4-2-2-考点强化:与斜面相关联的平抛运动

合集下载

斜面类平抛运动知识点总结

斜面类平抛运动知识点总结

斜面类平抛运动知识点总结一、斜面类平抛运动的基本概念1. 斜面类平抛运动的定义斜面类平抛运动是指物体在一个倾斜角度的斜面上进行平抛运动的过程。

在该运动过程中,物体的平抛轨迹既包括水平方向运动,又包括斜面上的运动。

2. 基本参数在斜面类平抛运动中,一般会涉及到以下几个基本参数:- 初速度(v0):物体在斜面上的初速度,包括水平方向速度、竖直方向速度和斜面方向速度。

- 初角度(θ):物体的初速度与斜面法线的夹角。

- 初位置(x0,y0):物体的初始位置坐标。

- 加速度(a):物体在斜面上的加速度,包括水平方向加速度和斜面方向加速度。

- 时间(t):物体在斜面类平抛运动中的运动时间。

3. 运动规律斜面类平抛运动遵循以下几个基本的运动规律:- 牛顿运动定律:物体在斜面上的平抛运动符合牛顿运动定律,即物体在斜面上会受到斜面法线方向的支持力和重力的作用。

- 运动方程:斜面类平抛运动可以用运动方程来描述,包括物体在水平方向和斜面方向上的位移、速度和加速度的关系。

- 动能和重力势能转化:斜面类平抛运动过程中,物体的动能和重力势能会相互转化,这是斜面类平抛运动的一个重要特点。

二、斜面类平抛运动的相关公式在斜面类平抛运动中,涉及到一些基本公式和物理规律,下面列举几个重要的公式:1. 物体在斜面上的加速度斜面类平抛运动中,物体在斜面上的加速度可以用以下公式来计算:a = g*sin(θ)其中,a为物体在斜面上的加速度,g为重力加速度,θ为斜面的倾角。

2. 物体在水平方向上的运动距离斜面类平抛运动中,物体在水平方向上的运动距离可以用以下公式来计算:x = v0*cos(θ)*t其中,x为物体在水平方向上的位移,v0为物体的初速度,θ为斜面的倾角,t为运动时间。

3. 物体在竖直方向上的运动距离斜面类平抛运动中,物体在竖直方向上的运动距离可以用以下公式来计算:y = v0*sin(θ)*t - 0.5*g*t^2其中,y为物体在竖直方向上的位移,v0为物体的初速度,θ为斜面的倾角,t为运动时间,g为重力加速度。

高中物理必修二 新教材 讲义 专题提升二 平抛运动规律的应用

高中物理必修二 新教材 讲义 专题提升二 平抛运动规律的应用

专题提升二 平抛运动规律的应用[学习目标]1.熟练运用平抛运动的规律解决相关问题。

2.掌握平抛运动与斜面结合问题的解题方法。

3.分析物理情境确定平抛运动的临界条件和极值问题。

提升1 平抛运动的两个重要推论1.推论一:做平抛运动的物体在任意时刻的瞬时速度的反向延长线一定通过水平位移的中点。

即x OB =12x A 。

推导:如图,从速度的分解来看,速度偏向角的正切值tan θ=v y v x =gtv 0①将速度v 反向延长,速度偏向角的正切值tan θ=y Ax A -x OB =12gt2v 0t -x OB②联立①②式解得x OB =12v 0t =12x A 。

2.推论二:做平抛运动的物体在某时刻,设其速度与水平方向的夹角为θ,位移与水平方向的夹角为α,则tan θ=2tan α。

推导:速度偏向角的正切值tan θ=gtv 0①位移偏向角的正切值 tan α=y A x A =12gt 2v 0t =gt 2v 0②联立①②式可得tan θ=2tan α。

【例1】如图所示,一小球自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上,小球与斜面接触时速度方向与水平方向的夹角φ满足()A.tan φ=sin θB.tan φ=cos θC.tan φ=tan θD.tan φ=2tan θ答案D解析如题图所示,接触斜面时位移方向与水平方向的夹角为θ,由平抛运动的推论可知,速度方向与水平方向的夹角φ与θ满足tan φ=2tan θ,D正确。

【训练1】如图所示,薄半球壳ACB的水平直径为AB,C为最低点,半径为R。

一个小球从A点以速度v0水平抛出,不计空气阻力。

则下列判断正确的是()A.只要v0足够大,小球可以击中B点B.v0取值不同时,小球落在球壳上的速度方向和水平方向之间的夹角可以相同C.v0取值适当,可以使小球垂直撞击到半球壳上D.无论v0取何值,小球都不可能垂直撞击到半球壳上答案D解析小球从A点抛出后做平抛运动,在竖直方向上会发生位移,所以无论v0多大,小球不可能到达B点,A错误;小球落在球壳上的速度方向和水平方向之,当v0不同时,小球落在球壳上的速度方向和水平方间的夹角的正切值tan θ=gt v向之间的夹角不会相同,B错误;小球撞击在圆弧左侧时,速度方向斜向右下方,不可能与半球壳垂直;当小球撞击在圆弧右侧时,根据平抛运动的推论:平抛运动速度的反向延长线交水平位移的中点,可知,由于圆心不在水平位移的中点,所以小球撞在半球壳上的速度反向延长线不可能通过圆心,也就不可能垂直撞击半球壳,故C错误,D正确。

平抛运动斜面问题

平抛运动斜面问题

4.2 平抛运动的规律和应用(二)考点:斜面上的平抛运动典型例题[例1] 如图4-2-1所示,斜面倾角为300,小球从A 点以初速度v 0水平抛出,恰好落到斜面B 点,求:①AB 间的距离;②物体在空中飞行的时间;③从抛出开始经多少时间小球与斜面间的距离最大?[例2]一斜面倾角为θ,A 、B 两个小球均以水平初速度v0水平抛出(如图4-2-2所示,A 球垂直撞在斜面上,B 球落到斜面上的位移最短,不计空气阻力,则A 、B 两个小球下落时间tA 与tB 之间的关系为( )A .tA =tB B .tA =2tBC .tB =2tAD .无法确定[例3] 如图4-2-3所示,一个斜面固定在水平面上,从斜面顶端以不同初速度v0水平抛出一小球,得到小球在`空中运动时间t 与初速度v0的关系如下表所示,g 取10 m/s2试求:v 0/m ·s -1…2…910…t /s …0.400… 1.000 1.000…(1)v0=2 m/s 时平抛水平位移s ;(2)斜面的高度h ;(3)斜面的倾角θ。

针对训练:1.某同学在篮球训练中,以一定的初速度投篮,篮球水平击中篮板,现在他向前走一小段距离,与篮板更近,再次投篮,出手高度和第一次相同,篮球又恰好水平击中篮板上的同一点,则( )A .第二次投篮篮球的初速度大些B .第二次击中篮板时篮球的速度大些图4-2-1C.第二次投篮时篮球初速度与水平方向的夹角大些D.第二次投篮时篮球在空中飞行时间长些2.如图1所示,在水平地面上固定一倾角为θ=37°、表面光滑的斜面体,物体A以v1=6 m/s的初速度沿斜面上滑,同时在物体A的正上方,有一物体B以某一初速度水平抛出.如果当A上滑到最高点时恰好被B物体击中.(A、B均可看做质点,sin37°=0.6,cos37°=0.8,取g=10 2m/s)求:(1)物体A上滑到最高点所用的时间t;(2)物体B抛出时的初速度v2;(3)物体A、B间初始位置的高度差h.图13.如图2所示,在距地面2l的高空A处以水平初速度v0=gl投掷飞镖,在与A点水平距离为l的水平地面上的B点有一个气球,选择适当时机让气球以速度v0=gl匀速上升,在升空过程中被飞镖击中。

平抛运动的推论及与斜面结合问题(课件)-高中物理(人教版2019必修第二册)

平抛运动的推论及与斜面结合问题(课件)-高中物理(人教版2019必修第二册)

到斜面上
速度方向
vy=gt
θ 与 v0、t 的关系:
vx v0
tan θ= =
vy gt
分解位移,构建位移三角形
θ 与 v0、t 的关系:
运动情形
题干信息
vx v0
tan θ= =
vy 分析方法
gt
分解速度,构建速度三角形
分解位移,构建位移三角形
从空中水平抛出垂直落
从斜面水平抛出又落到
到斜面上
斜面上
这些极值点也往往是临界点。
2.求解平抛运动临界问题的一般思路
(1)找出临界状态对应的临界条件。
(2)分解速度或位移。
(3)若有必要,画出临界轨迹。
37°= ,

03
平抛运动的临界问题
1.临界点的确定
(1)若题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程中存在着临界点。
(2)若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程中存在着
“起止点”,而这些“起止点”往往就是临界点。
(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程中存在着极值,
C. a 的水平速度比 b 的小
D. b 的初速度比 c 的大
4.做平抛(或类平抛)运动的物体,设其位移偏向角为α,速度偏向角
为θ,则在任意时刻、任意位置有tanθ=2tanα。
证明:
v x v0
v y gt
x v0 t
1
y
gt 2
2
O
vy
gt
tan

vx
v0
1 2
gt
y 2
第五章 抛体运动
5.4.2平抛运动的推论

与斜面有关的平抛运动

与斜面有关的平抛运动

与斜面有关的平抛运动与斜面有关的平抛运动,包括两种情况:(1)物体从空中抛出落在斜面上;(2)物体从斜面上抛出落在斜面上.在解答该类问题时,除要运用平抛运动的位移和速度规律外,还要充分利用斜面倾角,找出斜面倾角同位移和速度的关系,从而使问题得到顺利解决.两种情况的特点及分析方法对比如下:方法内容斜面飞行时间总结分解速度水平方向:v x=v0竖直方向:v y=gt合速度:v=v x2+v y2特点:tan θ=v xv y=v0gtt=v0g tan θ分解速度,构建速度三角形分解位移水平方向:x=v0t竖直方向:y=12gt2合位移:s=x2+y2特点:tan θ=yx=gt2v0t=2v0tan θg分解位移,构建位移三角形【例1】如图所示,以9.8 m/s的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的固定斜面上,这段飞行所用的时间为(不计空气阻力,g取9.8 m/s2)()A.23s B.223s , C. 3 s D.2 s【例2】如图所示,AB为固定斜面倾角为30°,小球从A点以初速度v0水平抛出,恰好落到B点.求:(空气阻力不计,重力加速度为g)(1)A、B间的距离及小球在空中飞行的时间;(2)从抛出开始,经过多长时间小球与斜面间的距离最大?最大距离为多大?【例3】如图所示,B 为竖直圆轨道的左端点,它和圆心O 的连线与竖直方向的夹角为α.一小球在圆轨道左侧的A 点以速度v 0平抛,恰好沿B 点的切线方向进入圆轨道.已知重力加速度为g ,则A 、B 之间的水平距离为( )A.v 20tan αgB.2v 20tan αgC.v 20g tan αD.2v 20g tan α【例4】如图所示,在倾角为37°的斜面上从A 点以6 m/s 的初速度水平抛出一个小球,小球落在B 点,求:(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力)(1)A 、B 两点间的距离和小球在空中飞行的时间;(2)小球刚碰到斜面时的速度方向与水平方向夹角的正切值.【例5】如图所示,一个小球从高h =10 m 处以水平速度v 0=10 m/s 抛出,撞在倾角θ=45°的斜面上的P 点,已知AC =5 m .g =10 m/s 2,不计空气阻力,求:(1)P 、C 之间的距离;(2)小球撞击P 点时速度的大小和方向.课后作业1.如图所示,位于同一高度的小球A、B分别以v1和v2的速度水平抛出,都落到了倾角为30°的斜面上的C点,小球B恰好垂直打在斜面上,则v1、v2之比为()A.1∶2B.2∶1 C.3∶2 D.2∶32.如图所示,斜面与水平面之间的夹角为45°,在斜面底端A点正上方高度为10 m处的O 点,以5 m/s的速度水平抛出一个小球,飞行一段时间后撞在斜面上,不计空气阻力,这段飞行所用的时间为(g取10 m/s2)()A.2 s B. 2 s C.1 s D.0.5 s3.如图所示,一个倾角为37°的斜面固定在水平面上,在斜面底端正上方的O点将一小球以速度v0=3 m/s水平抛出,经过一段时间后,小球垂直打在斜面P点处.(小球可视为质点,不计空气阻力,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8),则()A.小球击中斜面时的速度大小为5 m/sB.小球击中斜面时的速度大小为4 m/sC.小球做平抛运动的水平位移是1.6 mD.小球做平抛运动的竖直位移是1 m4.将一小球以水平速度v0=10 m/s从O点向右抛出,经 3 s小球恰好垂直落到斜面上的A点,不计空气阻力,g=10 m/s2,B点是小球做自由落体运动在斜面上的落点,如图所示,下列判断正确的是()A.斜面的倾角是60°B.小球的抛出点距斜面的竖直高度约是15 mC.若将小球以水平速度v0′=5 m/s向右抛出,它一定落在AB的中点P的上方D.若将小球以水平速度v0′=5 m/s向右抛出,它一定落在AB的中点P处5.如图所示,在斜面顶端先后水平抛出同一小球,第一次小球落到斜面中点,第二次小球落到斜面底端,从抛出到落至斜面上(忽略空气阻力)( )A.两次小球运动时间之比t 1∶t 2=1∶2B.两次小球运动时间之比t 1∶t 2=1∶2C.两次小球抛出时初速度之比v 01∶v 02=1∶2D.两次小球抛出时初速度之比v 01∶v 02=1∶46.如图所示,从斜面上的A 点以速度v 0水平抛出一个物体,飞行一段时间后,落到斜面上的B 点,已知AB =75 m ,α=37°,不计空气阻力,g =10 m/s 2,sin 37°=0.6,下列说法正确的是( )A.物体的位移大小为60 mB.物体飞行的时间为6 sC.物体的初速度v 0大小为20 m/sD.物体在B 点的速度大小为30 m/s7.如图所示,可视为质点的小球,位于半径为3m 半圆柱体左端点A 的正上方某处,以一定的初速度水平抛出小球,其运动轨迹恰好能与半圆柱体相切于B 点.过B 点的半圆柱体半径与水平方向的夹角为60°,则初速度为(不计空气阻力,重力加速度g 取10 m/s 2)( )A.553 m/sB.4 3 m/sC.3 5 m/sD.152m/s8.如图所示,一小球从平台上水平抛出,恰好落在平台前一倾角为α=53°的固定斜面顶端并刚好沿斜面下滑,已知平台到斜面顶端的高度为h =0.8 m ,不计空气阻力,g =10 m/s 2,sin 53°=0.8,cos 53°=0.6,求: (1)小球水平抛出的初速度大小v 0; (2)斜面顶端与平台边缘的水平距离x .与斜面有关的平抛运动参考答案【例1】【答案】 C【解析】 如图所示,把末速度分解成水平方向的分速度v 0和竖直方向的分速度v y ,则有:tan 30°=v 0v y ,v y =gt ,联立得:t=v 0g tan 30°=3v 0g= 3 s ,故C 正确. 【例2】【答案】 (1)4v 0 23g 23v 03g (2)3v 03g 3v 0 212g【解析】 (1)设飞行时间为t ,则有:水平方向位移l AB cos 30°=v 0t 竖直方向位移l AB sin 30°=12gt 2解得:t =2v 0g tan 30°=23v 03g ,l AB =4v 023g .(2)方法二(结合斜抛运动分解)如图所示,把初速度v 0、重力加速度g 都分解成沿斜面和垂直斜面的两个分量.在垂直斜面方向上,小球做的是以v 0y 为初速度、g y 为加速度的“竖直上抛”运动.小球到达离斜面最远处时,速度v y =0, 由v y =v 0y -g y t ′可得:t ′=v 0y g y =v 0sin 30°g cos 30°=v 0g tan 30°=3v 03g小球离斜面的最大距离y =v 0y22g y =v 0 2sin 2 30°2g cos 30°=3v 0 212g.【例3】【答案】 A【解析】 如图所示,对在B 点时的速度进行分解,小球运动的时间t =v y g =v 0tan αg,则A 、B 间的水平距离x =v 0t =v 20tan αg,故A 正确,B 、C 、D 错误.【例4】【答案】 (1)6.75 m 0.9 s (2)32【解析】 (1)如图所示,小球落到B 点时位移与初速度的夹角为37°,设运动时间为t . 则tan 37°=h x =12gt 2v 0t =56t又因为tan 37°=34,解得:t =0.9 s所以x =v 0t =5.4 m则A 、B 两点间的距离l =xcos 37°=6.75 m(2)设小球落到B 点时速度方向和水平方向的夹角为α,则tan α=v y v 0=gt v 0=32.【例5】【答案】 (1)5 2 m (2)10 2 m/s 方向垂直于斜面向下 【解析】 (1)设P 、C 之间的距离为L ,根据平抛运动规律有: AC +L cos θ=v 0t ,h -L sin θ=12gt 2联立解得:L =5 2 m ,t =1 s.(2)小球撞击P 点时的水平速度v 0=10 m/s 竖直速度v y =gt =10 m/s所以小球撞击P 点时速度的大小v =v 02+v y 2=10 2 m/s设小球撞击P 点时的速度方向与水平方向的夹角为α,则tan α=v yv 0=1 解得:α=45°故小球撞击P 点时速度方向垂直于斜面向下.课后作业1.【答案】C【解析】球A 做平抛运动,根据分位移公式,有x =v 1t ,y =12gt 2,又tan 30°=yx ,联立解得v 1=32gt ;小球B 恰好垂直打到斜面上,则有tan 30°=v 2v y =v 2gt ,则得v 2=33gt ,可得v 1∶v 2=3∶2,故C 正确,A 、B 、D 错误. 2.【答案】C【解析】设小球撞到斜面AB 中的一点D 上,则小球的水平运动的时间与竖直下落的时间相等,设飞行时间为t ,则根据几何关系可得v 0t =10 m -12gt 2,代入数据解得t =1 s ,故选项C正确. 3.【答案】 A【解析】 P 点小球的速度方向与斜面垂直,则有:tan 37°=v 0v y ,解得:v y =v 0tan 37°=334 m/s=4 m/s ,小球击中斜面时的速度大小为:v =v 20+v 2y =32+42 m/s =5 m/s ,A 正确,B 错误;小球运动的时间:t =v y g =410 s =0.4 s ,可知水平位移:x =v 0t =3×0.4 m =1.2 m ,竖直位移:y =12gt 2=12×10×0.42 m =0.8 m ,C 、D 错误.4.【答案】 C【解析】 设斜面倾角为θ,对小球在A 点的速度进行分解有tan θ=v 0gt,解得θ=30°,A 错误;小球距过A 点水平面的距离为h =12gt 2=15 m ,所以小球的抛出点距斜面的竖直高度一定大于15 m ,B 错误;若小球的初速度为v 0′=5 m/s ,过A 点做水平面,小球落到水平面的水平位移是小球以初速度v 0=10 m/s 抛出时的一半,延长小球运动的轨迹线,可知小球应该落在P 、A 之间,C 正确,D 错误。

2021物理鲁科版新课程一轮复习关键能力·题型突破 4.2平抛运动的规律及应用

2021物理鲁科版新课程一轮复习关键能力·题型突破 4.2平抛运动的规律及应用

2021高考物理鲁科版新课程一轮复习关键能力·题型突破4.2平抛运动的规律及应用温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

关键能力·题型突破考点一平抛运动的规律单个物体的平抛运动【典例1】(多选)一位同学玩投掷飞镖游戏时,将飞镖水平抛出后击中目标。

当飞镖在飞行过程中速度的方向平行于抛出点与目标间的连线时,其大小为v。

不考虑空气阻力,已知连线与水平面间的夹角为θ,则飞镖()世纪金榜导学号A。

初速度v0=vcos θB。

飞行时间t=C.飞行的水平距离x=D。

飞行的竖直距离y=【一题多解】选A、C。

方法一:将运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动,飞镖的初速度v0=vcos θ,选项A正确;根据平抛运动的规律有x=v0t,y=gt2,tan θ=,解得t=,x=,y=,选项C正确,B、D错误.方法二:求飞行时间还可以沿抛出点与目标间的连线和垂直连线方向建立平面直角坐标系,则沿连线方向上,飞镖做初速度为v0cos θ,加速度为gsin θ的匀加速直线运动;垂直连线方向上做初速度为v0sin θ,加速度为-gcos θ的类竖直上抛运动,故由题意可知飞镖飞到速度为v时,垂直连线方向的速度减为0,所用时间为,再次回到连线所用的时间也为(竖直上抛运动的对称性),故飞行时间为.多个物体的平抛运动【典例2】(2019·潮州模拟)甲、乙两位同学在不同位置沿水平各射出一枝箭,箭落地时,插入泥土中的形状如图所示,已知两支箭的质量、水平射程均相等,若不计空气阻力及箭长对问题的影响,则甲、乙两支箭()世纪金榜导学号A。

空中运动时间之比为1∶B。

射出的初速度大小之比为1∶C。

下降高度之比为1∶3D.落地时动能之比为3∶1【通型通法】1.题型特征:两个物体水平抛出.2。

思维导引:【解析】选B。

根据竖直方向的自由落体运动可得h=gt2水平射程:x=v0t可得:x=v0由于水平射程相等,则:v甲=v乙①末速度的方向与水平方向之间的夹角的正切值:tan θ==可得:2gh甲=3,6gh乙=②联立①②可得:h甲=3h乙,即下落的高度之比为3∶1;根据竖直方向的自由落体运动可得h=gt2,可知运动时间之比为∶1,故A、C错误;射出的初速度大小之比为1∶,故B正确;它们下落的高度之比为3∶1;但射出的初速度大小之比为1∶,所以落地的动能之比不等于3∶1,故D错误。

平抛运动的基本规律和与斜面曲面相结合问题(解析版)

平抛运动的基本规律和与斜面曲面相结合问题(解析版)

平抛运动的基本规律和与斜面曲面相结合问题特训目标特训内容目标1平抛运动基本规律(1T -4T )目标2平抛运动与斜面相结合的问题(5T -8T )目标3平抛运动与圆面相结合的问题(9T -12T )目标4平抛运动与任意曲面相结合的问题(13T -16T )【特训典例】一、平抛运动基本规律1如图,正在平直公路行驶的汽车紧急刹车,位于车厢前端、离地高度分别为H ≈3.2m 、h ≈2.4m 的两件物品,因没有固定而散落到路面,相距L ≈1m 。

由此估算刹车时的车速最接近()A.40km /hB.50km /hC.70km /hD.90km/h【答案】A【详解】汽车紧急刹车后物品做平抛运动,平抛初速度等于汽车碰撞瞬间的行驶速度,设为v 。

对于物品A ,水平方向上,有x A =vt 1竖直方式上,有h =12gt 21对于物品B ,水平方向上,有x B =vt 2竖直方式上,有H =12gt 22根据题图分析可知L =x B -x A 解得汽车的行驶速度v =9.33m/s =33.6km/h所以刹车时的车速最接近40km/h 故选A 。

2如图所示,空间有一底面处于水平地面上的长方体框架ABCD -A 1B 1C 1D 1,已知:AB :AD :AA 1=1:1:2,从顶点A 沿不同方向平抛小球(可视为质点)。

关于小球的运动,则()A.所有小球单位时间内的速率变化量均相同B.落在平面A 1B 1C 1D 1上的小球,末动能都相等C.所有击中线段CC 1的小球,击中CC 1中点处的小球末动能最小D.当运动轨迹与线段AC 1相交时,在交点处的速度偏转角均为60°【答案】C【详解】A .所有小球都是做平抛运动,只受重力,加速度为重力加速度g ,所有小球单位时间内的速度变化率相同,故A 错误;B .所有落在平面A 1B 1C 1D 1上的小球,下落高度相同,由t =2h g可知下落时间相同,而落到C 1点的小球水平位移最大,所以落到C 1点的小球的抛出初速度v 0最大,所以落到C 1点的小球的末速度最大,即落到C 1点的小球的末动能最大,故B 错误;C .所有击中线段CC 1的小球水平位移相同,设为x ,击中线段CC 1某点的小球的位移偏转角为θ,那么下落到该点的高度h 为h =x tan θ又由平抛规律和动能定理有h =12gt 2;x =v 0t ;mgh =E k -12mv 20联立上式得E k =mgx tan θ+14tan θ可知当tan θ=12时,E k 有最小值,再结合题目的几何关系知该点应为线段CC 1的中点,故C 正确;D .当运动轨迹与线段AC 1相交时,所有小球的位移偏转角相同,其正切值为tan θ=1再根据平抛推论知,所有小球速度偏转角相同,其正切值为tan ∂=2tan θ=2由此可知在交点处的速度偏转角均不为60°,故D 错误;故选C 。

第五章 专题强化 与斜面、曲面相结合的平抛运动

第五章 专题强化 与斜面、曲面相结合的平抛运动

与斜面、曲面相结合的平抛运动[学习目标] 1.进一步掌握平抛运动规律,了解平抛运动与斜面、曲面相结合问题的特点.2.熟练运用平抛运动规律解决相关问题.一、与斜面有关的平抛运动运动情形题干信息分析方法从空中水平抛出垂直落到斜面上速度方向分解速度,构建速度三角形v x=v 0v y=gtθ与v0、t的关系:tan θ=v xv y=v0gt从斜面水平抛出又落到斜面上位移方向分解位移,构建位移三角形x=v0ty=12gt2θ与v0、t的关系:tan θ=yx=gt2v0例1(2022·江苏南京高一期末)跳台滑雪是一种勇敢者的滑雪运动,运动员穿专用滑雪板,在滑雪道上获得一定速度后从跳台飞出,在空中飞出一段距离后着陆,如图所示,某运动员从跳台A处沿水平方向飞出,在斜坡B处着陆,测得AB间的距离是75 m,斜坡与水平方向的夹角为37 °,不计空气阻力,取sin 37 °=0.6,cos 37 °=0.8,g=10 m/s2,求:(1)运动员在空中飞行的时间;(2)运动员从A处水平飞出的速度大小.思考:运动员何时离斜面最远?例2 如图所示,小球以v 0=15 m/s 的水平初速度向一倾角为37°的斜面抛出,飞行一段时间后,恰好垂直撞在斜面上.求这一过程中:(不计空气阻力,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)(1)小球在空中的飞行时间t ; (2)抛出点距撞击点的高度h .例3 如图所示,若质点以初速度v 0正对倾角为θ=37°的斜面水平抛出,要求质点到达斜面时位移最小,则质点的飞行时间为(重力加速度为g ,tan 37°=34)( )A.3v 04gB.3v 08gC.8v 03gD.4v 03g1.在分析与斜面有关的平抛运动问题时,注意分析题干信息,强调的是速度方向还是位移方向,然后进行分解并利用两分量与已知角的关系求解. 2.与斜面有关的平抛运动拓展运动情形题干信息 分析方法 斜面外开始,要求以最短位移打到斜面位移方向分解位移x =v 0t y =12gt 2tan α=x y=2v 0gt斜面外开始,沿斜面方向落入斜面速度方向分解速度v x =v 0 v y =gt tan α=v yv x=gt v 0二、平抛运动与曲面相结合例4 如图所示为竖直截面为半圆形的容器,O 为圆心,且AB 为沿水平方向的直径.一物体在A 点以水平向右的初速度v A 抛出,与此同时另一物体在B 点以向左的水平初速度v B 抛出,两物体都落到容器的同一点P .已知∠BAP =37°,sin 37°=0.6,cos 37°=0.8.下列说法正确的是( )A .物体B 比A 先到达P 点 B .物体A 比B 先到达P 点C .抛出时,两物体的速度大小之比为v A ∶v B =16∶9D .抛出时,两物体的速度大小之比为v A ∶v B =4∶3例5 (2022·南通中学高一检测)如图所示,一小球从一半圆轨道左端A 点正上方某处开始做平抛运动(小球可视为质点),运动过程中恰好与半圆轨道相切于B 点.O 为半圆轨道圆心,半圆轨道半径为R ,OB 与水平方向的夹角为60°,重力加速度为g ,则小球抛出时的初速度为( )A.3gR2 B.33gR2C.3gR2 D.3gR3。

平抛运动

平抛运动

高频考点例析
【方法技巧】 (1)与斜面有关的平抛运 动,注意挖掘速度或位移方向条件,要么 分解速度,要么分解位移,一定能使问题 得到解决. (2)对平抛运动的分解不是唯一的,可借 用斜抛运动的分解方法研究平抛,即要灵 活合理地运用运动的合成与分解解决曲线 运动.
高频考点例析
变式训练
2.如图4-2-11所示,以 9.8 m/s的水平初速度v0抛出的物 体,飞行一段时间后,垂直地撞 在倾角θ=30°的斜面上,可知 物体完成这段飞行的时间是 ( )
2
基础知识梳理
vy gt 方向 tanθ= = v0 v0 2 2 合位移:s= x +y , y gt 方向 tanα=x= 2v0 .
课堂互动讲练
一、对平抛运动规律的进一步理解 1.水平射程和飞行时间 2h (1)飞行时间:t= ,只与 h、g g 有关,与 v0 无关. 2h (2)水平射程:s=v0t=v0 ,由 v0、 g h、g 共同决定.
高频考点例析
解析:(1)由题意知,小球落到斜面上沿斜面下滑, 并未弹起,说明此时小球的速度方向与斜面平行,如图所 示,所以vy=v0tan53°,又vy2=2gh,代入数据得 vy=4 m/s,v0=3 m/s. (2)设小球离开平台到达斜面顶端所需时间为t1,由 vy=gt1得t1=0.4 s,则s=v0t1=3×0.4 m=1.2 m.
高频考点例析
图4-2-14 (3)如图 4-2-14 所示,设发球 高度为 h3 时, 飞行时间为 t3, 同理得 1 2 h3= gt3 ⑦ 2 s3=v3t3⑧ 且 3s3=2L⑨
高频考点例析
设球从恰好越过球网到最高点的 【易误警示】 时间为 t,水平距离为 s,有 分析平抛运动中的 1 2 h3-h= gt ⑩ 临界问题,关键是 2 结合平抛运动的特 s=v3t⑪ 点和规律寻找临界 由几何关系知,x3+s=L⑫ 情景、挖掘临界条 4 件.审题时对题目 联立⑦~⑫式,解得 h3= h. 3 中的“恰好”、 “刚好”等字眼要 2h1 L g 4 格外注意. 【答案】 (1)v1 (2) (3) h

高中物理必修二知识点总结

高中物理必修二知识点总结

第一节 曲线运动 运动的合成与分解【基本概念、规律】 一、曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动. 3.曲线运动的条件:物体所受合力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上. 二、运动的合成与分解 1.运算法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则. 2.合运动和分运动的关系(1)等时性:合运动与分运动经历的时间相等.(2)独立性:一个物体同时参与几个分运动时,各分运动独立进行,不受其他分运动的影响. (3)等效性:各分运动叠加起来与合运动有完全相同的效果. 【重要考点归纳】考点一 对曲线运动规律的理解 1.曲线运动的分类及特点(1)匀变速曲线运动:合力(加速度)恒定不变. (2)变加速曲线运动:合力(加速度)变化. 2.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧. 3.速率变化情况判断(1)当合力方向与速度方向的夹角为锐角时,速率增大; (2)当合力方向与速度方向的夹角为钝角时,速率减小; (3)当合力方向与速度方向垂直时,速率不变. 考点二 运动的合成及合运动性质的判断 1.运动的合成与分解的运算法则运动的合成与分解是指描述运动的各物理量即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵循平行四边形定则. 2.合运动的性质判断⎩⎪⎨⎪⎧加速度或合外力⎩⎨⎧变化:变加速运动不变:匀变速运动加速度或合外力与速度方向⎩⎨⎧共线:直线运动不共线:曲线运动3.两个直线运动的合运动性质的判断两个互成角度的分运动 合运动的性质 两个匀速直线运动 匀速直线运动 一个匀速直线运动、匀变速曲线运动进行各量的合成运算.【思想方法与技巧】两种运动的合成与分解实例一、小船渡河模型1.模型特点两个分运动和合运动都是匀速直线运动,其中一个分运动的速度大小、方向都不变,另一分运动的速度大小不变,研究其速度方向不同时对合运动的影响.这样的运动系统可看做小船渡河模型.2.模型分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).(3)两个极值①过河时间最短:v1⊥v2,t min=dv1(d为河宽).②过河位移最小:v⊥v2(前提v1>v2),如图甲所示,此时x min=d,船头指向上游与河岸夹角为α,cos α=v2v1;v1⊥v(前提v1<v2),如图乙所示.过河最小位移为x min=dsin α=v2v1d.3.求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下三点:(1)解决这类问题的关键是:正确区分分运动和合运动,在船的航行方向也就是船头指向方向的运动,是分运动;船的运动也就是船的实际运动,是合运动,一般情况下与船头指向不共线.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则沿水流方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.二、绳(杆)端速度分解模型1.模型特点绳(杆)拉物体或物体拉绳(杆),以及两物体通过绳(杆)相连,物体运动方向与绳(杆)不在一条直线上,求解运动过程中它们的速度关系,都属于该模型.2.模型分析(1)合运动→绳拉物体的实际运动速度v(2)分运动→⎩⎨⎧其一:沿绳或杆的分速度v 1其二:与绳或杆垂直的分速度v 2(3)关系:沿绳(杆)方向的速度分量大小相等. 3.解决绳(杆)端速度分解问题的技巧(1)明确分解谁——分解不沿绳(杆)方向运动物体的速度; (2)知道如何分解——沿绳(杆)方向和垂直绳(杆)方向分解;(3)求解依据——因为绳(杆)不能伸长,所以沿绳(杆)方向的速度分量大小相等.第二节 抛体运动【基本概念、规律】 一、平抛运动1.性质:平抛运动是加速度恒为重力加速度g 的匀变速曲线运动,轨迹是抛物线.2.规律:以抛出点为原点,以水平方向(初速度v 0方向)为x 轴,以竖直向下的方向为y 轴建立平面直角坐标系,则(1)水平方向:做匀速直线运动,速度:v x =v 0,位移:x =v 0t .(2)竖直方向:做自由落体运动,速度:v y =gt ,位移:y =12gt 2. (3)合运动①合速度:v =v 2x +v 2y ,方向与水平方向夹角为θ,则tan θ=v y v 0=gt v 0. ②合位移:x 合=x 2+y 2,方向与水平方向夹角为α,则tan α=y x =gt2v 0.二、斜抛运动 1.性质加速度为g 的匀变速曲线运动,轨迹为抛物线.2.规律(以斜向上抛为例说明,如图所示)(1)水平方向:做匀速直线运动,v x =v 0cos θ. (2)竖直方向:做竖直上抛运动,v y =v 0sin θ-gt . 【重要考点归纳】考点一 平抛运动的基本规律及应用 1.飞行时间:由t =2hg 知,时间取决于下落高度h ,与初速度v 0无关.2.水平射程:x =v 0t =v 02hg ,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关.3.落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x轴正方向的夹角,有tan θ=v y v x =2ghv 0,所以落地速度也只与初速度v 0和下落高度h 有关.4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g,所以做平抛运动的物体在任意相等时间间隔Δt内的速度改变量Δv=gΔt相同,方向恒为竖直向下,如图甲所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图乙中A点和B点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.6.“化曲为直”思想在抛体运动中的应用(1)根据等效性,利用运动分解的方法,将其转化为两个方向上的直线运动,在这两个方向上分别求解.(2)运用运动合成的方法求出平抛运动的速度、位移等.考点二与斜面相关联的平抛运动1.斜面上的平抛问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决.常见的模型如下:2.(1)从斜面上某点抛出又落到斜面上,位移与水平方向夹角等于斜面倾角;(2)从斜面外抛出的物体落到斜面上,注意找速度方向与斜面倾角的关系.考点三与圆轨道关联的平抛运动在竖直半圆内进行平抛时,圆的半径和半圆轨道对平抛运动形成制约.画出落点相对圆心的位置,利用几何关系和平抛运动规律求解.平抛运动的临界问题(1)在解决临界和极值问题时,正确找出临界条件(点)是解题关键.(2)对于平抛运动,已知平抛点高度,又已知初速度和水平距离时,要进行平抛运动时间的判断,即比较t1=2hg与t2=xv0,平抛运动时间取t1、t2的小者.(3)本题中,两发子弹不可能打到靶上同一点的说明:若打到靶上同一点,则子弹平抛运动时间相同,即t =Lv 0+v =L -90v ,L =3 690 m ,t =4.5 s >2hg =0.6 s ,即子弹0.6 s 后就已经打到地上.第三节 圆周运动【基本概念、规律】一、描述圆周运动的物理量1.线速度:描述物体圆周运动的快慢,v =Δs Δt =2πrT .2.角速度:描述物体转动的快慢,ω=ΔθΔt =2πT .3.周期和频率:描述物体转动的快慢,T =2πr v ,T =1f . 4.向心加速度:描述线速度方向变化的快慢.a n =rω2=v 2r =ωv =4π2T 2r .5.向心力:作用效果产生向心加速度,F n =ma n . 二、匀速圆周运动和非匀速圆周运动的比较 项目 匀速圆周运动 非匀速圆周运动 定义 线速度大小不变的圆周运动 线速度大小变化的圆周运动 运动特点 F 向、a 向、v 均大小不变,方向变化,ω不变F 向、a 向、v 大小、方向均发生变化,ω发生变化向心力F 向=F 合由F 合沿半径方向的分力提供三、离心运动1.定义:做圆周运动的物体,在合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动. 2.供需关系与运动如图所示,F 为实际提供的向心力,则: (1)当F =mω2r 时,物体做匀速圆周运动; (2)当F =0时,物体沿切线方向飞出; (3)当F <mω2r 时,物体逐渐远离圆心; (4)当F >mω2r 时,物体逐渐靠近圆心. 【重要考点归纳】考点一 水平面内的圆周运动1.运动实例:圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等.2.重力对向心力没有贡献,向心力一般来自弹力、摩擦力或电磁力.向心力的方向水平,竖直方向的合力为零.3.涉及静摩擦力时,常出现临界和极值问题. 4.水平面内的匀速圆周运动的解题方法(1)对研究对象受力分析,确定向心力的来源,涉及临界问题时,确定临界条件; (2)确定圆周运动的圆心和半径; (3)应用相关力学规律列方程求解.考点二竖直面内的圆周运动1.物体在竖直平面内的圆周运动有匀速圆周运动和变速圆周运动两种.2.只有重力做功的竖直面内的圆周运动一定是变速圆周运动,遵守机械能守恒.3.竖直面内的圆周运动问题,涉及知识面比较广,既有临界问题,又有能量守恒的问题.4.一般情况下,竖直面内的变速圆周运动问题只涉及最高点和最低点的两种情形.考点三圆周运动的综合问题圆周运动常与平抛(类平抛)运动、匀变速直线运动等组合而成为多过程问题,除应用各自的运动规律外,还要结合功能关系进行求解.解答时应从下列两点入手:1.分析转变点:分析哪些物理量突变,哪些物理量不变,特别是转变点前后的速度关系.2.分析每个运动过程的受力情况和运动性质,明确遵守的规律.3.平抛运动与圆周运动的组合题,用平抛运动的规律求解平抛运动问题,用牛顿定律求解圆周运动问题,关键是找到两者的速度关系.若先做圆周运动后做平抛运动,则圆周运动的末速等于平抛运动的水平初速;若物体平抛后进入圆轨道,圆周运动的初速等于平抛末速在圆切线方向的分速度.【思想方法与技巧】竖直平面内圆周运动的“轻杆、轻绳”模型1.模型特点在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接、小球在弯管内运动等),称为“轻杆模型”.2.模型分析绳、杆模型常涉及临界问题,分析如下:(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同,其原因主要是“绳”不能支持物体,而“杆”既能支持物体,也能拉物体.(2)确定临界点:v 临=gr ,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N 表现为支持力还是拉力的临界点. (3)定规律:用牛顿第二定律列方程求解.第四节 万有引力与航天【基本概念、规律】 一、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2.公式:F =G m 1m 2r 2,其中G =6.67×10-11 N·m 2/kg 2.3.适用条件:严格地说,公式只适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,其中r 是两球心间的距离.一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离. 二、宇宙速度1.经典时空观(1)在经典力学中,物体的质量是不随速度的改变而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的.2.相对论时空观同一过程的位移和时间的测量与参考系有关,在不同的参考系中不同. 3.经典力学的适用范围只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界. 【重要考点归纳】考点一 天体质量和密度的估算 1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma n =m v 2r =mω2r =m 4π2r T 2(2)在中心天体表面或附近运动时,万有引力近似等于重力,即G MmR 2=mg (g 表示天体表面的重力加速度).2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g4πGR .(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2; ②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43πR 3=3πr 3GT 2R 3;③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 3.(1)利用圆周运动模型,只能估算中心天体质量,而不能估算环绕天体质量.(2)区别天体半径R 和卫星轨道半径r :只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R 只能是中心天体的半径.考点二 卫星运行参量的比较与运算 1.卫星的各物理量随轨道半径变化的规律2.卫星运动中的机械能(1)只在万有引力作用下卫星绕中心天体做匀速圆周运动和沿椭圆轨道运动,机械能均守恒,这里的机械能包括卫星的动能、卫星(与中心天体)的引力势能.(2)质量相同的卫星,圆轨道半径越大,动能越小,势能越大,机械能越大. 3.极地卫星、近地卫星和同步卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)同步卫星①轨道平面一定:轨道平面和赤道平面重合.②周期一定:与地球自转周期相同,即T =24 h =86 400 s. ③角速度一定:与地球自转的角速度相同. ④高度一定:卫星离地面高度h =3.6×104 km.⑤速率一定:运动速度v=3.07 km/s(为恒量).⑥绕行方向一定:与地球自转的方向一致.考点三卫星(航天器)的变轨问题1.轨道的渐变做匀速圆周运动的卫星的轨道半径发生缓慢变化,由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动.解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r是增大还是减小,然后再判断卫星的其他相关物理量如何变化.2.轨道的突变由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道.(1)当卫星的速度突然增加时,G Mmr2<mv2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v=GMr可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,G Mmr2>mv2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v=GMr可知其运行速度比原轨道时增大;卫星的发射和回收就是利用这一原理.不论是轨道的渐变还是突变,都将涉及功和能量问题,对卫星做正功,卫星机械能增大,由低轨道进入高轨道;对卫星做负功,卫星机械能减小,由高轨道进入低轨道.考点四宇宙速度的理解与计算1.第一宇宙速度v1=7.9 km/s,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的求法:(1)GMmR2=mv21R,所以v1=GMR. (2)mg=mv21R,所以v1=gR.【思想方法与技巧】双星系统模型1.模型特点(1)两颗星彼此相距较近,且间距保持不变.(2)两颗星靠相互之间的万有引力做匀速圆周运动.(3)两颗星绕同一圆心做圆周运动.2.模型分析(1)双星运动的周期和角速度相等,各以一定的速率绕某一点转动,才不至于因万有引力作用而吸在一起.(2)双星做匀速圆周运动的向心力大小相等,方向相反.(3)双星绕共同的中心做圆周运动时总是位于旋转中心的两侧,且三者在一条直线上.(4)双星轨道半径之和等于它们之间的距离.3.(1)解决双星问题时,应注意区分星体间距与轨道半径:万有引力定律中的r为两星体间距离,向心力公式中的r为所研究星球做圆周运动的轨道半径.(2)宇宙空间大量存在这样的双星系统,如地月系统就可视为一个双星系统,只不过旋转中心没有出地壳而已,在不是很精确的计算中,可以认为月球绕着地球的中心旋转.求极值的六种方法从近几年高考物理试题来看,考查极值问题的频率越来越高,由于这类试题既能考查考生对知识的理解能力、推理能力,又能考查应用数学知识解决问题的能力,因此必将受到高考命题者的青睐.下面介绍极值问题的六种求解方法. 一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.二、二次函数极值法对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a ,当a <0时,y 有最大值y max =4ac -b 24a .也可以采取配方法求解. 三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值. 四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题,运动的合成问题,都是应用点到直线的距离最短求最小值. 五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积a ·b 最大;若a ·b =恒量,当a =b 时,其和a +b 最小. 六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.第五节 功和功率【基本概念、规律】 一、功1.做功的两个必要条件:力和物体在力的方向上发生的位移.2.公式:W =Fl cos_α.适用于恒力做功.其中α为F 、l 方向间夹角,l 为物体对地的位移. 3.功的正负判断(1)α<90°,力对物体做正功.(2)α>90°,力对物体做负功,或说物体克服该力做功. (3)α=90°,力对物体不做功.特别提示:功是标量,比较做功多少看功的绝对值. 二、功率1.定义:功与完成这些功所用时间的比值. 2.物理意义:描述力对物体做功的快慢. 3.公式(1)定义式:P =Wt ,P 为时间t 内的平均功率.(2)推论式:P=Fv cos_α.(α为F与v的夹角)【重要考点归纳】考点一恒力做功的计算1.恒力做的功直接用W=Fl cos α计算.不论物体做直线运动还是曲线运动,上式均适用.2.合外力做的功方法一:先求合外力F合,再用W合=F合l cos α求功.适用于F合为恒力的过程.方法二:先求各个力做的功W1、W2、W3…,再应用W合=W1+W2+W3+…求合外力做的功.3.(1)在求力做功时,首先要区分是求某个力的功还是合力的功,是求恒力的功还是变力的功.(2)恒力做功与物体的实际路径无关,等于力与物体在力方向上的位移的乘积,或等于位移与在位移方向上的力的乘积.考点二功率的计算1.平均功率的计算:(1)利用P=W t.(2)利用P=F·v cos α,其中v为物体运动的平均速度.2.瞬时功率的计算:利用公式P=F·v cos α,其中v为t时刻的瞬时速度.注意:对于α变化的不能用P=Fv cos α计算平均功率.3.计算功率的基本思路:(1)首先要明确所求功率是平均功率还是瞬时功率,对应于某一过程的功率为平均功率,对应于某一时刻的功率为瞬时功率.(2)求瞬时功率时,如果F与v不同向,可用力F乘以F方向的分速度,或速度v乘以速度v 方向的分力求解.考点三机车启动问题的分析1.两种启动方式的比较v↑⇒F=P不变v↓⇒a=F-F阻m↓F-F2.三个重要关系式(1)无论哪种运行过程,机车的最大速度都等于其匀速运动时的速度,即v m=PF min=PF阻(式中F min为最小牵引力,其值等于阻力F阻).(2)机车以恒定加速度启动的过程中,匀加速过程结束时,功率最大,速度不是最大,即v=P F<v m=P F阻.(3)机车以恒定功率运行时,牵引力做的功W=Pt.由动能定理:Pt-F阻x=ΔE k.此式经常用于求解机车以恒定功率启动过程的位移大小.3.分析机车启动问题时的注意事项(1)在用公式P=Fv计算机车的功率时,F是指机车的牵引力而不是机车所受到的合力.(2)恒定功率下的加速一定不是匀加速,这种加速过程发动机做的功可用W=Pt计算,不能用W=Fl计算(因为F是变力).(3)以恒定牵引力加速时的功率一定不恒定,这种加速过程发动机做的功常用W=Fl计算,不能用W=Pt计算(因为功率P是变化的).【思想方法与技巧】变力做功的求解方法一、动能定理法动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力功也适用于求变力功.二、平均力法如果力的方向不变,力的大小对位移按线性规律变化(即F=kx+b)时,F由F1变化到F2的过程中,力的平均值为F=F1+F22,再利用功的定义式W=F l cos α来求功.三、微元法当物体在变力的作用下做曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,可将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和.通过微元法不难得到,在往返的运动中,摩擦力、空气阻力做的功,其大小等于力和路程的乘积.四、等效转换法若某一变力的功和某一恒力的功相等,即效果相同,则可以通过计算该恒力做的功,求出该变力做的功,从而使问题变得简单,也就是说通过关联点,将变力做功转化为恒力做功,这种方法称为等效转换法.五、图象法由于功W=Fx,则在F-x图象中图线和x轴所围图形的面积表示F做的功.在x轴上方的“面积”表示正功,x轴下方的“面积”表示负功.六、用W=Pt计算机车以恒定功率P行驶的过程,随速度增加牵引力不断减小,此时牵引力所做的功不能用W=Fx来计算,但因功率恒定,可以用W=Pt计算.第六节动能动能定理【基本概念、规律】一、动能1.定义:物体由于运动而具有的能.2.表达式:E k =12mv 2.3.单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2. 4.矢标性:标量. 二、动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.2.表达式:W =E k2-E k1=12mv 22-12mv 21. 3.适用范围(1)动能定理既适用于直线运动,也适用于曲线运动. (2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用. 【重要考点归纳】考点一 动能定理及其应用 1.对动能定理的理解(1)动能定理公式中等号表明了合外力做功与物体动能的变化间的两个关系: ①数量关系:即合外力所做的功与物体动能的变化具有等量代换关系. ②因果关系:合外力的功是引起物体动能变化的原因.(2)动能定理中涉及的物理量有F 、l 、m 、v 、W 、E k 等,在处理含有上述物理量的问题时,优先考虑使用动能定理.2.运用动能定理需注意的问题(1)应用动能定理解题时,不必深究物体运动过程中状态变化的细节,只需考虑整个过程的功及过程初末的动能.(2)若过程包含了几个运动性质不同的分过程,既可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都作用的,必须根据不同的情况分别对待求出总功,计算时要把各力的功连同正负号一同代入公式. 3.应用动能定理解题的基本思路(1)选取研究对象,明确它的运动过程;(2)分析研究对象的受力情况和各力的做功情况: 受哪些力→各力是否做功→做正功还是负功→做多少功→各力做功的代数和(3)明确研究对象在过程的初末状态的动能E k1和E k2;(4)列动能定理的方程W 合=E k2-E k1及其他必要的解题方程,进行求解. 考点二 动能定理与图象结合问题 解决物理图象问题的基本步骤1.观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义. 2.根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.3.将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点,图线下的面积所对应的物理意义,分析解答问题.或者利用函数图线上的特定值代入函数关系式求物理量.4.解决这类问题首先要分清图象的类型.若是F -x 图象,则图象与坐标轴围成的图形的面积。

8与斜面结合的平抛问题

8与斜面结合的平抛问题

与斜面结合的平抛运动问题考点规律分析与斜面结合的平抛运动常见的两类情况(1)顺着斜面抛:如图甲所示,物体从斜面上某一点水平抛出以后又重新落在斜面上,此时平抛运动物体的合位移方向与水平方向的夹角等于斜面的倾角。

结论有:①到达斜面的速度方向与斜面夹角恒定;②到达斜面的水平位移和竖直位移的关系:tanθ=yx=12gt2v0t=gt2v0;③运动时间t=2v0tanθg。

(2)对着斜面抛:如图乙所示,做平抛运动的物体垂直打在斜面上,此时物体的合速度与竖直方向的夹角等于斜面的倾角。

结论有:①速度方向与斜面垂直;②水平分速度与竖直分速度的关系:tanθ=v0v y=v0gt;③运动时间t=v0g tanθ。

例题讲解女子跳台滑雪如图所示,运动员踏着专用滑雪板,不带雪杖在助滑路上(未画出)获得一速度后水平飞出,在空中飞行一段距离后着陆,这项运动非常惊险。

设一位运动员由斜坡顶的A点沿水平方向飞出的速度v0=20 m/s,落点在斜坡上的B点,斜坡倾角θ取37°,斜坡可以看成一斜面。

(取g=10 m/s2,sin37°=0.6,cos37°=0.8)求:(1)运动员在空中飞行的时间t ; (2)A 、B 间的距离s 。

[规范解答] (1)运动员由A 点到B 点做平抛运动,水平方向的位移x =v 0t ,竖直方向的位移y =12gt 2,又yx =tan37°,联立以上三式得t =2v 0tan37°g =3 s 。

(2)由题意知sin37°=y s =12gt 2s , 得A 、B 间的距离s =gt 22sin37°=75 m 。

[完美答案] (1)3 s (2)75 m物体从斜面平抛后又落到斜面上,则其位移大小为抛出点与落点之间的距离,位移的偏角为斜面的倾角α,且tan α=\f(y,x )。

当速度平行于斜面时,物体离斜面最远。

举一反三作业1.如图所示,以9.8 m/s 的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的斜面上,这段飞行所用的时间为(g 取9.8 m/s 2,不计空气阻力)( )A.23s B.223sC. 3 s D.2 s答案C解析如图所示,把末速度分解成水平方向的分速度v0和竖直方向的分速度v y,则有tan30°=v0vy ,又v y=gt,解两式得t=v yg=3v0g= 3 s,故C正确。

高考物理轮精细复习 (压轴题)平抛运动(含解析)

高考物理轮精细复习 (压轴题)平抛运动(含解析)

避躲市安闲阳光实验学校平抛运动(基础知识夯实+综合考点应用+名师分步奏详解压轴题,含精细解析)平抛运动及其规律[想一想]如图4-2-1所示,甲、乙、丙三小球分别位于如图所示的竖直平面内,甲、乙在同一条竖直线上,甲、丙在同一条水平线上,P点在丙球正下方。

某时刻,甲、乙、丙同时开始运动,甲以水平速度v0平抛,乙以水平速度v0沿水平面向右做匀速直线运动,丙做自由落体运动,若甲、乙、丙三球同时到达P 点,试说明甲球所做的平抛运动在水平方向和竖直方向的分运动各是什么运动?图4-2-1提示:若甲、乙、丙三球同时到达P点,则说明甲在水平方向的运动与乙的运动相同,为匀速直线运动,甲在竖直方向的运动与丙的运动相同,为自由落体运动。

[记一记]1.特点(1)运动特点:初速度方向水平。

(2)受力特点:只受重力作用。

2.性质平抛运动是加速度恒为重力加速度的匀变速曲线运动,轨迹为抛物线。

3.研究方法用运动的合成与分解方法研究平抛运动。

水平方向:匀速直线运动竖直方向:自由落体运动。

4.运动规律(如下表所示)水平方向v x=v0x=v0t竖直方向v y=gt,y=12gt2合速度大小v=v2x+v2y=v20+g2t2方向与水平方向的夹角tan α=v yv x=gtv0合位移大小s=x2+y2方向与水平方向的夹角tan θ=yx=gt2v0轨迹方程y=g2v20x2[1.从高度为h处以水平速度v0抛出一个物体,要使该物体的落地速度与水平地面的夹角较大,则h与v0的取值应为下列四组中的哪一组( ) A.h=30 m,v0=10 m/sB .h =30 m ,v 0=30 m/sC .h =50 m ,v 0=30 m/sD .h =50 m ,v 0=10 m/s解析:选D 要使落地速度与水平方向夹角较大,应使tan θ=v y v 0=2ghv 0中θ较大,应使自由下落的高度h 较大,同时使水平速度v 0较小,故选项D 正确。

高一物理:与斜面(曲面)结合的平抛运动

高一物理:与斜面(曲面)结合的平抛运动

与斜面(曲面)结合的平抛运动题型一顺着斜面平抛宇航员站在某质量分布均匀的星球表面一斜坡上P 点,沿水平方向以初速度0v 抛出一个小球,测得小球经时间t 落到斜坡另一点Q 上,斜坡的倾角为α,已知该星球的半径为R ,引力常量为G ,球的体积公式是34π3V R 。

求:(1)该星球表面的重力加速度g ;(2)该星球的密度;(3)该星球的第一宇宙速度。

【解题技巧提炼】(1)落到斜面上,已知位移方向沿斜面向下(如图)处理方法:分解位移.x =v 0ty =12gt 2tan θ=y x可求得t =2v 0tan θg.(2)物体离斜面距离最大,已知速度方向沿斜面向下(如图)处理方法:分解速度v x=v0,v y=gttanθ=v yv0.t=v0tanθg从斜面上某点水平抛出,又落到斜面上的平抛运动的五个规律(推论)(1)位移方向相同,竖直位移与水平位移之比等于斜面倾斜角的正切值。

(2)刚落到侧面时的末速度方向都平行,竖直分速度与水平分速度(初速度)之比等于斜面倾斜角正切值的2倍。

(3(4(5)当速度与斜面平行时,物体到斜面的距离最远,且从抛出到距斜面最远所用的时间为平抛运动时间的一半。

题型二对着斜面平抛如图所示,倾角为37°的斜面长l=1.9m,在斜面底端正上方的O点将一小球以v0=3m/s的速度水平抛出,与此同时由静止释放斜面顶端的滑块,经过一段时间后,小球恰好能够以垂直于斜面的速度在斜面P点处击中滑块。

(小球和滑块均可视为质点,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8),求:(1)抛出点O离斜面底端的高度;(2)滑块与斜面间的动摩擦因数μ。

【解题技巧提炼】垂直撞在斜面上,已知速度方向垂直斜面向下(如图)处理方法:分解速度.v x =v 0v y =gttan θ=v x v y =v 0gt可求得t =v 0g tan θ.题型三与圆弧面有关的平抛运动(多选)如图所示为一半球形的坑,其中坑边缘两点M 、N 与圆心等高且在同一竖直面内。

平抛运动的推论与斜抛运动课件-高一下学期物理人教版(2019)必修第二册

平抛运动的推论与斜抛运动课件-高一下学期物理人教版(2019)必修第二册
2
速度方向反向延长后: tan
x A OB v0t OB
1
1
所以: OB v0t x A
2
2
2.tanθ=2tanα
推导:
速度偏向角的正切值: tan
vy
v0

gt
v0
1 2
y 2 gt
gt

位移偏向角的正切值: tan
x
v0t
2v0
所以:tanθ=2tanα



水平方向:匀速直线运动vx=v0cosθ
竖直方向 v y v0 sin gt
2.竖直方向
物体做竖直上抛或竖直下抛运动,某一时刻的速度vy=v0sinθ±gt,
3.速度变化特点:
(1)水平方向:速度不变
(2)竖直方向:加速度为g,速度均匀变化,故相等的时间
内速度的变化相同,即Δv=gΔt,方向均竖直向下
(3)最高点的速度:不为零且等于水平方向的分速度
【练一练】王小川同学以与水平地面成60°斜向上扔出一个石
B.③球在空中的运动时间比④球短
C.①球与②球在空中的运动时间不可能相等
D.①球与④球在空中的运动时间相等
2.如图所示,从地面上同一位置抛出两小球A、B,分别落在地面上的M、
N点,两球运动的最大高度相同。空气阻力不计,则 ( C )
A.B的加速度比A的大
B.B的飞行时间比A的长
C.B在最高点的速度比A在最高点的速度大
B. v越大,落地时瞬时速度与斜面的夹角越大
C. 若运动员以2v从B点飞出,则落地点到B点的竖直高度为2h
D. 不管在B点以多大速度飞出,运动员落到斜面上时的速度方向均相同

高考物理一轮复习 第四章 第2讲 抛体运动

高考物理一轮复习 第四章 第2讲 抛体运动

A.2 m/s
√B.4 m/s
C.8 m/s
D.10 m/s
小物件做平抛运动,恰好擦着窗子上沿右侧墙边缘
穿过时速度v最大. 此时有:L=vmaxt1, h=12gt12, 代入数据解得:vmax=7 m/s, 小物件恰好擦着窗口下沿左侧墙边缘穿过时速度v最小, 则有:L+d=vmint2,H+h=12gt22, 代入数据解得:vmin=3 m/s,故v的取值范围是3 m/s≤v≤7 m/s,故B 正确,A、C、D错误.
√A.飞行的时间之比为1∶3
B.水平位移大小之比为1∶9 C.竖直下落高度之比为1∶3 D.落至斜面时速度大小之比为1∶3
对于 A 球,tan 30°=yxAA=12vg0ttAA2,解得 tA=2v0tagn 30°,对于 B 球,tan 60° =xyBB=12vg0ttBB2,解得 tB=2v0tagn 60°,所以ttBA=ttaann 6300°°=13,由 x=v0t 可知 水平位移大小之比为 1∶3,由 y=12gt2,可知竖直下 落高度之比为 1∶9,故 A 正确,B、C 错误;
考向2 平抛运动的极值问题
例9 某科技比赛中,参赛者设计了一个轨道模型,如图所示.模型放到
Hale Waihona Puke 0.8 m高的水平桌子上,最高点距离水平地面2 m,右端出口水平.现让小
球在最高点由静止释放,忽略阻力作用,为使小球飞得最远,右端出口
距离桌面的高度应设计为
A.0
B.0.1 m
√C.0.2 m
D.0.3 m
小球从最高点到右端出口,满足机械能守恒,有 mg(H-h)=12mv2,从 右端出口飞出后小球做平抛运动,有 x=vt,h=12gt2,联立解得 x= 2 H-hh,根据数学知识知,当 H-h=h 时,x 最大,即 h=1 m 时, 小球飞得最远,此时右端出口距离桌面高度为 Δh=1 m-0.8 m=0.2 m, 故 C 正确.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

见 tan φ=2tan θ=1.50,选项 C 正确。答案 C
4
@《创新设计》
目录
课堂互动
【拓展】 在【例2】中,若运动员从O点飞出的初速度为20 m/s,则 运动员离开O点后离斜坡的最远距离为( )
A.30 m B.15 m C.18 m D.9 m 解析 将运动员的初速度 v0 和加速度 g 分别沿垂直于斜面和平行于斜面方向进行
3 A.4 m
2 B. 3 m
2 C. 2 m
4 D.3 m
解析

AB
高为
h,落地点到
C
点的距离为
x,由
h v0=xt 和题意知tan
θ+x=2tahn 2h
θ+x, h
g
g
解得 x=34 m,D 正确。答案 D
10
@《创新设计》
目录
多维训练
2.(多选)如图,小球在倾角为θ的斜面上方O点处以速度v0水平抛出,落在斜面上的A点时 速度的方向与斜面垂直,重力加速度为g,根据上述条件可以求出( )
A.小球由O点到A点的时间 B.O点距离地面的高度 C.小球在A点速度的大小 D.小球从O点到A点的水平距离 解析 小球速度方向与斜面垂直,根据平行四边形定则知,
tan θ=gv0t,故 t=gtavn0 θ,选项 A 正确;由时间 t 可根据 y=12gt2 求得小球下降高度,而
分解,如图所示,初速度 v0 沿垂直斜面方向上的分量为 v1=v0sin θ,加速度 g 在垂直于 斜面方向上的分量为 a1=gcos θ,根据分运动各自独立的原理可知,离斜面的最大距离 仅由 v1 和 a1 决定,当垂直于斜面的分速度的大小 减为零时,运动员离斜面的距离最大,最大距离 d=2va211=2vg20scions2θθ=9 m。选项 D 正确。答案 D
首先考虑什 么分量?
转到解析
7
@《创新设计》
目录
课堂互动
解析 设小球落在斜面上时,水平速度为v,速度与水平方向的夹角为α,位移与水平方
向的夹角为θ,小球运动的时间为t,则tan α=vg0t,tan θ=12vg0tt2=2gvt0,可知tan α=2tan θ,因为
小球落在斜面上时,位移与水平方向的夹角为定值,可知两球接触斜面的瞬间,速度方向相
课堂互动
【例2】(2019·河南信阳一模)如图所示,一名跳台滑雪运动员经过一段时间的加速滑 行后从O点水平飞出,经过3 s落到斜坡上的A点。已知O点是斜坡的起点,斜坡与水平面 的夹角θ=37°,不计空气阻力(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)。则运动员落到斜坡 上时速度方向与水平方向的夹角φ满足( )
同,选项A正确;根据tan
θ=
gt 2v0
可得t=
2v0tan g
θ ,因为甲、乙两球初速度大小之比为1∶2,
因此两球做平抛运动的时间之比为1∶2,选项B错误;根据平抛运动竖直方向位移公式h=
1 2
gt2并结合B选项的分析可知,甲、乙两球下落的高度之比为1∶4,根据相似三角形知识可知
A、C两点间的距离与B、D两点间的距离之比为1∶4,选项C正确;甲、乙两球运动时间之
6
@《创新设计》
目录
课堂互动
【例 4】 (多选)(2019·安徽黄山 4 月模拟)如图所示,甲、乙两个小球同时从一固定 的足够长斜面上的 A、B 两点分别以 v0、2v0 的速度水平抛出,分别落在斜面上的 C、D 两点(图中未画出),不计空气阻力。下列说法正确的是( )
A.甲、乙两球接触斜面前的瞬间,速度方向相同 B.甲、乙两球做平抛运动的时间之比为 1∶4 C.A、C 两点间的距离与 B、D 两点间的距离之比为 1∶4 D.甲、乙两球接触斜面前的瞬间,速度大小之比为 1∶ 2
A.tan φ=1.33 B.tan φ=1.44 C.tan φ=1.50 D.tan φ=2.00
解析 运动员落到斜坡上的瞬间,对其速度进行分解,如图所示。竖直分速度
vy=gt,与水平分速度 v0 的比值 tan φ=vv0y=vg0t;竖直分位
移 y=21gt2,与水平分位移 x=v0t 的比值 tan θ=yx=2gvt0,可
一、物体从空中抛出落在斜面上,如图所示
分解速度: 水平:vx=v0
垂直撞击Βιβλιοθήκη v0斜面竖直:vy=gt
y
tanθ=vx /vy= v0/gt
x
v0
分解位移: 水平:x=v0t 竖直:y=gt2/2
θ
vy v
θ
2
@《创新设计》
目录
课堂互动
一、物体从斜面上抛出落在斜面上(如右图所示)
分解位移: 水平:x=v0t 竖直:y=gt2/2
分解速度: 水平:vx=v0 竖直:vy=gt
tan y gt
x 2v0
tanα v y gt
vx
v0
v0
θ
α
θ
v
vy
v0
y x
方法指导 在解答该类问题时,除要运用平抛运动的位移和速度规律外,还要充分利用 斜面倾角,找出斜面倾角同位移和速度的关系,从而使问题得到顺利解决。
3
@《创新设计》
目录
考点2 与斜面相关联的平抛运动
01
课堂互动
目录
CONTENTS
02
多维训练
03 备选训练
@《创新设计》
1
目录
课堂互动
模型阐述:平抛运动与斜面相结合的模型,其特点是做平抛运动的物体落在斜
面上,包括两种情况:
(1)物体从空中抛出落在斜面上; (2)从斜面上抛出落在斜面上。
tanθ= vy/vx= gt/v0
5
@《创新设计》
目录
课堂互动
方法技巧——与斜面相关联的平抛运动的分解方法与技巧
(1)如果知道速度的大小或方向,应首先考虑分解速度。 (2)如果知道位移的大小或方向,应首先考虑分解位移。 (3)两种分解方法 ①沿水平方向的匀速运动和竖直方向的自由落体运动; ②沿斜面方向的匀加速运动和垂直斜面方向的匀减速运动。
比为1∶2,则竖直分速度大小之比为1∶2,因为两球落在斜面上时速度方向相同,故由几何
知识可知,两球接触斜面的瞬间,速度大小之比为1∶2,选项D错误。
答案 AC
8
@《创新设计》
转回原题
目录
多维训练
1.(2019·河南高三教学质检)如图 8 所示,斜面体 ABC 固定在水平地面上,斜面的 高 AB 为 2 m,倾角为 θ=37°,sin 37°=0.6,cos 37°=0.8,且 D 是斜面的中点,在 A 点和 D 点分别以相同的初速度水平抛出相同的小球, 结果两个小球恰能落在地面上的同一点,则落地点到 C 点的水平距离为( )
相关文档
最新文档