运动控制系统概述

合集下载

运动控制系统

运动控制系统

运动控制系统的简介摘要: 本文介绍了运动控制的定义,产生背景,发展与应用历程,以及与其他学科的联系。

对其某些控制手段和方式进行简单介绍,其中矢量控制篇幅较多。

关键词运动控制;控制方式;矢量控制;直接转矩控制1.运功控制背景运动控制起源于早期的伺服控制。

“伺服”(Servo)一词最早出现在1873年法国工程师Farcot的一本书《Le Servo-Motor on Moteur Asservi》,描述了在轮船引擎上由蒸汽驱动的伺服马达的工作原理。

H.Hazen完成了伺服控制理论的基础研究并发表在1934年9月的Franklin Institute 杂志上。

1940年G.S. Brown在MIT创立了世界上第一个伺服机构实验室,并在1952研制出了世界上第一台数控铣床。

1958年Kearney &Trecker开发了NC加工中心,同年,日本富士通和牧野 FRAICE公司开发成功NC铣床。

1961 年G. Devol研制成功世界第一台机器人。

随后被称为机器人之父的G.T. Engeleberger将其商业化成立了世界第一家机器人公司Unimation。

1968年日本Kawasaki公司从Unimation 买进技术。

机器人技术体现了运动控制和驱动传感器以及运动机构一体化的新思想。

日本安川公司的工程师把这叫做机电一体化技术。

自1973 年的石油危机以后,电气伺服成为市场主导,随着微电子技术和微型计算机技术的发展,交流伺服日趋成熟,为适应市场的多品种小批量的需求,以计算机控制为核心的FMS (Flexible Manufacturing System) CIMS 和 FA (Factory Automation)技术应运而生(1975)。

为适应电子芯片制造的需求,机电一体化技术和运动控制技术被广泛应用。

由国家组织的开放式运动控制系统的研究始于1987年,美国空军在美国政府资助下发表了著名的NGC下一代控制器研究计划,该计划首先提出了开放体系结构控制器的概念,其内容之一便是提出了开放系统体系结构标准规格(OSACA)。

运动控制系统

运动控制系统

知识创造未来
运动控制系统
运动控制系统是指利用电子设备和软件来实现运动控制的一种系统。

它可以用于控制机械设备、机器人、汽车等进行运动控制。

运动控制系统通常包括以下几个部分:
1. 传感器:用于检测实际运动的位置、速度、加速度等参数,并将
其转换为电信号。

2. 控制器:负责接收传感器的信号,并根据预设的控制算法,计算
出相应的控制命令。

3. 执行器:根据控制命令,进行相应的机械运动,如电机、气缸等。

4. 软件系统:包括控制算法、运动规划、通信协议等,用于实现运
动控制的逻辑和功能。

运动控制系统的主要功能包括位置控制、速度控制和力控制等。


过调整控制器的参数和算法,可以达到不同的控制效果。

运动控制系统广泛应用于各个领域,如工业自动化、机器人、航空
航天、医疗器械等。

它可以提高设备的精度、稳定性和生产效率,
实现自动化生产和操作。

1。

运动控制系统考试简答题

运动控制系统考试简答题

绪论1、运动控制系统:以机械运动的驱动设备——电动机为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。

工作原理:通过控制电动机的转矩、转速和转角,将电能转换为机械能,实现运动机械的运动要求。

2、分类(1)按被控量分:以转速为被控量的系统——调速系统以角位移或直线位移为被控量的系统——位置随动(伺服)系统。

(2)按驱动电机的类型分:直流电机带动生产机械——直流传动系统交流电机带动生产机械——交流传动系统(3)按控制器类型分:以模拟电路构成的控制器——模拟控制系统以数字电路构成的控制器——数字控制系统(4)按控制系统中闭环的多少分:单环、双环、多环控制系统3、运动控制系统的功率放大与变换装置:一方面按控制量的大小将电网中的电能作用于电动机上,调节电动机的转矩大小,另一方面按电动机的要求把恒压恒频的电网供电转换成电动机所需的交流电或直流电;4、反抗性恒转矩负载不是转矩作用方向和运动方向相反吗?那为什么n>0时T>0,n<0时T<0?答:n>0,T>0 和n<0,T<0意味着电机目前处于正转电动和反转电动状态,这个和负载转矩没有关系。

第二章转速反馈控制的直流调速系统1、直流电动机的稳态转速调节转速方法Φ-=eKIRUn2、直流电动机点数两端的平均电压 三种改变输出平均电压的调制方法:(1)T 不变,变 ton —脉冲宽度调制(PWM)(2)ton 不变,变 T —脉冲频率调制(PFM)(3)ton 和 T 都可调,改变占空比—混合调制(两点式控制)。

当负载电流或电压低于某一最小值,开关器件导通,当高于某一最大值时,使开关器件关断。

3、UPE 是由电力电子器件组成的变换器,其输入接三组(或单相)交流电源,输出为可控的直流电压,控制电压为Uc 。

UPE 变换器的器件选择:中、小容量系统,多采用IGBT 或P-MOSFET 构成较大容量系统,采用GTO 、IGCT 电力电子开关器件特大容量系统,则常用晶闸管触发与整流装置4、 系统稳态参数计算例: 用线性集成电路运算放大器作为电压放大器的转速负反馈闭环直流调速系统如图1-28所示,s s ond ρU U T t U ==5、PID调节器的类型和功能比例微分(PD):由PD调节器构成的超前校正,可提高系统的稳定裕度,并获得足够的快速性, 但稳态精度可能受到影响;比例积分(PI):由PI调节器构成的滞后校正,可以保证稳态精度,却是以对快速性的限制来换取系统稳定的;比例积分微分(PID):PID调节器实现的滞后—超前校正则兼有二者的优点,可以全面提高系统的控制性能,但具体实现与调试要复杂一些。

运动控制系统的组成

运动控制系统的组成

运动控制系统的组成运动控制系统是指通过控制电机、伺服电机、步进电机等执行器,实现机械运动的系统。

它由多个组成部分构成,下面将逐一介绍。

1. 控制器控制器是运动控制系统的核心部分,它负责接收来自传感器的反馈信号,计算出控制信号,再将信号发送给执行器。

控制器的种类有很多,常见的有PLC、单片机、DSP等。

2. 传感器传感器是用来感知机械运动状态的装置,它可以将机械运动转化为电信号,再通过控制器进行处理。

常见的传感器有编码器、光电开关、压力传感器等。

3. 电机电机是运动控制系统中最常用的执行器,它可以将电能转化为机械能,实现机械运动。

常见的电机有直流电机、交流电机、步进电机、伺服电机等。

4. 驱动器驱动器是用来控制电机运动的装置,它可以将控制信号转化为电能,再通过电机实现机械运动。

常见的驱动器有直流电机驱动器、交流电机驱动器、步进电机驱动器、伺服电机驱动器等。

5. 机械结构机械结构是运动控制系统中最基础的部分,它由各种机械零件组成,用来实现机械运动。

常见的机械结构有滑动轨道、旋转轴、传动装置等。

6. 人机界面人机界面是用来与运动控制系统进行交互的装置,它可以显示机械运动状态、控制参数等信息,同时也可以接收操作者的指令。

常见的人机界面有触摸屏、键盘、鼠标等。

7. 通信接口通信接口是用来与其他设备进行数据交换的装置,它可以将控制信号、反馈信号等信息传输给其他设备,同时也可以接收其他设备的指令。

常见的通信接口有串口、以太网口、CAN总线等。

运动控制系统由控制器、传感器、电机、驱动器、机械结构、人机界面和通信接口等多个组成部分构成。

每个部分都有其独特的功能和作用,只有将它们合理地组合起来,才能实现高效、稳定的机械运动。

运 动 控 制 系 统

运 动 控 制 系 统

基于稳态模型的交流调速系统动态性能无法与直
流调速系统相比;基于动态模型的交流调速系统 (矢量控制系统,直接转矩控制系统)动态性能 良好,取代直流调速系统。 同步电动机交流调速系统 同步电动机的转速与电源频率严格保持同步, 机械特性硬。 电力电子变频技术的发展,成功地解决了阻碍同 步电动机调速的失步和启动两大问题。
负载可能是多个典型负载的组合,应根据实际负 载的具体情况加以分析。 1、 恒转矩负载 负载转矩的大小恒定,称作 恒转矩负载 TL 常数 a)位能性恒转矩负载 b) 反抗性恒转矩负载
图1-3 恒转矩负载
2、 恒功率负载

负载转矩与转速成反比, 而功率为常数,称作恒功 率负载
TL
m
PL

信号检测
电压、电流、转速和位置等信号 信号转换 电压匹配、极性转换、脉冲整形等 数据处理 信号滤波
二、运动控制系统的历史与发展
电力电子技术和微电子技术的兴起与发展,使交流
调速系统取代直流调速系统已成为不争的事实。 直流调速系统 直流电动机的数学模型简单,转矩易于控制。 换向器与电刷的位置保证了电枢电流与励磁电 流的解耦,使转矩与电枢电流成正比。 交流调速系统 交流电动机(尤其是笼型感应电动机)结构简单。 但动态数学模型具有非线性多变量强耦合的性质, 比直流电动机复杂得多。
1、电动机—— 运动控制系统的控制对象
从类型上分
直流电动机、交流感应电动机(交流异步电动机) 和交流同步电动机。 从用途上分 用于调速系统的拖动电动机和用于伺服系统的伺服 电动机。 2、 功率放大与变换装置 半控型向全控型发展 低频开关向高频开关发展 分立的器件向具有复合功能的功率模块发展
电力拖动实现了电能和机械能之间 的能量转换。 运动控制系统的任务 是:通过控制电机的电压、 电流、频率等输入量来改 变工作机械的转矩、速度、 位移等机械量,使各种工 作机械按人们期望的要求 运行,以满 足生产工艺及 其他应用要求。

运动控制简介介绍

运动控制简介介绍
在制造业中,工业机器人是运动控制技术的 主要应用领域。通过精确的运动控制,可以 实现高效率、高精度的装配、焊接、搬运等 工作,提高生产效率和产品质量。
服务机器人
随着人工智能技术的发展,服务机器人也开 始广泛应用。运动控制技术使得服务机器人 能够实现精确的定位、导航、抓取和操作, 为医疗、餐饮、家庭等服务行业提供便利。
详细描述
智能化运动控制通过引入人工智能和机器学习算法,能够实现自适应、自主学习和决策,提高运动控制的精度和 效率。智能化运动控制能够根据不同的环境和条件自动调整参数,优化运动轨迹和控制策略,以满足复杂和多变 的任务需求。
网络化
总结词
随着物联网和通信技术的发展,运动控 制正朝着网络化方向发展。
VS
详细描述
控制器的性能决定了整个运动控制系 统的性能,常见的控制器有PID控制器 、模糊控制器、神经网络控制器等。
驱动器
驱动器是将控制器的控制信号转换为能够驱动执行器的能量,常见的驱动器有电 机驱动器、液压驱动器等。
驱动器的性能对执行器的运动性能有很大影响,因此需要根据执行器的特性和控 制要求选择合适的驱动器。
06
运动控制案例分析
运动控制案例分析
• 运动控制是自动化领域中的核心技术之一,它涉及到如何精 确地控制机器或系统的位置、速度和加速度等运动参数。随 着工业自动化水平的不断提高,运动控制在各个领域中的应 用越来越广泛。
THANKS
谢谢您的观看
汽车制造
焊接控制
汽车制造过程中,焊接是关键的工艺环节。通过运动控 制技术,可以实现高效率、高精度的焊接加工,提高汽 车产品质量。
涂装控制
涂装是汽车外观质量的重要保障。通过运动控制技术, 可以实现涂装的精确喷涂和烘干,提高汽车外观质量。

运动控制系统

运动控制系统

Shanghai university
电力拖动自动控制系统

1

直流拖动控制系统
Shanghai university
直流调速方法
根据直流电动机转速方程
U IR n K eΦ
式中 n — U— I — R— — Ke— (1-1)
转速(r/min); 电枢电压(V); 电枢电流(A); 电枢回路总电阻(); 励磁磁通(Wb); 由电机结构决定的电动势常数。
Shanghai university
1.1.1 旋转变流机组(G-M系统)
Ward-Leonard系统
图1-1 旋转变流机组和由它供电的直流调速系统(G-M系统)原理图
Shanghai university
• G-M系统特性
正向制动
n
正向电动
n1 n2
n0
-TL
O TL Te
Shanghai university
绪论
一。什么是运动控制系统?
运动控制系统(Motion Control System)也可称作电力 拖动控制系统(Control Systems of Electric Drive) 运动控制系统--通过对电动机电压、电流、频率等 输入电量的控制,来改变工作机械的转矩、速度、位 移等机械量,使各种工作机械按人们期望的要求运行, 以满足生产工艺及其他应用的需要。工业生产和科学 技术的发展对运动控制系统提出了日益复杂的要求, 同时也为研制和生产各类新型的控制装置提供了可能。
Shanghai university
6.控制理论--系统分析和设计的依据
控制理论是运动控制系统的理论基础,是指导系统分 析和设计的依据。控制系统实际问题的解决常常能推 动理论的发展,而新的控制理论的诞生,诸如非线性 控制、自适应控制、智能控制等,又为研究和设计各 种新型的运动控制系统提供了理论依据。

PMAC运动控制系统

PMAC运动控制系统
PMAC运动控制系统的软件功能
编程语言与开发环境
编程语言
PMAC运动控制系统支持多种编程语 言,如C、C、Python等,方便用户 根据项目需求选择合适的编程语言进 行开发。
开发环境
PMAC提供完整的集成开发环境(IDE ),包括代码编辑器、编译器、调试 器等,方便用户进行软件开发和调试 。
运动控制算法
控制器通常采用高性能的微处理器或专用集成电路(ASIC),具有高速运 算和控制能力。
控制器可以实现多轴联动控制,支持多种运动模式和轨迹规划,满足复杂 运动控制需求。
伺服驱动器
伺服驱动器是连接控制器和 伺服电机的桥梁,负责接收 控制器的控制信号,并将其 转换为适合伺服电机运行的
电压或电流信号。
伺服驱动器具有过载保护、 速度控制、转矩控制等功能 ,能够确保伺服电机在各种
PMAC运动控制系统的应用案例
数控机床的改造
数控机床是现代制造业的重要设备, 通过改造数控机床,使用PMAC运动 控制系统,可以提高加工精度、加工 效率和加工质量。
PMAC运动控制系统能够实现高精度 的位置控制和速度控制,同时具有强 大的编程和调试功能,可以根据不同 的加工需求进行定制化配置。
自动化生产线控制
自动化生产线
用于控制生产线的传送带、机械臂等设备的 运动,实现自动化生产。
机器人
用于控制机器人的关节运动,实现机器人的 精确轨迹跟踪和动作控制。
激光加工
用于控制激光切割、焊接和打标设备的运动 ,实现高精度的激光加工。
PMAC的发展历程
1980年代
PMAC的原型问世,主要用于高 精度机床的控制。
1990年代
工况下的稳定运行。
伺服驱动器还具有多种反馈 接口,可以与传感器配合使 用,实现高精度的位置和速 度控制。

【PPT】什么是运动控制系统.

【PPT】什么是运动控制系统.

运动控制系统的发展过程及应用(续)
早就普遍应用于恒速运行场合的交流电机可以弥补直流电机的不 足,加之世界范围的能源短缺,人们又开始了新一轮的交流调速的 研究。仅对占传动总量三分之一强的风机、水泵设备而言,如果改 恒速为调速的话,就可节节电30%左右。近三四十年来,随着电力 电子技术、微电子技术、现代控制理论的发展,为交流调速产品的 开发创造了有利的条件,使交流调速逐步具备了宽调速范围、高稳 速精度、快速动态响应和四象限运行等良好的技术性能,并实现了 产品的系列化,从调速性能上完全可与直流调速系统相媲美。目前 交流调速系统已占据主导地位。 当今社会,运动控制系统的应用已相当普及,不论是民用还是军 用。在工厂、农村以及大多数家庭中,到处可以看到以电动机为动 力的各种生产机械或家用电器。例如:轧钢厂的连轧机,加工车间 的切削机床,造纸厂的纸机,纺织厂的纺织机,化工厂的搅拌机和 离心机,搬运场的起重机和传送带,矿山的卷扬机,田间的抽水泵, 家庭中的冰箱、空调、洗衣机以及电脑等。
图0.1 运动控制系统的基本结构
图中的三个主要组成部分是构成运动控制系统所必需的,而 且也是变化多样的。任何一部分微小的变化都可构成不同的 运动控制系统,这些不同系统的共性和特点以及它们的分析 和设计方法就是本课程研究的主要内容。我们把每一部分可 能的变化列于表0.1中。
表中各部分的不同组合,可以构成不同的运动控制系统。电动机部分、功率驱动部分 和控制器中的大部分内容分别在其他课程中有介绍,但它们组合成完整的运动控制系统以 后,有哪些新的控制要求,如何分析系统的性能,如何设计控制器使系统达到较高的性能 指标,在实际应用中存在哪些具体问题,以及如何解决等,这些都是个课程要解决的问题。
0.1 什么是运动控制系统
按中国大百科全书的解释,运动是物质的固有性质和 存在方式,是物质所固有的根本属性.没有不运动的物 质,也没有离开物质的运动、这是基于哲学的解释。与 中文“运动”对应的英义词汇有“movment”和 “motion”,按照大英百科全书的解释,运动是一个物 体相对于另一个物体或相对于一个坐标系统的位置的变 化、这是基于运动学的定义。运动涉及宇宙万物、大到 遥远的天体,小到物质内部的质子和电子,对这些运动 的研究覆盖了整个科学技术领域。 本课程所指的运动(motion)和运动控制系统(motion control system)是近10多年来在国际上流行的一个技术 术语,它源于一种狭义的、约定俗成的共识,即它的主 要研究内容是机械运动过程中涉及的力学、机械学、动 力驱动、运动参数检测和控制等方面的理论和技术问题。

运动控制系统

运动控制系统

一、运动控制系统的定义与分类定义:以机械运动的驱动设备--电动机为被控对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论指导下组成的电力传动自动控制系统。

分类:(1)按被控物理量分:以转速为被控量的系统叫调速系统,以角位移或直线位移为被控量的系统叫随动系统(或伺服系统)。

(2)按驱动电动机的类型分:用直流电动机带动生产机械的为直流传动系统,用交流电动机带动生产机械的为交流传动系统。

(3)按控制器的类型分:用模拟电路构成控制器的系统为模拟控制系统,用数字电路构成控制器的系统为数字控制系统。

二、直流调速方法答:(1)调节电枢供电电压U;(2)减弱励磁磁通 ;(3)改变电枢回路电阻R。

三、常用的可控直流电源答:(1)旋转变流机组——用交流电动机和直流发电机组成机组,以获得可调的直流电压。

(2)静止式可控整流器——用静止式的可控整流器,以获得可调的直流电压。

(3)直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压四、三种调速方法的性能与比较答:对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。

改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(即电机额定转速)以上作小范围的弱磁升速。

五、V-M系统的特点答:晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。

在控制作用的快速性上,变流机组是秒级,而晶闸管整流器是毫秒级, 这将大大提高系统的动态性能六、V-M系统的问题答:(1)由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。

(2)晶闸管对过电压、过电流和过高的d V/d t与d i/d t 都十分敏感,若超过允许值会在很短的时间内损坏器件。

(3)由谐波与无功功率引起电网电压波形畸变,殃及附近的用电设备,造成“电力公害”。

运动控制

运动控制

1.运动控制系统是以电动机及其拖动的机械设备为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。

2.运动控制不同的分类方法:(1)被控物理量:转速被控的系统叫调速系统,以角位移或直线位移叫伺服系统(位置随动系统);(2)驱动电机类型:直流电动机叫直流传动系统,交流电机叫交流传动系统;(3)控制器:模拟电路叫模拟控制系统,数字电路叫数字控制系统。

3.运动控制三要素:控制器、功率驱动装置、电动机。

4.运动控制发展趋势:(1)运动控制的交流化(2)功率变换装置高频化(3)功率系统的高速、超小和超大化(4)系统实现的集成化(5)控制的数字化、智能化和网络化5.直流电机的种类:他励,幷励,串励,复励,永磁。

6.直流电机启动方法:直接启动、电枢回路串电阻启动、降压启动7.他励直流电机的调速方法:(1)改变电枢电阻,即串电阻调速(2)改变电枢电压U (3)减弱电机励磁磁通φ8.调速系统的静态及动态指标:(1)静态指标:1.调速范围D(可调速度的范围,即D=;2.静差率S指负载变化时转速的稳定程度,即s==X100%。

(2)动态指标:1.跟随性指标。

1)上升时间2)超调量3)调节时间;2.抗扰性指标。

9.直流电机调压调速:旋转变流机组;晶闸管相控静止整流;直流脉宽调制。

10.晶闸管相控静止整流的缺点:功率因数低,谐波大,是造成电力公害的主要原因之一11.(1)在相同负载下,闭环系统的转降速只是开环系统的1/(1+K);(2)在相同负载下,闭环系统的静差率只是开环系统的1/(1+K);(3)静差率相同时,闭环系统的调速范围是开环系统的(1+K)倍。

(4) 当给定电压相同时,闭环系统的空载转速是开环系统的1/(1+K),也就是说闭环系统的理想空载转速大大降低,如果希望闭环系统和开环系统的理想空载转速相同,则闭环系统的给定电压必须是开环系统的(1+K)倍,如果希望两者给定电压相同、理想空载转的理想空载转速相同,则闭环系统必须设置放大器。

运动控制技术课程

运动控制技术课程

运动控制技术课程一、课程简介运动控制技术课程是一门涉及机械、电气、电子等多个领域的综合性学科,主要研究如何利用各种控制技术实现机械设备的精确运动控制。

本课程旨在培养学生对运动控制系统的设计、调试和维护能力,使其具备在工业自动化领域从事运动控制相关工作所必需的基础知识和技能。

二、课程内容1. 运动控制系统概述2. 传感器与执行器3. 机械传动系统4. 运动控制算法5. 运动控制器硬件设计与实现6. 运动控制器软件设计与实现7. 运动控制系统调试及故障排除三、课程详解1. 运动控制系统概述:本章主要介绍运动控制系统的基本组成部分和功能模块,包括传感器、执行器以及运动控制器等。

同时还会讲解不同类型的运动控制系统以及其应用领域。

2. 传感器与执行器:本章主要介绍各种类型的传感器和执行器,包括光电传感器、压力传感器、温度传感器、电机、气缸等。

同时还会讲解其原理和应用场景。

3. 机械传动系统:本章主要介绍机械传动系统的基本原理和构成部分,包括齿轮传动、皮带传动、链条传动等。

同时还会讲解不同类型的机械传动系统的优缺点以及其应用场景。

4. 运动控制算法:本章主要介绍运动控制算法的基础知识,包括PID控制算法、模糊控制算法以及神经网络控制算法等。

同时还会讲解不同类型的运动控制算法的优缺点以及其应用场景。

5. 运动控制器硬件设计与实现:本章主要介绍运动控制器的硬件设计和实现过程,包括电路设计、PCB设计以及样机制作等。

同时还会讲解不同类型的运动控制器的优缺点以及其应用场景。

6. 运动控制器软件设计与实现:本章主要介绍运动控制器的软件设计和实现过程,包括编程语言选择、程序架构设计以及编码实现等。

同时还会讲解不同类型的运动控制器的优缺点以及其应用场景。

7. 运动控制系统调试及故障排除:本章主要介绍运动控制系统的调试和故障排除方法,包括硬件调试、软件调试以及故障诊断等。

同时还会讲解不同类型的运动控制系统的常见故障及其解决方法。

运动控制简介

运动控制简介

PLC和运动控制 PLC和运动控制
Q系列是三菱机公司推出的大型PLC,CPU类型有基本 系列是三菱机公司推出的大型PLC,CPU类型有基本 型CPU,高性能型CPU,过程控制CPU,运动控制CPU,冗 CPU,高性能型CPU,过程控制CPU,运动控制CPU,冗 余CPU等。可以满足各种复杂的控制需求。该系列产品中 CPU等。可以满足各种复杂的控制需求。该系列产品中 有两款专用的运动控制模块,Q172,Q173,称之为多CPU 有两款专用的运动控制模块,Q172,Q173,称之为多CPU 运动控制器,可实现8 32轴各种复杂的运动控制,包括直 运动控制器,可实现8-32轴各种复杂的运动控制,包括直 线插补,弧线插补,以种螺旋插补。
FX1S系列:是一种集成型小型单元式PLC。且具有完整的性能和通讯功 FX1S系列:是一种集成型小型单元式PLC。且具有完整的性能和通讯功 能等扩展性。如果考虑安装空间和成本是一种理想的选择。 FX1N系列:功能强大的普及型PLC。具有扩展输入输出,模拟量控制和 FX1N系列:功能强大的普及型PLC。具有扩展输入输出,模拟量控制和 通讯、链接功能等扩展性。是一款广泛应用于一般的顺序控制三菱PLC。 通讯、链接功能等扩展性。是一款广泛应用于一般的顺序控制三菱PLC。 FX2N系列:FX家族中最先进的系列。具有高速处理及可扩展大量满足单 FX2N系列:FX家族中最先进的系列。具有高速处理及可扩展大量满足单 个需要的特殊功能模块等特点,为工厂自动化应用提供最大的灵活性和控制 能力。 FX3U:第三代三菱PLC,可能称得上是小型至尊产品。基本性能大幅提升, FX3U:第三代三菱PLC,可能称得上是小型至尊产品。基本性能大幅提升, 晶体管输出型的基本单元内置了3轴独立最高100kHz的定位功能,并且增加 晶体管输出型的基本单元内置了3轴独立最高100kHz的定位功能,并且增加 了新的定位指令,从而使得定位控制功能更加强大,使用更为方便

运动控制系统的概念

运动控制系统的概念

运动控制系统的概念
运动控制(Motion Control)是自动化技术中的部分内容,是指让系统中的可动部分以可控制的方式移动的系统或子系统。

运动控制系统包括运动控制器(Motion Controller)、驱动器(Driver)、电机(Motor),可以是没有反馈信号的开环控制,也可以带有反馈信号的闭环控制,闭环控制也分为全闭环和半闭环控制。

控制器是可以产生控制目标(理想的输出或运动曲线),或是闭环控制系统中需要根据反馈信号运算调整执行速度和位置的器件。

驱动器是可以将控制器的控制信号转换为提供给电机能量的器件。

电机是实际使物体移动的装置,是运动控制的执行端。

执行端还包含编码器、减速机、导轨丝杆等机械装置。

分类
1、开环控制系统
控制器传输信号给驱动器,驱动器驱动电机运动,驱动器和控制器都无法知道电机是否达到预期的动作,典型的步进电机和风扇控制系统,是属于开环控制。

2、半闭环控制系统
对控制要求更准确的系统,在电机侧增加测量器件(如旋转编码器),反馈信号进入驱动器和控制器中,让驱动器或控制器根据反馈调整电机的动作,使实际与命令的误差降到最小,如普通伺服电机控制系统。

3、全闭环控制系统
需要比半闭环更精准的运动系统,在执行端增加直线编码器,直接测量运动的实际位置,使执行更加准确,如直线电机控制系统。

《运动控制系统》知识要点[002]

《运动控制系统》知识要点[002]

《运动控制系统》知识要点——— PH.D 戴卫力 CH1 绪论运动控制系统(电力拖动)实现了电能向机械能之间的能量转换。

运动控制系统由电动机、功率放大与变换装置、控制器及相应的传感器等构成。

运动控制系统的基本运动方程: dtdn GD T T L e 3752=- 2GD :转动惯量,为飞轮矩(2Nm )n :转子的机械转速(r/min )πω260m n = 转矩控制是运动控制的根本问题。

生产机械的负载转矩特性一般分为恒转矩负载、恒功率负载和风机、泵类负载。

恒转矩负载又分为位能性和反抗性负载两种。

前者有重力产生,具有固定的大小和方向。

反抗性恒转矩负载的大小不变,方向始终与转速反向。

恒功率负载的特征是负载转矩与转速成反比,而功率为常数。

即 m LL P T ω=风机、泵类负载的转矩与转速的平方成正比。

闭环控制的直流调速系统 直流调速公式的推想Φ-=e K IR U n Φ=e e K C ① 调节电枢电压U ;② 弱磁(只能弱,升磁会导致磁饱和);③ 改变电枢回路电阻R属无级调速的为①和②;有级调速的为③;调速范围小的②因此,采用的最多的是①。

CH2 转速反馈控制的直流调速系统2.1 加在直流电机电枢绕组上的直流电源类型:旋转变流机组、静止式可控整流器、PWM 控制变换器抑制电流脉动的措施:1)增加整流电路相数,或采用多重化技术。

2)设置电感量足够大的平波电抗器。

在直流电动机调速系统中串接大电感的作用有:一是平波,即抑制电枢绕组电流脉动;二是使电动机尽量工作在电流连续模式。

V-M 系统电流工作在断续时,有两个显著的特点:一是机械特性变软;二是理想空载转速高。

晶闸管整流器的失控时间Ts :整流电路输出电压脉动周期的一半。

不可逆PWM 变换器中,加在电机两端的端电压是_____________桥式可逆PWM 变换器的输出平均电压为(2D-1)Us (D 为占空比,D=ton/T ) 调速系统的稳态性能指标:调速范围D :电动机提供的最高转速max n 和最低转速min n 之比;min max /n n D =注意的是:这里的最高和最低转速是指电动机额定负载时的最高和最低转速。

机器人运动控制系统的设计与优化

机器人运动控制系统的设计与优化

机器人运动控制系统的设计与优化一、引言近年来,机器人技术得到了飞跃式的发展,智能化、自动化、高精度的特性使得机器人得到了广泛的应用。

而机器人的运动控制系统是机器人中至关重要的组成部分之一。

本文将从机器人运动控制系统的设计与优化方面进行阐述。

二、机器人运动控制系统的概述机器人运动控制系统是指对机器人进行坐标控制、速度控制、姿态控制等控制方式的系统。

其中,坐标控制是指控制机器人前进、后退、上下等方向的控制;速度控制是指控制机器人行进的速度;姿态控制是指控制机器人在行进过程中的朝向、旋转等。

机器人运动控制系统主要由执行器、传感器、控制电路、通讯架构等组成。

三、机器人运动控制系统的设计(一)机器人运动控制系统的目标在进行机器人运动控制系统的设计之前,需要先确定设计的目标,通常的目标有以下几个方面:1. 控制机器人运动方向、速度、姿态等参数;2. 提高机器人的运动精度、稳定性和可靠性;3. 降低机器人运动系统的成本,并实现可持续发展。

(二)机器人运动控制系统的硬件设计执行器是机器人运动控制系统中最核心的部件之一。

一个好的执行器可以提高机器人的运动控制精度和性能。

1. 电机选择:在选择电机时需要考虑到电机的负载能力、转速、功率等因素,同时还需要考虑到电机的成本等方面。

2. 驱动电路设计:驱动电路是一个控制电机旋转和停止的电路,在设计驱动电路时需要考虑到电路的效率、响应速度等因素。

3. 传感器设计:传感器是判断机器人行进方向、姿态等参数的重要装置,在传感器的设计中需要考虑到传感器的精度、响应时间等因素。

(三)机器人运动控制系统的软件设计机器人运动控制系统的软件设计是指通过编程控制机器人的运动状态,以达到设定的运动目标。

1. 程序设计:在编写程序时需要考虑到程序的可读性、可扩展性、模块化等因素。

2. 控制算法选择:选择合适的控制算法可以提高机器人的运动精度和性能。

3. 语言选择:不同的编程语言适用于不同的应用场景,需要根据实际需求选择不同的编程语言。

运动控制系统总结

运动控制系统总结
• 再按照控制对象确定电流调节器的类型,按动态 性能指标要求确定电流调节器的参数。
• 电流环设计完成后,把电流环等效成转速环(外 环)中的一个环节,再用同样的方法设计转速环 为典型II型系统。
图3-26 双闭环调速系统内环和外环的开环对数幅频特性 I——电流内环 n——转速外环
(3)内、外环开环对数幅频特性的比较 • 外环的响应比内环慢,这是按上述工程设计方法设计多环控
• 准确的测速时间是用所得的高频时钟脉冲个数M2 计算出来的,即 Tt M2/ f0,
• 电动机转速为
n 60 60 f0 ZTt ZM2
(2-80)
• T(M法2-测1)速时的转分速辨的率变定化义量为,时钟脉冲个数由M2变成
Q 6f0 0 6f0 0 6f0 0 Z(M 21 ) Z2 MZ2 M (M 21 )
h
3
4
5
6
7
Hale Waihona Puke 89 1052.6% 43.6% 37.6% 33.2% 29.8% 27.2% 25.0% 23.3%
tr / T 2.4 2.65 2.85 3.0 3.1 3.2 3.3 3.35
ts / T 12.15 11.65 9.55 10.45 11.30 12.25 13.25 14.20
异步电动机传递的电磁功率
Pm
3I
'2 r
Rr'
s
机械同步角速度
m1
1
np
异步电动机的机械特性
异步电动机的电磁转矩(机械特性方程式 )
Te
Pm
m1
3np
1
Ir'2
Rr' s
1Rs
3npUs2Rr' /s

运动控制概述

运动控制概述

运动控制(MC)是自动化的一个分支,运动控制起源于早期的伺服控制。

简单地说,运动控制就是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动。

早期的运动控制技术主要是伴随着数控技术、机器人技术和工厂自动化技术的发展而发展的。

它使用通称为伺服机构的一些设备如液压泵,线性执行机或者是电机来控制机器的位置和或速度。

运动控制在机器人和数控机床的领域内的应用要比在专用机器中的应用更复杂,因为后者运动形式更简单,通常被称为通用运动控制(GMC)。

现在运动控制被广泛应用在包装、印刷、纺织和装配工业中。

按照所完成的制造任务的不同,机器运动控制分为:点位控制和连续路径控制①点位控制:是在容许加速度和速度的条件下,尽可能快的由原坐标位置运动到目的坐标位置,而对于两点之间的轨迹没有精度要求的。

点位控制的功能是将工具或零件由源点运动到规定的目标点,以便在该点加工作业。

因为从源点到目标点的运动过程中不进行加工作业,所以对运动路径没有要求。

但是为了提高效率,点位运动控制系统应在容许的加速度条件下,尽可能以最大速度完成这种运动过程。

②连续路径控制:包括直线运动控制和曲线运动控制。

对于轨迹上的每一点坐标都具有一定的精度要求,不仅要求路径连续,而且要求速度连续。

为了控制工具沿任意直线或曲线运动,必须同时控制每一个轴上的位置和速度,使得它们同步协调到达目标点。

对于这类控制,机床必须同时控制两个或者两个以上的轴。

连续路径控制系统不仅控制目标点,而且控制工具到达这些目标点的整个路径,以保证在整个加工过程中,工具始终接触工件并制造出希望的形状。

控制系统按照控制原理的不同可以分为开环和闭环两种控制系统①开环控制系统:系统输出只受输入的控制,控制精度和抑制干扰的特性都比较差。

开环控制系统中,基于按时序进行逻辑控制的称为顺序控制系统;由顺序控制装置、检测元件、执行机构和被控工业对象所组成。

主要应用于机械、化工、物料装卸运输等过程的控制以及机械手和生产自动线。

运动控制系统

运动控制系统

(1). 跟随性能指标: 在给定信号或参考输入信号的作用下, 系统输出量的变化情况可用跟随性能指 标来描述。常用的阶跃响应跟随性能指 标有 tr — 上升时间 — 超调量 ts — 调节时间
• 突加扰动的动态过程和抗扰性能指标
C
N
C 1
±5%(或±2%) Cb
N
Cmax
C2
一.运动控制系统概述
运动控制系统的发展趋势:


驱动的交流化 驱动系统的高速化和超小、超大型化 高转速--上万转/分钟 超小型化--应用于微型机器人、微型飞行器 超大型化--数MKW 系统的集成化 控制的数字化、智能化和网络化
二.控制系统的计算机仿真
控制系统计算机仿真的基本概念 1.计算机仿真是用来帮助设计人员进行设计的一种新技术,它 包含控制系统分析、综合、设计、检验等多方面的计算机处 理。计算机仿真是基于计算机的高速而精确的计算,来实现 各种功能的。 2.自动控制系统的计算机仿真,是一门涉及到计算机技术、计 算数学与控制理论、系统辨识、控制工程以及系统科学的综 合性学科。他为控制系统的分析、计算、研究、综合设计以 及自动控制的计算机辅助教学提供了快速、经济、科学以及 有效的手段. 3.应用MATLAB的TOOLBOX工具箱及其SIMULINK仿真集 成环境作仿真工具,这就是MATLAB仿真。它是控制系统 计算机仿真一个特殊软件工具的子集.

调速系统静态指标

调速范围: 生产机械要求电动机提供的最高转速和最低转速之 比叫做调速范围,用字母 D 表示,即
nmax D nmin
(1-31)
其中nmin 和nmax 一般都指电机额定负载时的转 速,对于少数负载很轻的机械,例如精密磨床, 也可用实际负载时的转速。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

性能测试与评价:研究控制系统或控制元件在不同负载工况下的静动态 特性试验测试方法,以及性能评价与故障诊断等。
1.2、运动控制系统基本组成原理
系统静动态性能测试、 故障诊断和性能评价

控制器与控 制方法
驱动器
电力驱动元件、 驱动技术
扰动 执行机构
电动、液压、气动
负载
反馈元件
二、运动控制系统分类及特点
2.2 运动控制系统特点
运动控制系统运动规律复杂、速度响应快(大约在几~ 几十毫秒内)、负载变化大等。 对于电机驱动的运动控制系统特点:传输方便、速度高。 低速性能差、滞回和非线性较大。 对于液动伺服系统的特点:功率密度大、负载能力强、响 应快、低速平稳。泄漏、传输不方便。 对于气动伺服系统的特点:便于实现直线运动、比液压系 统传输方便。负载能力差、精度低、响应慢。
三、运动控制系统的应用与发展
3.1 应用 运动控制系统应用非常广泛:武器装备、机器人、工业
加工机床、冶金轧钢、交通工具、民用等各个领域。 3.2 发展 特种执行器(压电、人工肌肉、热敏、超音速电机、DDR 直驱电机、直线电机) 高功率密度执行机构(新材料,新结构、体积小、重量轻、 功率大) 非线性、滞回、死区控制方法 强耦合、过驱动复杂运动控制 超大功率驱动控制
传感器采集与 信号处理
二、运动控制系统分类及特点
2.1 运动控制系统分类 (1)按照执行机构的类型分:
电动、液动和气动
(2)按照被控物理量分: 位置(角位置)、速度(角速度)、力(力矩、压力)
(3)按照运动规律分:
点位控制系统、轨迹控制控制系统、随动控制系统
(4)按照控制器类型分:
模拟控制系统、数字控制系统
驱动元件:研究电动(直流伺服、交流伺服)、液动(液压缸或液压马 达)、气动(气缸或气马达)的特性与电驱动技术,包括IGBT或IPM功率 驱动模块、场效应管驱动电路、功率三极管的驱动电路;
数字控制器:研究DSP、 ARM、PC104、 PLC、PXI、VME等控制器和I/O接 口、组成的分布式控制网络等硬件,以及在实时操作系统,如:LINUX、 uC/OSII、VxWORKS、WinCE等环境下编写控制算法等软件;
研究对象:高精度位置(角位置)、速度(角速度)、力(压力)的实 时运动控制系统,如炮塔的随动控制系统、飞行器姿态控制,多自由度 运动平台,机床的联动控制,发电机组的速度控制等;
理论方法:研究点位控制、轨迹控制、随动控制系统在不同负载工况下 的建模仿真与控制方法。重点解决运动控制系统稳定性、负载鲁棒性、 非线性、死区、滞回、滞后、耦合等关键问题,实现最优控制;
运动控制系统概述
主要内容
一、运动控制系统主要研究内容及原理组成 二、运动控制系统分类及特点 三、运动控制系统应用与发展
一、运动控制系统主要研究内容及原理组成
什么是运动控制系统?(什么是过程控制?) 运动控制系统主要研究内容? 运动控制系统的基本组成原理? 运动控制系统的类型?
1.1、运动控制系统主要研究内容
相关文档
最新文档