2019数学八年级上册知识点精要归纳整理(精编Word版)
八年级上册数学知识点归纳总结
八年级上册数学知识点归纳总结八年级上册数学知识点归纳总结如下:
1. 整式的加减
- 同类项的加减
- 整式的加减运算法则
- 括号的运算法则
- 移项与去括号
2. 一元二次方程
- 一元二次方程的定义
- 解二次方程的方法(因式分解法、配方法、求根公式)
- 判别式和根的情况
3. 提公因式与分式
- 提公因式的方法
- 分式的概念与基本性质
- 分式的基本运算(加减乘除)
4. 二次根式
- 二次根式的定义与概念
- 二次根式的化简
- 二次根式的运算(加减乘除)
5. 数据的收集整理与分析
- 数据的搜集和整理
- 统计图的绘制与分析
- 平均数、中位数、众数的计算
6. 几何图形的认识与性质
- 点、线、面的概念
- 直线、射线、线段的特点
- 同位角、对顶角、同旁内角的性质
7. 平面图形的性质与计算
- 三角形的分类
- 四边形的分类
- 平行四边形与矩形的性质
8. 角与等角(同位角、内错角、同旁内角的性质)
- 角的概念和性质
- 直角、钝角、锐角
- 利用角的性质解决问题
9. 周长和面积
- 二维图形的周长计算(长方形、正方形、三角形)
- 二维图形的面积计算(长方形、正方形、三角形、梯形)
这些是八年级上册数学的一些重要知识点,希望能对你有所帮助。
八年级上册数学知识点归纳总结
八年级上册数学知识点归纳总结一、有理数1. 有理数的概念有理数是可以表示为两个整数之比的数,包括正整数、负整数、零、分数(正分数和负分数)。
2. 有理数的运算(1)加法和减法:同号相加减,异号相加减取相反数后加(2)乘法:同号得正,异号得负(3)除法:分子取商的符号,分母取绝对值后再除3. 有理数的比较在数轴上比较大小,可以通过绝对值和符号来确定大小关系4. 有理数的应用有理数在实际生活中的运用,如温度、扩大、缩小等二、代数1. 代数的基本概念(1)代数式:由运算符号和字母组成的表达式(2)项:代数式中的最小单位(3)系数:含有变量的项的常数因子(4)幂:同一个数的多次相乘2. 一元一次方程如ax+b=0(a≠0),其中a、b为已知数,x为未知数3. 一元一次不等式如ax+b>0(a≠0),其中a、b为已知数,x为未知数4. 代数式的加减法整理同类项后进行加减5. 代数式的乘法分配律、结合律、交换律的运用6. 代数式的因式分解三、平方根和立方根1. 平方数和平方根平方数是某个数的平方,平方根是某个数的算术平方根2. 平方根的求法开平方、开方运算3. 立方数和立方根立方数是某个数的立方,立方根是某个数的算术立方根4. 立方根的求法开立方、立方根的运算5. 有理数的平方与立方有理数的平方是对其绝对值的平方,有理数的立方是对其绝对值的立方四、多边形1. 多边形的基本认识多边形是由同一个平面上的若干条线段组成的闭合图形2. 多边形的内角和外角n边形的内角和等于180°×(n-2)n边形的外角和等于360°3. 正多边形边相等,角相等的多边形4. 不规则多边形五、相似1. 相似的概念对于两个图形,如果它们的形状相似(其中一图放大或缩小),则它们称之为相似的2. 相似三角形对于两个三角形,如果它们的对应角相等,则它们为相似三角形3. 相似三角形的性质相似三角形的性质包括对应边成比例、对应角相等、相似三角形的高线比例等六、函数1. 函数的概念对应关系中,一个自变量对应一个因变量的关系2. 函数的表示方法函数的图像、函数的解析式、函数的映射表示等3. 函数的性质奇函数、偶函数、周期函数、增减性与极值、奇偶性及周期性的判断等4. 函数的应用在实际问题中,函数的运用,如一元一次函数、二次函数等七、同比例1. 比例的概念两个量之间的相等关系2. 比例的性质比例中的乘除、比例式的变形3. 等比例四个数成等比的性质4. 倒数的概念两个数之积为1时,这两个数称为倒数5. 倒比例四个数成倒比的性质八、图形的旋转1. 图形的旋转图形绕定点旋转的变换2. 旋转的性质旋转变换后的图形3. 图形的对称图形相对于一条直线、一个点的对称4. 图形的变换平移、旋转、翻转的组合变换以上就是八年级上册数学知识点的归纳总结,希望能帮助到大家对这些知识点的理解和掌握。
八上数学重要知识点(全册)
八上数学重要知识点(全册)
本文档旨在总结八年级上学期数学课程的重要知识点,以帮助同学们更好地回顾和复。
1. 整数与计算
- 正数与负数的概念及表示方法
- 整数的加法、减法、乘法、除法运算规则
- 绝对值的计算方法和性质
- 倒数的概念及计算方法
2. 分数的运算
- 分数的基本概念和表示方法
- 分数的加法、减法、乘法、除法运算规则
- 分数与整数之间的转化
- 带分数的概念及计算方法
3. 代数式与方程
- 代数式的基本概念和表示方法
- 代数式的加法、减法、乘法运算规则
- 方程的概念和解方程的方法
- 一元一次方程的解法和应用
4. 几何形状与变换
- 平面图形的基本概念、性质和分类标准
- 直角三角形、等腰三角形和等边三角形的特点- 多边形的性质和分类标准
- 空间几何体的基本概念和计算方法
- 平移、旋转、翻折和对称变换的概念和方法5. 数据与统计
- 统计调查和统计图的制作和解读
- 数据的整理、展示和分析
- 众数、中位数和平均数的计算以及应用
以上是八年级上学期数学课程的重要知识点概述。
同学们可以根据这些内容进行系统的复习,以提高数学学习的效果。
祝愿大家取得优异的成绩!。
2019-2020最新新人教版八年级数学上册知识点总结
2019-2020最新八年级数学上册知识点总结第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高. (钝角三角形三条高的交点在三角形外,直角三角形的三条高的交点在三角形上,锐角三角形的三条高在三角形内)4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.(三条中线的交点叫重心)5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(三角形三条角平分线的交点到三边距离相等)6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.(例如自行车的三角形车架利用了三角形具有稳定性)7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. (三角形三条角平分线的交点到三边距离相等)5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形. 2.基本性质: ⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线. ②对称的图形都全等. ⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等. ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -. ②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -. ⑷等腰三角形的性质: ①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条). ⑸等边三角形的性质: ①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60° ③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条). 3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形. ②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形. 4.基本方法:⑴做已知直线的垂线: ⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线. ⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念: 1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯= ⑵幂的乘方:()nm mn aa =⑶积的乘方:()nn n ab a b = 2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+ 4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加. ⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式. ⑵公式法:①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=± ③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法第十五章 分式一、知识框架 :二、知识概念: 1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母. 2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±=⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与 被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数) ⑵()nm mn a a =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >)⑸nn n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n na a -=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③检验(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。
八年级上册数学知识点归纳
八年级上册数学知识点归纳一、实数1. 有理数和无理数的概念- 有理数:可以表示为两个整数的比的数- 无理数:不能表示为两个整数的比的数,如√2、π2. 实数的运算- 加法、减法、乘法、除法- 乘方、开方- 绝对值的概念和运算- 实数的性质和比较大小二、代数表达式1. 单项式和多项式- 单项式的定义和度量- 多项式的定义、次数和系数2. 代数式的加减运算- 合并同类项- 去括号法则3. 代数式的乘法运算- 单项式乘单项式- 单项式乘多项式- 多项式乘多项式4. 代数式的因式分解- 提公因式法- 公式法(如平方差公式、完全平方公式)三、方程与不等式1. 一元一次方程- 方程的建立和解法- 方程的解的检验2. 一元一次不等式- 不等式的概念和性质- 不等式的解法- 不等式的解集表示3. 二元一次方程组- 代入法解方程组- 消元法解方程组- 方程组的解的情况分析四、几何1. 平行线与角- 平行线的判定和性质- 同位角、内错角、同旁内角- 角的分类(锐角、直角、钝角、平角、周角)2. 三角形- 三角形的基本性质- 三角形的内角和外角性质- 等腰三角形和等边三角形的性质- 三角形的中线、高线、角平分线3. 四边形- 四边形的定义和分类- 矩形、菱形、正方形的性质- 平行四边形的性质4. 圆的基本性质- 圆的定义和圆心、半径- 弦、直径、弧、半圆- 圆周角和圆心角的关系- 切线的概念和性质五、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 统计图表的绘制(如条形图、饼图)2. 概率- 随机事件的概念- 概率的计算方法- 等可能事件的概率六、应用题- 利用所学知识解决实际问题- 培养数学建模和逻辑推理能力请注意,以上内容是根据一般八年级上册数学教材的常见知识点进行归纳,具体的教学大纲和知识点可能会根据不同地区和版本的教材有所差异。
教师和学生应参考具体的教材和教学大纲来确定学习重点。
人教版数学八年级上册复习知识点总结(2019)
新人教版八年级数学上册知识点总结三角形一、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.全等三角形一、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.轴对称一、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.整式的乘除与分解因式一、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()n m mn a a =⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式.⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法 ⑸添项法分式一、知识概念:1.分式:形如A B ,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n n n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()nm mn a a =(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸nn n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a -=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).八年级数学(上)册各章节知识点总结第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.n-·180°⑶多边形内角和公式:n边形的内角和等于(2)⑷多边形的外角和:多边形的外角和为360°.n-条对角线,⑸多边形对角线的条数:从n边形的一个顶点出发可以引(3)第十二章全等三角形第一节:全等三角形形状大小放在一起完全重合的图形,叫做全等形。
八上数学总复习各章知识点总结及整理
八上数学总复习各章知识点总结及整理.doc八年级上册数学总复习各章知识点总结及整理引言随着学期的结束,对八年级上册数学知识点进行全面的复习和整理是十分必要的。
这不仅有助于学生巩固已学知识,还能帮助他们为即将到来的考试做好准备。
以下是对八年级上册数学各章节知识点的详细总结及整理。
第一章:实数1.1 实数的概念理解实数的分类:有理数和无理数。
掌握实数的性质和运算规则。
1.2 算术平方根学习如何计算一个数的算术平方根。
理解平方根的性质。
1.3 平方根掌握平方根的概念和计算方法。
了解平方根与算术平方根的区别。
第二章:代数基础2.1 代数式理解代数式的定义和基本运算。
学习合并同类项的方法。
2.2 一元一次方程掌握一元一次方程的解法。
学习方程的应用问题。
2.3 因式分解学习因式分解的基本方法:提公因式法和公式法。
理解因式分解在解方程中的应用。
第三章:几何初步3.1 线段、角学习线段的性质和角的概念。
掌握角度的分类和计算。
3.2 相交线与平行线理解相交线的性质。
学习平行线的判定和性质。
3.3 三角形掌握三角形的基本性质。
学习三角形的分类和内角和定理。
第四章:函数4.1 函数的概念理解函数的定义和表示方法。
学习函数的三种表示形式:解析式、列表和图形。
4.2 一次函数掌握一次函数的性质和图象。
学习一次函数的解析式和应用问题。
4.3 反比例函数理解反比例函数的概念和性质。
掌握反比例函数的图象和解析式。
第五章:统计与概率5.1 数据的收集与处理学习数据收集的方法和数据的整理。
掌握数据的描述性统计指标。
5.2 概率初步理解概率的基本概念。
学习概率的计算方法。
复习策略系统复习:按照章节顺序,系统地复习每个知识点。
重点强化:针对重点和难点进行强化训练。
习题练习:通过大量的习题练习,巩固知识点。
错题回顾:对错题进行总结和回顾,避免重复错误。
模拟测试:定期进行模拟测试,检验复习效果。
结语通过对八年级上册数学各章知识点的总结及整理,学生可以更加清晰地掌握每个章节的核心内容,为期末考试和未来的学习打下坚实的基础。
八年级数学上册知识点汇总
八年级数学上册知识点汇总下面是八年级数学上册知识点汇总:一、代数部分1. 代数基础数和数的加减运算、数的相反数和绝对值、分数的加减乘除运算、分数的化简、小数的加减乘除运算、科学计数法。
2. 一元一次方程一元一次方程的定义、等式的性质、解一元一次方程的基本思路、绝对值方程、含有分数的方程、含有小数的方程。
3. 几何图形直线、射线、线段的基本概念、角的基本概念、角的度量、同角同旁、平行线与转角定理、三角形的基本概念、三角形的性质、等腰三角形、直角三角形、等边三角形。
4. 一元一次不等式一元一次不等式的定义、不等式的性质、解一元一次不等式、绝对值不等式。
5. 平面坐标系平面直角坐标系的概念、坐标的性质、点、线、图形在平面直角坐标系中的表示方法、二维几何变换的概念。
6. 变量与常量变量的概念、变量之间的关系、代数式、代数式的展开与因式分解、多项式的加减运算、多项式的乘法。
7. 二元一次方程组二元一次方程组的定义、解二元一次方程组的基本思路、两个一元一次方程组成二元一次方程组、解二元一次方程组的一般方法、实际问题与二元一次方程组模型。
二、几何部分1. 平面图形的认识面、多边形、圆、面积的概念、相似、全等、等角。
2. 空间图形的认识正方体、长方体、圆柱、圆锥、圆台、球的概念、表面积和体积的计算方法。
3. 直角三角形的认识勾股定理、直角三角形中角的关系、相似三角形的性质。
4. 同比例线段的认识比例的概念、比例线段的概念、点的分段式、比例两端点的坐标式。
5. 角度计量角的概念、角度的度量、角的分类。
6. 几何证明几何证明的基本概念、几何证明的方法、建立几何证明。
以上是八年级数学上册的知识点汇总,掌握这些知识点对于高中数学的学习及数学竞赛的参加都有着重要的意义,希望同学们认真学习。
八年级上册数学知识点归纳(5篇)
八年级上册数学知识点归纳(5
篇)
新学期已经开始,同学们即将进入紧张的学习生活。
以下是白话文编写的八年级上册数学知识点总结(5篇精选),希望能给你一些参考和帮助。
八年级上册数学知识点篇一
1、二元一次方程
①二元一次方程、含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。
②二元一次方程的解、适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
2、二元一次方程组
①含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
②二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
③二元一次方程组的解法代入(消元)法、加减(消元)法
④一次函数与二元一次方程(组)的关系:
一次函数与二元一次方程的关系:直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解
线性函数与二元线性方程组的关系:二元线性方程组的解可以看作是两个线性函数之和的像的交集。
当函数图象有交点时,说明相应的二元一次方程组有解;
当函数图像(直线)平行,即没有交点时,说明对应的二元线性方程组无解。
数学初二上册知识点篇二
乘法和除法,因式分解和三角形的分数,全等三角形,轴对称和代数表达式。
(1)三角形:是初中数学的基础,中考命题中的重点。
中考试题分值约为18-24分,以填空,选择,解答题,也会出现一些证明题目。
数学八年级上册知识点归纳
数学八年级上册知识点归纳想要了解初二数学知识点的小伙伴,赶紧来瞧瞧吧!下面由为你精心准备了“数学八班级上册知识点归纳”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!数学八班级上册知识点归纳一次函数(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数。
(2)正比例函数图像特征:一些过原点的直线。
(3)图像性质:①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k0,向上平移;当b0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;③当k0时,直线y=kx+b与y轴正半轴有交点为(0,b);⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);(10)求一次函数的解析式:即要求k与b的值;(11)画一次函数的图像:已知两点。
用函数观点看方程(组)与不等式(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。
从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标。
拓展阅读:初二数学复习方法有哪些一、克服心理疲劳第一,要有明确的学习目的。
学习就像从河里抽水,动力越足,水流量越大。
动力来源于目的,只有树立正确的学习目的,才会产生强大的学习动力;第二,要培育浓厚的学习爱好。
爱好的形成与大脑皮层的兴奋中心相联系,并伴有愉快、喜悦、乐观的情绪体验。
而心理疲劳的产生正是大脑皮层抵制的消极情绪引起的`。
八年级上册数学知识点归纳
八年级上册数学知识点归纳八年级上册数学是初中数学学习的重要阶段,为后续的学习打下坚实的基础。
以下是对八年级上册数学知识点的详细归纳。
一、三角形(一)三角形的相关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形的边:组成三角形的三条线段。
3、三角形的内角:三角形相邻两边所组成的角。
4、三角形的外角:三角形的一边与另一边的延长线所组成的角。
(二)三角形的性质1、三角形的内角和为 180°。
2、三角形的外角等于与它不相邻的两个内角的和。
3、三角形任意两边之和大于第三边,任意两边之差小于第三边。
(三)三角形的分类1、按角分类:锐角三角形、直角三角形、钝角三角形。
2、按边分类:等腰三角形(等边三角形是特殊的等腰三角形)、不等边三角形。
(四)全等三角形1、全等三角形的概念:能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质:全等三角形的对应边相等,对应角相等。
3、全等三角形的判定方法:SSS(边边边):三边对应相等的两个三角形全等。
SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。
ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。
AAS(角角边):两角和其中一角的对边对应相等的两个三角形全等。
RHS(斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。
二、轴对称(一)轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
(二)轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
(三)线段的垂直平分线经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
线段垂直平分线上的点与这条线段两个端点的距离相等。
(四)等腰三角形1、等腰三角形的性质等腰三角形的两个底角相等(简写成“等边对等角”)。
八年级上册数学知识点归纳总结
八年级上册数学知识点归纳总结数学作为一门基础学科,对于每个学生来说都是必修的科目之一,也是学生中普遍认为“难以掌握”的科目之一。
因此,在掌握基本概念和方法后,我们需要对数学知识点进行归纳总结,以更好地理解和记忆数学知识。
一、代数1. 一元一次方程一元一次方程是数学中最基本的代数方程之一,通常用x表示未知数,一般形式为ax + b = c。
解方程的方法包括平移、配方法、消元和用图像法等。
2. 一元一次不等式一元一次不等式也是代数学中的一个基础知识点,一般形式为ax + b < c或者ax + b > c。
解不等式同样有多种方法,其中最常见的是平移和乘除等。
3. 带绝对值的方程和不等式带绝对值的方程和不等式包括单个绝对值的方程和不等式,以及两个绝对值的联立方程和联立不等式。
解这类问题可以考虑绝对值的取值范围和化简等方法。
4. 二元一次方程二元一次方程是一类同时含有两个未知数x,y的方程,一般形式为ax + by = c。
解这类问题的方法包括相减法、代入法、消元法和作图法等。
二、几何1. 平面几何基本概念平面几何的基本概念包括点、线、面、平行线、垂直线等,这些概念是学习几何知识的基础。
2. 常见的几何图形常见的几何图形有点、线、角、三角形、四边形、圆、正多边形等,学习这些图形的特性可以帮助我们更好地理解和应用几何知识。
3. 同边内角和定理、角平分线定理同边内角和定理和角平分线定理是学习几何知识必须要了解的两个定理。
同边内角和定理指的是一个点在两条平行线之间作截线时,同侧内角之和为180度。
角平分线定理指的是一条直线把一个角平分成两个相等的角,这条线称为角平分线。
4. 平行线的性质平行线的性质是学习几何知识的重要部分,包括等价定理、夹角定理、平行线截切定理等等。
三、数论1. 基础数论知识基础数论知识包括奇偶性、素数、公因数和最大公因数等,掌握这些知识可以帮助我们更好地了解数字的性质和特定。
2. 分解质因数分解质因数是一种常用的数论方法,它通过对一个数进行因数分解,将它分解成若干质数的积的形式。
2019-初二数学上册知识点总结-推荐word版 (1页)
2019-初二数学上册知识点总结-推荐word版
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
初二数学上册知识点总结
除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初二数学上册知识点总结,希望对大家的学习有一定帮助。
1 全等三角形的对应边、对应角相等
2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
5 边边边公理(SSS) 有三边对应相等的两个三角形全等
6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
7 定理1 在角的平分线上的点到这个角的两边的距离相等
8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
9 角的平分线是到角的两边距离相等的所有点的集合
10 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)
21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
23 推论3 等边三角形的各角都相等,并且每一个角都等于60
小编为大家整理的初二数学上册知识点总结相关内容大家一定要牢记,以便不断提高自己的数学成绩,祝大家学习愉快!。
(完整word版)初二数学上册知识点汇总
数学知识提纲姓名初二上册初二数学(上册)知识点总结第一章勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即22c2+ba=2、勾股定理的逆定理(直角三角形的判定条件)如果三角形的三边长a,b,c有关系22c2+,那么这个三角形是直角三角形,且最长边所对的a=b角是直角.3、勾股数:满足22c2+的三个正整数,称为勾股数。
a=b第二章实数一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0。
1010010001…等;(4)某些三角函数值,如sin60o等二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0).零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数.4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用.5、估算三、平方根、算术平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a",读作根号a。
2019年《数学》(八年级上册)知识点总结
《数学》(八年级上册)知识点总结第一章数一、数的观点及分1、数的分正有理数有理数零有限小数和无穷循小数数有理数正无理数无理数无穷不循小数无理数2、无理数:无穷不循小数叫做无理数。
在理解无理数,要抓住“无穷不循” 一之,起来有四:( 1)开方开不尽的数,如7 ,3 2 等;( 2)有特定意的数,如周率π,或化后含有π的数,如π+8 等;3(3)有特定构的数,如 0.1010010001 ⋯等;(4)某些三角函数,如 sin60 o等二、平方根、算数平方根和立方根1、算平方根:一般地,假如一个正数x 的平方等于a,即 x2=a,那么个正数x 就叫做 a 的算平方根。
特地,0 的算平方根是0。
b5E2RGbCAP表示方法:作“ a ”,作根号a。
性:正数和零的算平方根都只有一个,零的算平方根是零。
2、平方根:一般地,假如一个数x 的平方等于a,即 x2 =a,那么个数x 就叫做 a 的平方根(或二次方根)。
p1EanqFDPw表示方法:正数 a 的平方根做“ a ”,作“正、根号a”。
性:一个正数有两个平方根,它互相反数;零的平方根是零;数没有平方根。
开平方:求一个数 a 的平方根的运算,叫做开平方。
a 0注意 : a 的两重非性:a03、立方根一般地,假如一个数x 的立方等于a,即 x3=a 那么个数x 就叫做 a 的立方根(或三次方根)。
表示方法:作3 a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意: 3a3a ,这说明三次根号内的负号能够移到根号外面。
三、二次根式计算1、含有二次根号“”;被开方数 a 一定是非负数。
2、性质:( 1) (a )2 a(a0)a(a0)( 2) a 2aa( a 0)( 3)ab a b (a 0, b 0) ( abab (a 0, b 0) )( 4)a a(a 0, b 0)(a a( a 0, b 0) )bbbb3 、 化 简 二 次 根 式 : 把 二 次 根 式 被 开 方 数 的 完 全 平 方 因 式 移 到 根 号 外 。
2019学年八年级数学上册 知识点总结
知识点总结1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角。
八年级上册数学知识点大全归纳
八年级上册数学知识点大全归纳八年级上册数学知识点大全可以归纳以下几个方面:
1. 数与代数
- 实数及其表示
- 分数、小数、百分数的相互转换
- 整数的性质与运算
- 同底数幂的运算
- 平方根与立方根及其性质
- 简单的代数式与方程式
2. 几何
- 角的概念及性质
- 相交直线与平行线
- 等腰三角形、等边三角形及其性质
- 直角三角形、勾股定理
- 平面镜像、中心对称
- 长方体、正方体等的表面积与体积
- 三角形的面积与海伦公式
3. 函数与图像
- 函数及函数关系的表示
- 一次函数与二次函数的性质与图像
- 正比例关系与反比例关系
- 常用的函数类型及其图像
4. 数据的统计与概率
- 数据的整理、处理与表示
- 平均数、中位数、众数的计算
- 概率的概念与计算
5. 实际问题的解决
- 运用数学知识解决实际问题的能力
以上列举的只是数学知识点的一部分,根据不同教材和学校的要求,具体还会有一些其他的知识点。
八年级上册数学知识点归纳
八年级上册数学知识点归纳八年级上册数学知识点归纳(精选3篇)数学不仅是一门科学,而且是一种普遍适用的技术。
它是科学的大门和钥匙,学数学是令自己变的理性的一个很重要的措施,数学本身也有自身的乐趣。
下面是为大家整理的八年级上册数学知识点归纳,希望能帮助到大家!八年级上册数学知识点归纳(篇1)第十五章整式的乘除与分解因式一.知识概念1.同底数幂的乘法法则:(m,n都是正数)2..幂的乘方法则:(m,n都是正数)3.整式的乘法(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
(3).多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
4.平方差公式:5.完全平方公式:6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n 都是正数,且mn).在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的`;当a0时,a-p的值可能是正也可能是负的,如,④运算要注意运算顺序.7.整式的除法单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.八年级上册数学知识点归纳(篇2)数学整式知识点(一)整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册
第十一章三角形
11.1 与三角形有关的线段【高、中线(重心)、角平分线】
两边之差<第三边<两边之和。
按边分类、三角形的稳定性。
11.2 与三角形有关的角
三角形内角和定理:三角形三个内角的和等于180º。
直角三角形的两个锐角互余。
有两个角互余的三角形是直角三角形。
推论:三角形的外角等于与它不相邻的两个内角的和。
备注:推论和定理一样,可以作为进一步推理的依据。
11.3 多边形及其内角和
多边形:在平面内,由一些线段首尾顺次相接组成的封闭式图形。
对角线:连接多边形不相邻的两个顶点的线段。
正多边形:各个角都相等,各条边都相等的多边形。
n边形内角和等于(n-2)×180º。
多边形的外角和等于360º。
第十二章全等三角形
12.1 全等三角形(对应顶点、对应边、对应角)
全等形:能够完全重合的两个图形。
全等三角形:能够完全重合的两个三角形。
全等三角形的性质:对应边相等,对应角相等。
12.2 三角形全等的判定
SSS边边边
SAS边角边
ASA 角边角
AAS角角边
HL斜边、直角边
12.3 角的平分线的性质(角的平分线上的点到角的两边的距离相等)
角的内部到角的两边的距离相等的点在角的平分线上。
证明几何命题的大概步骤:
1、明确命题中的已知和求证;
2、根据题意,画出图形,并用符号表示已知和求证;
3、经过分析,找出由已知推出要证的结论的途径,写出证明过程。
第十三章轴对称
13.1 轴对称(对称点)
轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合。
这条直线就是它的对称轴。
垂直平分线:经过线段中点并且垂直于这条线段的直线。
图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
线段垂直平分线的性质:垂直平分线上的点到两端的距离相等。
若PA=PB,点C为AB中点,则PC⊥AB或点P在线段AB的垂直平分线上。
13.2 画轴对称图形
先画对称点(过该点画对称轴的垂线,取等长),然后连接对称点,形成轴对称图形。
13.3 等腰三角形
概念:有两边相等的三角形。
性质:等边对等角,三线合一(顶角平分线、底边上的中线、底边上的高)。
判定:等角对等边
等边三角形:三边都相等的特殊的等腰三角形。
三个内角都相等,每个内角60º。
(判定:三个角都相等的三角形;有一个角是60º的等腰三角形。
)
在RtΔ中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。
(在RtΔ中,斜边上的中线等于斜边的一半。
)
13.4 课题学习最短路径问题
利用轴对称、平移作出最短路径选择。
(两点之间线段最短)
第十四章整式的乘法与因式分解
14.1 整式的乘法
同底数幂的乘法:a m ·a n = a m + n(m、n都是正整数)
幂的乘方:(a m)n = a m n(m、n都是正整数)
积的乘方:(ab)n = a n b n(n为正整数)
同底数幂的除法:a m÷a n = a m - n(a ≠ 0 ,m、n都是正整数,并且m>n)
零指数幂:a0 = 1(a ≠ 0 )
单项式与单项式相乘,单项式与多项式相乘,多项式与多项式相乘。
(利用运算律和上面的运算性质解答)14.2 乘法公式
平方差公式:(a+b)(a-b)= a2 - b2
完全平方公式:(a+b)2 = a2 + 2ab + b2
(a-b)2 = a2 - 2ab + b2
添括号法则:a+b+c = a+(b+c) a-b-c = a - (b+c) 举例:a-b+c = a - (b-c)
14.3 因式分解(几个整式乘积的形式)
式子的变形:这个多项式的因式分解= 把这个多项式因式分解。
1、提公因式法(多项式各项有公因式)
2、公式法(3个乘法公式左右互换)
3、十字相乘法(补充)
第十五章分式
15.1 分式:A/B。
(A、B表示两个整式,并且B中含有字母。
B ≠ 0分式才有意义。
)
分式的性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。
约分、最简分式、通分、最简公分母。
15.2 分式的运算
乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减。
分式的乘方:要把分子、分母分别乘方。
整数指数幂:正整数指数幂,零指数幂,负整数指数幂(a-n = 1/a n , a≠0)。
归结:a m ·a n = a m + n(m、n是整数)
(a m)n = a m n(m、n是整数)
(ab)n = a n b n(n是整数)
备注:分子、分母是多项式时,通常先分解因式,再约分。
15.3 分式方程
概念:分母中含未知数的方程。
最简公分母不为0→是分式方程的解;
步骤:分式方程→整式方程→X = a →最简公分母为0 →不是分式方程的解。
去分母解整式方程检验。