个解. (B )3x 是32x 的解集. (C )3x是32x 的唯一解. (D )3x不是32x 的解.3. 不等式222xx 的非负整数解的个数是()(A )1 (B )2(C )3(D )44.已知正比例函数x m y 12的图象上两点2221,,,y x B x x A ,当21x x 时,有21y y ,那么m 的取值范围是()(A )21m(B )21m(C )2m (D )m 5.不等式组2.351,062xx的解集是()(A )32x (B )38x (C )38x (D )8x或3x 6.若,0ba 且0b,则b a b a ,,,的大小关系是()(A )b a b a (B )ba ab (C )baba(D )a b ba7.已知关于x 的一次函数72m mx y在51x上的函数值总是正的,则m 的取值范围是()(A )7m (B )1m (C )71m (D )以上答案都不对8.如果方程组.33,13yxk y x 的解为x 、y ,且42k,则y x的取值范围是()(A )10yx (B )210yx (C )11yx(D )13yx9.若方程x xm x m 53113的解是负数,则的取值范围是()(A )45m(B )45m(C )45m(D )45m10.两个代数式1x 与3x的值的符号相同,则x 的取值范围是()(A )3x (B )1x (C )21x (D )1x 或3x 11.若不等式33a xa 的解集是1x ,则a 的取值范围是()(A )3a (B )3a(C )3a(D )3a 12.若4224m m ,那么m 的取值范围是()(A )不小于 2 (B )不大于 2 (C )大于 2 (D )等于 2 二、填空题(每题3分,共24分)13. 当x _____时,代数式43x 的值是非正数. 14. 若不等式.32,12bxa x 的解集为11x ,那么ab 的值等于_____. 15.若x 同时满足不等式032x 与02x,则x 的取值范围是_____.m16.已知x 关于的不等式组.0,125ax x 无解,则a 的取值范围是_____.17. 如果关于x 的不等式51a x a 和42x 的解集相同,则a 的值为_____.18. 小马用100元钱去购买笔记本和笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小马最多能买_____枝钢笔.19.一个两位数,十位上的数字比个位数上的数字小2,若这个两位数处在40至60之间,那么这个两位数是_____.20. 已知四个连续自然数的和不大于34,这样的自然数组有_____组.三、解答题(每题8分,共40分)21.解不等式3225332xxx x ,并把它的解集在数轴上表示出来.22.求不等式组)2(.3212)1(,133211x xx x 的偶数解.23.已知关于y x,的方程组)2(.2)1(,32m yxm y x 的解y x,均为负数,求m 的取值范围.24. 关于y 的不等式组253,7.236y yt y t y 的整数解是3,2,1,0,1,求参数t 的取值范围.25. 甲乙两人先后去同一家商场买了一种每块0.50元的小手帕.商场规定凡购买不少于10块小手帕可优惠20%,结果甲比乙多花了4元钱,又知甲所花的钱不超过8元,在充分享受优惠的条件下,甲乙两人各买了多少块小手帕?参考答案一、选择题(每小题3分,共36分)1.解:x 与y 的差的5倍是y x 5,再与2的和是25y x ,是一个非负数为:025y x .故选(B )2.解:32x ,根据不等式基本性质2,两边都除以2,得23x.由此,可知3x 只是32x 的一个解.故选(A )3. 解:去括号,得.242x x 解得.2x 所以原不等式的非负数整数解为,2,1,0x共3个.故选(C )4.解:因为点2221,,,y x B x x A 在函数x m y 12的图象上,所以1112x m y ,2212x m y . 所以212112x x m y y . 因为当21x x 时,有21y y ,即当21x x ,021y y ,所以.012m 所以.21m故选(A )5.解: 由(1)得3x . 由(2)得8x.所以不等式组的解集是38x 故选(C )6.解:由,0b a且0b,得0a且b a.又根据不等式的性质2,得0,0ba.b ab a,.所以a b b a 故选(D )7.解:根据题意,令1x,则07my,得7m;令5x ,则077m y ,得1m .综上,得7m.故选(A )8.解:两个不等式相减后整理,得221kyx .由42k,得220k .所以10yx故选(A )9.解:方程x x m x m 53113的解为541mx,要使解为负数,必须054m ,即45m.故选(A )10.解: 因为代数式1x 与3x 的值的符号相同,可得.03,01xx 或.03,01xx 由第一个不等式组得,3x;由第二个不等式组得, 1x .故选(D )11.解:因为不等式33a x a 的解集是1x,所以03a .所以3a.故选(C )12.解:由4224m m ,得042m ,所以2m .故选(A )二、填空题(每题3分,共24分)13.解:根据题意,得043x .解得.34x14.解:由.32,12bxa x 得.23,21b xa x 所以.2123axb 又因为11x ,所以.123,121ba解得.2,1ba 所以.221ab 15.解:由032x ,得23x,由02x ,得2x .所以223x.16.解:原不等式组可化为.,3a x x 若不等式组有解,则3xa.3a.故当3a时, 不等式组无解. 所以a 的取值范围是3a . 17.解:由42x 得2x .因为不等式51a x a 和42x 的解集相同,所以不等式51a xa 的解集为.15a ax 215a a .解得7a.18.解:设小马最多能买x 枝钢笔.根据题意,得1003025x x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()一、选择题(共10小题,每小题3分,计30分.每小题只有一选项符合题意)1.(3分)如图,这个紫荆花图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.(3分)若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD ∥BC4.(3分)下列命题中正确的命题是()①经过旋转,图形上的每一点都移动了相同的距离;②经过旋转,图形上的每一点都绕旋转中心转过了相同的角度;③经过旋转.对应点到旋转中心的距离相等;④经过旋转,所有点到旋转中心的距离相等.A.①②B.②③C.③④D.②④5.(3分)若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定6.(3分)能使分式的值为零的所有x的值是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=±17.(3分)解关于x的方程产生增根,则常数m的值等于()。