数学建模算法--复杂系统决策模型与层次分析法

合集下载

数学建模——层次分析法

数学建模——层次分析法

在大石头中的重量比)可用向量

n
w ( w1 , w2 ,..., wn
T 表示, )
. 显然, 的各个列向量与 w 1 A i
i 1
w
仅相差一个比例
因子。 一般地,如果一个正互反阵
A
满足 (8.2.4)
aij a jk aik , i, j, k 1, 2,..., n

3 计算权向量并做一致性检验
定理1

n 阶正互反阵 A的最大特征根 n,

当且仅
A为一致阵。 由于 连续的依赖于 aii ,则 比 n 大的越多, 的不 A
n
一致性越严重。用最大特征值对应的特征向量作为被比较因
素对上层某因素影响程度的权向量,其不一致程度越大,引 起的判断误差越大。因而可以用
RI。方法为:
A1 , A2 ,, A500
2.则可得一致性指标 : CI1 , CI 2 ,CI500
CI1 CI 2 CI500 RI 500
n RI
1 2 500 n 500 n 1
1 2 3 4 5 6 7 8 9 10 11 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51
aii 1 ,如用 C1 , C2 ,..., Cn
2 构造成对比较矩阵
2.比较尺度 • 当比较两个可能具有不同性质的因素 Ci 和 C j 对于一个上层 因素 O 的影响时,Saaty提出用1—9尺度(见下表),即aij 的取值范围是1,2,,9 ,及其互反数1,1/ 2,,1/ 9 。其理由 如下:
重,景色次之,居住条件再次。 问题1.怎样由成对比较阵确定诸因素 C , C ,..., C 对上层因 1 2 n 素

数学学年论文毕业论文数学建模的层次分析法

数学学年论文毕业论文数学建模的层次分析法

数学建模的层次分析法摘要:阐述了数学建模层次分析法的基本思想、方法和核心问题,运用层次分析法建立数学模型的一般步骤和计算方法,并通过实例分析,说明了层次分析法在决策中的有效性。

关键词:数学模型层次分析法决策分析排序层次分析法(Analytic Hicrarchy process简记为AHP)是美国著名运筹学家T.L.Saaty在70年代初提出来的,它是将半定性、半定量的问题转化为定量计算的一种行之有效的方法。

把复杂的决策系统层次化,通过逐层比较各种关联因素的重要性来为分析、决策提供定量的依据。

它特别适用于那些难于完全用定量进行分析的复杂问题。

因此层次分析法在工程技术、能源系统分析、经济管理、城市规划和社会科学等众多领域中都得到了广泛的应用。

本文阐述了层次分析法的基本思想和步骤、计算问题,针对企业留成利润合理使用问题,利用层次分析法对各项措施进行了最优方案的选择。

1、AHP建模的基本思想和步骤[1-3]AHP的基本思想是先按问题要求建立一个描述系统功能或特征的内部独立的递阶层次结构,通过两两比较因素(或目标、准则、方案)的相对重要性,给出相应的比例标度;构造上层某要素对下层相关元素的判断矩阵,以给出相关元素对上层某要素的相对重要序列。

AHP的核心问题是排序问题,包括递阶层次结构原理、标度原理和排序原理。

运用AHP解决实际问题,大体可以分为4个基本步骤。

1)建立递阶层次结构模型这是AHP中最重要的一步。

将问题所包含的因素按属性不同而分层,可以划分为最高层、中间层和最低层。

同一层次元素作为准则,对下一层次的某些元素起支配作用,同时它又受上一层次元素的支配。

这种从上至下的支配关系形成一个递阶层次。

最高层通常只有一个元素,它是问题的预定目标,表示解目标层决问题的目的,因此也称目标层。

中间层为实现总目标而采 准则层 取的措施、方案和政策,它可 以由若干个层次组成,包括所 需要考虑的准则、子准则,因此也称为准则层。

数学建模——层次分析法

数学建模——层次分析法

数学建模——层次分析法层次分析法(Analytic Hierarchy Process,AHP)是一种用于复杂决策和评估问题的定量方法,旨在帮助决策者在多个准则和选项之间进行权衡和选择。

该方法由美国学者Thomas L. Saaty于1970年代初提出,已经广泛应用于管理、工程、经济学、环境科学等领域。

方法步骤:1.建立层次结构:将复杂的决策问题分解为不同层次的因素和准则,形成层次结构。

层次结构包括目标层、准则层和选择层。

2.创建比较矩阵:对每个层次内的准则和选择进行两两比较,确定它们之间的相对重要性。

使用尺度来表示两者之间的相对优先级,通常是1到9之间的数值。

3.计算权重:通过计算比较矩阵的特征向量,得出每个准则和选择的权重。

特征向量反映了每个准则和选择对目标的贡献程度。

4.一致性检验:检查比较矩阵的一致性,确保所做的两两比较是合理的。

如果比较矩阵不够一致,需要进行调整。

5.计算综合得分:将每个选择的权重与其所属准则的权重相乘,得出每个选择的综合得分。

综合得分反映了每个选择在整体目标中的重要性。

6.做出决策:根据综合得分,确定最佳选择。

较高的综合得分通常意味着更优选。

示例:选择旅游目的地假设你想选择一个旅游目的地,考虑了三个因素:景色美丽度、文化体验和交通便利性。

你将这三个因素作为准则,然后列出了三个潜在的旅游目的地:A、B 和C。

步骤:1.建立层次结构:2.目标层:选择最佳旅游目的地3.准则层:景色美丽度、文化体验、交通便利性4.选择层:A、B、C5.创建比较矩阵:比较准则之间的相对重要性,如景色美丽度相对于文化体验的比较,以及文化体验相对于交通便利性的比较。

使用1到9的尺度,表明一个因素比另一个因素重要多少。

6.计算权重:计算每个准则和每个选择的权重,使用特征向量法。

7.一致性检验:检查比较矩阵的一致性。

如果一致性不够,可能需要重新考虑比较。

8.计算综合得分:将每个选择的权重与其所属准则的权重相乘,得出每个选择的综合得分。

数学建模方法之层次分析法

数学建模方法之层次分析法

数学建模方法之层次分析法层次分析法(Analytic Hierarchy Process ,简称AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。

它是美国运筹学家T. L. Saaty 教授于70年代初期提出的一种简便、灵活而又实用的多准则决策方法。

§1 层次分析法的基本原理与步骤人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。

层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。

运用层次分析法建模,大体上可按下面四个步骤进行:(i )建立递阶层次结构模型;(ii )构造出各层次中的所有判断矩阵;(iii )层次单排序及一致性检验;(iv )层次总排序及一致性检验。

下面分别说明这四个步骤的实现过程。

1.1 递阶层次结构的建立与特点应用AHP 分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。

在这个模型下,复杂问题被分解为元素的组成部分。

这些元素又按其属性及关系形成若干层次。

上一层次的元素作为准则对下一层次有关元素起支配作用。

这些层次可以分为三类:(i )最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。

(ii )中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。

(iii )最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。

递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。

每一层次中各元素所支配的元素一般不要超过9个。

这是因为支配的元素过多会给两两比较判断带来困难。

下面结合一个实例来说明递阶层次结构的建立。

例1 假期旅游有1P 、2P 、3P 3个旅游胜地供你选择,试确定一个最佳地点。

层次分析法数学建模

层次分析法数学建模
权重分配不合理
在某些情况下,层次分析法可能无法合理地分配权重,导致决策结果 与实际情况存在较大偏差。
无法处理动态变化
层次分析法主要用于静态决策问题,对于动态变化的决策问题处理能 力较弱。
05 结论与展望
结论
层次分析法是一种有效的决策分析方法,能够将复杂问题 分解为多个层次和因素,通过比较和判断各因素之间的相 对重要性,为决策提供依据。
实例三:风险评估问题
总结词
层次分析法在风险评估问题中,能够综合考虑风险的多种来源和影响因素,确定各因素之间的权重关 系,为风险的有效控制提供科学的依据。
详细描述
风险评估问题涉及到如何识别、评估和控制各种潜在的风险。层次分析法可以将风险的多种来源和影 响因素进行比较和判断,确定各因素之间的权重关系,为风险的有效控制提供科学的依据。同时,层 次分析法还可以用于制定风险应对策略和预案,提高组织的抗风险能力。
层次单排序与一致性检验
层次单排序
根据判断矩阵的性质和计算方法,计 算出各组成元素的权重值,并按照权 重值的大小进行排序。
一致性检验
对判断矩阵的一致性进行检验,以确 保各组成元素之间的相对重要性关系 符合逻辑和实际情况。
层次总排序与一致性检验
层次总排序
根据各层次的权重值和组成元素的权重值,计算出整个层次结构模型的权重值, 并进行总排序。
确定层次
根据问题的复杂程度和组 成元素的性质,将层次结 构划分为不同的层次,以 便于分析和计算。
判断矩阵的建立
确定判断标准
根据问题的特点和要求,确定判 断各组成元素之间相对重要性的 标准和方法。
构造判断矩阵
根据判断标准,构造出一个判断 矩阵,用于表示各组成元素之间 的相对重要性关系。

数学建模方法详解三种最常用算法

数学建模方法详解三种最常用算法

数学建模方法详解--三种最常用算法一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题. (二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比,全部比较结果可用成对比较阵1,0,ij ij ji n nijA a a a a表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足:,ij jk ik a a a ,,1,2,,i j k n L (1)则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根n 的特征向量.如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,,1 对上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记作 )的特征向量(归一化后)作为权向量w ,即w 满足:Aw w (2)直观地看,因为矩阵A 的特征根和特征向量连续地依赖于矩阵的元素ij a ,所以当ij a 离一致性的要求不远时,A 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.2. 比较尺度当比较两个可能具有不同性质的因素i C 和j C 对于一个上层因素O 的影响时,采用Saaty 等人提出的91 尺度,即ij a 的取值范围是9,,2,1 及其互反数91,,21,1 .3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根 的特征向量作为被比较因素的权向量,其不一致程度应在容许范围内.若已经给出n 阶一致阵的特征根是n ,则n 阶正互反阵A 的最大特征根n ,而当n 时A 是一致阵.所以 比n 大得越多,A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用n 数值的大小衡量A 的不一致程度.Saaty 将1nCI n(3)定义为一致性指标.0CI 时A 为一致阵;CI 越大A 的不一致程度越严重.注意到A 的n 个特征根之和恰好等于n ,所以CI 相当于除 外其余1n 个特征根的平均值.为了确定A 的不一致程度的容许范围,需要找到衡量A 的一致性指标CI 的标准,又引入所谓随机一致性指标RI ,计算RI 的过程是:对于固定的n ,随机地构造正互反阵A ,然后计算A 的一致性指标CI .表1 随机一致性指标RI 的数值表中1,2n 时0RI ,是因为2,1阶的正互反阵总是一致阵.对于3n 的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当0.1CICR RI(4) 时认为A 的不一致程度在容许范围之内,可用其特征向量作为权向量.对于A 利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已有的A 进行修正. 4. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有s 层,则第k 层对第一层(设只有1个因素)的组合权向量满足:1,3,4,kkk w W w k s L (5)其中 kW 是以第k 层对第1k 层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:132s s s w W W W w L (6)5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第p 层的一致性指标为p n p CI CI ,,1 (n 是第1 p 层因素的数目),随机一致性指标为1,,p p nRI RI L ,定义11,,P p p p n CI CI CI w L 11,,p p p p n RI RI RI wL 则第p 层的组合一致性比率为:,3,4,,p p p CI CRp s RIL (7) 第p 层通过组合一致性检验的条件为 0.1pCR .定义最下层(第s 层)对第一层的组合一致性比率为:2*sP p CR CR (8)对于重大项目,仅当*CR 适当地小时,才认为整个层次的比较判断通过一致性检验.层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常称为准则或指标层,当准则过多时(比如多于9个)应进一步分解出子准则层.(2) 构造成对比较阵从层次结构模型的第2层开始,对于从属于上一层每个因素的同一层诸因素,用成对比较法和91 比较尺度构造成对比较阵,直到最下层.(3)计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率CR较大的成对比较阵.(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径. (五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题. 1. 正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题. 定理1 对于正矩阵A (A 的所有元素为正数) 1)A 的最大特征根是正单根 ;2) 对应正特征向量w ( 的所有分量为正数);3)w IA I I A k k k lim ,其中1,1,1 I ,w 是对应 的归一化特征向量.定理2 n 阶正互反阵A 的最大特征根n ;当n 时A 是一致阵.定理2和前面所述的一致阵的性质表明,n 阶正互反阵A 是一致阵的充要条件为 A 的最大特征根n .2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法. (1) 幂法 步骤如下:a .任取n 维归一化初始向量 0wb .计算1,0,1,2,k k wAw k %L c .1k w%归一化,即令ni k ik k ww1111~~d .对于预先给定的精度 ,当 1||1,2,,k k i i i n L 时,1k w 即为所求的特征向量;否则返回be. 计算最大特征根 111k n ik i in %这是求最大特征根对应特征向量的迭代法, 0w 可任选或取下面方法得到的结果.(2) 和法 步骤如下:a. 将A 的每一列向量归一化得1nij ij iji a a%b .对ij %按行求和得1ni ij j %%c .将i %归一化 *121,,,ni ini w%%L 即为近似特征向量.d. 计算 11n ii iAw n ,作为最大特征根的近似值.这个方法实际上是将A 的列向量归一化后取平均值,作为A 的特征向量.(3) 根法 步骤与和法基本相同,只是将步骤b 改为对ij %按行求积并开n 次方,即11nn iij j%%.根法是将和法中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵A 是一致阵时,ij a 与权向量n w ,,1 的关系满iij ja,那么当A 不是一致阵时,权向量w 的选择应使得ij a 与ij相差尽量小.这样,如果从拟合的角度看确定w 可以化为如下的最小二乘问题: 21,,11min i nniij i n i j j aL (9) 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于i 的非线性方程组,计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:21,,11min ln ln i nni ij i n i j j aL (10)则化为求解关于ln i 的线性方程组.可以验证,如此解得的i 恰是前面根法计算的结果.特征根法解决这个问题的途径可通过对定理2的证明看出. 4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?一般地,由残缺阵 ij A a 构造修正阵 ijA a %%的方法是令,,0,,1,ij ij ij ij i i a a i j a a i jm m i i j%为第行的个数, (11)表示残缺.已经证明,可以接受的残缺阵A 的充分必要条件是A 为不可约矩阵.(六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表2 肉、面包、蔬菜三类食品所含的营养成分及单价该人体重为55kg维生素A 7500国际单位 (IU)维生素B 1.6338mg热量 R 8548.5kJ考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构② 根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵max 2 ,10CI ,100.1CR ,主特征向量0.75,0.25W 故第二层元素排序总权重为 10.75,0.25W表4 比较判断矩阵111max 1113,0,0,0.58CI CR RI ,主特征向量0.4,0.4,0.2W故相对权重 210.4,0.4,0.2,0P③ 第三层组合一致性检验问题因为 2111211112120;0.435CI CI CI W RI RI RI W ,212200.1CR CR CI RI故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出E 的总权重为:221221120.3,0.3,0.15,0.25W P W P P W求第四层元素关于总目标W 的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化则最终的第四层各元素的综合权重向量为:3320.2376,0.2293,0.5331W P W ,结果表明,按这个人的偏好,肉、面包和蔬菜的比例取0.2376:0.2293:0.5331较为合适.引入参数变量,令10.2376x k ,20.2293x k ,30.5331x k ,代入 1LP123min 0.02750.0060.007f x x x131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x则得k f 0116.0min13.411375000.0017 1.6338..26.02828548.50k k s t LP k k容易求得1418.1k ,故得最优解 *336.9350,325.1650,755.9767x;最优值 *16.4497f ,即肉336.94g ,面325.17g ,蔬菜755.98g ,每日的食品费用为16.45元.总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系;第二,研究模糊语言和模糊逻辑,并能作出正确的识别和判断;第三,研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3.数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量12,,,m b b b b L ,其中, 01j b ,m为可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当11max 1,1njj j nj bb 时,最大隶属原则最有效;而在 1max 01,jj nbc c 1n j j b nc 时,最大隶属原则完全失效,且1max jj nb 越大(相对于1njj b 而言),最大隶属原则也越有效.由此可认为,最大隶属原则的有效性与1max jj nb 在1njj b 中的比重有关,于是令:11max njjj nj b b (12)显然,当11max 1,1njj j nj bb 时,则1 为 的最大值,当 1max 01jj nb c c ,1njj bnc时,有1n 为 的最小值,即得到 的取值范围为:11n .由于在最大隶属原则完全失效时,1n 而不为0,所以不宜直接用 值来判断最大隶属原则的有效性.为此设:11111n n n n(13)则 可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与j nj b 1sec (jnj b 1sec 的含义是向量b 各分量中第二大的分量)的大小有很大关系,于是我们定义:11sec njjj nj b b(14)可见: 当 1,1,0,0,,0b L 时, 取得最大值12.当 0,1,0,0,,0b L 时, 取得最小值0.即 的取值范围为012 ,设 02120.一般地, 值越大最大隶属原则有效程度越高;而 值越大,最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:112121n n n n(15) 使用 指标能更准确地表明实施最大隶属原则的有效性.2. 指标的使用从 指标的计算公式看出 与 成反比,与 成正比.由 与 的取值范围,可以讨论 的取值范围: 当 取最大值, 取最小值时, 将取得最小值0;当 取最小值, 取最大值时, 将取得最大值:因为 0lim ,所以可定义0 时, .即:0 .由以上讨论,可得如下结论:当 时,可认定施行最大隶属原则完全有效;当1 时,可认为施行最大隶属原则非常有效;当0.51 时,可认为施行最大隶属原则比较有效,其有效程度即为 值;当00.5 时可认为施行最大隶属原则是最低效的;而当0 时,可认定施行最大隶属原则完全无效.有了测量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级. 讨论a . 在很多情况下,可根据 值的大小来直接判断使用最大隶属原则的有效性而不必计算 值.根据 与 之间的关系,当0.7 ,且4n 时,一定存在1 .通常评价等级数取4和9之间,所以4n 这一条件往往可以忽略,只要0.7 就可免算 值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.b . 如果对 12,,,m b b b b L 进行归一化处理而得到b ,则可直接根据b 进行最大隶属原则的有效度测量. (四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用. 举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设 ,,,D V A c 是一个带出发点s v 和收点t v 的容量-费用网络,对于任意,ijv v A ,ijc表示弧 ,i j v v 上的容量,ij 表示弧 ,i j v v 上通过单位流量的费用,0v 是给定的非负数,问怎样制定运输方案使得从s v 到t v 恰好运输流值为0v 的流且总费用最小?如果希望尽可能地节省时间并提高道路的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从s v 到t v 运送的流的值恰好为0v ;(2)总运输费用最小;(3)在容量ij c 大的弧 ,i j v v 上适当多运输.如果仅考虑条件(1)和(2),易写出其数学模型为:,0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v Av v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c把条件(3)中的“容量大” 看作A 上的一个模糊子集A %,定义其隶属函数 : 0,1A 为: 00,0,1,ij ij ij i j A d c c v ij c c v v e c c%其中 1,i j ij v v c A cg (平均容量)21,21,0,1lg 1i j i j ij v v A ij v v A A c c d A c cg g建立ij 是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量ij c 大的弧 ,i j v v ,人为地降低运价ij ,形成“虚拟运价”ij ,其中ij 满足:ij c 越大,相应的ij 的调整幅度也越大.选取ij 为 1kij ij ij , ,i j v v A .其中k 是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),k 取值越小;当k 取值足够大时,便可忽略条件(3) .一般情况下,合适的k 值最好通过使用一定数量的实际数据进行模拟、检验和判断来决定.最后,用ij 代替原模型M 中的ij ,得到一个新的模型M .用现有的方法求解这个新的规划问题,可期望得到满足条件(3)的解.模型的评价 此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一)灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1.原始数据初值化变换处理分别用时间序列 k 的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,各值均大于零,且数列有共同的起点.2. 求关联系数0000min min ||max max ||||max max ||k i k k i k ik i ki k k i k k i k ikx x x x x x x x3. 取分辨系数 01 4. 求关联度11ni ki k k r n(二) 灰色预测1.灰色预测方法的特点(1)灰色预测需要的原始数据少,最少只需四个数据即可建模;(2)灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3) 灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为: (1)1-ADO :对原始数据序列0k x 1,2,,k n L 进行一次累加生成序列 101kk i i x x1,2,,k n L(2)对0x 数列进行光滑性检验:00,k ,当0k k 时:0011101k k k k ii x x x x文献[11]进一步指出只要0101k k ii x x 为k 的递减函数即可.(3)对1x 作紧邻生成: 1111*1*,2,3,,k k k Z x x k n L一般取0.5b ax dtdx 11 (16)为灰色微分方程 01k k x aZ b 的白化方程. (4)按最小二乘法计算参数,a b(5)解(16)式并进行离散化得模拟序列1x 和0x 的计算公式: 1101exp k x x b a ak b a ,其中0,1,2,,k n L01111011exp *exp k k k x x x a x b a ak ,其中1,2,k L并假定 111101x x x文献[12,13]指出:假定 111101x x x 的理由是不充分的,文献[14]认为应当以最后一个 1n x 为已知条件来确定微分方程中常数项m c 的值,理由是最后一个数据是最新的,最能反映实际情况.同时文献[15]又进一步提出常数m c 的确定,由于数据序列中。

数学建模(层次分析法(AHP法))

数学建模(层次分析法(AHP法))
3.一个好的层次结构对于解决问题是极为重要的。 层次结构建立在决策者对所面临的问题具有全面 深入的认识基础上,如果在层次的划分和确定层 次之间的支配关系上举棋不定,最好重新分析问 题,弄清问题各部分相互之间的关系,以确保建 立一个合理的层次结构。
例1. 选择旅游地 如何在3个目的地中按照景色、 费用、居住条件等因素选择.
将决策问题分为3个或多个层次: 最高层:目标层。表示解决问题的目的,即层次分析
要达到的总目标。通常只有一个总目标。 中间层:准则层、指标层、…。表示采取某种措施、
政策、方案等实现预定总目标所涉及的中间环节; 一般又分为准则层、指标层、策略层、约束层等。 最低层:方案层。表示将选用的解决问题的各种措施、 政策、方案等。通常有几个方案可选。 每层有若干元素,层间元素的关系用相连直线表示。
然后再考虑各种型号冰箱在上述各中间标 准下的优劣排序。借助这种排序,最终作 出选购决策。在决策时,由于6种电冰箱对 于每个中间标准的优劣排序一般是不一致 的,因此,决策者首先要对这7个标准的重 要度作一个估计,给出一种排序,然后把6 种冰箱分别对每一个标准的排序权重找出 来,最后把这些信息数据综合,得到针对 总目标即购买电冰箱的排序权重。有了这 个权重向量,决策就很容易了。
常用来解决诸如综合评价、选择决策方案、 估计和预测、投入量的分配等问题。
层次分析法建模
一 、问题的提出 日常生活中有许多决策问题。决策是指
在面临多种方案时需要依据一定的标准选择 某一种方案。 例1 某人准备选购一台电冰箱 他对市场上的6种不同类型的电冰箱进行了解 后,选取一些中间指标进行考察。例如电冰 箱的容量、制冷级别、价格、型式、耗电量、 外界信誉、售后服务等。
②工作收入较好(待遇好); ③生活环境好(大城市、气候等工作条件等); ④单位名声好(声誉等); ⑤工作环境好(人际关系和谐等) ⑥发展晋升机会多(如新单位或前景好)等。

数学建模(层次分析法(AHP法))

数学建模(层次分析法(AHP法))

判断矩阵元素a 判断矩阵元素 ij的标度方法
标度 1 3 5 7 9 2 , 4 , 6, 8 倒数 含义 表示两个因素相比, 表示两个因素相比,具有同样重要性 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素极端重要 上述两相邻判断的中值
层次分析法在经济、科技、文化、军事、 环境乃至社会发展等方面的管理决策中都 有广泛的应用。 常用来解决诸如综合评价、选择决策方案、 估计和预测、投入量的分配等问题。
层次分析法建模
一 、问题的提出 日常生活中有许多决策问题。 日常生活中有许多决策问题。决策是指 在面临多种方案时需要依据一定的标准选择 某一种方案。 某一种方案。 例1 某人准备选购一台电冰箱 他对市场上的6 他对市场上的6种不同类型的电冰箱进行了解 选取一些中间指标进行考察。例如电冰 指标进行考察 后,选取一些中间指标进行考察。例如电冰 箱的容量、制冷级别、价格、型式、耗电量、 箱的容量、制冷级别、价格、型式、耗电量、 外界信誉、售后服务等 外界信誉、售后服务等。
目标层
O(选择旅游地 选择旅游地) 选择旅游地
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
要比较各准则C1,C2,… , Cn对目标O的重要性 要比较各准则 对目标 的重要性
Ci :Cj ⇒aij
选 择 C1 旅 C2 游 C 3 地
C4 C5 C1
层次分析法(AHP法 层次分析法(AHP法)
Analytic Hierarchy Process

数学建模教学 19.层次分析法

数学建模教学 19.层次分析法

W i W i/ nW j i1,2, ,n j1
所求特征向量: W [W 1 ,W 2 , ,W n ]T
编辑ppt
(4)计算最大特征根:
maxn1 in1(AWW i )i
1 A 1/ 2
2 1
6 4
列向量 归一化
0.6 0.3
0.615 0.545 0.308 0.364
1/ 6 1/ 4 1
化的结果,允许存在一定的误差范围。
※常用近似算法求解判断矩阵的最大特征根及其所
对应的特征向量:和法和根法。
编辑ppt
和法计算步骤
(1)将判断矩阵每一列归一化:
n
b ijb ij/ b kj
i,j1 ,2 , ,n
k 1
(2)对按列归一化后的判断矩阵再按行求和:
n
W i bij
i1,2, ,n
j1
(3)将求和后的向量归一化:
编辑ppt
1 基本原理
假定我们已知n只西瓜的重量和为1,每只 西瓜的重量分别为W1,W2,…,Wn。把这 些西瓜两两比较,很容易得到表示n只西瓜 相对重量关系的比较矩阵:
A=
=(aij)n×n
编辑ppt
显然aii= 1,aij =1/aji,aij =aik/ajk, i、j、k= 1,2,…,n
买钢笔 质颜价外实 量色格形用
可供选择的笔
编辑ppt
目标层 准则层 方案层
若上层的每个因素都支配着下一层的所有因素, 或被下一层所有因素影响,称为完全层次结构, 否则称为不完全层次结构。还可以建立 子层 次。
目标层:
选购电冰箱
准则层: 信誉T1 型式T2 价格T3 容量T4 制冷级别T5 耗电量T6

层次分析法及其应用数学建模

层次分析法及其应用数学建模
01
层次单排序
根据判断矩阵求解各因素对于上一层次因素的相 对重要性权重,得到层次单排序结果。
02
一致性检验
对判断矩阵进行一致性检验,检查各因素之间的 相对重要性是否合理。
层次总排序与一致性检验
层次总排序
根据各层次的权重和下一层因素相对于上一层因素的权重,计算出最底层因素相对于总目标的 权重。
一致性检验
判断矩阵的构造
确定比较标度
比较同一层次中各因素对于上一 层次因素的相对重要性,通常采 用1-9的标度法进行比较。
构造判断矩阵
根据比较标度,构造出判断矩阵, 矩阵中的元素表示对应因素的比 较结果。
求解判断矩阵
通过计算判断矩阵的特征向量, 得到各因素对于上一层次因素分析法可以根据问题 的实际情况调整层次结构 和判断矩阵,具有较高的 灵活性。
局限性
主观性
层次分析法在构造判断矩阵时依赖于专 家的主观判断,因此结果可能受到专家
主观因素的影响。
计算复杂度较高
对于大规模问题,层次分析法的计算 复杂度较高,需要借助计算机进行辅
助计算。
一致性检验困难
对于构造的判断矩阵,一致性检验是 一个难题,需要找到合适的检验方法。
层次分析法在数学建模中的应用
01 在数学建模中,层次分析法常用于解决多目标决 策问题,例如在资源分配、方案选择、风险评估 等方面。
02 通过构建层次结构模型,可以将复杂的决策问题 分解为多个层次,使得决策过程更加清晰和有条 理。
02 在应用层次分析法时,需要构建判断矩阵,并进 行一致性检验,以确保决策的合理性和准确性。
02
层次分析法的基本原理
层次结构模型的建立
01 明确问题
首先需要明确问题的目标,并确定相关的因素, 将因素按照属性不同分为不同的层次,形成层次 结构。

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。

建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。

然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。

整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。

整数规划的特殊情况是0-1规划,其变量只取0或者1。

多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。

目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。

目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。

设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。

设有q个优先级别,分别为P1, P2, …, Pq。

在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。

数学建模的主要方法

数学建模的主要方法

数学建模的主要方法2数学建模主要分析方法初等数学法。

主要用于一些静态、线性、确定性的模型。

例如,席位分配问题,同学成绩的比较,一些简单的传染病静态模型。

层次分析法。

主要用于有关经济计划和〔管理〕、能源决策和分配、行为科学、军事科学、军事指挥、运输、农业、教育、人才、医疗、环境等领域,以便进行决策、评价、分析、猜测等。

该方法关键的一步是建立层次结构模型。

数据分析法。

从大量的观测数据中,利用统计方法建立数学模型,常见的有:回归分析法,时序分析法。

仿真和其他方法。

主要有计算机模拟(是一种统计估计方法,等效于抽样试验,可以离散系统模拟和连续系统模拟),因子试验法(主要是在系统上做局部试验,依据试验结果进行不断分析修改,求得所必须模型结构),人工现实法(基于对系统的了解和所要达到的目标,人为地组成一个系统)。

3数学建模常用方法差分法的数学思想是通过taylor级数展开等方法把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的方程组,将微分问题转化为代数问题,是建立离散动态系统数学模型的有效方法。

类比法:数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思索者解决问题的意图。

类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该"类似'问题的数学方法,最终建立起解决问题的模型。

差分法的数学思想是通过taylor级数展开等方法把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的方程组,将微分问题转化为代数问题,是建立离散动态系统数学模型的有效方法。

量纲分析法:量纲分析是20世纪初提出的在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。

数学建模常见评价模型简介

数学建模常见评价模型简介

数学建模常见评价模型简介Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998常见评价模型简介评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。

主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。

层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。

其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。

运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。

步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。

例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。

步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O ,准则层C ,方案层P ;每层有若干元素,各层元素间的关系用相连的直线表示。

图1 选择旅游地的层次结构步骤2构造比较矩阵标度值 含义1 两因素相比,具有同等重要性 3 两因素相比,前者比后者稍重要 5 两因素相比,前者比后者明显重要 7 两因素相比,前者比后者强烈重要 9 两因素相比,前者比后者极端重要2、4、6、8表示上述相邻判断的中间值以上各数值的倒数若指标i 与指标j 比较相对重要性用上述之一数值标度,则指标j 与指标i 的相对重要性用上述数值的倒数标度表1 1~9标度的含义设要比较各准则n C C C ,,,21 对目标O 的重要性,记判断矩阵为A显然,A 是正互反阵。

大学生数学建模--常用模型与算法

大学生数学建模--常用模型与算法

数学建模常用模型与算法一、常用模型☐(一)、评价模型:☐AHP(层次分析法)(确定权重)、模糊评价、聚类分析、因子分析、主成份分析、回归分析、神经网络、多指标综合评价、熵值法(确定权重)等☐(二)、预测模型:☐指数平滑法、灰色预测法、回归模型、神经网络预测、时间序列模型、马尔科夫预测、差分微分方程☐(三)、统计模型:☐方差分析、均值比较的假设检验☐(四)、方程模型:☐常微分方程、差分方程、偏微分方程、以及各种方程的求解(数值解和解析解)☐(五)运筹优化类:☐线性规划、非线性规划、目标规划、整数规划、图论模型(最短路、最大流、遍历问题等)、排队论、对策论、以及各种模型的算法☐(六)其他模型:☐随机模拟模型、等二、十大算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。

数学建模的层次分析法

数学建模的层次分析法

1、层次分析法的基本概念
1、层次分析法的基本概念
层次分析法(Analytic Hierarchy Process,AHP)是一种广泛应用于数学 建模中的方法。它通过将复杂问题分解为多个层次,帮助我们更好地理解和解决 实际问题。层次分析法的基本原理是将一个复杂问题分解为多个相关因素,并根 据这些因素之间的相对重要性进行排序。
3、层次分析法的实际应用
(4)权重计算:通过计算判断矩阵的特征向量,得到每个因素的权重值。 (5)一致性检验:对判断矩阵进行一致性检验,以确保得到的权重值是合理的。
3、层次分析法的实际应用
(6)结果分析:根据权重值的大小,对每个因素进行分析,从而得到问题的解 决方案。层次分析法在多目标决策、资源分配、风险评估等领域有着广泛的应用。 例如,在多目标决策中,层次分析法可以帮助我们确定各目标的权重,从而得到 最优解。
三、大学生毕业设计质量评价的 数学模型建立
三、大学生毕业设计质量评价的数学模型建立
1、确定评价指标:根据模糊层次分析法的原理,我们首先需要确定评价指标 体系。选取与毕业设计质量相关的指标,建立多级递阶结构,其中一级指标为选 题质量、设计过程、成果质量等,二级指标为选题难度、选题新颖性、设计规范 性等。
2、数学建模在各领域的应用
在科学研究领域,数学建模被广泛应用于物理学、化学、生物学等学科。例 如,牛顿第二定律、万有引力定律等都是通过数学建模得到的。在工程技术领域, 数学建模也发挥着重要的作用。例如,桥梁设计、建筑设计等领域都需要用到数 学建模来分析结构稳定性和安全性。此外,数学建模在金融、经济、社会等领域 也有着广泛的应用。
参考内容
一、引言
一、引言
随着高等教育的普及化,大学生毕业设计的质量评价已成为一个重要的研究 领域。毕业设计是大学生综合素质和教育水平的直接体现,因此,对其质量进行 科学、客观的评价至关重要。本次演示将介绍一种基于模糊层次分析法(Fuzzy Analytic Hierarchy Process,FAHP)的大学生毕业设计质量评价数学建模方 法,旨在为提高毕业设计质量和评价效率提供有效手段。

复杂系统决策模型与层次分析法

复杂系统决策模型与层次分析法

§3.4 复杂系统决策模型与层次分析法Analitic Hierachy Process (AHP) T.L.Saaty 1970’一种定性和定量相结合的、系统化、层次化的分析方法。

一. 问题举例1. 在海尔、新飞、容声和雪花四个牌号的电冰箱中选购一种。

要考虑品牌的信誉、冰箱的功能、价格和耗电量。

2. 在泰山、杭州和承德三处选择一个旅游点。

要考虑景点的景色、居住的环境、饮食的特色、交通便利和旅游的费用。

3. 在基础研究、应用研究和数学教育中选择一个领域申报科研课题。

要考虑成果的贡献(实用价值、科学意义),可行性(难度、周期和经费)和人才培养。

二. 模型和方法1. 层次结构模型的构造步骤一:确定层次结构,将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。

最高层:决策的目的、要解决的问题。

最低层:决策时的备选方案。

中间层:考虑的因素、决策的准则。

对于相邻的两层,称高层为目标层,低层为因素层。

例例3.步骤二: 通过相互比较,确定下一层各因素对上一层目标的影响的权重,将定性的判断定量化,即构造因素判断矩阵。

步骤三:由矩阵的特征值确定判别的一致性;由相应的特征向量表示各因素的影响权重,计算权向量。

步骤四: 通过综合计算给出最底层(各方案)对最高层(总目标)影响的权重,权重最大的方案即为实现目标的最由选择。

2. 因素判断矩阵比较n 个因素y=(y 1,y 2,…,y n )对目标 z 的影响.采用两两成对比较,用a ij 表示因素 y i 与因素y j 对目标z 的影响程度之比。

通常用数字 1~ 9及其倒数作为程度比较的标度, 即九级标度法x i /x j 相当 较重要 重要 很重要 绝对重要a ij 1 3 5 7 92, 4, 6, 8 居于上述两个相邻判断之间。

当a ij > 1时,对目标 Z 来说 x i 比 x j 重要, 其数值大小表示重要的程度。

数学建模之层次分析法

数学建模之层次分析法

层次分析法层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。

该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。

缺点:(1)层次分析法的主观性太强,模型的搭建,判断矩阵的输入都是决策者的主观判断,往往会因为决策者的考虑不周、顾此失彼而造成失误.(2)层次分析法模型的内部结构太过理想化,完全分离、彼此独立的层次结构在实践中很难做到。

(5)层次分析法只能从给定的决策方案中去选择,而不能给出新的、更优的策略。

1。

模型的应用用于解决多目标的复杂问题的定性与定量相结合的决策分析。

(1)公司选拔人员,(2)旅游地点的选取,(3)产品的购买等,(4)船舶投资决策问题(下载文档),(5)煤矿安全研究,(6)城市灾害应急能力,(7)油库安全性评价,(8)交通安全评价等。

2.步骤①建立层次结构模型首先明确决策目标,再将各个因素按不同的属性从上至下搭建出一个有层次的结构模型,模型如下图所示。

准则层目标层方案层目标层:表示解决问题的目的,即层次分析要达到的总目标。

通常只有一个总目标.准则层:表示采取某种措施、政策、方案等实现预定总目标所涉及的中间环节. 方案层:表示将选用的解决问题的各种措施、政策、方案等.通常有几个方案可选.注意:(1)任一元素属于且仅属于一个层次;任一元素仅受相邻的上层元素的支配,并不是任一元素与下层元素都有联系;(2)虽然对准则层中每层元素数目没有明确限制,但通常情况下每层元素数最好不要超过 9 个。

这是因为,心理学研究表明,只有一组事物在 9 个以内,普通人对其属性进行判别时才较为清楚。

当同一层次元素数多于 9 个时,决策者对两两重要性判断可能会出现逻辑错误的概率加大,此时可以通过增加层数,来减少同一层的元素数。

②构造判断(成对比较)矩阵以任意一个上一层的元素为准则,对其支配的下层各因素之间进行两两比较.得到判断矩阵,再求出各元素的权重。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模算法--复杂系统决策模型与层次分析法
§3.4 复杂系统决策模型与层次分析法
Analitic Hierachy Process (AHP) T.L.Saaty 1970’
一种定性和定量相结合的、系统化、层次化的分析方法。

一. 问题举例
1. 在海尔、新飞、容声和雪花四个牌号的电冰箱中选购一种。

要考虑品牌的信誉、冰箱的功能、价格和耗电量。

2. 在泰山、杭州和承德三处选择一个旅游点。

要考虑景点的景色、居住的环境、饮食的特色、交通便利和旅游的费用。

3. 在基础研究、应用研究和数学教育中选择一个领域申报科研课题。

要考虑成果的贡献(实用价值、科学意义),可行性(难度、周期和经费)和人才培养。

二. 模型和方法
1. 层次结构模型的构造
步骤一:确定层次结构,将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。

最高层:决策的目的、要解决的问题。

最低层:决策时的备选方案。

中间层:考虑的因素、决策的准则。

对于相邻的两层,称高层为目标层,低层为因素层。

例 1. 选购冰箱 例2. 旅游景点
例3.
选购冰箱 品牌 功能 价格 耗电 海尔 新飞 容声 雪花 旅游景点 居住 景色 费用 饮食 交通
泰山 杭州 承德 科研课题 贡献 可行性
实 用 价 值 学 术 意
义 人
才 培 养 难 度 周 期 经 费 基础 应用 教育
步骤二: 通过相互比较,确定下一层各因素对上一层目标的影响的权重,将定性的判断定量化,即构造因素判断矩阵。

步骤三:由矩阵的特征值确定判别的一致性;由相应的特征向量表示各因素的影响权重,计算权向量。

步骤四: 通过综合计算给出最底层(各方案)对最高层(总目标)影响的权重,权重最大的方案即为实现目标的最由选择。

2. 因素判断矩阵
比较n 个因素y=(y 1,y 2,…,y n )对目标 z 的影响.
采用两两成对比较,用a ij 表示因素 y i 与因素y j 对目标z 的影响程度之比。

通常用数字 1~ 9及其倒数作为程度比较的标度, 即九级标度法
x i /x j 相当 较重要 重要 很重要 绝对重要
a ij 1 3 5 7 9
2, 4, 6, 8 居于上述两个相邻判断之间。

当a ij > 1时,对目标 Z 来说 x i 比 x j 重要, 其数值大小表示重要的程度。

同时必有 a ji = 1/ a ij ≤1,对目标 Z 来说 x j 比 x i 不重要,其数值大小表示不重要的程度。

称矩阵 A = ( a ij )为因素判断矩阵。

因为 a ij >0 且 a ji =1/ a ij 故称A = (a ij )为正互反矩阵。

例. 选择旅游景点 Z :目标,选择景点 y :因素,决策准则
y 1 费用,y 2 景色,y 3 居住,y 4 饮食,y 5 交通
3. 一致性与权向量
如果 a ij a jk =a ik i, j, k=1,2,…,n, 则称正互反矩阵A 具有一致性. 这表明对各个因素所作的两两比较是可传递的。

一致性互正反矩阵A=( a ij )具有性质:
A 的每一行(列)均为任意指定行(列)的正数倍数,因此 rank(A)=1.
A 有特征值λ=n, 其余特征值均为零.
记A 的对应特征值λ=n 的特征向量为w=(w 1 w 2 ,…, w n ) 则 a ij =w i w j -1
如果在目标z 中n 个因素y=(y 1,y 2,…,y n )所占比重分别为w=(w 1 w 2 ,…, w n ),
则 ∑i w i =1, 且因素判断矩阵为 A=(w i w j -1) 。

因此,称一致性正互反矩阵A 相应于特征值n 的归一化特征向量为因素y=(y 1,y 2,…,y n )对目标z 的权向量
4. 一致性检验与因素排序
定理1: n 阶正互反矩阵A 是一致性的当且仅当其最大特征值为 n.
定理2: 正互反矩阵具有模最大的正实数特征值λ1, 其重数为1, 且相应特征向量为正向量. 为刻画n 阶正互反矩阵A=( a ij )与一致性接近的程度, 定义一致性指标(Consensus index) : CI=(λ1-n)/(n-1)
CI = 0, A 有完全的一致性。

CI 接近于 0, A 有满意的一致性 。

Saaty 又引入平均随机一致性指标RT
n 1 2 3 4 5 6 7 8 9
RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45
当CR = CI / RI < 0.1 时, 认为A 有满意的一致性。

⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1133/15/11123
/15/13/12/114/17/133412/155
721A
此时取A 的相应于λ1 的归一化特征向量w=(w 1 w 2 ,…, w n )为因素y=(y 1,y 2,…,y n )对目标z 的权向量。

由w=( w2 ,…, wn)分量wi 的大小可以对因素的重要性排序。

例.选择旅游景点: Z :目标,选择景点 y :因素,决策准则
因素对目标的判断矩阵A, Matlab 程序: [V ,D]=eig(A)
A 有特征根λ1 = 5.019
w = (0.48, 0.26, 0.05, 0.10, 0.11)’
CI = (λ1 -5) /(5-1) = 0019/4 = 0.00475
CR = 0.00475 / 1.12 = 0.004246 < 0.1, A 有满意的一致性。

y :因素,决策准则 y1 费用,y2 景色,y3 居住,y4 饮食,y5 交通 x : 对象,备选方案 x1 杭州,x2 泰山,x3 承德。

备选对象对决策准则y i 的判别矩阵为 B i
备选对象对决策准则的判别矩阵都具有满意的一致性
5.一致性与总排序
层次: x ⇒ y ⇒ Z
y 对目标 Z 有判断矩阵 A ,排序权重 a =(a 1, …, a 5)
T x 对准则 y j 有判断矩阵 B j ,排序权重b j =(b 1j , b 2j , b 3j )T , 记 B = (b 1, b 2, …, b 5).
一致性检验:
记 CI j (x )为 x 对 y j 的 CI; RI j (x )为 x 对 y j 的 RI.
则 x 对 Z 的 CI 为: x 对 Z 的 RI 为:
当组合一致性比率CR z =CI z /RI z <0.1时,认为整个层次的比较判断具有满意的一致性。

20. 组合权向量:对象对目标的排序。

w = (0.293, 0.311, 0.446)’
层次分析法的优点:系统型、实用性、简洁性;缺点: 囿旧、粗略、主观。

问题 P88, 16.
半期课堂讨论题: P85, 3, 大江截流问题。

a
B b a w j j j ==∑=51
∑==51)
()(j j j Z x CI a x CI ∑==51
)()(j j j Z x RI a x RI ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=128.0276.0595.0,005.3,12/15/1212/1521212b B λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=661.0272.0067.0,004.3,1383/1158/15/11111b B λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=143.0429.0429.0,3,13/13/1311311313b B λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=174.0192.0633.0,009.3,114/1113/1431414b B λ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=668.0167.0167.0,3,1444/1114/111515b B λ。

相关文档
最新文档