液压回路设计分析

合集下载

液压与气压传动案例教程项目3综合回路的设计与分析

液压与气压传动案例教程项目3综合回路的设计与分析

课程目标和意义
课程目标
培养学生掌握液压与气压传动综合回 路的设计与分析方法,提高学生对液 压与气压传动系统的整体认识和实践 能力。
意义
通过本项目的学习,学生能够更好地 理解液压与气压传动技术在工业自动 化领域中的应用,为今后从事相关领 域的工作打下坚实的基础。
02 液压与气压传动基础知识
液压与气压传动的原理
03
问题3
调试与性能测试困难:在调试和性能测试过 程中,可能遇到各种突发问方案2
加强理论学习与实践经验积累:应加 强理论学习,了解各种元件的工作原 理及特性,同时多进行实践操作,积 累经验。
解决方案3
多角度排查问题原因:对于遇到的问题,应从 多个角度进行分析和排查,找出问题的根本原 因并加以解决。
可能地降低总成本。
常见回路类型及实例
方向控制回路
用于控制液压或气压执行元件 的运动方向,如使用换向阀的
回路。
速度控制回路
用于调节液压或气压执行元件 的运动速度,如使用节流阀或 调速阀的回路。
压力控制回路
用于控制液压或气压系统的压 力,如使用溢流阀或减压阀的 回路。
顺序控制回路
用于按照一定的顺序控制液压或 气压执行元件的动作,如使用顺
回路效率分析
能效计算
根据回路的运行数据,计算能效指标,如功率、 效率等。
效率测试
通过实验或仿真对回路效率进行测试,获取实际 运行数据。
效率评估
对比预期效率与实际效率,评估回路的效率表现, 找出可能存在的问题。
回路优化方法
优化目标确定
明确优化的目标,如降低能耗、提高响应速度 等。
优化方案制定
根据回路性能和效率分析结果,制定相应的优 化方案。

液压基本回路设计

液压基本回路设计
另外,油箱结构尺寸较大,占有一定空间。 闭式回路—液压泵将油输出进入执行机构的进油腔,又从执行
机构的回油腔吸油。闭式回路结构紧凑,只需很小的补油箱,但 冷却条件差,为了补偿工作中油液的泄漏,一般设补油泵,补油 泵的流量为主泵流量的10%~15%,压力调节为3×105~10×105Pa。
节流调速回路分类
支路(旁路)节流调速
(1)工作原理 溢流阀正常工作是关闭
的,只有过载时才打开, 作安全阀使用。见右图。
支路(旁路)节流调速
(2)速度—负载特性
pT p1 F A1
qT
CT AT
pTm
CT
AT
(
F A1
)m
q1 qB qT
v
q1
qB
CT
AT
(
F A1
)m
A1
A1
支路(旁路)节流调速
当m 0.5时
3
Kv
dF dv
2A12 F CT AT
2 A1F qB A1v
支路(旁路)节流调速
支路(旁路)节流调速
支路(旁路)节流调速
结论:
➢这种回路只有节流损失而无溢流损失;泵压随 负载变化,即节流损失和输入功率随负载而增 减。因此,本回路比前两种回路效率高。
➢由于本回路的速度-负载特性很软,低速承载 能力差,故其应用比前两种回路少,只用于高 速、重载、对速度平稳性要求不高的较大功率 的系统,如牛头刨床主运动系统、输送机械液 压系统等。
蓄能器保压回路
利用限压式变量油泵的保压回路
在讲单作用式叶片变量泵 时,已提到过,当定子与转 子圆心偏移量(单作用式叶 片变量泵)很小或斜盘倾斜 角很小时,泵的流量仅能维 持自身泄漏,对油路不输出 油液,但泵仍在一定压力下 运转,对外输出恒定压力, 则可使系统压力恒定(参见 泵一章有关内容),此时泵 输出功率较小(功率=流量 ×压力)。

液压系统三缸同步_顺序动作回路的设计与分析_邓乐

液压系统三缸同步_顺序动作回路的设计与分析_邓乐

Mining & Processing Equipment 53近年来,随着环境保护意识的增强,垃圾的处理和综合利用受到关注。

在为某公司生产的垃圾送料器液压系统设计时,遇到了要求三个液压缸同步前进,然后顺序后退的回路设计问题,这里,液压系统的主要作用是完成垃圾的送料,为保证垃圾能够可靠地送料,要求在一个工作循环中,三个液压缸同步前进,到位后三个液压缸依次顺序后退至原位(此时卸料)。

1 主要技术问题及解决方法针对以上问题,在细致地分析了系统主要功能要求的基础上,可以把该系统设计的主要问题归纳为两个:单因此可以采用1所分别为固接Ⅲ缸筒外的机分流同步阀的出口相连(如图2、3所示)。

其实现位移同步运动的原理为:缸筒左移时,Ⅰ、Ⅲ缸筒依靠单向分流同步阀实现同步,同时利用机械挡块1、3的作用迫使挡块2移动,从而使缸筒Ⅱ与Ⅰ、Ⅲ同步运动;缸筒右移时,则按Ⅰ→Ⅱ→Ⅲ的顺序运动。

当机械挡块1、3按照图1中虚线所示的方式连接、而油路连接不改变时可以实现三缸筒同步向右移动,而按Ⅰ→Ⅱ→Ⅲ的顺序向左移动。

三缸顺序动作可以采用行程控制方式 (行程阀和行程开关如图2所示)或压力控制方式(顺序阀或压力继电器)。

2 同步—顺序动作回路的几种方案根据以上分析,可以拟定以下4个方案:(1) 方案1如图2所示,采用行程阀实现三缸顺序动作。

工作过程为:启动后,电磁换向阀1左位接通,Ⅰ、Ⅱ、Ⅲ三缸筒同步左移;至左端点时,缸筒Ⅰ压下行程开关1XK,使阀1右位接通;三缸进、出油口转换,首先缸筒Ⅰ右移,至右端点时压下行程阀3,接着缸筒Ⅱ右移,Ⅱ至右端点时压下行程阀2,缸Ⅲ右移,Ⅲ至右位时压下行程开关2XK,阀1左位接通,完成一个工作循环。

(2) 方案2如图3所示,与方案1不同之处是采用两个顺序阀实现三缸的顺序动作,其中顺序阀2的动作压力比阀3的小,左移时三缸同步,右移时按照Ⅰ、Ⅱ、Ⅲ的顺序移动,其动作顺序为:假设三缸筒处于右位时为原位,Ⅲ压下2XK,当阀1左位接通时,三缸筒同步左移,同时Ⅲ松开2XK,移至左端时,Ⅰ压下1换向,右位接通,缸筒Ⅰ首先右移,右端时,开顺序阀2右移动,力进一步增加,阀32X成一个工作循环。

第六章液压基本回路

第六章液压基本回路

速度控制回路
速度控制回路是讨论液压执行元件速度的调节和变换的 问题。
1、调速回路 调节执行元件运动速度的回路。
定量泵供油系统的节流调速回路 变量泵(变量马达)的容积调速回路 容积节流调速回路
2、快速回路 使执行元件快速运动的回路。 3、速度换接回路 变换执行元件运动速度的回路。
第六章液压基本回路
▪ 采用液控单向阀的保压回路
适用于保压时间短、对保压稳定
性要求不高的场合。
▪ 液压泵自动补油的保压回
路采用液控单向阀、电接触式
压力表发讯使泵自动补油。
第六章液压基本回路
泄压回路
功用 使执行元件高压腔中的压力缓慢地释放,以免泄压过快引
起剧烈的冲击和振动。
▪ 延缓换向阀切换时间的泄压回
▪ 用顺序阀控制的泄压回路
定量泵节流调速回路
回路组成:定量泵,流量控制阀(节流阀、调速阀等), 溢流阀,执行元件。其中流量控制阀起流量调节作用,溢 流阀起压力补偿或安全作用。
▪ 按流量控制阀安放位置的不同分: 进油节流调速回路 将流量控制阀串联在液压泵与液 压缸之间。 回油节流调速回路 将流量控制阀串联在液压缸与油 箱之间。 旁路节流调速回路 将流量控制阀安装在液压缸并联 的支路上。 下面分析节流调速回路的速度负载特性、功率特性。分析
在工作过程不同阶段实现多级压力变换。一般用溢流阀来实现这 一功能。
▪ 单级调压回路
▪ 系统中有节流阀。当执行
元件工作时溢流阀始终开 启,使系统压力稳定在调 定压力附近,溢流阀作定 压阀用。
▪ 系统中无节流阀。当
系统工作压力达到或超 过溢流阀调定压力时, 溢流阀才开启,对系统 起安全保护作用。
▪ 利用先导型溢流阀遥
控口远程调压时,主溢 流阀的调定压力必须大 于远程调压阀的调定压 力。

液压基本回路原理与分析

液压基本回路原理与分析

液压基本回路原理与分析液压基本回路是用于实现液体压力、流量及方向等控制的典型回路。

它由有关液压元件组成。

现代液压传动系统虽然越来越复杂,但仍然是由一些基本回路组成的。

因此,掌握基本回路的构成,特点及作用原理,是设计液压传动系统的基础。

1. 压力控制回路压力控制回路是以控制回路压力,使之完成特定功能的回路。

压力控制回路种类很多。

例如液压泵的输出压力控制有恒压、多级、无级连续压力控制及控制压力上下限等回路。

在设计液压系统、选择液压基本回路时,一定要根据设计要求、方案特点,适当场合等认真考虑。

当载荷变化较大时,应考虑多级压力控制回路;在一个工作循环的某一段时间内执行元件停止工作不需要液压能时,则考虑卸荷回路;当某支路需要稳定的低于动力油源的压力时,应考虑减压回路;在有升降运动部件的液压系统中,应考虑平衡回路;当惯性较大的运动部件停止、容易产生冲击时,应考虑缓冲或制动回路等。

即使在同一种的压力控制基本回路中,也要结合具体要求仔细研究,才能选择出最佳方案。

例如选择卸荷回路时,不但要考虑重复加载的频繁程度,还要考虑功率损失、温升、流量和压力的瞬时变化等因素。

在压力不高、功率较小。

工作间歇较长的系统中,可采用液压泵停止运转的卸荷回路,即构成高效率的液压回路。

对于大功率液压系统,可采用改变泵排量的卸荷回路;对频繁地重复加载的工况,可采用换向阀的卸荷回路或卸荷阀与蓄能器组成的卸荷回路等。

1.1调压回路液压系统中压力必须与载荷相适应,才能即满足工作要求又减少动力损耗。

这就要通过调压回路实现。

调压回路是指控制整个液压系统或系统局部的油液压力,使之保持恒定或限制其最高值。

1.1.1用溢流阀调压回路1.1.1.1远程调压回路特点:系统的压力可由与先导式溢流阀1的遥控口相连通的远程调压阀2进行远程调节。

远程调压阀2的调整压力应小于溢流阀1的调整压力,否则阀2不起作用。

特点:用三个溢流阀进行遥控连接,使系统有三种不同压力调定值。

(完整word版)液压系统回路设计

(完整word版)液压系统回路设计

1、液压系统回路设计1.1、 主干回路设计对于任何液压传动系统来说, 调速回路都是它的核心部分。

这种回路可以通过事先的调整或在工作过程中通过自动调整来改变元件的运行速度, 但它的主要功能却是在传递动力(功率)。

根据伯努力方程: 2d v p q C x ρ∆= (1-1)式中 q ——主滑阀流量d C ——阀流量系数v x ——阀芯流通面积p ∆——阀进出口压差ρ——流体密度其中 和 为常数, 只有 和 为变量。

液压缸活塞杆的速度:q v A= (1-2) 式中A 为活塞杆无杆腔或有杆腔的有效面积一般情况下, 两调平液压缸是完全一样的, 即可确定 和 所以要保证两缸同步, 只需使 , 由式(1-2)可知, 只要主滑阀流量一定, 则活塞杆的速度就能稳定。

又由式(1-1)分析可知, 如果 为一定值, 则主滑阀流量 与阀芯流通面积成正比即: ,所以要保证两缸同步, 则只需满足以下条件:, 且此处主滑阀选择三位四通的电液比例方向流量控制阀,如图1-1所示。

图1-1 三位四通的电液比例方向流量控制阀它是一种按输入的电信号连续地、按比例地对油液的流量或方向进行远距离控制的阀。

比例阀一般都具有压力补偿性能, 所以它输出的流量可以不受负载变化的影响。

与手动调节的普通液压阀相比, 它能提高系统的控制水平。

它和电液伺服阀的区别见表1-1。

表1-1 比例阀和电液伺服阀的比较项目 比例阀 伺服阀低, 所以它被广泛应用于要求对液压参数进行连续远距离控制或程序控制, 但对控制精度和动态特性要求不太高的液压系统中。

又因为在整个举身或收回过程中, 单缸负载变化范围变化比较大(0~50T), 而且举身和收回时是匀速运动, 所以调平缸的功率为, 为变功率调平, 为达到节能效果, 选择变量泵。

综上所可得, 主干调速回路选用容积节流调速回路。

容积节流调速回路没有溢流损失, 效率高, 速度稳定性也比单纯容积调速回路好。

为保证值一定, 可采用负荷传感液压控制, 其控制原理图如图1-2所示。

液压回路设计图的原理

液压回路设计图的原理

液压回路设计图的原理液压回路设计图是液压系统的一个重要组成部分,用来描述液压系统中各个元件的安装位置、管路连接方式以及控制方式。

液压回路设计图可以帮助工程师有效地设计和安装液压系统,实现系统的自动化控制、运动控制等功能。

液压回路设计图的原理包括以下几个方面:1. 回路结构原理:液压回路设计图需要根据实际使用需求,确定回路的结构和元件的布置。

一般来说,液压回路可以分为功力传递回路、控制回路和保护回路。

回路的结构主要包括元件的选型、布置和连接方式。

在设计回路结构时,需要考虑液压系统的工作压力、流量以及信号传递等因素。

2. 元件的选型原理:液压回路设计图中的元件是实现液压系统功能的关键部分。

选型原理涉及到元件的类型、规格、特性等方面。

在选型时,需要考虑元件的工作压力、流量范围、交流或直流电源、是否使用中间容器等因素。

同时,还需考虑元件的可靠性、性能指标、制造商的信誉等因素。

3. 管路连接原理:液压回路设计图中管路连接是实现元件之间油流传递的关键环节。

管路连接原理主要包括布局方式、管路直径的选取、连接方式的选择等方面。

在设计时,需要考虑油液流动的阻力、压力损失、噪声等因素。

合理的管路连接可以保证液压系统的正常运行和高效工作。

4. 控制方式原理:液压回路设计图中的控制方式是实现液压系统自动化控制的关键环节。

控制方式原理主要包括手动控制、自动控制、比例控制和逻辑控制等方面。

在设计时,需要考虑控制的准确性、可靠性、响应速度等因素。

不同的控制方式适用于不同的工况和要求。

5. 安全保护原理:液压回路设计图中的安全保护是为了保证系统的安全和可靠运行。

安全保护原理主要包括过载保护、过热保护、泄漏保护、压力传感器和温度传感器等方面。

在设计时,需要考虑系统的安全工作范围和保护机制,合理设置保护装置和传感器,以提高系统的运行安全性。

总之,液压回路设计图的原理涉及液压系统的结构、元件选型、管路连接、控制方式和安全保护等方面。

液压系统同步回路的设计

液压系统同步回路的设计
大连 华锐股份 有 限公 司液压 装备 厂 王经 伟
摘 要: 通过 对液压系统 中同步 回路 的分析 , 介绍 了各种 同
步回路设计时的优缺点及设计 的改进 措施 , 以便 根据 具体情
况 选择 合适 同 步 回路 。 关键词 : 压系统; 液 同步 回路 ; 串联缸 ; 流 阀 ; 流 阀 节 分
如果 液压 缸操作 回路管路 长度不 同,还 需要 考虑压 力差异 的 影响 。
图5 ~图 8的节 流 回路组 成 均是 通过 换 向阀 来 控 制节 流 阀以实现执 行 油缸 的同步 ,不同 的是节 流
阀的形式和安装位置不 同。采用节流阀的同步 回 路 分 为 进 油 节 流 回路 ( 图 5 、 油节 流 回路 ( 见 )回 见
图 3中 回路 由泵 、 溢流 阀 、 向 阀及 两 串联 缸 换
组成 , 求实 现 两 串联 缸 同步 。 实现 此 串联 液压 缸 要 同步 回路 的 前提条 件 是 : 须 使用 双 侧带 活塞 杆 的 必
液压 缸 ,或者 串联 的两 油腔 的 有 效作 用 面积 相 等 ,
图 3 串联油缸
图 4中 回路 较 图 3增 加 了液 压 锁 和 控 制液 压 锁 打开 的 换 向阀 , 条油 路 的增 加 可使 两 串联 缸 更 这 好地 实 现 同步 。同样 , I的有 杆 腔 A 和 缸 Ⅱ的无 缸 杆腔 B的受 力 面积相 同 。在 工作 状态 , 活塞杆 伸 出
这样 根 据 油缸 速度 为 流量 与 作 用 面积 的 比值 , 缸 油 的速 度 才 能相 同。但 是 , 种 结构 往 往 由于 Nhomakorabea制造 上 这
的情 况下 , 如果 缸 I 先伸 出到底部 , 限位开 关 的作 用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据液压英才网袁工分享液压回路设计的分析要点:
优先流量控制
不论泵的转速、工作压力或支路需要的流量大小,定值一次流量控制阀总可保证设备工作所需的流量。

在这种回路中,泵的输出流量必须大于或等于一次油路所需流量,二次流量可作它用或回油箱。

定值一次流量阀(比例阀)将一次控制与液压泵结合起来,省去管路并消除外泄漏,故降低了成本。

此种齿轮泵回路的典型应用是汽车起重机上常可见到的转向机构,它省去了一个泵。

负载传感流量控制阀的功能与定值一次流量控制的功能十分相近:即无论泵的转速、工作压力或支路抽需流量大小,均提供一次流量。

但仅通过一次油口向一次油路提供所需流量,直至其最大调整值。

此回路可替代标准的一次流量控制回路而获得最大输出流量。

因无载回路的压力低于定值一次流量控制方案,故回路温升低、无载功耗小。

负载传感比列流量控制阀与一次流量控制阀一样,其典型应用是动力转向机构。

旁路流量控制
对于旁路流量控制,不论泵的转速或工作压力高低,泵总按预定最大值向系统供液,多余部分排回油箱或泵的入口。

此方案限制进入系统的流量,使其具有最佳性能。

其优点是,通过回路规模来控制最大调整流量,降低成本;将泵和阀组合成一体,并通过泵的旁通控制,使回路压力降至最低,从而减少管路及其泄漏。

旁路流量控制阀可与限定工作流量(工作速度)范围的中团式负载传感控制阀一起设计。

此种型式的齿轮泵回路,常用于限制液压操纵以使发动机达最佳速度的垃圾运载卡车或动力转向泵回路中,也可用于固定式机械设备。

干式吸油阀
干式吸油阀是一种气控液压阀,它用于泵进油节流,当设备的液压空载时,仅使极小流量(〈18.9t/min)通过泵;而在有负载时,全流量吸入泵。

这种回路可省去泵与原动机间的离合器,从而降低了成本,还减小了空载功耗,因通过回路的极小流量保持了设备的原动机功率。

另外,还降低了泵在空载时的噪声。

干式吸油阀回路可用于由内燃机驱动的任何车辆中开关式液压系统,例如垃圾装填卡车及工业设备。

液压泵方案的选择
目前,齿轮泵的工作压力已接近柱塞泵,组合负载传感方案为齿轮泵提供了变量的可能性,这就意味着齿轮泵与柱塞泵之间原本清楚的界限变理愈来愈模糊了。

合理选择液压泵方案的决定因素之一,是整个系统的成本,与价昂的柱塞泵相比,齿轮泵以其成本较低、回路简单、过滤要求低等特点,成为许多应用场合切实可行的选择方案。

相关文档
最新文档