2016年春季学期新版北师大版八年级数学下册第一章三角形的证明单元复习试卷9
新版北师大版八年级下册第1章《三角形的证明》单元测试试卷及答案
新版北师大版八年级下册第1章《三角形的证明》单元测试试卷及答案(3)一、选择题(共6小题,每小题3分,满分18分)1.(3分)下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③B.①②④C.①③D.①②③④2.(3分)(2013•邢台一模)如图,AC=BC=10cm,∠B=15°,AD⊥BC于点D,则AD的长为()A.3cm B.4cm C.5cm D.6cm3.(3分)(2006•曲靖)如图,CD是△Rt ABC斜边AB上的高,将△BCD沿CD折叠,B 点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°,则ADE的形状是4.(3分)如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD△()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状5.(3分)(2004•河南)如图,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA为a米,此时梯子的倾斜角为75°,如果梯子的底端不动,顶端靠在对面墙上,此时梯子的顶端距地面的垂直距离NB为b米,梯子的倾斜角为45°,则这间房子的宽AB 为()( (A . 米B . 米C .b 米D .a 米6.(3 分)(2012•深圳)如图,已知:∠MON=30°,点 A 1、A 2、A 3…在射线 ON 上,点 B 1、 B 2、B 3…在射线 OM △上, A 1B 1A 2△、 A 2B 2A 3△、 A 3B 3A 4…均为等边三角形,若 OA 1=1, △则 A 6B 6A 7 的边长为()A .6B .12C .32D .64二、填空题(共 4 小题,每小题 3 分,满分 12 分)7.(3 分)如图所示,在△ ABC 中,AB=AC=20cm ,∠BAC=150°,则 △SABC = _________ cm 2.8. 3 分) 2007•天津)如图,△ ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若 AD=6, 则 CD= _________ .9.(3 分)如图所示,∠AOB=30°,OC 平分∠AOB ,P 为 OC 上任意一点,PD ∥OA 交 OB 于点 D ,PE ⊥OA 于点 E ,若 PE=2cm ,则 PD= _________ cm .10.(3 分)(2011•济宁)如图,等边三角形ABC 中,D 、E 分别为 AB 、BC 边上的两动点,且总使 AD=BE ,AE 与 CD 交于点 F ,AG ⊥CD 于点 G ,则 = _________ .三、解答题(共3小题,满分0分)11.(2011•日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.12.如图1,在△Rt ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=_________;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.13.(2013•抚顺)在△Rt ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是_________;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③B.①②④C.①③D.①②③④考点:等边三角形的判定.分析:根据等边三角形的判定判断.解答:解:①两个角为60度,则第三个角也是60度,则其是等边三角形,故正确;②这是等边三角形的判定2,故正确;③三个外角相等则三个内角相等,则其是等边三角形,故正确;④根据等边三角形三线合一性质,故正确.所以都正确.故选D.点评:此题主要考查学生对等边三角形的判定的掌握情况.2.(3分)(2013•邢台一模)如图,AC=BC=10cm,∠B=15°,AD⊥BC于点D,则AD的长为()A.3cm B.4cm C.5cm D.6cm考点:含30度角的直角三角形.分析:根据等边对等角的性质可得∠B=∠BAC,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ACD=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半解答即可.解答:解:∵AC=BC,∴∠B=∠BAC=15°,∴∠ACD=∠B+∠BAC=15°+15°=30°,∵AD⊥BC,∴AD=AC=×10=5cm.故选C.点评:本题考查了等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.3.(3分)(2006•曲靖)如图,CD是△Rt ABC斜边AB上的高,将△BCD沿CD折叠,B 点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°考点:等边三角形的判定与性质.专题:压轴题.分析:先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.解答:解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选B.点评:考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.,则ADE的形状是4.(3分)如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD△()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状考点:等边三角形的判定.分析:先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.解答:解:∵△ABC为等边三角形∴AB=AC∵∠1=∠2,BE=CD∴△ABE≌△ACD∴AE=AD,∠BAE=∠CAD=60°∴△ADE是等边三角形.故选B.点评:此题主要考查学生对等边三角形的判定及三角形的全等等知识点的掌握.5.(3分)(2004•河南)如图,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA为a米,此时梯子的倾斜角为75°,如果梯子的底端不动,顶端靠在对面墙上,此时梯子的顶端距地面的垂直距离NB为b米,梯子的倾斜角为45°,则这间房子的宽AB 为()A.米B.米C.b米D.a米考点:解直角三角形的应用-坡度坡角问题;等边三角形的性质.专题:压轴题.分析:根据CM=CN以及∠MCN的度数可得到△CMN为等边三角形.利用相应的三角函数表示出MN,MC的长,可得到房间宽AB和AM长相等.解答:解:过N点作MA垂线,垂足点D,连接NM.设梯子底端为C点,AB=x,且AB=ND=x.∴△BNC为等腰直角三角形,△CNM为等边三角形(180﹣45﹣75=60°,梯子长度相同∵∠NCB=45°,∴∠DNC=45°,∴∠MND=60°﹣45°=15°,∴cos15°=,又∵∠MCA=75°,∴∠AMC=15°,∴cos15°=故可得:,=.∵△CNM为等边三角形,∴NM=CM.∴x=MA=a.故选D.点评:此题是解直角三角形的知识解决实际生活中的问题,作辅助线很关键.6.(3分)(2012•深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM△上,A1B1A2△、A2B2A3△、A3B3A4…均为等边三角形,若OA1=1,△则A6B6A7的边长为()A.6B.12C.32D.64考点:等边三角形的性质;含30度角的直角三角形.专题:压轴题;规律型.分析:根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.解答:解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.点评:此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.二、填空题(共4小题,每小题3分,满分12分)7.(3分)如图所示,在△ABC中,AB=AC=20cm,∠BAC=150°,则△S ABC=100cm2.( (考点: 含 30 度角的直角三角形;等腰三角形的性质.分析: 过 C 作 CD ⊥BA ,交 BA 延长线于 D ,求出 CD ,根据三角形面积公式求出即可. 解答:解:过 C 作 CD ⊥BA ,交 BA 延长线于 D ,∵∠BAC=150°,∴∠DAC=30°,∴DC= AC=10cm ,∴△SABC = AB ×CD=×20×10=100(cm 2), 故答案为:100.点评: 本题考查了三角形的面积,含 30 度角的直角三角形性质的应用,关键是求出△ ABC的高.8. 3 分) 2007 天津)如图,△ ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若 AD=6, 则 CD= 3 .考点: 含 30 度角的直角三角形.分析: 由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由 BD 平分∠ABC ,可以推出∠CBD=∠ABD=∠A=30°,∴BD=AD=6,再 30°角所对的直角边等于斜边的一半即可求出结果.解答: 解:∵∠C=90°,∠ABC=60°,∴∠A=30°,∵BD 平分∠ABC ,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD= BD=6× =3.故填空答案:3.点评: 本题利用了直角三角形的性质和角的平分线的性质求解.9.(3 分)如图所示,∠AOB=30°,OC 平分∠AOB ,P 为 OC 上任意一点,PD ∥OA 交 OB 于点 D ,PE ⊥OA 于点 E ,若 PE=2cm ,则 PD= 4 cm .考点:角平分线的性质;含30度角的直角三角形.分析:首先过点P作PF⊥OB于点F,由OC平分∠AOB,PE⊥OA于点E,易得PF=PE,由PD∥OA,可求得∠PDF=30°,然后由含30°角的直角三角形的性质,求得答案.解答:解:过点P作PF⊥OB于点F,∵OC平分∠AOB,PE⊥OA,∴PF=PE=2cm,∵PD∥OA,∴∠PDF=∠AOB=30°,∴PD=2PF=4cm.故答案为:4.点评:此题考查了角平分线的性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.(3分)(2011济宁)如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=.考点:等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.专题:压轴题.分析:首先根据题意推出△CAE≌△BCD,可知∠DCB=∠CAE,因此∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°,所以∠F AG=30°,即可推出结论.解答:解:∵AD=BE,∴CE=BD,∵等边三角形ABC,∴△CAE≌△DCB,∴∠DCB=∠CAE,∴∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°,∵AG⊥CD,∴∠F AG=30°,∴FG:AF=.故答案为.点评:本题主要考查全等三角形的判定和性质、含30度角的直角三角形的性质、等边三角形的性质,解题的关键在于根据题意推出△CAE≌△DCB和∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°.三、解答题(共3小题,满分0分)11.(2011日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.考点:全等三角形的判定与性质;等边三角形的判定与性质;等腰直角三角形.专题:证明题;压轴题.分析:(1)根据等腰直角△ABC,求出CD是边AB的垂直平分线,求出CD平分∠ACB,根据三角形的外角性质求出∠BDE=∠CDE=60°即可.(2)连接MC,可得△MDC是等边三角形,可求证∠EMC=∠ADC.再证明△ADC≌△EMC即可.解答:证明:(1)∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°﹣15°=30°,∴BD=AD,∴D在AB的垂直平分线上,∵AC=BC,∴C也在AB的垂直平分线上,即直线CD是AB的垂直平分线,∴∠ACD=∠BCD=45°,∴∠CDE=15°+45°=60°,∴∠BDE=∠DBA+∠BAD=60°;∴∠CDE=∠BDE,即DE平分∠BDC.(2)如图,连接MC.∵DC=DM,且∠MDC=60°,∴△MDC是等边三角形,即CM=CD.∠DMC=∠MDC=60°,∵∠ADC+∠MDC=180°,∠DMC+∠EMC=180°,∴∠EMC=∠ADC.又∵CE=CA,∴∠DAC=∠CEM.在ADC△与EMC中,△11,∴△ADC≌△EMC(AAS),∴ME=AD=BD.点评:此题主要考查等腰直角三角形,全等三角形的判定与性质,等边三角形的判定与性质的等知识点,难易程度适中,是一道很典型的题目.12.如图1,在△Rt ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=2;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.考点:含30度角的直角三角形;全等三角形的判定与性质;等边三角形的性质.专题:动点型.分析:(1)根据三角形内角和定理求出∠BAC=60°,再根据平角等于180°求出∠F AC=60°,然后求出∠F=30°,根据30°角所对的直角边等于斜边的一半求解即可;(2)根据三角形的任意一个外角等于与它不相邻的两个内角的和利用∠CBD表示出∠ADE=30°+∠CBD,又∠HBE=30°+∠CBD,从而得到∠ADE=∠HBE,然后根据边角边证明△ADE△与HBE全等,根据全等三角形对应边相等可得AE=HE,对应角相等可得∠AED=∠HEB,然后推出∠AEH=∠BED=60°,再根据等边三角形的判定即可证明.解答:(△1)解:∵BDE是等边三角形,∴∠EDB=60°,∵∠ACB=90°,∠ABC=30°,∴∠BAC=180°﹣90°﹣30°=60°,∴F AC=180°﹣60°﹣60°=60°,∴∠F=180°﹣90°﹣60°=30°,∵∠ACB=90°,12∴∠ACF=180°﹣90°,∴AF=2AC=2×1=2;(△2)证明:∵BDE是等边三角形,∴BE=BD,∠EDB=∠EBD=60°,△在BCD中,∠ADE+∠EDB=∠CBD+∠C,即∠ADE+60°=∠CBD+90°,∴∠ADE=30°+∠CBD,∵∠HBE+∠ABD=60°,∠CBD+∠ABD=30°,∴∠HBE=30°+∠CBD,∴∠ADE=∠HBE,在ADE△与HBE中,△,∴△ADE≌△HBE(SAS),∴AE=HE,∠AED=∠HEB,∴∠AED+∠DEH=∠DEH+∠HEB,即∠AEH=∠BED=60°,∴△AEH为等边三角形.点评:本题考查了30°角所对的直角边等于斜边的一半的性质,全等三角形的判定与性质,等边三角形的性质与判定,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,(2)中求出∠ADE=∠HBE是解题的关键.13.(2013抚顺)在△Rt ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是DE=BC;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.13考点:全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.分析:(1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB为等边三角形,由于DE⊥BC,DE=BC;(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”可判断△DCP≌△DBF,则CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;(3)与(2)的证明方法一样得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,则BF﹣BP=BC,所以BF﹣BP=DE.解答:解:(1)∵∠ACB=90°,∠A=30°,∴∠B=60°,∵点D是AB的中点,∴DB=DC,∴△DCB为等边三角形,∵DE⊥BC,∴DE=BC;故答案为DE=BC.(2)BF+BP=DE.理由如下:∵线段DP绕点D逆时针旋转60°,得到线段DF,∴∠PDF=60°,DP=DF,而∠CDB=60°,∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,∴∠CDP=∠BDF,△在DCP△和DBF中,∴△DCP≌△DBF(SAS),∴CP=BF,而CP=BC﹣BP,∴BF+BP=BC,∵DE=BC,∴BC=DE,∴BF+BP=DE;(3)如图,与(2)一样可证明△DCP≌△DBF,14∴CP=BF,而CP=BC+BP,∴BF﹣BP=BC,∴BF﹣BP=DE.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质以及含30度的直角三角形三边的关系.15。
北师大版八年级数学下册第一章三角形的证明单元测试题(答案及解析)
北师大版八年级下册第一章三角形的证明测试题一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°2.一个等腰三角形的两边长分别为3,6,则它的周长为()A.9 B.12 C.15 D.12或153.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.37.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm²,则S阴影等于()A.2cm²B.1cm²C.cm²D.cm²二.填空题(共5小题)11.等边三角形是一个轴对称图形,它有______条对称轴.12.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为______.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为______.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为______.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为______.三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?北师大版八年级下册第一章三角形的证明测试题参考答案与试题解析一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选B.2.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.3.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【解答】解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.7.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°【解答】解:∵∠1=∠3,∠B=∠C,∠1+∠B+∠3=180°,∴2∠1+∠C=180°,∴2∠1+∠1﹣∠2=180°,∴3∠1﹣∠2=180°.故选B.8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°【解答】解:∵∠A=40°,∴∠ACB+∠ABC=180°﹣40°=140°,又∵∠ABC=∠ACB,∠1=∠2,∴∠PBA=∠PCB,∴∠1+∠ABP=∠PCB+∠2=140°×=70°,∴∠BPC=180°﹣70°=110°.故选A.9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°【解答】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°.故选:C.10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2 B.1cm2 C.cm2 D.cm2【解答】解:根据三角形的面积公式,知:等底等高的两个三角形的面积相等.即有:S阴影=S△BCE=S△ABC=1cm2.故选:B.二.填空题(共10小题)11.等边三角形是一个轴对称图形,它有 3 条对称轴【解答】解:等边三角形是轴对称图像,它有三个顶点,所以对应3条对称轴故答案为:312.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为69°或21°.【解答】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为16或8.【解答】解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x,又知BD将三角形周长分为15和21两部分,∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16;②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8.经验证,这两种情况都是成立的.∴这个三角形的底边长为8或16.故答案为:16或8.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【解答】解:在△ABC中,AB=AC,①当∠A=70°时,则∠ABC=∠C=55°,∵BD⊥AC,∴∠DBC=90°﹣55°=35°;②当∠C=70°时,∵BD⊥AC,∴∠DBC=90°﹣70°=20°;故答案为:35°或20°.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为32a .【解答】解:∵△A1B1A2是等边三角形∴∠B1A1A2=60°,A1B1=B1A2=A1A2∵∠MON=30°∴∠OB1A1=30°(三角形的一个外角等于和它不相邻的两个外角和∠OB1A1=∠B1A1A2-∠MON)∴OA1=A1B1(等边对等角)∴OA1=A1A2=a同理,根据∠MON=∠OB2A2,可得:A2A3=A2B2=OA1+A1A2=2A1A2=2a同理,可推出:A3A4=2A2A3=4a同理,可推出:A4A5=2A3A4=8a同理,可推出:A5A6=2A4A5=16a同理,可推出:A6A7=2A5A6=32a 即题目所求另外我们不难发现,第n个(△A1B1A2为第一个)等边三角形的边长为AnAn+1=(2^n-1)a 注:2的n-1次方倍的a三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.【解答】证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°,在Rt△ABD和Rt△BAC中,,∴Rt△ABD≌Rt△BAC(HL),∴∠DBA=∠CAB,∴OA=OB,即△OAB是等腰三角形.另外一种证法:证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°在Rt△ABD和Rt△BAC中∴Rt△ABD≌Rt△BAC(HL)∴AD=BC,在△AOD和△BOC中,∴△AOD≌△BOC(AAS),∴OA=OB,即△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【解答】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.【解答】解:(1)∵AD平分∠BAC,DE∥AC,∴∠EAD=∠CAD,∠EDA=∠CAD,∴∠EAD=∠EDA,∵BD⊥AD,∴∠EBD+∠EAD=∠BDE+∠EDA∴∠EBD=∠BDE,∴DE=BE,∴△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HF),∴∠B=∠C,∴△ABC为等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【解答】证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?【解答】解:(1)当点D在BC的中点时,DE=DF,理由如下:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)DE+DF=CG.证明:连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF,∵AB=AC,∴CG=DE+DF.(3)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上.。
北师大版八年级数学下册第一章:三角形的证明 复习
北师大版八年级数学下册第一章三角形的证明同步测试一.选择题1.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF 2.如图,点O在直线AE上,OC平分∠AOE,∠BOD是直角.若∠1=25°,那么∠BOE的度数是()A.90°B.145°C.155°D.165°3.如图,平面直角坐标系xOy中,点M的坐标为(2,2),点N在x轴上,若△OMN是等腰三角形,则满足条件的点N共有()个.A.3 B.4 C.5 D.84.如图,以的顶点为圆心,适当长为半径画弧,交于点,交于点.再分别以点为圆心,大于的长为半径画弧,两弧在内部交于点,过点作射线,连接.则下列说法错误的是()A. .两点关于所在直线对称B. .两点关于所在直线对称C. 是等腰三角形D. 射线是的平分线5.如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组6.如图,AB⊥BD,CD⊥BD,AD=BC,则能直接判断Rt△ABD≌Rt△CDB的理由是()A.HL B.ASA C.SAS D.SSS7.如图,已知∠ACB=60°,PC=12,点M,N在边CB上,PM=PN.若MN =3,则CM的长为()A.3 B.3.5 C.4 D.4.58.在如图中,,于,于,.交于点,则下列结论中不正确的是()A. B. 点在的平分线上C. D. 点是的中点9.如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE =EF+CF.A.①②③B.①②④C.②③④D.①②③④10.如图,电信部门要在公路l旁修建一座移动信号发射塔.按照设计要求,发射塔到两个城镇M,N的距离必须相等,则发射塔应该建()A.A处B.B处C.C处D.D处11.如图,公路互相垂直,公路的中点与点被湖隔开.若测得的长为,则两点间的距离为()A. B. C. D.12.下列命题是假命题的是()A.矩形的对角线相等且互相平分B.两点之间,线段最短C.垂直于同一条直线的两条直线互相垂直D.角平分线上的点到角两边的距离相等二.填空题13.如图,∠C=∠D=90°,添加一个条件:(写出一个条件即可),可使Rt△ABC与Rt△ABD全等.14.如图,正方形网格中,点A,B,C,D均在格点上,则∠ACD+∠BDC=°.15.如图,已知,垂直平分交.于.两点,若,,则的周长为.16.如图,在中,,平分,交于点,若,则.17.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE 是等腰三角形,那么∠OEC的度数为.18.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上.若AB=5cm,BC =6cm,则AC=,DE=.三.解答题19.已知:如图1,在Rt△ABC和Rt△A′B′C′中,AB=A′B′,AC=A′C′,∠C=∠C′=90°求证:Rt△ABC和Rt△A′B′C′全等.(1)请你用“如果…,那么…”的形式叙述上述命题;(2)如图2,将△ABC和A′B′C′拼在一起(即:点A与点B′重合,点B与点A′重合),BC和B′C′相交于点O,请用此图证明上述命题.20.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E.F,求证:DE=DF.21.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,FE是AC的垂直平分线,交AD于点F,连接BF.求证:AF=BF.22.已知:如图,在△BAC中,AB=AC,D,E分别为AB,AC边上的点,且DE∥BC,求证:△ADE是等腰三角形.23.如图,已知∠CPB=65°,AB∥CP,点D,E分别是PC,PB上一点,连接DE,使DE=PE,∠CDE的平分线与∠ABE的平分线交于点F.(1)∠BED=130°;(2)求∠BFD的度数.24.如图,∠ABC的两边分别平行于∠DEF的两条边,且∠ABC=45°.(1)图1中:∠DEF=45°,图2中:∠DEF=135°;(2)请观察图1.图2中∠DEF分别与∠ABC有怎样的关系,请你归纳出一个命题.北师大版八年级数学下册第一章三角形的证明同步测试答案一.选择题1.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选:A.2.如图,点O在直线AE上,OC平分∠AOE,∠BOD是直角.若∠1=25°,那么∠BOE的度数是()A.90°B.145°C.155°D.165°解:∵点O在直线AE上,OC平分∠AOE,∴∠AOC=∠COE=90°,∵∠DOB是直角,∠1=25°,∴∠BOC=∠DOB﹣∠1=90°﹣25°=65°,∴∠BOE=∠COE+∠BOC=90°+65°=155°.故选:C.3.如图,平面直角坐标系xOy中,点M的坐标为(2,2),点N在x轴上,若△OMN是等腰三角形,则满足条件的点N共有()个.A.3 B.4 C.5 D.8解:如上图:满足条件的点N共有(﹣2,0)(2,0)(2,0)(4,0).故选:B.4.如图,以的顶点为圆心,适当长为半径画弧,交于点,交于点.再分别以点为圆心,大于的长为半径画弧,两弧在内部交于点,过点作射线,连接.则下列说法错误的是()A. .两点关于所在直线对称B. .两点关于所在直线对称C. 是等腰三角形D. 射线是的平分线解:连接.,根据作图得到..在与中,(),,即射线是的平分线,正确,不符合题意;根据作图得到,是等腰三角形,正确,不符合题意;根据作图得到,又射线平分,是的垂直平分线,.两点关于所在直线对称,正确,不符合题意;根据作图不能得出平分,不是的平分线,.两点关于所在直线不对称,错误,符合题意.故答案为:.两点关于所在直线对称5.如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组解:①.∵△ABC中,AB=AC,∴△ABC是等腰三角形,故①正确;②.∵△ABC中,∠B=56°,∠BAC=68°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣68°﹣56°=56°,∴∠B=∠C,∴△ABC是等腰三角形,故②正确;③∵△ABC中,AD⊥BC,AD平分∠BAC,∴∠BAD=∠CAD,∠ADB=∠ADC,∵∠B+∠BAD+∠ADB=180°,∠C+∠CAD+∠ADC=180°,∴∠B=∠C,∴△ABC是等腰三角形,故③正确;④.∵△ABC中,AD⊥BC,AD平分边BC,∴AB=AC,∴△ABC是等腰三角形,故④正确;即正确的个数是4,故选:D.6.如图,AB⊥BD,CD⊥BD,AD=BC,则能直接判断Rt△ABD≌Rt△CDB的理由是()A.HL B.ASA C.SAS D.SSS解:∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),故选:A.7.如图,已知∠ACB=60°,PC=12,点M,N在边CB上,PM=PN.若MN=3,则CM的长为()A.3 B.3.5 C.4 D.4.5解:过点P作PD⊥CB于点D,∵∠ACB=60°,PD⊥CB,PC=12,∴DC=6,∵PM=PN,MN=3,PD⊥OB,∴MD=ND=1.5,∴CM=6﹣1.5=4.5.故选:D.8.在如图中,,于,于,.交于点,则下列结论中不正确的是()A. B. 点在的平分线上C. D. 点是的中点解:,于,于,,,故本选项正确;,,,,,,点在的平分线上,故本选项正确;,,,,,,正确;是的中点,无法判定,故本选项错误.9.如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE =EF+CF.A.①②③B.①②④C.②③④D.①②③④解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.10.如图,电信部门要在公路l旁修建一座移动信号发射塔.按照设计要求,发射塔到两个城镇M,N的距离必须相等,则发射塔应该建()A.A处B.B处C.C处D.D处解:根据作图可知:EF是线段MN的垂直平分线,所以EF上的点到M.N的距离相等,即发射塔应该建在C处,故选:C.11.如图,公路互相垂直,公路的中点与点被湖隔开.若测得的长为,则两点间的距离为()A. B. C. D.解:在中,,为的中点,.12.下列命题是假命题的是()A.矩形的对角线相等且互相平分B.两点之间,线段最短C.垂直于同一条直线的两条直线互相垂直D.角平分线上的点到角两边的距离相等解:A.矩形的对角线相等且互相平分,是真命题;B.两点之间,线段最短,是真命题;C.在同一平面内,垂直于同一条直线的两条直线互相平行,原命题是假命题;D.角平分线上的点到角两边的距离相等,是真命题;故选:C.二.填空题13.如图,∠C=∠D=90°,添加一个条件:AC=AD(写出一个条件即可),可使Rt△ABC与Rt△ABD全等.解:条件是AC=AD,∵∠C=∠D=90°,在Rt△ABC和Rt△ABD中,∴Rt△ABC≌Rt△ABD(HL),故答案为:AC=AD.14.如图,正方形网格中,点A,B,C,D均在格点上,则∠ACD+∠BDC=90°.解:在Rt△AEC和Rt△DAB中∴Rt△AEC≌Rt△DAB(HL),∴∠ACE=∠ABD,∵∠EAC+∠ACE=90°,∴∠EAC+∠ABD=90°,∴∠AFB=90°,即∠CFD=90°,∴∠ACD+∠BDC=90°,故答案为90.15.如图,已知,垂直平分交.于.两点,若,,则的周长为.解:垂直平分,,的周长.故答案为:.16.如图,在中,,平分,交于点,若,则.解:,,平分,,.17.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE 是等腰三角形,那么∠OEC的度数为120°或75°或30°.【解答】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OEC=∠OCE=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.18.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上.若AB=5cm,BC =6cm,则AC=5cm,DE=8cm.解:∵BC=6cm,∴BD=DC=3(cm),∵AD⊥BC,BD=DC,AB=5cm,∴AC=AB=5(cm),∵点C在AE的垂直平分线上,∴EC=AC=5(cm),∴DE=DC+EC=8(cm),故答案为:5cm;8cm.三.解答题19.已知:如图1,在Rt△ABC和Rt△A′B′C′中,AB=A′B′,AC=A′C′,∠C=∠C′=90°求证:Rt△ABC和Rt△A′B′C′全等.(1)请你用“如果…,那么…”的形式叙述上述命题;(2)如图2,将△ABC和A′B′C′拼在一起(即:点A与点B′重合,点B与点A′重合),BC和B′C′相交于点O,请用此图证明上述命题.解:(1)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等;(2)在△ACO和直角△A'C'O′中,,∴△ACO≌△A′C′O,∴OC=C′O,AO=A′O,∴BC=B′C′,在△ABC与△A′B′C′中,∴△ABC≌△A'B'C'(SSS).20.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E.F,求证:DE=DF.证明:∵AB=AC,∴∠B=∠C,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵点D为BC中点,∴DB=DC,∴在△DBE和△DCF中,∴△DBE≌DCF(AAS),∴DE=DF.21.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,FE是AC的垂直平分线,交AD于点F,连接BF.求证:AF=BF.证明:连接CF,∵AB=AC,AD平分∠BAC,∴BD=CD,AD⊥BC,∴BF=CF,∵FE垂直平分AC,∴AF=CF,∴AF=BF.22.已知:如图,在△BAC中,AB=AC,D,E分别为AB,AC边上的点,且DE∥BC,求证:△ADE是等腰三角形.证明:∵AB=AC,∴∠B=∠C,又∵DE∥BC,∴∠B=∠ADE,∠C=∠AED,∴∠ADE=∠AED,∴AD=AE,∴△ADE是等腰三角形.23.如图,已知∠CPB=65°,AB∥CP,点D,E分别是PC,PB上一点,连接DE,使DE=PE,∠CDE的平分线与∠ABE的平分线交于点F.(1)∠BED=130°;(2)求∠BFD的度数.解:(1)∵DE=PE,∴∠EDP=∠CPB=65°,∴∠BED=∠EDP+∠CPB=130°,故答案为:130;(2)∵AB∥CP,∴∠ABP+∠CPB=180°,∴∠ABP=115°,∵∠EDP=65°,∴∠CDE=115°,∵∠CDE的平分线与∠ABE的平分线交于点F.∴∠FBE=∠ABE=57.5°,∠FDE=∠CDE=57.5°,∴∠BFD=360°﹣57.5°﹣57.5°﹣130°=115°.24.如图,∠ABC的两边分别平行于∠DEF的两条边,且∠ABC=45°.(1)图1中:∠DEF=45°,图2中:∠DEF=135°;(2)请观察图1.图2中∠DEF分别与∠ABC有怎样的关系,请你归纳出一个命题.解:(1)图1,∵AB∥DE,∴∠B=∠DGC=45°,∵BC∥EF,∴∠DEF=∠DGC=45°;图2,∵AB∥DE,∴∠B=∠BGE=45°,∵BC∥EF,∴∠DEF+∠BGE=180°,∴∠DEF=180°﹣45°=135°;故答案为45°,135°;(2)∠DEF与∠ABC相等,∠DEF与∠ABC互补,结论:如果两个角的两边分别平行,那么这两个角相等或互补.。
北师大版八年级数学下册 第1章 三角形的证明 单元测试卷(含答案)
北师大版八年级数学下册第1章三角形的证明单元测试卷(时间:120分钟满分:150分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题框内)1.如图,若∠B=30°,∠C=90°,AC=20,则AB=( )A.25B.30C.20 3D.402.如图,已知DE∥BC,AB=AC,∠1=55°,则∠C的度数是( )A.55°B.45°C.35°D.65°3.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是( )A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°4.以下各组数为三角形的三条边长,其中是直角三角形的三条边长的是( )A.2,3,4B.1,2, 3C.4,5,6D.2,2,45.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是( )A.HLB.ASAC.AASD.SAS6.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠CAD的度数为( )A.35°B.45°C.55°D.60°7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.30°B.45°C.60°D.75°8.如图,D是Rt△ABC的斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β,若α=10°,则β的度数是( )A.40°B.50°C.60°D.不能确定9.如图,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,DE⊥AB,CD=3,则BD的长为( )A.1.5B.3C.6D.910.用反证法证明“直角三角形中的两个锐角不能都大于45°”,第一步应假设这个直角三角形中( )A.每一个锐角都小于45°B.有一个锐角大于45°C.有一个锐角小于45°D.每一个锐角都大于45°11.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是( )A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°12.观察下列命题的逆命题:①有两边相等的三角形是等腰三角形;②到角的两边的距离相等的点在这个角的平分线上;③直角三角形的两个锐角互余;④全等三角形的面积相等.其中逆命题为假命题的个数是( )A.1B.2C.3D.413.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E.如果∠BAC=60°,∠ACE=24°,那么∠BCE 的大小是( )A.24°B.30°C.32°D.36°14.如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE∶S△BDE =( )A.2∶5B.14∶25C.16∶25D.4∶2115.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是( )A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°二、填空题(本大题共5个小题,每小题5分,共25分)16.在直角三角形中,其中一个锐角是22°,则另外一个锐角是.17.如图,某失联客机从A地起飞,飞行1 000 km到达B地,再折返飞行1 000 km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为km.18.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.19.如图,已知△ABC的周长是22,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,△ABC的面积是.20.如图,在等腰△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,点C沿EF 折叠后与点O重合,则∠OEC的度数是.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(本题8分)一个机器零件的形状如图所示,在Rt△ABC中,∠BAC=30°,BC=2.5 cm,BD=13 cm,AD=12 cm,求△ABD的面积.22.(本题8分)在加快城镇建设中,有两条公路OA和OB交会于O点,在∠AOB的内部有蔬菜基地C和D,现要修建一个蔬菜转运站P,使转运站P到两条公路OA,OB的距离相等,且到两个蔬菜基地C,D的距离也相等,用尺规作出蔬菜转运站P的位置.(要求:不写作法,保留作图痕迹.)23.(本题10分)如图,点P为△ABC的BC边上一点,且PC=2PB,∠ABC=45°,∠APC=60°,CD⊥AP,连接BD,求∠ABD的度数.24.(本题12分)如图,∠AOB=60°,OC平分∠AOB,C为角平分线上一点,过点C作CD⊥OC,垂足为C,交OB于点D,CE∥OA交OB于点E.(1)判断△CED的形状,并说明理由;(2)若OC=3,求CD的长.25.(本题12分)如图,△ABC的外角∠DAC的平分线交BC边的垂直平分线于点P,PD⊥AB于D,PE⊥AC于E.(1)求证:BD=CE;(2)若AB=6 cm,AC=10 cm,求AD的长.26.(本题14分)如图,在△ABC中,MP,NO分别垂直平分AB,AC.(1)若BC=10 cm,试求出△PAO的周长;(2)若AB=AC,∠BAC=110°,试求∠PAO的度数;(3)在(2)中,若无AB=AC的条件,你能求出∠PAO的度数吗?若能,请求出来;若不能,请说明理由.27.(本题16分)如图,△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达点B时,M,N同时停止运动.(1)点M,N运动几秒后,M,N两点重合?(2)点M,N运动几秒后,可得到等边三角形△AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.参考答案一、选择题(本大题共15个小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题框内)1.如图,若∠B=30°,∠C=90°,AC=20,则AB=(D)A.25B.30C.20 3D.402.如图,已知DE∥BC,AB=AC,∠1=55°,则∠C的度数是(A)A.55°B.45°C.35°D.65°3.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是(C)A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°4.以下各组数为三角形的三条边长,其中是直角三角形的三条边长的是(B)A.2,3,4B.1,2, 3C.4,5,6D.2,2,45.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是(A)A.HLB.ASAC.AASD.SAS6.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠CAD的度数为(A)A.35°B.45°C.55°D.60°7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为(C)A.30°B.45°C.60°D.75°8.如图,D是Rt△ABC的斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β,若α=10°,则β的度数是(B)A.40°B.50°C.60°D.不能确定9.如图,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,DE⊥AB,CD=3,则BD的长为(C)A.1.5B.3C.6D.910.用反证法证明“直角三角形中的两个锐角不能都大于45°”,第一步应假设这个直角三角形中(D)A.每一个锐角都小于45°B.有一个锐角大于45°C.有一个锐角小于45°D.每一个锐角都大于45°11.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是(B)A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°12.观察下列命题的逆命题:①有两边相等的三角形是等腰三角形;②到角的两边的距离相等的点在这个角的平分线上;③直角三角形的两个锐角互余;④全等三角形的面积相等.其中逆命题为假命题的个数是(A)A.1B.2C.3D.413.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E.如果∠BAC=60°,∠ACE=24°,那么∠BCE 的大小是(C)A.24°B.30°C.32°D.36°14.如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE∶S△BDE =(B)A.2∶5B.14∶25C.16∶25D.4∶2115.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是(D)A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°二、填空题(本大题共5个小题,每小题5分,共25分)16.在直角三角形中,其中一个锐角是22°,则另外一个锐角是68__°.17.如图,某失联客机从A地起飞,飞行1 000 km到达B地,再折返飞行1 000 km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为1__000km.18.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M19.如图,已知△ABC 的周长是22,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于点D ,且OD =3,△ABC 的面积是33.20.如图,在等腰△ABC 中,AB =AC ,∠BAC =54°,∠BAC 的平分线与AB 的垂直平分线交于点O ,点C 沿EF 折叠后与点O 重合,则∠OEC 的度数是108__°.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(本题8分)一个机器零件的形状如图所示,在Rt △ABC 中,∠BAC =30°,BC =2.5 cm ,BD =13 cm ,AD =12 cm ,求△ABD 的面积.解:∵Rt △ABC 中,∠BAC =30°,BC =2.5 cm , ∴AB =2BC =5 cm.∵52+122=132,即AB 2+AD 2=BD 2, ∴△ABD 是直角三角形.∴S △ABD =12AB·AD =12×5×12=30(cm 2).22.(本题8分)在加快城镇建设中,有两条公路OA 和OB 交会于O 点,在图中∠AOB 的内部有蔬菜基地C 和D ,现要修建一个蔬菜转运站P ,使转运站P 到两条公路OA ,OB 的距离相等,且到两个蔬菜基地C ,D 的距离也相等,用尺规作出蔬菜转运站P 的位置.(要求:不写作法,保留作图痕迹.)解:如图所示.23.(本题10分)如图,点P 为△ABC 的BC 边上一点,且PC =2PB ,∠ABC =45°,∠APC =60°,CD ⊥AP ,连接BD ,求∠ABD 的度数.解:∵∠APC =60 °,CD ⊥AP , ∴∠PCD =90 °-∠APC =90 °-60 °=30 °. ∴PC =2PD.∵PC =2PB ,∴PB =PD. ∴∠PBD =∠PDB.又∵∠APC =∠PBD +∠PDB ,∴∠PBD =12∠APC =12×60 °=30 °.∵∠ABC =45 °,∴∠ABD =∠ABC -∠PBD =45 °-30 °=15 °.24.(本题12分)如图,∠AOB =60°,OC 平分∠AOB ,C 为角平分线上一点,过点C 作CD ⊥OC ,垂足为C ,交OB 于点D ,CE ∥OA 交OB 于点E.(1)判断△CED 的形状,并说明理由; (2)若OC =3,求CD 的长.解:(1)△CED 是等边三角形.理由如下: ∵OC 平分∠AOB ,∠AOB =60 °,∴∠AOC =∠COE =30 °. ∵CE ∥OA ,∴∠AOC =∠COE =∠OCE =30 °,∠CED =60 °. ∵CD ⊥OC ,∴∠OCD =90 °. ∴∠EDC =60 °.∴△CED 是等边三角形.(2)∵△CED 是等边三角形,∴CD =CE =ED. 又∵∠COE =∠OCE ,∴OE =EC. ∴CD =ED =OE.设CD =x ,则OD =2x.在Rt △OCD 中,根据勾股定理得:x 2+9=4x 2,解得x = 3. 则CD = 3.25.(本题12分)如图,△ABC 的外角∠DAC 的平分线交BC 边的垂直平分线于点P ,PD ⊥AB 于D ,PE ⊥AC 于E. (1)求证:BD =CE ;(2)若AB =6 cm ,AC =10 cm ,求AD 的长.解:(1)证明:连接BP ,CP.∵点P 在BC 的垂直平分线上,∴BP =CP. ∵AP 是∠DAC 的平分线,∴DP =EP ,在Rt △BDP 和Rt △CEP 中,⎩⎪⎨⎪⎧BP =CP ,DP =EP ,∴Rt △BDP ≌Rt △CEP (HL ),∴BD =CE.(2)在Rt △ADP 和Rt △AEP 中,⎩⎪⎨⎪⎧AP =AP ,DP =EP ,∴Rt △ADP ≌Rt △AEP (HL ),∴AD =AE.∵AB =6 cm ,AC =10 cm ,∴6+AD =10-AE , 即6+AD =10-AD.解得AD =2 cm.26.(本题14分)如图,在△ABC 中,MP ,NO 分别垂直平分AB ,AC.(1)若BC =10 cm ,试求出△PAO 的周长; (2)若AB =AC ,∠BAC =110°,试求∠PAO 的度数;(3)在(2)中,若无AB =AC 的条件,你能求出∠PAO 的度数吗?若能,请求出来;若不能,请说明理由.解:(1)∵MP ,NO 分别垂直平分AB ,AC , ∴AP =BP ,AO =CO.∴△PAO 的周长为AP +PO +AO =BO +PO +OC =BC. ∵BC =10 cm ,∴△PAO 的周长为10 cm.(2)∵AB =AC ,∠BAC =110 °,∴∠B =∠C =12×(180 °-110 °)=35 °.由(1)知AP =BP ,AO =CO. ∴∠BAP =∠B =35 °,∠CAO =∠C =35 °. ∴∠PAO =∠BAC -∠BAP -∠CAO =110 °-35 °-35 °=40 °. (3)能.理由如下: ∵∠BAC =110 °,∴∠B +∠C =180 °-110 °=70 °.由(1)知AP =BP ,AO =CO.∴∠BAP =∠B ,∠CAO =∠C.∴∠PAO =∠BAC -∠BAP -∠CAO =∠BAC -(∠B +∠C )=110 °-70 °=40 °.27.(本题16分)如图,△ABC 中,AB =BC =AC =12 cm ,现有两点M ,N 分别从点A ,B 同时出发,沿三角形的边运动,已知点M 的速度为1 cm /s ,点N 的速度为2 cm /s .当点N 第一次到达点B 时,M ,N 同时停止运动.(1)点M ,N 运动几秒后,M ,N 两点重合?(2)点M ,N 运动几秒后,可得到等边三角形△AMN?(3)当点M ,N 在BC 边上运动时,能否得到以MN 为底边的等腰三角形AMN ?如存在,请求出此时M ,N 运动的时间.解:(1)设点M ,N 运动x 秒后,M ,N 两点重合,x ×1+12=2x ,解得x =12.(2)设点M ,N 运动t 秒后,可得到等边三角形△AMN ,如图1,AM =t ×1=t ,AN =AB -BN =12-2t.∵三角形△AMN 是等边三角形,∴t =12-2t ,解得t =4.∴点M ,N 运动4秒后,可得到等边三角形△AMN.(3)当点M ,N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形.由(1)知,12秒时M ,N 两点重合,恰好在C 处.如图2,假设△AMN 是以MN 为底边的等腰三角形,∴AN =AM.∴∠AMN =∠ANM.∴∠AMC =∠ANB.∵AB =BC =AC ,∴△ACB 是等边三角形.∴∠C =∠B.在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C =∠B ,∠AMC =∠ANB ,AC =AB , ∴△ACM ≌△ABN (AAS ).∴CM =BN.设当点M ,N 在BC 边上运动时,M ,N 运动的时间y 秒时,△AMN 是等腰三角形.∴CM =y -12,NB =36-2y ,由CM =NB ,得y -12=36-2y ,解得y =16.故假设成立.∴当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16秒.。
北师大版八年级数学 下册第一章:三角形的证明 期末复习题
北师大版八年级数学下册第一章:三角形的证明期末复习题一、选择题(每小题3分,共30分)1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是(A)A.HL B.ASA C.SAS D.AAS2.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为(A)A.35° B.40°C.45°D.50°3.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知△PAB的周长为14,PA=4,则线段AB的长度为(A)A.6 B.5 C.4 D.34.在△ABC中,AB=AC=2,D为BC的中点,∠C=30°,则AD的长为(C)A. 3B. 2 C.1 D.25.如图,在△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为(B)A.12 B.9 C.8 D.66.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为(A)A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对7.若等腰三角形的一个角是80°,则它顶角的度数是(B)A.80° B.80°或20°C.80°或50°D.20°8.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠ACD交AB于点E,则下列结论一定成立的是(C)A.BC=EC B.EC=BE C.BC=BE D.AE=EC9.如图,在△ABC中,∠C=90°,∠1=∠2,CD=1.5,BD=2.5,则AC的长为(C)A.5 B.4 C.3 D.2e10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于点E ,交AC 于点F ,过点O 作OD ⊥AC 于点D ,下列四个结论:①EF =BE +CF ; ②∠BOC =90°+12∠A ;③点O 到△ABC 各边的距离相等; ④设OD =m ,AE +AF =n ,则S △AEF =mn. 其中正确的结论是(A) A .①②③B .①②④C .②③④D .①③④二、填空题(每小题3分,共21分)11.在△ABC 中,AB =AC ,点D 是BC 的中点.若∠B =50°,则∠DAC 的度数是40°. 12.如果三角形三边长分别为6 cm ,8 cm ,10 cm ,那么它最短边上的高为8cm. 13.如图,在△ABC 中,CD 平分∠ACB ,DE ∥BC 交AC 于点E.若DE =7,AE =5,则AC 的长为12.14.如图,在锐角△ABC 中,直线PL 为BC 的垂直平分线,射线BM 为∠ABC 的平分线,PL 与BM 相交于点P.若∠PBC =30°,∠ACP =20°,则∠A 的度数为70°.15.已知在Rt △ABC 中,∠C =90°,AC =BC ,直线m 经过点C ,分别过点A ,B 作直线m 的垂线,垂足分别为点E ,F.若AE =3,AC =5,则线段EF 的长为1或7.16.已知△ABC ≌△DEF ,BC =EF =6 cm ,△ABC 的面积为18 cm 2,则EF 边上的高的长是6cm.17.腰长为5,高为4的等腰三角形的底边长为三、解答题(共69分)18.已知△ABN 和△ACM 位置如图所示,AB =AC ,AD =AE ,∠1=∠2.求证: (1)BD =CE ;(2)∠M =∠N.【解答】 证明:(1)在△ABD 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE(SAS). ∴BD =CE. (2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE , 即∠BAN =∠CAM. 由(1),得△ABD ≌△ACE , ∴∠B =∠C. 在△ACM 和△ABN 中, ⎩⎪⎨⎪⎧∠C =∠B ,AC =AB ,∠CAM =∠BAN , ∴△ACM ≌△ABN(ASA).19.如图,AB =AD ,BC =DC ,点E 在AC 上.求证: (1)AC 平分∠BAD ;(2)BE =DE.证明:(1)在△ABC 和△ADC 中, ⎩⎪⎨⎪⎧AB =AD ,AC =AC ,BC =DC ,∴△ABC ≌△ADC(SSS).∴∠BAC =∠DAC ,即AC 平分∠BAD. (2)由(1)得,∠BAE =∠DAE.在△BAE 和△DAE 中,⎩⎪⎨⎪⎧BA =DA ,∠BAE =∠DAE ,AE =AE ,∴△BAE ≌△DAE(SAS).∴BE =DE.20.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连接AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF ∥BC 交AB 于点F.(1)若∠C =36°,求∠BAD 的度数; (2)求证:FB =FE.解:(1)∵AB =AC , ∴∠C =∠ABC. ∵∠C =36°,∵BD =CD ,AB =AC , ∴AD ⊥BC. ∴∠ADB =90°.∴∠BAD =90°-36°=54°. (2)证明:∵BE 平分∠ABC , ∴∠ABE =∠CBE =12∠ABC.∵EF ∥BC , ∴∠FEB =∠CBE. ∴∠FBE =∠FEB. ∴FB =FE.21.如图,在△ABC 中,AB =AC ,D 为CA 延长线上一点,DE ⊥BC ,交线段AB 于点F.请找出一组相等的线段(AB =AC 除外),并加以证明.解:AD =AF. 证明:∵AB =AC , ∴∠B =∠C. ∵DE ⊥BC ,∴∠BEF =∠DEC =90°.∴∠BFE +∠B =90°,∠D +∠C =90°. ∴∠BFE =∠D. ∵∠BFE =∠DFA ,∴AD=AF.22.如图,在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为E,F,且DE=DF.求证:△ABC是等边三角形.证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥BC,∴∠DEA=∠DFC=90°.∵D为AC的中点,∴DA=DC.又∵DE=DF,∴Rt△ADE≌Rt△CDF(HL).∴∠A=∠C.∴∠A=∠B=∠C.∴△ABC是等边三角形.23.按照有关规定:距高铁轨道200米以内的区域内不宜临路新建学校、医院、敬老院和集中住宅区等噪声敏感建筑物.如图是一个小区平面示意图,长方形ABEF为一新建小区,直线MN为高铁轨道,C,D 是直线MN上的两点,点C,A,B在同一直线上,且DA⊥CA,CD=2AD.小王看中了①号楼A 单元的一套住宅,与售楼人员的对话如下:小王心中一算,发现售楼人员的话不可信,请你用所学的数学知识说明理由. 解:过点A 作AG ⊥MN ,垂足为G. ∵CD =2AD =440,DA ⊥CA , ∴AC =4402-2202=220 3. ∵S △ACD =12AC ·AD =12CD ·AG ,∴AG =2203×220440=1103≈191<200.∴A 单元用户会受到影响,售楼人员的话不可信.24.如图,在△ABC 中,AB =AC ,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E. (1)求证:△ABD 是等腰三角形; (2)若∠A =40°,求∠DBC 的度数;(3)若AE =6,△CBD 的周长为20,求△ABC 的周长.解:(1)证明:∵AB 的垂直平分线MN 交AC 于点D , ∴DB =DA.∴△ABD 是等腰三角形.(2)∵△ABD 是等腰三角形,∠A =40°, ∴∠ABD =∠A =40°,∠ABC =∠C =(180°-40°)÷2=70°. ∴∠DBC =∠ABC -∠ABD =70°-40°=30°. (3)∵AB 的垂直平分线MN 交AC 于点D ,AE =6,∴AB=2AE=12,BD=AD.∵△CBD的周长为20,∴BD+CD+BC=20.∴AC+BC=20.∴△ABC的周长为AB+AC+BC=12+20=32.25.已知点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在BC上,求证:AB=AC;(2)如图2,若点O在△ABC内部,求证:AB=AC;(3)猜想,若点O在△ABC的外部,AB=AC成立吗?请说明理由.解:(1)证明:过点O作OD⊥AB于点D,OE⊥AC于点E,则OD=OE,∠ODB=∠OEC=90°. 又∵OB=OC,∴Rt△BOD≌Rt△COE(HL).∴∠B=∠C.∴AB=AC.(2)证明:过点O作OD⊥AB于点D,OE⊥AC于点E,则OD=OE,∠ODB=∠OEC=90°. 又∵OB=OC,∴Rt△BOD≌Rt△COE(HL).∴∠DBO=∠ECO.∵OB=OC,∴∠OBC=∠OCB.∴∠DBO+∠OBC=∠ECO+∠OCB,即∠ABC=∠ACB.∴AB=AC.(3)不一定成立.理由:如图3,过点O作OD⊥AB于点D,OE⊥AC于点E,则OD=OE,∠ODB=∠OEC=90°.又∵OB=OC,∴Rt△BOD≌Rt△COE(HL).∴∠DBO=∠ECO.∵OB=OC,∴∠OBC=∠OCB.∴∠DBC=∠ECB.∴∠ABC=∠ACB.∴AB=AC.如图4,可知AB≠AC.∴若点O在△ABC的外部时,AB=AC不一定成立.。
北师大版数学八年级下册 第一章三角形的证明 综合测试卷(含答案)
第一章三角形的证明综合测试卷一、选择题。
01如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35º,则∠C的度数为 ( )A.35º B.45º C.55º D.60º02若等腰三角形的周长为10 cm,其中一边长为2 cm,则该等腰三角形的底边长为( )A.2 cm B.4 cm C.6 cm D.8 cm03如图,在△ABC中,∠ACB=90º,BE平分∠ABC,ED⊥AB于D.如果∠A=30º,AE=6 cm,那么CE等于 ( )A .3 cmB .2 cm C.3 cm D.4 cm04如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC 的长为半径作弧,两弧相交于M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50º,则∠ACB的度数为 ( )A.90º B.95º C 100º D.105º05如图,AD是△ABC中∠BAC的平分线,DE⊥AB,垂足为点E,DE=4,AC=6,则△ACD 的面积为 ( )A.8 B 10 C.12 D.2406如图,∠A=50º,P是等腰△ABC内一点,且∠PBC=∠PCA,则∠BPC为 ( )A.100º B.140º C.130º D.115º07如图,在Rt△ABC中,∠ACB=60º,DE是斜边AC的垂直平分线,分别交AB,AC 于D,E两点,若BD=2,则AC的长是 ( )A.4 B.43 C.8 D.8308 将一个有45º角的直角三角尺的直角顶点C放在一张宽为3 cm的纸带边沿上,另一个顶点A在纸带的另一边沿上,测得三角尺的一边AC与纸带的一边所在的直线成30º角,如图,则三角尺的最长边的长为 ( )A.6 cm B.2 cm C.2 cm D.209如图,∠ACB=90º,AC=BC,AE⊥CE,垂足为点E,BD⊥CE,交CE的延长线于点D,AE=5 cm,BD=2 cm,则DE的长是( )A.8 cm B.5 cm C.3 cm D.2 cm10如图,AD⊥BC于D,且DB=DC,有下列结论:①△ABD≌△ACD;②∠B=∠C;③AD 是∠BAC的平分线;④△ABC为等边三角形.其中正确的有 ( )A.1个 B.2个 C.3个 D.4个11如图,∠A=15º,AB=BC=CD=DE=EF,则∠DEF等于( )A.90º B.75º C.70º D.60º12如图,在△ABC中,BC=10,DH,EF分别为AB、AC的垂直平分线,则△ADE的周长是 ( )A.6 B.8 C.10 D.12二、填空题。
新北师大版八年级数学下册第一章《三角形的证明》单元测试卷
第5题图E D C B A第6题图 新北师大版八年级数学下册第一章《三角形的证明》测试卷 时间:100分钟 满分:120分 班级 姓名一、选择题(每小题3分,共36分)1、△ABC 中,AB=AC ,BD 平分∠ABC 交AC 于点D ,∠BDC=75°,则∠A 的度数为( )A. 35°B. 40°C. 70°D. 110°2、已知一个等腰三角形的两内角的度数的比为1︰4,则这个等腰三角形顶角的度数为( )A. 20°B. 120°C. 20°或120°D. 36°3、适合条件∠A=∠B=31∠C 的三角形一定是( ) A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D. 任意三角形4、用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③正方形;④等腰三角形。
一定可以拼成的图形是( )A. ①②④B. ②④C. ①④D. ②③5、如图,D 在AB 上,E 在AC 上,且∠B=∠C ,那么补充下列一个条件后,仍无法判断△ABE ≌△ACD 的是( ) A. AD=AE B. ∠AEB=∠ADC C. BE=CD D. AB=AC6、如图,AB=CD ,AE ⊥BD 于E ,CF ⊥BD 于F ,AE=CF ,则下列结论错误的是( )A. BC=AD 且BC ∥ADB. AB ∥CDC.AB=DED. △ABD ≌△CDB7、等腰三角形一边长是4,一边长是9,则这个三角形的周长为( )A. 17B. 22C. 13D. 17或228、如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的坐标为( )A. (2,0)B. (15-,0)C. (110-,0)D. (5,0)9、如图所示,将等腰三角形ABC 绕点A 旋转15°后得到△AB ′C ′,若AC=1,则图中阴影部分的面积为( ) A. 33 B. 63 C. 3 D. 33 10、面积相等的两个三角形( )A. 必定全等B.必定不全等C. 不一定全等D. 以上答案都不对11、如图,AB ∥CD ,AD ⊥CD 于D ,AE ⊥BC 于E ,∠DAC=35°,AD=AE ,则∠B=()A. 50°B. 60°C. 70°D. 80°12、如图,AD ∥BC ,∠ABC 的平分线BP 与∠BAD的平分线AP 相交于点P ,作PE ⊥AB 于点E ,若PE=2,则两平行线AD 与BC 间的距离为( )A. 2B. 3C. 4D. 5二、填空题(每小题3分,共15分)13、点P 在线段AB 的垂直平分线上,PA=7,则PB= 。
北师大版八年级数学下册单元测试《第1章 三角形的证明》(解析版)
《第1章三角形的证明》一、选择题1.如果三角形的三个内角度数比为1:1:2,则这个三角形为()A.锐角三角形B.钝角三角形C.非等腰直角三角形D.等腰直角三角形2.下面命题不正确的是()A.两个内角分别是50°和65°的三角形是等腰三角形B.两个外角相等的三角形是等腰三角形C.一个外角的平分线平行于一边的三角形是等腰三角形D.两个内角不相等的三角形不是等腰三角形3.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=24.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60° B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°5.如图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连接ED并延长到点F,使DF=DE,连接FC,若∠B=70°,则∠F 的度数是()A.40 B.70 C.50 D.456.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.97.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里二、填空题8.如图所示,在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,则图中共有等腰三角形的个数是.9.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是.10.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.三、解答题11.证明题:如图所示,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC.12.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)13.已知∠AOB及其内部一点P,试讨论以下问题的解答:(1)如图①,若点P在∠AOB的平分线上,我们可以过P点作直线垂直于角平分线,分别交OA、OB于点C、D,则可以得到△OCD是以CD为底边的等腰三角形;若点P不在∠AOB的平分线上(如图②),你能过P点作直线,分别交OA、OB于点C、D,得到△OCD是等腰三角形,且CD是底边吗?请你在图②中画出图形,并简要说明画法.(2)若点P不在∠AOB的平分线上(如图③),我们可以过P点作PQ∥OA,并作∠QPR=∠AOB,直线PR分别交OA、OB于点C、D,则可以得到△OCD是以OC为底的等腰三角形.请你说明这样作的理由.(3)若点P不在∠AOB的平分线上,请你利用在(2)中学到的方法,在图④中过P点作直线分别交OA、OB于点C、D,使得△OCD是等腰三角形,且OD是底边.保留画图的痕迹,不用写出画法.《第1章三角形的证明》参考答案与试题解析一、选择题1.如果三角形的三个内角度数比为1:1:2,则这个三角形为()A.锐角三角形B.钝角三角形C.非等腰直角三角形D.等腰直角三角形【考点】三角形内角和定理.【分析】由三角形的三个内角度数比为1:1:2,可设三角形的三个内角分别为:x,x,2x,然后由三角形的内角和等于180°,即可得方程:x+x+2x=180°,解此方程即可求得答案.【解答】解:∵三角形的三个内角度数比为1:1:2,∴设三角形的三个内角分别为:x,x,2x,∴x+x+2x=180°,解得:x=45°,∴三角形的三个内角度数分别为:45°,45°,90°.∴这个三角形为等腰直角三角形.故选:D.【点评】此题考查了三角形的内角和定理.此题比较简单,解题的关键是根据三角形的三个内角度数比为1:1:2,设三角形的三个内角分别为:x,x,2x,利用方程思想求解.2.下面命题不正确的是()A.两个内角分别是50°和65°的三角形是等腰三角形B.两个外角相等的三角形是等腰三角形C.一个外角的平分线平行于一边的三角形是等腰三角形D.两个内角不相等的三角形不是等腰三角形【考点】等腰三角形的判定.【分析】认真阅读各选项,结合各选项提供的已知条件及等腰三角形的定义可得.【解答】解:A、第三个角180°﹣50°﹣65°=65°,有两等角的三角形是等腰三角形,正确;B、外角相等,则对应的内角也相等,有两等角的三角形是等腰三角形,正确;C、利用两直线平行,内错角相等,同位相等,可知,另外的两内角也相等,有两等角的三角形是等腰三角形,正确;D、两个内角不相等的三角形可能是等腰三角形,错误.故选D.【点评】本题考查了等腰三角形的判定;找出各选项的正误是正确解答本题的关键.3.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=2【考点】反证法.【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.【解答】解:用来证明命题“若a2>1,则a>1”是假命题的反例可以是:a=﹣2,∵(﹣2)2>1,但是a=﹣2<1,∴A正确;故选:A.【点评】此题主要考查了利用举例法证明一个命题错误,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.4.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60° B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°【考点】反证法.【专题】证明题.【分析】此题要运用反证法,由题意先假设三角形的三个角都小于60°成立.然后推出不成立.得出选项.【解答】解:设三角形的三个角分别为:a,b,c.假设,a<60°,b<60°,c<60°,则a+b+c<60°+60°+60°,即,a+b+c<180°与三角形内角和定理a+b+c=180°矛盾.所以假设不成立,即三角形中至少有一个角不小于60°.故选B.【点评】此题考查的知识点是反证法,解答此题的关键是由已知三角形中至少有一个角不小于60°假设都小于60°进行论证.5.如图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连接ED并延长到点F,使DF=DE,连接FC,若∠B=70°,则∠F 的度数是()A.40 B.70 C.50 D.45【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】由题意可得EB=ED,根据等边对等角的性质,易得∠B=∠EDB=∠ACB,即可得EF∥AC,又由AE=BE,根据平行线等分线段成比例定理,可得BD=CD,然后利用SAS即可证得△EBD≌△CFD,即可得∠F=∠BED.【解答】解:∵以点E为圆心,EB为半径画弧,交BC于点D,∴EB=ED,∴∠EDB=∠B=70°,∴∠BED=180°﹣∠B=∠BDE=40°,∵AB=AC,∴∠ACB=∠B,∴∠EDB=∠ACB,∴EF∥AC,∵E是AB的中点,即BE=AE,∴BD=CD,在△EBD和△FCD中,,∴△EBD≌△FCD(SAS),∴∠F=∠BED=40°.故选A.【点评】此题考查了全等三角形的判定与性质、等腰三角形的性质以及平行线的判定与性质.此题难度适中,注意掌握数形结合思想的应用,注意理解题意.6.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9【考点】等腰三角形的判定.【专题】分类讨论.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.7.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里【考点】等腰三角形的判定与性质;方向角;平行线的性质.【专题】应用题.【分析】根据方向角的定义即可求得∠M=70°,∠N=40°,则在△MNP中利用内角和定理求得∠NPM的度数,证明三角形MNP是等腰三角形,即可求解.【解答】解:MN=2×40=80(海里),∵∠M=70°,∠N=40°,∴∠NPM=180°﹣∠M﹣∠N=180°﹣70°﹣40°=70°,∴∠NPM=∠M,∴NP=MN=80(海里).故选:D.【点评】本题考查了方向角的定义,以及三角形内角和定理,等腰三角形的判定定理,理解方向角的定义是关键.二、填空题8.如图所示,在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,则图中共有等腰三角形的个数是6.【考点】等腰三角形的判定与性质.【分析】由在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,根据等腰三角形的性质与三角形内角和定理,易求得各角的度数,继而求得答案.【解答】解:∵在△ABC中,AB=AC,∠ABD=36°,即△ABC是等腰三角形,∴∠C=∠B=36°,∴∠BAC=108°,∵∠DAE=∠EAC=36°,∴∠BAD=36°,∴∠BAD=∠B=36°,∠EAC=∠C=36°,∴△ABD,△ACE是等腰三角形,∴∠ADE=∠AED=∠DAC=∠BAE=72°,∴△ADE,△ABE,△ACD是等腰三角形.故答案为:6.【点评】此题考查了等腰三角形的性质与判定.此题难度不大,注意掌握数形结合思想的应用.9.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是9.【考点】等腰三角形的判定与性质;平行线的性质.【专题】压轴题.【分析】由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.【解答】解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.【点评】此题考查了等腰三角形的判定与性质、角平分线的定义以及平行线的性质.此题难度适中,注意证得△DOB与△EOC是等腰三角形是解此题的关键,注意掌握数形结合思想与转化思想的应用.10.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是②③④.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.【考点】等腰三角形的判定与性质.【专题】压轴题.【分析】可根据等腰三角形三线合一的性质来判断①②是否正确;③④要通过作等腰三角形来判断其结论是否成立.【解答】解:应添加的条件是②③④;证明:②当∠BAD=∠CAD时,∵AD是∠BAC的平分线,且AD是BC边上的高;则△ABD≌△ACD,∴△BAC是等腰三角形;③延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;∵AB+BD=CD+AC,∴DE=DF,又AD⊥BC;∴△AEF是等腰三角形;∴∠E=∠F;∵AB=BE,∴∠ABC=2∠E;同理,得∠ACB=2∠F;∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;④△ABC中,AD⊥BC,根据勾股定理,得:AB2﹣BD2=AC2﹣CD2,即(AB+BD)(AB﹣BD)=(AC+CD)(AC﹣CD);∵AB﹣BD=AC﹣CD①,∴AB+BD=AC+CD②;∴①+②得:,2AB=2AC;∴AB=AC,∴△ABC是等腰三角形故答案为:②③④.【点评】此题主要考查的是等腰三角形的判定和性质;本题的难点是结论③的证明,能够正确的构建出等腰三角形是解答③题的关键.三、解答题11.证明题:如图所示,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC.【考点】反证法.【专题】证明题.【分析】运用反证法进行求解:(1)假设结论PB≠PC不成立,PB=PC成立.(2)从假设出发推出与已知相矛盾.(3)得到假设不成立,则结论成立.【解答】证明:假设PB≠PC不成立,则PB=PC;∵在△ABP和△ACP中,,∴△ABP≌△ACP,∴∠APB=∠APC;与∠APB≠∠APC相矛盾.因而PB=PC不成立,则PB≠PC.【点评】解此题关键要懂得反证法的意义及步骤.12.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)【考点】等腰三角形的判定与性质;作图—基本作图.【专题】作图题.【分析】(1)以D为圆心,以任意长为半径画弧,交AD于G,交DC于H,分别以G、H为圆心,以大于GH为半径画弧,两弧交于N,作射线DN,交AM 于F.(2)求出∠BAD=∠CAD,求出∠FAD=×180°=90°,求出∠CDF=∠AFD=∠ADF,推出AD=AF,即可得出答案.【解答】解:(1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=∠EAC+∠BAC=×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.【点评】本题考查了作图﹣基本作图,等腰三角形的性质和判定的应用,主要培养学生的动手操作能力和推理能力,题目比较典型,难度也适中.13.已知∠AOB及其内部一点P,试讨论以下问题的解答:(1)如图①,若点P在∠AOB的平分线上,我们可以过P点作直线垂直于角平分线,分别交OA、OB于点C、D,则可以得到△OCD是以CD为底边的等腰三角形;若点P不在∠AOB的平分线上(如图②),你能过P点作直线,分别交OA、OB于点C、D,得到△OCD是等腰三角形,且CD是底边吗?请你在图②中画出图形,并简要说明画法.(2)若点P不在∠AOB的平分线上(如图③),我们可以过P点作PQ∥OA,并作∠QPR=∠AOB,直线PR分别交OA、OB于点C、D,则可以得到△OCD是以OC为底的等腰三角形.请你说明这样作的理由.(3)若点P不在∠AOB的平分线上,请你利用在(2)中学到的方法,在图④中过P点作直线分别交OA、OB于点C、D,使得△OCD是等腰三角形,且OD是底边.保留画图的痕迹,不用写出画法.【考点】作图—应用与设计作图;角平分线的性质;等腰三角形的判定.【分析】(1)作∠AOB的平分线,过P点作角平分线的垂线,分别交角的两边OA、OB于点C、D,则△OCD是以CD为底边的等腰三角形;(2)根据PQ∥OA,得出∠QPR=∠OCD,进而得出OD=CD,即可得出答案;(3)作QP∥DO,再作∠ODR=∠O,即可得出答案.【解答】解:(1)能.画法:作∠AOB的平分线,过P点作角平分线的垂线,分别交角的两边OA、OB 于点C、D,则△OCD是以CD为底边的等腰三角形,如图①.(2)∵PQ∥OA,∴∠QPR=∠OCD,又∵∠QPR=∠AOB,∴∠OCD=∠AOB.∴OD=CD.即△OCD是以OC为底的等腰三角形.(3)如图②.【点评】此题主要考查了基本作图角平分线的性质等知识;作角平分线是正确解答本题的关键.。
北师大版八年级数学下《第一章三角形的证明》单元测试题(有答案)
北师大版八年级数学下册第一章三角形的证明单元测试题一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配.A.①B.②C.③D.①和②2.下列说法中,正确的是().A.两腰对应相等的两个等腰三角形全等B.两角及其夹边对应相等的两个三角形全等C.两锐角对应相等的两个直角三角形全等D.面积相等的两个三角形全等3.如图2,AB⊥C D,△AB D、△B CE都是等腰三角形,如果C D=8cm,BE=3c m,那么A C长为().A.4c m B.5c m C.8c m D.34c m4.如图3,在等边ABC 的度数是().,中,D E分别是B C A C上的点,且,B D CE,A D与BE相交于点P,则12450B.55C.60D.75A.0005.如图4,在ABC中,A B=A C,A 36ABC ACB,B D和CE分别是和的平分线,且相交于点P.在图4中,等腰三角形(不再添加线段和字母)的个数为().A.9个B.8个C.7个D.6个,l,l6.如图5,l表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可123供选择的地址有().A.1处B.2处C.3处D.4处7.如图 6,A 、C 、E 三点在同一条直线上,△D A C 和△EB C 都是等边三角形,AE 、B D 分别与 C D 、CE 交于点 M 、N ,有如下结论:①△AC E ≌△D C B ;② C M =C N ;③ A C =D N. 其中,正确结论的个数是().A .3 个B .2 个C . 1 个D .0 个8.要测量河两岸相对的两点 A 、B 的距离,先在 AB 的垂线 BF 上取两点 C ,D ,使 C D=B C ,再作出 BFABC ED C ≌ ,得 ED =A B. 因此,的垂线 DE ,使 A ,C ,E 在同一条直线上(如图 7),可以证明 ABC ED C ≌测得 DE 的长就是 A B 的长,在这里判定 的条件是( ). A .AS AB .S ASC .SSSD .H L9.如图 8,将长方形 A B C D 沿对角线 B D 翻折,点 C 落在点 E 的位置,BE 交 A D 于点 F. BDF 求证:重叠部分(即 )是等腰三角形. 证明:∵四边形 A B C D 是长方形,∴A D ∥B CBDE 又∵ 与 BD C 关于 B D 对称, 2 3. ∴ B D F 是等腰三角形.∴ 请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?().1 2 ;②1 3;③3 4;④BDC BDE ① A .①③B .②③C .②①D .③④10.如图9,已知线段a,h作等腰△AB C,使AB=A C,且BC=a,B C边上的高A D=h.张红的作法是:(1)作线段BC=a;(2)作线段BC的垂直平分线M N,M N与BC相交于点D;(3)在直线M N上截取线段h;(4)连结AB,AC,则△AB C为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是().A.(1)B.(2)C.(3)D.(4)二、细心填一填,一锤定音(每小题2分,共20分)1.如图10,已知,在△A B C和△D C B中,A C=D B,若不增加任何字母与辅助线,要使△A B C≌△D C B,则还需增加一个条件是____________.2.如图11,在Rt AB C中,BA C90,,AB A C,分别过点B C作经过点A的直线的垂线段B D,C E,若B D=3厘米,CE=4厘米,则DE的长为_______.3.如图12,P,Q是△A B C的边B C上的两点,且BP=P Q=Q C=A P=A Q,则∠A B C等于_________度.4.如图13,在等腰ABC中,A B=27,A B的垂直平分线交A B于点D,交AC于点E ,若BCE的周长为50,则底边BC的长为_________.ABC中,A B=A C,A B的垂直平分线与A C所在的直线相交所得的锐角为50,则0 5.在底角B的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边A C=5c m,B C=10c m,将△A B C 折叠,点B 与点A 重合,折痕为DE,则C D 的长为________.8.如图15,在ABC中,A B=A C ,A 120 ,D 是BC 上任意一点,分别做D E⊥A B 于E,DF⊥A C于F,如果BC=20cm,那么DE+D F= _______cm.9.如图16,在Rt△ABC中,∠C=90°,∠B=15°,D E是AB的中垂线,垂足为D,交BCE于点,若BE 4,则AC_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?三、耐心做一做,马到成功(本大题共48分)ABC 中,ACB 90,C D 是A B 边上的高,A 301.(7 分)如图18,在.求证:A B= 4BD.0 02.(7分)如图19,在ABC900中,C ,A C=B C,A D平分CAB交B C于点D,DE⊥A B于点E,若A B=6c m.你能否求出BDE的周长?若能,请求出;若不能,请说明理由.3.(10分)如图20,D、E分别为△AB C的边AB、AC上的点,BE与C D相交于O点.现有四个条件:①AB=AC;②OB=O C;③∠ABE=∠ACD;④BE=C D.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:..命题的条件是和,命题的结论是和(均填序号).(2)证明你写出的命题.已知:求证:证明:4.(8分)如图21,在ABC中,A 900,AB=A C,AB C的平分线B D交A C于D,CE⊥B D的延1BD2长线于点E.求证:CE.ABC中,C 900.5.(8分)如图22,在(1)用圆规和直尺在A C上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P到A B、B C的距离相等时,求∠A的度数.6.(8分)如图23,AOB90,O M平分A O B,将直角三角板的顶点P在射线O M上移动,两直角边分别与O A、O B相交于点C、D,问PC与P D相等吗?试说明理由.四、拓广探索(本大题12分)ABC如图24,在中,A B=A C,A B的垂直平分线交A B于点N,交B C的延长线于点M,若A400.(1)求N M B 的度数;(2)如果将(1)中A的度数改为70,其余条件不变,再求N M B的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A改为钝角,你对这个规律性的认识是否需要加以修改?答案:一、精心选一选,慧眼识金1.C;2.B;3.D.点拨:B C=BE=3c m,A B=B D=5c m;ABD≌BCE;4.C.点拨:利用5.B;6.D.点拨:三角形的内角平分线或外角平分线的交点处均满足条件;7.B.点拨:①②正确;8.A;9.C;10.C.点拨:在直线M N上截取线段h,带有随意性,与作图语言的准确性不相符.二、细心填一填,一锤定音1.答案不惟一.如ACB DBC;ABD≌CAE;2.7厘米.点拨:利用3.30;BE CE AC AB 27 ,可得 B C 50 27 23;4.23.点拨:由 5.7020 .点拨;当ABC 为锐角三角形时,B 70ABC 为钝角三角形时,B 20 ;或 ;当 0 0 0 06.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;15cm C D x B D AD 10 x Rt ACD (10 x)x 5 ,解得 7. . 点拨:设 ,则易证得 .在 中, 2 2 2 4 15 x .4 1 18.10.点拨:利用含30角的直角三角形的性质得, D E DF BD C D BC . 0 22Rt AEC 中,AEC 309.2 . 点拨:在,由 AE=BE= 4,则得 A C=2; 0 10.16.点拨:AB=26 米,A C+B C =34 米,故少走 8 米,即 16 步. 三、耐心做一做,马到成功 1.∵ACB 90,A 300 ,∴AB=2BC ,B 60.0 0又∵C D ⊥A B ,∴DCB 30,∴B C=2B D.∴AB= 2BC= 4B D.2.根据题意能求出BDE的周长.C 900 ,DEA 90,又∵A D 平分C A B∵ 在 ,∴DE=D C.Rt AD C Rt A D E 和 Rt AD C Rt A D E≌ (HL ). 中,DE=D C ,A D =A D ,∴ ∴A C=A E ,又∵A C =B C ,∴AE=B C.BDE DE DB EB BC EB AE EB AB ∴ 的周长 . BDE ∵A B=6c m ,∴ 3.(1)①,③;②,④.的周长=6cm. (2)已知:D 、E 分别为△ABC 的边 AB 、AC 上的点,BE 与 C D 相交于 O 点,且AB =AC ,∠ABE =∠AC D. 求证:OB =O C ,BE =C D.证明:∵ A B=A C ,∠ ABE =∠ AC D ,∠ A=∠A ,∴△ A B E ≌△ A C D (AS A ).∴BE=C D. 又∵ABC ACB ,∴BC D AC BAC D AB C ABE CBEBOC ∴ 是等腰三角形,∴OB =O C. 4.延长 CE 、B A 相交于点 F.EBF F 90,ACF F 900 ,∴ EBFACF .∵ 0 在 RtABD Rt ACF 中,∵DBA ACF和,A B=A C ,ABD Rt ACF ≌ B D CF.∴ Rt (AS A ). ∴ 在 Rt BCE Rt BFE 中,∵BE=BE ,EBC EBF和,BCE Rt BFE≌ (ASA ).∴ Rt 1 12 EF ∴CE . ∴CE C F B D .25.(1)图略. 点拨:作线段 A B 的垂直平分线. (2)连结 BP.∵点 P 到 A B 、B C 的距离相等, ∴BP 是ABC的平分线,∴ABP PBC .又∵点 P 在线段 A B 的垂直平分线上,∴P A=PB ,∴A ABP.1 A ABP PB C 90 30 ∴ 0 0 . 36.过点 P 作 PE ⊥O A 于点 E ,PF ⊥O B 于点 F. ∵O M 平分AOB,点 P 在 O M 上,∴PE=PF.又∵A OB 9090 ,∴ EPF .0 0 ∴EPF CP D,∴EPC FPDRt PCE Rt PDF .∴ ≌ (AS A ),∴PC=P D.四、拓广探索1 1 B ACB 180 1804070 (1)∵A B=A C ,∴ .∴ BA 0.0 00 22N M B 90B 90 70 20 ∴ . 0 0 0 0 (2)解法同(1).同理可得, (3)规律:NM BN M B 35.的度数等于顶角A 度数的一半.1 证明:设A .∵A B=A C ,∴B C180 .0 ,∴ B21 1 BN M 900 ,∴N MB 90 B 90 180 . ∵ 0 0 0 22N M B的度数等于顶角 A 度数的一半.即A (4)将(1)中的 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.BE CE AC AB 27 ,可得 B C 50 27 23;4.23.点拨:由 5.7020 .点拨;当ABC 为锐角三角形时,B 70ABC 为钝角三角形时,B 20 ;或 ;当 0 0 0 06.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;15cm C D x B D AD 10 x Rt ACD (10 x)x 5 ,解得 7. . 点拨:设 ,则易证得 .在 中, 2 2 2 4 15 x .4 1 18.10.点拨:利用含30角的直角三角形的性质得, D E DF BD C D BC . 0 22Rt AEC 中,AEC 309.2 . 点拨:在,由 AE=BE= 4,则得 A C=2; 0 10.16.点拨:AB=26 米,A C+B C =34 米,故少走 8 米,即 16 步. 三、耐心做一做,马到成功 1.∵ACB 90,A 300 ,∴AB=2BC ,B 60.0 0又∵C D ⊥A B ,∴DCB 30,∴B C=2B D.∴AB= 2BC= 4B D.2.根据题意能求出BDE的周长.C 900 ,DEA 90,又∵A D 平分C A B∵ 在 ,∴DE=D C.Rt AD C Rt A D E 和 Rt AD C Rt A D E≌ (HL ). 中,DE=D C ,A D =A D ,∴ ∴A C=A E ,又∵A C =B C ,∴AE=B C.BDE DE DB EB BC EB AE EB AB ∴ 的周长 . BDE ∵A B=6c m ,∴ 3.(1)①,③;②,④.的周长=6cm. (2)已知:D 、E 分别为△ABC 的边 AB 、AC 上的点,BE 与 C D 相交于 O 点,且AB =AC ,∠ABE =∠AC D. 求证:OB =O C ,BE =C D.证明:∵ A B=A C ,∠ ABE =∠ AC D ,∠ A=∠A ,∴△ A B E ≌△ A C D (AS A ).∴BE=C D. 又∵ABC ACB ,∴BC D AC BAC D AB C ABE CBEBOC ∴ 是等腰三角形,∴OB =O C. 4.延长 CE 、B A 相交于点 F.和,A B=A C ,ABD Rt ACF ≌ B D CF.∴ Rt (AS A ). ∴ 在 Rt BCE Rt BFE 中,∵BE=BE ,EBC EBF和,BCE Rt BFE≌ (ASA ).∴ Rt 1 12 EF ∴CE . ∴CE C F B D .25.(1)图略. 点拨:作线段 A B 的垂直平分线. (2)连结 BP.∵点 P 到 A B 、B C 的距离相等, ∴BP 是ABC的平分线,∴ABP PBC .又∵点 P 在线段 A B 的垂直平分线上,∴P A=PB ,∴A ABP.1 A ABP PB C 90 30 ∴ 0 0 . 36.过点 P 作 PE ⊥O A 于点 E ,PF ⊥O B 于点 F. ∵O M 平分AOB,点 P 在 O M 上,∴PE=PF.又∵A OB 9090 ,∴ EPF .0 0 ∴EPF CP D,∴EPC FPDRt PCE Rt PDF .∴ ≌ (AS A ),∴PC=P D.四、拓广探索1 1 B ACB 180 1804070 (1)∵A B=A C ,∴ .∴ BA 0.0 00 22N M B 90B 90 70 20 ∴ . 0 0 0 0 (2)解法同(1).同理可得, (3)规律:NM BN M B 35.的度数等于顶角A 度数的一半.1 证明:设A .∵A B=A C ,∴B C180 .0 ,∴ B21 1 BN M 900 ,∴N MB 90 B 90 180 . ∵ 0 0 0 22N M B的度数等于顶角 A 度数的一半.即A (4)将(1)中的 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.BE CE AC AB 27 ,可得 B C 50 27 23;4.23.点拨:由 5.7020 .点拨;当ABC 为锐角三角形时,B 70ABC 为钝角三角形时,B 20 ;或 ;当 0 0 0 06.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;15cm C D x B D AD 10 x Rt ACD (10 x)x 5 ,解得 7. . 点拨:设 ,则易证得 .在 中, 2 2 2 4 15 x .4 1 18.10.点拨:利用含30角的直角三角形的性质得, D E DF BD C D BC . 0 22Rt AEC 中,AEC 309.2 . 点拨:在,由 AE=BE= 4,则得 A C=2; 0 10.16.点拨:AB=26 米,A C+B C =34 米,故少走 8 米,即 16 步. 三、耐心做一做,马到成功 1.∵ACB 90,A 300 ,∴AB=2BC ,B 60.0 0又∵C D ⊥A B ,∴DCB 30,∴B C=2B D.∴AB= 2BC= 4B D.2.根据题意能求出BDE的周长.C 900 ,DEA 90,又∵A D 平分C A B∵ 在 ,∴DE=D C.Rt AD C Rt A D E 和 Rt AD C Rt A D E≌ (HL ). 中,DE=D C ,A D =A D ,∴ ∴A C=A E ,又∵A C =B C ,∴AE=B C.BDE DE DB EB BC EB AE EB AB ∴ 的周长 . BDE ∵A B=6c m ,∴ 3.(1)①,③;②,④.的周长=6cm. (2)已知:D 、E 分别为△ABC 的边 AB 、AC 上的点,BE 与 C D 相交于 O 点,且AB =AC ,∠ABE =∠AC D. 求证:OB =O C ,BE =C D.证明:∵ A B=A C ,∠ ABE =∠ AC D ,∠ A=∠A ,∴△ A B E ≌△ A C D (AS A ).∴BE=C D. 又∵ABC ACB ,∴BC D AC BAC D AB C ABE CBEBOC ∴ 是等腰三角形,∴OB =O C. 4.延长 CE 、B A 相交于点 F.和,A B=A C ,ABD Rt ACF ≌ B D CF.∴ Rt (AS A ). ∴ 在 Rt BCE Rt BFE 中,∵BE=BE ,EBC EBF和,BCE Rt BFE≌ (ASA ).∴ Rt 1 12 EF ∴CE . ∴CE C F B D .25.(1)图略. 点拨:作线段 A B 的垂直平分线. (2)连结 BP.∵点 P 到 A B 、B C 的距离相等, ∴BP 是ABC的平分线,∴ABP PBC .又∵点 P 在线段 A B 的垂直平分线上,∴P A=PB ,∴A ABP.1 A ABP PB C 90 30 ∴ 0 0 . 36.过点 P 作 PE ⊥O A 于点 E ,PF ⊥O B 于点 F. ∵O M 平分AOB,点 P 在 O M 上,∴PE=PF.又∵A OB 9090 ,∴ EPF .0 0 ∴EPF CP D,∴EPC FPDRt PCE Rt PDF .∴ ≌ (AS A ),∴PC=P D.四、拓广探索1 1 B ACB 180 1804070 (1)∵A B=A C ,∴ .∴ BA 0.0 00 22N M B 90B 90 70 20 ∴ . 0 0 0 0 (2)解法同(1).同理可得, (3)规律:NM BN M B 35.的度数等于顶角A 度数的一半.1 证明:设A .∵A B=A C ,∴B C180 .0 ,∴ B21 1 BN M 900 ,∴N MB 90 B 90 180 . ∵ 0 0 0 22N M B的度数等于顶角 A 度数的一半.即A (4)将(1)中的 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.。
北师大版八年级数学下册《第1章 三角形的证明》单元培优测试卷【附答案】
北师大版八年级数学下册《第1章三角形的证明》单元培优测试卷一、选择题1.下列命题中,是假命题的是( )A.等腰三角形三个内角的和等于180°B.等腰三角形两边的平方和等于第三边的平方C.角平分线上的点到这个角两边的距离相等D.线段垂直平分线上的点到这条线段两个端点的距离相等2.下列几组数中,能作为直角三角形三边长的是( )A.2,4,5B.3,4,5C.4,4,5D.5,4,53.在等腰三角形中,有一个角是50°,它的一条腰上的高与底边的夹角是( )A.25°B.25°或40°C.25°或35°D.40°4.如图,在△ABC中,AI平分∠BAC,BI平分∠ABC,点O是AC、BC的垂直平分线的交点,连接AO、BO,若∠AIB=α,则∠AOB的大小为( )A.αB.4α﹣360°C.α+90°D.180°﹣α5.如图,在△ABC中,AC=6,BC=8,∠C=90°,∠ABC与∠BAC的平分线交于点D,过点D作DE∥AC交AB于点E,则DE=( )A.B.2C.D.36.如图,在△ABC中,∠B=74°,边AC的垂直平分线交BC于点D,交AC于点E,若AB+BD=BC,则∠BAC的度数为( )A.74°B.69°C.65°D.60°7.下列命题正确的是( )A.三角形的一个外角大于任何一个内角B.三角形的三条高都在三角形内部C.三角形的一条中线将三角形分成两个三角形面积相等D.两边和其中一边的对角相等的三角形全等8.等腰三角形一边的长为4cm,周长是18cm,则底边的长是( )A.4cm B.10cm C.7或10cm D.4或10cm二、填空题9.如图,BD、CE是等边三角形ABC的中线,则∠EFD=.10.如图,在△ABC中,AB=BC,BE平分∠ABC,AD为BC边上的高,且AD=BD.则∠3=°.11.平面直角坐标系中,已知A(8,0),△AOP为等腰三角形,且△AOP的面积为16,则满足条件的P点个数是.12.如果等腰三角形的一个内角是80°,那么它的顶角的度数是°.13.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,△ABC的面积为60,AB=16,BC=14,则DE的长等于.14.如图,在△ABC中,线段AB的垂直平分线交AC于点D,连接BD,若∠C=80°,∠CBD=40°,则∠A的度数为°.15.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=20°,且AE=AD,则∠CDE的度数是.16.如图,Rt△ABC中,∠ABC=90°,DE是边AB的垂直平分线,D为垂足,DE交AC 于点,且AB=8,BC=6,则△BEC的周长是.17.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于E点,∠B=50°,∠FAE=20°,则∠C=度.18.已知C,D两点在线段AB的垂直平分线上,且∠ACB=50°,∠ADB=86°,则∠CAD的度数是.三、解答题19.如图,△ABC中,∠ABC=25°,∠ACB=55°,DE,FG分别为AB,AC的垂直平分线,E,G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数;(3)若BC的长为30,求△DAF的周长.20.如图,在△ABC中,AB=AC,DE垂直平分AC,CE⊥AB,AF⊥BC.(1)求证:CF=EF;(2)求∠EFB的度数.21.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连接CD、DE,已知∠EDB=∠ACD,BC=6,(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,EC=8时,求△EDC的面积.22.如图,在Rt△ABC中,∠ACB=90°,△CAP和△CBQ都是等边三角形,BQ和CP 交于点H,求证:BQ⊥CP.23.△ABC中,AB=AC,∠B=30°,点P在BC边上运动(P不与B、C重合),连接AP,作∠APQ=∠B,PQ交AB于点Q.(1)如图1,当PQ∥CA时,判断△APB的形状并说明理由;(2)在点P的运动过程中,△APQ的形状可以是等腰三角形吗?若可以,请直接写出∠BQP的度数;若不可以,请说明理由.24.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M交BE于点G,AD平分∠MAC,交BC于点D,交BE于点F.求证:线段BF垂直平分线段AD.25.如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D为线段CE 的中点,BE=AC.(1)求证:AD⊥BC.(2)若∠BAC=75°,求∠B的度数.26.已知△ABC中,D为边BC上一点,AB=AD=CD.(1)试说明∠ABC=2∠C;(2)过点B作AD的平行线交CA的延长线于点E,若AD平分∠BAC,求证:AE=AB.参考答案1.解:A、等腰三角形三个内角的和等于180°,正确,是真命题,不符合题意;B、直角三角形两边的平方和等于第三边的平方,故原命题错误,是假命题,符合题意;C、角平分线上的点到这个角两边的距离相等,正确,是真命题,不符合题意;D、线段垂直平分线上的点到这条线段两个端点的距离相等,正确,是真命题,不符合题意,故选:B.2.解:A、22+42≠52,根据勾股定理的逆定理可知三角形不是直角三角形,故不合题意;B、32+42=52,根据勾股定理的逆定理可知三角形是直角三角形,故符合题意;C、42+42≠52,根据勾股定理的逆定理可知三角形不是直角三角形,故不合题意;D、42+52≠52,根据勾股定理的逆定理可知三角形不是直角三角形,故不合题意;故选:B.3.解:当50°为底角时,∵∠B=∠ACB=50°,∴∠BCD=90°﹣50°=40°;当50°为顶角时,∵∠A=50°,∴∠B=∠ACB=65°,∴∠BCD=90°﹣65°=25°.故选:B.4.解:连接CO并延长至D,∵∠AIB=α,∴∠IAB+∠IBA=180°﹣α,∵AI平分∠BAC,BI平分∠ABC,∴∠IAB=∠CAB,∠IBA=∠CBA,∴∠CAB+∠CBA=2(∠IAB+∠IBA)=360°﹣2α,∴∠ACB=180°﹣(∠CAB+∠CBA)=2α﹣180°,∵点O是AC、BC的垂直平分线的交点,∴OA=OC,OB=OC,∴∠OCA=∠OAC,∠OCB=∠OBC,∵∠AOD是△AOC的一个外角,∴∠AOD=∠OCA+∠OAC=2∠OCA,同理,∠BOD=∠OCB,∴∠AOB=∠AOD+∠BOD=2∠OCA+2∠OCB=4α﹣360°,故选:B.5.解:延长ED交BC于点G,作DF⊥AB于点F,作DH⊥AC于点H,∵DE∥AC,∠C=90°,∴∠BGE=∠C=90°,∴EG⊥BC,∴∠DGC=∠DHC=∠C=90°,∴四边形DGCH为矩形,∵AD平分∠BAC,BD平分∠ABC,DF⊥AB,DH⊥AC,DG⊥BC,∴DF=DM,DG=DF,∴DH=DG,∴四边形DGCH为正方形,在Rt△BDG和Rt△BDF中,,∴Rt△BDG≌Rt△BDF(HL),∴BF=BG,同理可得:Rt△AHD≌Rt△AFD,由勾股定理可得:AB2=AC2+BC2=100,∴AB=10,设CH=CG=x,则AH=6﹣x,BG=8﹣x,∴AF=6﹣x,BF=8﹣x,∴AB=10=AF+BF=6﹣x+8﹣x=14﹣2x,即14﹣2x=10,解得:x=2,∴CH=CG=2,BG=6,∵DE∥AC,∴△BEG∽△BAC,∴,即,∴EG=4.5,∴DE=EG﹣DG=4.5﹣2=2.5,故选:A.6.解:如图,连接AD,∵边AC的垂直平分线交BC于点D,∴AD=CD,∴∠DAC=∠C,∵AB+BD=BC,BD+CD=BC,∴CD=AB,∴AD=AB,∴∠ABD=∠ADB=74°,∴∠C=37°,∴∠BAC=180°﹣74°﹣37°=69°,故选:B.7.解:A、三角形的一个外角大于与它不相邻的任何一个内角,原命题是假命题;B、钝角三角形的三条高不在三角形内部,原命题是假命题;C、三角形的一条中线将三角形分成两个三角形面积相等,是真命题;D、两边和其夹角相等的三角形全等,原命题是假命题;故选:C.8.解:分情况考虑:①当4cm是腰时,则底边长是18﹣8=10(cm),此时4,4,10不能组成三角形,应舍去;②当4cm是底边时,腰长是(18﹣4)×=7(cm),4,7,7能够组成三角形.此时底边的长是4cm.故选:A.9.解:∵BD、CE是等边三角形ABC的中线,∴BD⊥AC,CE⊥AB,∠A=60°,∴∠AEF=∠ADF=90°,∵∠EFD=360°﹣90°﹣90°﹣∠A=180°﹣60°=120°.故答案为120°.10.解:∵AD为BC边上的高,∴∠ADB=90°,∵AD=BD,∴∠ABD=∠BAD=(180°﹣∠ADB)=45°,∵BE平分∠ABC,∴∠1=∠2=∠ABD=22.5°,BE⊥AC,∴∠BEA=90°=∠ADB,∵∠3+∠BEA+∠AHE=180°,∠2+∠ADB+∠BHD=180°,∠AHE=∠BHD,∴∠3=∠2=22.5°.故答案为:22.5°.11.解:∵A(8,0),∴OA=8,设△AOP的边OA上的高是h,则×8×h=16,解得:h=4,在x轴的两侧作直线a和直线b都和x轴平行,且到x轴的距离都等于4,如图:①以A为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,②以O为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,③作AO的垂直平分线分别交直线a、b于一点,即共2个点符合,4+4+1+1=10.故答案为:10.12.解:当80°是等腰三角形的顶角时,则顶角就是80°;当80°是等腰三角形的底角时,则顶角是180°﹣80°×2=20°.故答案为:80°或20.13.解:作DF⊥BC于F,∵BD是△ABC的角平分线,DE⊥AB,DF⊥BC,∴DF=DE,∴S△ABC=S△ABD+S△DBC=×AB×DE+×BC×DF==60,∴DF=DE=4.故答案为:4.14.解:∵∠C=80°,∠CBD=40°,∴∠CDB=180°﹣∠C﹣∠CBD=60°,∵线段AB的垂直平分线交AC于点D,∴DA=DB,∴∠A=∠DBA=∠CDB=30°,故答案为:30.15.解:∵AB=AC,D为BC的中点,∴∠CAD=∠BAD=20°,AD⊥BC,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==80°,∴∠CDE=∠ADC﹣∠ADE=90°﹣80°=10°.故答案为:10°.16.解:在Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是边AB的垂直平分线,∴EA=EB,∴△BEC的周长=BC+EC+BE=BC+EC+EA=BC+AC=16,故答案为:16.17.解:∵DE是线段AC的垂直平分线,∴EA=EC,∴∠EAC=∠C,∵AF平分∠BAC,∴∠BAF=∠CAF=∠FAE+∠CAE=20°+∠C,由三角形内角和定理得,∠B+∠BAC+∠C=180°,即50°+20°+∠C+20°+∠C+∠C=180°,解得,∠C=30°,故答案为:30.18.解:∵C、D两点在线段AB的中垂线上,∴CA=CB,DA=DB,∵CD⊥AB,∴∠ACD=∠ACB=×50°=25°,∠ADC=∠ADB=×86°=43°,当点C与点D在线段AB两侧时,∠CAD=180°﹣∠ACD﹣∠ADC=180°﹣25°﹣43°=112°,当点C与点D′在线段AB同侧时,∠CAD′=∠AD′C﹣∠ACD′=43°﹣25°=18°,故答案为:18°或112°.19.解:(1)∵∠ABC=25°,∠ACB=55°,∴∠BAC=180°﹣∠ABC﹣∠ACB=100°;(2)∵DE,FG分别为AB,AC的垂直平分线,∴DA=DB,FA=FC,∴∠DAB=∠ABC=25°,∠FAC=∠ACB=55°,∴∠DAF=∠BAC﹣∠DAB﹣∠FAC=20°;(3)△DAF的周长=DA+DF+FA=DB+DF+FC=BC=30.20.证明:(1)∵AB=AC,AF⊥BC,∴BF=CF,又∵CE⊥AB,∴CF=EF;(2)∵DE垂直平分AC,∴AE=EC,又∵∠AEC=90°,∴∠ACE=∠EAC=45°,∴∠B=∠ACB=67.5°,∵EF=CF=BF,∴∠BEF=∠FBE=67.5°,∴∠EFB=45°.21.(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠E+∠EDB=∠ABC=60°,∠ACD+∠DCB=60°,∠EDB=∠ACD,∴∠E=∠DCE,∴DE=DC,∴△DEC是等腰三角形;(2)解:设∠EDB=α,则∠BDC=5α,∴∠E=∠DCE=60°﹣α,∴6α+60°﹣α+60°﹣α=180°,∴α=15°,∴∠E=∠DCE=45°,∴∠EDC=90°,如图,过D作DH⊥CE于H,∵△DEC是等腰直角三角形,∴∠EDH=∠E=45°,∴EH=HC=DH=EC=8=4,∴△EDC的面积=EC•DH=8×4=16.22.证明:∵△CAP和△CBQ都是等边三角形,∴∠CAP=∠CBQ=60°,∵∠ACB=90°,∴∠BCP=∠ACB﹣∠ACP=30°,在△BCH中,∠BHC=180°﹣∠BCH﹣∠CBH=180°﹣30°﹣60°=90°,∴BQ⊥CP.23.解:(1)△APB是直角三角形,理由如下:∵AB=AC,∠B=30°,∴∠C=30°=∠B=∠APQ,∵PQ∥AC,∴∠BPQ=∠C,∴∠APB=60°,∴∠BAP=90°,∴△APB是直角三角形;(2)当AQ=QP时,∴∠QAP=∠APQ=30°,∴∠BQP=∠QAP+∠APQ=60°,当AP=PQ时,则∠AQP=∠PAQ=75°,∴∠BQP=105°,当AQ=AP时,则∠AQP=∠APQ=30°,∵P不与B、C重合,∴不存在,综上所述:∠BQP=105°或60°.24.证明:∵∠BAC=90°,∴∠ABC+∠C=90°,∵AM⊥BC,∴∠AMB=90°,∴∠ABC+∠BAM=90°,∴∠C=∠BAM,∵AD平分∠MAC,∴∠MAD=∠CAD,∴∠BAM+∠MAD=∠C+∠CAD,∵∠ADB=∠C+∠CAD,∴∠BAD=∠ADB,∴AB=BD,∵BE平分∠ABC,∴BF⊥AD,AF=FD,即线段BF垂直平分线段AD.25.解:(1)连接AE,∵EF垂直平分AB∴AE=BE∵BE=AC∴AE=AC∵D是EC的中点∴AD⊥BC(2)设∠B=x°∵AE=BE∴∠BAE=∠B=x°∴由三角形的外角的性质,∠AEC=2x°∵AE=AC∴∠C=∠AEC=2x°在三角形ABC中,3x°+75°=180°x°=35°∴∠B=35°26.证明:(1)∵AB=AD,∴∠ABC=∠ADB,∵AD=CD,∴∠DAC=∠C,∵∠ADB=∠DAC+∠C=2∠C,∴∠ABC=2∠C;(2)∵AD平分∠BAC,∴∠DAB=∠CAD,∵BE∥AD,∴∠DAB=∠ABE,∠E=∠CAD,∴∠ABE=∠E,∴AE=AB.。
北师大版八年级数学下册《第1章 三角形的证明》单元综合训练(附答案)
北师大版八年级数学下册《第1章三角形的证明》单元综合训练(附答案)1.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A.1B.2C.5D.无法确定2.如图,已知∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于点C,EG⊥OA于点G,若EC =3,则OF长度是()A.3B.4C.5D.63.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC 的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm4.如图,在△ABC中,AC=BC,点D在AC边上,点E在CB的延长线上,DE与AB相交于点F,若∠C=50°,∠E=25°,则∠BFD的度数为()A.100°B.120°C.140°D.150°5.已知在平面直角坐标系xOy中,O(0,0),A(4,3)点B在x轴或y轴上移动,若O、A、B三点可构成等腰三角形,则符合条件的B点有()A.9个B.8个C.7个D.6个6.如图,△ABC中,AD⊥BC交BC于D,AE平分∠BAC交BC于E,F为BC的延长线上一点,FG⊥AE交AD的延长线于G,AC的延长线交FG于H,连接BG,下列结论:①∠DAE=∠F;②∠DAE=(∠ABD﹣∠ACE);③S△AEB:S△AEC=AB:AC;④∠AGH=∠BAE+∠ACB,其中正确的结论有()个.A.1B.2C.3D.47.如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=6,D是线段AB上一个动点,以BD为边在△ABC外作等边△BDE.若F是DE的中点,则CF的最小值为()A.6B.8C.9D.108.如图,给定由10个点(任意相邻两点距离为1)组成的正三角形点阵,在其中任意取三个点,以这三个点为顶点构成的正三角形的个数是()A.12B.13C.15D.179.如图,△ABC是等边三角形,P是三角形内任意一点,D、E、F分别是AC、AB、BC边上的三点,且PF∥AB,PD∥BC,PE∥AC.若PF+PD+PE=a,则△ABC的边长为()A.a B.a C.a D.a10.一副三角板如图摆放,点F是45°角三角板ABC的斜边的中点,AC=4.当30°角三角板DEF的直角顶点绕着点F旋转时,直角边DF,EF分别与AC,BC相交于点M,N.在旋转过程中有以下结论:①MF=NF:②四边形CMFN有可能为正方形;③MN长度的最小值为2;④四边形CMFN的面积保持不变;⑤△CMN面积的最大值为2.其中正确的个数是()A.2B.3C.4D.511.如图,在△ABC中,∠B=30°,∠C=45°,AE⊥BC于点E,AB的垂直平分线交BC 于点D,交AB于点F,若BD=6,则CE的长为()A.2B.2C.3D.312.如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q从A点出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP=,△ABC与△APQ全等.13.如图,BE和CE分别为△ABC的内角∠ABC和外角∠ACD的平分线,BE⊥AC于点H,CF平分∠ACB交BE于点F,连接AE,则下列结论:①∠ECF=90°;②AE=CE;③∠BFC=90°+∠BAC;④∠BAC=2∠BEC;⑤∠AEH=∠BCF,正确的为.14.如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线分别交AC和AB于点D 和E,那么∠DBC=度.15.已知等腰三角形的两边长分别为x和y,且x和y满足|x﹣3|+(y﹣1)2=0,则这个等腰三角形的周长为.16.在△ABC中,∠B=50°,当∠A为时,△ABC是等腰三角形.17.如图,已知P、Q是△ABC的边BC上的两点,且BP=QC=PQ=AP=AQ,则∠BAC =.18.如图,直线l∥m,等边△ABC的顶点B在直线m上,边BC与直线m所夹锐角为20°,则∠1的度数为.19.已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,则此三角形的形状为.20.如图,六边形ABCDEF的六个内角都等于120°,若AB=BC=CD=3cm,DE=2cm,则这个六边形的周长等于cm.21.∠α=24°24'=°,若∠α是一个直角三角形的其中一个锐角,则另一个锐角是°.22.如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.23.如图,BD、CD分别平分∠ABC、∠ACB,过点D作直线分别交AB、AC于点E、F,若AE=AF,BE=4,CF=2,回答下列问题:(1)证明:ED=FD;(2)试找出∠BDC与∠A的数量关系,并说明理由;(3)求EF的长.24.如图△ABC中,AB,AC的垂直平分线分别交BC于D,E,垂足分别是M,N.(1)若BC=10,求△ADE的周长.(2)若∠BAC=100°,求∠DAE的度数.25.如图,△ABC中,AB=AC,DE垂直平分AC,若∠A=30°,求∠BCD的度数.26.如图,已知在△ABC中,AC=BC=AD,∠CDE=∠B,求证:△CDE是等腰三角形.27.如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF,求证:(1)EF⊥AB;(2)△ACF为等腰三角形.28.如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60°.29.如图,已知∠AOB=60°,点P在边OA上,点M、N在边OB上.(1)若∠PNO=60°,证明△PON是等边三角形;(2)若PM=PN,OP=12,MN=2,求OM的长度.30.如图,等边△ABC中,点D在延长线上,CE平分∠ACD,且CE=BD.说明:△ADE是等边三角形.31.如图1,直线PQ⊥直线MN,垂足为O,△AOB是直角三角形,∠AOB=90°,斜边AB与直线PQ交于点C.(1)若∠A=∠AOC=30°,则BC BO(填“>”“=”“<”);(2)如图2,延长AB交直线MN于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠AEO =α,求∠AOE的度数(用含α的代数式表示);(3)如图3,OF平分∠AOM,∠BCO的平分线交FO的延长线于点R,∠A=36°,当△AOB绕O点旋转时(斜边AB与直线PQ始终相交于点C),问∠R的度数是否发生改变?若不变,求其度数;若改变,请说明理由.参考答案1.解:过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,∵∠EDF+∠FDC=90°,∠GDC+∠FDC=90°,∴∠EDF=∠GDC,于是在Rt△EDF和Rt△CDG中,,∴△DEF≌△DCG,∴EF=CG=BC﹣BG=BC﹣AD=3﹣2=1,所以,S△ADE=(AD×EF)÷2=(2×1)÷2=1.故选:A.2.解:∵∠AOE=∠BOE=15°,EC⊥OB于点C,EG⊥OA于点G,∴CE=EG=3,∵EF∥OB,∴∠COE=∠OEF=15°∴∠EFG=15°+15°=30°,∠EOF=∠OEF,∴OF=EF=2EG=2×3=6.故选:D.3.解:∵DG是AB的垂直平分线,∴GA=GB,∵△AGC的周长为31cm,∴AG+GC+AC=BC+AC=31cm,又AB=20cm,∴△ABC的周长=AB+AC+BC=51cm,故选:C.4.解:∵△ABC中,AC=BC,∠C=50°,∴∠ABC=(180°﹣50°)=65°,∵∠ABC是△BEF的外角,∴∠BFE=∠ABC﹣∠E=65°﹣25°=40°,∴∠BFD=180°﹣40°=140°,故选:C.5.解:分三种情况说明:①以点O为圆心,OA长为半径画圆,与x轴、y轴有4个交点,这4个交点分别与点O、A构成4个等腰三角形;②以点A为圆心,OA长为半径交x轴和y轴的正半轴有2个点,这2个交点分别与点O、A构成2个等腰三角形;③作OA的垂直平分线交x轴和y轴的正半轴有2个点,这2个交点分别与点O、A构成2个等腰三角形;综上所述:符合条件的B点有:4+2+2=8(个).故选:B.6.解:如图,AE交GF于M,①∵AD⊥BC,FG⊥AE,∴∠ADE=∠AMF=90°,∵∠AED=∠MEF,∴∠DAE=∠F;故①正确;②∵AE平分∠BAC交BC于E,∴∠EAC=,∠DAE=90°﹣∠AED,=90°﹣(∠ACE+∠EAC),=90°﹣(∠ACE+),=(180°﹣2∠ACE﹣∠BAC),=(∠ABD﹣∠ACE),故②正确;③∵AE平分∠BAC交BC于E,∴点E到AB和AC的距离相等,∴S△AEB:S△AEC=AB:CA;故③正确,④∵∠DAE=∠F,∠FDG=∠FME=90°,∴∠AGH=∠MEF,∵∠MEF=∠CAE+∠ACB,∴∠AGH=∠CAE+∠ACB,∴∠AGH=∠BAE+∠ACB;故④正确;故选:D.7.解:如图所示,连接BF,∵等边△BDE中,F是DE的中点,∴BF⊥DE,BF平分∠DBE,∴∠DBF=30°,即点F在∠DBE的角平分线上运动,∴当点D在CF上时,∠CFB=90°,根据垂线段最短可知,此时CF最短,又∵∠ABC=30°,∴∠CBF=60°,∵Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=6,∴BC=AC=6,∴Rt△BCF中,CF=BC×sin∠CBF=×=9,故选:C.8.解:如图所示,边长为1的正三角形共有1+3+5=9个,边长为2的正三角形共有3个,边长为3的正三角形共有1个,边长为的正三角形有2个,红颜色和蓝颜色的两个三角形,综上可知:共有9+3+1+2=15个,故选:C.9.解:延长EP交BC于点G,延长FP交AC于点H,如图所示:∵PF∥AB,PD∥BC,PE∥AC,∴四边形AEPH、四边形PDCG均为平行四边形,∴PE=AH,PG=CD.又∵△ABC为等边三角形,∴△FGP和△HPD也是等边三角形,∴PF=PG=CD,PD=DH,∴PE+PD+PF=AH+DH+CD=AC,∴AC=a;故选:D.10.解:①连接CF,∵F为AB中点,AC=BC,∠ACB=90°,∴AF=BF=CF,CF⊥AB,∴∠AFM+∠CFM=90°.∵∠DFE=90°,∠CFM+∠CFN=90°,∴∠AFM=∠CFN.同理,∵∠A+∠MCF=90°,∠MCF+∠FCN=90°,∴∠A=∠FCN,在△AMF与△CNF中,∵,∴△AMF≌△CNF(ASA),∴MF=NF.故①正确;②当MF⊥AC时,四边形MFNC是矩形,此时MA=MF=MC,根据邻边相等的矩形是正方形可知②正确;③连接MN,当M为AC的中点时,CM=CN,根据边长为4知CM=CN=2,此时MN最小,最小值为2,故③错误;④当M、N分别为AC、BC中点时,四边形CDFE是正方形.∵△ADF≌△CEF,∴S△CEF=S△AMF∴S四边形CDFE=S△AFC.故④正确;⑤由于△MNF是等腰直角三角形,因此当DM最小时,DN也最小;即当DF⊥AC时,DM最小,此时DN=BC=2.∴DN=DN=2 ;当△CEF面积最大时,此时△DEF的面积最小.此时S△CMN=S四边形CFMN﹣S△FMN=S△AFC﹣S△DEF=4﹣2=2,故⑤正确.故选:C.11.解:连接AD,如图:∵AB的垂直平分线交BC于点D,∴AD=BD=6,∵在△ABC中,∠B=30°,∴∠BAD=∠B=30°,∴∠ADE=∠B+∠BAD=60°.∵AE⊥BC于点E,∴∠AED=90°,∴∠DAE=30°,∴DE=AD=3,∴AE==3,∵∠C=45°,∴△AEC为等腰直角三角形,∴EC=AE=3,故选:D.12.解:∵AX⊥AC,∴∠P AQ=90°,∴∠C=∠P AQ=90°,分两种情况:①当AP=BC=5时,在Rt△ABC和Rt△QP A中,,∴Rt△ABC≌Rt△QP A(HL);②当AP=CA=10时,在△ABC和△PQA中,,∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=5或10时,△ABC与△APQ全等;故答案为:5或10.13.解:∵CF平分∠ACB,CE平分∠ACD,∴∠ACF=∠ACB,∠ACE=∠ACD,∴∠ECF=∠ACF+∠ACE=(∠ACB+∠ACD)=90°,故①正确;∵BE平分∠ABC,BE⊥AC,∴∠ABE=∠CBE,∠BHA=∠BHC=90°,∴∠BAH+∠ABE=90°,∠ACB+∠EBC=90°,∴∠BAC=∠BCA,∴AB=BC,∵BE⊥AC,∴AH=CH,∴EA=EC,故②正确;∵∠BFC=180°﹣(∠FBC+∠FCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠BAC)=90°+∠BAC,故③正确;设∠ACE=∠ECD=x,∠ABE=∠EBC=y,则有,可得∠BAC=2∠BEC,故④正确,∵EA=EC,BE⊥AC,∴∠AEB=∠BEC,∵∠FCH+∠ACE=90°,∠ACE+∠BEC=90°,∴∠FCH=∠BEC=∠AEB,∵∠ACF=∠BCF,∴∠AEH=∠BCF,故⑤正确.故答案为:①②③④⑤.14.解:∵AB=AC,∠A=50°,∴∠ABC=∠C=65°,∵DE是AB的垂直平分线,∴DA=DB,∴∠ABD=∠A=50°,∴∠DBC=∠ABC﹣∠ABD=15°.故答案为:15.15.解:∵|x﹣3|+(y﹣1)2=0,∴x=3,y=1.当腰长为3时,三边长为3、3、1,周长=3+3+1=7;当腰长为1时,三边长为3、1、1,1+1<3,不能组成三角形.故答案为:7.16.解:①∠B是顶角,∠A=(180°﹣∠B)÷2=65°;②∠B是底角,∠B=∠A=50°.③∠A是顶角,∠B=∠C=50°,则∠A=180°﹣50°×2=80°,∴当∠A的度数为50°或65°或80°时,△ABC是等腰三角形.故答案为:50°或65°或80°.17.解:∵BP=QC=PQ=AP=AQ,∴△APQ为等边三角形,△ABP为等腰三角形,△AQC为等腰三角形,∴∠P AQ=∠APQ=∠AQP=60°,在△ABP和△CAQ中,∴△ABP≌△ACQ,∴∠QAC=∠B=∠APQ=30°,同理:∠BAP=30°,∠BAC=∠BAP+∠P AQ+∠QAC=30°+60°+30°=120°.故答案为:120°18.解:如图所示,过点C作直线n∥m,在直线m上取一点D,∵直线l∥m,∴l∥m∥n,∴∠1=∠2,∠3=∠CBD=20°,∵△ABC为等边三角形,∴∠ACB=60°,∴∠2+∠3=60°,∴∠2=60°﹣∠3=60°﹣20°=40°,∴∠1=40°.故答案为:40°.19.解:由已知条件a2+2b2+c2﹣2b(a+c)=0化简得,(a﹣b)2+(b﹣c)2=0∴a﹣b=0,b﹣c=0即a=b,b=c∴a=b=c故答案为等边三角形.20.解:分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P,如图所示:∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°,∴△APF、△BGC、△DHE、△GHP都是等边三角形,∴GC=BC=3cm,DH=DE=EH=2cm,∴GH=3+3+2=8(cm),F A=P A=PG﹣AB﹣BG=8﹣3﹣3=2(cm),EF=PH﹣PF﹣EH=8﹣2﹣2=4(cm).∴六边形的周长为2+3+3+3+2+4=17(cm);故答案为:17.21.解:∠α=24°24'=24.4°,90°﹣24.4°=65.6°,故答案为24.4°,65.6°.22.证明:(1)在△ABC和△DCB中,∠A=∠D=90°AC=BD,BC为公共边,∴Rt△ABC≌Rt△DCB(HL);(2)△OBC是等腰三角形∵Rt△ABC≌Rt△DCB∴∠ACB=∠DCB∴OB=OC∴△OBC是等腰三角形23.(1)证明:过D点分别作DG⊥BC,DK⊥AB,DH⊥AC,垂足分别为G,K,H,如图,∴∠EKD=∠FHD=90°,∵BD平分∠ABC,CD平分∠ACB,∴DK=DG=DH,在△EKD和△FHD中,,∵AE=AF∴∠AEF=∠AFE,∴△EKD≌△FHD(AAS),∴ED=FD;(2)解:∠BDC=90°+∠A.理由如下:∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB),∵∠BDC+∠DBC+∠DCB=180°,∴∠BDC+(∠ABC+∠ACB)=180°,∵∠A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°﹣∠A,∴∠BDC+(180°﹣∠A)=180°,∴∠BDC=90°+∠A;(3)解:如图,∵BD,CD分别平分∠ABC,∠ACB,∴∠1=∠2,∠3=∠4,∵∠2+∠7+∠4=180°,∠5+∠6+∠7=180°,∴∠2+∠4=∠5+∠6,即∠1+∠3=∠5+∠6,∵∠AEF=∠AFE,∴∠1+∠5=∠3+∠6,∴∠5=∠3,∠1=∠6,∴△BED∽△CED,∴ED:CF=BE:DF,∵DE=DF,则ED2=CF⋅BE=2×4=8,则ED=,∴EF=2ED=.24.解:(1)∵AB、AC的垂直平分线分别交BC于D、E,垂足分别是M、N,∴AD=BD,AE=CE,∴△ADE的周长=AD+DE+AE=BD+DE+CE=BC=10.(2)∵∠BAC=100°,∴∠B+∠C=180°﹣∠BAC=80°,∵AD=BD,AE=CE,∴∠BAD=∠B,∠CAE=∠C,∴∠BAD+∠CAE=80°,∴∠DAE=∠BAC﹣(∠BAD+∠CAE)=100°﹣80°=20°.25.解:∵DE垂直平分AC,∴DA=DC,∴∠DCA=∠A=30°,∵AB=AC,∴∠B=∠ACB,∵∠A+∠B+∠ACB=180°,∴∠ACB=(180°﹣30°)÷2=150°÷2=75°,∴∠BCD=∠ACB﹣∠DCA=75°﹣30°=45°.∴∠BCD的度数为45°.26.证明:∵∠ADE+∠CDE+∠BDC=180°,∠BCD+∠B+∠BDC=180°,∠CDE=∠B,∴∠ADE=∠BCD,∵AC=BC,∴∠A=∠B,在△ADE和△BCD中,,∴△ADE≌△BCD(ASA),∴DE=CD,∴△CDE是等腰三角形.27.证明:(1)∵AB=AC,∠BAC=36°,∴∠ABC=72°,又∵BD是∠ABC的平分线,∴∠ABD=36°,∴∠BAD=∠ABD,∴AD=BD,又∵E是AB的中点,∴DE⊥AB,即FE⊥AB;(2)∵FE⊥AB,AE=BE,∴FE垂直平分AB,∴AF=BF,∴∠BAF=∠ABF,又∵∠ABD=∠BAD,∴∠F AD=∠FBD=36°,又∵∠ACB=72°,∴∠AFC=∠ACB﹣∠CAF=36°,∴∠CAF=∠AFC=36°,∴AC=CF,即△ACF为等腰三角形.28.证明:∵BM=CN,BC=AC,∴CM=AN,又∵AB=AC,∠BAN=∠ACM,∴△AMC≌△BNA,则∠BNA=∠AMC,∵∠MAN+∠ANB+∠AQN=180°∠MAN+∠AMC+∠ACB=180°,∴∠AQN=∠ACB,∵∠BQM=∠AQN,∴∠BQM=∠AQN=∠ACB=60°.29.解:(1)∵∠AOB=60°,∠PNO=60°,∴∠OPN=60°,∴∠PON=∠PNO=∠OPN,∴△PON是等边三角形;(2)作PH⊥MN于H,如图,∵PM=PN,∴MH=NH=MN=1,在Rt△POH中,∵∠POH=60°,∴∠OPH=30°,∴OH=OP=×12=6,∴OM=OH﹣MH=6﹣1=5.30.证明:∵△ABC为等边三角形,∴∠B=∠ACB=60°,AB=AC,即∠ACD=120°,∵CE平分∠ACD,∴∠ACE=∠DCE=60°,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∵∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形.31.解:(1)∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°,∵∠A=∠AOC=30°,∴∠B=∠BOC=60°∴△BOC是等边三角形,∴BC=BO故答案为:=;(2)∵OD⊥AB,∠AEO=α,∴∠DOE=90°﹣α,∵∠DOB=∠BOE,∴∠BOE==(90°﹣α)=45°﹣α,∴∠AOE=∠AOB+∠BOE=90°+45°﹣=135°﹣;(3)∠R的度数不变,∠R=27°.理由如下:设∠AOM=β,则∠AOC=90°﹣β,∵OF平分∠AOM,∴∠FOM=∠RON=,∴∠COR=∠CON+∠RON=90°+,∵∠OCB=∠A+∠AOC=36°+90°﹣β=126°﹣β,∵CR平分∠BCO,∴∠OCR==63°﹣,∴∠R=180°﹣(∠OCR+∠COR)=180°﹣63°+﹣90°﹣=27°,∴∠R的度数不变,∠R=27°。
北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷(含答案)
北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷一.选择题(共8小题,满分24分)1.如图,△ABC是等边三角形,DE∥BC,若AB=10,BD=6,则△ADE的周长为()A.4B.30C.18D.122.已知实数a,b满足|a﹣2|+(b﹣4)2=0,则以a,b的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对3.如图,在△ABC中,∠ACB=90°,∠A=30°,CE=2,边AB的垂直平分线交AB于点D,交AC于点E,那么AE的为()A.6B.4C.3D.24.如图,OP平分∠MON,P A⊥ON,PB⊥OM,垂足分别为A、B,若P A=3,则PB=()A.2B.3C.1.5D.2.55.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN=()A.58°B.32°C.36°D.34°6.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:,则△ABC是直角三角形7.如图,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC,当用反证法证明时,第一步应假设()A.AB≠AC B.PB=PC C.∠APB=∠APC D.∠B≠∠C8.如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根B.8根C.9根D.10根二.填空题(共8小题,满分24分)9.在Rt△ABC中,∠B=90°,∠A=30°,AB=3,则AC=.10.如图,已知△ABC中,BC=4,AB的垂直平分线交AC于点D,若AC=6,则△BCD 的周长=.11.如图,小艾同学坐在秋千上,秋千旋转了80°,小艾同学的位置也从A点运动到了A'点,则∠OAA'的度数为.12.如图,Rt△ABC中,∠C=90°,AB=10,AD平分∠BAC,交BC于点D,CD=4,则S△ABD=.13.如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的平分线,过点O作EF∥BC,分别与边AB、AC相交于点E、F,AB=8,AC=7,那么△AEF的周长等于.14.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE ⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.15.如图,△ABC是等边三角形,过它的三个顶点分别作对边的平行线,则图中共有个等边三角形.16.如图,△ABC是边长为8的等边三角形,D为AC的中点,延长BC到E,使CE=CD,DF⊥BC于点F,求线段BF的长,BF=.三.解答题(共7小题,满分52分)17.用反证法证明等腰三角形的底角必为锐角.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.19.如图:△ABC中,∠ACB=90°,点D在AB上,CE是斜边AB上的高,且AC=AD.(1)若∠DCE=15°,求∠B的度数;(2)若∠B﹣∠A=20°,求∠DCB的度数.20.如图,在△ABC中,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于点E.(1)若∠ABE=50°,求∠EBC的度数;(2)若△ABC的周长为43cm,BC的长为11cm,求△BCE的周长21.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知∠EDB=∠ACD.(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,BD=2时,求EB的长.22.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒时,M、N两点重合?(2)点M、N运动几秒时,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.参考答案一.选择题(共8小题)1.【解答】解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=10,BD=6,∴AD=AB﹣BD=10﹣6=4,∴△ADE的周长为12.故选:D.2.【解答】解:根据题意得a﹣2=0,b﹣4=0,解得a=2,b=4,①a=2是底长时,三角形的三边分别为4、4、2,∵4、4、2能组成三角形,∴三角形的周长为10,②a=2是腰边时,三角形的三边分别为4、2、2,2+2=4,不能组成三角形.综上所述,三角形的周长是10.故选:A.3.【解答】解:连接BE,∵DE是边AB的垂直平分线,∴BE=AE,∴∠EBA=∠A=30°,∴∠CBE=180°﹣90°﹣30°﹣30°=30°,∴BE=2CE=4,∴AE=BE=4,故选:B.4.【解答】解:∵OP平分∠MON,P A⊥ON,PB⊥OM,∴PB=P A=3,故选:B.5.【解答】解:∵△ABC中,∠BAC=106°,∴∠B+∠C=180°﹣∠BAC=180°﹣106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=106°﹣74°=32°.故选:B.6.【解答】解:A、∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A≈98°,错误不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=75°,错误不符合题意;C、如果a:b:c=1:2:2,12+22≠22,不是直角三角形,错误不符合题意;D、如果a:b;c=3:4:,,则△ABC是直角三角形,正确;故选:D.7.【解答】解:假设结论PB≠PC不成立,即:PB=PC成立.故选:B.8.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠EDF=∠EFD=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.二.填空题(共8小题)9.【解答】解:如图,∵∠B=90°,∠A=30°,∴设BC=x,则AC=2BC=2x,∵AB=3,∴x2+32=(2x)2解得:x=或﹣(舍去),∴AC=2x=2,故答案为:2.10.【解答】解:∵DE是线段AB的垂直平分线,∴DA=DB,∴△BCD的周长=BC+CD+DB=BC+CD+DA=BC+AC=10,故答案为:10.11.【解答】解:∵秋千旋转了80°,小林的位置也从A点运动到了A'点,∴AOA′=80°,OA=OA′,∴∠OAA'=(180°﹣80°)=50°.故答案为50°.12.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=4,∴S△ABD=AB•DE=×10×4=20,故答案为20.13.【解答】解:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴EO=EB,FO=FC,∵AB=8cm,AC=7cm,∴△AEF的周长为:AE+EF+AF=AE+EO+FO+AF=AE+EB+FC+AF=AB+AC=8+7=15(cm).故△AEF的周长为15,故答案为:15.14.【解答】解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.15.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠BCA=∠CAB=60°,∵DF∥BC,∴∠F AC=∠ACB=60°,∠DAB=∠ABC=60°,同理:∠ACF=∠BAC=60°在△AFC中,∠F AC=∠ACF=60°∴△AFC是等边三角形,同理可证:△ABD△BCE都是等边三角形,因此∠E=∠F=∠D=60°,△DEF是等边三角形,故有5个等边三角形,故答案为:5.16.【解答】解:连接BD,∵△ABC是边长为8的等边三角形,D为AC的中点,∴AC=BC=8,AD=DC=4,∠DBF=ABC==30°,由勾股定理得:BD==4,∵DF⊥BC,∴∠DFB=90°,∴DF=BD==2,在Rt△DFB中,由勾股定理得:BF===6,故答案为:6.三.解答题(共7小题)17.【解答】证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.②设等腰三角形的底角∠B,∠C都是钝角,则∠B+∠C>180°,而∠A+∠B+∠C>180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角18.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.19.【解答】解:(1)∵CE⊥AB,∴∠CED=90°,∵∠ECD=15°,∴∠ADC=75°,∵AC=AD,∴∠ACD=∠ADC=75°,∵∠ACD=90°,∴∠DCB=15°,∵∠ADC=∠B+∠DCB,∴∠B=75°﹣15°=60°.(2)设∠DCB=x,则∠ADC=∠ACD=∠B+x=90°﹣x,∴2x=90°﹣∠B,∵∠A+∠B=90°,∠B﹣∠A=20°,∴∠B=55°,∴2x=35°,∴x=17.5°,∴∠DCB=17.5°20.【解答】解:(1)∵DE垂直平分AB∴∠A=∠ABE=50°,又∵AB=AC,∴∠ABC=∠ACB,而∠A+∠ABC+∠ACB=180°,∴∠ABC=×(180°﹣50°)=65°,∴∠EBC=∠ABC﹣∠ABE=65°﹣50°=15°;(2)∵△ABC的周长为43cm,BC=11cm∴AB=AC=16cm,又∵DE垂直平分AB∴EA=EB,∴△BCE的周长为:BC+BE+CE=BC+AE+CE=BC+AC=16+11=27cm.21.【解答】(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠E+∠EDB=∠ABC=60°,∠ACD+∠DCB=60°,∠EDB=∠ACD,∴∠E=∠DCE,∴△DEC是等腰三角形;(2)解:设∠EDB=α,则∠BDC=5α,∴∠E=∠DCE=60°﹣α,∴6α+60°﹣α+60°﹣α=180°,∴α=15°,∴∠E=∠DCE=45°,∴∠EDC=90°,过D作DH⊥CE于H,∵BD=2,∠DBH=60°,∴BH=BD=1,DH==,DH=EH=,∴BE=EH﹣BH=﹣1.22.【解答】解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=∠ACB=22.5°,∴∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=45°,(2)如图2,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=30°,∵BA=BD,∴∠BAD=∠BDA=75°,∴∠DAC=45°,∵CA=CE,∴∠E=∠CAE=15°,∴∠DAE=∠DAC+∠CAE=60°;(3)∠DAE=∠BAC,理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x∴∠DAE=∠BAC.23.【解答】解:(1)设点M、N运动x秒时,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒时,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒时,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。
北师大版数学八年级下册 第一章 三角形的证明 单元测试卷(含答案)
第一章三角形的证明单元测试卷一、选择题(每题3分,共30分)1.下列各组数中能作为直角三角形的三边长的是()A.2,2,3 B.6,8,10C.5,2,2 D.1.5,2.5,3.52.如图,直线AD垂直平分线段BC,∠B=50°,则∠C的度数为() A.60°B.50°C.40°D.30°(第2题) (第5题)(第6题)3.已知在Rt△ABC中,∠C为直角,∠B是∠A的2倍,则∠A的度数是() A.30°B.50°C.70°D.90°4.用反证法证明“一个三角形的三个内角分别是∠1,∠2,∠3,如果∠2+∠3<90°,那么∠1>90°.”时,应先假设()A.∠1≠90° B.∠1=90°C.∠1<90°D.∠1≤90°5.如图,已知AB⊥BD,CD⊥BD,若用“HL”判定Rt△ABD和Rt△CDB全等,则需要添加的条件是()A.AD=CB B.∠A=∠CC.BD=DC D.AB=CD6.某地兴建的幸福小区的三个出口A,B,C的位置如图所示,物业公司想在小区内修建一个电动车充电桩,以方便业主,要求到三个出口的距离都相等,则充电桩应该在△ABC()A.三条高线的交点处B.三条中线的交点处C.三个角的平分线的交点处D.三条边的垂直平分线的交点处7.如图,点B 在AC 上,AB =5,BC =3,△BCD 是等边三角形,则AD 的长为( )A .3B .4C .5D .7(第7题) (第9题)8.已知等腰三角形的两边长分别为x ,y ,且满足|2x -y +1|+(x +y -13)2=0,则该等腰三角形的周长为( ) A .22或26B .17C .17或22D .229.如图,在△ABC 中,∠A =90°,∠C =30°,∠ABC 的平分线与线段AC 相交于点D ,若AD =4,则CD 的长为( ) A .10B .8C .6D .410.如图,正方形ABCD 的边长为1,其面积为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S 2,…,按此规律继续下去,则S 100的值为( )A.⎝ ⎛⎭⎪⎫2299B.⎝ ⎛⎭⎪⎫22100C.⎝ ⎛⎭⎪⎫1299 D.⎝ ⎛⎭⎪⎫12100 二、填空题(每题3分,共15分)11.命题“等腰三角形有两个角相等”的逆命题是______(填“真”或“假”)命题. 12.如图,BD 是等边三角形ABC 的角平分线,AB =10,则AD =______. 13.若△ABC 的三边长分别为a ,b ,c ,则下列条件中能判定△ABC 是直角三角形的有________个.①∠A =∠B -∠C ;②∠A ∶∠B ∶∠C =3∶4∶5;③a 2=(b +c )(b -c );④a ∶b ∶c =5∶12∶13.(第12题)(第14题)14.如图,S△ABC=21,∠BAC的平分线AD交BC于点D,点E为AD的中点.连=2,则AB AC 接BE,点F为BE上一点,且BF=2EF,连接DF.若S△DEF=________.15.如图,在平面直角坐标系中有点A(0,3)和B(4,0),点M(8,m)为坐标平面内一动点,且△ABM为等腰三角形,则点M的坐标为________________.三、解答题(一)(每题8分,共24分)16.用一条长为40 cm的细绳围成一个一边长为12 cm的等腰三角形,求这个三角形的三边长.17.如图,在△ABC中,AE=5,BE=13,AC=12,DE是BC的垂直平分线,求证:△ABC为直角三角形.318.如图,在△ABC中,∠C=90°.(1)作∠ABC的平分线交AC于点D(尺规作图,保留作图痕迹,标注有关字母,不用写作法和证明);(2)若CD=3,AB+BC=16,求△ABC的面积.四、解答题(二)(每题9分,共27分)19.在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于点D,CE⊥DE于点E.(1)如图①,若点B,C在DE的同侧,AD=CE,求证:AB⊥AC.(2)如图②,若点B,C在DE的两侧,AD=CE,AB与AC仍垂直吗?若垂直,请给出证明;若不垂直,请说明理由.520.如图,在△ABC中,AB=AC,∠BAC=40°,AD是BC边上的高.线段AC 的垂直平分线交AD于点E,交AC于点F,连接BE.(1)填空:∠BAD的度数为__________;∠ABC的度数为______;∠ACB的度数为________.(2)线段AE与BE的长相等吗?请说明理由;(3)求∠EBD的度数.21.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC,交AB于点E,交AC于点F.(1)求证:点E在OB的垂直平分线上;(2)过点O作OH⊥BC于点H,连接OA,当∠BAC=60°时,试探究OH与OA的数量关系,并说明理由.五、解答题(三)(每题12分,共24分)22.如图,在△ABC中,AC=BC,点F为AB的中点,连接CF.边AC的垂直平分线交AC,CF,CB于点D,O,E,连接OA,OB.(1)求证:△OBC为等腰三角形;(2)若∠ACF=23°,求∠BOE的度数;(3)若AB=10,CF=25,求线段OA的长.23.如图①,用两条线段(虚线),将一个顶角为36°的等腰三角形分成了三个小等腰三角形,并标出了三个小等腰三角形顶角的度数.(1)请你仿照图①的方法,在图②中,用两种不同的方法将顶角为45°的等腰三角形分成三个小等腰三角形;(2)在△ABC中,∠B=30°,请用线段AD和DE(点D在BC边上,点E在AC边上)将△ABC分成三个小等腰三角形,且AD=BD,DE=CE.试仿照图①,在备用图中画出示意图,并求出∠C的所有可能度数.7答案一、1.B 2.B 3.A 4.D 5.A 6.D 7.D 8.D 9.B10.C 点拨:由题意易得规律为S 1=12=1,S 2=12S 1=12,S 3=12S 2=14,S 4=12S 3=18,…,∴S n =⎝ ⎛⎭⎪⎫12 n -1,∴S 100=⎝ ⎛⎭⎪⎫12 99.故选C.二、11.真 12.5 13.3 14.4315.(8,3)或⎝ ⎛⎭⎪⎫8,192 点拨:由题意得OA =3,OB =4,∴AB =32+42=5.△ABM 为等腰三角形,可分三种情况:①当BM =AB 时,如图①,(8-4)2+m 2=5,∴m =3或m =-3(A ,B ,M 三点共线,舍去),∴M (8,3);②当AM =BM 时,如图②,82+(m -3)2=(8-4)2+m 2,∴m =192,∴M ⎝ ⎛⎭⎪⎫8,192;③当AM =AB 时,易知不符题意.故答案为(8,3)或⎝ ⎛⎭⎪⎫8,192.三、16.解:当12 cm 为等腰三角形的腰长时,则底边长为40-12×2=16(cm), 此时三角形的三边长分别为12 cm ,12 cm ,16 cm ;当12 cm 为等腰三角形的底边长时,则腰长为40-122=14(cm),此时三角形的三边长分别为14 cm ,14 cm ,12 cm.综上,这个三角形的三边长分别为12 cm ,12 cm ,16 cm 或14 cm ,14 cm ,12 cm.17.证明:如图,连接CE .∵DE 是BC 的垂直平分线,∴EC =BE =13.在△AEC 中,AE =5,EC =13,AC =12, ∵AC 2+AE 2=122+52=169,EC 2=132=169,9 ∴AC 2+AE 2=EC 2,∴△AEC 是直角三角形, ∠A =90°,∴△ABC 是直角三角形.18.解:(1)∠ABC 的平分线如图所示.(2)如图,作DH ⊥AB 于点H .∵BD 平分∠ABC ,DC ⊥BC ,DH ⊥AB ,∴CD =DH =3,∴△ABC 的面积=S △BCD +S ABD =12BC ·CD +12AB ·DH =12×3BC +12×3AB =12×3(BC +AB )=12×3×16=24.四、19.(1)证明:∵BD ⊥DE ,CE ⊥DE ,∴∠ADB =∠AEC =90°.在Rt △ABD 和Rt △CAE 中,∵AB =CA ,AD =CE , ∴Rt △ABD ≌Rt △CAE (HL),∴∠DBA =∠EAC . ∵∠DAB +∠DBA =90°,∴∠DAB +∠EAC =90°, ∴∠BAC =180°-(∠DAB +∠EAC )=180°-90°=90°, ∴AB ⊥AC .(2)解:AB 与AC 仍垂直.证明如下:同(1)可证得Rt △ABD ≌Rt △CAE ,∴∠DAB =∠ECA . ∵∠CAE +∠ECA =90°,∴∠CAE +∠BAD =90°,即∠BAC =90°,∴AB ⊥AC . 20.解:(1)20°;70°;70°(2)线段AE 与BE 的长相等,理由如下:如图,连接CE,∵AB=AC,AD是BC边上的高,∴BD=CD,∴BE=CE.∵EF是线段AC的垂直平分线,∴AE=CE,∴AE=BE.(3)∵AE=BE,∴∠ABE=∠BAD=20°,∴∠EBD=∠ABC-∠ABE=70°-20°=50°.21.(1)证明:∵BO平分∠ABC,∴∠CBO=∠ABO.∵EF∥BC,∴∠EOB=∠CBO,∴∠ABO=∠EOB,∴EB=EO,∴点E在OB的垂直平分线上.(2)解:OH=12OA.理由如下:过O点作OG⊥AE于点G,OQ⊥AC于点Q,如图,∵BO平分∠ABC,OH⊥BC,OG⊥AB,∴OH=OG.∵CO平分∠ACB,OH⊥BC,OQ⊥AC,∴OH=OQ,∴OG=OQ,∴AO平分∠BAC,∴∠GAO=12∠BAC=30°,∴OG=12OA,∴OH=12OA.五、22.(1)证明:∵AC=BC,点F为AB的中点,∴CF⊥AB,∴CF垂直平分AB,∴OA=OB.∵DE垂直平分AC,∴OA=OC,∴OB=OC,∴△OBC为等腰三角形.(2)解:∵CA=CB,CF⊥AB,∴CF平分∠ACB,∴∠BCF=∠ACF=23°.∵OB=OC,∴∠OBC=∠OCB=23°.∵∠EDC=90°,∴∠DEC=90°-∠DCE=90°-23°-23°=44°,∴∠BOE=44°-23°=21°.(3)解:由题意得CF⊥AB,AF=12AB=5.∵DE垂直平分AC,∴AO=CO,∴FO=25-AO.∵AO2=AF2+OF2,∴AO2=52+(25-AO)2,解得AO=13,∴线段OA的长为13.23.解:(1)如图①.(2)如图②,作△ABC.设∠C=x,当AD=AE时,∵AD=BD,∠B=30°,∴∠BAD=30°,∵DE=CE,∠C=x,∴∠EDC=x,∴∠AED=∠ADE=2x,∴2x+x=60°,∴x=20°;当AD=DE时,∵AD=BD,∠B=30°,∴∠BAD=30°,∵DE=CE,∠C=x,∴∠EDC=x,∴∠AED=∠DAE=2x,∴60°=180°-x-2x,∴x=40°,∴∠C的度数是20°或40°.11。
北师大版八年级数学下册 第一章 三角形的证明 单元测试题含答案
北师大版八年级数学下册第一章三角形的证明单元测试题一.选择题(共10小题,每小题3分,共30分)1.等腰三角形的对称轴是()A.底边上的高所在的直线B.底边上的高C.底边上的中线D.顶角平分线2.如图在3×3的网格中,点A、B在格点处:以AB为一边,点P在格点处,则使△ABP为等腰三角形的点P有()个.A.2个B.3个C.4个D.5个3.如图,在△ABC中,∠B与∠C的角平分线相交于点I,过点I作BC的平行线,分别交AB、AC于点D、E.若AB=9,AC=6,BC=8,则△ADE的周长是()A.14 B.15 C.174.如图所示,在等边三角形ABC中,AD⊥BC,E为AD上一点,∠CED=50°,则∠ABE等于()A.10°B.15°C.20°D.25°5.在△ABC中,AB=AC,∠A=60°,BC=6,则AB的值是()A.12 B.8 C.6 D.36.用反证法证明“a≥b”,对于第一步的假设,下列正确的是()A.a≤b B.a≠b C.a<b D.a=b7.下列说法:①一个底角和一条边分别相等的两个等腰三角形全等;②底边及底边上的高分别相等的两个等腰三角形全等;③两边分别相等的两个直角三角形全等;④一个锐角和一条边分别相等的两个直角三角形全等,其中正确的个数是()A.1 B.2 C.3 D.48.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,则下列结论正确的是()A.AE=3CE B.AE=2CE C.AE=BD D.BC=2CE9.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是边AB的中点,AB=10,DE =4,则S△AEC=()A.8 B.7.5 C.7 D.610.如图,在△ABC中,CD⊥AB于点D,BE平分∠ABC,交CD于点E,若S△BCE=10,BC=5,则DE等于()A.10 B.7 C.5 D.4二.填空题(共8小题,每小题3分,共24分)11.等腰三角形的周长为12cm,其中一边长为3cm,则该等腰三角形的腰长为.12.如图:已知∠B=20°,AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4,以此类推∠A的度数是.13.如图,在△ABC中,AB=AC=10,AD平分∠BAC,点E为AC中点,则DE=.14.在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分AC,交AC于点E,交AB于点D,连接CD,若BD=2,则AD的长是.15.如图,DE是△ABC的边AC上的垂直平分线,AB=5cm,BC=8cm,则△ABD的周长为cm.16.如图,点D,P在△ABC的边BC上,DE,PF分别垂直平分AB,AC,连接AD、AP,若∠DAP=20°,则∠BAC=.17.如图,AB∥CD,∠BAC与∠ACD的平分线交于点P,过P作PE⊥AB于E,交CD于F,EF=10,则点P到AC的距离为.18.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=40,DE=4,AC=12,则AB长是.三.解答题(共7小题,共66分)19.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,求∠DBA的度数.20.如图,已知AB∥CD,∠BCF=180°,BD平分∠ABC,CE平分∠DCF,∠ACE=90°.求证:AC⊥BD.21.已知:如图,在△ABC中,∠ACB=90°,CD是高,AE是△ABC内部的一条线段,AE交CD于点F,交CB于点E,且∠CFE=∠CEF.求证:AE平分∠CAB.22.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD于点F,交CB于点E,且∠EAB=∠DCB.(1)求∠B的度数:(2)求证:BC=3CE.23.如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB,BC于点D 和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.24.如图,已知AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D.(1)求∠DBC的度数;(2)若△DBC的周长为14cm,BC=5cm,求AB的长.25.如图,已知AC∥BD,AE,BE分别平分∠CAB和∠DBA,点E在线段CD上.(1)求∠AEB的度数;(2)求证:CE=DE.参考答案一.选择题1.解:等腰三角形的对称轴是底边的垂直平分线,故选:A.2.解:如图所示,以AB为腰的等腰三角形的点P有2个,以AB为底边的等腰三角形的点P有3个,∴△ABP为等腰三角形的点P有5个;故选:D.3.解:∵BI平分∠DBC,∴∠DBI=∠CBI,又∵DE∥BC,∴∠DIB=∠IBC,∴∠DIB=∠DBI,∴BD=DI.同理CE=EI.∴△ADE的周长=AD+DI+IE+EA=AB+AC=15,故选:B.4.解:∵在等边三角形ABC中,AD⊥BC,∴AD是BC的线段垂直平分线,∵E是AD上一点,∴EB=EC,∴∠EBD=∠ECD,∵∠CED=50°,∴∠ECD=40°,又∵∠ABC=60°,∠ECD=40°,∴∠ABE=60°﹣40°=20°,故选:C.5.解:∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴AB=BC=6,故选:C.6.解:反证法证明“a≥b”,第一步是假设,a<b,故选:C.7.解:①一个底角和一条边分别相等的两个等腰三角形不一定全等;②底边及底边上的高分别相等的两个等腰三角形全等,正确;③两边分别相等的两个直角三角形不一定全等;④如果在两个直角三角形中,例如:两个30°角的直角三角形,一个三角形的直角边与另一个三角形的斜边相等,这两个直角三角形肯定不全等,错误;故选:A.8.解:连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE,故选:B.9.解:∵在△ABC中,∠ACB=90°,C点E是边AB的中点,∴AE=BE=CE=AB=5,∵CD⊥AB,DE=4,∴CD==3,∴S△AEC=S△BEC=BE•CD=3=7.5,故选:B.10.解:作EF⊥BC于F,∵S△BCE=10,∴×BC×EF=10,即×5×EF=10,解得,EF=4,∵BE平分∠ABC,CD⊥AB,EF⊥BC,∴DE=EF=4,故选:D.二.填空题11.解:由题意知,应分两种情况:(1)当腰长为3cm时,则另一腰也为3cm,底边为12﹣2×3=7cm,∵3+3<7,∴边长分别为3,3,7不能构成三角形;(2)当底边长为3cm时,腰的长=(12﹣3)÷2=4.5cm,∵0<3<4.5+4.5=9,∴边长为3,4.5,4.5,能构成三角形,则该等腰三角形的一腰长是4.5cm.故答案为:4.5cm.12.解:∵∠B=20°,AB=A1B,∴∠A=(180°﹣∠B)=80°,故答案为:80°.13.解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,又点E为AC中点,∴DE=AC=5,故答案为:5.14.解:∵DE垂直平分AC,∴CD=AD,∴∠ACD=∠A=30°,∵在Rt△ABC中,∠B=90°,∠A=30°,∴∠ACB=90°﹣∠A=60°,∴∠BCD=∠ACB﹣∠ACD=30°,∴CD=2BD=2×2=4,∴AD=CD=4.故答案为:4.15.解:∵DE是△ABC中的边AC上的垂直平分线,∴AD=CD,∵AB=5cm,BC=8cm,∴△ABD的周长为:AB+BD+AD=AB+BD+CD=AB+BC=13(cm).故答案是:13.16.解:∵DE,PF分别垂直平分AB,AC,∴∠B=∠BAD,∠C=∠CAP,又∵∠DAP=20°,∴∠B+∠C=(180°﹣20°)=80°,∴∠BAC=180°﹣80°=100°,故答案为:100°.17.解:作PH⊥AC于H,∵AP平分∠BAC,PE⊥AB,PH⊥AC,∴PE=PH,∵AB∥CD,PE⊥AB,∴PF⊥CD,∵CP平分∠ACD,PF⊥CD,PH⊥AC,∴PF=PH,∴PH=PE=PF=EF=5,即点P到AC的距离为5,故答案为:5.18.解:作DF⊥AC于F,如图,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DF=DE=4,∵S△ABD+S△ADC=S△ABC,∴•4•AB+•12•4=40,∴AB=8.故答案为8.三.解答题19.解:∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=35°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠DBA=∠A=35°20.证明:∵AB∥CD,∴∠ABC=∠DCF.(两直线平行,同位角相等)∵BD平分∠ABC,CE平分∠DCF,∴∠2=∠ABC,∠4=∠DCF.(角平分线的定义)∴∠2=∠4.∴BD∥CE.(同位角相等,两直线平行)∴∠BGC=∠ACE.(两直线平行,内错角相等)∵∠ACE=90°,∴∠BGC=90°,即AC⊥BD.(垂直的定义)21.证明:∵CD⊥AB,∴在△ADF中,∠DAF=90°﹣∠AFD=90°﹣∠CFE.∵∠ACE=90°,∴在△AEC中,∠CAE=90°﹣∠CEF.∵∠CFE=∠CEF,∴∠DAF=∠CAE,即AE平分∠CAB.22.解:(1)∵AE⊥CD,∴∠AFC=∠ACB=90°,∴∠CAF+∠ACF=∠ACF+∠ECF=90°,∴∠ECF=∠CAF,∵∠EAD=∠DCB,∴∠CAD=2∠DCB,∵CD是斜边AB上的中线,∴CD=BD,∴∠B=∠DCB,∴∠CAB=2∠B,∵∠B+∠CAB=90°,∴∠B=30°;(2)∵∠B=∠BAE=∠CAE=30°,∴AE=BE,CE=AE,∴BC=3CE.23.解:(1)△CDE的周长为10.∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴△CDE的周长=CD+DE+CE=AD+DE+BE=AB=10;(2)∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴∠A=∠ACD,∠B=∠BCE,又∵∠ACB=125°,∴∠A+∠B=180°﹣125°=55°,∴∠ACD+∠BCE=55°,∴∠DCE=∠ACB﹣(∠ACD+∠BCE)=125°﹣55°=70°.24.解:(1)∵AB=AC,∴∠ABC=∠ACB,∵∠A=40°,∴∠ABC=∠ACB=70°,∵MN是AB的垂直平分线,∴DA=DB,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70﹣40°=30°;(2)∵MN是AB的垂直平分线,∴BD=AD,∵△DBC的周长为14cm,∴BD+BC+CD=14cm,∵BC=5cm,∴BD+CD=AD+CD=AC=9cm,∵AB=AC,∴AB=9cm.25.解:(1)∵AC∥BD,∴∠CAB+∠ABD=180°.∵AE平分∠CAB,∴∠EAB=∠CAB.同理可得∠EBA=∠ABD.∴∠EAB+∠EBA=90°,∴∠AEB=90°;(2)如图,在AB上截取AF=AC,连接EF,在△ACE和△AFE中,∴△ACE≌△AFE(SAS).∴CE=FE,∠CEA=∠FEA.∵∠CEA+∠DEB=90°,∠FEA+∠FEB=90°,∴∠DEB=∠FEB.在△DEB和△FEB中∴△DEB≌△FEB(ASA).∴ED=EF.∴ED=CE.。
北师大版八年级数学下册第一章三角形的证明复习练习题有答案
第一章复习练习题1.如图,已知B G是∠A B C的平分线,D E⊥A B于点E,D F⊥B C于点F,D E=6,则D F的长度是()A.2B.3C.4D.62.如图,△A B C中,A B=A C,∠A=40°,则∠B的度数是()A.70°B.55°C.50°D.40°3.用反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中()A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°4.如图,已知∠A B C=∠B A D,添加下列条件还不能判定△A B C≌△B A D的是()A.A C=B D B.B C=A D C.∠C=∠D D.∠C A B=∠D B A5.如图,在△A B C中,B D平分∠A B C,B C的垂直平分线交B C于点E,交B D于点F,连接C F,若∠A=60°,∠A B D=24°,则∠A C F的度数为()A.24°B.30C.36°D.48°6.等腰三角形的周长为22,其中一边长是8,则其余两边长分别是()A.6和8B.7和8C.7和7D.6,8或7,77.如图,D为△A B C内一点,C D平分∠A C B,A E⊥C D,垂足为点D,交B C于点E,∠B =∠B A E,若B C=5,A C=3,则A D的长为()A.1B.1.5C.2D.2.58.如图,∠A O B=60°,O A=O B,动点C从点O出发,沿射线O B方向移动,以A C为边在右侧作等边△A C D,连接B D,则B D所在直线与O A所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直9.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽炫图”是由四个全等直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=11,大正方形的面积为6,则小正方形的边长为()A.1B.2C.3D.410.如图,在平面直角坐标系中,等边△O B C的边O C在x轴正半轴上,点O为原点,点C坐标为(12,0),D是O B上的动点,过D作D E⊥x轴于点E,过E作E F⊥B C 于点F,过F作F G⊥O B于点G.当G与D重合时,点D的坐标为()A.(1,)B.(2,2)C.(4,4)D.(8,8)二.填空题11.若命题“如果等腰三角形的底角为15°,那么腰上的高是腰长的一半”为原命题,则它的逆命题是,此命题为命题(填“真”或“假”)12.如图,B E,C D是△A B C的高,且B D=E C,判定△B C D≌△C B E的依据是“”.13.如图,点E在正方形A B C D内,满足∠A E B=90°,A E=6,B E=8,则阴影部分的面积是.14.如图,在直角△A B C中,∠C=90°,A D平分∠C A B,C D=3,A B=12,则△A B D的面积为:.15.如图,在△A B C中,A F平分∠B A C,A C的垂直平分线交B C于点E,∠B=70°,∠F A E=19°,则∠C=度.16.如图,在△A B C中,A B=A C,在边A B上取点D,使得B D=B C,连结C D,若∠A=36°,则∠B D C 等于17.如图,四边形A B C D的对角线A C、B D相交于点O,△A B O≌△A D O.下列结论:①A C⊥B D;②C B=C D;③△A B C≌△A D C;④D A=D C.其中所有正确结论的序号是.18.已知∠A O B=30°,点D在O A上,O D=,点E在O B上,D E=2,则O E的长是.三.解答题19.如图,点E、F在线段B D上,A F⊥B D,C E⊥B D,A D=C B,D E=B F,求证:A F=C E.20.如图,在△A B C中,A B=A C,∠B A C和∠A C B的平分线相交于点D,∠A D C=130°,求∠B A C的度数.21.如图,A D是△A B C的角平分线,D E、D F分别是△A B D和△A C D的高,求证:A D垂直平分E F.22.如图,△A B C是等腰三角形,∠B=∠C,A D是底边B C上的高,D E∥A B交A C于点E.试说明△A D E是等腰三角形.23.如图,∠A O B=60°,O C平分∠A O B,C为角平分线上一点,过点C作C D⊥O C,垂足为C,交O B于点D,C E∥O A交O B于点E.(1)判断△C E D的形状,并说明理由;(2)若C D=6,O D=10,直接写出O C的长.24.如图,在△A B C中,A B=A C,∠B A C=120°,D、F分别为A B、A C的中点,且D E ⊥A B,F G⊥A C,点E、G在B C上,B C=18c m,求线段E G的长.(提示:需要添加辅助线)25.在△A B C中,∠B A C=90°,A B=A C,A D⊥B C于点D.(1)如图1,点M,N分别在A D,A B上,且∠B M N=90°,当∠A M N=30°,A B=2时,求线段A M的长;(2)如图2,点E,F分别在A B,A C上,且∠E D F=90°,求证:B E=A F;(3)如图3,点M在A D的延长线上,点N在A C上,且∠B M N=90°,求证:A B+A N =A M.参考答案一.选择题1.D.2.A.3.D.4.A.5.D.6.D.7.A.8.A.9.A.10.解:如图,设B G=x,∵△O B C是等边三角形,∴∠B O C=∠B=∠C=60°,∵D E⊥O C于点E,E F⊥B C于点F,F G⊥O B,∴∠B F G=∠C E F=∠O D E=30°,∴B F=2x,∴C F=12﹣2x,∴C E=2C F=24﹣4x,∴O E=12﹣C E=4x﹣12,∴O D=2O E=8x﹣24,当G与D重合时,O D+B G=O B,∴8x﹣24+x=12,解得x=4,∴O D=8x﹣24=32﹣24=8,∴O E=4,D E=4,∴D(4,4).故选:C.二.填空题11.它的逆命题是:如果一个等腰三角形腰上的高是腰长的一半,那么它的底角为15°.命题为假命题.12.H L.13.76.14.18.15.24.16.54°17.①②③.18.2或4.三.解答题19.证明:∵D E=B F,∴D E+E F=B F+E F,即D F=B E.在R t△A D F和R t△C B E中,∴R t△A D F≌R t△C B E.∴A F=C E.20.解:∵A B=A C,A E平分∠B A C,∴A E⊥B C(等腰三角形三线合一),∵∠A D C=130°,∴∠C D E=50°,∴∠D C E=90°﹣∠C D E=40°,又∵C D平分∠A C B,∴∠A C B=2∠D C E=80°.又∵A B=A C,∴∠B=∠A C B=80°,∴∠B A C=180°﹣(∠B+∠A C B)=20.21.证明:设A D、E F的交点为K,∵A D平分∠B A C,D E⊥A B,D F⊥A C,∴D E=D F.∵D E⊥A B,D F⊥A C,∴∠A E D=∠A F D=90°,在R t△A D E和R t△A D F中,,∴R t△A D E≌R t△A D F(H L),∴A E=A F.∵A D是△A B C的角平分线∴A D是线段E F的垂直平分线.22.证明:∵在△A B C中,∠B=∠C,∴A B=A C,∴△A B C是等腰三角形;∵A D⊥B C,∴∠B A D=∠D A C,∵D E∥A B,∴∠A D E=∠B A D,∴∠A D E=∠D A C,∴A E=E D,∴△A D E是等腰三角形.23.解:(1)△C E D是等边三角形,理由如下:∵O C平分∠A O B,∠A O B=60°,∴∠A O C=∠C O E=30°,∵C E∥O A,∴∠A O C=∠C O E=∠O C E=30°,∠C E D=60°,∵C D⊥O C,∴∠O C D=90°,∴∠E D C=60°,∴△C E D是等边三角形;(2)在R t△O C D中,根据勾股定理得O C==8.24.解:如图,连接A E、A G∵D为A B中点,E D⊥A B,∴E B=E A,∴△A B E为等腰三角形,又∵∠B=∠E A B=30°,∴∠B A E=30°,∴∠A E G=60°,同理可证:∠A G E=60°,∴△A E G为等边三角形,∴A E=E G=A G,又∵A E=B E,A G=G C,∴B E=E G=G C,又B E+E G+G C=B C=18(c m),∴E G=6(c m).25.(1)解:∵∠B A C=90°,A B=A C,A D⊥B C,∴A D=B D=D C,∠A B C=∠A C B=45°,∠B A D=∠C A D=45°,∵A B=2,∴A D=B D=D C=,∵∠A M N=30°,∴∠B M D=180°﹣90°﹣30°=60°,∴∠M B D=30°,∴B M=2D M,由勾股定理得,B M22﹣D M22=B D22,即(2D M)22﹣D M22=()22,解得,D M=,∴A M=A D﹣D M=﹣;(2)证明:∵A D⊥B C,∠E D F=90°,∴∠B D E=∠A D F,在△B D E和△A D F中,,∴△B D E≌△A D F(A S A)∴B E=A F;(3)证明:过点M作M E∥B C交A B的延长线于E,∴∠A M E=90°,则A E=A M,∠E=45°,∴M E=M A,∵∠A M E=90°,∠B M N=90°,∴∠B M E=∠A M N,在△B M E和△N M A中,,∴△B M E≌△N M A(A S A),∴B E=A N,∴A B+A N=A B+B E=A E=A M.。
北师版八年级数学下册 第一章《三角形的证明》 单元综合测试卷
北师版八年级数学下册第1章三角形的证明单元综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B 点落在AC边上的B′处,则∠ADB′等于( )A. 25°B. 30°C. 35°D. 40°2.下列命题的逆命题是真命题的是( )A.如果a>0,b>0,则a+b>0B.直角都相等C.两直线平行,同位角相等D.若a=6,则|a|=|b|3.已知△ABC的三边长分别为4,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.3条B.4条C.5条D.6条4.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC5.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )A.11B.5.5C.7D.3.56. 如图,D 为△ABC 内一点,CD 平分∠ACB ,BE ⊥CD ,垂足为D ,交AC 于点E ,∠A=∠ABE .若AC=5,BC=3,则BD 的长为( )A . 2.5B . 1.5C . 2D . 17.如图,在△ABC 中AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,已知EH=EB=3,AE=4,则CH 的长是( )A . 1B . 2C . 3D . 48.如图所示,AB ⊥BC ,DC ⊥BC ,E 是BC 上一点,∠BAE=∠DEC=60°,AB=3,CE=4,则AD 等于( )A . 10B . 12C . 24D . 489.如图,在△ABC 中,AB =AC ,D ,E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6,DE =2,则BC 的长度是( )A .6B .8C .9D .1010.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法正确的个数是( )①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④S △DAC ∶S △ABC =1∶3.A.1 B.2 C.3 D.4二.填空题(共8小题,3*8=24)11.如图,在△ABC中,AB=AC,∠BAC的角平分线交BC边于点D,AB=5,BC=6,则AD=.12. 用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中.13.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=.14.如图,在Rt△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC于点E,∠BAE=20°,则∠C=.15.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACF,DE过点I,且DE∥BC.BD=8 cm,CE =5 cm,则DE等于________.16.如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE ∥AC,则△PDE的周长是cm.17.若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为.18.如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD 翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是.三.解答题(共7小题,66分)19.(8分) 如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.20.(8分) 如图,两条公路OA和OB相交于点O,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA,OB的距离相等,且到两工厂C,D的距离相等,用尺规作出货站P的位置(要求:不写作法,保留作图痕迹,写出结论).21.(8分) 如图,在△ABC中,∠B=30°,边AB的垂直平分线分别交AB和BC于点D,E,且AE 平分∠BAC.(1)求∠C的度数;(2)若CE=1,求AB的长.22.(10分) 如图,在△ABC中,AD平分∠BAC,DE∥AC,EF⊥AD交BC延长线于F.求证:∠FAC =∠B.23.(10分)如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论.24.(10分)如图,在四边形ABCD中,AB∥CD,∠D=90°,∠DCA=30°,CA平分∠DCB,AD =4 cm,求AB的长度.25.(12分) 在△ABC中,∠B=22.5°,边AB的垂直平分线DP交AB于点P,交BC于点D,且AE ⊥BC于点E,DF⊥AC于点F,DF与AE交于点G,求证:EG=EC.参考答案1-5DCBBB 6-10DAABD11. 412. 每一个内角都大于60°13. 314. 35°15. 3cm16. 517. 518. 1+319. 证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC.∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.20. 解:如图.作CD的垂直平分线,∠AOB的平分线的交点P即为所求,此时货站P到两条公路OA,OB的距离相等.P和P1都是所求的点.21. 解:(1)∵DE是线段AB的垂直平分线,∠B=30°,∴∠BAE=∠B=30°,∵AE平分∠BAC,∴∠EAC=∠BAE=30°,即∠BAC=60°,∴∠C=180°-∠BAC-∠B=180°-60°-30°=90°(2)∵∠C=90°,∠B=30°,AE平分∠BAC,CE=1,∴AC=3,∴AB=2322. 证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠EDA=∠CAD,∴∠EDA =∠EAD ,∴AE =ED ,又∵EF ⊥AD ,∴EF 是AD 的垂直平分线,∴AF =DF ,∴∠FAD =∠FDA.又∵∠FAD =∠CAD +∠FAC ,∠FDA =∠B +∠BAD , ∴∠FAC =∠B23. 解:CE =DE ,CE ⊥DE.证明如下:∵AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,∴△CAE ≌△EBD.∴∠CEA =∠D ,CE =DE.∵∠D +∠DEB =90°,∴∠CEA +∠DEB =90°.∴∠CED =90°.即线段CE 与DE 的大小与位置关系为相等且垂直.24. 解:∵∠D =90°,∠DCA =30°,AD =4 cm ,∴AC =2AD =8(cm).∵CA 平分∠DCB ,AB ∥CD ,∴∠CAB =∠ACB =∠DCA =30°,∴AB =BC.如图,过点B 作BE ⊥AC ,则AE =12AC =4(cm). 设BE =x cm ,则AB =2x(cm).由勾股定理,得x 2+42=(2x)2,解得x =433. ∴AB =2x =833(cm).25. 解:如图所示:连接AD ,∵∠B =22.5°,且DP 为AB 的垂直平分线,∴DB =DA ,∴∠B =∠BAD ,∴∠ADE =2∠B =45°,在Rt △ADE 中,∠ADE =45°,∴∠DAE =45°,∴AE =DE , ∵AE ⊥DE ,∴∠1+∠2=90°,∵DF ⊥AC ,∴∠2+∠C =90°,∴∠1=∠C.在△DEG 和△AEC 中,⎩⎪⎨⎪⎧∠1=∠C ,∠DEG =∠AEC =90°,DE =AE ,∴△DEG ≌△AEC(AAS),∴EG =EC。
北师版八年级数学下册 第一章《三角形的证明》 单元综合测试卷(含答案)
北师版八年级数学下册第1章三角形的证明单元综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.182.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E,F,则下列四个结论:①AD上任意一点到点C,B的距离相等;②AD上任意一点到AB,AC的距离相等;③BD=CD,AD⊥BC;④∠BDE=∠CDF.其中正确的个数是()A.1个B.2个C.3个D.4个3.下列命题的逆命题是真命题的是()A.若a>0,b>0,则a+b>0 B.直角都相等C.两直线平行,同位角相等D.若a=b,则|a|=|b|4.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点D,DE垂直平分AB,垂足为E,若BC=3,则AD的长为()A. 3 B.2 C.2 3 D.45.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是()A.30° B.35° C.40° D.45°6.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()7.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.3条B.4条C.5条D.6条8.如图,在△ABC中,AB=AC,∠A=120°,BC=6 cm,AB的垂直平分线交BC于点M,交AB 于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4 cm B.3 cm C.2 cm D.1 cm9.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A=∠ABE.若AC=5,BC=3,则BD的长为()A.2.5 B.1.5 C.2 D.110.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是()A.两条边长分别为4,5,它们的夹角为βB.两个角是β,它们的夹边为4C.三条边长分别是4,5,5D.两条边长是5,一个角是β二.填空题(共8小题,3*8=24)11.一个等腰三角形的两边长分别为4 cm和9 cm,则它的周长为________cm.12. 如图,在△ABC中,AB=AC=BC=4,AD平分∠BAC,点E是AC的中点,则DE的长为________.13.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:____________________________________________,该逆命题是________(填“真”或“假”)命题.14.如图是某超市一层到二层电梯的示意图,其中AB、CD分别表示超市一层、二层电梯口处地面米.15.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边上的中点,E 是AB 边上一动点,则EC +ED 的最小值是________.16.如图,在等边三角形ABC 中,AD 是BC 边上的高,且AD =4,E 是AB 边的中点,点P 在AD 上运动,则PB +PE 的最小值是________.17.等腰三角形ABC 中,BD ⊥AC ,垂足为点D ,且BD =12AC ,则等腰三角形ABC 底角的度数为________.18.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△ABO ≌△ADO.下列结论:①AC ⊥BD ;②CB =CD ;③△ABC ≌△ADC ;④DA =DC.其中所有正确结论的序号是__________.三.解答题(共7小题, 66分)19.(8分) 如图,在△ABC 中,已知AB =AC ,∠BAC 和∠ACB 的平分线相交于点D ,∠ADC =125°.求∠ACB 和∠BAC 的度数.20.(8分如图,在△ABC中,∠B=30°,边AB的垂直平分线分别交AB和BC于点D,E,且AE 平分∠BAC.(1)求∠C的度数;(2)若CE=1,求AB的长.21.(8分) 如图,在长方形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.22.(10分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB,CF 交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.23.(10分)如图,已知等腰三角形ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接BE,CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(3分)(2)求证:过点A,F的直线垂直平分线段BC.(4分)24.(10分)如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=60°,BE=1,求△ABC的周长.25.(12分) 如图,点P是等边三角形ABC内一点,AD⊥BC于点D,PE⊥AB于点E,PF⊥AC于点F,PG⊥BC于点G.求证:AD=PE+PF+PG.1-5BDCCC 6-10 CBCDD11. 2212.213.如果两个三角形的面积相等,那么这两个三角形全等;假14. 6 15. 516.417.45°或15°或75°18. ①②③19.解:∵AB =AC ,AE 平分∠BAC ,∴AE ⊥BC(等腰三角形三线合一).∵∠ADC =125°,∴∠CDE =55°.∴∠DCE =90°-∠CDE =35°.又∵CD 平分∠ACB ,∴∠ACB =2∠DCE =70°.又∵AB =AC ,∴∠B =∠ACB =70°.∴∠BAC =180°-(∠B +∠ACB)=40°.20. 解:(1)∵DE 是线段AB 的垂直平分线,∠B =30°,∴∠BAE =∠B =30°, ∵AE 平分∠BAC ,∴∠EAC =∠BAE =30°,即∠BAC =60°,∴∠C =180°-∠BAC -∠B =180°-60°-30°=90°(2)∵∠C =90°,∠B =30°,AE 平分∠BAC ,CE =1,∴AC =3,∴AB =2321.证明:∵四边形ABCD 是长方形,∴∠B =∠C =90°.∵EF ⊥DF ,∴∠EFD =90°,∴∠EFB +∠CFD =90°.∵∠EFB +∠BEF =90°,∴∠BEF =∠CFD.在△BEF 和△CFD 中,⎩⎪⎨⎪⎧∠BEF =∠CFD ,BE =CF ,∠B =∠C ,∴△BEF ≌△CFD(ASA),∴BF =CD.22.(1)证明:∵CF ∥AB ,∴∠B =∠FCD ,∠BED =∠F.∴△BDE ≌△CDF(AAS).(2)解:∵△BDE ≌△CDF ,∴BE =CF =2.∴AB =AE +BE =1+2=3.∵AD ⊥BC ,BD =CD ,∴AC =AB =3.23. 解:(1)∠ABE =∠ACD.理由:在△ABE 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠A =∠A ,AE =AD ,∴△ABE ≌△ACD ,∴∠ABE =∠ACD(2)连接AF.∵AB =AC ,∴∠ABC =∠ACB ,由(1)可知∠ABE =∠ACD ,∴∠FBC =∠FCB ,∴FB =FC ,∵AB =AC ,∴点A ,F 均在线段BC 的垂直平分线上,即直线AF 垂直平分线段BC24.(1)证明:∵AB =AC ,∴∠B =∠C.∵DE ⊥AB ,DF ⊥AC ,∴∠DEB =∠DFC =90°.∵D 是BC 的中点,∴BD =CD.∴△BED ≌△CFD(AAS).(2)解:∵AB =AC ,∠A =60°,∴△ABC 是等边三角形,∴AB =BC =CA ,∠B =60°.又∵DE ⊥AB ,∴∠EDB =30°,∴BD =2BE =2,∴BC =2BD =4,∴△ABC 的周长为AB +BC +CD =3BC =12.25.证明:连接PA ,PB ,PC ,如图.∵AD ⊥BC 于点D ,PE ⊥AB 于点E ,PF ⊥AC 于点F ,PG ⊥BC 于点G ,∴S △ABC =12×BC×AD ,S △PAB =12×AB×PE ,S △PAC =12×AC×PF ,S △PBC =12×BC×PG. ∵S =S +S +S ,∴12×BC×AD=12(AB×PE+AC×PF+BC×PG).∵△ABC是等边三角形,∴AB=BC=AC,∴BC×AD=BC×(PE+PF+PG),∴AD=PE+PF+PG.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
训练1 1.1等腰三角形(1)
1、以前学到的八条基本事实
①两点确定一条直线。
②两点之间线段最短。
③同一平面内,过一点有且只有一条直线与已知直线垂直。
④两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行)。
⑤过直线外一点有且只有一条直线与这条直线平行。
⑥两边及其夹角分别相等的两个三角形全等。
⑦两角及其夹边分别相等的两个三角形全等。
⑧三边分别相等的两个三角形全等。
2、等腰三角形的定义:有两边相等的三角形是等腰三角形。
3、定理:等腰三角形的两底角相等。
简述为:等边对等角。
4、例:利用1的内容证明下列结论成立。
(注意:“求证”是写“证明”,不是写“解”)。
已知:如图,△ABC中,AB=AC,AD是BC的中线。
求证:(1)∠B=∠C;(2)AD平分∠B AC,并且AD BC 。
5、例:小结 等腰三角形的相关性质:
①腰:
②底角:
③三线(顶角平分线、底边上的高和底边上的中线):
6、例:已知等腰三角形两条边的长分别是3cm 和6cm ,则它的周长等于______。
7、例:等腰三角形的对称轴有( )
A .1条
B .2条
C .3条
D .1条或3条
8、例:已知:如图,点D 是△ABC 内一点,AB =AC ,∠1=∠2。
求证:AD 平分∠BAC 。
9、例:等腰三角形一腰上的中线把这个三角形的周长分为15厘米和11厘米两部分,求此三角形的底边长。
10、例:在ΔABC 中,DB 平分∠ABC,DC 平分∠ACB,过D 作直线EF//BC ,交AB 、AC 于E 、F ,若AB=8,AC=7,则ΔAEF 的周长等于多少?
F D E
C B A
训练2 1.1等腰三角形(2)
1、本节接上一节内容,继续学习如何证明等腰三角形的一些特殊的相等的线段。
比如等腰三角形两底角的角平分线是否相等;等腰三角形两腰上的中线是否相等;等腰三角形两腰上的高是否相等……。
2、等边三角形概念:
3、例:下面是几种结论:
(1)等腰三角形两底角平分线相等。
(2)等腰三角形两腰上的中线、高线相等。
(3)等腰三角形底边上的高上任一点到两腰的距离相等。
(4)等腰三角形两底边上的中点到两腰的距离相等。
(5)等腰三角形两底角平分线,两腰上的中线,两腰上的高的交点到两腰的距离相等,到底边两端上的距离相等。
(6)等腰三角形顶点到两腰上的高、中线、角平分线的距离相等。
练习一证明:等腰三角形两底角平分线相等。
练习二证明:等腰三角形底边上的中点到两腰的距离相等.
4、例:证明:等边三角形的三个内角都相等,并且都等于0
60。
5、已知:在ΔABC中,AB=AC,D在AB上,DE∥AC
求证:DB=DE。
6、例:如图,ΔABC是等边三角形,点D、E分别是AB、AC的中点,求∠BFC。
7、例:如图,ΔABC中,D、E是BC的三等分点,且ΔADE是等边三角形,求∠BFC。
1、本节内容继续学习等腰三角形的证明及如何做好证明题,在书写方面进一步规范化,语言简洁精练,一般多用数学符号,比如“因为”要写成“ ”,“所以”写成“ ”等等。
(注意区分这两个符号)
2、定理:有两个角相等的三角形是等腰三角形。
(简述:等角对等边)
3、当正面推导比较困难的时候,我们可以用另一种证明方法----反证法:
4、例:已知五个正数的和等于1,证明:这五个数中至少有一个大
1。
于或等于
5
5、例:如图,把一张长方形的纸沿着对角线折叠,重合部分是一个等腰三角形吗?为什么?
1、本节课是在学习了全等三角形判定、等腰三角形性质、判定以及推论的基础上进行拓展--关于等边三角形的有关定理或性质的应用。
2、定理:三个角相等的三角形是等边三角形。
定理:有一个角等于060的等腰三角形是等边三角形。
3、定理:在直角三角形中,如果有一个锐角等于030,那么它所对的直角边等于斜边的一半。
(或者说:直角三角形030所对的直角边等于斜边的一半)
4、例:如图,在Rt△ABC 中,∠C=90°,∠BAC=30°.
求证:BC=12
AB . 证明: 方法一:延长BC 至D ,使CD=BC ,连 接AD(如图所示). 在△ABC 中,∠ACB=90°,∠BAC=30°∠B=60°.
方法二:在AB 上取一点E ,使得CE=CB 。
5、例:等腰三角形的底角为15°,腰长为2a ,求腰上的高CD 的长。
6、例:如图,在等腰△ABC 中,AB=AC ∠BAC=120° D 为BC 中点,DE ⊥AB 于E 。
求证:AB AE 41
=。
7、例:如图,△ABC 中,AC BC ⊥,∠A=30°,D 是AB 的中点,且AC DE ⊥,求证:AB DE 4
1
=。
B A D。