塔吊基础计算

合集下载

塔吊基础演算

塔吊基础演算

塔吊基础演算
针对QTA63A塔吊基础为混凝土平台,原混凝土平台尺寸为5×5×1.35米,地基耐力不小于0.2Mpa(即20T/㎡)。

现场实际地基耐力为0.11 Mpa(即11T/㎡),考虑其安全与稳定性,将基础做增大处理,规格为6.5×6.5×1.35米,并计算其稳定性。

已知:P垂直力=57.5T M力矩=228.9T·m FK实际地耐力=11T/㎡A基础面积=42.25㎡G基础自重=142.6T W=0.118*B3
1、计算塔基对基础的平均压力P平均
P平均=(P+G)/A=(57.5+142.6)/42.25=4.736T/㎡
即P平均<FK实际地耐力=11T/㎡,满足要求。

2、计算偏心矩E
E偏心矩=M/(P+G)=228.9/(57.5+142.6)=1.144
按要求E偏心矩<B/3≈2.17,满足要求。

3、计算最大边缘压力Pmax B=6.5m
Pmax=(P+G)/A+M/W=(57.5+142.6)/42.25+228.9/0.118*6.53=11.8T
按要求Pmax<1.2 FK实际地耐力=1.2×11=13.2T/㎡,即满足要求。

由以上数据可以证明该塔基基础符合设计要求,满足施工要求。

塔吊基础计算

塔吊基础计算
3 30 2121 236 超出 36.268 满足要求
光面钢筋 m 1.5 ~ 3.5N/m
m 2.5 ~ 6.0N/m
1.5 ~ 3.5N/mm 2 2.5 ~ 6.0N/mm 2
23
1036.464
-500.664
2072.929 1666.301 904.779 2571.079 Rk实际>R,符合要求 1542.648 满足要求
0.65% 0.003267
20.000 10.4
30
9.9 0.017 0.044694 0.000675 0.809675
44694395045 67522500
i=(I/A)0.5
λ=H/i f y 2 3 5
λ=H/i f y 2 3 5
最大应力
σ=Ni/Aφ
最大应力
σ=Ni/Aφ 钢构件插入桩深度(不计钢柱顶端阻力)
钢筋和混凝土的粘结应力(光面钢筋取1.5~3.5)
型钢等截面圆钢直径
插入桩长度
h=Ni/(τ×π×d)
型钢上部水平钢板焊接强度验算
焊接强度 塔吊拔力 焊缝长度 焊缝高度,等于6
N/mm2 N/mm2
kN/m2 m m
N/mm2 N mm mm
mm2 KN KN KN N/mm2
颗 mm m㎡ N/mm2 N/mm2
12
42535.38462
153.9904
42689.37502
204528
计算值
60.0 9.3 1.6 20.0 587.0 60.0 186.0 348.0 1242.0 72.0 -9.05 2.0 0.80 1.600
C12槽钢 塔吊水平力引起剪力 扭矩引起的剪力 水平力和扭矩组合作用剪力 槽钢抗剪强度

塔吊桩基础计算范文

塔吊桩基础计算范文

塔吊桩基础计算范文
一、桩基数量的确定:
确定桩基数量需要根据塔吊的重量和地基承载能力进行计算。

通常情
况下,桩基数量可根据以下公式进行计算:
N=W/P
其中,N为桩基数量,W为塔吊的总重量,P为单根桩基的承载力。

这样可以保证单根桩基能够承受足够的力量。

二、桩基直径的确定:
桩基直径的确定需要结合地基的土壤类型、承载能力以及塔吊的重量
等多种因素进行考虑。

对于土壤承载能力较强的情况下,一般可以采用较
小的桩径;相反,对于土壤承载能力较弱的情况下,需要采用较大的桩径。

根据经验公式和试验结果,可以制定合理的桩径范围。

三、桩基深度的确定:
桩基深度的确定主要考虑的是地下水位、地质构造以及土层性质等因素。

通常情况下,为了保证桩基的稳定性,桩基的埋深应大于冻土深度以
及地下水位。

同时,需要对桩基周边土壤的承载能力进行充分的考虑,以
确定桩基的深度。

四、配筋的确定:
配筋是为了增加桩基的抗弯强度,提高桩基的承载能力。

根据桩基的
受力条件和受力特点,可以通过抗弯设计原理计算出合理的配筋数量和位置。

通常情况下,桩基的配筋应满足一定的比例,以保证桩基在受力时能
够充分发挥其抗弯强度。

总之,塔吊桩基础计算涉及了多个方面的内容,包括桩基数量、直径、深度以及配筋等关键参数的确定。

这些参数的选择需要综合考虑地基的承
载能力、土质条件以及塔吊的重量等因素,以保证桩基的稳定性和安全性。

在实际计算中,还需要对相关规范和标准进行参考,并尽量进行现场试验
和监测,以验证计算结果的合理性。

塔吊基础计算

塔吊基础计算

一、计算参数:1、塔吊型号QT80EA标准节尺寸c 1.7m 2、塔吊荷载水平荷载H 1(KN)垂直荷载F 1(KN)弯矩M 1(KN ∙m)水平荷载H 2(KN)垂直荷载F 2(KN)弯矩M 2(KN ∙m)405001450804202200长度l(m) 5.00宽度b(m) 5.00高度h(m) 1.6二、计算过程:基础持力层2号粘土-3.00211.70KN/m 2其中:地基承载力标准值 f k =200KN/m 2地基承载力修正系数y =0.3土的重度r=19.5KN/m 32.1基础参数的计算:基础底面积A=b×l=25.00m 2基础底面面积的抵抗距W=lb 2/6=20.83m 32.2基础承载力的计算:基础自重G=25×b×l×h=1000.00KN 垂直荷载F 2+G=1420.00KN 总弯矩M =M 2+H 2×h=2328.00KN∙m 偏心矩e=M/(F 2+G)=1.64me >l/6=0.83m 合力作用点至基础底面最大压力边缘的距离a(m)a=l/2-e 0.86m3、假设基础尺寸f = f k +y×r×( b-3)=基础底面标高(m)2. 验算地基承载力:塔吊基础设计1. 修正地基承载力设计值:(本基础设计不考虑上部覆土)工作状态非工作状态塔吊在非工作状态垂直荷载较小,弯矩较大,故只计算非工作状态的受力情况24.82m1560mm40mm 97223N其中:441900mm 290mm Fl >fl满足要求四、结论假设的塔吊基础尺寸能够满足安全使用要求Ho 为截面有效高度Ho=h-as=a s 为基础钢筋的保护层厚度 as=多边形的高为h=l/2-c/2-Ho=实际冲击力为fl=Pmax×A=考虑冲击荷载时取用的多边形面积(图中阴影部分的面积)A=h×(b b +b)/2=b b =b×(c/2+Ho)/(l/2)=。

塔吊基础计算

塔吊基础计算

塔吊基础计算一、天然基础塔吊在安装完毕后。

其下地基即承受塔吊基础传来的上部荷载,一是竖向荷载,包括塔吊重量F和基础重量G;另一部分是弯矩M,主要是风荷载和塔吊附加荷卸产生的弯矩。

塔吊基础受力,可简化成偏心受压的力学模型(图1),此时,基础边缘的接触压力最大值和最小值分别可以按下式计算:图1塔吊基础受力简图(天然地基)图1塔吊基础受力简图(天然地基)其中:F————塔吊工作状态的重量,单位KNG————基础自重,单位KNG=b×b×h×ρ,单位KNb×h———基础边长、厚度,单位mρ——————基础比重,取25KN/m3e————偏心距,单位me=M/(F+G)M————塔吊非工作状态下的倾覆力矩。

若计算出的P min<0,即基底出现拉力,由于基底和地基之间不能承受拉力,此时基底接触压力将重新分布。

应按下式重新计算P maxF、M可由塔吊说明书中给出,将计算得出的最大接触压力P max和地质资料中给出的地基承载力标准值相比较,小于地基的承载力标准值即可满足要求。

二、桩基础对于有桩基础的塔吊,必须验算桩基础的承载力。

根据计算分析,在非工作状态下,塔吊大臂垂直于基础面对角线时最危险。

当以对角两根桩的连线为轴(图2—1),产生倾覆力矩时,将由单桩受力,此时桩的受力为最不利情况。

图2—1桩基础1、受力简图图2—2塔吊基础受力简图(桩基础)2、荷载计算当只受到倾覆力矩时:当只受到基础承台及塔吊重力时:3、单桩荷载最不利情况3、单桩最小荷载若计算出的P2<0,即桩将受到拉力,拉力为|P2|L———桩的中心距。

4、单桩承载力单桩的受压承载力由桩侧摩阻力共同承担的,单桩受压承载力为:单桩的抗拔承载力由桩侧摩阻力承担,单桩抗拔力为:R K2=U P∑q Si L i (2—6)其中:q p—————桩端承载力标准值,KP aA P—————桩身横截面面积,m2U—————桩身的周长,mPq Si—————桩身第I层土的摩阻力标准值,KP A kL i—————按土层划分的各段桩长,m将计算所得的P1和R K1相比较,|P2|和R K2相比较,若P1< R K1且|P2|< R K2则可满足要求。

7种塔吊基础知识计算

7种塔吊基础知识计算

7 种塔吊基础计算目录一、单桩基础计算二、十字交叉梁基础计算三、附着计算四、天然基础计算五、三桩基础计算书六、四桩基础计算书七、塔吊附着计算一、塔吊单桩基础计算书一. 参数信息塔吊型号:QT60,自重(包括压重)F1=245.00kN,最大起重荷载F2=60.00kN塔吊倾覆力距M=600.00kN.m,塔吊起重高度H=50.00m,塔身宽度B=1.60m混凝土强度:C35,钢筋级别:Ⅱ级,混凝土的弹性模量 Ec=14500.00N/mm2桩直径或方桩边长 d=2.50m,地基土水平抗力系数 m=8.00MN/m4桩顶面水平力 H0=100.00kN,保护层厚度:50mm二. 塔吊基础承台顶面的竖向力与弯矩计算1. 塔吊自重(包括压重)F1=245.00kN2. 塔吊最大起重荷载F2=60.00kN作用于桩基承台顶面的竖向力 F=1.2×(F1+F2)=366.00kN塔吊的倾覆力矩 M=1.4×600.00=840.00kN.m三. 桩身最大弯矩计算计算简图:1. 按照m法计算桩身最大弯矩:计算依据《建筑桩基础技术规范》(JGJ94-94)的第5.4.5条,并参考《桩基础的设计方法与施工技术》。

(1) 计算桩的水平变形系数(1/m):其中 m──地基土水平抗力系数;b0──桩的计算宽度,b0=3.15m。

E──抗弯弹性模量,E=0.67Ec=9715.00N/mm2;I──截面惯性矩,I=1.92m4;经计算得到桩的水平变形系数:=0.271/m(2) 计算 D v:D v=100.00/(0.27×840.00)=0.45(3) 由 D v查表得:K m=1.21(4) 计算 M max:经计算得到桩的最大弯矩值:M max=840.00×1.21=1018.87kN.m。

由 D v查表得:最大弯矩深度 z=0.74/0.27=2.78m。

四.桩配筋计算依据《混凝土结构设计规范》(GB50010-2002)第7.3.8条。

塔吊基础计算书

塔吊基础计算书

塔吊分项参数计算塔吊是施工场地最重要的施工机械之一,其使用贯穿了整个工程。

在这过程中间隔时间长,不可预见性因素多,为确保塔吊的安全,以下计算都按极限苛刻条件下能保证塔吊正常工作计算。

即:塔吊设置在最大开挖深度处;型钢柱与混凝土灌注桩连接按光滑面锚固。

(计算详值见计算表格) 1. 基础竖向极限承载力计算F=F1+ F2F ——基础竖向极限承载力kn F1——塔吊自重(包括压重)kn F2最大起吊重量kn 2.单桩抗压承载力、抗拔力计算桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第条)F 十。

iV V-A- M =1.2 —±士 弱尹2" Z* ("+”计算结果为抗压,“-”为抗拔)其中 N i ——单桩桩顶竖向力设计值kNn 单桩个数,n=4;F ——作用于桩基承台顶面的竖向力设计值TG ——塔吊基础重量KNMx,My 承台底面的弯矩设计值kN.mxi,yi 单桩相对承台中心轴的XY 方向距离mM ——塔吊的倾覆力矩kN.m3.桩长以及桩径计算 桩采用钻孔灌注桩R =f A +U £ f l >R = N xgk 实际 ppp s ii1U P =n d其中Rk 实际一一实际钻孔灌注桩承载能力KN桩端面承载能力KN桩侧摩擦阻力总和IUp£fsliKNR——单桩轴向承力安全值KN孔一一桩安全系数取2d桩直径m4.桩抗拔验算Ok=入RQk八k实际5.桩配筋计算桩身配筋率可取0.20%〜0.65% (计算取上限0.65%),抗压主筋不应少于6①10,箍筋采用不少于①6@3mm的螺旋箍筋,在桩顶5倍桩身直径范围内箍筋①6@1mm,每隔2m设一道2①12焊接加强箍筋。

As = S桩截面*配筋率n = 4As/ (n 巾2)其中n ——竖筋根数根As ——钢筋总截面积m①一一竖筋直径m6.桩上部钢支柱计算钢支柱采用 hxbxtwxt = 350 * 350 x 12 x 19, H 型钢。

塔吊基础技术计算公式

塔吊基础技术计算公式

塔吊基础技术计算公式引言。

塔吊是建筑工地上常见的起重设备,它具有起重能力大、操作范围广等优点,因此在建筑施工中得到了广泛应用。

在塔吊的设计和施工过程中,基础技术计算是至关重要的一环。

正确的基础技术计算可以确保塔吊的安全稳定运行,保障施工现场的安全。

本文将介绍塔吊基础技术计算的一些常用公式,希望对相关工程师和施工人员有所帮助。

一、塔吊基础技术计算公式。

1. 塔吊的起重能力计算公式。

塔吊的起重能力是指它能够承受的最大起重重量。

起重能力的计算公式如下:Q = (P F) × r。

其中,Q为塔吊的起重能力,P为塔吊的额定起重能力,F为塔吊自重,r为塔吊的工作半径。

2. 塔吊基础承载力计算公式。

塔吊的基础承载力是指它能够承受的最大荷载。

基础承载力的计算公式如下:Pb = ∑(Gk + Qk) + ∑(Ek × Ak)。

其中,Pb为塔吊的基础承载力,Gk为地面荷载,Qk为动载荷,Ek为风载荷,Ak为风载面积。

3. 塔吊的抗倾覆稳定计算公式。

塔吊在使用过程中需要保持稳定,抗倾覆稳定的计算公式如下:Fh = (M × L) / (H × 2)。

其中,Fh为塔吊的抗倾覆稳定系数,M为塔吊的最大起重力矩,L为塔吊的最大工作半径,H为塔吊的高度。

4. 塔吊的基础尺寸计算公式。

塔吊的基础尺寸是指它的基础面积和深度,基础尺寸的计算公式如下:A = Pb / σ。

D = A / B。

其中,A为塔吊的基础面积,Pb为塔吊的基础承载力,σ为土壤承载力,D为塔吊的基础深度,B为土壤的承载力系数。

5. 塔吊的基础沉降计算公式。

塔吊的基础沉降是指它在使用过程中可能发生的沉降情况,基础沉降的计算公式如下:S = (Q / A) × C。

其中,S为塔吊的基础沉降,Q为塔吊的荷载,A为塔吊的基础面积,C为土壤的沉降系数。

二、塔吊基础技术计算实例分析。

为了更好地理解塔吊基础技术计算公式的应用,我们以一个实际工程为例进行分析。

塔吊基础计算

塔吊基础计算

1.基础1.1 固定式基础现在不少塔式起重机生产厂提供的说明书中,对基础的地耐力要求很高,不现实,笔者认为只要符合GB/T 13752中抗倾翻稳定性和地面压应力的要求即可,如图1。

1.1.1 混凝土基础的抗倾翻稳定性1.1.2 地面压应力式中:e —偏心距,即地面反力的合力至基础中心的距离,m;M —作用在基础上的弯距,N•m;Fv —作用在基础上的垂直载荷,N;Fh —作用在基础上的水平载荷,N;Fg —混凝土基础的重力,N;pB —地面计算压应力,Pa;[pB] —地面许用压应力,由工程地质勘探和基础处理情况确定,Pa;b —混凝土基础的截面尺寸,m;h —混凝土基础的厚度(高度),m;M、Fv、Fh、Fg均可在塔式起重机说明书中找到。

1. 2 钻孔灌注桩基础有时,地面许用压应力很低或塔式起重机安装的地理位置太小,不能使用占地面积较大的固定式基础,此时使用钻孔灌注桩是一种很好的解决问题的方法。

在计算时,水平力和扭矩可以略去不计,主要考虑塔式起重机的重力Fv和倾翻力矩M,如图2。

每根钻孔灌注桩的轴向力:式中:n —桩的根数;X —每根桩到基础(塔机)中心的距离,m;1.2.1 轴向承压验算根据经验公式和地质勘探资料:Pa=πdΣLi•f i+A•Rj>N压 (6)式中:Pa —桩的轴向受压允许承载能力,N;d —桩的直径,m;Li —桩的入土范围第i层的厚度,m;f i —桩的入土范围第i层的允许摩擦阻力,N/㎡;A —桩的横截面积,㎡;Rj —桩的底端土的允许端承载力,N/㎡;1.2.2 抗拔验算根据经验公式:N=λπdΣLi•f i+0.9Gs>N拉 (7)式中:λ—抗拔允许摩阻力与受压摩阻力比例系数;Gs —桩的自重,N;(地下水位以下取浮容重)2.附墙在施工过程中,很多情况塔式起重机的附墙杆件需要加长,随机的附墙杆件不能使用,因此附墙杆件必须重新计算。

2.1 公式推导如图 3 ,根据EJy″=M得EJy″式中:E —弹性模量;J —截面惯性矩;q —附墙杆件单位长度自重;P —轴向力。

塔吊 基础 计算

塔吊 基础 计算

塔吊基础计算一、基础设计原则塔吊基础设计的目标是确保塔吊在使用过程中的稳定性和安全性。

基础设计应遵循以下原则:1. 承载能力:基础应具备足够的承载能力,能够承受塔吊的自重、荷载和风荷载等。

2. 抗倾覆能力:基础应能够提供足够的抗倾覆能力,以防止塔吊因倾覆而引发事故。

3. 稳定性:基础设计应确保塔吊在使用过程中的稳定性,避免因地基不稳造成的塔吊晃动和倾斜。

二、计算步骤塔吊基础计算通常包括以下步骤:1. 确定设计参数:根据塔吊的类型和规格,确定设计参数,如塔吊的高度、自重、荷载等。

2. 地基勘察:进行地质勘察,了解地基的承载能力、土层稳定性和地下水情况等。

3. 基础类型选择:根据地基勘察结果和设计参数,选择合适的基础类型,常见的基础类型包括钢筋混凝土桩基、扩底基础和浅基础等。

4. 基础尺寸计算:根据塔吊的荷载和地基的承载能力,计算基础的尺寸和承载能力。

5. 基础构造设计:根据基础尺寸计算结果,进行基础的构造设计,包括基础底板、基础柱等。

6. 基础施工:按照设计图纸和施工规范进行基础的施工,包括土方开挖、基础浇筑和基础固结等。

7. 基础验收:进行基础的质量验收,确保基础符合设计要求和施工规范。

三、注意事项在进行塔吊基础计算时,需要注意以下几点:1. 地基勘察的重要性:地基勘察是基础计算的前提,只有了解地基的性质和承载能力,才能进行准确的基础计算。

2. 基础设计的合理性:基础设计应符合塔吊的使用要求,确保塔吊在使用过程中的稳定性和安全性。

3. 施工质量的控制:基础施工过程中,应严格按照设计要求和施工规范进行施工,确保基础的质量和稳定性。

4. 定期检测和维护:塔吊基础在使用过程中应定期检测和维护,及时发现并处理基础的损坏和变形等问题。

总结:塔吊基础计算是确保塔吊安全使用的重要环节,基础设计应符合承载能力、抗倾覆能力和稳定性等原则。

计算步骤包括确定设计参数、地基勘察、基础尺寸计算、基础构造设计、基础施工和基础验收等。

工程塔吊基础设计计算

工程塔吊基础设计计算

工程塔吊基础设计计算一计算参数1 本工程拟采用5013塔吊,在标准高度非工作状态下作用于基础顶面的作用力为垂直力F k=430kN,力矩M=1910kN*m,水平力F0=85kN。

2 塔吊基础尺寸如右图上部5×5m2,下部6.5×6.5m2,总厚度h=1.3m,C30混凝土浇筑。

3 地基土承载力特征值f a=120kPa.二计算依据混凝土结构设计规范GB50010-2002建筑地基基础设计规范GB50007-20025013塔吊设备使用说明书***工程地质勘测报告三地基承载力计算基础底面的作用力为:垂直力F k=430kN水平力F0=85kN力矩M k=M+F0*h=1910+85×1.3=2020.5kN*m自重G k={5×5×0.9+[6.5×6.5+5.0×5.0+(5.02×6.52)1/2]×0.1/3+6.5×6.5×0.3}×25=962.5kNe=M k/(F k+G k)=2020.5/(430+962.5)=1.45m>b/6=6.5/6=1.08ma=b/2-e=6.5/2-1.45=1.8m,l=b=6.5mP Kmax=2(FK+GK)/3la=2×(430+962.5)/(3×6.5×1.8)=79.3kPa<f a=120kPa四扩展基础的计算基础配筋如下图所示:主筋Q235Ф20@160双层双向,上64根,下82根,共146根。

上下拉筋:Q235Ф14@480,双向共121根。

基础计算时,采用设计荷载,荷载分项系数综合取 1.35。

基底最大压力值为79.3×1.35=107.1kPa1 大放脚抗剪计算基础底面扩展部分受力示意图如下:(1)受剪截面应符合下列条件因h w/b≤4,所以V≤0.25βc f c bh0混凝土强度C30,βc=1.0,f c=14.3N/mm2,b=6500mm,h0=325mm求错台处基础反力值:4650/5400=x/107.1,解之,x=92.2kPaV=(107.1+92.2)/2×6.5×0.75=485.8kN<0.25×1×14.3×6500×325=7552kN满足要求。

塔吊基础计算书

塔吊基础计算书

矩形板式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB50007-2011一、塔机属性塔机型号QTZ80(TC6013A-6)-中联重科塔机独立状态的最大起吊高度H0(m) 46塔机独立状态的计算高度H(m) 48塔身桁架结构方钢管塔身桁架结构宽度B(m) 1.8二、塔机荷载塔机竖向荷载简图1、塔机自身荷载标准值塔身自重G0(kN) 262.15起重臂自重G1(kN) 772、风荷载标准值ωk(kN/m2)3、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值倾覆力矩设计值M'(kN·m) 1.2×(77×30+3.8××14.1-168×13.6)+1.4×0.5×43.334×48=693.962 三、基础验算基础布置图基础布置基础长l(m) 5.5 基础宽b(m) 5.5 基础高度h(m) 1.6基础参数基础混凝土强度等级C35 基础混凝土自重γc(kN/m3) 25 基础上部覆土厚度h’(m)0 基础上部覆土的重度γ’(kN/m3) 19 基础混凝土保护层厚度δ(mm)50地基参数地基承载力特征值f ak(kPa) 550 基础宽度的地基承载力修正系数ηb0基础及其上土的自重荷载标准值:G k=blhγc=5.5×5.5×1.6×25=1210kN基础及其上土的自重荷载设计值:G=1.2G k=1.2×1210=1452kN荷载效应标准组合时,平行基础边长方向受力:M k''=G1R G1+G2R Qmax-G3R G3-G4R G4+0.9×(M2+0.5F vk H/1.2)=77×30+3.8××14.1-168×13.6+0.9×(1120.8+0.5×24.162×48/1.2)=870.07kN·mF vk''=F vk/1.2=24.162/1.2=20.135kN荷载效应基本组合时,平行基础边长方向受力:M''=1.2×(G1R G1+G2R Qmax-G3R G3-G4R G4)+1.4×0.9×(M2+0.5F vk H/1.2) =1.2×(77×30+3.8××14.1-168×13.6)+1.4×0.9×(1120.8+0.5×24.162×48/1.2)=1332.811kN·mF v''=F v/1.2=33.827/1.2=28.189kN基础长宽比:l/b=5.5/5.5=1≤1.1,基础计算形式为方形基础。

塔吊基础设计计算

塔吊基础设计计算

塔吊基础设计计算塔吊基础设计计算是指在安装塔吊时,根据塔吊的尺寸、工作条件和安全要求,进行基础设计的计算。

塔吊是一种大型施工机械设备,用于在建筑工地上进行吊装作业,因此其基础设计计算至关重要,直接关系到塔吊的稳定性和安全性。

一、确定塔吊基础设计参数1.确定塔吊的高度和重量,以及工作条件(如最大起吊量和最大回转半径等)。

2.根据塔吊的高度和重量,确定基础的尺寸和类型,常用的基础类型有立柱基础和箱式基础。

二、计算基础尺寸和适应性1.根据塔吊的高度和工作条件,计算基础的尺寸。

通常,基础的宽度应大于塔吊高度的1/4至1/3,长度应大于最大回转半径加上塔吊底座的尺寸。

2.根据计算结果,评估基础的适应性,包括抗倾覆能力、承载能力和稳定性。

三、计算基础的承载能力1.根据塔吊的重量和基础参数,计算基础的垂直承载能力,即基础的承载能力应大于塔吊的重量。

2.根据基础的尺寸和土壤的承载力,计算基础的水平承载能力,即基础的承载能力应大于塔吊的侧向荷载。

四、计算基础的稳定性1.根据基础的尺寸、土壤的稳定性和塔吊的工作条件,计算基础的稳定系数,即基础的稳定系数应大于12.根据计算结果,评估基础的稳定性,包括抗倾覆能力和抗滑移能力。

五、设计基础的细节1.根据基础的尺寸和类型,设计基础的具体结构,包括基础的平面形状和截面形状。

2.根据基础的结构和施工条件,设计基础的施工方案,包括土方开挖、支护和回填等。

六、进行基础的验算和评估1.根据设计结果,进行基础的验算,包括静力分析和动力分析等。

2.根据验算结果,评估基础的安全性和可行性,包括基础的稳定性和承载能力等。

总之,塔吊基础设计计算是一项复杂而重要的工作,需要结合塔吊的特点和工作条件,进行详细的参数计算和结构设计。

只有通过科学合理的设计计算,才能确保塔吊的稳定性和安全性,提高施工效率和质量,确保人员安全。

塔吊基础计算

塔吊基础计算

塔吊基础的计算书(一)(一)参数信息塔吊型号:QTZ6018, 自重+压重850kN,塔吊倾覆力距3146kN.m 承台尺寸6.0 X 6.0 x 1.5m基础自重6X6X 1.5X25=1350 kN(二)塔吊基础承台顶面的竖向力与弯矩计算竖向力1.2 (F+G =1.2 X (850+1350) =2640kN塔吊的倾覆力矩M=1・4x3146=4404kN.m(三)矩形承台弯矩的计算计算简图:f-M图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。

1 •桩顶竖向力的计算(依据《建筑桩基础技术规范》JGJ94-2008的第5.1.1条)匕斗竺+竺1其中n ——单桩个数,n=4 (由于护坡桩一半裸露在基坑内,单桩承载力折减xi,yi单桩相对承台中心轴的XY方向距离(m)4.5/1.414=3.18 ;Ni ——单桩桩顶竖向力设计值(kN)。

经计算得到单桩桩顶竖向力设计值:最大荷载:N=2640/4+(4404 X 3.18)/ (2X 3.182) =1352.45kN最小荷载N=2640/4-(4404 X 3.18)/ (2X 3.182) =-32.45kN(六)桩承载力验算桩承载力计算依据《建筑桩基础技术规范》(JGJ94-2008)根据第二步的计算方案可以得到桩的轴向压力设计值,取其中最大值N=1352.45kN桩顶轴向压力设计值应满足下面的公式:其中” 一一建筑桩基重要性系数,取1-0 ;fc ——混凝土轴心抗压强度设计值,fc=16.70N/mm2;A ——桩的截面面积>A=0.157m2经过计算得到桩顶轴向压力设计值满足要求!(七)桩竖向极限承载力验算及桩长计算桩承载力计算依据《建筑桩基础技术规范》(JGJ94-94)的第522-3条根据第二步的计算方案可以得到桩的轴向压力设计值,取其中最大值Ra= qpkx Ap+ u 艺 qsk X li桩侧第i 层土的极限侧阻力标准值,按下表取值;极限端阻力标准值,按下表取值;桩身的周长,u=2.5m;qskqpkAp 桩端面积,取Ap=0.5m2li ——第i层土层的厚度,取值如下表;厚度及侧阻力标准值表如下最大压力验算:Ra =0.5 x( 1800x 0.5+2.5 x 60x 25) =2325kN上式计算的R的值大于最大压力1352.45kN,所以满足要求!塔吊基础的计算书(二)(一)参数信息塔吊型号:QTZ6018, 自重+压重850kN,塔吊倾覆力距3146kN.m 承台尺寸6.4 X 6.4 x 1.5m基础自重6.4 X 6.4 X 1.5X25=1536 kN(二)塔吊基础承台顶面的竖向力与弯矩计算竖向力1.2 (F+G =1.2 X (850+1536) =2863.2kN塔吊的倾覆力矩M=1・4x3146=4404kN.m(三)矩形承台弯矩的计算计算简图:f-M图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。

塔吊基础计算

塔吊基础计算
非工作状态下塔机对基础顶 4.2 面的作用
水平荷载标准值 竖向荷载标准值 *控制力矩取大值
Mk= 500.00 kN.m
Mk= Fvk= Fk1= Gk= Fqk= Fk=Fk1+Gk+Fqk=
718.82 kN.m 12.16 kN 333.20 kN 1188.32 kN 40.00 kN 1561.52 kN
Fvk'=qsk'*H= Msk=0.5*Fvk*H=
0.40 kN/m2
0.38 kN/m2 0.61 kN/m
24.31 kN 486.26 kN.m
3. 塔 机 的 倾 覆 力 矩
大臂自重产生的向前力矩标 3.1 准值
4. 综 合 分 析 计 算
工作状态下塔机对基础顶面 4.1 的作用
水平荷载标准值 竖向荷载标准值 基础自重 起重荷载
桩身承载力
满足要 求
Qk=Fk'/n= Ra=
2.40 MPa 380.38 kN 1884.96 kN
Qkmax=Fk'/n+(Mk'+Fv k'*h)/L=
626.59 kN
Qkmin=Fk'/n(Mk'+Fvk'*h)/L=
Hale Waihona Puke 134.17 kNfc=
14300 kN/m2
N= ######## kN
5.2 5.2.1
桩基承台计算
角桩轴线位于塔机塔身柱的 冲切破坏椎体以内,且承台 高度符合构造要求,故可不 进行承台受角桩冲切的承载 力验算
5.2.2
承台暗梁配筋计算 承台暗梁宽度 最大竖向力设计值 最小竖向力设计值 支座反力

塔吊基础计算(格构柱)

塔吊基础计算(格构柱)

塔吊基础计算(格构柱)八、基础验算基础承受的垂直力:P=449KN 基础承受的水平力:H=71KN 基础承受的倾翻力矩: M=1668KN.m(一)、塔吊桩竖向承载力计算:1、单桩桩顶竖向力计算:单桩竖向力设计值按下式计算:Q ik=(P + G )/n ±M/a2式中:Q ik—相应于荷载效应标准组合偏心竖向力作用下第i根桩的竖向力;P-塔吊桩基础承受的垂直力,P=449KN;G—桩承台自重,G=(4。

8×4。

8×0。

4+4。

8×4。

8×1.3)×25=979.2KN;P+G=449+979。

2=1428.2KNn—桩根数,n=4;M—桩基础承受的倾翻力矩,M=1668+71×1.3=1760。

3KN。

m;a—桩中心距,a=3.2m。

Q ik=1428.2/4±1760.3/3.2×2单桩最大压力:Q压=357.05+389.03=746。

08KN单桩最大拔力: Q拔=357。

05-389。

03=-31。

98KN2、桩承载力计算:(1)、单桩竖向承载力特征值按下式计算:R a = q pa A P+u P∑q sia L i式中: R a—单桩竖向承载力特征值;q pa、q sia—桩端阻力,桩侧阻力特征值;A P—桩底端横截面面积;u P—桩身周边长度;L i—第i层岩土层的厚度。

5号塔吊桩:对应的是8—8剖的Z52。

桩顶标高为-6。

8m,绝对标高为-1.9m,取有效桩长52m,桩端进入6—1粘土层2。

19m。

52R a = 0.8×3。

14×(4×12。

51+16×3.8+14×14.4+18×19.1+30×2。

19)=1813.51>746。

08KN 满足要求3、承台基础的验算(1)承台弯矩计算Mx1=My1=2×(746。

塔吊基础计算(湘江公馆)

塔吊基础计算(湘江公馆)

G1=25×b×l×h=
756.25 kN
覆土重量
G2=r×hp×(l×b-lp×lb)=
0.00 kN
配重
G3=25×bp×lp×hp=
0.00 kN
垂直荷载
F2+G1+G2+G3=
1217.65 kN
总弯矩
M =M2+H2×(h+hp)=
1625.90 kN∙m
偏心矩
e=M/(F2+G1+G2+G3)=
基础底面处的平均压力值PkN/m2

f
2
3、基础抗冲切验算: 塔吊的基础节和基础的交接处还必须验算受冲击承载力,危险截面为交接处向下和 底面成45度的斜截面。
45°
bb c b
c
h0 l
冲击承载力Fl≤0.7β hpft×bm×ho=
2766733 N
其中:
β hp为受冲切承载力截面高度影响系数
73.9
461.4
1552
塔吊在非工作状态垂直荷载较小,弯矩较大,故只计算非工作状态的受力情况
3、假设基础尺寸
基础持力层
粉细砂 土的重度r=
18.5 kN/m3
基础埋深(自然地面以下)d (m)
0
地基承载力标准值 fk =
150
kN/m2
初选基础面积
A=1.4×F2/(fk-rd)=
4.31 m2
假设塔吊基础:
塔吊基础计算
适用范围: 采用钢筋混凝土独立基础的塔吊基础
一、计算参数:
1、塔吊型号 TC5013B 标准节尺寸
1.7
2、塔吊荷载
工作状态
m 非工作状态

塔吊基础计算

塔吊基础计算

桩底)
单桩承力设计值
抗拔力设计值 N拔
R
单桩轴向承力安全值
Up∑qsili 桩侧总极限摩擦阻力
qpAp
桩端点极限承载力
Rk实际
取桩长度后实际承载力
Rk实际=fpAp+Up∑fsli
Qk
取桩长度后实际抗拔力
Qk=λRk 桩配筋计算
根据桩径按内插法计算工程桩桩 身配筋率(0.20%~0.65%)
As
截面钢筋面积
单位
KN KN M 节 KN KN KN KN.m KN.m KN m
取 m m
m
KN
KN
KN KN KN KN KN
取 m2 mm 根
m ㎡ m4 m4 M
i单柱 λ合 λ单柱
σ合 σ单柱
τ d h
σ N lw t
规格 V1 V2 V fv
d A σ τ
单柱回转半径 四根立柱组合长细比 单柱长细比
符号
G m b N F1 F2 F3 Mn M F4
ξ1 d D
l
Ni
意义
公式 钻孔灌注桩计算
桩上部钢支架总重 标准节重 标准节边长 标准节数量 塔吊自重(包括平衡重) 最大起吊重量 标准节总重 基础承受扭矩 倾覆力矩 水平荷载 钻孔灌注桩桩顶标高
F3=m×N
桩安全系数
桩直径
桩间距
D=2d
取桩有效长度(最大开挖深度至
N/mm2 N/mm2
kN/m2 m m
N/mm2 N mm mm
mm2 KN KN KN N/mm2
颗 mm m㎡ N/mm2 N/mm2
12
42535.38462
153.9904
42689.37502

7种塔吊基础计算

7种塔吊基础计算

7种塔吊基础计算在塔吊建设中,基础计算是非常重要的环节。

一个良好的基础设计可以确保工程的安全和稳定,减少不必要的损失和事故。

在该文档中,我们将探讨七种常见的塔吊基础计算。

1. 常规混凝土基础常规混凝土基础是最常见的塔吊基础,通常需要考虑以下因素: - 塔吊载荷 - 土壤承载能力 - 基础尺寸和形状 - 混凝土配方和强度等级基础计算需要考虑上述因素,以保证基础的稳定性和安全性,有助于塔吊的使用寿命。

2. 锚固式基础锚固式基础主要用于需要更强的支撑力的情况下,例如在高风区域和高层建筑物的塔吊。

锚固基础的设计通常依靠锚杆的力量来提供更强的支撑力。

3. 沉桩式基础当需要在地面较松散的区域建设塔吊时,沉桩式基础是最好的选择,可以大幅度增加塔吊的稳定性和安全性。

沉桩需要在土中钻孔并注入混凝土,以确保桩的固定性和地基的稳定性。

4. 层式基础层式基础是针对较大塔吊设计的一种基础计算方式。

它往往需要考虑塔吊中心的重力位置,以及需要排除的竖向压力等因素。

5. 礁石式基础在海边或山区等特殊的环境中,基础计算往往需要考虑土壤情况和承载能力。

在这种情况下,较好的选择是借助现有的天然石块或制作石头基础。

要确保石块和基础的完整性和可靠性。

6. 波纹管式基础波纹管式基础是一种非常新颖的基础设计,它一般用于地面不平的区域。

此类基础的主要特点是拼接波纹钢,形成一个管状构建,容易拆卸并移植至其他场地。

它的使用范围非常广泛,配合现代工程设备可缩短基础设计周期。

7. 内置塔身基础内置塔身基础是一种能够提高塔吊在建设过程中稳定性的技术。

这种基础的设计中,塔吊身体自身被认为是一部分基础。

确保塔吊内部重心的位置和表面载荷分布可以大幅度增加塔吊在建设过程中的稳定性和安全性。

每种基础设计都有自己的特殊性,需要根据实际情况进行选择。

我们需要考虑每个因素的影响,并确保设计的基础具有足够的载荷能力和稳定性。

基础计算的可能性不仅在于适合建筑物的设计,还需要考虑施工工序、时限和实际预算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

塔吊基础方案一、工程概况1、本工程位于松江区九亭镇,地块南临蒲汇塘河,东临沪亭路,西临横泾河,北临沪松公路并与地铁9#线车站一墙之隔,与9#线车站物业开发管理为一个整体。

地块面积41162㎡,由3#、4#、5#、6#、7#、8#公寓楼及9#酒店、10#办公楼组成。

2、因地块面积巨大,根据塔吊平面布置应最大程度满足施工区域吊装需要,尽可能减少吊装盲区的原则,以及地下室工程施工中能充分利用塔吊来满足施工需要,按照施工组织总设计要求拟搭设6台附墙式塔吊,其中QTZ80B(工作幅度60M,额定起重力矩800KN.M)2台,QTZ80A(工作幅度55M,额定起重力矩800KN.M)4台,平面位置详附图。

3、拟建建筑物高度及层数4、根据建筑物高度,1#塔吊位于3#楼西北侧位置,搭设高度为86M;2#塔吊位于9#楼南侧位置,搭设高度为114M;3#塔吊位于5#楼西北侧位置,搭设高度为77M,设水平限位装置;4#塔吊位于10#楼东南侧位置,搭设高度为114M;5#塔吊位于6#楼西北侧位置,搭设高度为100M,6#塔吊位于8#楼西北侧位置,搭设高度为100M。

其中5#、6#塔吊为QTZ80B,其余4台为QTZ80A。

5、塔吊应在土方开挖前安装完毕,故采用型钢格构式非塔吊标准节插入钻孔灌注桩内,以保障塔吊安全、稳定和牢固可靠,且不妨碍地下室顶板混凝土的整体浇筑施工,有利于加快施工进度和确保工程质量。

6、本工程采用钻孔灌注桩筏板基础,基坑底标高为-8.000、-8.800、-9.100,本工程±0.000相当于绝对标高6.150M,自然地坪标高相对于绝对标高-1.45M。

7、根据本工程地质勘察报告,各土层极限摩阻力、端阻力标准值指标见下表:8、塔式起重机主要技术性能表二、塔吊布置原则本工程作业面积大,综合考虑塔吊的作用半径、起吊重量、基础工程桩位布置、围檩支撑结构设计、房屋结构设计、经济性比较后,作出以下布置原则。

1. 塔吊布置在基坑内2. 塔吊共6台,55m臂4台,60m臂2台3. 塔吊选型:市沪淞建筑机械厂有限公司生产的QTZ80A(5512)及QTZ80B(6010)塔吊。

4. 具体位置详见《塔吊平面布置图》5. 因塔吊布置在基坑内,考虑到土方开挖后安装困难。

并为兼顾土方开挖垂直运输,塔吊需在基础开挖前投入正常使用。

6. 塔吊桩基础采用钻孔灌注桩7. 桩上部钢支柱采用H型钢,上端标高-0.50m8. 塔吊基础采用C30水下混凝土,Φ800钻孔灌注桩,上部H型钢格构非标准节插入桩内2500。

塔吊标准节与型钢格构用高强度螺栓和盖板焊接连接固定。

详见附图三、计算依据1. 《地基基础设计规范》DGJ08-11-19992. 《建筑桩技术规范》JGJ94-943. 《混凝土结构设计规范》GB50010-20024. 《建筑结构焊接规程》JGJ80-915. 《建筑结构设计荷载规范》GB50009-20016. 沪淞建筑机械厂有限公司的QTZ80A、80B塔式起重机的《使用说明书》7. 本工程平面图、结构图、围檩支撑图四、塔吊分项参数计算塔吊是施工场地最重要的施工机械之一,其使用贯穿了整个工程。

在这过程中间隔时间长,不可预见性因素多,为确保塔吊的安全,以下计算都按极限苛刻条件下能保证塔吊正常工作计算。

即:塔吊设置在最大开挖深度处;型钢柱与混凝土灌注桩连接按光滑面锚固。

(计算详值见计算表格)1. 基础竖向极限承载力计算F=F1+ F2F ——基础竖向极限承载力knF1——塔吊自重(包括压重)knF2——最大起吊重量kn2. 单桩抗压承载力、抗拔力计算桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第5.1.1条)(“+”计算结果为抗压,“-”为抗拔)其中N i——单桩桩顶竖向力设计值kNn ——单桩个数,n=4;F ——作用于桩基承台顶面的竖向力设计值TG ——塔吊基础重量KNMx,My——承台底面的弯矩设计值kN.mxi,yi——单桩相对承台中心轴的XY方向距离mM ——塔吊的倾覆力矩kN.m3. 桩长以及桩径计算桩采用钻孔灌注桩R k实际=f p A p+U p∑f s l i>R=N i×ξ1U P =Πd其中R k实际——实际钻孔灌注桩承载能力KNf p A p ——桩端面承载能力KNUp∑fsli ——桩侧摩擦阻力总和KNR ——单桩轴向承力安全值KNξ1——桩安全系数取2d ——桩直径m4. 桩抗拔验算Qk=λR k实际5. 桩配筋计算桩身配筋率可取0.20%~0.65%(计算取上限0.65%),抗压主筋不应少于6Φ10,箍筋采用不少于Φ6@300mm的螺旋箍筋,在桩顶5倍桩身直径范围内箍筋Φ6@100mm,每隔2m设一道2Φ12焊接加强箍筋。

As=S桩截面×配筋率n =4As/(πφ2)其中n ——竖筋根数根As——钢筋总截面积mΦ——竖筋直径m6. 桩上部钢支柱计算钢支柱采用h×b×tw×t=350×350×12×19,H型钢。

A=hb-(b-tw)(h-2t)=0.017㎡1) 四柱整体验算A 总=4A 截面惯性矩Iz回转半径 i =(Iz/A 总)0.5 构架长细比AIz H4=λ 235fyλ查Φ 215=≤=f A Nφσ 2) 单柱验算Izi =(Iz/A )0.5 井架长细比AIz H4=λ 查Φ 215=≤=f A Nφσ 7. 钢支柱上部螺栓紧固水平钢板抗拔计算H 型钢上部螺栓紧固水平钢板采用500×500厚20,Q235钢板,采用电焊与下部H 型钢焊接,焊接高度不小于6mm 。

1) 焊接强度验算1801=≤=ww f tl N σ160 σ——焊接强度N ——轴心最大拔力,等于塔吊拔力w l ——焊缝长度等于4478MMwf 1——焊缝的抗拉抗压强度设计值,Q235等于1608. 缀条计算缀条采用12#槽钢 截面面积 A =0.0015700 ㎡ V =V1+V2V1——塔吊水平力引起应力V1=F 4/2 F 4——塔吊水平力V2——塔吊扭矩引起应力V2=M N /2(D ×1.414)M N ——塔吊扭矩 D ——桩间距 fv>V/Afv ——槽钢的抗剪强度,厚度小于16mm ,取125 A ——槽钢截面积 9. 螺栓计算采用Φ30高强度螺栓,每肢2颗 A 总=πD 2 σ=N 拔/ A 总<295螺栓抗剪验算τ=Mn A总/(2×桩间距/1.414)<fv=170KN/m㎡10. 桩水平力验算由于地质报告未进行桩侧土水平抗力系数的比例系数m试验,采用规范提供的经验值如下表所示。

取8MN/m4。

1) 基本资料:桩类型:桩身配筋率ρg<0.65%的灌注桩桩顶约束情况:铰接、自由截面类型:圆形截面桩身直径d =800mm混凝土强度等级C30 Ft =1.50N/mm Ec =30000N/mm桩身纵筋As =3267mm净保护层厚度c =50mm钢筋弹性模量Es =200000N/mm桩入土深度h =23.000m桩侧土水平抗力系数的比例系数m =8MN/m4桩顶竖向力N =1000.0kN设计时执行的规范:《建筑桩基技术规范》(JGJ 94-94)以下简称桩基规范2) 单桩水平承载力设计值计算:(1)、桩身配筋率ρg:ρg =As / (π×d 2 / 4) =3267/(π×8002/4) =0.65%(2)、桩身换算截面受拉边缘的表面模量Wo:扣除保护层的桩直径do =d - 2 ×c =800-2×50 =700mm钢筋弹性模量与混凝土弹性模量的比值αE =Es / Ec =200000/30000 =6.667Wo =π×d / 32 ×[d 2 + 2 ×(αE - 1) ×ρg ×do 2]=π×0.800/32×[0.8002+2×(6.667-1)×0.65%×0.7002] =0.053m (3)、桩身换算截面积An:An =π×d 2 / 4 ×[1 + (αE - 1) ×ρg]=π×0.8002/4×[1+(6.667-1)×0.65%] =0.52m(4)、桩身抗弯刚度EI:桩身换算截面惯性距Io =Wo ×d / 2 =0.053×0.800/2 =0.0212m4 对于钢筋混凝土桩,EI =0.85 ×Ec ×IoEI =0.85×30000×1000×0.0212 =541622.927kN/m(5)、桩的水平变形系数α按下式确定:α=(m ×bo / EI) 1 / 5 (桩基规范5.4.5)对于圆形桩,当直径d ≤1m 时,bo =0.9 ×(1.5 ×d + 0.5)bo =0.9×(1.5×0.800+0.5) =1.530mα=(8000×1.530/541622.927)1/5=0.4686(1/m)(6)、桩顶(身)最大弯矩系数νm:桩的换算埋深αh =0.4686×25.000 =11.715查桩基规范表5.4.2得:νm =0.768(7)、其余参数:桩截面模量塑性系数γm =2.00 (圆形截面)桩顶竖向力影响系数ζN =0.5 (竖向压力)(8)、单桩水平承载力设计值Rh:对于桩身配筋率ρg<0.65%的灌注桩,可按下列公式计算单桩水平承载力设计值Rh =α×γm ×ft ×Wo / νm ×(1.25 + 22 ×ρg) ×(1 ±ζN ×N / γm / ft / An) (桩基规范5.4.2-1)=0.469×2×1500×0.053/0.768×(1.25+22×0.65%)×(1+0.5×1000.0/2/1500/0.52)=178.7kN四桩水平承载力=4×178.7kN=714.8 kN>62KN11、QTZ80B塔式起重机基础计算表12、QTZ80A塔式起重机基础计算表五、材料选用及施工方法根据计算塔吊基础选用1、桩基选用C30水下混凝土Φ800钻孔灌注桩,桩长(自桩顶垫层面以上100至桩底)为23米,桩身配12Φ22主筋,φ8@200螺旋箍筋,桩顶以下3000采用φ8@100螺旋箍筋。

相关文档
最新文档