热工学原理期末复习

合集下载

热工原理复习题

热工原理复习题

一、名词解释1、表面热阻2、空间热阻3、连续介质假设4、角系数5、火焰传播速度6、空气过剩系数7、湿含量8、边界层9、稳定态传热/非稳定态传热10、一次空气/二次空气11、热含量12、系统/控制体13、相对湿度/绝对湿度14、回火/回火速度15、脱火/脱火速度16、导温系数17、速度边界层18、热边界层19、浓度边界层20、分散垂直气流法则21、绝热饱和温度22、湿球温度23、黑体24、温度场25、接触热阻26、露点二、填空题1、烟囱抽离主要取决于烟囱底部的,烟囱越高,产生的抽力;随着烟囱底部烟气温度的升高,烟囱抽力随之。

2、气体燃料的燃烧过程包括、、三个阶段,其中是决定燃烧过程快慢的主要环节。

3、根据煤气与空气在燃烧前的混合情况,可将煤气燃烧方法分为、、。

4、固体燃料(煤)的燃烧包括、、三个阶段。

5、煤燃烧过程中准备阶段包括、、和的形成。

6、煤的燃烧包括的燃烧和的燃烧。

7、重油的燃烧方法有、、等。

8、按状态不同,燃料可分为、、燃料。

9、又累加热到一定温度,表面即户发出油蒸气,油温越高,油蒸气越多,油表面附近空气中油蒸气浓度越大,当有火源接近时,若出现蓝色闪光,则此时的油温称为油的。

10、若油温超过闪点,则油的蒸发速度加快,当用火源接近油表面时,在蓝色闪现后能持续燃烧(不少于5秒),此时的油温称为油的。

若继续提高油温,则油表面的蒸气即使没有火源接近时也会自发燃烧起来,这种现象称为,此时的油温称为油的。

11、、、是使用重油或其他液体燃料时必须掌握的性能指标,它们关系到油的安全技术及燃烧条件。

例如,储油罐中油的加热温度应严格控制在以下。

燃烧室或炉膛内的温度不应低于重油的,否则重油不易燃烧。

12、当重油完全失去流动性时的最高温度称为重油的。

13、干燥过程中,加热阶段物料表面温度,水分蒸发量,干燥速率。

14、干燥过程中,等速干燥阶段物料表面温度,物料中的水分,干燥速率。

15、干燥过程中,降速干燥阶段物料表面温度,物料中的水分,干燥速率。

热工考试知识点总结

热工考试知识点总结

热工考试知识点总结一、热力学基本定律热力学是研究热现象的科学,热力学基本定律是热工学的基础。

热力学基本定律包括热力学第一定律、热力学第二定律和熵增加原理。

1. 热力学第一定律热力学第一定律表述了能量守恒的原理,即能量不会凭空消失,也不会凭空产生。

根据热力学第一定律,系统中的能量变化等于对系统做功与系统吸收热量的差值。

2. 热力学第二定律热力学第二定律表述了热现象无法实现自发逆转的原理,它指出能够实现的热现象是一个不断向无序状态演变的过程。

根据热力学第二定律,系统内部的熵不断增加,导致系统朝着熵增加的方向发展。

3. 熵增加原理熵增加原理是热力学第二定律的数学表述,它指出在孤立系统中,熵不会减小,只能增加或保持不变。

熵增加原理也被称为熵不减原理,它表明孤立系统朝着更高熵状态发展的方向演化。

以上是热力学的基本定律,掌握这些定律可以帮助我们理解能量转换和传递的规律,为后续的传热、流体流动等内容打下基础。

二、传热与传质传热与传质是热工学中的重要内容,包括传热的三种基本方式(传导、对流和辐射)、传热的换热器、传热的计算与实验。

1. 传热的三种基本方式传导是指热量在固体或液体无规则分子间的热运动中传递的方式。

对流是指经过流体的表面传递热量的方式。

辐射是指热能以电磁波的形式通过真空或介质的传递方式。

2. 传热的换热器换热器是用来进行传热的设备,它能够在不同流体之间传递热量。

换热器的主要类型包括管式换热器、板式换热器、壳管换热器等。

3. 传热的计算与实验在工程实践中,需要对传热过程进行计算和实验,以确定传热器的尺寸和性能。

传热计算涉及到多种传热模型和传热方程,需要根据具体情况选择合适的计算方法和工程数据。

以上是传热与传质的基本内容,需要掌握传热的基本方式、换热器的类型和传热的计算方法,从而为工程实践提供理论支持。

三、流体流动流体流动是热工学中的另一个重要内容,包括理想流体力学、雷诺数、黏性流体力学、层流和湍流等内容。

热工学复习题

热工学复习题

热工学复习题热工学复习题热工学是工程热力学的一个分支学科,研究能量的转化和传递规律,是工程领域中非常重要的一门学科。

在学习热工学过程中,我们经常会遇到各种复杂的问题和计算题。

本文将通过一些典型的热工学复习题,帮助大家更好地理解和掌握这门学科。

1. 一个理想气体在等温过程中,从初始状态A经过一系列过程到达最终状态B,求气体对外界做功的大小。

解析:在等温过程中,气体的温度保持不变,即ΔT=0。

根据理想气体的状态方程PV=RT,可以得到P1V1=P2V2。

由此可知,在等温过程中,气体对外界做的功为零。

2. 一个物体的热容量为C,其温度从T1升高到T2,求物体吸收的热量Q。

解析:根据热容量的定义,热容量C等于物体吸收的热量Q与温度变化ΔT的比值,即C=Q/ΔT。

将其转化为Q=CΔT即可得到物体吸收的热量Q。

3. 一台汽轮机工作在定压过程,蒸汽的初始温度为T1,末温度为T2,求汽轮机的热效率。

解析:汽轮机的热效率定义为所做的有效功与吸收的热量之比。

在定压过程中,汽轮机的热效率可以通过公式η=1-T2/T1来计算,其中T1为蒸汽的初始温度,T2为末温度。

4. 一个热力循环由两个等温过程和两个绝热过程组成,求该热力循环的效率。

解析:根据卡诺循环的原理,热力循环的效率等于工作物质在等温过程中吸收的热量与放出的热量之比。

根据热力循环的特点,可以计算出各个过程的热量变化,从而得到热力循环的效率。

5. 一个热力循环由两个等温过程和两个绝热过程组成,求该热力循环的制冷系数。

解析:制冷系数定义为制冷剂吸收的热量与所做的功之比。

根据热力循环的特点,可以计算出各个过程的热量变化和所做的功,从而得到热力循环的制冷系数。

通过以上的几个热工学复习题,我们可以看到热工学的知识点涉及到理想气体的状态方程、热容量、热效率、热力循环等内容。

在解答这些问题时,我们需要灵活运用热工学的基本原理和公式,结合具体问题进行分析和计算。

只有在不断练习和思考中,我们才能更好地理解和掌握热工学的知识,为工程实践提供有力的支持。

热工基础-期末总复习-重点(张学学)

热工基础-期末总复习-重点(张学学)

1.系统:在工程热力学中,通常选取一定的工质或空间作为研究的对象,称之为热力系统,简称系统。

2.系统内部各处的宏观性质均匀一致、不随时间而变化的状态称为平衡状态。

3.状态参数:用于描述系统平衡状态的物理量称为状态参数,如温度、压力、比体积等。

工程热力学中常用的状态参数有压力、温度、比体积、比热力学能、比焓、比熵等,其中可以直接测量的状态参数有压力、温度、比体积,称为基本状态参数。

4.可逆过程:如果系统完成了某一过程之后可以沿原路逆行回复到原来的状态,并且不给外界留下任何变化,这样的过程为可逆过程。

准平衡过程:所经历的每一个状态都无限地接近平衡状态的过程。

可逆过程的条件:准平衡过程+无耗散效应。

5.绝对压力p 、大气压力p b 、表压力p e 、真空度p v只有绝对压力p 才是状态参数1.热力学能:不涉及化学变化和核反应时的物质分子热运动动能和分子之间的位能之和(热能)。

热力学能符号:U ,单位:J 或kJ 。

热力系统储存能=宏观动能、宏观位能+热力学能储存能:E ,单位为J 或kJ2.热力学第一定律实质就是热力过程中的能量守恒和转换定律,可表述为:a.在热能与其它形式能的互相转换过程中,能的总量始终不变。

b.不花费能量就可以产生功的第一类永动机是不可能制造成功的。

c.进入系统的能量-离开系统的能量 = 系统储存能量的变化3.闭口系统:与外界无物质交换的系统。

系统的质量始终保持恒定,也称为控制质量系统闭口系统的热力学第一定律表达式对于微元过程对于可逆过程对于单位质量工质对于单位质量工质的可逆过程4.开口系统稳定流动实现条件 1)系统和外界交换的能量(功量和热量)与质量不随时间而变;2)进、出口截面的状态参数不随时间而变。

理想气体状态方程R g 为气体常数,单位为J/(kg·K)2.比热容:物体温度升高1K (或1℃)所需要的热量称为该物体的热容量,简称热容比热容(质量热容):单位质量物质的热容,c ,J/(kg·K)道尔顿定律:混合气体的总压力等于各组元分压力之和(仅适用于理想气体) d q u wδ=+δ2f s 12Q H m c mg z W =∆+∆+∆+g pv R T =pV nRT =d d q q c T t δδ==22net 12Q Q W Q Q ε==-11net 12Q Q W Q Q ε'==-1ε'>2C 11T T η=-R A λδλ=1.自发过程:不需要任何外界作用而自动进行的过程 自发过程是不可逆的!克劳修斯表述:不可能将热从低温物体传至高温物体而不引起其它变化。

热工学复习题

热工学复习题

热工学复习题什么是热力学第一定律?举例说明。

答:热力学第一定律,也称能量守恒定律,规定了能量在物理过程中的转化和守恒。

它表明,能量既不能被创建也不能被销毁,只能从一种形式转化为另一种形式,能量守恒。

例如,一个物体从较高温度向较低温度传递热量时,它将失去一部分内能,而另一部分能被转化为机械能,例如推动一个物体移动。

什么是热力学第二定律?举例说明。

答:热力学第二定律是一种热力学原理,规定了在热力学系统中,热量不能从低温物体自动转移到高温物体,除非有外界能源的输入。

它还规定了热能不能完全转化为机械能,热力学过程必须存在熵增的趋势。

例如,一个热源会不断向周围环境释放热量,这是无法阻止的,因为不可能将所有的热量转化为机械能而不发生能量损失。

什么是热力学循环?举例说明。

答:热力学循环是一种在热力学过程中,物质经历一系列状态变化后,再回到最初状态的过程。

例如,蒸汽汽轮机工作就是一个热力学循环过程,水被加热成蒸汽,然后带动汽轮机旋转,最终蒸汽被冷凝回水,循环再次开始。

热力学第三定律是什么?它的应用场景是什么?答:热力学第三定律规定,当温度趋近于绝对零度时,所有物质的熵趋于一个常数。

这个定律主要应用于低温物理学和纳米技术领域,例如在制备纳米材料和低温物理实验中,热力学第三定律可以帮助研究者更准确地计算物质的热力学性质。

什么是焓?它的计算公式是什么?答:焓是一个物质在定压过程中的热能状态。

它的计算公式为H=U+PV,其中U为内能,P为压强,V为体积。

焓可以用来计算热力学过程中的能量转化和物质状态变化。

例如,当水从液态变成气态时,它的焓值将增加,说明水中的热能被转化为了蒸汽的动能。

热工 期末考试复习

热工         期末考试复习

R 8.3145 287.7kJ /(kg K ) 3 M eq 28.9 10
M eq M O2 M eq M N2
28.9 103 wO2 0.232 0.209 20.9% 3 3210 28.9 103 wN 2 0.768 0.791 79.1% 3 28.01610
tf—流体温度,K;
tw—固体温度,K;
A—固体表面面积,m3 h在数值上等于流体和壁面之间的温度差为1时,每单位时间单位壁面 的对流换热量。表面传热系数的大小与对流换热过程中的许多因素有关。
2、速度边界层(流动边界层)
远离壁面(y值较大)处,速度保持来流速度u∞,接近壁面区域因受流 体粘性的影响,速度渐降,壁面处(y=0)u=0。壁面附近这一速度有强烈 变化的流体薄层,称为速度边界层。 把从u=0到u=99% · u∞的距离定为边界层的厚度 δ。边界层厚度δ随x的 增加而增加。 边界层的形成是流体中粘性力作用的结果。边界层以外的区域称为主 流区,此区域内粘性不起作用。
所以:该水蒸气不是过热蒸汽,而是饱和湿蒸汽
h ' 640.35kJ/kg h '' 2748.59kJ/kg s ' 1.8610kJ/(kg K) s '' 6.8214kJ/(kg K) ts 151.867 C
v v' (0.35 0.0010925)m3 /kg x 0.9335 3 v '' v ' (0.37486 0.0010925)m /kg
第6章 导热
1、传热的三种基本形式
1)、导热(热传导):有温差的物质直接接触而发生的热量交换现象称为 导热。 导热时,物体各部分之间无宏观的相对位移,依靠微观粒子热运动进 行能量传递。 2)、对流:流体各部分发生相对位移而引起的热量传递过程称为对流。一 般都伴有导热现象。 对流只能在液体和气体中出现,实际上往往是流体与固体壁接触时的 热量传递过程。 3)、热辐射:以电磁波的形式传递能量的过程。它不需要物体间的直接接 触,并伴有能量形态的转化(热能→辐射能)

热工基础期末复习

热工基础期末复习

dh du d u pv du d u RgT du c p cV Rg d T dT dT
cp cV Rg
迈耶公式
12
三、 理想气体热力学能和焓 仅是温度的函数 1、 因理想气体分子间无作用力
u uk u T
du cV dT
2、
h h T
h u pv u RgT
dh cp dT
3、利用气体热力性质表计算热量
q u w
q h wt
13
四、理想气体的熵是状态参数
s ds
1
2定Βιβλιοθήκη 热T2 v2 cV ln Rg ln T1 v1 T p c p ln 2 Rg ln 2 T1 p1
Cm混 xiCmi
2.热力学能
3.焓
U混 Ui
u混
U mi ui ( wi ui ) m m
H混 Hi Ui pV i Ui V pi U pV H混
H 混 H i mi hi h混 ( wi hi ) m m m
TH s23
TH
21
注意事项: 1) 2)
c f TH , TL TH , TL
TL 0, TH c 1

wnet q1 循环净功小于吸热量,必有放热q2。
c TL c 1 TH
3) 若TL TH ,c 0 第二类永动机不可能制成。 4)实际循环不可能实现卡诺循环,原因: a)一切过程不可逆; b)气体实施等温吸热、等温放热困难; c)气体卡诺循环wnet太小,若考虑摩擦,输出净功极微。 5)卡诺循环指明了一切热机提高热效率的方向。

热工复习题答案

热工复习题答案

热工复习题答案一、单项选择题1. 热力学第一定律表明能量守恒,其表达式为:A. ∆U = Q + WB. ∆H = Q + WC. ∆S = Q/TD. ∆G = Q + W答案:A2. 理想气体状态方程为:A. PV = nRTB. PV = mRTC. PV = nRD. PV = RT答案:A3. 热传递的三种基本方式是:A. 导热、对流、辐射B. 导热、对流、扩散C. 导热、扩散、辐射D. 对流、扩散、辐射答案:A二、填空题4. 热力学第二定律表明,不可能从单一热源吸热使之完全转化为功而不产生其他影响,这是_______的表述。

答案:热力学第二定律5. 在绝热过程中,系统与外界没有热量交换,因此系统内能的变化等于对外做的功,即∆U = -W,其中W为系统对外做的功,∆U为系统内能的变化。

三、简答题6. 描述卡诺循环的四个阶段,并解释其效率。

答案:卡诺循环包括两个等温过程和两个绝热过程。

在等温膨胀阶段,系统从高温热源吸热并对外做功;在绝热膨胀阶段,系统对外做功,温度下降;在等温压缩阶段,系统向低温热源放热;在绝热压缩阶段,系统温度上升,准备下一次循环。

卡诺循环的效率由公式η = 1 - (Tc/Th)给出,其中Tc为低温热源的温度,Th为高温热源的温度。

7. 什么是热机?请简述其工作原理。

答案:热机是一种将热能转换为机械能的装置。

其工作原理基于热力学循环,通常包括四个阶段:吸热、做功、放热和压缩。

在吸热阶段,热机从高温热源吸收热量;在放热阶段,热机向低温热源排放热量;在这两个过程中,热机通过做功和压缩阶段将热能转换为机械能。

四、计算题8. 已知理想气体在等压过程中,压力P=100 kPa,体积从V1=2 m³变化到V2=4 m³,求该过程中气体吸收的热量Q。

答案:根据理想气体状态方程PV=nRT,可得Q = nRT ln(V2/V1)。

由于题目中未给出气体的摩尔数n和温度T,无法直接计算Q的具体数值,但公式为Q = nRT ln(2)。

《热工学》期末复习

《热工学》期末复习
17
w 1200 t 60% 可能 q1 2000
如果:W=1500 kJ 1500 t 75% 不可能 2000
北京科技大学机械工程学院
第五章 水蒸气与湿空气
5-1 水蒸气的产生过程 5-2 水蒸气的状态参数 5-3 水蒸气的基本热力过程
北京科技大学机械工程学院
18
重点掌握:
卡诺循环:1824年由法国工程师卡诺提出的一 种理想的热机工作循环,由两个可逆定温过程 T2 和两个可逆绝热过程组成 1 卡诺定理
北京科技大学机械工程学院
c
T1
15
重点掌握: 热力循环的克劳修斯不等式

Q
T
0
= 可逆循环 < 不可逆循环 > 不可能
孤立系统的熵增原理:孤立系统的熵只能增大, 或者不变,决不能减小
定压放热
绝热压缩 冷 却 水
q2 h1 h4 cP T1 T4
q2 1 q1
北京科技大学机械工程学院
24
第七章 制冷装置循环
7-2 蒸气压缩制冷循环 重点掌握:
蒸汽压缩式制冷、热泵装置的基本构成、 工作原理;
制冷系数、供热系数及其相互关系;
q2 q2 w q1 q2
t q gradt n n
标量形式的傅里叶定律表达式为
t q n
北京科技大学机械工程学院
33
重点掌握:
(1)单层平壁的稳态导热 tw1 tw 2 Aq A

(2)多层平壁的稳态导热
(3)单层圆筒壁的稳态导热
tw1 tw 4 tw1 tw 4 3 1 2 R1 R 2 R 3 A1 A2 A3

热工期末考试题库及答案

热工期末考试题库及答案

热工期末考试题库及答案一、选择题(每题2分,共20分)1. 热力学第一定律的数学表达式是:A. △U = Q + WB. △H = Q - WC. △G = Q + WD. △S = Q/T答案:A2. 以下哪种物质的比热容最大?A. 水B. 冰C. 干冰D. 空气答案:A3. 绝对零度是多少?A. -273.15°CB. 0°CC. -459.67°FD. 0°F答案:A4. 热传导、热对流和热辐射是热传递的三种基本方式,其中不需要介质的是:A. 热传导B. 热对流C. 热辐射D. 以上都不是答案:C5. 在理想气体状态方程PV=nRT中,R代表什么?A. 气体常数B. 绝对温度C. 压力D. 体积答案:A6. 以下哪种设备是用来测量温度的?A. 压力计B. 流量计C. 温度计D. 湿度计答案:C7. 热机效率的计算公式是:A. η = W/QB. η = Q/WC. η = Q_in/Q_outD. η = W_in/W_out答案:A8. 热力学第二定律指出:A. 能量守恒B. 熵增原理C. 能量可以完全转化为功D. 能量可以完全转化为热答案:B9. 以下哪种物质的导热性最好?A. 木头B. 铜C. 玻璃D. 橡胶答案:B10. 热力学第三定律的实质是:A. 绝对零度不可达到B. 绝对零度是可能达到的C. 熵在绝对零度时为零D. 熵在绝对零度时为负值答案:A二、填空题(每题2分,共20分)1. 热力学第一定律又称为______定律。

答案:能量守恒2. 绝对零度是______。

答案:-273.15°C3. 理想气体状态方程是______。

答案:PV=nRT4. 热传导、热对流和______是热传递的三种基本方式。

答案:热辐射5. 热机效率是指______。

答案:输出功与输入能量之比6. 温度计是用来测量______的设备。

答案:温度7. 气体常数R在理想气体状态方程中代表______。

热工基础期末复习题及答案

热工基础期末复习题及答案

1有效辐射:是指单位时间内离开表面单位面积的总辐射能,记为J。

有效辐射J不仅包括表面的自身辐射E,而且还包括投入辐射中被表面反射的部分。

2对流换热系数:对流传热基本计算式——牛顿(Newton)冷却公式(Newton‘s law of cooling)中的比例系数,一般记做h,以前又常称对流换热系数,单位是W/(㎡*K),含义是对流换热速率。

3自然对流传热:由于流体内部存在着温度差,使得各部分流体的密度不同,温度高的流体密度小,必然上升;温度低的流体密度大,必然下降,从而引起流体内部的流动为自然对流。

这种没有外部机械力的作用,仅仅靠流体内部温度差,而使流体流动从而产生的传热现象,称为自然对流传热。

、4温室效应:大气中的温室气体通过对长波辐射的吸收而阻止地表热能耗散,从而导致地表温度增高的现象。

5卡诺循环:由两个可逆的等温过程和两个可逆的绝热过程所组成的理想循环。

6光谱辐射力:与辐射力单位差一个长度单位,是指单位时间内物体的单位表面积向半球空间所有方向发射出去的在包含λ的单位波长范围内的辐射能。

7辐射强度:点辐射源在某方向上单位立体角内传送的辐射通量,记作I,即I=dΦe/dΩ,式中dΦe 是dΩ立体角元内的辐射通量。

8灰体:把光谱吸收比与波长无关的物体称为灰体9辐射角系数:反映相互辐射的不同物体之间几何形状与位置关系的系数。

10焓:热力学中表示物质系统能量的一个状态函数,常用符号H表示。

数值上等于系统的内能U加上压强p和体积V的乘积,即H=U+pV。

焓的变化是系统在等压可逆过程中所吸收的热量的度量。

11太阳常熟:地球在日地平均距离处与太阳光垂直的大气上界单位面积上在单位时间内所接收太阳辐射的所有波长总能量。

12重辐射面?简述:1、写出稳定流动能量方程式的表达式及各项代表的意义。

流体在流道中流动稳定流动的能量方程可根据能量守恒原理导得。

设想有一流道有流体在其中流过。

取1—1截面与2—2截面间的流体作热力系,这是一个开口系统。

热工期末考试题及答案

热工期末考试题及答案

热工期末考试题及答案一、选择题(每题2分,共20分)1. 热力学第一定律的数学表达式是:A. ΔU = Q - WB. ΔH = Q + WC. ΔS = Q/TD. ΔG = Q - W答案:A2. 在理想气体的状态下,以下哪个参数与温度无关?A. 压力B. 体积C. 摩尔质量D. 焓答案:C3. 热机效率的计算公式是:A. η = Q_in / Q_outB. η = Q_out / Q_inC. η = W / Q_inD. η = Q_in / W答案:B4. 以下哪个过程是可逆过程?A. 绝热膨胀B. 等温膨胀C. 等压膨胀D. 等熵膨胀答案:D5. 根据热力学第二定律,以下哪个说法是正确的?A. 能量守恒B. 熵增原理C. 热量不能自发地从低温物体传向高温物体D. 所有选项都是答案:D6. 热传导的基本定律是:A. 傅里叶定律B. 牛顿冷却定律C. 斯特藩-玻尔兹曼定律D. 普朗克定律答案:A7. 以下哪个不是热交换器的类型?A. 壳管式B. 板式C. 螺旋板式D. 离心式答案:D8. 热力学温度与摄氏温度的关系是:A. T = t + 273.15B. T = t - 273.15C. T = 273.15 / (t + 1)D. T = 273.15 / (1 - t)答案:A9. 以下哪个是热力学系统的宏观量?A. 温度B. 压力C. 熵D. 所有选项都是答案:D10. 以下哪个是热力学系统的微观量?A. 温度B. 压力C. 熵D. 能量答案:D二、简答题(每题10分,共30分)1. 解释什么是热力学第一定律,并给出一个实际应用的例子。

答案:热力学第一定律,也称为能量守恒定律,表明能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式,或从一个物体转移到另一个物体。

在热力学中,它通常表述为ΔU = Q - W,其中ΔU是系统内能的变化,Q是系统吸收的热量,W是系统对外做的功。

热工学原理期末复习

热工学原理期末复习

2013~2014学年度第二学期期末复习热工学原理第一章:基本概念一、名词解释1、热力系统(P9~10)(1)闭口系统(控制质量系统):与外界无物质交换的系统。

(2)开口系统(控制容积系统):与外界有物质交换的系统。

(3)绝热系统:与外界无热量交换的系统。

(4)孤立系统:与外界既无能量(功、热)交换又无物质交换的系统。

2、状态参数(P10~12)(1)状态参数:用于描述工质所处状态的宏观物理量。

(2)压力:单位面积上所受到的垂直作用力(即压强),AFp =。

(3)温度:宏观上,温度是用来标志物体冷热程度的物理量;微观上,气体的温度是组成气体的大量分子平均移动动能的量度。

t =T ﹣273.15K 。

(4)比体积:单位质量的工质所占有的体积,mV v =,单位:m 3/kg 。

(5)密度:单位体积工质的质量,Vm =ρ,1=v ρ,单位:kg/m 3。

3、热力过程(P13)系统由一个状态到达另一个状态的变化过程称为热力过程,简称过程。

4、可逆过程(P14)如果系统完成了某一过程之后,再沿着原路径逆行而回到原来的状态,外界也随之回复到原来的状态而不留下任何变化,则这一过程称为可逆过程。

二、问答题 1、(1﹣2)表压力或真空度能否作为状态参数进行热力计算?若工质的压力不变,问测量其压力的压力表或真空计的读数是否可能变化?答:不能,因为表压力或真空度只是一个相对压力。

若工质的压力不变,测量其压力的压力表或真空计的读数可能变化,因为测量所处的环境压力可能发生变化。

2、(1﹣3)当真空表指示数值愈大时,表明被测对象的实际压力愈大还是愈小? 答:真空表指示数值愈大时,表明被测对象的实际压力愈小。

3、(1﹣4)准平衡过程与可逆过程有何区别?答:无耗散的准平衡过程才是可逆过程,所以可逆过程一定是准平衡过程,而准平衡过程不一定是可逆过程。

第二章:热力学第一定律一、名词解释热力学第一定律的实质(P21)(1)热力学第一定律的实质就是热力过程中的能量守恒和转换定律。

热工期末试题及答案

热工期末试题及答案

热工期末试题及答案一、选择题1. 下列不属于热力学守恒方程的是:A. 能量守恒方程B. 质量守恒方程C. 动量守恒方程D. 熵守恒方程答案:D2. 热力学第一定律是指:A. 能量守恒定律B. 熵守恒定律C. 能量平衡定律D. 能量转换定律答案:A3. 在等温过程中,系统的温度保持不变,这是因为:A. 系统内部没有能量交换B. 系统内部能量转换为热量C. 系统内部熵增加D. 系统内部熵减少答案:B4. 热力学系统的状态参量包括以下哪些?A. 温度、压力、体积B. 能量、熵、密度C. 焓、熵、摩尔质量D. 温度、熵、压力答案:A5. 热力学第二定律表述了:A. 自发过程的方向性B. 可逆过程的存在性C. 熵的增加性D. 能量转换的效率答案:A二、简答题1. 请简述热力学系统的相(相态)以及相变的概念。

答案:热力学系统的相是指系统的物质处于同一物理状态下的集合,例如固体、液体、气体等。

相变是指系统由一种相态转变为另一种相态的过程,常见的相变有固相与液相之间的熔化、气相与液相之间的沸腾等。

2. 请解释热力学第二定律中的熵增原理。

答案:热力学第二定律中的熵增原理表明,在一个孤立系统中,熵(或混乱度)总是不断增加的。

这意味着自然界中的过程具有一个方向性,即自发过程总是朝着熵增的方向进行。

熵增原理也可以解释为系统能量的转化不可完全利用,总有一部分能量转化为不可用能,并且使系统的熵增加。

三、计算题1. 一个理想气体的压强为1.5 MPa,体积为2 m³,温度为300 K。

求气体的摩尔质量。

答案:根据理想气体状态方程PV = nRT,可以得到摩尔质量的计算公式:m = PV/RT代入已知数值进行计算:m = (1.5 × 10^6 × 2) / (8.314 × 300) ≈ 100 kg/mol2. 一个系统从初态 A 经过两个等温过程和一个绝热过程,最终达到了末态 B。

热工原理复习题答案

热工原理复习题答案

热工原理复习题答案1. 热力学第一定律表明能量守恒,即系统内能的变化等于系统吸收的热量与对外做功的代数和。

用公式表示为:\[ \Delta U = Q - W \]其中,\( \Delta U \) 表示系统内能的变化,\( Q \) 表示系统吸收的热量,\( W \) 表示系统对外做的功。

2. 卡诺循环由两个等温过程和两个绝热过程组成,是理想热机循环中效率最高的循环。

卡诺循环的效率公式为:\[ \eta = 1 - \frac{T_C}{T_H} \]其中,\( \eta \) 表示循环效率,\( T_C \) 表示冷源温度,\( T_H \) 表示热源温度。

3. 熵是描述系统无序程度的物理量,其定义为:\[ dS = \frac{dQ}{T} \]其中,\( dS \) 表示熵的变化,\( dQ \) 表示系统吸收的热量,\( T \) 表示绝对温度。

4. 热传导、热对流和热辐射是热传递的三种基本方式。

热传导主要依靠物质内部分子振动和碰撞传递热量;热对流依靠流体的宏观运动传递热量;热辐射则是通过电磁波传递热量。

5. 理想气体状态方程为:\[ PV = nRT \]其中,\( P \) 表示气体的压强,\( V \) 表示气体的体积,\( n \) 表示气体的摩尔数,\( R \) 表示理想气体常数,\( T \) 表示气体的绝对温度。

6. 热机的效率定义为输出功与输入热量的比值,用公式表示为:\[ \eta = \frac{W_{\text{output}}}{Q_{\text{input}}} \] 其中,\( \eta \) 表示热机效率,\( W_{\text{output}} \) 表示输出功,\( Q_{\text{input}} \) 表示输入热量。

7. 节流过程是一种等焓过程,即在节流过程中系统的焓值保持不变。

节流过程常用于制冷系统中的膨胀阀。

8. 临界点是物质从液态转变为气态而不再有相变温度和压强的点。

热工期末考试题库及答案

热工期末考试题库及答案

热工期末考试题库及答案一、选择题1. 热力学第一定律的表达式是:A. ΔU = Q - WB. ΔH = Q + WC. ΔG = Q - WD. ΔS = Q/T答案:A2. 理想气体的内能只与温度有关,这是因为:A. 理想气体分子间无相互作用B. 理想气体分子间有相互作用C. 理想气体分子间有引力D. 理想气体分子间有斥力答案:A3. 在绝热过程中,气体的熵变是:A. 增加B. 减少C. 不变D. 无法确定答案:B二、填空题4. 根据卡诺定理,所有可逆循环的效率都不可能_________一个工作在高温热源和低温热源之间的理想热机的效率。

答案:超过5. 热力学第二定律表明,不可能从单一热源吸热使之完全转化为功而不引起其他变化,这是热力学第二定律的_________表述。

答案:克劳修斯三、简答题6. 简述热力学第二定律的开尔文表述及其意义。

答案:热力学第二定律的开尔文表述指出,不可能制造一个循环过程,其唯一结果就是将热量从低温热源转移到高温热源。

这意味着能量转换具有方向性,热量不能自发地从低温物体传递到高温物体。

7. 解释什么是熵,并简述熵增原理。

答案:熵是热力学系统无序程度的量度,通常用来描述系统能量分布的均匀性。

熵增原理表明,在孤立系统中,自发过程总是向着熵增加的方向发展,直到达到热力学平衡状态。

四、计算题8. 一个理想气体经历一个等压过程,其体积从V1 = 1m³变化到V2 = 2m³,气体的摩尔质量为M = 0.029 kg/mol,气体常数R = 8.314J/(mol·K),初始温度T1 = 300 K。

求该过程中气体的温度T2。

答案:首先,根据理想气体状态方程 PV = nRT,可以得出 P =nRT/V。

由于是等压过程,P1 = P2,因此 nRT1/V1 = nRT2/V2。

由于n、R、P是常数,可以简化为 T1/V1 = T2/V2。

代入已知数据,得到 T2 = (T1 * V1) / V2 = (300 K * 1m³) / 2m³ = 150 K。

热工 期末复习总结

热工 期末复习总结

第一章1. 工程热力学主要研究热能和机械能及其他形式的能量之间相互转换的规律。

2. 传热学主要研究热量传递的规律。

3. 凡是能将热能转换为机械能的机器统称为热力发动机,简称热机。

4. 热能和机械能之间的转换是通过媒介物质在热机中的一系列状态变化过程来实现的,这种媒介物质称为工质。

5. 工程热力学中,把热容量很大,并且在吸收或放出有限热量时自身温度及其他热力学参数没有明显改变的物体称为热源。

6. 工程热力学通常选取一定的工质或空间作为研究对象,称之为热力系统,简称系统。

系统以外的物体称为外界或环境。

系统与外界之间的分界面称为边界。

边界可以是真实的也可以是假想的,可以是固定的,也可以是移动的。

7. 按照系统与外界之间相互作用的具体情况,系统可分以下几类:1闭口系统:与外界无物质交换的系统。

2开口系统:与外界有物质交换的系统。

3绝热系统与外界无热量交换的系统4孤立系统与外界既无能量(功。

热量)交换又无物质交换的系统。

8. 工质在某一瞬间所呈现的宏观物理状况称为工质的热力状态简称状态。

9. 用于描述工质所处状态的宏观物理量称为状态参数。

如温度压力比体积等10. 在不受外界的影响{重力场除外}的条件下,工质(或系统)的状态参数不随时间而变化的状态称为平衡状态。

11. 在工程热力学中,常用的状态参数有压力,温度,比体积,热力学能,焓,熵等,其中压力,温度,比体积可以直接测量,称为基本状态参数。

12. 热力学第零定律表述为;如果两个物体中的每一个都分别与第三个物体处于热平衡,则这两个物体彼此也必处于热平衡。

13. 系统由一个状态到达另一个状态的变化过程称为热力过程,简称过程。

14. 如果在热力过程中系统所经历的每一个状态都无限地接近平衡态,这种过程称为准平衡过程,又称为准静态过程。

在状态参数坐标图上可以用连续的实线表示。

15. 如果系统完成了某一过程之后,再沿着原路径逆行而回到原来的状态,外界也随之回复到原来的状态而不留下任何变化,这一过程称为可逆过程,否则这一过程称为不可逆过程。

热工期末考试题及答案

热工期末考试题及答案

热工期末考试题及答案考试题一:1. 简述热工学的基本概念和定义。

2. 解释热力循环的原理和应用领域。

3. 说明热工系统中能量守恒和熵增原理的关系。

4. 列举并解释热工系统中的三个基本定律。

5. 介绍克劳修斯-克拉佩龙方程的应用及其在热工领域中的重要性。

6. 论述换热过程中的传热方式和传热机理。

7. 举例说明热力循环中能量的转化过程。

考试题二:1. 汽轮机的工作原理和主要构成部分。

2. 蒸汽动力循环和用于蒸汽动力装置改进的技术的描述。

3. 干燥过程中的湿空气特性和计算方法。

4. 说明热力系统中的熵增原理和其在控制熵减过程中的应用。

5. 基于汽车制冷空调系统的工作原理,解释状态方程的应用。

6. 介绍常用换热器的分类及其特点。

7. 分析燃料电池中化学能转化为电能的能量转换过程。

考试题三:1. 解释工质的定义及其在实际热力循环中的应用。

2. 描述空气压缩机的工作原理和应用领域。

3. 说明焓和熵的定义及其在热力学中的重要性。

4. 介绍利用热力学循环计算某一设备效率的方法和步骤。

5. 论述湿空气的空冷和空气加湿过程及其它过程。

6. 分析二次换热系统中的能量损失及降低能量损失的方法。

7. 论证可逆过程和不可逆过程的区别和联系。

考试题四:1. 介绍热力循环中的压力和温度变化对系统效能的影响。

2. 根据湿空气中空气和水汽的性质,解释其状态的表示方法。

3. 分析压缩空气的制冷和单位质量流体的循环可逆循环。

4. 描述至少三种液体和气体传热方式,并分析其应用场景。

5. 论述换热器的工作原理、种类及其在实际系统中的应用。

6. 解释效率和效能的定义,以及在热力学循环中的计算方法。

7. 论述燃烧过程中的能量转换和烟气组成的影响。

考试题答案:1. 热工学是研究能量守恒、热力学和传热学的科学学科。

它包括热力学的基本概念和定义,能量守恒原理,熵增原理等内容。

2. 热力循环是指通过对能量的转化和传递,将热能转化为机械能或其他形式的能量的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热工学原理期末复习2013~2014学年度第二学期期末复习热工学原理第一章:基本概念一、名词解释1、热力系统闭口系统:与外界无物质交换的系统。

开口系统:与外界有物质交换的系统。

绝热系统:与外界无热量交换的系统。

孤立系统:与外界既无能量交换又无物质交换的系统。

2、状态参数状态参数:用于描述工质所处状态的宏观物理量。

压力:单位面积上所受到的垂直作用力,p?F。

A温度:宏观上,温度是用来标志物体冷热程度的物理量;微观上,气体的温度是组成气体的大量分子平均移动动能的量度。

t=T﹣。

比体积:单位质量的工质所占有的体积,v?密度:单位体积工质的质量,??V,单位:m3/kg。

mm,?v?1,单位:kg/m3。

V3、热力过程系统一个状态到达另一个状态的变化过程称为热力过程,简称过程。

4、可逆过程如果系统完成了某一过程之后,再沿着原路径逆行而回到原来的状态,外界也随之回复到原来的状态而不留下任何变化,则这一过程称为可逆过程。

二、问答题1、表压力或真空度能否作为状态参数进行热力计算?若工质的压力不变,问测量其压力的压力表或真空计的读数是否可能变化?答:不能,因为表压力或真空度只是一个相对压力。

若工质的压力不变,测量其压力的压力表或真空计的读数可能变化,因为测量所处的环境压力可能发生变化。

2、当真空表指示数值愈大时,表明被测对象的实际压力愈大还是愈小?答:真空表指示数值愈大时,表明被测对象的实际压力愈小。

3、准平衡过程与可逆过程有何区别?答:无耗散的准平衡过程才是可逆过程,所以可逆过程一定是准平衡过程,而准平衡过程不一定是可逆过程。

第二章:热力学第一定律一、名词解释热力学第一定律的实质热力学第一定律的实质就是热力过程中的能量守恒和转换定律。

热力学第一定律的表述①在热能与其他形式能的互相转换过程中,能的总量始终不变。

②不花费能量就可以产生功的第一类永动机是不可能造成功的。

二、计算题空气在某压气机中被压缩,压缩前空气的参数为p1=,v1=/kg;压缩后为p2=,v2=/kg。

若在压缩过程中每千克空气的热力学能增加为,同时向外界放热50kJ,压气机每分钟生产压缩气体10kg。

试求:压缩过程中对每千克空气所作的压缩功;生产1kg压缩空气所需的轴功;带动此压气机所需功率至少为多少?解:w?q??u??50??kJ/kg???/kg。

忽略气体进出口宏观动能和势能的变化,则有轴功等于技术功。

ws?q?Δh??50??(???)?103kJ/kg??252kJ/kg 。

w?10252?10?kW?42kW。

P??s6060第三章:理想气体的性质与热力过程一、名词解释1、理想气体状态方程式pV?mRgT?mRT?nRT,R=/(mol·K)。

M2、热容热容:物体温度升高1K所需要的热量称为该物体的热容量,简称热容。

C??QdT??Qdt。

比热容:单位质量物质的热容量称为该物质的比热容,单位为J/(kg·K)或kJ/(kg·K),c??qdT??qdt。

比定容热容cV??qV??u????。

比定容热容是在体积不变的情况下比热力学能对温度dT??T?v 的偏导数,其数值等于在体积不变的情况下物质温度变化1K时比热力学能的变化量。

比定压热容cp??qp??h????。

比定容热容是在压力不变的情况下比晗对温度的偏dT??T?p导数,其数值等于在压力不变的情况下物质温度变化1K时比晗的变化量。

迈耶公式:cp?cV?Rg,Cp,m?CV,m?R 比热容比?? cpcV,cp????1Rg,cV?1Rg。

??13、混合气体的成分质量分数:如果混合气体k种组元气体组成,其中第i种组元的质量mi与混合气体kkmi总质量m的比值称为该组元的质量分数,wi?,m??mi,?wi?1。

mi?1i?1摩尔分数:如果混合气体k种组元气体组成,其中第i种组元的物质的量ni与混合kkni气体的物质的量n的比值称为该组元的摩尔分数,xi?,n??ni,?xi?1。

ni?1i?1体积分数:如果混合气体k种组元气体组成,其中第i种组元的分体积Vi与混合气kkVi体总体积V的比值称为该组元的体积分数,?i?,V??Vi,??i?1。

Vi?1i?14、理想气体的基本热力过程定容过程:气体比体积保持不变的过程称为定容过程。

定压过程:气体压力保持不变的过程称为定压过程。

定温过程:气体温度保持不变的过程称为定温过程。

绝热过程:气体与外界没有热量交换的状态变化过程称为绝热过程。

可逆绝热过程称为定熵过程。

过程过程方程式定容定压定温v=定数p=定数pv=定数各种热力过程的计算公式交换的功量初、终状态参数间的关系w/(J/kg) wt/(J/kg) 交换的热量q/(J/kg) cV?T2?T1?T2p2? T1p1Tvp2?p1;2?2 T1v1pvT2?T1;2?1 p1v2v2?v1;0 或Rg?T2?T1? p?v2?v1? v?p2?p1? 0 w cp?T2?T1? p1v1lnv2 v1w p2?v1???? ??p1?v2?定熵pv=定数κ?T2?v1?????T1?v2????1 ??1?T2?p2???? ?T1?p1??p1v1?p2v2 ??1Rg?T1?T2? 或??1?w 0 二、问答题1、理想气体的cp和cv之差及cp和cv之比是否在任何温度下都等于一个常数?答:理想气体的cp和cv之差在任何温度下都等于一个常数,而cp和cv之比不是。

2、如果比热容是温度t的单调增函数,当t2?t1时,平均比热容c|01、c|02、c|t12中哪一个最大?哪一个最小?答:c|、c|、c|的定义可知:c0t2tttt10t20t2t1t1??t21t10cdtt1t2t1?c(t?),其中0???t1;c0??t20cdtt2?c(t?),其中0???t2;ct??ttcdttt2?t1?c(t?),其中t1???t2。

因为比热容是温度t的单调增函数,所以可知c|t12>c|01,又因为ct?1t2c2t2?c01t10ttt2?t1t2t10t故可知c|t12最大。

?(ct2?c2)t2?(ct2?c01)t1?0?ct2?c2,10110ttttt又因为c0?c0?tt2t1?cdt?t2?cdt0t1t1t2t1?(t1?t2)?cd t?t1?cdt0t1t1t2t1t2tt1 ?(t1?t2)t1c01?( t2?t1)t1ct2t1t2?(t2?t1)t1(ct2?c01)t1t2?0,所以c|t01最小。

3、如果某种工质的状态方程式遵循pv?RgT,这种物质的比热容一定是常数吗?这种物质的比热容仅是温度的函数吗?答:不一定,比如理想气体遵循此方程,但是比热容不是常数,是温度的单值函数。

这种物质的比热容不一定仅是温度的函数。

比热容的定义,并考虑到工质的物态方程可得到:c?dqd(?u?w)dudwdudvdu???????p???Rg,此可以看出,如果dTdTdTdTdTdTdT工质的内能不仅仅是温度的函数时,则此工质的比热容也就不仅仅是温度的函数了。

4、在u?v图上画出定比热容理想气体的可逆定容加热过程、可逆定压加热过程、可逆定温加热过程和可逆绝热膨胀过程。

答:图中曲线1为可逆定容加热过程;2为可逆定压加热过程;3为可逆定温加热过程;4为可逆绝热膨胀过程。

因为可逆定容加热过程容积v 不变,过程中系统内能增加,所以为曲线1,从下向上。

理想气体的可逆定压加热过程有:?Tc??c?du??P?P?dv?P?P?1?dv? c1dv?u?c1v?c2,?v??R?c1和c2为常数,且考虑到v?0时,u?0,所以c2?0;u?c1v,所以此过程为过原点的射线2,且向上。

理想气体的可逆定温加热过程有:?u?q?w?0?q?w?0,气体对外做功,体积增加,所以为曲线3,从左到右。

理想气体的可逆绝热膨胀过程有:du??pdv??c1c11dv?u??c2 vkk?1vk?1所以为图中的双曲线4,且方向朝右。

三、计算题1、体积为的刚性储气筒,装有压力为7×105Pa、温度为20℃的空气。

筒上装有一排气阀,压力达到×105Pa时就开启,压力将为×105Pa时才关闭。

若于外界加热的原因,造成阀门开启。

问:当阀门开启时,筒内温度为多少?因加热而失掉多少空气?设筒内空气温度在排气过程中保持不变。

解:设气体的初态参数为p1、V1、T1和m1,阀门开启时气体的参数为p2、V2、T2和m2,阀门重新关闭时气体的参数为p3、V3、T3和m3,考虑到刚性容器有:且m1?m2。

V1?V2?V3,当阀门开启时,贮气筒内压力达到×10Pa,所以此时筒内温度和气体质量分别为:5 1 2 u ?105T2?T1??20???K?,5p17?103 4 p1V17?105??m2??kg?。

RgT1287??20??5v 阀门重新关闭时,筒内气体压力降为×10Pa,且筒内空气温度在排气过程中保持?105?不变,所以此时筒内气体质量为m3???kg?。

RgT3RgT2287?所以,因加热失掉的空气质量为Δm?m2?m3???kg??。

2、一绝热刚体气缸,被一导热的无摩擦的活塞分成两部分。

最初活塞被固定在某一位置,气缸的一侧储有、30℃的理想气体,而另一侧储有、30℃、的同样气体。

然后松开活塞任其自移动,最后两侧达到平衡。

设比热容为定值试求:平衡时的温度;平衡时的压力。

解:气体可以看作是理想气体,理想气体的内能是温度的单值函数,选取绝热气缸内的两部分气体共同作为热力学系统,在过程中,于气缸绝热,系统和外界没有热量交换,同时气缸是刚性的,系统对外作功为零,故过程中系统的内能不变,而系统的初温为30℃,所以平衡时系统的温度仍为30℃。

?、V1、?T1?,另一侧气设气缸一侧气体的初始参数为p1、V1、T1和m1,终态参数为p1?、V2?、T2?,重新平衡时整个系统的总体体的初始参数为p2、V2、T2和m2,终态参数为p2积不变,所以先要求出气缸的总体积。

V1?m1RgT1p1??287??30??33,m??10 ?287??30??33,m??10?V总=V1?V2???m3???V1??V2。

??p 2??p,对两侧分别写出状态方程,终态时,两侧的压力相同,即p1??V1?pV1?p2V2p2?V2?p(V总-V1)p1V1p1??,??T1T1?T1T2T2?T2 pV1’?p1V1,p?V总?V1’??p2V2?pV 总?p1V1?p2V2?终态时的压力V2?m2RgT2?p1V1??106???106???Pa???1 05Pa。

V总、5kg的Ar气体经历了一热力学能不变的过程,初态为p1=×105Pa、T1=600K,膨胀终了的体积V2=3V1。

相关文档
最新文档