山东省临沂市中考数学模拟试卷三含解析含答案

合集下载

2024年山东省临沂初中学业水平考试模拟试题(三)含答案

2024年山东省临沂初中学业水平考试模拟试题(三)含答案

2024年山东省临沂初中学业水平考试数学模拟试题(三)注意事项:1.本试卷分第一卷(选择题)和第二卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签宇笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第一卷(选择题共36分)一、选择题(本大题共12小题.每小题3分,共36分)在每小题所给出的四个选项中, 只有一项是符合题目要求的.1.﹣2024倒数的绝对值为( ) A .20241B .20241-C .2024D .﹣20242.如图,直线AB 与CD 相交于点O ,则∠BOD 的余角为( )A .40︒B .50︒C .55︒D .60︒3.在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中,榫的俯视图是( )A .B .C .D .4. 在平面直角坐标系中,已知点P (2,a )与点Q (b ,-1)关于y 轴对称,则a 与b 的和为( ) A.1 B.-1 C.3 D.-35.据中国载人航天工程办公室消息,神舟十八号载人飞船于北京时间2024年4月25日20时58分57秒在酒泉卫星发射中心发射成功。

4月26日,飞船升空6.5小时后采用自主快速交会对接模式,对接于中国空间站天和核心舱径向对接口,形成三船三舱组合体。

当天05时04分,神舟十八号航天员乘组入驻中国空间站;他们将在400000-450000米的轨道上飞行.将数字450000用科学记数法表示为( ) A .4.5×105 B .0.45×106 C .4.5×106 D .45×104 6.下列整式与-4a 2b 为同类项的是( ) A .7ab 2 B .﹣4ab 2 C .3a 2b D .-a 2bc7.国际数学家大会每四年举行一届,下面四届国际数学家大会会标中不是中心对称图形的是( )A .B .C .D .8.若式子3+x +x ﹣3在实数范围内有意义,则x 的取值范围是( )A .x >﹣3B .x ≥﹣3C .x ≥﹣3且x ≠0D .x ≤﹣3且x ≠0A 1822=± B .1211-=--x x x C .222)n m n m -=-( D .2229332-÷=-y x xy x y 9.从1,-2,-3这三个数中随机抽取两个不同的数,分别记作m 和n .若点A 的坐标记作(),m n ,则点A 在双曲线xy 6=上的概率是( )A .13B .23C .12D .5610.如图,AB ∥CD ,AC ,BD 相交于点E ,AE =2,EC =4,DE =6,则BD 的长为( C ) A .3 B .8 C .9 D .1211.在同一平面直角坐标系中,一次函数y =ax +b 与y =mx +n (a <m <0)的图象如图所示.小星根据图象得到的下列结论中不正确的有( )A.在一次函数y =mx +n 的图象中,y 的值随着x 值的增大而减小;B.方程组的解为;C.方程mx +n =0的解为x =2;D.当x =0时,ax +b =﹣1.12.下列图形是黄金矩形的折叠过程:第一步,如图(1),在一张矩形纸片一端折出一个正方形,然后把纸片展平;第二步,如图(2),把正方形折成两个相等的矩形再把纸片展平;第三步,折出内侧矩形的对角线AB ,并把AB 折到图(3)中所示的AD 处; 第四步,如图(4),展平纸片,折出矩形BCDE 就是黄金矩形.则下列比例成立的是( ) A .NDDEDE CD =B .NDDEAD AC =C .ADACDE CD =D .ADDEDE CD =第二卷(非选择题共84 分)注意事项:1.第二卷分填空题和解答题.2.第二卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分. 二、填空题(本大题共4小题,每小题3分,共12分) 13.已知一个正多边形的边心距与边长之比为32,则这个正多边形的边数是 . 14.数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法,得第2题图 第10题图 第11题图 第14题图 第15题图 第16题图到(1)12342n n n ++++++=(n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a =,以此类推.则a 2024= .15.如图,在矩形ABCD 中,点E 为BA 延长线上一点,F 为CE 的中点,以B 为圆心,BF 长为半径的圆弧过AD 与CE 的交点G ,连接BG .若4AB =,10CE =,则AG = .16.如图,已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,且过点()1,0-,顶点在第一象限,其部分图象如图所示,给出以下结论:①0ab <;②420a b c ++>;③30a c +>;④若()11,A x y ,()22,B x y (其中12x x <)是抛物线上的两点,且122x x +>,则12y y >,其中正确的是 .(只填写序号) 三、解答题(本大题共7小题,共72分)17.(本题满分12分,每小题6分)计算:(1)解不等式组并把它的解集在数轴上表示出来.(2)化简()•.下面是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是 ,乙同学解法的依据是 ;(填序号) ①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律. (2)请选择一种解法,写出完整的解答过程.18.(本题满分8分)某实验学校学校组织七、八年级学生参加了“寒假来临 安全先行”安全主题教育知识测试(满分100分).已知七、八年级现各有200人,现从两个年级分别随机抽取10名学生的测试成绩x (单位:分)进行统计:七年级 86 94 79 84 71 90 76 83 90 87 八年级 88 76 90 78 87 93 75 87 87 79 整理如下: 年级平均数 中位数 众数 方差七年级84 a90 44.4八年级84 87 b36.6根据以上信息,回答下列问题:a_______,b=________.(1)填空:=A同学说:“这次测试我得了86分,位于年级中等偏上水平”,由此可判断他是________年级的学生;(2)学校规定测试成绩不低于85分为“优秀”,估计该校这两个年级测试成绩达到“优秀”的学生总人数;(3)你认为哪个年级的学生掌握“寒假来临安全先行”安全主题教育知识的总体水平较好?请给出一条理由.19.(本题满分8分)为推动城市照明节能降耗,实现精准绿色亮灯,临沂市城管局市政管理服务中心经过一个多月的科学论证,连续作业,全面完成城区照明“半夜灯”优化调整。

2021年山东省临沂市中考数学三轮模拟试卷(附答案解析)

2021年山东省临沂市中考数学三轮模拟试卷(附答案解析)

2021年临沂市九年级三轮模拟验收卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第Ⅰ卷(选择题共42分)一、选择题(本大题共14小题,共42.0分)1.计算(−2)3+|3|的结果是()A. 12B. 5C. −5D. −122.如图,已知AB//CD,CE平分∠ACD,∠A=110°,则∠ECD等于()A. 110°B. 70°C. 55°D. 35°3.不等式3x+2≥5的解集是()C. x≤1D. x≥−1A. x≥1B. x≥734.下列四个几何体中,左视图为长方形的是()A. B. C. D.5.分解因式3a2b−6ab+3b的结果是()A. 3b(a2−2a)B. b(3a2−6a+1)C. 3(a2b−2ab)D. 3b(a−1)26.如图,在Rt△ABC中,∠ACB=90°,CA=CB,M,N分别AB上的两动点,且∠MCN=45°,下列结论:①AB=√2AC;②CM2−CN2=NB⋅NA−MB⋅MA;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN,其中正确的有()A. 1个B. 2个C. 3个D. 4个7.计算5x3+2x3的结果是()A. 7B. 7x3C. 7x6D. 3x38.掷两枚质地相同的硬币,正面都朝上的概率是()A. 1B. 12C. 14D. 09.化简1a−1−aa−1,结果正确的是()A. −1B. 1C. 0D. ±110.重庆某小区开展“节约用水,从我做起”的活动,一个月后,社区居委会从小区住户中抽取11个家庭与他们上个月的用水量进行比较,统计出节水情况如下表所示,则这11个家庭的节水量(m3)的平均数和中位数分别是()节水量(m3)0.30.40.50.60.70.8家庭数(个)224111A. 0.3和0.5B. 0.5和0.5C. 0.3和4D. 0.5和411.若一直角三角形两边长为4和5,则第三边长为()A. 3B. √41C. 3或√41D. 不确定12.已知A(x1,y1)B(x2,y2)在正比例函数上y=−12x的图象上,若y1<y2,则x1与x2的关系为()A. x1>x2B. x1=x2C. x1<x2D. 无法确定13.如图,已知▱AOBC的顶点O(0,0),A(−1,3),点B在x轴的正半轴上,按以下步骤作图:①以点O为圆心、适当长度为半径作弧,分别交OA、OB于点D,E;②分别以点D,E为圆心、大于12DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G.则点G的坐标为()A. (√10,3)B. (√10−1,3)C. (4−√10,3)D. (√10−3,3)14.羽毛球比赛中,某次羽毛球的运动曲线可以看作是抛物线y=的一部分,其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的表达式是()A. y=B. y=C. y=D. y=第Ⅱ卷(非选择题共78分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二、填空题(本大题共5小题,共15.0分)15.计算:√15÷(√5+√3)=______.16.知P1(a−1,4)和P2(2,b)关于x轴对称,则(a+b)2021的值为______.17.将一箱书分给若干同学,若每人分5本,还剩12本;若每人分8本,还缺6本.则这箱书一共有______本.18.在①−√4,②3.14,③π,④√10,⑤1.5⋅1⋅,⑥227中,无理数是______,分数是______(填序号).19.在△ABC是AB=5,AC=3,BC边的中线的取值范围是______.三、计算题(本大题共2小题,共14.0分)20.按要求解题.(1)先化简(xx−2−3x−2)⋅x2−4x−3,再求当x=4时的值.(2)化简:(3xx−2−xx+2)÷xx2−4,并从−2,、0、1、2四个数中选一个合适的数代入求值.(3)解分式方程:164−x2+x−2x+2=1.21.为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据统计图,请估计该校七年级720名学生选“数学故事”的人数;(2)学校将“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”.已知小聪不在A班,求他与小慧被分到同一个班的概率.(要求列表或画树状图)四、解答题(本大题共5小题,共49.0分)22.如图,海中有一个小岛A,它的周围25海里内有暗礁,今有货船由西向东航行,开始在A岛南偏西60°的B处,往东航行20海里后到达该岛南偏西45°的C处后,货船继续向东航行,你认为货船在航行途中有没有触礁的危险.如图,已知AB为⊙O的直径,BD为⊙O的切线,过点B的弦BC⊥OD交⊙O于点C,垂足为M.(1)求证:CD是⊙O的切线;(2)当BC=BD,且BD=6cm时,求图中阴影部分的面积(结果不取近似值).23.某批发市场经销龟苓膏粉,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小明计划购买这两种品牌的龟苓膏粉共1000包,解答下列问题:(1)若购买这些龟苓膏粉共花费22000元,求两种品牌的龟苓膏粉各购买了多少包?(2)若凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元,若购买会员卡并用此卡购买这些龟苓膏粉共花费y元,设A品牌购买了x包,请求出y与x之间的函数关系式.24.如图,菱形ABCD中,对角线AC和BD交于点O,过点D作DE⊥BC分别交BC、AC于点E和点F,点G是ED延长线上一点,且满足DG=DC,延长BD交CG于点H.(1)若BD=2√3,BE=1,求AC的长;(2)求证:BD=√2GH;(3)若AC:CG=6:5,请直接写出DH:CF的值.25.如图,抛物线y=ax2+bx+3经过点A(−1,0),点B(3,0)与y轴交于点C.(1)求抛物线的表达式;(2)如图1,点D是第一象限内抛物线上一点,连接BC,DO交于点E,若S△CDE:S△COE=2:3,求D的坐标;(3)如图2,点P是抛物线上一点,连接BP,将BP沿直线BC折叠,当点P恰好落在抛物线的对称轴上时,求P点的横坐标.答案和解析1.【答案】C2.【答案】D3.【答案】A4.【答案】A5.【答案】D6.【答案】C【解析】解:①在Rt△ABC中,∠ACB=90°,CA=CB,AB=√AC2+CB2=√2AC2=√2AC,故①正确;②如图1,过点C作CD⊥AB于D,∵∠ACB=90°,CA=CB,CD⊥AB∴AD=BD=CDCM2=CD2+MD2,CN2=CD2+DN2∴CM2−CN2=MD2−DN2=(MD+DN)(MD−DN)=MN(MD−DN)=MN(MB−NA)∵NB⋅NA−MB⋅MA=NB⋅NA−MB(NA−MN)=MB⋅MN+NB⋅NA−MB⋅NA=MB⋅MN−NA(MB−NB)=MB⋅MN−NA⋅MN=MN(MB−NA)∴CM2−CN2=NB⋅NA−MB⋅MA故②正确;③如图2,过点B作BM′⊥AB,使BM′=AM,连接CM′,M′N,则∠ABM′=90°∵∠ACB=90°,CA=CB,∴∠A=∠ABC=45°∴∠CBM′=45°=∠A在△CBM′和△CAM中{CB=CA∠CBM′=∠A BM′=AM∴△CBM′≌△CAM(SAS)∴CM′=CM∠BCM′=∠ACM∴∠M′CN=∠BCM′+∠BCN=∠ACM+∠BCN=∠ACB−∠MCN=90°−45°=45°=∠MCN在△M′CN和△MCN中{CM′=CM∠M′CN=∠MCN CN=CN∴△M′CN≌△MCN(SAS)∴M′N=MN在Rt△M′BN中,∠M′BN=90°,M′B2+BN2=M′N2∴AM2+BN2=MN2故③正确;④如图2,∵△CBM′≌△CAM,△M′CN≌△MCN∴S△CBM′=S△CAM,S△CNM′=S△MCN,∴S△CAM+S△CBN=S△CBM′+S△CBN=S△CNM′+S△BNM′=S△MCN+S△BNM′>S△MCN,故④错误;故选:C.7.【答案】B【解析】解:5x3+2x3=(5+2)x3=7x3,故选:B.8.【答案】C【解析】解:画树状图为:共有4种等可能的结果数,其中正面都朝上的结果数为1,所以正面都朝上的概率是14.故选:C.9.【答案】A【解析】解:原式=1−aa−1=−a−1a−1=−1,故选:A.10.【答案】B【解析】解:这11个数据的平均数为0.3×2+0.4×2+0.5×4+0.6×1+0.7×1+0.8×111=0.5,中位数为0.5,故选:B.11.【答案】C【解析】解:当5是直角边时,则第三边=√42+52=√41;当5是斜边时,则第三边=√52−42=3.综上所述,第三边的长是√41或3.故选:C.12.【答案】A【解析】解:∵正比例函数上y=−12x中−12<0,∴y随x的增大而减小,又∵A(x1,y1)B(x2,y2)在正比例函数上y=−12x的图象上,∴若y1<y2,则x1与x2的关系为x1>x2,故选:A.13.【答案】B【解析】【解答】解:∵▱AOBC的顶点O(0,0),A(−1,3),∴AH=1,HO=3,∴Rt△AOH中,AO=√10,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG//OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=√10,∴HG=√10−1,∴G(√10−1,3),故选:B.14.【答案】A解:∵出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,∴B点的坐标为:(0,1),A点坐标为(4,0),将两点坐标代入解析式得:,解得:∴这条抛物线的解析式是:y =−故选A .15.【答案】5√3−3√52【解析】解:原式=√15√5+√3=√15(√5−√3)(√5+√3)(√5−√3) =5√3−3√52,故答案为:5√3−3√52. 16.【答案】−1【解析】解:∵P 1(a −1,4)和P 2(2,b)关于x 轴对称, ∴a −1=2,b =−4,则a =3,b =−4, ∴(a +b)2021=−1,故答案为:−1.17.【答案】42【解析】解:设这箱书一共有x 本,共y 个同学参与分书, 依题意,得:{5y +12=x 8y −6=x,解得:{x =42y =6.故答案为:42.18.【答案】③、④ ②、⑤、⑥【解析】解:在①−√4,②3.14,③π,④√10,⑤1.5⋅1⋅,⑥227中,无理数是③、④,分数是②、⑤、⑥.故答案为:③、④,②、⑤、⑥.19.【答案】1<AD <4【解析】解:延长AD 到E ,使AD =DE ,连接BE , ∵AD 是△ABC 中线,∴BD =DC , 在△ADC 和△EDB 中∵{AD =DE∠ADC =∠EDB CD =BD ,∴△ADC≌△EDB(SAS), ∴AC =BE =3,∵在△ABE 中,根据三角形的三边关系定理得:5+3>AE >5−3, ∴2<2AD <8,1<AD <4,故答案为:1<AD <4.20.【答案】解:(1)原式=x−3x−2⋅(x+2)(x−2)x−3=x +2,当x =4时,原式=4+2=6; (2)原式=3x 2+6x−x 2+2x (x+2)(x−2)⋅(x+2)(x−2)x=2x(x+4)(x+2)(x−2)⋅(x+2)(x−2)x=2x +8,∵x ≠±2、0,∴x =1,则原式=2+8=10;(3)方程两边乘以x 2−4,得:−16+(x −2)2=x 2−4, 解得:x =−2,检验:当x =−2时,x 2−4=4−4=0, ∴x =−2是分式方程的增根,故原分式方程无解.21.【答案】解:(1)720×1815+27+18+36=135(人).答:估计该校七年级学生选“数学故事”的人数为135人. (2)画树状图如下:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2, 所以他和小慧被分到同一个班的概率=26=13. 22.【答案】解:过点A 作AD ⊥BC ,垂足为D ,∵∠ABC =30°,∠ACD =45°, ∴CD =AD =x ,BD =xtan30∘=√3x ,∴BC =BD −CD =√3x −x =20(海里),解得:x =10√3+10,所以货船在航行途中无触礁的危险.23.【答案】(1)证明:连接OC .∵OD ⊥BC ,O 为圆心,∴OD 平分BC .∴DB =DC , 在△OBD 与△OCD 中,{OB =OC DO =DO DB =DC∴△OBD≌△OCD.(SSS),∴∠OCD =∠OBD . 又∵AB 为⊙O 的直径,BD 为⊙O 的切线, ∴∠OCD =∠OBD =90°,∴CD 是⊙O 的切线; (2)解:∵DB 、DC 为切线,B 、C 为切点, ∴DB =DC .又DB =BC =6, ∴△BCD 为等边三角形.∴∠BOC =360°−90°−90°−60°=120°, ∠OBM =90°−60°=30°,BM =3.∴OM =BM ⋅tan30°=√3,OB =2OM =2√3.∴S 阴影部分=S 扇形OBC −S △OBC=120×π×(2√3) 2360−12×6×√3=4π−3√3(cm 2).24.【答案】解:(1)设小明需购买A 品牌龟苓膏a 包,B 品牌龟苓膏b 包,{a +b =100020a +25b =22000,得{a =600b =400,答:小明需购买A 品牌龟苓膏600包,B 品牌龟苓膏400包;(2)由题知:y =500+0.8×[20x +25(1000−x)]=500+0.8×[25000−5x]=−4x +20500,答:y 与x 之间的函数关系是y =−4x +20500.25.【答案】解:(1)∵四边形ABCD 为菱形,BD =2√3,∴OB =OD =√3,BD ⊥AC , 又∵DE ⊥BC ∴∠DEB =∠COB =90°, 又∵∠DBE =∠CBD , ∴△DEB∽△COB ,∴BEBO =BD BC,又∵BE =1,∴√3=2√3BC,∴BC =6.在Rt △BOC 中,由勾股定理得:OC =√BC 2−OB 2=√36−3 =√33,∴AC =2OC =2√33.∴AC 的长为2√33;(2)证明:过D 作DK//AC ,交CG 于K ,过D 作DI//CG ,交AC 于I ,连接BI ,如图:∵DG =DC ,∴∠DGH =∠DCK ,又∵∠GDH =∠BDE ,由(1)知△DEB∽△COB , ∴∠BDE =∠COB ,∴∠GDH =∠OCB , ∵AC 为菱形ABCD 的对角线,∴∠OCB =∠OCD ,∴∠GDH =∠OCD ,∵DK//AC ,∴∠OCD =∠CDK ,∴∠GDH =∠CDK ,在△GDH 和△CDK 中,{∠DGH =∠DCKDG =DC ∠GDH =∠CDK,∴△GDH≌△CDK(ASA),∴DH =DK .∵AC ⊥BD ,DK//AC ,∴DK ⊥DH ,∴△HDK 为等腰直角三角形,∠DHK =∠DKH =45°,∵DI//CG ,∴∠ODI =∠DHK =45°,在Rt △OBI 和Rt △ODI 中,OD =OB ,OI 为公共边,∴△ODI≌△OBI ,∴∠OBI =∠ODI =45°,∴∠BDI =180°−45°−45°=90°,∴△BID 位等腰直角三角形,BD =√2GH ;(3)∵DI//KC ,DK//IC ,∴四边形DICK 为平行四边形,∴DI =KC ,∴△GDH≌△CDK ,∴GH =KC ,∴DI =GH ,∴BD =√2GH .∵AC CG =65,不妨设AC =6t ,CG =5t , 由(2)知DH =DK ,∴DH CF =DK CF∵DK//AC , ∠GKD =∠GCF ,又∠DGK =∠FGC ,△DGK∽△FGC ,∴DK FC =GK GC ,又△GDH≌△CDK ,∴GH =CK ,∵GK =GH +HK =CK +HK =HC∴DK FC =HC GC ,又DK//AC ,∴∠HDK =∠HOC ,∠HKD =∠HCO ,∴△HDK∽△HOC .∴HK HC =DK OC ∴HC =HK×OC DK∵Rt △DHK 为等腰直角三角形, ∴HK DK =√2,又OC =12AC =3t ,HC =3√2t ,HC GC =3√2t 5t =35√2,即DH CF =35√2. 26.【答案】解:(1)∵抛物线y =ax 2+bx +3经过点A(−1,0),点B(3,0), ∴{a −b +3=09a +3b +3=0,解得{a =−1b =2, 故抛物线的表达式为:y =−x 2+2x +3;(2)如图1,过点D 作y 轴的平行线交BC 于点H ,,∵y =−x 2+2x +3中,当x =0,y =3,∴C(0,3),∴OC =3,∵点B(3,0), 由点B 、C 的坐标可得,直线BC 的表达式为:y =−x +3,∵OC//DH ,∴△COE∽△HDE ,∴DH OC =DE OE =23,∴DH =2, 设点D(m,−m 2+2m +3),则点H(m,−m +3),则DH =−m 2+3m ,即−m 2+3m =2,解得:m =1或2,故点D(1,4)或(2,3);(3)如图2,设抛物线对称轴MN 交x 轴于N ,交直线BC 于F ,则将直线MN 沿BC 折叠得到直线l ,则直线l 与抛物线的交点P 即为所求点,∵y =−x 2+2x +3,∴对称轴为直线x =−22×(−1)=1,∴N(1,0),F(1,2),设直线NN′为y =x +n ,代入N(1,0)得,n =−1,∴直线NN′为y =x −1,由{y =x −1y =−x +3得{x =2y =1, ∴Q(2,1),∵Q 是线段NN′的中点,∴N′(3,2),∴直线l 为y =2,把y =2代入y =−x 2+2x +3得,2=−x 2+2x +3,解得x =1±√2,故点P(1+√2,2)或(1−√2,2).。

初中数学山东省临沂市中考模拟数学考试题及答案word解析版.docx

初中数学山东省临沂市中考模拟数学考试题及答案word解析版.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:的倒数是()A.6 B.﹣6 C.D.试题2:太阳的半径大约是696000千米,用科学记数法可表示为()A.696×103千米B.696×104千米C.696×105千米D.696×106千米试题3:下列计算正确的是()A.B. C. D.试题4:如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.140°评卷人得分试题5:化简的结果是()A.B.C. D.试题6:在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A.B.C.D. 1试题7:用配方法解一元二次方程时,此方程可变形为()A.B. C. D.试题8:不等式组的解集在数轴上表示正确的是()A.B.C.D.试题9:如图是一个几何体的三视图,则这个几何体的侧面积是()A.18cm2B.20cm2C.(18+2)cm2D.(18+4)cm2试题10:关于x、y的方程组的解是则的值是()A.5 B.3 C.2 D.1试题11:如图,在等腰梯形ABCD中,AD∥BC,对角线AC.BD相交于点O,下列结论不一定正确的是()A.AC=BD B.OB=OC C.∠BCD=∠BDC D.∠ABD=∠ACD试题12:如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数和的图象于点P 和Q,连接OP和OQ.则下列结论正确的是()A.∠POQ不可能等于90° B.C.这两个函数的图象一定关于x轴对称D.△POQ的面积是试题13:如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1 B.C.D.试题14:如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C 运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为()A.B.C.D.试题15:分解因式:= .试题16:计算:= .试题17:如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD= °.试题18:在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.试题19:读一读:式子“1+2+3+4+···+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为,这里“∑”是求和符号通过对以上材料的阅读,计算=__________.试题20:“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?试题21:某工厂加工某种产品.机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的倍,求手工每小时加工产品的数量.试题22:如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.试题23:如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.试题24:小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y与上市时间x的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?试题25:已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.试题26:如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A.O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.试题1答案:考点:倒数。

2021年山东省临沂市中考数学三模试卷(附详解)

2021年山东省临沂市中考数学三模试卷(附详解)

2021年山东省临沂市中考数学三模试卷一、选择题(本大题共14小题,共42.0分)1.有理数−0.1、−1、0、1中,最小的数是()A. −0.1B. −1C. 0D. 12.下列图案中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个3.下列说法正确的是()①最大的负整数是−1;②数轴上表示数2和−2的点到原点的距离相等;③当a≤0时,|a|=−a成立;④a的倒数是1aA. 2个B. 3个C. 4D. 04.如图是一个几何体的三视图,根据图中提供的数据(单位:cm),可求得这个几何体的体积为()A. 2cm3B. 3cm3C. 6cm3D. 8cm35.如图,五角星的五个角都是顶角为36°的等腰三角形,为了画出五角星,还需要知道∠ABC的度数,∠ABC的度数为()A. 36°B. 72°C. 100°D. 108°6.下列运算中正确的是()A. a2+b3=a2b3B. a4÷a=a4C. a2⋅a4=a8D. (−a2)3=−a57.估计(10√2−√45)×√1的运算结果应在哪两个连续自然数之间()5A. 3和4B. 4和5C. 5和6D. 6和78. 如果3x 7−m y n+3和−4x 1−4m y 2n 是同类项,那么m ,n 的值是( )A. m =−3,n =2B. m =2,n =−3C. m =−2,n =3D. m =3,n =−29. 在盒子里放有分别写有整式2,π,x ,x +1的四张卡片,从中随机抽取两张把卡片上的整式分别作为分子和分母,则能组成分式的概率是( ) A. 12 B. 13 C. 14 D. 16 10. 为了绿化校园,某班学生参与共种植了144棵树苗.其中男生每人种3棵,女生每人种2棵,且该班男生比女生多8人,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A. {x +y =1443x −2y =8B. {x −y =83x +2y =144 C. {y −x =82x +3y =144 D. {x +y =83x +2y =144 11. 已知数据x 1,x 2,x 3的平均数为a ,数据y 1,y 2,y 3的平均数是b ,则数据3x 1+y 1,3x 2+y 2,3x 3+y 3的平均数为( )A. 3+a +bB. 3(a +b)C. 13a +bD. 3a +b12. 如图,已知△ABC 的面积为20,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC :CF =5:2,DCFE 是平行四边形,则图中阴影部分的面积为( )A. 4B. 8C. 12D. 1413. 已知1a +1b =2,那么2a+3ab+2ba−ab+b =( )A. 6B. 7C. 9D. 1014. 如图,⊙O 的半径是5,点A 是圆周上一定点,点B 在⊙O 上运动,且∠ABM =30°,AC ⊥BM ,垂足为点C ,连接OC ,则OC 的最小值是( )A. 3−√32B. √32C. √33D. 5√32−52二、填空题(本大题共5小题,共15.0分)15.不等式3+2x≤−1的解集是______.16.若n−2m=4,则2014+2m−n=______.17.已知P1(−3,y1)、P2(2,y2)是一次函数y=−2x+1图象上的两个点,则y1______y2.18.如图,平行于BC的直线DE把△ABC分成的两部分S1、S2,若S1:S2=1:4,则AD:AB=______ .19.如图,在平面直角坐标系中,已知点A(2,9),B(3,1),点C,D分别是y轴正半轴和x轴正半轴上的两个动点,则当四边形ABDC的周长最小时,点C的坐标为______ .三、计算题(本大题共1小题,共6.0分)20.△ABC中∠B=90°,以B为圆心,AB为半径的⊙B交斜边AC于D,E为BC上一点使得DE=CE.(1)证明:DE为⊙B的切线;(2)若BC=8、DE=3,求线段AC的长.四、解答题(本大题共6小题,共48.0分)21.计算:(1)|2−√6|+(−12)−2+√3sin45°(2)√2(2cos45°−12sin60°)+√6422.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是______.(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数是______.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区7万用户中约有多少万户的用水全部享受基本价格?23.如图,某公安海上缉私局发现在我国领海的P处有一条走私船正以22海里/时的速度沿南偏东64°的方向向公海逃窜,于是缉私局命令位于点P北偏东30°方向A处的我公安缉私快艇前往拦截,已知P、A相距20海里,公安缉私快艇向正南方向行进计划在B处拦截走私船.(1)求A、B两处的距离;(结果保留整数)(2)若公安缉私快艇要在B处成功拦截走私船,则缉私快艇的速度至少为多少海里/时?【参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2,√2≈1.4,√3≈1.7,√5≈2.2】24.某市计划修建一条长80km的轻轨铁路.(1)原计划每月修建xkm,y个月可修建完.求y与x之间的函数表达式;(2)为使工程能提前3个月完成,需要将原定的工作效率提高12%.原计划完成这项工程用多少个月?25.已知二次函数y=ax2−4x+c的图象经过点A(−1,−1),B(3,−9).(1)求这个二次函数的表达式;(2)写出这条抛物线的对称轴和顶点坐标;(3)直接写出当x取何值时,y<0?26.如图1,在△ABC中,∠BAC的外角平分线交BC的延长线于点D.(1)线段BC的垂直平分线交DA的延长线于点P,连接PB,PC.求证:∠BPC=∠BAC;(提示:在BA的延长线上截取AF=AC,连接PF.)(2)如图2,若Q是线段AD上异于A,D的任意一点,判断QB+QC与AB+AC的大小,并予以证明.答案和解析1.【答案】B【解析】解:由题意,得−1<−0.1<0<1,故选:B.根据正数大于零,零大于负数,可得答案.本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.【答案】B【解析】解:第一个图形不是轴对称图形,也不是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,不是中心对称图形;第四个图形是轴对称图形,是中心对称图形;第五个图形是轴对称图形,是中心对称图形;故选:B.根据轴对称图形与中心对称图形的概念判断.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】B【解析】解:①最大的负整数是−1,正确;②数轴上表示数2和−2的点到原点的距离相等,正确;③当a≤0时,|a|=−a成立,正确;④a(a≠0)的倒数是1,错误;a故选:B.利用有理数,绝对值,数轴,倒数的意义判断即可.此题考查了有理数大小比较,有理数,数轴,绝对值,倒数,熟练掌握各自的性质是解本题的关键.4.【答案】B【解析】解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,此长方体的长与宽都是1,高为3,所以该几何体的体积为1×1×3=3cm3.故选B.根据三视图我们可以得出这个几何体是个长方体,它的体积应该是1×1×3=3cm3.本题考查了由三视图判断几何体及长方体的体积公式,本题要先判断出几何体的形状,然后根据其体积公式进行计算.5.【答案】D【解析】解:∵∠A=36°,∠ADB=∠ABD,=72°,∴∠ADB=∠ABD=180°−36°2∴∠ABC=180°−72°=108°.故选:D.=72°,再根据三角形的一个外角与它相邻根据三角形内角和定理求出∠ABD=180°−36°2的内角互补,即可求出∠ABC的度数.本题考查了多边形内角与外角,熟练掌握三角形内角和定理和三角形的一个外角与它相邻的内互补是解题的关键.6.【答案】D【解析】解:A、不是同类项不能合并,故A错误;B、a4÷a=a3,故B正确;C、a2⋅a4=a6,故C错误;D、(−a2)3=−a6,故D正确.故选:D.根据合并同类项法则,同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;对各选项分析判断后利用排除法求解.本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.7.【答案】A【解析】解:(10√2−√45)×√15 =10√2×√15−√45×√15=2√10−3,由于3<√10<4,所以6<2√10<7,所以3<2√10−3<4.故选:A .根据二次根式的运算法则和无理数的估算方法解答即可.此题主要考查了二次根式的运算和无理数的估算.解题的关键是掌握二次根式的运算法则和无理数的估算方法,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8.【答案】C【解析】【分析】本题考查了解二元一次方程组,同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同,属于基础题.根据同类项的定义,列出关于m ,n 的方程,求解即可.【解答】解:∵3x 7−m y n+3和−4x 1−4m y 2n 是同类项,∴{7−m =1−4m n +3=2n,解得:{m =−2n =3. 故选C .9.【答案】A【解析】【分析】此题考查概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=mn .用到的知识点为:分母中含有字母的式子是分式.列举出不放回的2次实验的所有情况,看抽取的两张卡片结果能组成分式的情况占总情况的多少即可.【解答】解:画树状图如下:由树状图可知,共有12种等可能结果,其中组成的是分式的有6种结果,所以能组成分式的概率是612=12,故选:A . 10.【答案】B【解析】解:由题意可得,{x −y =83x +2y =144, 故选:B .根据题意可以列出相应的二元一次方程组,本题得以解决.本题考查二元一次方程组的应用,解答本题的关键是明确题意,列出相应的二元一次方程组.11.【答案】D【解析】【分析】本题考查平均数的求法及其综合运用:x=1n(x1+x2+x3+⋯+x n).熟记公式是解决本题的关键.由题意可知:要计算数据3x1+y1,3x2+y2,3x3+y3的平均数,可以将其化简,这样可以用a与b来表示.【解答】解:平均数=(3x1+y1)+(3x2+y2)+(3x3+y3)3=3x1+3x2+3x3+y1+y2+y33=3(x1+x2+x3)3+y1+y2+y33=3a+b;故选D.12.【答案】B【解析】解:连接AF.∵BC:CF=5:2,S△ABC=20,∴S△ACF=25×20=8,∵四边形CDFE是平行四边形,∴DE//CF,EF//AC,∴S△DFB=S△DFC,∴S阴=S△ADF+S△DEC=S△AFC,∵EF//AC,∴S△AFC=S△ACE=8,∴S阴=8.故选:B.想办法证明S阴=S△ADF+S△DFC=S△AFC,再由EF//AC,可得S△AFC=S△ACE解决问题;本题考查平行四边形的性质、三角形的面积、等高模型等知识,解题的关键是熟练掌握等高模型解决问题,学会用转化的思想思考问题,属于中考常考题型.13.【答案】B【解析】解:∵1a +1b=2,∴a+bab=2,即a+b=2ab,则原式=2(a+b)+3aba+b−ab =4ab+3ab2ab−ab=7,故选:B.已知等式左边通分并利用同分母分式的加法法则计算,整理后代入原式计算即可求出值.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.【答案】D【解析】解:如图,设BM交⊙O于T,连接OT,OA,过点O作OH⊥AT于H,连接CH.∵∠B=30°,∴∠TOA=60°,∵OT=OA,∴△OTA是等边三角形,∴OT=OA=AT=5,∵OH⊥AT,∴TH=AH=52,OH=√OA2−AH2=√52−(52)2=5√32,∵AC⊥BM,∴∠ACT=90°,∴CH=52,∵OC≥OH−CH=5√32−52,∴OC的最小值为=5√32−52.故选:D.如图,设BM交⊙O于T,连接OT,OA,过点O作OH⊥AT于H,连接CH.解直角三角形求出CH,OH,根据OC≥OH−CH求解即可.本题考查圆周角定理,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考选择题中的压轴题.15.【答案】x≤−2【解析】解:因为3+2x≤−1,所以有2x≤−1,所以x≤−2.不等式两边同时减去3,再同时除以2即可解这个不等式.不等式两边同时减去一个数,或除以一个正数不等式方向不变.16.【答案】2010【解析】解:原式=2014−(n−2m).当n−2m=4时,原式=2014−4=2010.故答案为:2010.先将原式变形为2014−(n−2m),然后再进行计算即可.本题主要考查的是求代数式的值,能够对所求代数式进行适当变形是解题的关键.17.【答案】>【解析】解:∵一次函数y=−2x+1,∴y随x的增大而减小,∵P1(−3,y1)、P2(2,y2)是一次函数y=−2x+1图象上的两个点,−3<2,∴y1>y2,故答案为:>.根据题目中的函数解析式,可以得到函数图象的变化趋势,从而可以解答本题.本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.18.【答案】√55【解析】解:∵DE//BC,∴△ADE∽△ABC,∵S1:S2=1:4,∴S△ADE:S△ABC=1:5,∴AD:AB=√15=√55,故答案为:√55.利用相似三角形的判定定理和性质定理解答即可.本题主要考查了相似三角形的判定定理和性质定理,熟练运用性质定理是解答此题的关键.19.【答案】(0,5)【解析】解:将点A关于y轴对称到E,将点B关于x轴对称到F,连接EF,此时点C、D的位置如图C′、D′.根据对称性质,可得EF的长度为四边形ABDC的周长最小值.点E(−2,9)、点F(3,−1).设直线EF解析式为:y=kx+b.∴{−2k+b=93k+b=−1.∴{k=−2b=5.∴直线EF解析式为:y=−2x+5.当x=0时,y=5.∴点C的坐标为:(0,5).故答案为:(0,5).将点A关于y轴对称到E,将点B关于x轴对称到F,连接EF,EF的长度为四边形ABDC的周长最小值,求出直线EF的解析式即可求解.本题考查轴对称性质、待定系数法求直线解析式,点的坐标特征.关键在于利用对称找到点的坐标.属于拔高题.20.【答案】(1)证明:连BD,得∠C=∠CDE,∠A=∠ADB,而∠A+∠C=90°.所以∠CDE+∠ADB=90°即BD⊥DE.所以DE为切线.(2)解:∵CE=DE=3,BC=8,∴BE=5.在Rt△BDE中,BD=√52−32=4,∴Rt△ABC中AC=√82+42=4√5.【解析】(1)连BD,通过角度代换和三角形的内角和定理求得∠BDE=90°即可.(2)先得到BE,在△BDE中通过勾股定理可得到BD,再在△ABC中通过勾股定理求得AC.熟练掌握证明圆的切线方法,一般把证明圆的切线问题转化为证明线段垂直的问题.熟练利用勾股定理进行几何计算.21.【答案】解:(1)原式=√6−2+4+√3×√22=√6−2+4+√6 2=3√62+2;(2)原式=√2×(2×√22−12×√32)+√64=√2×(√2−√34)+√64=2−√64+√64=2.【解析】(1)直接利用负指数幂的性质以及特殊角的三角函数值分别化简得出答案;(2)直接利用特殊角的三角函数值分别化简得出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.22.【答案】(1)100;(2)90°×7=4.76(万户).(3)10+20+38100答:该地20万用户中约有4.76万户居民的用水全部享受基本价格.【解析】解:(1)10÷10%=100(户);答:此次调查抽取了100户的用水量数据,即样本容量是100.故答案是:100;(2)“15吨−20吨”部分的户数为100−(10+38+24+8)=20(户),补全图形:见答案20×360°=72°;100(3)金阿达啊【分析】(1)用10吨~15吨的用户除以所占的百分比,计算即可得解;(2)用总户数减去其它四组的户数,计算求出15吨~20吨的用户数,然后补全直方图即可;用“25吨~30吨”所占的百分比乘以360°计算即可得解;(3)用享受基本价格的用户数所占的百分比乘以7万,计算即可.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【答案】解:(1)过P作PC⊥AB于C,在Rt△ACP中,∵∠A=30°,PA=20海里,∴PC=12PA=10海里,AC=√3PC=10√3海里.在Rt△PBC中,∵∠B=64°,∴BC=PCtan64∘≈102=5(海里),∴AB=AC+CB=10√3+5≈22(海里).答:A、B两处的距离约为22海里;(2)在Rt△PBC中,∵∠PBC=64°,∴PB=PCsin64∘≈100.90≈11(海里).设缉私快艇的速度为x海里/时,由题意,得AB x ≤PB22,即22x≤1122,解得x≥44.答:缉私快艇的速度至少为44海里/时.【解析】本题主要考查了解直角三角形的应用−方向角问题,在此类题目中常用的方法是利用作高线转化为直角三角形进行计算.(1)过P作PC⊥AB于C,先解Rt△ACP,求得PC=12PA=10海里,AC=√3PC=10√3海里.再解Rt△PBC,得出BC=PCtan64∘≈5海里,代入AC+CB即可求出AB;(2)解Rt△PBC,求出PB=PCsin64∘≈11海里,再根据公安缉私快艇行驶AB所需的时间≤走私船行驶PB所需的时间列出不等式,求解即可.24.【答案】解:(1)由题意得:xy=80,则y=80x;(2)由题意得:80x −80(1+12%)x=3,解得:x=207,经检验:x=207是分式方程的解,y=80÷207=28,答:原计划完成这项工程用28个月.【解析】(1)根据题意可得等量关系:每月修建的长度×修建时间=80km ,根据等量关系,再列出函数关系式即可;(2)根据题意可得方程:80x −80(1+12%)x =3,解出x 的值,然后再原计划完成这项工程用多少个月即可.此题主要考查了反比例函数的应用,关键是正确理解题意,找出题目中的等量关系.25.【答案】解:(1)将A(−1,−1),B(3,−9)代入y =ax 2−4x +c ,∴{−1=a +4+c −9=9a −12+c解得:{a =1c =−6∴二次函数的解析式:y =x 2−4x −6(2)由(1)可知:y =x 2−4x −6=−(x −2)2−10∴对称轴为x =−2,∴顶点坐标为:(−2,−10)(3)令y =0代入y =x 2−4x −6,∴x =2±√10,又抛物线的开口向上,∴y <0时,∴2−√10<x <2+√10【解析】(1)根据待定系数法即可求出抛物线的解析式;(2)根据抛物线的解析式即可求出对称轴以及顶点坐标;(3)抛物线的开口方向以及与x 轴的交点坐标即可求出答案.本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的性质以及图象,本题属于基础题型.26.【答案】解:(1)如图1,在AE上截取AF=AC,连接PF,∵AD平分∠CAE,∴∠CAD=∠FAD,∵∠CAD+∠CAP=180°,∠FAD+∠FAP=180°,∴∠CAP=∠FAP,在△PAC和△PAF中,{PA=PA∠CAP=∠FAP AC=AF,∴△PAC≌△PAF(SAS),∴∠1=∠2,PF=PC,∵点P在线段BC的垂直平分线上,∴PC=PB,∴PF=PB,∴∠1=∠3,∴∠2=∠3,∵∠PGB=∠AGC,∴∠BPC=∠BAC;(2)判断:QB+QC>AB+AC.证明:如图2,在AE上截取一点M,使得AM=AC,连接QM,∵∠CAQ=∠MAQ,∴△CAQ≌△MAQ(SAS),∴QC=QM,在△BMQ中,QB+QM>BM,且BM=AB+AM=AB+AC,∴QB+QC>AB+AC.【解析】(1)在AE上截取AF=AC,连接PF,判定△PAC≌△PAF,即可得到∠1=∠2,PF=PC,进而得出∠2=∠3,依据∠PGB=∠AGC,可得∠BPC=∠BAC;(2)在AE上截取一点M,使得AM=AC,连接QM,依据△CAQ≌△MAQ,可得QC=QM,再根据QB+QM>BM,且BM=AB+AM=AB+AC,即可得到QB+QC>AB+AC.本题主要考查了全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.第21页,共21页。

山东省临沂市临沂经济开发区2021-2022学年中考三模数学试题含解析

山东省临沂市临沂经济开发区2021-2022学年中考三模数学试题含解析

山东省临沂市临沂经济开发区2021-2022学年中考三模数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列运算正确的是()A.2a2+3a2=5a4B.(﹣12)﹣2=4C.(a+b)(﹣a﹣b)=a2﹣b2D.8ab÷4ab=2ab2.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?()A.1 B.2 C.23﹣2 D.4﹣233.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F,S△AEF=3,则S△FCD为()A.6 B.9 C.12 D.274.在Rt△ABC中,∠C=90°,如果sinA=12,那么sinB的值是()A3B.12C2D.22 5.计算a•a2的结果是()A.a B.a2C.2a2D.a36.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个7.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数8.二次函数y=(2x-1)2+2的顶点的坐标是()A.(1,2)B.(1,-2)C.(12,2)D.(-12,-2)9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=kx(k<0)的图象经过点B,则k的值为()A.﹣12 B.﹣32 C.32 D.﹣3610.计算211aaa---的结果是()A.1 B.-1 C.11a-D.2211+-aa二、填空题(共7小题,每小题3分,满分21分)11.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是_____°.12.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为.13.若关于x的分式方程2233x mx x-=--有增根,则m的值为_____.14.已知x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是______.15.分解因式:3x2-6x+3=__.16.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是.17.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为_____.三、解答题(共7小题,满分69分)18.(10分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)19.(5分)解不等式组21114(2) xx x+-⎧⎨+>-⎩20.(8分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率()A.58B.38C.1116D.1221.(10分)图1 和图 2 中,优弧AB纸片所在⊙O 的半径为2,AB=3,点P为优弧AB上一点(点P 不与A,B 重合),将图形沿BP 折叠,得到点 A 的对称点A′.发现:(1)点 O 到弦 AB 的距离是 ,当 BP 经过点 O 时,∠ABA ′= ;(2)当 BA ′与⊙O 相切时,如图 2,求折痕的长.拓展:把上图中的优弧纸片沿直径 MN 剪裁,得到半圆形纸片,点 P (不与点 M , N 重合)为半圆上一点,将圆形沿 NP 折叠,分别得到点 M ,O 的对称点 A ′, O ′,设∠MNP =α.(1)当α=15°时,过点 A ′作 A ′C ∥MN ,如图 3,判断 A ′C 与半圆 O 的位置关系,并说明理由;(2)如图 4,当α= °时,NA ′与半圆 O 相切,当α= °时,点 O ′落在NP 上.(3)当线段 NO ′与半圆 O 只有一个公共点 N 时,直接写出β的取值范围.22.(10分)综合与探究如图,抛物线y=23233x x -与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,直线l 经过B ,C 两点,点M 从点A 出发以每秒1个单位长度的速度向终点B 运动,连接CM ,将线段MC 绕点M 顺时针旋转90°得到线段MD ,连接CD ,BD .设点M 运动的时间为t (t >0),请解答下列问题:(1)求点A 的坐标与直线l 的表达式;(2)①直接写出点D 的坐标(用含t 的式子表示),并求点D 落在直线l 上时的t 的值;②求点M 运动的过程中线段CD 长度的最小值;(3)在点M 运动的过程中,在直线l 上是否存在点P ,使得△BDP 是等边三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.23.(12分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.24.(14分)计算:﹣122132-⎛⎫+-⎪⎝⎭﹣(3.14﹣π)0﹣|13.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答.【详解】A. 2a2+3a2=5a2,故本选项错误;1C. (a+b)(−a−b)=−a2−2ab−b2,故本选项错误;D. 8ab÷4ab=2,故本选项错误.故答案选B.【点睛】本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则.2、C【解析】先判断出PQ⊥CF,再求出AC=23,AF=2,CF=2AF=4,利用△ACF的面积的两种算法即可求出PG,然后计算出PQ即可.【详解】解:如图,连接PF,QF,PC,QC∵P、Q两点分别为△ACF、△CEF的内心,∴PF是∠AFC的角平分线,FQ是∠CFE的角平分线,∴∠PFC=12∠AFC=30°,∠QFC=12∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等边三角形,∴PQ=2PG;易得△ACF≌△ECF,且内角是30º,60º,90º的三角形,∴3AF=2,CF=2AF=4,∴S△ACF=12AF×AC=12×2×33过点P作PM⊥AF,PN⊥AC,PQ交CF于G,∵点P是△ACF的内心,∴S △ACF =S △PAF +S △PAC +S △PCF =12AF×PM+12AC×PN+12CF×PG =12×2×PG+12×PG+12×4×PG =(+2)PG=()PG∴1, ∴1故选C.【点睛】本题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义.3、D【解析】先根据AE :EB=1:2得出AE :CD=1:3,再由相似三角形的判定定理得出△AEF ∽△CDF ,由相似三角形的性质即可得出结论.【详解】解:∵四边形ABCD 是平行四边形,AE :EB=1:2,∴AE :CD=1:3,∵AB ∥CD ,∴∠EAF=∠DCF ,∵∠DFC=∠AFE ,∴△AEF ∽△CDF ,∵S △AEF =3, ∴AEF FCD S S =3FCD S =(13)2, 解得S △FCD =1.本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.4、A【解析】∵Rt △ABC 中,∠C=90°,sinA=12, ∴cosA=22131=1()22sin A --=, ∴∠A+∠B=90°,∴sinB=cosA=32. 故选A .5、D【解析】a ·a 2= a 3.故选D.6、C【解析】 分为三种情况:①AP=OP ,②AP=OA ,③OA=OP ,分别画出即可.【详解】如图,分OP=AP (1点),OA=AP (1点),OA=OP (2点)三种情况讨论.∴以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有4个.故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差8、C【解析】试题分析:二次函数y=(2x-1)+2即21222y x⎛⎫=-+⎪⎝⎭的顶点坐标为(,2)考点:二次函数点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系9、B【解析】解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=kx(k<0)的图象经过点B,∴﹣4=k8,得k=﹣32.故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.10、C【解析】原式通分并利用同分母分式的减法法则计算,即可得到结果.【详解】解:()()22111=111a aa aaa a a+-------=2211a aa-+-=11a-,故选:C.此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、4.【解析】试题分析:连结BC,因为AB是⊙O的直径,所以∠ACB=90°,∠A+∠ABC=90°,又因为BD,CD分别是过⊙O 上点B,C的切线,∠BDC=440°,所以CD=BD,所以∠BCD=∠DBC=4°,又∠ABD=90°,所以∠A=∠DBC=4°.考点:4.圆周角定理;4.切线的性质;4.切线长定理.12、.【解析】试题分析:连接OC,已知OA=OC,∠A=30°,所以∠OCA=∠A=30°,由三角形外角的性质可得∠COB=∠A+∠ACO=60°,又因PC是⊙O切线,可得∠PCO=90°,∠P=30°,再由PC=3,根据锐角三角函数可得OC=PC•tan30°=,PC=2OC=2,即可得PB=PO﹣OB=.考点:切线的性质;锐角三角函数.13、±3【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.【详解】方程两边都乘x-3,得x-2(x-3)=m2,∵原方程增根为x=3,∴把x=3代入整式方程,得m=±3.【点睛】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14、6【解析】已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x12﹣2 x1﹣1=0,x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1,x22=2 x2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可.【详解】∵x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x12﹣2 x1﹣1=0,x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1,x22=2 x2+1,∴=故答案为6.【点睛】本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键.15、3(x-1)2【解析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】()()22236332131x x x x x-+=-+=-.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16、21【解析】试题分析:这四个数中,奇数为1和3,则P(抽出的数字是奇数)=2÷4=12.考点:概率的计算.17、1 2【解析】用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图展示所有12种等可能的结果数,再找出抽到卡片上印有图案都是轴对称图形的结果数,然后根据概率公式求解.【详解】解:用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图:共有12种等可能的结果数,其中抽到卡片上印有图案都是轴对称图形的结果数为6,所以抽到卡片上印有图案都是轴对称图形的概率61 122 ==.故答案为.1 2【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了轴对称图形.三、解答题(共7小题,满分69分)18、(1)开通隧道前,汽车从A地到B地要走2)千米;(2)汽车从A地到B地比原来少走的路程为23千米.【解析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=CDBC,BC=80千米,∴CD=BC•sin30°=80×12=40(千米),AC=CD402sin45︒=(千米),AC+BC=80+1-8(千米),答:开通隧道前,汽车从A地到B地要走(80+1-8)千米;(2)∵cos30°=BDBC,BC=80(千米),∴BD=BC•cos30°=80×3=4032(千米),∵tan45°=CDAD,CD=40(千米),∴AD=CD40tan45︒=(千米),∴AB=AD+BD=40+403(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+1-8﹣40﹣403=40+40(23)-(千米).答:汽车从A地到B地比原来少走的路程为[40+40(23)-]千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.19、﹣1≤x<1.【解析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<1,则不等式组的解集为﹣1≤x<1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.20、A【解析】分析:根据题意画出树状图,从而可以得到两次两次抽出的卡片所标数字不同的情况及所有等可能发生的情况,进而根据概率公式求出两次抽出的卡片所标数字不同的概率.详解:由题意可得,两次抽出的卡片所标数字不同的概率是:105 168=,故选:A.点睛:本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即m Pn =.21、发现:(1)1,60°;(2)23;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性质可得OD=A'H=12A'N=12MN=2可判定A′C与半圆相切;(2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在PB时,连接MO′,则可知NO′=12MN,可求得∠MNO′=60°,可求得α=30°;(3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.【详解】发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,∵⊙O的半径为2,3∴22OB HB-222(3)1-=在△BOH中,OH=1,BO=2∴∠ABO=30°∵图形沿BP折叠,得到点A的对称点A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=12OB=1.∴3∵OG⊥BP,∴3∴33拓展:(1)相切.分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,∵A'C∥MN∴四边形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=12A'N=12MN=2∴A'C与半圆(2)当NA′与半圆O相切时,则ON⊥NA′,∴∠ONA′=2α=90°,∴α=45当O′在PB 上时,连接MO′,则可知NO′=12MN , ∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案为:45°;30°.(3)∵点P ,M 不重合,∴α>0, 由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段NO′与半圆只有一个公共点B ;当α增大到45°时NA′与半圆相切,即线段NO′与半圆只有一个公共点B .当α继续增大时,点P 逐渐靠近点N ,但是点P ,N 不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B .综上所述0°<α<30°或45°≤α<90°.【点睛】本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键.22、(1)A (﹣3,0),y=33(2)①D (t ﹣3t ﹣3),②CD 6;(3)P (23,理由见解析.【解析】(1)当y=023233x x +,解方程求得A (-3,0),B (1,0),由解析式得C (03),待定系数法可求直线l 的表达式;(2)分当点M 在AO 上运动时,当点M 在OB 上运动时,进行讨论可求D 点坐标,将D 点坐标代入直线解析式求得t 的值;线段CD 是等腰直角三角形CMD 斜边,若CD 最小,则CM 最小,根据勾股定理可求点M 运动的过程中线段CD 长度的最小值;(3)分当点M 在AO 上运动时,即0<t <3时,当点M 在OB 上运动时,即3≤t≤4时,进行讨论可求P 点坐标.【详解】(1)当y=0时,﹣2323333x x -+=0,解得x 1=1,x 2=﹣3, ∵点A 在点B 的左侧,∴A (﹣3,0),B (1,0),由解析式得C (0,3),设直线l 的表达式为y=kx+b ,将B ,C 两点坐标代入得b=3mk ﹣3,故直线l 的表达式为y=﹣3x+3;(2)当点M 在AO 上运动时,如图:由题意可知AM=t ,OM=3﹣t ,MC ⊥MD ,过点D 作x 轴的垂线垂足为N ,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN ,在△MCO 与△DMN 中,{MD MCDCM DMN COM MND=∠=∠∠=∠,∴△MCO ≌△DMN ,∴3,DN=OM=3﹣t ,∴D (t ﹣3t ﹣3);同理,当点M 在OB 上运动时,如图,OM=t﹣3,△MCO≌△DMN,MN=OC=3,ON=t﹣3+3,DN=OM=t﹣3,∴D(t﹣3+3,t﹣3).综上得,D(t﹣3+3,t﹣3).将D点坐标代入直线解析式得t=6﹣23,线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,∵M在AB上运动,∴当CM⊥AB时,CM最短,CD最短,即CM=CO=3,根据勾股定理得CD最小6;(3)当点M在AO上运动时,如图,即0<t<3时,∵tan∠CBO=OCOB3∴∠CBO=60°,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,3NB=4﹣t﹣3tan∠NBO=DN NB,43t--3,解得t=33经检验t=3过点P作x轴的垂线交于点Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t,,OQ=2,P(2);同理,当点M在OB上运动时,即3≤t≤4时,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣1=t﹣tan∠NBD=DN NB,t=3,经检验t=3t=3.故P(2.【点睛】考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度.23、(1)(2)作图见解析;(3).【解析】(1)利用平移的性质画图,即对应点都移动相同的距离.(2)利用旋转的性质画图,对应点都旋转相同的角度.(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长.【详解】解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,△A1B1C1即为所求.(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,△A1B2C2即为所求.(3)∵2211290222222,?1802BB B B π⋅=+===, ∴点B 所走的路径总长=222. 考点:1.网格问题;2.作图(平移和旋转变换);3.勾股定理;4.弧长的计算. 24、1.【解析】直接利用绝对值的性质以及零指数幂的性质和负指数幂的性质分别化简得出答案.【详解】解:原式=﹣3﹣131)=﹣3+4﹣13=1.【点睛】本题考查了实数的运算,零指数幂,负整数指数幂,解题的关键是掌握幂的运算法则.。

临沂市中考数学模拟精品试题附答案

临沂市中考数学模拟精品试题附答案

临沂市中考数学模拟精品试题附答案一、选择题1. 某班级中有男生和女生,男生人数是女生人数的4倍,如果将班级中男生人数和女生人数都减少1,那么男生人数将是女生人数的5倍。

求该班级男生和女生的总人数。

A. 28B. 35C. 42D. 562. 一个长方体的外表面积是48平方厘米,体积是20立方厘米。

则该长方体的体对角线的长度是多少厘米?A. 4B. 20C. 24D. 323. 一批产品运往目的地,开始时车上有产品555箱,经过每一个分销中心,产品数量减少的百分之十。

经过5个分销中心后,剩余产品317.52箱。

请问运往目的地的产品数量为多少?A. 800B. 900C. 1000D. 12004. 若正方形的面积是121平方厘米,那么这个正方形的对角线长是多少厘米?A. 11B. 11√2C. 22D. 22√25. 一根长方形的钢筋长70厘米,钢筋上有两个标记,分别距离钢筋一端15厘米和45厘米,这两个标记的所在位置之间距离是多少厘米?A. 20B. 25C. 30D. 60二、填空题6. 有8个正整数,这8个数的和是180,平均数是22.5,有6个数都是奇数,另外两个数的平均数是几?答案:357. 某物业小区的绿地面积占总面积的10%,道路面积占总面积的30%,楼房面积占总面积的40%,停车场占总面积的20%。

若停车场的面积是400平方米,则该小区总面积是多少平方米?答案:20008. 已知函数 f(x)=3x^3-10x^2+5x-7,求 f(2) 的值。

答案:39. 小明的年龄是小芳的3/2倍,今年小明的年龄是小芳的3倍减15岁,那么小明今年多大?答案:3010. 若 a:b=3:4,b:c=5:7,则 a:b:c 的比是多少?答案:15:20:28三、解答题11. 一组数据为:12,15,x,19,25,30。

(1)数据的平均数是多少?(2)若这组数据的中位数等于20,求 x 的值。

(1)数据的平均数是:(12 + 15 + x + 19 + 25 + 30)/6 = 20 + x/6 = 20将等式两边同时乘以6得:6 * 20 = 120则 x = 120 - 6 * 20 = 120 - 120 = 0(2)若中位数等于20,则有:x = 2012. 已知一架飞机始终以恒定的速度前进,从最初的位置出发,4小时后到达A地,再飞行2小时后到达B地。

初中数学山东省临沂市中考模拟数学模拟考试卷(三)含答案解析 .docx

初中数学山东省临沂市中考模拟数学模拟考试卷(三)含答案解析  .docx

xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx 题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:|﹣3|的相反数是()A.3 B.﹣3 C. D.﹣试题2:下列运算,正确的是()A.4a﹣2a=2 B.a6÷a3=a2 C.()﹣1﹣22=﹣2 D.(a﹣b)2=a2﹣b2试题3:下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.试题4:某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为()A. B. C. D.试题5:有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0 B.a﹣b<0 C.a•b>0 D.>0试题6:如图是一个几何体的三视图,则这个几何体的侧面积是()A.πcm2 B.2πcm2 C.6πcm2 D.3πcm2试题7:关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小试题8:如过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,其正确的展开图为()A. B. C.D.试题9:二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=与y=bx+c在同一直角坐标系内的大致图象是()A. B. C.D.试题10:若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A.﹣1 B.1 C.52015 D.﹣52015试题11:若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.16试题12:如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10试题13:甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个 B.2个 C.3个 D.4个试题14:已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的个数有()A.1 B.2 C.3 D.4试题15:分解因式:a2b﹣4ab= .试题16:有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是.试题17:股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是.试题18:.如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(﹣1,0).现将△ABC绕点A顺时针旋转90°,则旋转后点C的坐标是.试题19:如图,在直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,△AOB为正三角形,射线OC⊥AB,在OC上依次截取点P1,P2,P3,…,P n,使OP1=1,P1P2=3,P2P3=5,…,P n﹣1P n=2n﹣1(n为正整数),分别过点P1,P2,P3,…,P n向射线OA作垂线段,垂足分别为点Q1,Q2,Q3,…,Q n,则点Q n的坐标为.试题20:先化简,再求值:÷(﹣),其中a=+1,b=﹣1.试题21:为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是;(2)扇形统计图中,“电视”所对应的圆心角的度数是;(3)请补全条形统计图;(4)若该市约有8万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.试题22:已知,如图,在笔山银子岩坡顶A处的同一水平面上有一座移动信号发射塔BC,笔山职中数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PO的距离;(2)移动信号发射塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)试题23:如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M为⊙O上一点,并且∠BMC=60°.(1)求证:AB是⊙O的切线;(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由.试题24:如图,反比例函数y=(k>0)与正比例函数y=ax相交于A(1,k),B(﹣k,﹣1)两点.(1)求反比例函数和正比例函数的解析式;(2)将正比例函数y=ax的图象平移,得到一次函数y=ax+b的图象,与函数y=(k>0)的图象交于C(x1,y1),D (x2,y2),且|x1﹣x2|•|y1﹣y2|=5,求b的值.试题25:在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B 作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图①),求证:△BOG≌△POE;(2)结合图②,通过观察、测量、猜想:,并证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图③),若AC=8,BD=6,直接写出的值.试题26:已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3).(1)求抛物线的函数表达式;(2)求直线BC的函数表达式和∠ABC的度数;(3)P为线段BC上一点,连接AC,AP,若∠ACB=∠PAB,求点P的坐标.试题1答案:B【考点】绝对值;相反数.【分析】根据相反数的定义:只有符号不同的两个数叫互为相反数.【解答】解:|﹣3|的相反数是﹣3.故选B.【点评】本题考查绝对值与相反数的意义,是一道基础题.可能会混淆倒数、相反数和绝对值的概念,错误地认为﹣3的绝对值等于,或认为﹣|﹣3|=3,把绝对值符号等同于括号.试题2答案:C【考点】同底数幂的除法;有理数的乘方;合并同类项;完全平方公式;负整数指数幂.【分析】分别利用合并同类项以及负整数指数幂的性质、完全平方公式、同底数幂的除法运算法则得出答案.【解答】解:A、4a﹣2a=2a,故此选项错误;B、a6÷a3=a3,故此选项错误;C、()﹣1﹣22=2﹣4=﹣2,正确;D、(a﹣b)2=a2﹣2ab+b2,故此选项错误;故选:C.【点评】此题主要考查了合并同以及负整数指数幂的性质、完全平方公式、同底数幂的除法运算等知识,正确掌握运算法则是解题关键.试题3答案:D【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【点评】本题主要考查的是轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的特点是解题的关键.试题4答案:A【考点】列表法与树状图法.【专题】计算题;压轴题;数形结合.【分析】列举出所有情况,看在同一辆车的情况数占总情况数的多少即可.【解答】解:设3辆车分别为A,B,C,共有9种情况,在同一辆车的情况数有3种,所以坐同一辆车的概率为,故选A.【点评】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到在同一辆车的情况数是解决本题的关键.试题5答案:B【考点】数轴.【分析】根据a,b两数在数轴的位置依次判断所给选项的正误即可.【解答】解:∵﹣1<a<0,b>1,∴A、a+b>0,故错误,不符合题意;B、a﹣b<0,正确,符合题意;C、a•b<0,错误,不符合题意;D、<0,错误,不符合题意;故选B.【点评】考查数轴的相关知识;用到的知识点为:数轴上左边的数比右边的数小;异号两数相加,取绝对值较大的加数的符号.试题6答案:A【考点】圆锥的计算;由三视图判断几何体.【专题】常规题型.【分析】俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.【解答】解:此几何体为圆锥;∵半径为1cm,高为3cm,∴圆锥母线长为cm,∴侧面积=2πrR÷2=πcm2;故选:A.【点评】本题考查了圆锥的计算,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.试题7答案:D【考点】反比例函数的性质.【专题】常规题型.【分析】根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.【解答】解:A、把点(1,1)代入反比例函数y=得2≠1不成立,故A选项错误;B、∵k=2>0,∴它的图象在第一、三象限,故B选项错误;C、图象的两个分支关于y=﹣x对称,故C选项错误.D、当x>0时,y随x的增大而减小,故D选项正确.故选:D.【点评】本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.试题8答案:B【考点】几何体的展开图.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,•与正方体三个剪去三角形交于一个顶点符合.故选:B.【点评】考查了截一个几何体和几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.试题9答案:B【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【分析】根据二次函数的图象得出a,b,c的符号,进而利用一次函数与反比例函数得出图象经过的象限.【解答】解:∵二次函数y=ax2+bx+c(a≠0)的图象开口向下,∴a<0,∵对称轴经过x的负半轴,∴a,b同号,图象经过y轴的正半轴,则c>0,∵函数y=,a<0,∴图象经过二、四象限,∵y=bx+c,b<0,c>0,∴图象经过一、二、四象限,故选:B.【点评】此题主要考查了二次函数的图象以及一次函数和反比例函数的性质,根据已知得出a,b,c的值是解题关键.试题10答案:B【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】首先根据非负数的性质,几个非负数的和是0,则每个非负数等于0列方程组求得a和b的值,然后代入求解.【解答】解:根据题意得:,解得:,则(b﹣a)2016=(﹣3+2)2016=1.故选B.【点评】本题考查了非负数的性质,几个非负数的和是0,则每个非负数等于0,正确解方程组求得a和b的值是关键.试题11答案:C【考点】多边形内角与外角.【专题】常规题型.【分析】由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.【解答】解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选:C.【点评】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握多边形的外角和定理是关键.试题12答案:C【考点】平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.【专题】计算题.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.试题13答案:B【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.试题14答案:D【考点】二次函数图象与系数的关系.【专题】数形结合.【分析】由抛物线开口方向得a<0,由抛物线对称轴在y轴的左侧得a、b同号,即b<0,由抛物线与y轴的交点在x轴上方得c>0,所以abc>0;根据抛物线对称轴的位置得到﹣1<﹣<0,则根据不等式性质即可得到2a﹣b<0;由于x=﹣2时,对应的函数值小于0,则4a﹣2b+c<0;同样当x=﹣1时,a﹣b+c>0,x=1时,a+b+c<0,则(a﹣b+c)(a+b+c)<0,利用平方差公式展开得到(a+c)2﹣b2<0,即(a+c)2<b2.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的左侧,∴x=﹣<0,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,(故①正确);∵﹣1<﹣<0,∴2a﹣b<0,(故②正确);∵当x=﹣2时,y<0,∴4a﹣2b+c<0,(故③正确);∵当x=﹣1时,y>0,∴a﹣b+c>0,∵当x=1时,y<0,∴a+b+c<0,∴(a﹣b+c)(a+b+c)<0,即(a+c﹣b)(a+c+b)<0,∴(a+c)2﹣b2<0,(故④正确).综上所述,正确的个数有4个;故选:D.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.试题15答案:ab(a﹣4).【考点】因式分解-提公因式法.【分析】直接提取公因式法ab,进而分解因式得出答案.【解答】解:原式=ab(a﹣4).故答案为:ab(a﹣4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.试题16答案:2 .【考点】方差;算术平均数.【专题】计算题.【分析】先利用平均数的定义求出a,然后根据方差公式计算.【解答】解:根据题意得(3+a+4+6+7)=5×5,解得a=5,所以这组数据为3,4,5,6,7,数据的方差=[(3﹣5)2+(4﹣5)2+(5﹣5)2+(6﹣5)2+(7﹣5)2]=2.故答案为2.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.计算公式是:s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2].也考查了算术平均数.试题17答案:(1﹣10%)(1+x)2=1 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,设这两天此股票股价的平均增长率为x,每天相对于前一天就上涨到1+x,由此列出方程解答即可.【解答】解:设这两天此股票股价的平均增长率为x,由题意得(1﹣10%)(1+x)2=1.故答案为:(1﹣10%)(1+x)2=1.【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.试题18答案:(2,1).【考点】坐标与图形变化-旋转.【分析】根据网格结构找出点A、B、C绕点O顺时针旋转90°后的对应点的位置,然后顺次连接即可.【解答】解:如图所示,△AB′C′即为△ABC绕点O顺时针旋转90°后的图形..则C′(2,1),即旋转后点C的坐标是(2,1).故答案是:(2,1).【点评】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.试题19答案:(n2,n2).【考点】相似三角形的判定与性质;坐标与图形性质.【专题】规律型.【分析】利用特殊直角三角形求出OP n的值,再利用∠AOB=60°即可求出点Q n的坐标.【解答】解:∵△AOB为正三角形,射线OC⊥AB,∴∠AOC=30°,又∵P n﹣1P n=2n﹣1,P n Q n⊥OA,∴OQ n=(OP1+P1P2+P2P3+…+P n﹣1P n)=(1+3+5+…+2n﹣1)=n2,∴Q n的坐标为(n2•cos60°,n2•sin60°),∴Q n的坐标为(n2,n2).故答案为:(n2,n2).【点评】本题主要考查了坐标与图形性质,解题的关键是正确的求出OQ n的值.试题20答案:【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b 的值代入计算即可求出值.【解答】解:原式=•=,当a=+1,b=﹣1时,原式=2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.试题21答案:【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据“电脑上网”的人数和所占的百分比求出总人数;(2)用“电视”所占的百分比乘以360°,即可得出答案;(3)用总人数乘以“报纸”所占百分比,求出“报纸”的人数,从而补全统计图;(4)用全市的总人数乘以“电脑和手机上网”所占的百分比,即可得出答案.【解答】解:(1)这次接受调查的市民总人数是:260÷26%=1000;故答案为:1000人;(2)扇形统计图中,“电视”所对应的圆心角的度数为:(1﹣40%﹣26%﹣9%﹣10%)×360°=54°;故答案为:54°;(3)“报纸”的人数为:1000×10%=100.补全图形如图所示:(4)由题意可得:8×(26%+40%)=8×66%=5.28(万人),答:将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数约为5.28万人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.试题22答案:【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AP的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.【解答】解:(1)过点A作AH⊥PO,垂足为点H,∵斜坡AP的坡度为1:2.4,∴=,设AH=5k,则PH=12k,由勾股定理,得AP=13k,∴13k=26,解得k=2,∴AH=10,答:坡顶A到地面PQ的距离为10米.(2)延长BC交PO于点D,∵BC⊥AC,AC∥PO,∴BD⊥PO,∴四边形AHDC是矩形,CD=AH=10,AC=DH,∵∠BPD=45°,∴PD=BD,设BC=x,则x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=,即≈4.01.解得x≈19.答:移动信号发射塔BC的高度约为19米.【点评】此题主要考查了坡度问题以及仰角的应用,根据已知在直角三角形中得出各边长度是解题关键.试题23答案:【考点】切线的判定;等边三角形的性质.【专题】压轴题.【分析】(1)连结OB、OD、OC,如图1,由于D为BC的中点,根据垂径定理的推理得OD⊥BC,∠BOD=∠COD,再根据圆周角定理得∠BOD=∠M=60°,则∠OBD=30°,所以∠ABO=90°,于是根据切线的判定定理得AB是⊙O的切线;(2)作DM⊥AB于H,DN⊥AC于N,连结AD,如图2,根据等边三角形三角形的性质得AD平分∠BAC,∠BAC=60°,则利用角平分线性质得DH=DN,根据四边形内角和得∠HDN=120°,由于∠EDF=120°,所以∠HDE=∠NDF,接着证明△DHE≌△DNF得到HE=NF,于是BE+CF=BH+CN,再计算出BH=BD,CN=OC,则BE+CF=BC,于是可判断BE+CF的值是定值,为等边△ABC边长的一半,再计算BC的长即可.【解答】(1)证明:连结OB、OD、OC,如图1,∵D为BC的中点,∴OD⊥BC,∠BOD=∠COD,∴∠ODB=90°,∵∠BMC=∠BOC,∴∠BOD=∠M=60°,∴∠OBD=30°,∵△ABC为正三角形,∴∠ABC=60°∴∠ABO=60°+30°=90°,∴AB⊥OB,∴AB是⊙O的切线;(2)解:BE+CF的值是为定值.作DH⊥AB于H,DN⊥AC于N,连结AD,如图2,∵△ABC为正三角形,D为BC的中点,∴AD平分∠BAC,∠BAC=60°,∴DH=DN,∠HDN=120°,∵∠EDF=120°,∴∠HDE=∠NDF,在△DHE和△DNF中,,∴△DHE≌△DNF,∴HE=NF,∴BE+CF=BH﹣EH+CN+NF=BH+CN,在Rt△DHB中,∵∠DBH=60°,∴BH=BD,同理可得CN=OC,∴BE+CF=OB+OC=BC,∵BD=OB•cos30°=,∴BC=2,∴BE+CF的值是定值,为.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质.试题24答案:【考点】反比例函数与一次函数的交点问题;一次函数图象与几何变换.【分析】(1)首先根据点A与点B关于原点对称,可以求出k的值,将点A分别代入反比例函数与正比例函数的解析式,即可得解.(2)分别把点(x1,y1)、(x2,y2)代入一次函数y=x+b,再把两式相减,根据|x1﹣x2|•|y1﹣y2|=5得出|x1﹣x2|=|y1﹣y2|=,然后通过联立方程求得x1、x2的值,代入即可求得b的值.【解答】解:(1)据题意得:点A(1,k)与点B(﹣k,﹣1)关于原点对称,∴k=1,∴A(1,1),B(﹣1,﹣1),∴反比例函数和正比例函数的解析式分别为y=,y=x;(2)∵一次函数y=x+b的图象过点(x1,y1)、(x2,y2),∴,②﹣①得,y2﹣y1=x2﹣x1,∵|x1﹣x2|•|y1﹣y2|=5,∴|x1﹣x2|=|y1﹣y2|=,由得x2+bx﹣1=0,解得,x1=,x2=,∴|x1﹣x2|=|﹣|=||=,解得b=±1.【点评】本题考查了反比例函数与正比例函数关于原点对称这一知识点,以及用待定系数法求函数解析式以及一次函数图象上点的坐标特点,利用对称性求出点的坐标是解题的关键.试题25答案:【考点】四边形综合题.【分析】(1)由四边形ABCD是正方形,P与C重合,易证得OB=OP,∠BOC=∠BOG=90°,由同角的余角相等,证得∠GBO=∠EPO,则可利用ASA证得:△BOG≌△POE;(2)首先过P作PM∥AC交BG于M,交BO于N,易证得△BMN≌△PEN(ASA),△BPF≌△MPF(ASA),即可得BM=PE,BF=BM.则可求得的值;(3)首先过P作PM∥AC交BG于点M,交BO于点N,由(2)同理可得:BF=BM,∠MBN=∠EPN,继而可证得:△BMN ∽△PEN,然后由相似三角形的对应边成比例,求得.【解答】(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB=OP,∠BOC=∠BOG=90°,∵PF⊥BG,∠PFB=90°,∴∠GBO=90°﹣∠BGO,∠EPO=90°﹣∠BGO,∴∠GBO=∠EPO,在△BOG和△POE中,∴△BOG≌△POE(ASA);(2)解:猜想=.证明:如图2,过P作PM∥AC交BG于M,交BO于N,∴∠PNE=∠BOC=90°,∠BPN=∠OCB.∵∠OBC=∠OCB=45°,∴∠NBP=∠NPB.∴NB=NP.∵∠MBN=90°﹣∠BMN,∠NPE=90°﹣∠BMN,∴∠MBN=∠NPE,在△BMN和△PEN中,∴△BMN≌△PEN(ASA),∴BM=PE.∵∠BPE=∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.∵PF⊥BM,∴∠BFP=∠MFP=90°.在△BPF和△MPF中,∴△BPF≌△MPF(ASA).∴BF=MF.即BF=BM.∴BF=PE.即=;故答案为;(3)如图3,过P作PM∥AC交BG于点M,交BO于点N,∴∠BPN=∠ACB=α,∠PNE=∠BOC=90°,在Rt△BOC中,OC=AC=4,OB=BD=3,∴tan∠ACB==由(2)同理可得:BF=BM,∠MBN=∠EPN,∵∠BNM=∠PNE=90°,∴△BMN∽△PEN.∴.在Rt△BNP中,tan∠ACB==,∴=tan∠ACB=.即=.∴=×=.【点评】此题考查了正方形的性质、菱形的性质、相似三角形的判定与性质、全等三角形的判定与性质以及三角函数的定义等知识.此题综合性很强,难度较大,注意准确作出辅助线是解此题的关键,注意数形结合思想的应用.试题26答案:【考点】二次函数综合题.【专题】压轴题.【分析】(1)直接将A,C点坐标代入抛物线解析式求出即可;(2)首先求出B点坐标,进而利用待定系数法求出直线BC的解析式,进而利用CO,BO的长求出∠ABC的度数;(3)利用∠ACB=∠PAB,结合相似三角形的判定与性质得出BP的长,进而得出P点坐标.【解答】解:(1)将点A的坐标(﹣1,0),点C的坐标(0,﹣3)代入抛物线解析式得:,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)由(1)得:0=x2﹣2x﹣3,解得:x1=﹣1,x2=3,故B点坐标为:(3,0),设直线BC的解析式为:y=kx+d,则,解得:,故直线BC的解析式为:y=x﹣3,∵B(3,0),C(0,﹣3),∴BO=OC=3,∴∠ABC=45°;(3)过点P作PD⊥x轴于点D,∵∠ACB=∠PAB,∠ABC=∠PBA,∴△ABP∽△CBA,∴=,∵BO=OC=3,∴BC=3,∵A(﹣1,0),B(3,0),∴AB=4,∴=,解得:BP=,由题意可得:PD∥OC,∴DB=DP=,∴OD=3﹣=,则P(,﹣).【点评】此题主要考查了相似三角形的判定与性质以及待定系数法求一次函数和二次函数解析式等知识,熟练应用相似三角形的判定方法得出△ABP∽△CBA是解题关键.。

山东省临沂市中考数学模拟试卷(3)(含解析)

山东省临沂市中考数学模拟试卷(3)(含解析)

2017年山东省临沂市中考数学模拟试卷(3)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.+(﹣3)的相反数是()A.﹣(+3) B.﹣3 C.3 D.2.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为()A.0.278 09×105B.27.809×103C.2.780 9×103D.2.780 9×1043.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°4.下列式子中,正确的是()A.a5n÷a n=a5 B.(﹣a2)3•a6=a12C.a8n•a8n=2a8n D.(﹣m)(﹣m)4=﹣m55.不等式组的解集是()A.x≥8 B.3<x≤8 C.0<x<2 D.无解6.若x2+x﹣2=0,则的值为()A.B.C.2 D.﹣7.如图是某几何体的三视图,则该几何体的表面积为()A.24+12 B.16+12 C.24+6D.16+68.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B.C.D.9.正方形ABCD中,P、Q分别为BC、CD的中点,若∠PAQ=40°,则∠CPQ大小为()A.50° B.60° C.45° D.70°10.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.811.用配方法解方程3x2﹣6x+1=0,则方程可变形为()A.(x﹣3)2=B.3(x﹣1)2=C.(x﹣1)2=D.(3x﹣1)2=112.用若干张大小相同的黑白两种颜色的正方形纸片,按下列拼图的规律拼成一列图案,则第6个图案中黑色正方形纸片的张数是()A.22 B.21 C.20 D.1913.一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为()A.75cm2B.(25+25)cm2C.(25+)cm2D.(25+)cm214.世界文化遗产“华安二宜楼”是一座圆形的土楼,如图,小王从南门点A沿AO匀速直达土楼中心古井点O处,停留拍照后,从点O沿OB也匀速走到点B,紧接着沿回到南门,下面可以近似地刻画小王与土楼中心O的距离s随时间t变化的图象是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:x3﹣6x2+9x= .16.某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,则这个小组的本次测试的平均成绩为.17.现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是.18.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为.19.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为.三、解答题(本大题共7小题,共63分)20.小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需的油费108元,驾驶新购买的纯电动汽车所需电费27元.已知行驶1千米,原来燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.21.已知一个正比例函数的图象与反比例函数的图象都经过点A(m,﹣3).求这个正比例函数的解析式.22.“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查?(2)将图甲中的折线统计图补充完整.(3)求出图乙中B等级所占圆心角的度数.23.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.24.如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.(1)求证:EF是⊙O切线;(2)若AB=15,EF=10,求AE的长.25.(1)问题背景如图1,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于D,过点C作CE⊥BD,交直线BD于E.请探究线段BD与CE的数量关系.(事实上,我们可以延长CE与直线BA相交,通过三角形的全等等知识解决问题.)结论:线段BD与CE的数量关系是(请直接写出结论);(2)类比探索在(1)中,如果把BD改为∠ABC的外角∠ABF的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由;(3)拓展延伸在(2)中,如果AB≠AC,且AB=nAC(0<n<1),其他条件均不变(如图3),请你直接写出BD与CE的数量关系.结论:BD= CE(用含n的代数式表示).26.如图,经过点A(0,﹣4)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点,O 为坐标原点.(1)求抛物线的解析式;(2)将抛物线y=x2+bx+c向上平移个单位长度,再向左平移m(m>0)个单位长度得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.2017年山东省临沂市中考数学模拟试卷(3)参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.+(﹣3)的相反数是()A.﹣(+3) B.﹣3 C.3 D.【考点】相反数.【分析】求出式子的值,再求出其相反数即可.【解答】解:+(﹣3)=﹣3,﹣3的相反数是3.故选:C.2.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为()A.0.278 09×105B.27.809×103C.2.780 9×103D.2.780 9×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:27 809=2.780 9×104.故选D.3.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°【考点】平行线的性质.【分析】首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用邻补角的定义、角平分线的定义来求∠FAG的度数.【解答】解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.故选:B.4.下列式子中,正确的是()A.a5n÷a n=a5 B.(﹣a2)3•a6=a12C.a8n•a8n=2a8n D.(﹣m)(﹣m)4=﹣m5【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法法则对A进行判断;根据幂的乘方和同底数幂的乘法对B进行判断;根据同底数幂的乘法法则对C、D进行判断.【解答】解:A、a5n÷a n=a4n,所以A选项错误;B、(﹣a2)3•a6=﹣a12,所以B选项错误;C、a8n•a8n=a16n,所以C选项错误;D、(﹣m)(﹣m)4=﹣m•m4=﹣m5,所以D选项正确.故选D.5.不等式组的解集是()A.x≥8 B.3<x≤8 C.0<x<2 D.无解【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤8,由②得,x>3,故此不等式组的解集为:3<x≤8.故答案为:3<x≤8.6.若x2+x﹣2=0,则的值为()A.B.C.2 D.﹣【考点】分式的化简求值.【分析】先根据题意求出x2+x的值,再代入所求代数式进行计算即可.【解答】解:∵x2+x﹣2=0,∴x2+x=2,∴原式=2﹣=.故选A.7.如图是某几何体的三视图,则该几何体的表面积为()A.24+12 B.16+12 C.24+6D.16+6【考点】由三视图判断几何体.【分析】首先确定该几何体的形状,然后根据各部分的尺寸得到该几何体的表面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱;该六棱柱的棱长为2,正六边形的半径为2,所以表面积为2×2×6+×2××6×2=24+12,故选:A.8.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两个球数字之和大于6的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是: =.故选:C.9.正方形ABCD中,P、Q分别为BC、CD的中点,若∠PAQ=40°,则∠CPQ大小为()A.50° B.60° C.45° D.70°【考点】正方形的性质.【分析】根据正方形的性质得到CP=CQ,从而得到答案.【解答】解:∵四边形ABCD为正方形,∴BA=DA=BC=CD,∵P、Q分别为BC、CD的中点,∴DQ=BP,∴CP=CQ,∵∠C=90°,∴∠CPQ=45°,故选C.10.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.8【考点】垂径定理;勾股定理.【分析】根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.【解答】解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.11.用配方法解方程3x2﹣6x+1=0,则方程可变形为()A.(x﹣3)2=B.3(x﹣1)2=C.(x﹣1)2=D.(3x﹣1)2=1【考点】解一元二次方程﹣配方法.【分析】方程二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,变形即可得到结果.【解答】解:方程变形得:x2﹣2x=﹣,配方得:x2﹣2x+1=,即(x﹣1)2=,故选C.12.用若干张大小相同的黑白两种颜色的正方形纸片,按下列拼图的规律拼成一列图案,则第6个图案中黑色正方形纸片的张数是()A.22 B.21 C.20 D.19【考点】规律型:图形的变化类.【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【解答】解:第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=6时,3n+1=3×6+1=19故选D.13.一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为()A.75cm2B.(25+25)cm2C.(25+)cm2D.(25+)cm2【考点】解直角三角形;旋转的性质.【分析】过G点作GH⊥AC于H,则∠GAC=60°,∠GCA=45°,GC=10cm,先在Rt△GCH中根据等腰直角三角形三边的关系得到GH与CH的值,然后在Rt△AGH中根据含30°的直角三角形三边的关系求得AH,最后利用三角形的面积公式进行计算即可.【解答】解:过G点作GH⊥AC于H,如图,∠GAC=60°,∠GCA=45°,GC=10cm,在Rt△GCH中,GH=CH=GC=5cm,在Rt△AGH中,AH=GH=cm,∴AC=(5+)cm,∴两个三角形重叠(阴影)部分的面积=•GH•AC=×5×(5+)=(25+)cm2.故选:C.14.世界文化遗产“华安二宜楼”是一座圆形的土楼,如图,小王从南门点A沿AO匀速直达土楼中心古井点O处,停留拍照后,从点O沿OB也匀速走到点B,紧接着沿回到南门,下面可以近似地刻画小王与土楼中心O的距离s随时间t变化的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】从A→O的过程中,s随t的增大而减小;直至s=0;从O→B的过程中,s随t的增大而增大;从B沿回到A,s不变.【解答】解:如图所示,当小王从A到古井点O的过程中,s是t的一次函数,s随t的增大而减小;当停留拍照时,t增大但s=0;当小王从古井点O到点B的过程中,s是t的一次函数,s随t的增大而增大.当小王回到南门A的过程中,s等于半径,保持不变.综上所述,只有C符合题意.故选:C.二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:x3﹣6x2+9x= x(x﹣3)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】解:x3﹣6x2+9x,=x(x2﹣6x+9),=x(x﹣3)2.故答案为:x(x﹣3)2.16.某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,则这个小组的本次测试的平均成绩为89 .【考点】加权平均数.【分析】先求出总成绩,再运用求平均数公式:即可求出平均成绩.【解答】解:∵有3个人的平均成绩为96,其余7个人的平均成绩为86,∴这个小组的本次测试的总成绩为:3×96+7×86=890,∴这个小组的本次测试的平均成绩为: =89.故填89.17.现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是﹣1或4 .【考点】解一元二次方程﹣因式分解法.【分析】根据题中的新定义将所求式子转化为一元二次方程,求出一元二次方程的解即可得到x的值.【解答】解:根据题中的新定义将x★2=6变形得:x2﹣3x+2=6,即x2﹣3x﹣4=0,因式分解得:(x﹣4)(x+1)=0,解得:x1=4,x2=﹣1,则实数x的值是﹣1或4.故答案为:﹣1或418.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为 6 .【考点】旋转的性质;相似三角形的判定与性质.【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.19.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为 5 .【考点】正方形的性质;勾股定理;等腰直角三角形.【分析】由四边形ABCD是正方形,AC为对角线,得出∠EAF=45°,又因为EF⊥AC,得到∠AFE=90°得出EF=AF=3,由△EFC的周长为12,得出线段FC=12﹣3﹣EC=9﹣EC,在Rt△EFC 中,运用勾股定理EC2=EF2+FC2,求出EC=5.【解答】解:∵四边形ABCD是正方形,AC为对角线,∴∠EAF=45°,又∵EF⊥AC,∴∠AFE=90°,∠AEF=45°,∴EF=AF=3,∵△EFC的周长为12,∴FC=12﹣3﹣EC=9﹣EC,在Rt△EFC中,EC2=EF2+FC2,∴EC2=9+(9﹣EC)2,解得EC=5.故答案为:5.三、解答题(本大题共7小题,共63分)20.小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需的油费108元,驾驶新购买的纯电动汽车所需电费27元.已知行驶1千米,原来燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.【考点】分式方程的应用.【分析】设新购买的纯电动汽车每行驶1千米所需的电费x元,根据行驶路程相等列出方程即可解决问题.【解答】解:设新购买的纯电动汽车每行驶1千米所需的电费x元根据题意: =,解得:x=0.18,经检验:x=0.18是原方程的解,答:新购买的纯电动汽车每行驶1千米所需的电费是0.18元..21.已知一个正比例函数的图象与反比例函数的图象都经过点A(m,﹣3).求这个正比例函数的解析式.【考点】反比例函数与一次函数的交点问题.【分析】由两函数交点为A点,将A坐标代入反比例函数解析式中求出m的值,确定出A 的坐标,设正比例解析式为y=kx,将A的坐标代入求出k的值,即可确定出正比例解析式.【解答】解:∵A为正比例与反比例函数图象的交点,∴将x=m,y=﹣3代入反比例函数得:﹣3=,即m=﹣3,∴A(﹣3,﹣3),设正比例函数为y=kx,将x=﹣3,y=﹣3代入得:﹣3=﹣3k,即k=1,则正比例解析式为y=x.22.“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查?(2)将图甲中的折线统计图补充完整.(3)求出图乙中B等级所占圆心角的度数.【考点】折线统计图;扇形统计图.【分析】(1)用C等级的人数除以C等级所占的百分比即可得到抽取的总人数;(2)先用总数50分别减去A、C、D等级的人数得到B等级的人数,然后画出折线统计图;(3)用360°乘以B等级所占的百分比即可得到B等级所占圆心角的度数.【解答】解:(1)10÷20%=50,所以抽取了50个学生进行调查;(2)B等级的人数=50﹣15﹣10﹣5=20(人),画折线统计图;(3)图乙中B等级所占圆心角的度数=360°×=144°.23.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.【考点】一次函数的应用.【分析】(1)由于①购1个书包,赠送1支水性笔,而需买4个书包,由此得到还要买(x ﹣4)支水性笔,所以得到y1=(x﹣4)×5+20×4;又购书包和水性笔一律按9折优惠,所以得到y2=(5x+20×4)×0.9;(2)设y1>y2,求出当x>24时选择2优惠;当4≤x≤24时,选择1优惠.(3)采取用优惠方法①购买4个书包,再用优惠方法②购买8支水性笔即可.【解答】解:(1)设按优惠方法①购买需用y1元,按优惠方法②购买需用y2元y1=(x﹣4)×5+20×4=5x+60,y2=(5x+20×4)×0.9=4.5x+72.(2)解:分为三种情况:①∵设y1=y2,5x+60=4.5x+72,解得:x=24,∴当x=24时,选择优惠方法①,②均可;②∵设y1>y2,即5x+60>4.5x+72,∴x>24.当x>24整数时,选择优惠方法②;③当设y1<y2,即5x+60<4.5x+72∴x<24∴当4≤x<24时,选择优惠方法①.(3)解:采用的购买方式是:用优惠方法①购买4个书包,需要4×20=80元,同时获赠4支水性笔;用优惠方法②购买8支水性笔,需要8×5×90%=36元.共需80+36=116元.∴最佳购买方案是:用优惠方法①购买4个书包,获赠4支水性笔;再用优惠方法②购买8支水性笔.24.如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.(1)求证:EF是⊙O切线;(2)若AB=15,EF=10,求AE的长.【考点】切线的判定.【分析】(1)要证EF是⊙O的切线,只要连接OE,再证∠FEO=90°即可;(2)证明△FEA∽△FBA,得出AE,BF的比例关系式,勾股定理得出AE,BF的关系式,求出AE的长.【解答】(1)证明:连接OE,∵∠B的平分线BE交AC于D,∴∠CBE=∠ABE.∵EF∥AC,∴∠CAE=∠FEA.∵∠OBE=∠OEB,∠CBE=∠CAE,∴∠FEA=∠OEB.∵∠AEB=90°,∴∠FEO=90°.∴EF是⊙O切线.(2)解:∵AF•FB=EF•EF,∴AF×(AF+15)=10×10.∴AF=5.∴FB=20.∵∠F=∠F,∠FEA=∠FBE,∴△FEA∽△FBE.∴EF=10∵AE2+BE2=15×15.∴AE=3.25.(1)问题背景如图1,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于D,过点C作CE⊥BD,交直线BD于E.请探究线段BD与CE的数量关系.(事实上,我们可以延长CE与直线BA相交,通过三角形的全等等知识解决问题.)结论:线段BD与CE的数量关系是BD=2CE (请直接写出结论);(2)类比探索在(1)中,如果把BD改为∠ABC的外角∠ABF的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由;(3)拓展延伸在(2)中,如果AB≠AC,且AB=nAC(0<n<1),其他条件均不变(如图3),请你直接写出BD与CE的数量关系.结论:BD= 2n CE(用含n的代数式表示).【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)延长CE、BA交于F点,先证明△BFC是等腰三角形,再根据等腰三角形的性质可得CF=2CE,然后证明△ADB≌△AFC可得BD=FC,进而证出BD=2CE;(2)延长CE、AB交于点G,先利用ASA证明△GBE≌△CBE,得出GE=CE,则CG=2CE,再证明△DAB∽△GAC,根据相似三角形对应边的比相等及AB=AC即可得出BD=CG=2CE;(3)同(2),延长CE、AB交于点G,先利用ASA证明△GBE≌△CBE,得出GE=CE,则CG=2CE,再证明△DAB∽△GAC,根据相似三角形对应边的比相等及AB=nAC即可得出BD=CG=2nCE.【解答】解:(1)BD=2CE.理由如下:如图1,延长CE、BA交于F点.∵CE⊥BD,交直线BD于E,∴∠FEB=∠CEB=90°.∵BD平分∠ABC,∴∠1=∠2,∴∠F=∠BCF,∴BF=BC,∵BE⊥CF,∴CF=2CE.∵△ABC中,AC=AB,∠A=90°,∴∠CBA=45°,∴∠F=°÷2=67.5°,∠FBE=22.5°,∴∠ADB=67.5°,∵在△ADB和△AFC中,,∴△ADB≌△AFC(AAS),∴BD=CF,∴BD=2CE;(2)结论BD=2CE仍然成立.理由如下:如图2,延长CE、AB交于点G.∵∠1=∠2,∠1=∠3,∠2=∠4,∴∠3=∠4,又∵BE=BE,∠GEB=∠CEB=90°,∴△GBE≌△CBE(ASA),∴GE=CE,∴CG=2CE.∵∠D+∠DCG=∠G+∠DCG=90°,∴∠D=∠G,又∵∠DAB=∠GAC=90°,∴△DAB∽△GAC,∴=,∵AB=AC,∴BD=CG=2CE;(3)BD=2nCE.理由如下:如图3,延长CE、AB交于点G.∵∠1=∠2,∠1=∠3,∠2=∠4,∴∠3=∠4,又∵BE=BE,∠GEB=∠CEB=90°,∴△GBE≌△CBE(ASA),∴GE=CE,∴CG=2CE.∵∠D+∠DCG=∠G+∠DCG=90°,∴∠D=∠G,又∵∠DAB=∠GAC=90°,∴△DAB∽△GAC,∴=,∵AB=nAC,∴BD=nCG=2nCE.故答案为BD=2CE;2n.26.如图,经过点A(0,﹣4)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点,O 为坐标原点.(1)求抛物线的解析式;(2)将抛物线y=x2+bx+c向上平移个单位长度,再向左平移m(m>0)个单位长度得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.【考点】二次函数综合题.【分析】(1)该抛物线的解析式中只有两个待定系数,只需将A、B两点坐标代入即可得解.(2)首先根据平移条件表示出移动后的函数解析式,进而用m表示出该函数的顶点坐标,将其代入直线AB、AC的解析式中,即可确定P在△ABC内时m的取值范围.(3)先在OA上取点N,使得∠ONB=∠ACB,那么只需令∠NBA=∠OMB即可,显然在y轴的正负半轴上都有一个符合条件的M点;以y轴正半轴上的点M为例,先证△ABN、△AMB相似,然后通过相关比例线段求出AM的长.【解答】解:(1)将A(0,﹣4)、B(﹣2,0)代入抛物线y=x2+bx+c中,得:,解得:故抛物线的解析式:y=x2﹣x﹣4.(2)由题意,新抛物线的解析式可表示为:y=(x+m)2﹣(x+m)﹣4+,即:y=x2+(m﹣1)x+m2﹣m﹣;它的顶点坐标P:(1﹣m,﹣1);由(1)的抛物线解析式可得:C(4,0);设直线AC的解析式为y=kx+b(k≠0),把x=4,y=0代入,∴4k+b=0,b=﹣4,∴y=x﹣4.同理直线AB:y=﹣2x﹣4;当点P在直线AB上时,﹣2(1﹣m)﹣4=﹣1,解得:m=;当点P在直线AC上时,(1﹣m)﹣4=﹣1,解得:m=﹣2;∴当点P在△ABC内时,﹣2<m<;又∵m>0,∴符合条件的m的取值范围:0<m<.(3)由A(0,﹣4)、C(4,0)得:OA=OC=4,且△OAC是等腰直角三角形;如图,在OA上取ON=OB=2,则∠ONB=∠ACB=45°;∴∠ONB=∠NBA+∠OAB=∠ACB=∠OMB+∠OAB,即∠OMB=∠NBA;如图,在△ABN、△AM1B中,∠BAN=∠M1AB,∠ABN=∠AM1B,∴△ABN∽△AM1B,得:AB2=AN•AM1;易得:AB2=(﹣2)2+42=20,AN=OA﹣ON=4﹣2=2;∴AM1=20÷2=10;而∠BM1A=∠BM2A=∠ABN,∴OM1=OM2=6,AM2=OM2﹣OA=6﹣4=2.综上,AM的长为10或2.。

山东省临沂市2019-2020学年中考数学三模试卷含解析

山东省临沂市2019-2020学年中考数学三模试卷含解析

山东省临沂市2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1.若小昱在某页写的数为101,则阿帆在该页写的数为何?( )A .350B .351C .356D .3582.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为( )A .1.21×103B .12.1×103C .1.21×104D .0.121×1053.如图,AB 是O e 的直径,弦CD AB ⊥,CDB 30∠=o ,CD 23=,则阴影部分的面积为( )A .2πB .πC .π3 D .2π34.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 11()1323x x x ▲---+=-, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。

同学们,你能补出这个常数吗?它应该是( )A .2B .3C .4D .55.如图,已知二次函数y=ax 2+bx 的图象与正比例函数y=kx 的图象相交于点A (1,2),有下面四个结论:①ab >0;②a ﹣b >﹣23;③sinα=21313;④不等式kx≤ax 2+bx 的解集是0≤x≤1.其中正确的是( )A .①②B .②③C .①④D .③④6.下列图形中为正方体的平面展开图的是( )A .B .C.D.7.下列实数中,最小的数是()A.3B.π-C.0 D.2-8.一个多边形内角和是外角和的2倍,它是( )A.五边形B.六边形C.七边形D.八边形9.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为()A.30°B.35°C.40°D.50°10.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°11.据统计,2018年全国春节运输人数约为3 000 000 000人,将3 000 000 000用科学记数法表示为()A.0.3×1010B.3×109C.30×108D.300×10712.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知a2+1=3a,则代数式a+1a的值为.14.分解因式:9x3﹣18x2+9x= .15.对于任意不相等的两个实数,a b,定义运算※如下:a※b a ba b+-,如3※23232+-5那么8※4=.16.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于x ,y 的方程组为__.17.函数13x y x -=-自变量x 的取值范围是 _____. 18.如图,有一块边长为4的正方形塑料模板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点()0,3C -,A 点的坐标为()1,0-.(1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,直接写出使QBC ∆为直角三角形的点Q 的坐标.20.(6分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A 、B 、C 、D ,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.21.(6分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?22.(8分)一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路上运行,已知高铁列车比动车组列车平均速度每小时快99千米,且高铁列车比动车组列车全程运行时间少3小时,求这辆高铁列车全程运行的时间和平均速度.23.(8分)计算:18×(2﹣16)﹣6÷3+13.24.(10分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C.(1)求点C和点A的坐标.(2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),①当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有______个交点;②若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:______;③当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标.25.(10分)4×100米拉力赛是学校运动会最精彩的项目之一.图中的实线和虚线分别是初三•一班和初三•二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:(1)初三•二班跑得最快的是第接力棒的运动员;(2)发令后经过多长时间两班运动员第一次并列?∠=α,点E在对角线BD上. 将线段CE绕点C顺时针旋转26.(12分)如图,在菱形ABCD中,BADα,得到CF,连接DF.(1)求证:BE=DF;⊥.(2)连接AC,若EB=EC ,求证:AC CF27.(12分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.【详解】解:小昱所写的数为 1,3,5,1,…,101,…;阿帆所写的数为 1,8,15,22,…,设小昱所写的第n 个数为101,根据题意得:101=1+(n-1)×2, 整理得:2(n-1)=100,即n-1=50,解得:n=51,则阿帆所写的第51个数为1+(51-1)×1=1+50×1=1+350=2. 故选B.【点睛】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.2.C【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:1.21万=1.21×104, 故选:C .点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.D【解析】分析:连接OD ,则根据垂径定理可得出CE=DE ,继而将阴影部分的面积转化为扇形OBD 的面积,代入扇形的面积公式求解即可.详解:连接OD,∵CD ⊥AB ,∴12CE DE CD === (垂径定理), 故OCE ODE S S V V ,= 即可得阴影部分的面积等于扇形OBD 的面积,又∵30CDB ∠=︒,∴60COB ∠=o (圆周角定理),∴OC=2,故S 扇形OBD=260π22π3603⨯=, 即阴影部分的面积为2π3.故选D.点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键. 4.D【解析】【分析】设这个数是a,把x=1代入方程得出一个关于a的方程,求出方程的解即可.【详解】设这个数是a,把x=1代入得:13(-2+1)=1-5a3-,∴1=1-5a3-,解得:a=1.故选:D.【点睛】本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键.5.B【解析】【分析】根据抛物线图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入②,不等式kx≤ax2+bx 的解集可以转化为函数图象的高低关系.【详解】解:根据图象抛物线开口向上,对称轴在y轴右侧,则a>0,b<0,则①错误将A(1,2)代入y=ax2+bx,则2=9a+1b∴b=233a -,∴a﹣b=a﹣(233a-)=4a﹣23>-23,故②正确;由正弦定义2221313 1332==+,则③正确;不等式kx≤ax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象则满足条件x范围为x≥1或x≤0,则④错误.故答案为:B.【点睛】二次函数的图像,sinα公式,不等式的解集.6.C【解析】【分析】利用正方体及其表面展开图的特点依次判断解题.【详解】由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C.【点睛】本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键.7.B【解析】【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【详解】∵π∴最小的数是-π,故选B.【点睛】此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.8.B【解析】【分析】多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【详解】设这个多边形是n边形,根据题意得:(n﹣2)×180°=2×310°解得:n=1.故选B.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.9.A【解析】【分析】根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解【详解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故选A.【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键10.B【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°. 考点:角度的计算11.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【详解】解:根据科学计数法的定义可得,3 000 000 000=3×109,故选择B.【点睛】本题考查了科学计数法的定义,确定n的值是易错点.12.C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C 左视图与俯视图都是,故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据题意a 2+1=1a ,整体代入所求的式子即可求解.【详解】∵a 2+1=1a ,∴a+1a =2a a +1a =2a 1a+=3a a =1. 故答案为1. 14.9x 2(1)x -【解析】试题分析:首先提取公因式9x ,然后利用完全平方公式进行因式分解.原式=9x (2x -2x+1)=9x 2(1)x -.考点:因式分解15.【解析】【分析】根据新定义的运算法则进行计算即可得.【详解】∵a ※b a b a b+-, ∴8※84233284+==- 3.16.【解析】【分析】甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据甲、乙两厂5月份用水量与6月份用水量列出关于x、y的方程组即可.【详解】甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:,故答案为:.【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系是解题的关键.17.x≥1且x≠1【解析】【分析】根据分式成立的条件,二次根式成立的条件列不等式组,从而求解.【详解】解:根据题意得:10{30 xx-≥-≠,解得x≥1,且x≠1,即:自变量x取值范围是x≥1且x≠1.故答案为x≥1且x≠1.【点睛】本题考查函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.18.1【解析】【详解】∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE ,∴△AEB ≌△AFD ,∴S △AEB =S △AFD ,∴它们都加上四边形ABCF 的面积,可得到四边形AECF 的面积=正方形的面积=1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)223y x x =--;(2)P 点坐标为315,24⎛⎫- ⎪⎝⎭, 758;(3)Q 31,2⎛-+ ⎝⎭或31,2⎛- ⎝⎭或()1,2或()1,4-.【解析】【分析】(1)根据待定系数法把A 、C 两点坐标代入2y x bx c =++可求得二次函数的解析式;(2)由抛物线解析式可求得B 点坐标,由B 、C 坐标可求得直线BC 解析式,可设出P 点坐标,用P 点坐标表示出四边形ABPC 的面积,根据二次函数的性质可求得其面积的最大值及P 点坐标;(3)首先设出Q 点的坐标,则可表示出QB 2、QC 2和BC 2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三种情况,求解即可.【详解】解:(1)∵A(-1,0),()0,3C -在2y x bx c =++上,103b c c -+=⎧∴⎨=-⎩,解得23b c =-⎧⎨=-⎩, ∴二次函数的解析式为223y x x =--;(2)在223y x x =--中,令0y =可得2023x x -=-,解得3x =或1x =-,()3,0B ∴,且()0,3C -,∴经过B 、C 两点的直线为3y x =-,设点P 的坐标为()223x x x --,,如图,过点P 作PD x ⊥轴,垂足为D ,与直线BC 交于点E ,则(),3E x x -,ABC BCP ABPC S S S ∆∆=+Q 四边形()211433322x x =⨯⨯+-⨯239622x x =-++23375228x ⎛⎫=-+ ⎪⎝⎭, ∴当32x =时,四边形ABPC 的面积最大,此时P 点坐标为315,24⎛⎫- ⎪⎝⎭, ∴四边形ABPC 的最大面积为758; (3)()222314y x x x =--=--Q ,∴对称轴为1x =,∴可设Q 点坐标为()1,t ,()3,0B Q ,()0,3C -,()2222134BQ t t ∴=-+=+,()222213610CQ t t t =++=++,218BC =,QBC ∆Q 为直角三角形,∴有90BQC ∠=︒、90CBQ ∠=︒和90BCQ ∠=︒三种情况,①当90BQC ∠=︒时,则有222BQ CQ BC +=,即22461018t t t ++++=,解得317t -+=或3172t -=,此时Q 点坐标为3171,2⎛-+ ⎝⎭或3171,2⎛-- ⎝⎭; ②当90CBQ ∠=︒时,则有222BC BQ CQ +=,即22418610t t t ++=++,解得2t =,此时Q 点坐标为()1,2;③当90BCQ ∠=︒时,则有222BCCQ BQ +=,即22186104t t t +++=+,解得4t =-,此时Q 点坐标为()1,4-; 综上可知Q 点的坐标为317⎛-+ ⎝⎭或317⎛-- ⎝⎭或()1,2或()1,4-. 【点睛】本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.20.(1)50、2;(2)平均数是7.11;众数是1;中位数是1.【解析】【分析】(1)根据A 等级人数及其百分比可得总人数,用C 等级人数除以总人数可得a 的值;(2)根据平均数、众数、中位数的定义计算可得.【详解】(1)本次抽查测试的学生人数为14÷21%=50人,a%=1250×100%=2%,即a=2. 故答案为50、2;(2)观察条形统计图,平均数为1492081274650⨯+⨯+⨯+⨯=7.11. ∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1. ∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴882+=1,∴这组数据的中位数是1. 【点睛】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.21.(1)100+200x ;(2)1.【解析】试题分析:(1)销售量=原来销售量﹣下降销售量,列式即可得到结论;(2)根据销售量×每斤利润=总利润列出方程求解即可得到结论.试题解析:(1)将这种水果每斤的售价降低x 元,则每天的销售量是100+0.1x ×20=100+200x 斤; (2)根据题意得:(42)(100200)300x x --+=,解得:x=12或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1.答:张阿姨需将每斤的售价降低1元.考点:1.一元二次方程的应用;2.销售问题;3.综合题. 22.这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.【解析】【分析】设动车组列车的平均速度为x 千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据时间=路程÷速度结合高铁列车比动车组列车全程运行时间少3小时,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据题意得:﹣=3,解得:x1=161,x2=﹣264(不合题意,舍去),经检验,x=161是原方程的解,∴x+99=264,1320÷(x+99)=1.答:这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.【点睛】本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.23.2-23 3【解析】分析:先化简各二次根式,再根据混合运算顺序依次计算可得.详解:原式2×(6)232323223点睛:本题考查了二次根式的混合运算,熟练掌握混合运算的法则是解题的关键.24.(1)C(2,-1),A(1,0);(2)①3,②0<t<12+2,1)或(2+2,1)或(-1,0)【解析】【分析】(1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;(2)①抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;②将y=3代入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L双抛图形”与直线y=3恰好有两个交点时t的取值范围;③首先证明四边形ACQP 为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标.【详解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,∴A(1,0),B(3,0),∴抛物线的对称轴为x=2,将x=2代入抛物线的解析式得:y=-1,∴C(2,-1);(2)①将x=0代入抛物线的解析式得:y=3,∴抛物线与y轴交点坐标为(0,3),如图所示:作直线y=3,由图象可知:直线y=3与“L双抛图形”有3个交点,故答案为3;②将y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函数图象可知:当0<t<1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,故答案为0<t<1.③如图2所示:∵PQ∥AC且PQ=AC,∴四边形ACQP为平行四边形,又∵点C的纵坐标为-1,∴点P的纵坐标为1,将y=1代入抛物线的解析式得:x2-1x+3=1,解得:2+2或2+2.∴点P2+2,1)或(2+2,1),当点P(-1,0)时,也满足条件.2,1)或(2+2,1)或(-1,0)【点睛】本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L 双抛图形”的定义,数形结合以及方程思想的应用是解题的关键.25. (1)1;(2)发令后第37秒两班运动员在275米处第一次并列.【解析】【分析】(1)直接根据图象上点横坐标可知道最快的是第1接力棒的运动员用了12秒跑完100米;(2)分别利用待定系数法把图象相交的部分,一班,二班的直线解析式求出来后,联立成方程组求交点坐标即可.【详解】(1)从函数图象上可看出初三•二班跑得最快的是第1接力棒的运动员用了12秒跑完100米;(2)设在图象相交的部分,设一班的直线为y 1=kx+b ,把点(28,200),(40,300)代入得:28200{40300k b k b +=+= 解得:k =253,b =﹣1003, 即y 1=253x ﹣1003, 二班的为y 2=k′x+b′,把点(25,200),(41,300),代入得:25200{41300k b k b +=+= 解得:k′=254,b′=1754, 即y 2=254x+1754 联立方程组2510033{2517544y x y x =-=+, 解得:37{275x y ==,所以发令后第37秒两班运动员在275米处第一次并列.【点睛】本题考查了利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.要掌握利用函数解析式联立成方程组求交点坐标的方法.26.证明见解析【解析】【分析】(1)根据菱形的性质可得BC=DC ,BAD BCD α∠∠==,再根据ECF α∠=,从而可得 BCD ECF ∠∠=,继而得BCE ∠=DCF ∠,由旋转的性质可得CE =CF ,证明BEC V ≌DFC V ,即可证得BE =DF ;(2)根据菱形的对角线的性质可得ACB ACD ∠∠=,AC BD ⊥,从而得ACB+EBC 90∠∠=︒,由EB=EC ,可得EBC=BCE ∠∠,由(1)可知,可推得DCF+ACD EBC ACB 90∠∠∠∠=+=︒,即可得ACF 90∠=︒,问题得证.【详解】(1)∵四边形ABCD 是菱形,∴BC=DC ,BAD BCD α∠∠==,∵ECF α∠=,∴ BCD ECF ∠∠=,∴BCE=DCF ∠∠,∵线段CF 由线段CE 绕点C 顺时针旋转得到,∴CE=CF ,在BEC V 和DFC V 中,BC DC BCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,,,∴BEC V ≌()DFC SAS V ,∴BE=DF ;(2)∵四边形ABCD 是菱形,∴ACB ACD ∠∠=,AC BD ⊥,∴ACB+EBC 90∠∠=︒,∵EB=EC ,∴EBC=BCE ∠∠,由(1)可知,EBC=DCF ∠∠,∴DCF+ACD EBC ACB 90∠∠∠∠=+=︒,∴ACF 90∠=︒,∴AC CF ⊥.【点睛】本题考查了旋转的性质、菱形的性质、全等三角形的判定与性质等,熟练掌握和应用相关的性质与定理是解题的关键.27.(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.【解析】【分析】(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.【详解】(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天. 根据题意得:101012x x+= 方程两边同乘以2x ,得230x =解得:15x =经检验,15x =是原方程的解.∴当15x =时,230x =.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:方案一:由甲工程队单独完成.所需费用为:41560⨯=(万元);方案二:由乙工程队单独完成.所需费用为:2.53075⨯=(万元);方案三:由甲乙两队合作完成.所需费用为:(4 2.5)1065+⨯=(万元).∵756560>>∴应该选择甲工程队承包该项工程.【点睛】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。

山东省临沂市2019-2020学年中考数学三模考试卷含解析

山东省临沂市2019-2020学年中考数学三模考试卷含解析

山东省临沂市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若2x y +=,2xy =-,则y xx y+的值是( ) A .2B .﹣2C .4D .﹣42.已知a ﹣b=1,则a 3﹣a 2b+b 2﹣2ab 的值为( ) A .﹣2B .﹣1C .1D .23.下列美丽的图案中,不是轴对称图形的是( )A .B .C .D .4.下列各类数中,与数轴上的点存在一一对应关系的是( ) A .有理数 B .实数 C .分数 D .整数5.如图,▱ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE+EO=4,则▱ABCD 的周长为( )A .20B .16C .12D .86.已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是( ) A .20cm2B .20πcm2C .10πcm2D .5πcm27.等腰三角形的一个外角是100°,则它的顶角的度数为( ) A .80°B .80°或50°C .20°D .80°或20°8.如图,△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N 作直线MN ,交BC 于点D ,连结AD ,则∠BAD 的度数为( )A .65°B .60°C .55°D .45°9.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p ,而在另一个瓶子中是1:q ,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是( )A.2P q+B.2P qPq+C.2+2p qP q Pq+++D.2+2p q pqP q+++10.在数轴上到原点距离等于3的数是( )A.3 B.﹣3 C.3或﹣3 D.不知道11.如图,等腰△ABC中,AB=AC=10,BC=6,直线MN垂直平分AB交AC于D,连接BD,则△BCD 的周长等于()A.13 B.14 C.15 D.1612.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b且,a,b是0,1,2,3四个数中的其中某一个,若|a﹣b|≤1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为_____.14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.15.国家游泳中心“水立方”是奥运会标志性建筑之一,其工程占地面积约为62800m2,将62800用科学记数法表示为_____.16.化简11x-÷211x-=_____.17.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.18.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ ▲ 人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?20.(6分)如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.(1)求证:DE=DB:(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;(3)若BD=6,DF=4,求AD的长21.(6分)如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B.抛物线y=﹣12x2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b=,c=,点C的坐标为.如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为m.PQ与OQ的比值为y,求y 与m的数学关系式,并求出PQ与OQ的比值的最大值.如图2,若点P是第四象限的抛物线上的一点.连接PB与AP,当∠PBA+∠CBO=45°时.求△PBA的面积.22.(8分)如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ 于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.当α=125°时,∠ABC=°;求证:AC=CE;若△ABC的外心在其内部,直接写出α的取值范围.23.(8分)解不等式组43(2)52 364x xxx--<-⎧⎪⎨-≥-⎪⎩并写出它的整数解.24.(10分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?25.(10分)(1)计算:﹣22+|12﹣4|+(13)-1+2tan60°(2)求不等式组620{21xx x-≥->的解集.26.(12分)如图,在矩形ABCD中,AB=3,AD=4,P沿射线BD运动,连接AP,将线段AP绕点P 顺时针旋转90°得线段PQ.(1)当点Q落到AD上时,∠PAB=____°,PA=_____,»AQ长为_____;(2)当AP⊥BD时,记此时点P为P0,点Q为Q0,移动点P的位置,求∠QQ0D的大小;(3)在点P运动中,当以点Q为圆心,23BP为半径的圆与直线BD相切时,求BP的长度;(4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果.27.(12分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】因为()2222x y x xy y +=++,所以()222222228x y x y xy +=+-=-⨯-=,因为22842y x y x x y xy ++===--,故选D. 2.C 【解析】 【分析】先将前两项提公因式,然后把a ﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算. 【详解】a 3﹣a 2b+b 2﹣2ab=a 2(a ﹣b )+b 2﹣2ab=a 2+b 2﹣2ab=(a ﹣b )2=1. 故选C . 【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合. 3.A 【解析】 【分析】根据轴对称图形的概念对各选项分析判断即可得解. 【详解】解:A 、不是轴对称图形,故本选项正确; B 、是轴对称图形,故本选项错误; C 、是轴对称图形,故本选项错误; D 、是轴对称图形,故本选项错误. 故选A . 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.B【解析】【分析】根据实数与数轴上的点存在一一对应关系解答.【详解】实数与数轴上的点存在一一对应关系,故选:B.【点睛】本题考查了实数与数轴上点的关系,每一个实数都可以用数轴上唯一的点来表示,反过来,数轴上的每个点都表示一个唯一的实数,也就是说实数与数轴上的点一一对应.5.B【解析】【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.6.C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C7.D【解析】【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.8.A【解析】【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A.【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.9.C【解析】【分析】混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得设瓶子的容积即酒精与水的和是1,则纯酒精之和为:1×11p ++1×11q +=11p ++11q +,水之和为:1p p ++1qq +, ∴混合液中的酒精与水的容积之比为:(11p ++11q +)÷(1p p ++1q q +)=2+2p q P q Pq +++,故选C . 【点睛】本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键. 10.C 【解析】 【分析】根据数轴上到原点距离等于3的数为绝对值是3的数即可求解. 【详解】绝对值为3的数有3,-3.故答案为C. 【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值. 11.D 【解析】 【分析】由AB 的垂直平分MN 交AC 于D ,根据线段垂直平分线的性质,即可求得AD=BD ,又由△CDB 的周长为:BC+CD+BD=BC+CD+AD=BC+AC ,即可求得答案. 【详解】解:∵MN 是线段AB 的垂直平分线, ∴AD =BD , ∵AB =AC =10,∴BD+CD =AD+CD =AC =10,∴△BCD 的周长=AC+BC =10+6=16,故选D . 【点睛】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.试题分析:观察图形可知,该几何体的主视图是.故选A.考点:简单组合体的三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5 8【解析】【分析】利用P(A)=mn,进行计算概率.【详解】从0,1,2,3四个数中任取两个则|a﹣b|≤1的情况有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10种情况,甲乙出现的结果共有4×4=16,故出他们”心有灵犀”的概率为105 168=.故答案是:5 8 .【点睛】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.14.4 5【解析】【详解】试题分析:根据概率的意义,用符合条件的数量除以总数即可,即1024 105-=.考点:概率15.6.28×1.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】62800用科学记数法表示为6.28×1.故答案为6.28×1.此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.x+1【解析】分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可.详解:解:原式=11x-÷1(1)(1)x x+-=11x-•(x+1)(x﹣1)=x+1,故答案为x+1.点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解.17.1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.18.【解析】试题解析:∵一个布袋里装有2个红球和5个白球,∴摸出一个球摸到红球的概率为:.考点:概率公式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)1;(3)估计全校达标的学生有10人【解析】【分析】(1)成绩一般的学生占的百分比=1-成绩优秀的百分比-成绩不合格的百分比,测试的学生总数=不合格的人数÷不合格人数的百分比,继而求出成绩优秀的人数.(2)将成绩一般和优秀的人数相加即可;(3)该校学生文明礼仪知识测试中成绩达标的人数=1200×成绩达标的学生所占的百分比.【详解】解:(1)成绩一般的学生占的百分比=1﹣20%﹣50%=30%,测试的学生总数=24÷20%=120人,成绩优秀的人数=120×50%=60人,所补充图形如下所示:(2)该校被抽取的学生中达标的人数=36+60=1.(3)1200×(50%+30%)=10(人).答:估计全校达标的学生有10人.20.(1)见解析;(2)2(3)1(1)通过证明∠BED=∠DBE得到DB=DE;(2)连接CD,如图,证明△DBC为等腰直角三角形得到BC=2BD=42,从而得到△ABC外接圆的半径;(3)证明△DBF∽△ADB,然后利用相似比求AD的长.【详解】(1)证明:∵AD平分∠BAC,BE平分∠ABD,∴∠1=∠2,∠3=∠4,∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,∴DB=DE;(2)解:连接CD,如图,∵∠BAC=10°,∴BC为直径,∴∠BDC=10°,∵∠1=∠2,∴DB=BC,∴△DBC为等腰直角三角形,∴BC=BD=4,∴△ABC外接圆的半径为2;(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,∴△DBF∽△ADB,∴=,即=,∴AD=1.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.21.(3)3,2,C(﹣2,4);(2)y=﹣18m2+12m ,PQ与OQ的比值的最大值为12;(3)S△PBA=3.(3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标.(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到PQ ED OQ OD=,设点P坐标为(m,-12m2+m+2),Q点坐标(n,-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用PE QDOE OD=即可求解.(3)求得P点坐标,利用图形割补法求解即可.【详解】(3)∵直线y=﹣x+2与x轴交于点A,与y轴交于点B.∴A(2,4),B(4,2).又∵抛物线过B(4,2)∴c=2.把A(2,4)代入y=﹣x2+bx+2得,4=﹣12×22+2b+2,解得,b=3.∴抛物线解析式为,y=﹣12x2+x+2.令﹣12x2+x+2=4,解得,x=﹣2或x=2.∴C(﹣2,4).(2)如图3,分别过P、Q作PE、QD垂直于x轴交x轴于点E、D.设P(m,﹣12m2+m+2),Q(n,﹣n+2),则PE=﹣12m2+m+2,QD=﹣n+2.又∵PQ m nOQ n-==y.又∵PE OEQD OD=,即24124mmnmn=-+++把n=1my+代入上式得,2412411mm mym my++=++-+整理得,2y=﹣12m2+2m.∴y=﹣12m2+12m.y max=210()121248-=⎛⎫⨯ ⎪⎝⎭.即PQ与OQ的比值的最大值为12.(3)如图2,∵∠OBA=∠OBP+∠PBA=25°∠PBA+∠CBO=25°∴∠OBP=∠CBO此时PB过点(2,4).设直线PB解析式为,y=kx+2.把点(2,4)代入上式得,4=2k+2.解得,k=﹣2∴直线PB解析式为,y=﹣2x+2.令﹣2x+2=﹣12x2+x+2整理得,12x2﹣3x=4.∴P(5,﹣7).过P作PH⊥cy轴于点H.则S四边形OHPA=12(OA+PH)•OH=12(2+5)×7=24.S△OAB=12OA•OB=12×2×2=7.S△BHP=12PH•BH=12×5×3=35.∴S△PBA=S四边形OHPA+S△OAB﹣S△BHP=24+7﹣35=3.【点睛】本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力.还考查了运用图形割补法求解坐标系内图形的面积的方法.22.(1)125;(2)详见解析;(3)45°<α<90°.【解析】【分析】(1)利用四边形内角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;(2)证明△ABC≌△EDC(AAS)即可求解;(3)当∠ABC=α=90°时,△ABC的外心在其直角边上,∠ABC=α>90°时,△ABC的外心在其外部,即可求解.【详解】(1)在四边形BADC中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,而∠ADC+∠EDC=180°,∴∠ABC=∠PDC=α=125°,故答案为125;(2)∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,∴∠ACB=∠ECD,又BC=DC,由(1)知:∠ABC=∠PDC,∴△ABC≌△EDC(AAS),∴AC=CE;(3)当∠ABC=α=90°时,△ABC的外心在其斜边上;∠ABC=α>90°时,△ABC的外心在其外部,而45°<α<135°,故:45°<α<90°.【点睛】【解析】【分析】先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.【详解】43(2)52364x x x x --<-⎧⎪⎨-≥-⎪⎩①② ∵解①得:x >5,解不等式②得:x≤1,∴不等式组的解集是5<x≤1,∴不等式组的整数解是6,1.【点睛】本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法24.大和尚有25人,小和尚有75人.【解析】【分析】设大和尚有x 人,小和尚有y 人,根据100个和尚吃100个馒头且1个大和尚分3个、3个小和尚分1个,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】解:设大和尚有x 人,小和尚有y 人, 依题意,得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 解得:{x 25y 75==.答:大和尚有25人,小和尚有75人.【点睛】考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.(1)1;(2)-1≤x<1.【解析】试题分析:(1)、首先根据绝对值、幂、三角函数的计算法则得出各式的值,然后进行求和得出答案;(2)、分半求出每个不等式的解,然后得出不等式组的解.(2)、6-2021x x x >⎧⎨≥-⎩①②由①得:x<1,由②得:x≥-1,∴不等式的解集:-1≤x<1. 26. (1)45,1227,62π;(2)满足条件的∠QQ 0D 为45°或135°;(3)BP 的长为275或2725;(4)7210≤CQ≤7. 【解析】【分析】(1)由已知,可知△APQ 为等腰直角三角形,可得∠PAB ,再利用三角形相似可得PA ,及弧AQ 的长度;(2)分点Q 在BD 上方和下方的情况讨论求解即可.(3)分别讨论点Q 在BD 上方和下方的情况,利用切线性质,在由(2)用BP 0表示BP ,由射影定理计算即可;(4)由(2)可知,点Q 在过点Q o ,且与BD 夹角为45°的线段EF 上运动,有图形可知,当点Q 运动到点E 时,CQ 最长为7,再由垂线段最短,应用面积法求CQ 最小值.【详解】解:(1)如图,过点P 做PE ⊥AD 于点E由已知,AP =PQ ,∠APQ =90°∴△APQ 为等腰直角三角形∴∠PAQ =∠PAB =45°设PE =x ,则AE =x ,DE =4﹣x∵PE ∥AB∴△DEP ∽△DAB∴DE DA =PE AB ∴4-x 4=3x 解得x =127∴PA 2PE 122 ∴弧AQ 的长为1•2π•12262.故答案为45,1227,62π.(2)如图,过点Q做QF⊥BD于点F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.当点Q在BD的右下方时,同理可得∠PQ0Q=45°,此时∠QQ0D=135°,综上所述,满足条件的∠QQ0D为45°或135°.(3)如图当点Q直线BD上方,当以点Q为圆心,23BP为半径的圆与直线BD相切时过点Q做QF⊥BD于点F,则QF=23BP由(2)可知,PP0=23BP∴BP0=13BP∵AB=3,AD=4 ∴BD=5∵△ABP0∽△DBA ∴AB2=BP0•BD∴9=13BP×5∴BP=27 5同理,当点Q位于BD下方时,可求得BP=27 25故BP的长为275或2725(4)由(2)可知∠QQ0D=45°则如图,点Q在过点Q0,且与BD夹角为45°的线段EF上运动,当点P与点B重合时,点Q与点F重合,此时,CF=4﹣3=1当点P与点D重合时,点Q与点E重合,此时,CE=4+3=7∴EF22CF+CE22172由面积法可知CH=FC ECEF•=52=7210∴CQ的取值范围为:7210≤CQ≤7【点睛】本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想.27.解:(1)①2.②95或52.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.【解析】【分析】(1)①当AC=BC=2时,△ABC为等腰直角三角形;②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB 边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.【详解】(1)若△CEF与△ABC相似.①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,此时D为AB边中点,AD=222.②当AC=3,BC=4时,有两种情况:(I)若CE:CF=3:4,如答图2所示,∵CE:CF=AC:BC,∴EF∥BC.由折叠性质可知,CD⊥EF,∴CD⊥AB,即此时CD为AB边上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=35.∴AD=AC•cosA=3×35=95.(II)若CF:CE=3:4,如答图3所示.∵△CEF∽△CAB,∴∠CEF=∠B.由折叠性质可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD.∴AD=BD.∴此时AD=AB=12×1=52.综上所述,当AC=3,BC=4时,AD的长为95或52.(2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:如图所示,连接CD,与EF交于点Q.∵CD是Rt△ABC的中线∴CD=DB=12 AB,∴∠DCB=∠B.由折叠性质可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°,∵∠B+∠A=90°,∴∠CFE=∠A,又∵∠ACB=∠ACB,∴△CEF∽△CBA.。

山东省临沂市2021年中考模拟数学试卷(三)(含解析)

山东省临沂市2021年中考模拟数学试卷(三)(含解析)

山东省临沂市2021年中考模拟数学试卷(三)(含解析)----ac33555a-6eb0-11ec-978a-7cb59b590d7d2021年山东省临沂市中考数学模拟试卷(三)一、多项选择题(本主题共有14个子题,每个子题得3分,总共42分)每个子题中给出的四个选项中只有一个符合问题的要求。

1.4的倒数是()a.4b.4c.d。

2.下列运算正确的是()a.(a3)=a93.式子二2b、 a?a=ac。

248=±3d.=2在实数范围内有意义,则x的取值范围是()a、x≥1b.x≤1c.x>0d.x>14.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:均值(CM)方差a 1853.6 B 1803.6 C 1857.4 D 1808.1根据表中的数据,如果你想选择一名表现良好且稳定的运动员参加比赛,你应该选择()a.B.B.C.C.D.D.5。

简化:÷(1)结果是()da.x4b.x+3c.6.如图所示,EF‖BC,AC二分法∠ BAF,∠ B=80°,∠ C=()a.40b.45c.50d.557.如图所示,已知圆锥侧面展开视图的扇形面积为65πcm,扇形弧长为10πcm,则圆锥母线的长度为()2a、 5cmb.10cmc.12cmd.13cm8.如图,正方形纸片abcd的边长为3,点e、f分别在边bc、cd上,将ab、ad分别沿ae、af折叠,点b,d恰好都落在点g处,已知be=1,则ef的长为()a、 1.5b.2.5c.2.25d.39.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()a、10πb.15πC.20πd.30π10。

已知xam>1b的二元线性方程组。

M<2C。

M>3D。

M>511.若x=2是关于x的一元二次方程x+axa=0的一个根,则a的值为()a.1或4b.1或4c.1或4d.1或412.如图所示,Mn是⊙ o半径为1时,a点为on⊙ 哦,∠ amn=30°,B点为下弧an 的中点。

临沂市初中学生学业考试模拟数学试题(三)及答案

临沂市初中学生学业考试模拟数学试题(三)及答案

临沂市初中学生学业考试模拟试题(三)数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至10页.共120分.考试时间120分钟.第Ⅰ卷(选择题共42分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用2B铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.不能答在试卷上.3.考试结束,答题卡和卷Ⅱ一并交回.一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中,只有一项是符合题目要求的.题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答案1.的相反数是A. B.-,C.12014 D.120142.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是A.k<1 B.k>1C.k=1 D.k≥03.下列运算中,正确的是A .235a a a +=B .826-=C .236a a a •=D .2222a a a +=4.如图,AB ∥CD ,BE 交CD 于点F ,∠B =45°,∠E =21°则∠D 为A . 21°B .24°C .45°D .66°5.二元一次方程组2,0.x y x y +=⎧⎨-=⎩的解是A .0,2.x y =⎧⎨=⎩ B .2,0.x y =⎧⎨=⎩ C .1,1.x y =⎧⎨=⎩ D .1,1.x y =-⎧⎨=-⎩ 6.化简22424422x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是 A .82x -- B .82x -C .82x -+D .82x +7.已知⊙O 1与⊙O 2的半径分别为3cm 和5cm ,若圆心距O 1O 2=8cm ,则⊙O 1与⊙O 2的位置关系是A .相交,B .相离,C .内切D .外切8.顺次连接四边形ABCD 各边中点,得到四边形EFGH ,要使四边形EFGH 是矩形,应添加的条件是A .AD ∥BCB .AC = BD C .AC ⊥BD D .AD =AB9.如下图是根据某班40名学生一周的体育锻炼情况绘制的条形统计图.那么关于该班40名学生一周参加体育锻炼时间(小时)的说法错误的是 A .极差是13B .中位数为9C .众数是8D .超过8小时的有21人10.如图BC 是⊙O 的直径,AD 切⊙O 于A ,若∠C =40°,则∠DAC 的度数是A .50°B .40°C .25°D .20°11.将1、2、3三个数字随机生成的点的坐标,列成下表.如果每个点出现的可能性相等,那么从中任意取一点,则这个点在函数y x =图象上的概率是(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)A .0.3B .0.5C .13D .2312.如图,︒=∠=∠90B A ,7=AB ,2=AD ,3=BC ,如果边AB 上的点P 使得以P 、A 、D 为顶点的三角形和以P 、B 、C 为顶点的三角形相似,则这样的P 点共有( )个.A.1B.2.C.3D.413.如图,在等腰Rt △ABC 中,∠C =90º,AC =8,F 是AB 边上的中点,点D 、E 分别在 AC 、BC 边上运动,且保持AD =CE ,连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①△DFE 是等腰直角三角形; ②四边形CDFE 不可能为正方形; ③DE 长度的最小值为4; ④四边形CDFE 的面积保持不变; ⑤△CDE 面积的最大值为8.其中正确的结论是 A .①②③ B .①④⑤C .①③④D .③④⑤14.如图,ABC △和的DEF △是等腰直角三角形,90C F ∠=∠=,24AB DE ==,.点B 与点D 重合,点AB D E ,(),在同一条直线上,将ABC △沿DE →方向平移,至点A 与点E 重合时停止.设点B D ,之间的距离为x ,ABC △与DEF △重叠部分的面积为y ,则准确反映y 与x 之间对应关系的图象是临沂市初中学生学业考试模拟试题(三)数 学第Ⅱ卷(非选择题 共78分)注意事项:1.第Ⅱ卷共8页,用蓝黑钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚.二. 填空题:(本大题共5个小题.每小题3分,共15分)把答案填在题中横线上.15.因式分解:22a a += .16.当2x =-时,代数式21x x -的值是 .17.如图,等腰梯形ABCD 中,AB ∥DC ,BE ∥AD , 梯形ABCD 的周长为26,DE =4,则△BEC 的周长为 .题号 二三 总分2021 22 23 24 25 26 得分得分评卷人18.双曲线1y 、2y 在第一象限的图像如图,14y x=,过1y 上的任意一点A ,作x 轴的平行线交2y 于B ,交y 轴于C ,若1AOB S ∆=,则2y 的解析式是 .19.若111a m =-,2111a a =-,3211a a =-,… ;则2011a 的值为 .(用含m 的代数式表示)三、开动脑筋,你一定能做对!(本大题共3小题,共20分) 20.(本小题满分6分)已知x 2-2=0,求代数式(x -1)2x 2-1+x 2x +1的值.得分评卷人得分评卷人21.(本小题满分7分)《中学生体质健康标准》规定学生体质健康等级标准为:86分及以上为优秀;76~85分为良好;60~75分为及格;59分以下为不及格.某校从九年级学生中随机抽取了10%的学生进行了体质测试,得分情况如下图.(1)在抽取的学生中不及格人数所占的百分比是______;(2)小明按以下方法计算出抽取的学生平均得分是(90+78+66+42)÷4=69.根据所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式(不必算出结果);(3) 若不及格学生的总分恰好等于某一个良好等级学生的分数,请估算出该校九年级学生中优秀等级的人数.得分评卷人22.(本小题满分7分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在BC边上,且∠GDF=∠ADF。

临沂市初中学业水平考试模拟数学试题(3)含答案

临沂市初中学业水平考试模拟数学试题(3)含答案

临沂市初中学业水平考试模拟试题数 学(三)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。

满分120分,考试时间120分钟。

答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置。

考试结束后,将本试卷和答题卡一并交回。

2.答题注意事项见答题卡,答在本试卷上不得分。

第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.13的相反数是 A .-13 B .13C .3D .-32.下列计算正确的是 A .a 2+a 2=a 4 B .(a 2)3=a 5 C .a +2=2a D .(ab )3=a 3b 3 3.若a >b ,则下列式子中一定成立的是 A .a -2<b -2 B .a 2>b2 C .2a >b D .3-a >3-b4.一组数据:2,-1,0,3,-3,2.则这组数据的中位数和众数分别是 A .0,2B .1.5,2C .1,2D .1,35.截至去年底,国家开发银行对“一带一路”沿线国家累计贷款超过1600亿美元,其中1600亿用科学记数法表示为A .16×1010B .1.6×1010C .1.6×1011D .0.16×1012 6.下列图形中,是轴对称图形的是7.如图,已知直线AB ∥CD ,∠C =100°,∠A =30°,则∠E 的度数为 A .30° B .60° C .70° D .100°8.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是A.40πB.24πC.20 πD.12π9.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是A.20°B.30°C.40°D.70°10.如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是()A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC11.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=43,∠AEO=120°,则FC的长度为A.1B.2C.2D. 312.如图,在平面直角坐标系中,平行四边形OABC的顶点A在x轴上,顶点B的坐标为(6,4).若直线l经过点(1,0),且将平行四边形OABC分割成面积相等的两部分,则直线l的函数解析式是()13.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1)B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大第Ⅱ卷(非选择题共78分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分.二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:x2y-y=____________.16.已知a2﹣a﹣2=0,则代数式﹣的值为.17.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=__________.18.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于点D,连接BE.设∠BEC=α,则sin α的值为________.19.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是(写出所有正确说法的序号).①当x=1.7时,[x]+(x)+[x)=6;②当x=-2.1时,[x]+(x)+[x)=-7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当-1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.三、解答题(本大题共7小题,共63分)20.(本小题满分7分)21.(本小题满分7分)市某中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.(1)这次统计共抽取了本书籍,扇形统计图中的m=,∠α的度数是;(2)请将条形统计图补充完整;(3)估计全校师生共捐赠了多少本文学类书籍.(第21题图)22.(本小题满分7分)从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)(第22题图)23.(本小题满分9分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(第23题图)24.(本小题满分9分)“低碳环保、绿色出行”的理念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具.小和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(第24题图)(1)a=;b=;m=;(2)若小的速度是120米/分,求小在图中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小相距100米?(4)若小的行驶速度是v米/分,且在图中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.25.(本小题满分11分)在边长为1的正方形ABCD中,点E是射线BC上一动点,AE与BD相交于点M,AE或其延长线与DC或其延长线相交于点F,G是EF的中点,连结CG.(1)如图1,当点E在BC边上时.求证:①△ABM≌△CBM;②CG⊥CM.(2)如图2,当点E在BC的延长线上时,(1)中的结论②是否成立?请写出结论,不用证明.(3)试问当点E运动到什么位置时,△MCE是等腰三角形?请说明理由.(第25题图)26.(本小题满分13分)如图,在平面直角坐标系中,矩形OABC 的顶点,A C 分别在x 轴,y 轴的正半轴上,且4,3OA OC ==.若抛物线经过,O A 两点,且顶点在BC 边上,对称轴交BE 于点F ,点,D E 的坐标分别为()()3,0,0,1.(1)求抛物线的解析式; (第26题图) (2)猜想EDB ∆的形状并加以证明;(3)点M 在对称轴右侧的抛物线上,点N 在x 轴上,请问是否存在以点A,F ,M ,N 为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点M 的坐标;若不存在,请说明理由.2018一轮验收考试试题 数学(三)参考答案及评分标准说明:第三、四、五题给出了一种解法,考生若用其它解法,应参照本评分标准给分. 一、选择题(每小题3分,共42分) 1-14.ADBCC CCCAD BDDC二、填空题(每小题3分,共15分)15.y (x +1)(x -1) 16.﹣. 17.2 18.31313 19.②③三、开动脑筋,你一定能做对!(共21分) 20.解:=2)21(12211222-+-+-+÷.................(3分) =4222+-+..........................(6分)=28-.............................(7分)21.解:(1)40÷20%=200(本),80÷200=40%,×360°=36°,故答案为:200,40,36°;------------3分 (2)B 的本数为:200﹣40﹣80﹣20=60(本), 如图所示:------------------------------5分(3)3000×=900(本).答:估计全校师生共捐赠了900本文学类书籍.-----------7分 22.解:作AD ⊥BC 于点D , ∵∠MBC =60°,∴∠ABC=30°,--------------------1分∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,则∠ACB=45°,-------------------------------3分在Rt△ADB中,AB=50,则AD=25,BD=25,-----------------------5分在Rt△ADC中,AD=25,CD=25,则BC=25+25.答:观察点B到花坛C的距离为(25+25)米.-----------------7分23.(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,---------------------2分∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;-----------------------------5分∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,-------------------------------------------8分即,∴BC=2.-----------------------------9分24.(1)10;15;200;------------3分(2)小在途中与爸爸第二次相遇时,距图书馆的距离是750米;-----------------5分(3)爸爸自第二次出发至到达图书馆前,17.5分钟时和20分钟时与小相距100米;-7分(4)100<v<4003------------9分25.(1)①证明:∵四边形ABCD是正方形∴AB=BC,∠ABM=∠CBM……(1分)又∵BM=BM,∴ΔABM≌ΔCBM. ……(3分)②∵ΔABM≌ΔCBM∴∠BAM=∠BCM又∵∠ECF=90º,G是EF的中点∴GC=GF,∴∠GCF=∠F……4分)又∵AB∥DF,∴∠BAM=∠F∴∠BCM=∠GCF……(5分)∴∠BCM+∠GCE=∠GCF+∠GCE=90º∴GC⊥C M……(6分)(2)成立……(7分)(3)①当点E在BC边上时∵∠MEC>90º,要使△MCE是等腰三角形,必须EM=EC,∴∠EMC=∠ECM∴∠AEB=2∠BCM=2∠BAE∴2∠BAE+∠B AE=90º,∴∠BAE=300∴BE=33. ……(9分)②当点E在BC的延长线上时,仿①易知BE=3. ……(10分)综上①②,当BE=33戓BE=3时,△MCE是等腰三角形.……(11分)26.------------------------------------------------4分(2)△EDB为等腰直角三角形.------------------------5分证明如下:由(1)可知B(4,3),且D(3,0),E(0,1),∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,∴△EDB为等腰直角三角形;--------------------------8分(3)存在.--------------9分理由如下:设直线BE解析式为y=kx+b,把B、E坐标代入可得341k bb=+⎧⎨=⎩,解得121kb⎧=⎪⎨⎪=⎩,∴直线BE解析式为y=12x+1,当x=2时,y=2,∴F(2,2),①当AF为平行四边形的一边时,则M到x轴的距离与F到x轴的距离相等,即M到x轴的距离为2,∴点M的纵坐标为2或﹣2,在y=﹣34x2+3x中,令y=2可得2=﹣34x2+3x,解得x=6233±,∵点M在抛物线对称轴右侧,②当AF为平行四边形的对角线时,∵A(4,0),F(2,2),∴线段AF的中点为(3,1),即平行四边形的对称中心为(3,1),设M(t,﹣34t2+3t),N(x,0),则﹣34t2+3t=2,解得t623±,∵点M在抛物线对称轴右侧,∴x>2,∴t=633+,∴M点坐标为(6233+,2);综上可知存在满足条件的点M,其坐标为(633+,2)或(6153+,﹣2).----13分(写出坐标即可)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年山东省临沂市中考数学模拟试卷(三)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.4的倒数是()A.4 B.﹣4 C.D.﹣2.下列运算正确的是()A.(a﹣3)2=a2﹣9 B.a2•a4=a8C. =±3 D. =﹣23.式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>0 D.x>14.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁5.化简:÷(1﹣)的结果是()A.x﹣4 B.x+3 C. D.6.如图,EF∥BC,AC平分∠BAF,∠B=80°,∠C=()度.A.40 B.45 C.50 D.557.如图,已知圆锥侧面展开图的扇形面积为65πcm2,扇形的弧长为10πcm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm8.如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B,D恰好都落在点G处,已知BE=1,则EF的长为()A.1.5 B.2.5 C.2.25 D.39.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10π B.15π C.20π D.30π10.已知关于x的二元一次方程组,若x+y>3,则m的取值范围是()A.m>1 B.m<2 C.m>3 D.m>511.若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.﹣1或4 B.﹣1或﹣4 C.1或﹣4 D.1或412.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.P是直径MN上一动点,则PA+PB的最小值为()A.B.1 C.2 D.213.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个14.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y (cm2)关于x(cm)的函数关系的图象是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:ab3﹣4ab= .16.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB 上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为度.17.流传的游戏,游戏时,双方每次任意出“石头”,“剪刀”,“布”这三种手势中的一种,那么双方出现相同手势的概率为.18.如图,反比例函数y=(k>0)的图象与矩形ABCO的两边相交于E,F两点,若E是AB的中点,S△BEF=2,则k的值为.19.我们把平面内与四边形各边端点构成的三角形都是等腰三角形的点叫做这个四边形的腰点(如矩形的对角线交点是矩形的一个腰点),则正方形的腰点共有个.三、解答题(本大题共7小题,共63分)20.计算:()﹣2﹣6sin30°﹣()0++|﹣|21.为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把成绩结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)求本次抽样测试的学生人数;(2)求扇形图中∠α的度数,并把条形统计图补充完整;(3)该市九年级共有学生9000名,如果全部参加这次体育测试,则测试等级为D的约有多少人?22.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.23.在等边△ABC中,以BC为直径的⊙O与AB交于点D,DE⊥AC,垂足为点E.(1)求证:DE为⊙O的切线;(2)计算.24.我市某工艺品厂生产一款工艺品、已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系.(利润=(售价﹣成本价)×销售量)(1)求销售量y(件)与售价x(元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40000元?25.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD 上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.26.如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC 与△OBD重叠部分的面积记为S,试求S的最大值.2017年山东省临沂市中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.4的倒数是()A.4 B.﹣4 C.D.﹣【考点】17:倒数.【分析】乘积是1的两数互为倒数,据此进行计算即可.【解答】解:由题可得,4的倒数是.故选:C.2.下列运算正确的是()A.(a﹣3)2=a2﹣9 B.a2•a4=a8C. =±3 D. =﹣2【考点】46:同底数幂的乘法;22:算术平方根;24:立方根;4C:完全平方公式.【分析】利用同底数幂的乘法、算术平方根的求法、立方根的求法及完全平方公式分别计算后即可确定正确的选项.【解答】解:A、(a﹣3)2=a2﹣6a+9,故错误;B、a2•a4=a6,故错误;C、=3,故错误;D、=﹣2,故正确,故选D.3.式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>0 D.x>1【考点】72:二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,解不等式即可.【解答】解:根据题意得:x﹣1≥0,即x≥1时,二次根式有意义.故选:A.4.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【考点】W7:方差;W1:算术平均数.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.5.化简:÷(1﹣)的结果是()A.x﹣4 B.x+3 C. D.【考点】6C:分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:÷(1﹣),=÷,=,=,故选D.6.如图,EF∥BC,AC平分∠BAF,∠B=80°,∠C=()度.A.40 B.45 C.50 D.55【考点】JA:平行线的性质.【分析】先根据平行线的性质得出∠BAF的度数,再由AC平分∠BAF求出∠CAF的度数,根据平行线的性质即可得出结论.【解答】解:∵EF∥BC,∴∠BAF=180°﹣∠B=100°.∵AC平分∠BAF,∴∠CAF=∠BAF=50°,∵EF∥BC,∴∠C=∠CAF=50°.故选C.7.如图,已知圆锥侧面展开图的扇形面积为65πcm2,扇形的弧长为10πcm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm【考点】MP:圆锥的计算.【分析】圆锥的侧面积=,把相应数值代入即可求解.【解答】解:设母线长为R,由题意得:65π=,解得R=13cm.故选D.8.如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B,D恰好都落在点G处,已知BE=1,则EF的长为()A.1.5 B.2.5 C.2.25 D.3【考点】PB:翻折变换(折叠问题);LE:正方形的性质.【分析】由正方形纸片ABCD的边长为3,可得∠C=90°,BC=CD=3,由根据折叠的性质得:EG=BE=1,GF=DF,然后设DF=x,在Rt△EFC中,由勾股定理EF2=EC2+FC2,即可得方程,解方程即可求得答案.【解答】解:∵正方形纸片ABCD的边长为3,∴∠C=90°,BC=CD=3,根据折叠的性质得:EG=BE=1,GF=DF,设DF=x,则EF=EG+GF=1+x,FC=DC﹣DF=3﹣x,EC=BC﹣BE=3﹣1=2,∵在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3﹣x)2,解得:x=1.5,∴DF=1.5,EF=1+1.5=2.5.故选B.9.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10π B.15π C.20π D.30π【考点】MP:圆锥的计算;U3:由三视图判断几何体.【分析】根据三视图可以判定此几何体为圆锥,根据三视图的尺寸可以知圆锥的底面半径为3,圆锥的母线长为5,代入公式求得即可.【解答】解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积==×6π×5=15π,故选B.10.已知关于x的二元一次方程组,若x+y>3,则m的取值范围是()A.m>1 B.m<2 C.m>3 D.m>5【考点】97:二元一次方程组的解;C6:解一元一次不等式.【分析】将m看做已知数表示出x与y,代入x+y>3计算即可求出m的范围.【解答】解:,①+②得:4x=4m﹣6,即x=,①﹣②×3得:4y=﹣2,即y=﹣,根据x+y>3得:﹣>3,去分母得:2m﹣3﹣1>6,解得:m>5.故选D11.若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.﹣1或4 B.﹣1或﹣4 C.1或﹣4 D.1或4【考点】A3:一元二次方程的解.【分析】把x=﹣2代入已知方程,列出关于a的新方程,通过解新方程可以求得a的值.【解答】解:根据题意,将x=﹣2代入方程x2+ax﹣a2=0,得:4﹣3a﹣a2=0,即a2+3a﹣4=0,左边因式分解得:(a﹣1)(a+4)=0,∴a﹣1=0,或a+4=0,解得:a=1或﹣4,故选:C.12.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.P是直径MN上一动点,则PA+PB的最小值为()A.B.1 C.2 D.2【考点】PA:轴对称﹣最短路线问题;KQ:勾股定理;M2:垂径定理.【分析】作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,根据轴对称确定最短路线问题可得AB′与MN的交点即为PA+PB的最小时的点,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠AON=60°,然后求出∠BON=30°,再根据对称性可得∠B′ON=∠BON=30°,然后求出∠AOB′=90°,从而判断出△AOB′是等腰直角三角形,再根据等腰直角三角形的性质可得AB′=OA,即为PA+PB的最小值.【解答】解:作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,则AB′与MN的交点即为PA+PB的最小时的点,PA+PB的最小值=AB′,∵∠AMN=30°,∴∠AON=2∠AMN=2×30°=60°,∵点B为劣弧AN的中点,∴∠BON=∠AON=×60°=30°,由对称性,∠B′ON=∠BON=30°,∴∠AOB′=∠AON+∠B′ON=60°+30°=90°,∴△AOB′是等腰直角三角形,∴AB′=OA=×1=,即PA+PB的最小值=.故选:A.13.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】H4:二次函数图象与系数的关系.【分析】根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.【解答】解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.14.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y (cm2)关于x(cm)的函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C 时,面积不变,从而得出函数关系的图象.【解答】解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,当P点由B运动到C点时,即2<x<4时,y=×2×2=2,符合题意的函数关系的图象是B;故选:B.二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:ab3﹣4ab= ab(b+2)(b﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式ab,再对余下的多项式利用平方差公式继续分解.【解答】解:ab3﹣4ab,=ab(b2﹣4),=ab(b+2)(b﹣2).故答案为:ab(b+2)(b﹣2).16.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB 上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为85 度.【考点】K7:三角形内角和定理.【分析】先根据∠ADF=100°求出∠MDB的度数,再根据三角形内角和定理得出∠BMD的度数即可.【解答】解:∵∠ADF=100°,∠EDF=30°,∴∠MDB=180°﹣∠ADF﹣∠EDF=180°﹣100°﹣30°=50°,∴∠BMD=180°﹣∠B﹣∠MDB=180°﹣45°﹣50°=85°.故答案为:85.17.流传的游戏,游戏时,双方每次任意出“石头”,“剪刀”,“布”这三种手势中的一种,那么双方出现相同手势的概率为.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与双方出现相同手势的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,双方出现相同手势的有3种情况,∴双方出现相同手势的概率P=.故答案为:.18.如图,反比例函数y=(k>0)的图象与矩形ABCO的两边相交于E,F两点,若E是AB的中点,S△BEF=2,则k的值为8 .【考点】G5:反比例函数系数k的几何意义.【分析】设E(a,),则B纵坐标也为,代入反比例函数的y=,即可求得F的横坐标,则根据三角形的面积公式即可求得k的值.【解答】解:设E(a,),则B纵坐标也为,E是AB中点,所以F点横坐标为2a,代入解析式得到纵坐标:,因为BF=BC﹣FC=﹣=,所以F也为中点,S△BEF=2=,k=8.故答案是:8.19.我们把平面内与四边形各边端点构成的三角形都是等腰三角形的点叫做这个四边形的腰点(如矩形的对角线交点是矩形的一个腰点),则正方形的腰点共有9 个.【考点】LE:正方形的性质;KI:等腰三角形的判定.【分析】根据把平面内与四边形各边端点构成的三角形都是等腰三角形的点叫做这个四边形的腰点,可得正方形一共有9个腰点,除了正方形的中心外,两条与边平行的对称轴上各有四点,据此解答即可.【解答】解:如图,,正方形一共有9个腰点,除了正方形的中心外,两条与边平行的对称轴上各有四个腰点.故答案为:9.三、解答题(本大题共7小题,共63分)20.计算:()﹣2﹣6sin30°﹣()0++|﹣|【考点】79:二次根式的混合运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】先算负指数幂,特殊角的三角函数值,0指数幂,以及绝对值,再算乘法,最后算加减,由此顺序计算即可.【解答】解:原式=4﹣6×﹣1+﹣+=4﹣3﹣1+=.21.为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把成绩结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)求本次抽样测试的学生人数;(2)求扇形图中∠α的度数,并把条形统计图补充完整;(3)该市九年级共有学生9000名,如果全部参加这次体育测试,则测试等级为D的约有多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据B级的频数和百分比求出学生人数;(2)求出A级的百分比,360°乘百分比即为∠α的度数,根据各组人数之和等于总数求得C级人数即可补全图形;(3)根据样本估计总体思想,用D等级所占比例乘以总人数即可得.【解答】解:(1)160÷40%=400,答:本次抽样测试的学生人数是400人;(2)×360°=108°,答:扇形图中∠α的度数是108°;C等级人数为:400﹣120﹣160﹣40=80(人),补全条形图如图:(3)×9000=900(人),答:测试等级为D的约有900人.22.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.【考点】T8:解直角三角形的应用.【分析】根据题意作出合适的辅助线,画出相应的图形,可以分别求得CM、DN的长,由于AB=CN﹣CM,从而可以求得AB的长.【解答】解:作AM⊥EF于点M,作BN⊥EF于点N,如右图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,∴CM=米,DN=米,∴AB=CD+DN﹣CM=100+20﹣60=(40+20)米,即A、B两点的距离是(40+20)米.23.在等边△ABC中,以BC为直径的⊙O与AB交于点D,DE⊥AC,垂足为点E.(1)求证:DE为⊙O的切线;(2)计算.【考点】MD:切线的判定;J9:平行线的判定;KK:等边三角形的性质.【分析】(1)连接OD,根据等边三角形性质得出∠B=∠A=60°,求出等边三角形BDO,求出∠BDO,∠A,推出OD∥AC,推出OD⊥DE,根据切线的判定推出即可;(2)求出AD=AC,求出AE=AC,CE=AC,即可求出答案.【解答】(1)证明:连接OD,∵△ABC为等边三角形,∴∠ABC=60°,又∵OD=OB,∴△OBD为等边三角形,∴∠BOD=60°=∠ACB,∴OD∥AC,又∵DE⊥AC,∴∠ODE=∠AED=90°,∴DE为⊙O的切线;(2)解:连接CD,∵BC为⊙O的直径,∴∠BDC=90°,又∵△ABC为等边三角形,∴AD=BD=AB,在Rt△AED中,∠A=60°,∴∠ADE=30°,∴AE=AD=AC,CE=AC﹣AE=AC,∴=3.24.我市某工艺品厂生产一款工艺品、已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系.(利润=(售价﹣成本价)×销售量)(1)求销售量y(件)与售价x(元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40000元?【考点】FH:一次函数的应用;AD:一元二次方程的应用.【分析】(1)设一次函数的一般式y=kx+b,将(70,3000)(90,1000)代入即可求得;(2)按照等量关系“利润=(定价﹣成本)×销售量”列出利润关于定价的函数方程,求解即可.【解答】解:(1)设一次函数关系式为y=kx+b,根据题意得解之得k=﹣100,b=10000所以所求一次函数关系式为y=﹣100x+10000(x>0)(2)由题意得(x﹣60)(﹣100x+10000)=40000即x2﹣160x+6400=0,所以(x﹣80)2=0所以x1=x2=80答:当定价为80元时才能使工艺品厂每天获得的利润为40000元.25.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD 上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=ME,DM⊥ME .(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.【考点】LO:四边形综合题;KP:直角三角形斜边上的中线;LE:正方形的性质.【分析】猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AE,AE和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,【解答】猜想:DM=ME证明:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.(1)如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是正方形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.∵四边形ABCD和CEFG是正方形,∴AD=CD,CE=CF,∵△FME≌△AMH,∴EF=AH,∴DH=DE,∴△DEH是等腰直角三角形,又∵MH=ME,故答案为:DM=ME,DM⊥ME.(2)如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在Rt△ADF中,AM=MF,∴DM=AM=MF,∠MDA=∠MAD,∴∠DMF=2∠DAM.在Rt△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.∵∠MDA=∠MAD,∠MAE=∠MEA,∴∠DME=∠DMF+∠FME=∠MDA+∠MAD+∠MAE+∠MEA=2(∠DAM+∠MAE)=2∠DAC=2×45°=90°.∴DM⊥ME.26.如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC 与△OBD重叠部分的面积记为S,试求S的最大值.【考点】HF:二次函数综合题;L7:平行四边形的判定与性质;Q3:坐标与图形变化﹣平移.【分析】(1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN∥AC,因为以A、C、M、N为顶点的四边形为平行四边形,则有MN=AC=3.设点M的横坐标为x,则求出MN=|x2﹣4x|;解方程|x2﹣4x|=3,求出x的值,即点M横坐标的值;(3)设水平方向的平移距离为t(0≤t<3),利用平移性质求出S的表达式:S=﹣(t﹣1)2+;当t=1时,s有最大值为.【解答】解:(1)由题意,可得C(1,3),D(3,1).∵抛物线过原点,∴设抛物线的解析式为:y=ax2+bx.∴,解得,∴抛物线的表达式为:y=﹣x2+x.(2)存在.设直线OD解析式为y=kx,将D(3,1)代入,求得k=,∴直线OD解析式为y=x.设点M的横坐标为x,则M(x, x),N(x,﹣x2+x),∴MN=|y M﹣y N|=|x﹣(﹣x2+x)|=|x2﹣4x|.由题意,可知MN∥AC,因为以A、C、M、N为顶点的四边形为平行四边形,则有MN=AC=3.∴|x2﹣4x|=3.若x2﹣4x=3,整理得:4x2﹣12x﹣9=0,解得:x=或x=;若x2﹣4x=﹣3,整理得:4x2﹣12x+9=0,解得:x=.∴存在满足条件的点M,点M的横坐标为:或或.(3)∵C(1,3),D(3,1)∴易得直线OC的解析式为y=3x,直线OD的解析式为y=x.如解答图所示,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.设水平方向的平移距离为t(0≤t<3),则图中AF=t,F(1+t,0),Q(1+t, +t),C′(1+t,3﹣t).设直线O′C′的解析式为y=3x+b,将C′(1+t,3﹣t)代入得:b=﹣4t,∴直线O′C′的解析式为y=3x﹣4t.∴E(t,0).联立y=3x﹣4t与y=x,解得x=t,∴P(t, t).过点P作PG⊥x轴于点G,则PG=t.∴S=S△OFQ﹣S△OEP=OF•FQ﹣OE•PG=(1+t)(+t)﹣•t•t=﹣(t﹣1)2+当t=1时,S有最大值为.∴S的最大值为.。

相关文档
最新文档