液压第三章

合集下载

第三章 液压流体力学基础(3)

第三章 液压流体力学基础(3)

Re
4vR


2v xv 2 Cr 2

Re>1000可认为是常数,流 量系数Cd=0.67~0.74,阀 口有倒角时Cd=0.8~0.9
Re> 1000 可认 为是 常数
锥阀的流量计算式:
2p Cd dmxv sin 2p
q CdA0


其中: A0 dmh dmxv sin d1 d 2 dm 2 Cd 0.77 ~ 0.82
1、平行平板缝隙
压差流动下的流量: bh3 q p 12l 作剪切流动的流量(相 对运动): 1 q vA u0bh 2 bh3 1 总流量:q p u0bh 12l 2
结论:缝隙的流量与缝隙值的三次方成正比,说明元件缝隙对 对泄漏影响很大。
u0
2、同心环缝隙流量

P1
3、阀腔的通流面积: A

4
(D2 d 2 )
例题3-13
• 图示圆柱形阀芯, D=2cm,d=1cm。 压力油在阀口处的 压力降为 △p1=3×105Pa, 4、动量定理: 在阀腔a点到b点的 F q( 2v 2 1v 1);紊流时, 1、 2 1 压力降 在水平方向上, 液体受力: △p2=0.5×105Pa, Fx q(v 2 cos 90 v1 cos ) qv1 cos (向右) 油的密度 5、根据作用于反作用,阀芯受力: 3 ρ=900kg/m ,通过 F 1 - Fx qv1 cos (向左) 阀口的角度α=69°, 流量系数Cd=0.65,6、阀腔压力降对阀芯的作用力: 求油液对阀芯的作 F 2 ( pa pb) A;向右 用力。 7、液流对阀芯总的作用力:

第三章-液压机-液压系统-参数及选用

第三章-液压机-液压系统-参数及选用
第三节 液压系统
本节主要介绍: ▲液压系统的作用、组成及基本要求; ▲以两种典型液压机液压系统为例,介
绍其系统组成、 工作原理及其特点。 通过学习,进一步理解液压机工作原理
和特点。
一、液压系统概述
作用:1°实现各种能量的转换; 2°控制主机和辅助机构完成各种动作。
基本组成:1°动力元件:电动机、泵 2°执行元件:各类工作缸 3°控制元件 :压力、流量、方向控制阀 4°辅助元件:油箱、压力表、过滤器等
工作液体压力不宜过低,否则不能满足液压机最 大总压力的需要。反之,工作液体压力过高,液压机 密封难以保证,甚至损坏液压密封元件。
目前国内塑料液压机所用的工作液压力在16 Mpa ~ 50 MPa之间,最常用为32 MPa左右的工作液压力。
3、最大净空距(开口高度)H(mm)
----活动横梁在其上限位置时,从工作台上表面到活 动横梁下表面的距离。
如:250、400、630、1000、1600、2500KN 3150、4000、5000、6300、8000、10000KN
大、中型液压机标称压力常分为2~3级,泵直接驱动 液压机和小型液压机不进行压力分级。

2、额定液体压力(液体最大工作压力)
影响最大总压力的因素除了工作缸缸径大小以外, 还有工作液体压力。
一般情况:裕量为(10~15)% 特殊情况:裕量为 40%
3、开口高度和最大行程的选择 应满足加工工艺要求,便于取工件。
4、工作台尺寸的选择 应满足模具安装和固定的要求,以及顶出装
置的匹配。 5、活动横梁运动速度的选择 应符合加工工艺和生产率的要求。 6、顶出装置的选择 顶出力、顶出行程应满足工艺的要求。 7、其它 如:电机功率、安装条件、允许最大偏心距 (二)液压机的使用

第三章 液压泵和液压马达

第三章 液压泵和液压马达

第三章 液压泵和液压马达 液压泵和液压马达的工作原理 齿轮泵和齿轮马达 叶片泵和叶片式马达 柱塞泵和柱塞式液压马达超颖工作室 金沐灶§3-1液压泵和液压马达的基本工作原理泵的分类定量泵 齿轮泵 叶片泵泵 变量泵 叶片泵 轴向柱塞泵径向柱塞泵 轴向柱塞泵超颖工作室 金沐灶马达的分类马达定量马达 齿轮马达 径向柱塞马达 轴向柱塞马达 低速液压马达变量马达 轴向柱塞马达超颖工作室 金沐灶一、液压泵的基本工作原理图中为单柱塞泵的工作原理。

图中为单柱塞泵的工作原理。

凸轮由电动机带 动旋转。

当凸轮推动柱塞向上运动时, 动旋转。

当凸轮推动柱塞向上运动时,柱塞和缸体 形成的密封体积减小,油液从密封体积中挤出, 形成的密封体积减小,油液从密封体积中挤出,经 单向阀排到需要的地方去。

单向阀排到需要的地方去。

当凸轮旋转至曲线的下降 部位时, 部位时,弹簧迫使柱塞向 形成一定真空度, 下,形成一定真空度,油 箱中的油液在大气压力的 作用下进入密封容积。

作用下进入密封容积。

凸 轮使柱塞不断地升降, 轮使柱塞不断地升降,密 封容积周期性地减小和增 超颖工作室 金沐灶 泵就不断吸油和排油。

大,泵就不断吸油和排油。

容积式液压泵的共同工作原理如下: 容积式液压泵的共同工作原理如下: (1)容积式泵必定有一个或若干个周期变化的密封容积。

密封容积变小使油液被挤出, 封容积。

密封容积变小使油液被挤出,密封容积变 大时形成一定真空度,油液通过吸油管被吸入。

大时形成一定真空度,油液通过吸油管被吸入。

密 封容积的变换量以及变化频率决定泵的流量。

封容积的变换量以及变化频率决定泵的流量。

配流装置。

(2)合适的配流装置。

不同形式泵的配流装置虽 合适的配流装置 然结构形式不同,但所起作用相同,并且在容积式 然结构形式不同,但所起作用相同, 泵中是必不可少的。

泵中是必不可少的。

容积式泵排油的压力决定于排油管道中油液所 受到的负载。

《液压与气动技术》第三章解读

《液压与气动技术》第三章解读

p3

F3 A3

4MPa
下-页 返回
第三部分拓展题及答案
T3-4
解:(1) V 100.7 / 106 0.95
(2)
36.550.95 34.72(L / min)
(3)泵的驱动功率在第一种情况下为4.91KW。第二种情况 下为1.69kw
T3-5试分析双作用叶片液压泵配油盘(图T3-5)
上-页 返回
第三部分拓展题及答案
T3-2图T3-2所示
解 (a) p 0;(b) p 0;(c) p p;(d ) p F / A
(e) p 2TM / VMM M
T3-3如图T3-3所小的液压系统
解:
p1

F1 A1

2MPa
p2

F2 A2
3MPa
油困难。 3-3解液压泵的工作压力和额定压力的区别如下。 ①工作压力是指液压泵出日处的实际压力值,由外界负载决
定,而额定压力是指液压泵连续工作中允许达到的最高压力, 其值由液压泵的结构强度和密封性决定。
下-页 返回
第二部分主教材习题及答案
②从数值上看,正常工作时实际压力不会超过额定压力,但 在外负载突然增大的瞬间实际压力也可能超过额定压力。
往复运动的同时改变工作腔的容积来实现压油和吸油。 7.常用液压泵的性能比较(表3-1 )
上-页 返回
第二部分主教材习题及答案
3-1 解:在液压泵运转的过程中,密封工作腔容积发生周期 性变化,容积增大时将油液吸入,容积减少时将油液压出。 压油腔与吸油腔之间用配流装置隔开。
3-2解:①密闭的工作腔。 ②容积可周期性变化的工作腔。 ③将吸油腔和压油腔隔开的配流装置。 ④吸油过程中油箱必须通大气或增压,以免形成真空造成吸

第三章-补充知识-液压传动基础知识-精简版2020

第三章-补充知识-液压传动基础知识-精简版2020
度的自动控制过程,而且可以实现遥控。
二、液压传动的主要缺点
与机械传动、电气传动相比,液压传动具有以下缺点
1、由于流体流动的阻力损失和泄漏较大,所以效率较低。如果处理不当,泄 漏不仅污染场地,而且还可能引起火灾和爆炸事故。
2、工作性能易受温度变化的影响,因此不宜在很高或很低的温度条件下工作。 3、液压元件的制造精度要求较高,因而价格较贵。由于液体介质的泄漏及可
液压传动
第一章 液压传动概述
第一节 液压传动的定义、工作原理及组成
一、基本概念 1、液压传动的定义
用液体作为工作介质,在密封的回路里,以液体的压力能进行能 量传递的传动方式,称之为液压传动。
2、液压控制的定义
液压控制与液压传动的不同之点在于液压控制是一个自动控制系 统,具有反馈装置,系统具有较强的抗干扰能力,所以系统输出量 的精度高。
与机械传动、电气传动相比,液压传动具有以下优点
1、液压传动的各种元件、可根据需要方便、灵活地来布置; 2、重量轻、体积小、运动惯性小、反应速度快; 3、操纵控制方便,可实现大范围的无级调速(调速范围达2000:1); 4、可自动实现过载保护; 5、一般采用矿物油为工作介质,相对运动面可自行润滑,使用寿命长; 6、很容易实现直线运动; 7、容易实现机器的自动化,当采用电液联合控制后,不仅可实现更高程
低速液压马达的基本形式是 径向柱塞式,例如多作用内曲线式、单作 用曲轴连杆式和静压 平衡式等。
低速液压马达的主要特点是:排量大,体积大,转速低,有的可低到每 分钟几转甚至不到一转。通常低速液压马达的输出扭矩较大,可达 几千 到几万 ,所以又称为低速大扭矩液压马达。
第三节 液压缸
一、 液压缸的类型和特点
3、 活塞式液压缸典型结构

第3章 液压动力元件

第3章 液压动力元件
欢 迎 使 用
《液压伺服与比例控制系统》
多媒体授课系统
燕 山 大 学 《液压伺服与比例控制系统》课程组
第3章 液压动力元件
本章摘要
液压动力元件(或称液压动力机构)是由液压放 大元件(液压控制元件)和液压执行元件组成。有四 种基本型式的液压动力元件:阀控液压缸、阀控 液压马达、泵控液压缸、泵控液压马达。 本章将建立几种基本的液压动力元件的传递函 数,分析它们的动态特性和主要性能参数。
忽略Bp后近似为:
K ce h Ap
e mt
Vt
2 h
K c mt 2 h Ap
标准传递函数形式:
K ps Ap 1 Vt X v 1 s FL K K 4 e K ce Xp s s 2 2 o 1 2 s 1 o r o
简化为:
s FL Xp 2 s 2 h K K ce K s 1 s 2 2 h h Kh Ap
Kq K ce Vt X v 2 1 Ap Ap 4 e K ce
综合固有频率:
o h
K 1 Kh
综合阻尼比:
Bp 1 4 e K ce o 2o Vt 1 K K h mt
或进一步简化为:
s FL Xp K ce K s 2 2 h s 1 s 2 2 Ap h h Kq K ce Vt X v 2 1 Ap Ap 4 e K ce
(三) 其它简化形式:
Xp Xv Kq Ap K ce mt s 2 s 1 Ap Kq Ap Kq Ap s s 1 1
根据阀控液压缸的拉氏变换方程式绘出系统方框图。

液压传动 第三章

液压传动  第三章

m
Tt T
Tt
Tt T
(3-6)
式中, ΔT ——液压泵的机械摩擦损耗。
3、总效率 η
液压泵的输出功率与输入功率的比值称为总效率,即
Po Pi
pq T
vm
(3-7)
由上式表明,液压泵的总效率等于容积效率和机械效率的乘积。
五.液压泵的转速




额定转速 ns
在额定压力 下,能连续长 时间正常运转 的最高转速。
其中,端面泄漏量最大,约占总泄漏量的 75%~80% 。泵的压力越高, 端面泄漏量越大。
对于低压齿轮泵,为了减小端面泄漏,在设计和制造时都对端面间隙 加以严格控制,但这一办法用于高压齿轮泵则不能取得好的效果,因为泵 在使用一段时间后磨损会使间隙越来越大。
对于高压齿轮泵通常采取端面间隙自动补偿措施,在齿轮与前后盖板 间增加一个零件,如浮动轴套或弹性侧板。
(3-1)
式中,pi ——液压泵的输入转矩; n ——泵轴的转速。
2、输出功率 po 液压泵的输出功率为其实际流量 q 和工作压力 p 的乘积,即
Po pq
(3-2)
液压泵工作时,由于存在泄漏和机械摩擦,就会出现能量损失,故其功 率有理论功率和实际功率之分,并且输出功率 po 小于输入功率 pi 。如果忽 略能量损失,则液压泵的输入功率(理论功率)等于输出功率(理论功率), 其表达式为 2πnTt pqt pnV ,则有
螺杆直径越大、螺旋糟越深,泵的排量就 越大;螺杆的密封层次越多,泵的额定压力就 越高。
螺杆泵结构紧凑,自吸能力强,运转平稳, 输油量稳定,噪声小,对油液污染不敏感,并 允许采用高转速,特别适用于对压力和流量变 化稳定要求较高的精密机械。 其主要缺点是, 加工工艺复杂,加工精度要求高。

液压传动第三章 流体力学基础

液压传动第三章 流体力学基础

1、理想流体和恒定流动
理想流体:既无粘性,又无压缩性的假想液体。
实际流体:有粘性,又有压缩性的液体。
恒定流动:液体在流动时,通过空间某一点的压力、速度和密度等运
动参数只随位置变化,与时 间无关。
非恒定流:液体在流动时,通过空间某一点的压力、速度和密度等
运动参数至少有一个是随时 间变化的。
2、流线 流管、流束、通流截面
dqdt
u22 2
dqdt
u12 2
势能:ΔEP gdqh2dt gdqh1dt
外力做的功=能量变化:
W ΔE ΔEK ΔEP
p1
g
u12 2g
h1
p2
g
u22 2g
h2
1.理想流体的能量方程
p1
g
u12 2g
h1
p2
g
u22 2g
h2
2、实际流体伯努利方程
实际流体:有粘性、可压缩、非恒定流动 速度修正:动能修正系数
正确设计和使用液压泵站。 液压系统各元部件的连接处要密封可靠,严防
空气侵入。 采用抗腐蚀能力强的金属材料,提高零件的机
械强度,减小零件表面粗糙度值。
第六节 液 压 冲 击
一、管内液流速度突变引起的液压冲击
有一液位恒定并能保持 液面压力不变的容器如 图3-40所示。
二、运动部件制动所产生的液压冲击
第四节 孔口和缝隙液流
一、薄壁小孔
➢ 薄壁小孔是指小孔的长度和直径之比l/d<0.5的孔, 一般孔口边缘做成刃口形式,如图3-25所示。
➢薄壁小孔的流量计算
对于图所示的通过薄壁小孔的液体,取小孔前后截面1-1和2-2列伯努利方程
p1
g
v12 2g

第三章液压执行元件

第三章液压执行元件

p1
p2 )D2
p2d 2 ]
v1
q A1
4q
D 2
b)从有杆腔进油时,活塞上所产生的推力
F2和速度v2
F2
A2 p1
A1 p2
4 [( p1
p2 )D2
p1d 2 ]
q
4q
v2 A2 (D 2 d 2 )
C)速度比
v
v2 v1
1 1 (d / D)2
3.差动液压缸——单杆活塞缸的左右两腔同 时通压力油,称为差动液压缸。
(二)液压缸的组成 液压缸的结构基本上可以分为缸筒和
缸盖、活塞和活塞杆、密封装置、缓冲装 置和排气装置五个部分。
1、缸筒与缸盖
2、活塞和活塞杆
3、密封装置 用以防止油液的泄漏(液压缸一般不允许外泄 并要求内泄漏尽可能小)。
4.缓冲装置 目的:使活塞接近终端时,增达回油阻力, 减缓运动件的运动速度,避免冲击。
3.液压马达的转速和低速稳定性
1)转速
n
q V
v
2)爬行现象——当液压马达工作转速过低 时,往往保持不了均匀的速度,进入时动 时停的不稳定状态,这就是所谓爬行现象
• 和其低速摩擦阻力特性有关。
• 另外,液压马达排量本身及泄漏量也在 随转子转动的相位角变化作周期性波动, 这也会造成马达转速的波动
4.调速范围 液压马达的调速范围以允许的最大转速和 最低稳定转速之比表示,即
当E1=E2时,工作部件的机械能全部被缓冲 腔液体所吸收,由上两式得
pc
E2 Ac l c
节流口可调式则最大的缓冲压力即冲击压
力为
pc max
pc
mv02 2 Aclc
5.液压缸稳定性校核 当 l/d ≤15时 一般不用校核 当 l/d ≥15时 必须进行校核,即F<Fk F为活塞杆承受的负载力,Fk为保持工作稳 定的临界负载力

第三章液压泵讲义与液压马达

第三章液压泵讲义与液压马达

2. 困油现象 动画演示
1) 产生原因:


ε> 1,构成闭死容积Vb
2)危害:
Vb由大→小,p↑↑, 油液发 热,轴承磨损。
Vb由小→大,p ↓↓, 汽蚀、 噪声、振动、金属表面剥蚀。
(三)液压马达的转速和容积效率
理论转速:nt= qM /VM 容积效率:
ηMv= qMt / qM =( qM -ql )/ qM = 1- ql / qM
输出转速nM= (qM -ql )/VM= qM /VM ηMv
(四)液压马达的转矩和机械效率
实际输出转矩 TM=TMt-ΔT 理论输出转矩 TMt=Δp VM/ 2π 机械效率ηMm=TM/TMt
q=Vnηv =πDhbnηv =2πzm2bn ηv
三、齿轮泵结构特点
1、泄漏问题
泄漏
齿轮泵存在端面泄漏、径向泄漏和轮齿
啮合处泄漏。其中端面泄漏占80%—85%。
减少泄露的措施:间隙补偿
其中端面间隙补偿采用静压 平衡
在齿轮和盖板之间增加一个 补偿零件,如浮动轴套或浮动侧 板,在浮动零件的背面引入压力 油,让作用在背面的液压力稍大 于正面的液压力,其差值由一层 很薄的油膜承受。
周所排出的液体体积。
2.理论流量qt (m3/s) 是指在不考虑泄漏的情况下,单位时间内排出的
液体体积。
qt =Vn 3.实际流量qp
指液压泵工作时的输出流量。
qp= qt - △ q
4.额定流量qn 指在额定转速和额定压力下泵输出的流量。
(四)功率与效率
1.输入功率: Pi=2πnT 2.输出功率: Po=ppqp 3.容积效率: ηpv =qp /qt 4.总效率: ηp =Po /Pi= ppqp/2πnT=ηpm ηpv 5.机械效率: ηpm = η /ηpv

第三章液压泵

第三章液压泵

第3章液压泵内容提要本章主要介绍液压动力元件的几种典型液压泵(齿轮泵、叶片泵、柱塞泵的工作原理、性能参数、基本结构、性能特点及应用范围等)。

基本要求、重点和难点基本要求:掌握齿轮泵、叶片泵、柱塞泵的工作原理、性能参数、结构特点。

了解各类泵的典型结构及应用范围。

重点:通过本章学习,要求掌握液压泵的工作原理、功能、性能参数(压力和流量等)、性能特点及应用范围。

难点: ①密闭容积的确定(特别是齿轮泵)。

②容积效率的概念。

③额定压力和实际压力的概念。

④外反馈限压式变量叶片泵的特性。

⑤柱塞泵的变量机构。

3.1液压泵基本概述液压泵作为液压系统的动力元件,将原动机(电动机、柴油机等)输入的机械能(转矩T 和角速度ω)转换为压力能(压力p 和流量q )输出,为执行元件提供压力油。

液压泵.的性能好坏直接影响到液压系统的工作性能和可靠性,在液压传动中占有极其重要的地位。

3.1.1液压泵的工作原理如图3-1所示,单柱塞泵由偏心轮1、柱塞2、弹簧3、缸体4和单向阀5、6等组成,柱塞与缸体孔之间形成密闭容积。

当原动机带动偏心轮顺时针方向旋转时,柱塞在弹簧力的作用下向下运动,柱塞与缸体孔组成的密闭容积增大,形成真空,油箱中的油液在大气压力的作用下经单向阀5进入其内(单向阀6关闭)。

这一过程称为吸油,当偏心轮的几何中心转到最下点O 1/时,容积增大到极限位置,吸油终止。

吸油过程完成后,偏心轮继续旋转,柱塞随偏心轮向上运动,柱塞与缸体孔组成的密闭容积减小,油液受挤压经单向阀6排出(单向阀5关闭),这一过程称为排油,当偏心轮的几何中心转到最上点O 1//时,容积减小至极限位置,排油终止。

偏心轮连续旋转,柱塞上下往复运动,泵在半个周期内吸油、半个周期内排油,在一个周期内吸排油各一次。

图3-1 单柱塞泵工作原理 1-偏心轮 2-柱塞 3-弹簧 4-缸体 5、6-单向阀 7-油箱如果记柱塞直径为d ,偏心轮偏心距为e ,则柱塞向上最大行程e s 2=,排出的油液体积2422e d s d V ππ==。

《液压控制课件》第三章 液压动力元件频率响应分析-

《液压控制课件》第三章 液压动力元件频率响应分析-

五、频率响应分析阀控液压缸对指令输入和对干扰输入的动态特性由相应的传递函数及其性能参数确定。

频率响应:以没有弹性负载为例,分析伯德图;1、幅频特性;系统对正弦信号的输入,输出的幅值比;2、相频特性;系统对正弦信号的输入,输出的相位差;稳定性;稳定性的判别方法.采用频率响应分析便于对系统的特性设计和调整.(一)没有弹性负载时的频率响应分析1、对指令输入Xv的频率响应系统传函结构对指令输入Xv的动态响应特性由传递函数式(3—20)表示,由比例、积分和二阶振荡环节组成;主要的性能参数:速度放大系数K q/A p;液压固有频率ωh;液压阻尼比ζh。

2、传函各分量伯德图绘制及特性采用对数和等比坐标,将复杂的系统性能的描述,简化成简单的图形表述和分析。

典型环节的伯德图及其物理意义:系统输入信号为正弦时,系统输出信号与输入信号的幅值比与输入频率之间的关系;比例环节,相当于杠杆放大;积分环节,相当于油缸位移对阀口输入的响应;惯性环节,相当于推动质量;二阶环节,相当于弹簧质量系统对输入的响应;3、对指令输入Xv系统伯德图的绘制和分析伯德图的绘制图3—3采用代数叠加法,纵坐标采用对数坐标,横坐标采用等比坐标,将曲线改成直线,便于绘制相应系统的伯德图伯德图的分析1)稳定性采用幅值裕量和相位裕量评判方法;2)速度放大系数K q/A p速度放大系数影响曲线的上下平移;3)穿越频率ωc穿越频率可以判断系统的快速性;4)转折频率ωh转折频率影响影响系统的稳定性。

4、动力元件各参数对系统的影响1)速度放大系数K q/A p液压缸活塞的输出速度与阀的输入位移成比例,比例系数K q/A p即为速度放大系数(速度增益)。

表示阀对液压缸活塞控制的灵敏度。

速度放大系数直接影响系统的稳定性、响应速度和精度。

提高速度放大系数:提高系统的响应速度和精度,但使系统的稳定性变坏。

放大系数随阀的流量增益变化而变化。

在零位工作点,阀的流量增益Kq最大,而流量—压力系数Kc最小,所以系统的稳定性最差。

第三章 液压流体力学基础

第三章 液压流体力学基础

e2
当Ae A2时h ( 1 ) 1 则 v e 1

2 e
2g cv 2p
2( p1 p2 )


流经小孔的流量:
2 p q ve Ae v2 .cc A0 CcCv A0

2 p Cd A0

薄壁孔(l/d0<=0.5)和短孔(0.5>l/d0<=4)的流量计算式 均用此式,但Cc、Cv的大小不同。 式中流量系数Cd=Cc.Cv, Cc 为截面收缩系数, Cc = Ae / A0 Cv 为速度系数; Cd由经验公式或实验确 定。A0为过流断面面积,小孔前后的压差p=p1-p2
第三章 液压流体力学基础
本章重点掌握: 1、压力及其对固体璧面的作用力; 2、液体动力学的基本概念(通流截面、流量、 流速);
3、流体动力学的三大方程(连续性方程、伯努 利方程、动量方程)的应用; 4、压力损失的定义及计算;
5、小孔及缝隙的流量计算
§3-1
静止液体的力学特性
一、压力及其特性
液体在单位面积上所受的内法线方向的法 向力称液体的压力。
q 1 A1 2 A2 constant
液体在密封容腔中连续流动时,流过所有断 面的流量都相等; 平均流速与过流断面成反比。
例:
1

d1
4
2


D
4
2
q
1
D
V
d
(D d )
2
2
4
2
d2
4
2
d1 V1 q1
d2 V2 q2
q q
1
2
三、伯努利方程(液体的能量守恒方程)

第三章液压机

第三章液压机

二、液压机的选用
应以在该设备上进行的主要工艺为依据, 确保其主要参数都满足工艺要求,结合使用 条件,投资情况,制造厂情况并参考国内外 同类设备的参数和使用效果来决定。
在选用液压机时还应注意以下几个问题:
(1)关于最大偏心距
液压机的主要技术参数中,除锻造液压机外, 一般不专门列出允许的最大偏心距。但这不等 于可以在任意位置进行加载,相反,成形生产 中所用的大多数液压机如冲压液压机、塑料制 品液压机等都是按较小的偏心距甚至中心载荷 进行设计的,其承受偏心载荷的能力更差。
(0)手动液压机:用于一般压制、压装等工艺。 (1)锻造液压机:用于自由锻、钢锭开坯及金属模锻。 (2)冲压液压机:用于各种薄板、厚板的冲压。 (3)一般用途液压机:用于各种工艺,通常称为万能液压机。 (4)校正压装液压机:用于零件的校正及装配。 (5)层压液压机:用于胶合板、刨花板、纤维板及绝缘材料板 的压制。 (6)挤压液压机:用于挤压各种有色及黑色金属材料。 (7)压制液压机:用于各种粉末制品的压制成形,如粉末冶金、 人造金刚石、耐火材料的压制。 (8)打包、压块液压机:用于将金属碎屑及废料压成块。 (9)其他液压机:包括轮轴压装、冲孔等专门用途的液压机。
立柱与横梁的连接形式
(a)双螺母式(b)锥台式(c)锥台式(d)锥套式(e)锥套式
双 螺 母 式
26
双 螺 母 式
27
3) 立柱的预紧方式 注意:为什么要预紧?何处被预紧? ● 加热预紧 过程:o 立柱、横梁安装到位;
o
o o o
内外螺母冷态拧紧;
加热立柱两端; 拧紧外螺母; 冷却后即产生很大的预紧力。
整个机身的刚性较差,受力时会产生角变形,且
机身上无导轨,运动精度较差,有时为了保证机 身有足够的强度和刚度,结构上做得比较笨重。

第三章 基本回路

第三章 基本回路
第三章 液压基本回路
目录
1 方向控制回路
1.换向回路 2.锁紧回路 3.制动回路
2 压力控制回路
1.调压回路 2.减压回路 3.增压回路 4.卸荷回路 5.平衡回路 6.保压回路和泄压回路 7.缓冲回路
3 速度控制回路
1.调速回路 2.增速回路 3.减速回路 4.同步回路
目录
4 油源控制回路
1.开式液压系统的油源回路 2.闭式液压系统的油源回路及补油泵回路 3.压力箱油源回路
当换向阀在图示位置(中位) 时,系统处于卸荷状态;当换向阀 处于左位时,系统处于正常工作状 态;当换向阀在右位时,液压泵处 于卸荷状态,液压马达处于制动状 态。这时液压马达的出口接溢流阀, 由于回油受到溢流阀阻碍,回油压 力升高,直至打开溢流阀,液压马 达在溢流阀调定背压作用下迅速制 动。
图9 采用溢流阀制动的回路 1-液压泵;2-调速阀;3-液压马达;4-换向阀;5-
1.3 制动回路
基本的制动方法有以下几种: (1)采用换向阀制动; (2)采用溢流阀制动; (3)采用顺序阀制动; (4)其他制动方法。
换向阀制动不仅易产生冲击、振动、噪声,还在执行元件的进油腔产生真 空,出油腔产生高压,对执行元件和管路不利,因此一般不采用这种方式中 制动。
第一节 方向控制回路
(1) 溢流阀制动回路:
图16 增压基本回路
第二节 压力控制回路
1.4 卸荷回路
在不停泵的情况下,常常需要对液压系统卸荷(卸掉压力),可采 用不同液压元件达到目的。
图17 二位二通阀卸荷回路 1-液压泵;2-二位二通电磁换向阀;3-溢流阀
如图所示为二位二通阀卸荷回路。给二位二通阀通电,右位阀芯进入系 统进行溢流卸荷。不通电时,二位二通阀关闭,系统继续进行工作。

第三章:液压泵和液压马达(含习题答案)

第三章:液压泵和液压马达(含习题答案)

第三章液压泵和液压马达第一节液压泵第二节齿轮泵第三节叶片泵第四节柱塞泵第五节液压马达第六节液压泵和液压马达的选用重点:液压泵和液压马达的工作原理、效率功率计算难点:结构教学目的:理解原理,熟悉结构在液压系统中,液压泵和液压马达都是能量转换装置。

液压泵:把驱动电动机的机械能转换成液压系统中油液的压力能,供系统使用;液压马达:把输来的油液的压力能转换成机械能,使工作部件克服负载而对外做功。

工作原理上,大部分液压泵和液压马达是可逆的。

一、液压泵的工作原理二、液压泵的性能参数三、液压泵的分类一、液压泵的工作原理容积式液压泵:靠密封工作腔的容积变化进行工作,其输出流量的大小由密封工作容积变化的大小来决定。

i P T ω=o V P pq =η=ηV按结构形式分为:齿轮式、叶片式、柱塞式三大类。

按输出(输入)流量分为:定量液压泵和变量液压泵。

第一节液压泵三、液压泵的分类a)单向定量液压泵b)双向定量液压泵c)单向变量液压泵d) 双向变量液压泵液压泵的图形符号作业:3-2齿轮泵优点:结构简单紧凑、体积小、质量轻、工艺性好、价格便宜、自吸能力强、对油液污染不灵敏、维修方便及工作可靠,因此在汽车上得到了广泛的应用。

齿轮泵缺点:泄漏较大,流量脉动大,噪声较高,径向不平衡力大,所能达到的额定压力不够高,目前其最高工作压力30MPa 。

第二节齿轮泵齿轮泵按结构形式分为:①外啮合齿轮泵②内啮合齿轮泵泵的泵体内装有一对相同的外啮合齿轮,齿轮两侧靠端盖密封。

泵体、端盖和齿轮的各个齿间一、外啮合齿轮泵1. 外啮合齿轮泵工作原理第二节齿轮泵槽组成了许多密封的工作腔。

b zm Dhb V 22ππ==排量:b zm V 266.6=排量修正:排量近似计算:假设齿间的工作容积与轮齿的有效体积相等,则齿轮每转排量等于主动齿轮的所有齿间容积及其所有轮齿的有效体积之和(1)困油现象:齿轮泵要平稳而连续地工作,齿轮啮合的重合度系数必须大于1,因此总有两对轮齿同时啮合,并有一部分油液被围困在两对轮齿所形成的封闭容积之间,困油容积由大变小,再由小变大,使油压变化,产生振动和噪声。

第三章液压执行元件-PPT

第三章液压执行元件-PPT

二、液压马达得工作原理
1、叶片式液压马达
叶片式液压马达工作原理
大家学习辛苦了,还是要坚持
❖继续保持安 静
• 原理——由于压力油作用,受力不平衡使转子 产生转矩。
• 输出转矩T——与液压马达得排量VM和液压马
达进出油口之间得压力差有关,
• 转速n——输入液压马达得流量qM大小来决定。
❖ 转动特性——能正反转(压、回油互换) ❖ 结构特点: ❖ 叶片要径向放置---适应正反转
❖ 双杆活塞缸在工作时,一个活塞杆是受拉得,而另一 个活塞杆不受力,(活塞杆始终不受压力)因此这种液 压缸得活塞杆可以做得细些。
连杆式径向 柱塞马达
❖ 曲线定子 式
定子有多段曲线,转子每转一转柱塞来回往复多次, 排量大,所以转矩大。 定子内表面采用正弦曲线,(或等加速曲线、阿基米德曲
线),保证在低转速下也能稳定工作。 为增大转矩,也有做成多排转子,各排错开可减小脉动。
❖ 多作用指定子得内曲面可以多达十几段(多次行程)。转子每转 一转,每个柱塞经过每一段时都要吸排油各一次,柱塞要进行多 次进退,对输出轴产生多次渐增转矩,并通过输出轴带动负载旋 转,因此称为多作用马达。
❖ 原因——液压n马M 达内Vq部MM 有M泄v 漏,
❖ 式中,nM —液压马达得实际转速

qM —液压马达得输入流量;

VM —液压马达得理论排量

ηMV —液压马达得容积效率
❖ 转速过低时得爬行现象——当液压马达工作 转速过低时,往往保持不了均匀得速度,进入 时动时停得不稳定状态。
❖ 为防止“爬行” :高速液压马达工作转速不应
七、液压马达常见故障及其排除
一、转速低输出转矩小
1、由于滤油器阻塞,油液粘度过大,泵间隙过大, 泵效率低,使供油不足。清洗滤油器,更换粘度适 合得液油,保证供油量。

液压与气压传动第3章习题解

液压与气压传动第3章习题解

第3章液压与气压传动动力元件思考题和习题3.1 容积式液压泵的工作原理是什么?答:其原理是:必须有一个密封容积;并且密封容积是变化的;还要有一个配油装置;油箱与大气相通。

3.2 液压泵装于液压系统中之后,它的工作压力是否就是液压泵标牌上的压力?为什么?答:不一定。

因为系统中压力是由负载来决定的。

3.3 液压泵在工作过程中产生哪些能量损失?产生损失的原因?答:产生两种损失:容积损失和机械损失。

容积损失产生的原因是泵中存在间隙,在压力作用下油液从高压区向低压区泄漏;另外由于油的粘性,转速高阻力大,使油液没充满密封空间。

机械损失是泵零件间,轴承,零件与液体间存在摩擦而产生的损失。

3.4 外啮合齿轮泵为什么有较大的流量脉动?流量脉动大会产生什么危害?答:外啮合齿轮泵在工作过程中,压油腔的工作容积变化率不均匀,齿数越少,其脉动率越大,所以外啮合齿轮泵的瞬时流量脉动大。

流量脉动大引起齿轮泵输出压力脉动大,产生较大的噪声。

3.5 什么是齿轮泵的困油现象?产生困油现象有何危害?如何消除困油现象?其它类型的液压泵是否有困油现象?解:齿轮泵要平稳工作,齿轮啮合的重叠系数必须大于或等于1,即总有两对轮齿同时啮合。

这样一部分油液被围困在两对轮齿所形成的封闭腔之内。

这个封闭容积先随齿轮转动逐渐减少,以后又逐渐增大。

当封闭容积减少时会使被困油液受挤压而产生高压,并从缝隙中流出,导致油液温升增加,轴承等机件也受到附加径向不平衡负载作用。

封闭容积增大时又会造成局部真空,使溶于油中气体分离出来,产生空穴,引起噪声、振动和气蚀,这就是齿轮泵的困油现象。

消除困油现象的方法,通常在齿轮泵的两端盖板上开卸荷槽,使封闭容积减少时通过卸荷槽与压油腔相通,封闭容积增大时通过卸荷槽与吸油腔相通。

其它类型的液压泵也有困油现象,双作用叶片泵在设计合理,安装准确时,在理论上没有困油现象。

3.6 齿轮泵压力的提高主要受哪些因素的影响?可以采取哪些措施来提高齿轮泵的压力?答:影响齿轮泵压力提高主要是端面间隙的泄漏及径向力不平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压与气压传动 清华大学出版社 2014-4-26
操纵形式符号
液压与气压传动 清华大学出版社
2014-4-26

(3)换向阀的滑阀机能
三位换向阀的阀芯在中间位臵(常态位臵)时,各通道间有不同的 连通方式,可满足不同的使用要求。 三位换向阀的中位时油口的连通方式称为换向阀的中位机能。
在分析和选择中位机能时,通常考虑以下几点:

一、溢流阀
溢流阀的主要用途是维持液压系统压力恒定,起调 压作用,另一种用途作为液压系统起安全保护装臵,起 限压作用。 溢流阀在结构上有直动式和先导式之分。
液压与气压传动 清华大学出版社 2014-4-26
(1)
直动式溢流阀
当P口进油压力较小时, 阀芯在弹簧3的作用下处于 下端位置,将P和T两油口 s 断开。当油压力升高,在 阀芯下端所产生的作用力 0 达到弹簧的预紧力后,阀 芯上升,阀口被打开,P 口与T口相通,油液经T口 排回油箱。 通过调整螺帽2可以改 变弹簧压缩量,从而调整 溢流阀的开启压力值。

2.常用换向阀及应用
(1) 手动换向阀

手动换向阀是利用手动杠杆等机构来改变阀芯和阀体的相对位 臵,从而实现换向的阀类。
1-手柄; 2-阀体; 3-阀芯; 4-弹簧; 4-钢球
手动换向阀 无定位 定位
液压与气压传动 清华大学出版社 2014-4-26
(2) 机动换向 阀

动画
图4-9 二位二通机动换向阀
液压与气压传动 清华大学出版社 2014-4-26
O
H
Y
P
M
液压与气压传动 清华大Байду номын сангаас出版社 2014-4-26
过渡位置
正重迭过渡
负重迭过渡
过渡位臵的滑阀机能因为不是具体 的换向工作位臵,因此,有过渡位臵的 换向阀的职能符号其过渡位臵方框用虚 线划出。
零重迭过渡
液压与气压传动 清华大学出版社 2014-4-26
(二)共同特点 1. 从阀的结构来看,均由阀体、阀芯和控制动力三大部分组成。 2.从阀的工作原理来看,都是利用阀芯和阀体的相对位移来改 变通流面积,从而控制压力、流向和流量。 3.各种阀都可以看成在油路中的一个液阻,只要有液体流过, 都会产生压力降(有压力损失)和温度升高等现象。
液压与气压传动 清华大学出版社 2014-4-26
1-滚机动 2-阀芯 3-阀体 4-弹簧
(3)电磁换向 阀

图4-10 直流湿式三位四通电磁换向阀
1-电磁铁 2-推杆 3-阀芯 4-弹簧 4-挡圈
动画
2014-4-26
液压与气压传动 清华大学出版社
用行程阀(机动换向阀)实现顺序动作回路
① ③ ② ④
3 1 2
4
动画
图3-13
行程阀式顺序动作回路
F p= A
直动式溢流阀
溢流阀
2014-4-26
溢流阀2
1-调节杆 2-调节螺母 3-调压弹簧 4-锁紧螺母 4-上盖 6-阀体 7-阀芯 8-螺塞
液压与气压传动 清华大学出版社
差动式直动型溢流阀
f p Aa
液压与气压传动 清华大学出版社
2014-4-26

直动型溢流阀通常用于小流量液压系统,溢流稳压 效果较好。当溢流量变化较大时,由于阀芯移动量 变化大,使调压弹簧压缩量变化大,从而造成Fs变 化较大,故压力波动较大,影响系统的工作性能。 直动型溢流阀在系统中一般作安全阀使用。
液压与气压传动 清华大学出版社 2014-4-26
(4) 液动换向 阀

图4-11 三位四通液动换向阀
(5)电液换向 阀

动画
图4-12 电液换向阀
液压与气压传动 清华大学出版社 2014-4-26
三位四通电液换向阀控制油进出油方式
控制油及 外部控制 外部回油 外部控制 内部回油 内部控制 外部回油 内部控制 内部回油 回油方式 弹 簧 对 中 液 压 对 中
单向阀
单向阀反向

直角式单向阀
A至B 通过 B至A截止
直角单向阀
液压与气压传动 清华大学出版社
2014-4-26

2.液控单向阀 液控单向阀是可以根据需要来实现逆向流动的单向阀。
(1)工作原理
P1至P2自由通过, K通控制油时,P2至P1接通
液控单向阀
液控单向阀
1-活塞 2-顶杆 3-阀芯
内泄式单向阀
2014-4-26
液压与气压传动 清华大学出版社
(2)液控单向阀应用举例
液控单向阀的应用一
液控单向阀的应用二
液压与气压传动 清华大学出版社 2014-4-26
33
快速放油
锁紧
液压与气压传动 清华大学出版社
2014-4-26
双向液控单向阀 (液压锁)
液压锁图形符号
液压锁
采用液控单向阀的锁紧回路
液压与气压传动 清华大学出版社
3DT
4DT
+ + + +
2014-4-26
图3-19 用电磁换向阀控制的多缸并联顺序动作回路及电磁铁动作程序表
差动回路
1D T 快 进 工 进 退 回 2D T 3D T 4D T
+ + -
- - +
+ - -
- - -
卸 荷
2014-4-26



+
液压与气压传动 清华大学出版社


二、单向阀
锁紧回路
2014-4-26
梭阀
梭阀又叫选择阀或双单向阀,它实际上是一种三通式液控单向阀, 可以自动地进行油路的选择。如果执行元件由两个压力油源交替供 油,而较高压力油口应打开时,使用梭阀。
B C
液压与气压传动 清华大学出版社
2014-4-26
液压传动系统中,控制油液工作压力或利用压力信 号进行动作控制的液压阀统称为压力控制阀。 这类阀的共同点是利用作用在阀芯上的液压力和弹 簧力相平衡的原理进行工作。 压力控制阀主要有溢流阀、减压阀、顺序阀和压力 继电器。
液压与气压传动 清华大学出版社
2014-4-26
先导式溢流阀原理分析
主油路: 从进油口P 到出油口(溢流口)T的油路; 控制油路: 压力油自进油口P进入,作用于主阀芯1 下端面,并通过阀体10上的阻尼孔2、通道c、 d进入先导阀阀芯前腔,作用于锥阀6上,同 时,通过阻尼孔3 进入主阀上腔,作用于主 阀芯上端面; 泄油路: 先导阀被打开时,从先导阀弹簧腔经泄 油口L到出油口T 的油路。 阀体11上的阻尼孔2起节流作用;主阀上 腔的阻尼孔3 的作用是增加阻尼,提高阀的 稳定性。
工作机构的启动、停止或改变运动方向,是由控 制进入回路的油流的通断及流向改变来实现的,这种 控制回路称为方向控制回路。在液压系统中,方向控 制阀主要有换向阀和单向阀两类。

一、换向阀及其应用
根据阀芯运动方式不同,换向阀可分为滑阀式和 转阀式两种。
液压与气压传动 清华大学出版社
2014-4-26

(一)按功能分类
(二)按控制方式分类
1.定值或开关控制阀 2.比例控制阀 3.伺服控制阀
(三)按连接方式分类
液压与气压传动 清华大学出版社 2014-4-26
板式连接
管式连接 插装式 连接
叠加式连接
液压与气压传动 清华大学出版社 2014-4-26

二、阀的参数和特点 (一)参数 1.公称通径:代表阀的通流能力的大小 2.公称流量:指液压阀在额定工作状态下通过的名义流量 3.公称压力:标志液压阀承载能力大小的参数
图 4-13 三位四通转阀式换向阀
动画
1-阀体 2-阀芯 3-手柄 4-定位装置 4、6-拨叉
液压与气压传动 清华大学出版社
2014-4-26
换向阀的应用
利用换向阀换向卸荷回路
图3-11 换向阀换向 卸荷回路
图3-12 液压与气压传动 清华大学出版社 二位二通阀卸荷回路 2014-4-26
用行程阀(机动换向阀)实现顺序动作回路
液压与气压传动 清华大学出版社
2014-4-26

(1)压力-流量特性
压力— 流量特 性又称溢流阀的溢流 特性。它表征溢流量 变化时溢流阀进口压 力的变化情况,即稳 压特性。
DB型先导式溢流阀工作原理图
先导式溢流阀有一个远程控制口,图中用符号K表示,并用螺塞堵住。
液压与气压传动 清华大学出版社 2014-4-26
远程控制口的应用
将先导式溢流阀2远控 口K也接到一个先导阀1上, 此时两先导阀并联,主阀芯 的动作要看这两个先导阀的 调定压力情况,以弹簧调定 值小的压力值进行工作。 如果把K口通过油管直 接连到油箱上,则主阀芯上 腔始终与油箱相通,这样只 要进口有一点小小的压力就 可以将主阀芯打开,系统通 过溢流阀卸荷。
①系统保压。当P口被堵塞,系统保压,液压泵能用于多缸系统。 当P口不太通畅地与T口接通时(如X型),系统能保持一定的压力供控 制油路使用。 ②系统卸荷。P口通畅地与T口接通时,系统卸荷。 ③执行元件“浮动”。 阀在中位,当A、B两口互通时,卧式液压 缸呈“浮动”状态,可利用其他机构移动工作台,调整其位臵。 ④执行元件任意位臵停止。当A、B两口堵塞,则可使液压缸或液压 马达在任意位臵处停下来。 ⑤制动和锁紧要求。执行元件采用了液压锁、制动器等时,要求中 位时两腔与油箱相通,保证锁紧和制动的可靠性。
能量控制的方法
1.阀控 用阀给出理想的控制状态;
2.泵控 用泵本身来控制(都是采用变量泵); 3.执行元件控制 改变执行元件的排量来实现(常 采用马达)。
液压与气压传动 清华大学出版社
2014-4-26
一个简单的液压系 统图
相关文档
最新文档