福建省厦门双十中学2013-2014学年七年级(下)期中考试数学试题 (1)
【3套打包】厦门市双十中学最新七年级下册数学期中考试题
七年级(下)数学期中考试试题【含答案】一、选择题(本大题12个小题,每小题4分,共48分,在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑)1.下面的四个图形中,∠1与∠2是对顶角的是2.点P(-2,-5)在A.第一象限B.第二象限C.第三象限D.第四象限3.估计5的值在A.1到2之间B.2到3之间C.3到4之间D.4到5之间4.下列方程组不是二元一次方程组的是A.⎩⎨⎧=+=+42634y x y xB.⎩⎨⎧=-=+44y x y x B.⎪⎩⎪⎨⎧=-=+141y x y x D.⎩⎨⎧=+=+25102553y x y x5在,π,,,,27310414.1- 1.1·4·,3.212212221(每两个1之间多一个2),这些数中无理数的个数为A.3B.2C.5D.46.若点P ()13-+m m ,在x 轴上,则点P 的坐标为A.(0,-2)B.(4,0)C.(2,0)D.(0,-4)7.如图所示,由下列条件不能得到AB ∥CD 的是A.∠B+∠BCD=180°B.∠B=∠5C.∠3=∠4D.∠l=∠28.若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是A.(-3,4)B.(4,-3)C.(3,-4)D.(-4,3)9.下列说法中正确的是A.9的平方根是3B.4平方根是2±C.16的算术平方根是4D.-8的立方根是2±10.已知y x 、是二元一次方程组⎩⎨⎧=+=+83123y x y x 的解,那么y x +的值是A.0B.5C.-1D.11l.如图所示,AB ∥DE ,∠ABC=60°,∠CDE=150°,则∠BCD 的度数为A.50°B.60°C.40°D.30°12.如图所示,一只电子跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→>(0,1)→(1,1)→>(1,0)→…]且每秒跳动一个单位,那么第45秒时跳蚤所在位置的坐标是A.(5,6)B.(6,0)C.(6,3)D.(3,6)二、填空题(本大题6个小题,每小题4分,共24分,将答案直接填在答卷屮对应的橫线上)13.把命题“同位角相等,两直线平行”改写成“如果……那么……”的形式是________.14.已知y x 、是实数,且(),0322=-+-y x 则xy 的值是_______. 15.如果,,477.530732.13≈≈那么≈300_____.16.如图所示,△ABC 沿着有点B 到点E 的方向,平移到△DEF ,已知BC=7cm ,EC=4cm ,那么平移的距离为______cm.17.如图所示,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点______.18.永川区某工程公司积极参与“三城同创”建设,该工程公司下属的甲工程队、乙工程队分别承包了三城的A 工程、B 工程,甲工程队睛天需要14天完成,雨天工作效率下降30%;乙工程队晴天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工,两个工程队各工作了______天.三、解答题(本大题2个小题,19题10分,20题6分,共16分,解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上)19.计算(每题5分,共10分) (1)328323++-(2)已知(),1622=-x 求x 的值.四、解答题(本大题4个小题,每小题10分,共40分,解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上)20.(10分)已知,△ABC 三个顶点的坐标分别为:A(-3,-2)、B(-5,0)、C(-2,2).(1)在平面直角坐标系中画出△ABC ;(2)将△ABC 向右平移5个单位长度,再向上移2个单位长度,画出平移后的111C B A △;(3)计算111C B A △的面积。
2024年福建省厦门市双十中学中考二模数学试题(含答案)
厦门双十中学2023—2024学年下初三中考模拟考试试卷数学(试卷满分:150分考试时间:120分钟)准考证号______姓名______班级座位号______注意事项:1.全卷三大题,25小题,试卷共5页,另有答题卡;2.答案一律写在答题卡上,否则不予得分;3.可直接用2B 铅笔画图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.-2024的相反数是( )A .2024B .C.D .-20242.图①是2024年1月7日厦门市全程马拉松男子组颁奖现场.图②是领奖台的示意图,则此领奖台的主视图是()图1图2A .B .C .D .3.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4.如图所示的是一杆杆秤,杆秤是利用杠杆原理来称质量的简易衡器,由木制的带有秤星的秤杆、金属秤砣、秤钩、提绳等组成.在称物品时,提绳AB 与秤砣绳CD 互相平行,若,则的度数为()A .B .C .D .5.在相同条件下的多次重复试验中,一个随机事件发生的频率为f ,该事件的概率为P .下列说法正确的是()A .试验次数越多,f 越大B .f 与P 都可能发生变化C .试验次数越多,f 越接近于PD .当试验次数很大时,f 在P 附近摆动,并趋于稳定6.下列运算正确的是()12024-1202492α∠=︒β∠88︒90︒92︒86︒A.3a+4b=7ab B.C.D.7.某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵,则下列方程正确的是()A.B.C.D.8.如图,在中,,,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则弧AD的长为()A.B.C.D.9.综合实践课上,小明画出△ABD,利用尺规作图找一点C,使得四边形ABCD为平行四边形.(1)~(3)是其作图过程.(1)分别以点B,D为圆心,大于长为半径作弧,相交于两点,作过这两点的直线交BD于O(2)连接AO并延长,再以O为圆心,OA长为半径作弧,交AO延长线于点C(3)连接DC,BC,则四边形ABCD即为所求.在小明的作法中,可以直接用于判定四边形ABCD为平行四边形的依据是()(1)(2)(3)A.两组对边分别平行B.两组对边分别相等C.一组对边平行且相等D.对角线互相平分10.如图,将一块等腰直角三角板ABC放在平面直角坐标系中,点,直角顶点,点B在第二象限.将△ABC沿x轴正方向平移后得到,点A,B的对应点,恰好落在双曲线上,()32622b b=()2224a a+=+1266a a a÷=40030050x x=-30040050x x=-40030050x x=+30040050x x=+Rt ABC△90C∠=︒30B∠=︒π4π35π32π12BD()0,1A()2,0C-A B C'''△A'B'kyx=则平移的距离等于( )A .4B .6C .8D .10二、填空题(本大题有6小题,每小题4分,共24分)11.如图,数轴上的点A 、B 分别对应实数a 、b ,则a +b ______0.(用“>”“<”或“=”填空)12.2025年,6G 将在中国进行标准化制定,预计2030年左右,实现商用.其理论数据传输速率1TB 每秒,1TB 约等于1100000000KB ,将1100000000用科学记数法表示为______13.若一个多边形内角和等于,则这个多边形的边数为______.14.小明记录了自己一周内每天的校外体育活动时间,制作了如下折线统计图,这周小明活动时间的中位数是______15.台球是用球杆在台上击球,依靠计算得分确定比赛胜负的室内高雅体育运动.如图是一张宽为m 米,长为2m 米的矩形台球桌ABCD ,某球员击位于AB 的中点E 处的球,球沿EF 射向边AD ,然后反弹到C 点的球袋,球的反弹规律满足光的反射定律.若球的速度为v 米/秒,则球从出发到入袋的时间等于______(用含m 和v ,的式子表示)16.已知点,,抛物线上,且a <b <m -1.则n 的取值范围是______.三、解答题(本大题有9小题,共86分)17.(本题满分818.(本题满分8分)已知:如图,点B ,F ,C ,E 在一条直线上,BF =CE ,AC =DF ,且.720︒()2,A n a -()4,B b (),C n a 221y x mx m =++-1122-⎛⎫+ ⎪⎝⎭AC DF ∥求证:∠B =∠E19.(本题满分8分)解不等式组:20.(本题满分8分)化简.下面是小红和小莉两位同学的部分运算过程:小红的解法:解:原式……小莉的解法:解:原式……(1)小红的解法依据是______;小莉的解法依据是______.(填序号)①等式的基本性质;②分式的基本性质;③乘法交换律;④乘法分配律.(2)若,请任选一种解法,求出代数式的值.21.(本题满分8分)随着经济快速发展,环境问题越来越受到人们的关注,某校为了了解节能减排、垃圾分类等知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”、“了解”、“了解较少”、“不了解”四类,并将结果绘制成以下两幅不完整的统计图,请根据统计图回答下列问题:(1)估计这所学校3000名学生中,“不了解”的人数是多少人.(2)“非常了解”的4人中有,,两名男生,,,两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图或列表的方法,求恰好抽到2名男生的概率.22.(本题满分10分)如图1,在四边形ABCD 中,AB =AD =CD ,以AB 为直径的经过点C ,连接AC 、OD 交于点E .(1)证明:AE =CE()32252123x x x x +≥+⎧⎪⎨--<⎪⎩①②21122a a a a -⎛⎫+÷ ⎪++⎝⎭222122122222aa a a a a a a a a +-+-⎛⎫=+÷=÷= ⎪+++++⎝⎭2222221121211a a a a a a a a a a +++⎛⎫=+⋅=⋅+⋅=⎪+-+--⎝⎭1a =1A 2A 1B 2B O(2)若AC=2BC①证明:DA是的切线②如图2连接BD交于点F,连接EF,求∠DEF的度数图1图223.(本题满分10分)根据以下素材,探索完成任务.探究遮阳伞下的影子长度素材1(1)图3是某款自动旋转遮阳伞,伞面完全张开时张角呈,图4是其侧面示意图.(2)已知支架AB长为2.5米,且垂直于地面BC,悬托架AE=DE=0.5米,点E固定在伞面上,且伞面直径DF是DE的4倍.当伞面完全张开时,点D,E,F始终共线.(3)为实现遮阳效果最佳,伞面装有接收器可以根据太阳光线的角度变化,自动调整手柄D沿着AB移动,以保证太阳光线与DF始终垂直.图3 图4素材2某地区某天下午不同时间的太阳高度角(太阳光线与地面的夹角)参照表:时刻12点13点14点15点16点17点太阳高度角(度)907560453015素材3小明坐在露营椅上的高度(头顶到地面的距离)约为1米,如图2,小明坐的位置记为点Q.问题解决任务1确定影子长度某一时刻测得AD=0.8米,①DF=______;______②请求出此时影子GH的长度;任务2判断是否照射到这天14点,小明坐在离支架3米处的Q点,请判断此时小明是否会被太阳光照射到?请你说明理由;任务3探究合理范围小明打算在这天14:00—15:00露营休息,为保证小明全程不被太阳光照射到,请你通过计算后直接写出BQ的取值范围:______24.(本题满分13分)OO180︒αtan ADE∠=在中,,AD 平分∠BAC ,点E 是段BD 上的动点(不与B ,D 重合)(1)如图5,若AE ⊥AC ,求证:图5(2)如图6,点F 是线段DB 延长线上的一点,且BF =2DE ①求证E 是CF 的中点②将线段DE 绕点E 顺时针旋转得到线段EH ,连接AH ,FH ,求证AH ⊥FH图625.(本题满分13分)顶点为D 的抛物线过和(1)求抛物线的函数表达式;(2)直线交抛物线于点A 和B (A 在B 的左边),交y 轴于C ;直线AD 交x 轴于点P ,①若的面积是面积的2倍,求k 的值;②连接BP ,过点B 作BQ ⊥AP ,交y 轴于Q ,用等式表示CQ 和BP 的数量关系,并证明.厦门双十中学2023—2024学年下初三中考模拟考试试卷数学参考答案(试卷满分:150分考试时间:120分钟)一、选择题(本大题有10小题,每小置4分,共40分.)题号12345678910选项A CB A D DB B D B 二、填空题(本大题有6小题,每小题4分,共24分)11.>12.13.814.63ABC △ABC C α∠=∠=()045α<<︒2AD DE BD=⋅2α2y ax c =+()2,3-()0,2-():40AB y kx k =-<POD △ADC △91.110⨯15.16.3<n<4或n>6(对一半给2分,有n>3给1分)三、解答题(本大题共9小题,共86分)17.(本题满分8分)原式18.(本题满分8分)证明:∵BF=CE,∴BF+CF=CE+CF即BC=EF∵,∴∠ACB=∠DFE,又∵AC=DF,∴,∴∠B=∠E.19.(本题满分8分)解:由①得,由②得,∴不等式组的解集为20.(本题满分8分)解(1)②;④(2)小红的解法:原式小莉的解法:原式,当时,原式21.(本题满分8分)解:(1)本次调查的学生总人数为20÷40%=50“不了解”对应的百分比,估计该校3000名学生中“不了解”的人数是3000×30%=900(人)(2)画树状图如下:52mv22=+=AC DF∥()SASACB DFE≌△△3625x x+≥+1x≥-3624x x-<-2x<12x-≤<()222121122222aa a a aa a a a a++--⎛⎫=+÷=÷⎪+++++⎝⎭()()()()()()21112122222111a a a a aa a a a a a++-++=÷=⋅=++++--2222221121211a a a a aa a a a a+++⎛⎫=+⋅=⋅+⋅⎪+-+--⎝⎭()()()22212211111aa aa a a a a++=+==--+--1a=+===()504112030%50-++=由图可知共有12种可能的结果,恰好抽到2名男生的结果有2个,∴P (抽到2名男生) 22.(本题满分10分)(1)解法1:证明:如图1,连接OC ,∵AO =CO ,AD =CD ,OD =OD ,∴∴∠AOD =∠COD ,∵OA =OC ,∴AE =CE ;解法2:连接OC∵AO =CO ,AD =CD ,∴点O ,D 在AC 的垂直平分线上∴OD 垂直平分AC ,∴AE =CE ;(2)证明:解法1:∵AB 是的直径,∴,∴∵AE =CE ,∴AC =2AE ,∵AC =2BC ,∴BC =AE ,∴,∴∠ABC =∠DAE ,∵∴,∴OA ⊥AD ∵OA 是半径,∴DA 是的切线;(3)解法1:如图2,连接AF,21126==()SSS ADO CDO ≌△△O 90ACB ∠=︒90ACB AED ∠=∠=︒()Rt Rt HL ACB DEA ≌△△90ABC BAC ∠+∠=︒90BAC DAE OAD ∠=∠=∠=︒O∵AB 为直径,∴,∵,∴E ,F 都在以AD 为直径的圆上∴A 、E 、F 、D 四点共圆∵DF =DF ,∴∠DEF =∠DAF ,∵AB =AD ,∴,∴解法2连接AF 和CF∵AB =AD ,,∴∵,∴,∴BF =AF ,∵CF =CF ,∴∠CBF =∠FEA ,∵BC =AE ,∴,∴FC =FE ,∠BFC =∠AFE ,∴∴,∴24.(本题满分13分)(1)∵AB =AC ,AD 平分∠BAC ,∴AD ⊥BC ,BD =CD ∴∵AE ⊥AC ,∴,∴∵,∴∠EAD =∠C ∴,∴∴,∴(2)①设DE =m ,BF =2m ,BD =CD ∴CE =m +n ,DF =2m ∴EF =2m +n —m =m +n90AFB ∠=︒90AED ∠=︒90BAD ∠=︒1452DAF BAD ∠=∠=︒45DEF ∠=︒90BAD ∠=︒45ABF ADB ∠=∠=︒90AFB ∠=︒45ABF BAF ∠=∠=︒FCE FEA ≌△△90EFC ∠=︒45CEF ECF ∠=∠=︒45DEF ∠=︒90ADE ADC ∠=∠=︒90CAE ∠=︒90EAD CAD ∠+∠=︒90C CAD ∠+∠=︒ADE CDA ∽△△AD DECD AD=2AD CD DE =⋅2AD BD DE =⋅∴EF =CE ∴E 是CF 的中点②将线段DE 绕点E 顺时针旋转得到线段EH ,连接AH ,FH ,求证AH ⊥FH方法一:取AF 的中点O ,连接EO ,HO ,DO∵点O 是AF 的中点,E 是CF 的中点,∴OE 是△ACF 的中位线∴,∴∵线段DE 绕点E 顺时针旋转得到线段EH ∴DE =EH ,∴∴∴∴∠OED =∠OEH ,∴∴OD =OH ,∵,∴AO =FO =OD ∴AO =FO =OH∴点H 在以O 为圆心,AF 为直径的圆上∴,∴AH ⊥FH方法二:延长FH 至G 使FH =GH ,连接AG ,CG∵线段DE 绕点E 顺时针旋转得到线段EH ,∴∴∵点E 是CF 的中点,H 是FG 的中点∴EH 是△FCG的中位线,∴2αOE AC ∥OEF C α∠=∠=2α2DEH α∠=1802FEH α∠=︒-1802180OEH ααα∠=︒-+=︒-()3601802180OED ααα∠=︒-︒--=︒-OED OEH ≌△△90ADF ∠=︒90AHF ∠=︒2α2DEH α∠=1802FEH α∠=︒-EH CG∥∴∴∴,∴∠ABF =∠ACG∵DE =EH ,BF =2DE ,∴BF =2EH ,∵CG =2EH ,∴BF =CG ,又∵AB =AC ,∴,∴AF =AG ,∴AH ⊥FH方法三:作EG ⊥DH 于G ,∵线段DE 绕点E 顺时针旋转得到线段EH∴DE =EH ,∴,∴∵DH =2DG ,BF =2DE ,∴,∵,∴,∴,∴,∵,,∴,∴,∠BAF =∠DAH ,∴,∠BAD =∠FAH ,∴,∴,∴AH ⊥FH25.(本题满分13分)(1)∵抛物线过∴c =-2,∴又∵抛物线过∴4a -2=-3,,∴1802FEH FCG α∠=∠=︒-1802180ACG ααα∠=︒-+=︒-180ABF α∠=︒-ABF ACG ≌△△2α2DEH α∠=12DEG DEH α∠=∠=sin sin DG DEG DEα∠==sin DH BF α=90ADB ∠=︒sin AD ABD AB∠=sin AD AB α∠=AD BF AB=9090180ADH DE EDH αα∠=∠+∠=︒+︒-=︒-180ABF α∠=︒-ABF ADH ∽△△AD AH AB AF=AD AB AH AF=ADB AHF ∽△△90ADB AHF ∠=∠=︒()0,2-22y ax =-()2,3-14a =-2124y x =--(2)①由题得,∴,∴CD =OD =2作AM ⊥y 轴于M∵的面积是面积的2倍,∴OP =2AM∵,∠ADM =∠PDO ,∴∴即,∴DM =1,∴OM =1+2=3,∴,∴,∴,∴,②由得,∴,∴∵,∴,∴,解得∴,∴∴轴,∴()0,2-()0,4C -2124y x =--POD △ADC △90POD AMD ∠=∠=︒ADM PDO ∽△△AM DO OP DM =122DM =3A M y y ==-21234A x --=-2A x =-()2,3A --243k --=-12k =-21244y x y kx ⎧=--⎪⎨⎪=-⎩21424kx x -=--2480x kx +-=8A B x x ⋅=-1B Ax x =-ADM PDOS ∽△△AM DO OP DM=212242A x x OP ⎛⎫---- ⎪-⎝⎭=8A OP x =-8,0A P x ⎛⎫- ⎪⎝⎭P B x x =BP y ∥221102244B B BP x x ⎛⎫=---=+ ⎪⎝⎭作BN ⊥y 轴于N∵BQ ⊥AP ,,∴∠BQN +∠PDO =∠OPD +∠PDO =,∴∠BQN =∠PDO .∴∵∴∴∴∴BP =CQ .90POD ∠=︒90︒tan tan BQN OPD∠=∠22tan P BDO OPD PO x x ∠===22tan 112244B B B Q B Q B Q B x x x BN BQN ON y y y x y x ∠====-⎛⎫++--- ⎪⎝⎭22124B B Q B x x y x =++2124Q B y x =-()221124244B B CQ x x =---=+。
厦门双十中学七年级数学下册第十章【数据的收集。整理与描述】经典练习题(含答案)
一、选择题1.下列调查中,最适合采用全面调查(普查)方式的是( ) A .对重庆市初中学生每天阅读时间的调查 B .对端午节期间市场上粽子质量情况的调查 C .对某批次手机的防水功能的调查 D .对某校九年级3班学生肺活量情况的调查2.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( ) A .企业男员工B .企业年满50岁及以上的员工C .用企业人员名册,随机抽取三分之一的员工D .企业新进员工3.下列调查中:①检测保定的空气质量;②了解《奔跑吧,兄弟》节日收视率的情况;③保证“神舟9号“成功发射,对其零部件进行检查;④调查某班50名同学的视力情况;⑤了解一沓钞票中有没有假钞其中通合采用抽样调查的是( ) A .①②③B .①②C .①③⑤D .②④4.“三农问题”是指农业、农村、农民这三个问题。
随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是40000元和60000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是( )A .①的收入去年和前年相同B .③的收入所占比例前年的比去年的大C .去年②的收入为2.1万D .前年年收入不止①②③三种农作物的收入5.2016年4月30日至5月2日,河北省共接待游客1708.3万人次,实现旅游收入106.5亿元,旅行社的小王想了解某企业员工个人的旅游年消费情况,他随机抽取部分员工进行调查,并将统计结果绘制成如表所示的频数分布表,则下列说法中不正确的是( ) 个人旅游2000x ≤ 20004000x <≤ 40006000x <≤ 60008000x <≤ 800010000x <≤年消费金额x/元频数1225312210A.小王随机抽取了100名员工B.在频数分布表中,组距是2000,组数是5组C.个人旅游年消费金额在6000元以上的人数占随机抽取人数的22%D.在随机抽取的员工中,个人旅游年消费金额在4000元以下(包括4000元)的共有37人6.要调查安顺市中学生了解禁毒知识的情况,下列抽样调查最适合的是()A.在某中学抽取200名女生B.在安顺市中学生中抽取200名学生C.在某中学抽取200名学生D.在安顺市中学生中抽取200名男生7.为了解七年级4000名学生参加数学统测成绩的情况,从中随机抽取200名学生的数学成绩进行分析.下列说法正确的是()A.样本容量是200名B.每名学生是个体C.200名学生的数学成绩是总体的一个样本D.4000名学生是总体8.某地区经过两年的产业扶贫后,经济总收入增加了一倍.为更好地了解该地区的经济收入变化情况,统计了产业扶贫前后的经济收入相关数据,得到下列统计图:下面结论不正确的是()A.经过产业扶贫后.养殖收入增加了一倍B.经过产业扶贫后,种植收入减少了C.经过产业共贫后,养殖收入与第二产业收人的总和超过了经济收入的一半D.经过产业扶贫后.其他收入增加了一倍以上9.泰州市今年共有3 万名考生参加中考,为了了解这3 万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析.以下说法正确的有( )个①这种调查采用了抽样调查的方式;②3 万名考生是总体;③1000 名考生是总体的一个样本;④每名考生的数学成绩是个体.A.2 B.3 C.4 D.010.将100个数据分成①~⑧组,如下表所示:那么第④组的频率为()A.24 B.26 C.0.24 D.0.2611.下列调查中,最适合采用抽样调查的是()A.了解全班同学每周体育锻炼的时间B.对市场上某一品牌电脑使用寿命的调查C.对旅客上飞机前的安检D.对“神州十一号”运载火箭发射前的零部件质量状况的调查二、填空题12.如图所示,是幸福村农作物统计图,看图回答问题:(1)在扇形统计图中的括号内填上适当的数据:___;(2)棉花的扇形圆心角是144°,表示它占百分数是___;(3)水稻种了240公顷,那么棉花种了___公顷;(4)该村的农作物总种植面积是___.13.为了了解我校七年级850名学生的数学成绩,从中抽取了90名学生数学成绩进行统计分析,这个问题中的样本容量是_____.14.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D等级这一组人数较多的班是________15.李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期,收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:序号12345678910质量(千克)14212717182019231922根据调查,市场上今年樱桃的批发价格为每千克15元,用所学的统计知识估计今年此果园樱桃按批发价格销售所得的总收入约为________元.16.一组数据的最大值与最小值的差为23,若确定组距为3,则分成的组数是.17.山西地质博物馆是山西唯一一家普及矿产资源和地球科学知识的博物馆,为了解全省人民参观山西地质博物馆的情况,宜采用______________的方式调查.(填“普查”或“抽样调查”)18.某冷饮店一天售出各种口味冰淇淋份数的扇形统计图如图所示.则图中“芒果味”所在扇形的圆心角为____.19.经调查,某班学生上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据时,“公交车”对应扇形的圆心角是__________.20.我国是稀土资源最丰富的国家.如图是全球稀土资源储量分布统计图,图中表示“中国”的扇形的圆心角是_________度.21.某校为了解九年级学生的体重情况,随机调查了100名学生,其中体重低于60kg的学生有72人,若该校九年级共有1000人,根据所学的统计知识可以估计该校体重低于60kg的学生大约有____________________人.三、解答题22.襄汾县教科局“有效学习儒家文化”课题于今年结题,在这次结题活动中,甲、乙两校师生共150人进行了汇报演出,小林将甲、乙两校参加各项演出的人数绘制成如下不完整的统计图表,根据提供的信息解答下列问题:甲校参加汇报演出的师生人数统计表百分比人数话剧50%m演讲12%6其他n19甲、乙两校参加汇报演出的师生人数统计图(1)m=______,n=______;∠度数;(2)计算乙校的扇形统计图中“话剧”的1(3)哪个学校参加“话剧”的师生人数多?说明理由.23.随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表组别在线阅读时间t人数A10≤t<308B30≤t<5016C50≤t<70aD70≤t<9032E90≤t<1104根据以上图表,解答下列问题:(1)这次被调查的同学共有人,a=,m=;(2)扇形统计图中扇形D的圆心角的度数为;(3)若该校有2000名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min?24.为了解疫情期间学生网络学习的学习效果,高远中学随机抽取了部分学生进行调查.要求每位学生从“优秀”,“良好”,“一般”,“不合格”四个等次中,选择一项作为自我评价网络学习的效果.现将调查结果绘制成如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共抽查学生多少名?(2)请通过计算补全条形统计图;(3)若高远中学共有1600名学生,估计该中学“优秀”等次的学生有多少名?25.某中学为了了解学生跳绳情况进行了一次跳绳成绩测试,每名学生一次跳30秒后记下跳绳下数,测试完后随机抽取了40名学生的跳绳成绩,分析整理绘制成如下统计表(不完整):跳绳下数818590939598100人数12a811b5再将这些数据按组距5(下)分组,绘制成如图所示不完整的频数直方图.(1)写出本次调查的样本和样本容量;(2)求出表中a,b的值,并补全频数直方图;(3)若跳绳90下可得满分,该校七年级共有720名学生,试估计该校七年级学生中有多少名跳绳不能得满分.一、选择题1.某校开展以“了解传统习俗,弘扬民族文化”为主题的实践活动.实践小组就“是否知道端午节的由来”对部分学生进行了调查,调查结果如图所示,其中不知道的学生有8人.下列说法不正确的是( )A.被调查的学生共有50人B.被调查的学生中“知道”的人数为32人C.图中“记不清”对应的圆心角为60°D.全校“知道”的人数约占全校总人数的64%2.某学生某月有零花钱a元,其支出情况如图所示,那么下列说法不正确的是()A.该学生捐赠款为0.6a元B.捐赠款所对应的圆心角为240°C.捐赠款是购书款的2倍D.其他消费占10%3.“三农问题”是指农业、农村、农民这三个问题。
福建省厦门双十中学2013-2014学年七年级(下)期中考试数学试题
CBA E七年级下数学期中试卷一、选择题。
(每小题4分,共32分)1.下列图形中表示∠1与∠2是对顶角的是( )A B C D2.在平面直角坐标系中,点A (2011,-2012)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.有下列各数,0.456,2π3,3.14,0.80108,27,0.36·,0.101001…,4,其中无理数有( )A .1个B .2个C .3个D .4个4.下列命题是真命题的是( )A .若a <b ,则a 2>b 2B .若|x |=|y |,则x =yC .若a >|b |,则a 2>b 2D .若a <1,则a >3a 5.如图是小刚的一张脸,他对妹妹说如果我用(0,2) 表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(-1,0)C .(-1,1)D .(1,-1)6.如图,点E 在BC 的延长线上,下列条件中能判断AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠D +∠BCD =180° D .∠D =∠57.如图,直线AB ∥CD ,∠A =70°,∠C =40°,则∠E 等于( )A .30°B .40°C .60°D .70°8.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,在从原点跳动到(0,1),然后接着按中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第25秒时跳蚤所在位置的坐标是( ) A .(4,0) B .(5,0) C .(0,5) D .(5,5) 二、填空题。
(每小题4分,共32分)12111222ECABD9.将点P 向左平移2个单位长度,再向上平移1个单位长度得到P 1(-1,3),则点P 坐标是 。
10.-64的立方根的相反数是 。
七年级下册数学期中试卷1(2013附答案)[1]
21F EDCBA G龙文教育2013—2014学年下学期期中七 年 级 (下) 数 学 试 题(时间:120分钟,满分100分)温馨提示:亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 我们一直投给你信任的目光。
请认真审题,看清要求,仔细答题;考试时,可以使用计算器,但未注明精确度的计算问题不得采取近似计算,应根据题型特点把握使用计算器的时机。
相信你一定会有出色的表现!一、填空题(本大题共10题,每小题3分,共30分,直接把最简答案填写在题中的横线上)1、(2011江苏宿迁)在平面直角坐标系中,已知点A (﹣4,0)、B (0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是 .2. (2011江苏淮安)如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2= . 3、若一扇窗户打开后,用窗钩将其固定,主要运用的几何原理是 _____________ 。
4、如果电影院中“5排7号”记作(5 ,7),那么(3,4)表示的意义是 _________ 。
5、如图,给出了直线外一点作已知直线平行线的一种方法,它的依据是 ________________________。
B(第5题) (第8题) (第9题)(第10题) 6、将点A (—1,2)先向左平移2个单位,再向上平移3个单位得到B ,那么点B 的坐标是 _ _____ 。
7、在ABC ∆中,3,8AB BC ==,则AC 的取值范围是 _______ 。
8、如图,点O 是直线AB 上一点,且∠AOC=135度,则∠BOC= 度。
9、如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=__ _。
10、如图,把长方形ABCD 沿EF 对折,若∠1=500,则∠AEF 的度数等于 .二、选择题(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中,只有一项是符合题目班级 姓名 座号密封线内不要答题要求的,请选出来,并将正确一项的序号填在括号内.) 11、下列图中,∠1与∠2是对顶角的是( )。
【3套打包】厦门市双十中学七年级下册数学期中考试题
七年级(下)数学期中考试题【答案】一、仔细选一选(本题有12个小题,每小题3分,共36分)1、在下列各数:3.1415926、、0.2、、、、中无理数的个数是( )A .2B .3C .4D .52、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④3、在平面直角坐标系中,点(﹣1,m 2+1)一定在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4、如图,将△AB C 沿AB 方向向右平移得到△DEF ,其中AF=8,DB=2,则平移的距离为( )A. 5B. 4C. 3D. 25、如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .56°C .66°D .54°6、下列各组数中,互为相反数的组是( )A 、-2与2)2(-B 、-2和38-C 、-21与2 D 、︱-2︱和2 7、在平面直角坐标系中,若A 点坐标为(﹣3,3),B 点坐标为(2,0),则△ABO 的面积为( )A. 15B. 7.5C. 6D. 38、在实数范围内,下列判断正确的是( )A. 若n m =,则m=nB. 若22b a >,则a >bC. 若22)(b a =,则a=bD. 若33b a =,则a=b9、如图,直线AB ∥CD ,∠C=44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°10、如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为( )A .(3,2)B .(﹣3,2)C .(3,﹣2)D .(﹣3,﹣2)11、估计76的值在哪两个整数之间( ) A 、75和77 B 、6和7 C 、7和8 D 、8和912、如下图,AB ∥EF ∥CD ,∠ABC=46°,∠BCE=20°,则∠CEF=( )A. 144°B. 154°C. 164°D. 160°二、填空题(每小题3分,共18分)13、点P (2a ,1﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为4,则点P 的坐标是 .14、如图将一条两边都互相平行的纸带进行折叠,设∠1为a 度,则∠2=________(请用含有a 的代数式表示)15、绝对值等于5的数是 ;38-的相反数是 ;21-的绝对值是________。
mjt-厦门2013-2014学年七年级下期中考试数学试题
A、16=±4B、364=4 C、-9=-3 D、1619=413二、填空题(10*3=30分)9.(1空1分)9的算术平方根是 ;94的平方根是 ,271的立方根是 . 10.比较大小:;215 21(填“>”或“<”)11. 把命题“两直线平行,同位角相等”改写成“如果…,那么…”的形式是12、如图所示,如果∠3=2∠1,则∠2=______,∠3=_______,∠4= _______。
13、如图所示,直线AB ∥CD ,∠2=67°,则∠1=______,∠3=_______,∠4= _______。
14、如图所示,AB ⊥CD 于点O ,EF 经过点O ,∠1=27°,则∠AOE=______,∠COF=_______,∠BOE= _______。
15、在平面直角坐标系内,点A (8,-5)的横坐标是 ,纵坐标是 ,它在 第 象限。
16、如图所示,∠DAB 和∠B 是直线DE 和BC 被直线 所截而成的, 称它们为 角.17如图④,AB ∥CD ,∠BAE = 120º,∠DCE = 30º,则∠AEC = 度.18.如图,AB∥CD,则∠1+∠2+∠3+……+∠2n= 度A 1234BD13题C4 13 212题1EFD BCA O 14题厦门英贤学校2013-2014学年(下)七年级期中考数学答题卷一、选择题:(二、填空题:(每小题3分,共30分)9. , , 10 ,11.12、 , , 13、 , , 14、 , , 15、 , , 16、 , 17、 18、三、计算题19.求下列各式值(5*2=10)(1))212(2-(2)22322+-20.求下列各式中的x (6*2=12)(1)12142=x (2)125)2(3=+x21.(8分)将下列各数填入相应的集合内。
-7,0.32, 1364,π,0.1010010001…①有理数集合{ … } ②无理数集合{ … } 22.(7分)一个正数a 的平方根是3x ―4与2―x ,则a 是多少?班级: 姓名: 考号:23.(8分)如图,已知∠1 =∠2,∠B =∠C ,可推得AB ∥CD 。
福建省厦门市双十中学2018-2019学年下学期七年级数学期中试题(无答案)
厦门市双十中学2018-2019学年初一(下)期中数学试题本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.一、选择题:本大题共10小题,每小题4分,共40分.1、下列方程中,是二元一次方程的是( ) A .41x y =-B .690xy +=C .146y x+= D .2324x y -=2、一个不等式组的解集在数轴上如图所示,则这个不等式组的解集为( ) A .2x <-B .1x ≤C .x -2≤<1D .1x -2<≤(第2题)3、若a b <,则下列结论正确的是( ) A .a b -<-B .22a b >C .11a b -<-D .3a b +>3+4、如图,直线a ,b 被直线c 所截,则下列说法中错误的是( ) A .1∠与∠2是邻补角 B .1∠与∠3是对顶角 C .∠2与∠4是同位角D .∠3与∠4是内错角(第4题)(第6题) (第7题)5、已知13x y =⎧⎨=⎩是关于x 、y 的二元一次方程21mx y -=的一个解,则m 的值是( ) A .2B .2-C .1D .1-6、如图,将ABC 沿方向BC 平移1个单位得到DEF , 若ABC 的周长等于8,则四边形ABFD 的周长等于( )A .8B .10C .12D .147、如图,点E 在AD 的延长线上,下列条件不能判断//AD BC 的是( ) A .12∠=∠ B .5A ∠=∠C .5C ∠=∠D .180A ABC ∠+∠=8、若关于x 的不等式()11m x m ->-的解集是1x <,则m 的取值范围是( ) A .1m ≠B .1m >C .1m <D .m <09、 《孙子算经》中有一道题,原文是: “今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是( )A . 4.512y x y x =+⎧⎪⎨=+ ⎪⎩B . 4.512y x y x =+⎧⎪⎨=- ⎪⎩C . 4.512y xy x =-⎧⎪⎨=+ ⎪⎩D . 4.512y x y x =-⎧⎪⎨=- ⎪⎩10、关于x 的不等式组2111x x a -≤⎧⎨+1> ⎩,恰好只有两个整数解,则a 的取值范围是( )A .56a ≤<B .56a <≤C .6a 4≤<D .6a 4<≤二、填空题:本大题共6小题,每小题4分,共24分. 11、如图,已知12120∠+∠=,则∠3=_______________.(第11题)12、“x 的一半与4的差是负数”用不等式表示:___________________. 13、方程21x y -=进行变形,用含y 的式子表示x 为______________. 14、关于x 方程21x a x +=+的解是正数,那么a 的取值范围是_____.15、如图1是长方形纸带,20DEF ∠=,将纸带沿EF 折叠成图2,则图2中的EGF ∠的度数是_________________.(第15题)16、如图所示,已知前两个天平两端保持平衡.要使第三个天平两端保持平衡,若天平的右边只放圆形,那么应放_________个圆形.(第16题)三、解答题:本大题有9小题,共86分. (本小题满分10分)17、(Ⅰ)解不等式:362x x ->+ (5分)(Ⅱ)解方程组:32321x y x y +=⎧⎨-=⎩ (5分)(本小题满分8分)18、如图,四边形ABCD 中,B ∠为锐角,且//AD BC . (Ⅰ)画线段CE AB ⊥,垂足为点E ;(Ⅱ)比较下列两组线段的大小:(用“>”或“<”或“=”填空)CE ____CB ,理由是___________________________________________.(第18题)(本小题满分8分)19、解不等式组()112241x x x -⎧≤⎪⎨⎪-<+⎩,并写出该不等式组的正整数解.(本小题满分8分)20、如图,150∠=,50∠2=,求证: 4180∠3+∠=.(第20题)(本小题满分8分)21、关于x ,y 的方程组2223x y k x y k +=⎧⎨+=+⎩(Ⅰ)当2k =时,求x y +的值;(Ⅱ)若方程组的解x 与y 满足条件10x y -<-<,求k 的范围.(本小题满分10分)22、小林在某商店购买商品A 、B 共三次.只有一次购买时,商品A 、B 同时打折;其余两次均按标价购买,三次购买商品A 、B 的数量和费用如下表:(Ⅰ)小林以折扣价购买商品A 、B 是第__________次购物; (Ⅱ)若商品A 、B 的折扣相同,问商店是打几折出售这两种商品的?(本小题满分10分)23、定义一种新运算“a b ☆”为:当a b ≥时,a b a b =+☆;当a b <时,a b a b =-☆.例如:()()34341-=+-=☆,11166(62(22))----==☆. (Ⅰ)填空:(43)-=☆___________;若()34(82)21x x x -+=-☆,则x 的取值范围___________;(Ⅱ)如果()(3722)3x x --=☆,求x 的值.(本小题满分11分)24、某工厂用如图甲所示的长方形和正方形纸板,做成图乙所示的竖式与横式两种长方体形状的无盖纸盒.(Ⅰ)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共100个,有哪几种生产方案? (Ⅱ)若有正方形纸板162张,长方形纸板a 张,做成上述两种纸盒,纸板恰好用完.已知71a 63<<.求a 的值.(第24题)(本小题满分13分)25、如图,//AB CD ,直线EF 交AB 于点E ,交CD 于点F ,点C 在CD 上,点P 在直线EF 左侧、且在直线AB 和CD 之间,连接PE 、PG . (Ⅰ)求证: EPG AEP PGC ∠=∠+∠;(Ⅱ)连接EG ,若EG 平分PEF ∠,110AEP PGE ∠+∠=,12PGC EFC ∠=∠,求AEP ∠的度数;(Ⅲ)如图2,若EF 平分PEB ∠,PGC ∠的平分线所在的直线与EF 相交于点H ,则EPG ∠与EHG ∠之间的数量关系为_________________________________.(第25题)。
厦门市双十中学人教版七年级下册数学全册单元期末试卷及答案-百度文库
厦门市双十中学人教版七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.如图所示图形中,把△ABC 平移后能得到△DEF 的是( )A .B .C .D .2.现有两根木棒,它们长分别是40cm 和50cm ,若要钉成一个三角形木架,则下列四根木棒应选取( )A .10cm 的木棒B .40cm 的木棒C .90cm 的木棒D .100cm 的木棒 3.把多项式228x -分解因式,结果正确的是( ) A .22(8)x -B .22(2)x -C .D .42()x x x- 4.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( )A .4种B .5种C .6种D .7种 5.下列各式中,不能用平方差公式计算的是( ) A .(x -y )(-x +y )B .(-x -y )(-x +y )C .(x -y )(-x -y )D .(x +y )(-x +y ) 6.身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为( )A .1.62米B .2.62米C .3.62米D .4.62米 7.一元一次不等式312x -->的解集在数轴上表示为( )A .B .C .D .8.下列给出的线段长度不能与4cm ,3cm 能构成三角形的是( ) A .4cm B .3cmC .2cmD .1cm 9.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( )A .()1,3-B .()3,1-C .()1,3-D .()3,1-10.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( ) A .10m -<≤ B .10m -≤<C .01m ≤<D .01m <≤ 二、填空题11.若x +3y -4=0,则2x •8y =_________.12.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为______.13.如果62x y =⎧⎨=-⎩是关于x 、y 的二元一次方程mx -10=3y 的一个解,则m 的值为_____. 14.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.15.已知23x y +=,用含x 的代数式表示y =________.16.()7(y x -+________ 22)49y x =-.17.若(x ﹣2)x =1,则x =___.18.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.19.已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限.20.分解因式:ab ﹣ab 2=_____.三、解答题21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使点C 变换为点D ,点A 、B 的对应点分别是点E 、F . (1)在图中请画出△ABC 平移后得到的△EFD ;(2)在图中画出△ABC 的AB 边上的高CH ;(3)△ABC 的面积为_______.22.先化简,再求值:(3x+2)(3x-2)-5x(x+1)-(x-1)2,其中x2-x-10=0.23.解方程组:(1)23 38 y xx y=-⎧⎨-=⎩(2)7 43832x yx y⎧+=⎪⎪⎨⎪+=⎪⎩24.因式分解:(1)12abc﹣9a2b;(2)a2﹣25;(3)x3﹣2x2y+xy2;(4)m2(x﹣y)﹣(x﹣y).25.因式分解:(1)43312x x-(2)2()a b x a b-+-(3)2169x-(4)(1)(5)4x x+++26.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若FG⊥BC于点H,BC平分∠ABD,∠D=112°,求∠1的度数.27.已知:方程组2325x y ax y+=-⎧⎨+=⎩,是关于x、y的二元一次方程组.(1)求该方程组的解(用含a的代数式表示);(2)若方程组的解满足0x <,0y >,求a 的取值范围.28.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据平移的概念判断即可,注意区分图形的平移和旋转.【详解】根据平移的概念,平移后的图形与原来的图形完全重合.A 是通过平移得到;B 通过旋转得到;C 通过旋转加平移得到;D 通过旋转得到. 故选A【点睛】本题主要考查图形的平移,特别要注意区分图形的旋转和平移.2.B解析:B【解析】试题解析:已知三角形的两边是40cm 和50cm ,则10<第三边<90.故选40cm 的木棒.故选B.点睛:三角形的三边关系:三角形任意两边之和大于第三边.3.C解析:C【解析】试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=2(2x-4)=2(x+2)(x-2).考点:因式分解.4.B解析:B【分析】设1元和5元的纸币分别有x、y张,得到方程x+5y=20,然后根据x、y都是正整数即可确定x、y的值.【详解】解:设1元和5元的纸币分别有x、y张,则x+5y=20,∴x=20-5y,而x≥0,y≥0,且x、y是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5;y=4,x=0,共有5种换法.故选:B.【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.5.A解析:A【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【详解】A、由于两个括号中含x、y项的符号都相反,故不能使用平方差公式,A符合题意;B、两个括号中,含x项的符号相同,含y的项的符号相反,故能使用平方差公式,B不符合题意;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,C不符合题意;D、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,D不符合题意;故选:A.【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.6.A解析:A【分析】根据平移的性质即可得到结论.【详解】解:身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为1.62米, 故选:A .【点睛】本题考查了生活中的平移现象,熟练正确平移的性质是解题的关键.7.B解析:B【解析】【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】-3x-1>2,-3x >2+1,-3x >3,x <-1, 在数轴上表示为:,故选B .【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键. 8.D解析:D【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案.【详解】解:设第三边为xcm ,根据三角形的三边关系:4343x -<<+,解得:17x <<.故选项ABC 能构成三角形,D 选项1cm 不能构成三角形,故选:D .【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,两边之差小于第三边.9.B解析:B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.【详解】解:∵P 在第二象限,且点P 到x 轴、y 轴的距离分别是1,3,∴点P 的横坐标为-3,纵坐标为1,∴P 点的坐标为(-3,1).故选:B .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.10.C解析:C【分析】首先解不等式组求得不等式组的解集,然后根据不等式组有三个整数解,即可确定整数解,然后得到关于m 的不等式,求得m 的范围.【详解】解:0233(2)x m x x ->⎧⎨-≥-⎩①②解不等式①,得x>m.解不等式②,得x ≤3.∴不等式组得解集为m<x ≤3.∵不等式组有三个整数解,∴01m ≤<.故选C.【点睛】本题考查了不等式组的整数解,解不等式组应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题11.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.12.7【分析】连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,从而有S四边形AEOH+S四边形CGOF=S四边形DHO解析:7【分析】连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,从而有S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,由此即可求得答案.【详解】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,∴S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,∴6+8=7+S四边形DHOG,解得:S四边形DHOG=7,故答案为:7.【点睛】本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.13.【分析】把x、y的值代入方程计算即可求出m的值.【详解】解:把代入方程得:6m-10=﹣6,解得:m=故答案为:【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右解析:2 3【分析】把x、y的值代入方程计算即可求出m的值.【详解】解:把62xy=⎧⎨=-⎩代入方程得:6m-10=﹣6,解得:m=2 3故答案为:2 3【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右两边相等.14.2【分析】根据点F是CE的中点,推出S△BEF=S△BEC,同理得S△EBC=S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC解析:2【分析】根据点F是CE的中点,推出S△BEF=12S△BEC,同理得S△EBC=12S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,高相等;∴S△BEF=12S△BEC,同理得S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=8,∴S△BEF=2,故答案为:2.【点睛】本题考查了三角形的性质,充分运用三角形的面积公式以及三角形的中线的性质是解本题的关键.15.y=3-2x【解析】移项得:y=3-2x.故答案是:y=3-2x.解析:y=3-2x【解析】23x y+=移项得:y=3-2x.故答案是:y=3-2x.16.【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,--解析:7y x【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,掌握平方差公式的特征是解题的关键.17.0或3.【解析】【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.解析:0或3.【解析】【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.故答案为:0或3.【点睛】此题主要考查了零指数幂以及有理数的乘方运算,正确掌握运算法则是解题关键.18.20cm.【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【详解】解:∵△ABE向右平移2cm得到△DCF,∴D解析:20cm.【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【详解】解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=16+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∴四边形ABFD的周长=16+2+2=20cm.故答案为20cm.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.19.四【分析】根据题意得到关于m、n的二元一次方程组,确定点M坐标,判断M所在象限即可.【详解】解:由题意得,解得,∴点M坐标为,∴点M在第四象限.故答案为:四【点睛】本题考查了二元解析:四【分析】根据题意得到关于m、n的二元一次方程组,确定点M坐标,判断M所在象限即可.【详解】解:由题意得22111m nm n--=⎧⎨++=⎩,解得11m n =⎧⎨=-⎩, ∴点M 坐标为()1,1-,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元一次方程定义,二元一次方程组解法,点的坐标等知识,综合性较强,根据题意列出方程组是解题关键.20.ab (1﹣b )【分析】根据题意直接提取公因式ab ,进而分解因式即可得出答案.【详解】解:ab ﹣ab2=ab (1﹣b ).故答案为:ab (1﹣b ).【点睛】本题主要考查提取公因式法分解因式解析:ab (1﹣b )【分析】根据题意直接提取公因式ab ,进而分解因式即可得出答案.【详解】解:ab ﹣ab 2=ab (1﹣b ).故答案为:ab (1﹣b ).【点睛】本题主要考查提取公因式法分解因式,熟练掌握并正确找出公因式是解题的关键.三、解答题21.(1)见详解;(2)见详解;(3)152. 【分析】(1)按要求作图即可;(2)按要求作图即可;(3)根据勾股定理求出AB 和CH 的长即可得出面积.【详解】(1)△EFD 如图所示,;(2)CH 如图所示,;(3)根据勾股定理可得:223+635221+25∴S △ABC =12×AB ×CH=12×355152. 【点睛】 本题考查了平移作图,勾股定理,掌握知识点是解题关键.22.3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.23.(1)57x y =⎧⎨=⎩;(2)6024x y =⎧⎨=-⎩ 【分析】(1)2338y x x y =-⎧⎨-=⎩①②,由①得2x-y=3③,②-③可求得x ,将x 值代入①可得y 值,即可求得方程组的解.(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②,先将①×12去分母,将分式方程化为整式方程,得3x+4y=84③,将②×6,由分式方程化为整式方程,得2x+3y=48④,③和④再利用加减消元法即可求解方程组的解.【详解】(1)2338y x x y =-⎧⎨-=⎩①② 由①,得2x-y=3③②-③,得x=5将x=5代入①,得2×5-y=3∴y=7故方程组的解为:57x y =⎧⎨=⎩故答案为:57x y =⎧⎨=⎩(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①×12,得3x+4y=84③②×6,得2x+3y=48④③×2,得6x+8y=168⑤④×3,得6x+9y=144⑥⑤-⑥,得y=-24将y=-24代入①,得874x -= ∴x=60 故方程组的解为:6024x y =⎧⎨=-⎩故答案为:6024x y =⎧⎨=-⎩【点睛】本题考查了一元二次方程的解法—加减消元法,将方程组中的各个方程化简成标准形式,方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等,把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求出一个未知数的值;24.(1)3ab (4c ﹣3a );(2)(a +5)(a ﹣5);(3)x (x ﹣y )2;(4)(x ﹣y )(m +1)(m ﹣1)【分析】(1)由题意原式直接提取公因式即可;(2)根据题意原式利用平方差公式分解即可;(3)由题意原式提取公因式,再利用完全平方公式分解即可;(4)根据题意原式提取公因式,再利用平方差公式分解即可.【详解】解:(1)12abc ﹣9a 2b =3ab (4c ﹣3a );(2)a 2﹣25=(a +5)(a ﹣5);(3)x 3﹣2x 2y +xy 2=x (x 2﹣2xy +y 2)=x (x ﹣y )2;(4)m 2(x ﹣y )﹣(x ﹣y )=(x ﹣y )(m 2﹣1)=(x ﹣y )(m +1)(m ﹣1).【点睛】本题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.25.(1)3x 3(x ﹣4);(2)(a ﹣b )(1+2x );(3)(4﹣3x )(4+3x );(4)2(3)x +.【分析】(1)原式提取公因式3x 3即可;(2)原式提取公因式-a b 即可;(3)原式利用平方差公式分解即可;(4)原式变形后,利用完全平方公式分解即可.【详解】解:(1)原式=3x 3(x ﹣4);(2)原式=(a ﹣b )(1+2x );(3)原式=(4﹣3x )(4+3x );(4)原式=2554x x x ++++=269x x ++=2(3)x +.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.26.(1)见解析;(2)56°【分析】(1)先证∠1=∠CGF 即可,然后根据平行线的判定定理证明即可;(2)先根据平行线的性质、角平分线的性质以及垂直的性质得到∠1+∠4=90°,再求出∠4即可.【详解】(1)证明:∵FG ∥AE ,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB ∥CD .(2)解:∵AB ∥CD ,∴∠ABD +∠D =180°,∵∠D =112°,∴∠ABD =180°﹣∠D =68°,∵BC 平分∠ABD ,∴∠4=12∠ABD =34°, ∵FG ⊥BC ,∴∠1+∠4=90°,∴∠1=90°﹣34°=56°.【点睛】本题考查三角形内角和定理、平行线的性质、角平分线的定义等知识,解题的关键是熟练应用相关性质和定理.27.(1)1213x a y a=+⎧⎨=-⎩;(2)12a <- 【分析】(1)利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】(1)①2⨯,得2242x y a +=-.③②-③,得12x a =+把12x a =+代入①,得13y a =-所以原方程组的解是1213x a y a =+⎧⎨=-⎩(2)根据题意,得120130a a +<⎧⎨->⎩ 解不等式组,得,12a <- 所以a 的取值范围是:12a <-. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.28.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。
厦门双十中学初中部人教版七年级下册数学期末试卷及答案
厦门双十中学初中部人教版七年级下册数学期末试卷及答案一、选择题1.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( )A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b2.从边长为a 的大正方形板挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证的公式为( )A .()222a b a b -=- B .()2222a b a ab b +=++C .()2222a b a ab b -=-+D .()()22a b a b a b +-=-3.下列条件中,能判定△ABC 为直角三角形的是( ). A .∠A=2∠B -3∠CB .∠A+∠B=2∠CC .∠A-∠B=30°D .∠A=12∠B=13∠C 4.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm ,则正方形的面积与长方形的面积的差为 ( )A .a 2B .12a 2C .13a 2 D .14a 2 5.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠16.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .147.端午节前夕,某超市用1440元购进A 、B 两种商品共50件,其中A 种商品每件24元,B 品件36元,若设购进A 种商品x 件、B 种商品y 件,依题意可列方程组( ) A .5036241440x y x y +=⎧⎨+=⎩B .5024361440x y x y +=⎧⎨+=⎩C .144036241440x y x y +=⎧⎨+=⎩D .144024361440x y x y +=⎧⎨+=⎩8.一元一次不等式312x -->的解集在数轴上表示为( ) A .B .C .D .9.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( ) A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣810.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩无解,则m 的取值范围是( )A .23m ≤B .23m <C .23m ≥D .23m >二、填空题11.最薄的金箔的厚度为0.000000091m ,用科学记数法表示为________m . 12.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____.13.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________. 14.已知2x =3,2y =5,则22x+y-1=_____.15.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为__________2mm .16.计算:5-2=(____________)17.若2a +b =﹣3,2a ﹣b =2,则4a 2﹣b 2=_____.18.若方程4x ﹣1=3x +1和2m +x =1的解相同,则m 的值为_____. 19.分解因式:ab ﹣ab 2=_____.20.已知(x ﹣4)(x +6)=x 2+mx ﹣24,则m 的值为_____.三、解答题21.(类比学习)小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法:15162401 6 8080 0 2221322222 0x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2). (初步应用)小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262(2)62 0x x x x x x x x +++++-++☆☆☆得出□=___________,☆=_________. (深入研究)小明用这种方法对多项式x 2+2x 2-x -2进行因式分解,进行到了:x 3+2x 2-x -2=(x +2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x 3+2x 2-x -2因式分解. 22.阅读下列各式:(a•b )2=a 2b 2,(a•b )3=a 3b 3,(a•b )4=a 4b 4… 回答下列三个问题: (1)验证:(2×12)100= ,2100×(12)100= ; (2)通过上述验证,归纳得出:(a•b )n = ; (abc )n = . (3)请应用上述性质计算:(﹣0.125)2017×22016×42015. 23.计算(1)(π-3.14)0-|-3|+(12)1--(-1)2012 (2) (-2a 2)3+(a 2)3-4a .a 5 (3)x (x+7)-(x-3)(x+2) (4)(a-2b-c )(a+2b-c )24.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角尺OCD 沿AB 的方向平移至图②的位置,使得顶点O 与点N 重合,CD 与MN 相交于点E ,求∠CEN 的度数;(2)将图①中三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在∠MON 的内部,如图③,且OD 恰好平分∠MON ,CD 与MN 相交于点E ,求∠CEN 的度数;(3)将图①中三角尺OCD 绕点O 按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第 秒时,边CD 恰好与边MN 平行;在第 秒时,直线CD 恰好与直线MN 垂直. 25.因式分解:(1)2()4()a x y x y ---(2)2242x x -+- (3)2616a a -- 26.已知△ABC中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点. (1)如图1,连接CE , ①若CE ∥AB ,求∠BEC 的度数; ②若CE 平分∠ACD ,求∠BEC 的度数.(2)若直线CE 垂直于△ABC 的一边,请直接写出∠BEC 的度数.27.分解因式:(1)3222x x y xy -+; (2)2296(1)(1)x x y y -+++;(3)()214(1)mm m -+-.28.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到222()2a b a ab b +=++这个等式,请解答下列问题:(1)写出图2中所表示的数学等式 . (2)根据整式乘法的运算法则,通过计算验证上述等式. (3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张长宽分别为a 、b 的长方形纸片拼出一个面积为2)(4)a b a b ++(的长方形,则x y z ++= .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解. 【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=, ∴它们的大小关系是:b <a <d <c 故选:C 【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.2.D解析:D 【分析】分别表示出图甲和图乙中阴影部分的面积,二者相等,从而可得答案. 【详解】解:图甲中阴影部分的面积为:22a b -, 图乙中阴影部分的面积为:()()()1()4=22a b a b a b a b -+⨯⨯⨯+-, 甲乙两图中阴影部分的面积相等22()()a b a b a b ∴-=+-∴可以验证成立的公式为22()()a b a b a b +-=-故选:D . 【点睛】本题考查了平方差公式的几何背景,属于基础题型,比较简单.3.D解析:D 【分析】根据三角形内角和定理和各选项中的条件计算出△ABC 的内角,然后根据直角三角形的判定方法进行判断. 【详解】解:A 、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C ,则∠A=108011°,所以A 选项错误; B 、∠A+∠B+∠C=180°,而∠A+∠B=2∠C ,则∠C=60°,不能确定△ABC 为直角三角形,所以B 选项错误;C 、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B 选项错误;D 、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C ,则∠C=90°,所以D 选项正确. 故选:D . 【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.4.D解析:D 【分析】设长方形的宽为x cm ,则长为(x +a )cm ,可得正方形的边长为22x a+;求出两个图形面积然后做差即可. 【详解】解:设长方形的宽为x cm ,则长为(x +a )cm , 则正方形的边长为()2242x a x x a⨯+++=; 正方形的面积为222244224x a x a x ax a ++++=, 长方形的面积为()2x x a x ax +=+,二者面积之差为()222244144x ax a x ax a ++-+=,故选:D .【点睛】本题考查了整式的混合运算,设出长方形的宽,然后表示出正方形和长方形的面积表达式是解题的关键.5.D解析:D【分析】直接根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A、∠C=∠1不能判定任何直线平行,故本选项错误;B、∠A=∠2不能判定任何直线平行,故本选项错误;C、∠C=∠3不能判定任何直线平行,故本选项错误;D、∵∠A=∠1,∴EB∥AC,故本选项正确.故选:D.【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.6.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.7.B解析:B【分析】本题有2个相等关系:购进A种商品件数+购进B种商品件数=50,购进A种商品x件的费用+购进B种商品y件的费用=1440元,据此解答即可.【详解】解:设购进A种商品x件、B种商品y件,依题意可列方程组50 24361440 x yx y+=⎧⎨+=⎩.故选:B.【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.8.B解析:B【解析】【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】-3x-1>2,-3x>2+1,-3x>3,x<-1,在数轴上表示为:,故选B.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.9.C解析:C【分析】用科学计数法将0.00000012表示为a×10-n即可.【详解】解:0.00000012=1.2×10﹣7,故选:C.【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.10.A解析:A【分析】分别求出各不等式的解集,再根据不等式组无解即可得出m的取值范围.【详解】解:202x m x m -<⎧⎨+>⎩①②解不等式①,得x<2m. 解不等式②,得x>2-m. 因为不等式组无解, ∴2-m ≥2m. 解得23m ≤. 故选A. 【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.二、填空题 11.. 【解析】 【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为 与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解析:89.110-⨯. 【解析】 【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.000000091m 用科学记数法表示为89.110m -⨯. 故答案为89.110-⨯. 【点睛】考查科学记数法,掌握绝对值小于1的数的表示方法是解题的关键.12.5 【分析】方程组两方程左右两边相加即可求出所求.【详解】 解:, ①②得:, 则, 故答案为:5. 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法解析:5 【分析】方程组两方程左右两边相加即可求出所求. 【详解】 解:2728x y x y +=⎧⎨+=⎩①②,①+②得:3315x y +=, 则5x y +=, 故答案为:5. 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.【分析】由是完全平方式,得到从而可得答案. 【详解】 解:方法一、 方法二、 由是完全平方式, 则有两个相等的实数根, ,故答案为:本题考查的是完全平方式解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.【详解】解:方法一、 ()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=± 18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.±【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.14.【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x+y-1=22x×2y÷2=(2x )2×2y÷2=9×5÷2=故答案为 解析:452【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可【详解】解:22x+y-1=22x ×2y ÷2=(2x )2×2y ÷2=9×5÷2 =452故答案为:452. 【点睛】本题考查了同底数幂的乘法与除法的逆用,熟记法则并根据法则计算是解题关键.15.【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽解析:2375mm【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽是ymm ,根据题意得:3525x y y x =⎧⎨-=⎩ ,解得2515x y =⎧⎨=⎩ ∴小长方形的面积为:22515375xy mm 【点睛】此题的关键是能够分别从每个图形中获得信息,建立方程.16.【分析】直接根据负整数指数幂的运算法则求解即可.【详解】,故答案为:.【点睛】本题考查了负整数指数幂的运算法则,比较简单. 解析:125直接根据负整数指数幂的运算法则求解即可.【详解】22115525-==, 故答案为:125. 【点睛】本题考查了负整数指数幂的运算法则,比较简单.17.-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a+b =﹣3,2a ﹣b =2,∴4a2﹣b2=(2a+b )(2a ﹣b )=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】解析:-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a +b =﹣3,2a ﹣b =2,∴4a 2﹣b 2=(2a +b )(2a ﹣b )=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】此题考查的是根据平方差公式求值,掌握利用平方差公式因式分解是解决此题的关键.18.﹣【分析】先解方程4x ﹣1=3x+1,然后把x 的值代入2m+x =1,即可求出m 的值.【详解】解:4x ﹣1=3x+1解得x =2,把x =2代入2m+x =1,得2m+2=1,解得m =﹣.解析:﹣12【分析】先解方程4x﹣1=3x+1,然后把x的值代入2m+x=1,即可求出m的值.【详解】解:4x﹣1=3x+1解得x=2,把x=2代入2m+x=1,得2m+2=1,解得m=﹣12.故答案为:﹣12.【点睛】此题考查的是根据两个一元一次方程有相同的解,求方程中的参数,掌握一元一次方程的解法和方程解的定义是解决此题的关键.19.ab(1﹣b)【分析】根据题意直接提取公因式ab,进而分解因式即可得出答案.【详解】解:ab﹣ab2=ab(1﹣b).故答案为:ab(1﹣b).【点睛】本题主要考查提取公因式法分解因式解析:ab(1﹣b)【分析】根据题意直接提取公因式ab,进而分解因式即可得出答案.【详解】解:ab﹣ab2=ab(1﹣b).故答案为:ab(1﹣b).【点睛】本题主要考查提取公因式法分解因式,熟练掌握并正确找出公因式是解题的关键.20.2【分析】利用多项式乘以多项式法则计算(x﹣4)(x+6)=x2+2x﹣24,从而得出m =2.【详解】解:∵(x﹣4)(x+6)=x2+2x﹣24=x2+mx﹣24,∴m=2,故答案为2解析:2【分析】利用多项式乘以多项式法则计算(x ﹣4)(x +6)=x 2+2x ﹣24,从而得出m =2.【详解】解:∵(x ﹣4)(x +6)=x 2+2x ﹣24=x 2+mx ﹣24,∴m =2,故答案为2.【点睛】本题主要考查了整式乘法的运算,准确分析题目中的式子是解题的关键.三、解答题21.[初步应用]5,3;[深入研究]x 3+2x 2-x -2=(x +2)(x +1)(x -1);详见解析;【分析】[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.[深入研究]列出竖式可得x 3+2x 2-x -2÷(x +2),即可将多项式x 3+2x 2-x -2因式分解.【详解】[初步应用]∵多项式x 2+□x +6能被x +2整除,∴2☆-6=0,2-=☆,∴☆= 3,□=5,故答案为:5,3;[深入研究]∵2323212222 22 0x x x x x x x x x -++--+----, ∴()()()()()3222221211x x x x x x x x +--=+-=++-. 【点睛】本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.22.(1)1, 1, (2)a n b n , a n b n c n ,(3)132-. 【解析】【分析】(1)先算括号内的乘法,再算乘方;先乘方,再算乘法;(2)根据有理数乘方的定义求出即可;(3)根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.【详解】解:(1)(2×12)100=1,2100×(12)100=1; (2)(a•b )n =a n b n ,(abc )n =a n b n c n , (3)原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×132 =(﹣1)2015×132 =﹣1×132 =﹣132. 【点睛】本题主要考查了同底数幂的乘法和积的乘方,掌握运算法则是解答此题的关键.23.(1)-1;(2)611a -;(3)86x +;(4)222a ac c -+ -24b【分析】(1)直接利用零指数幂,绝对值,负指数幂,乘方法则运算.(2)先利用幂的运算法则,再合并同类项.(3)利用整式的乘法法则进行运算.(4)利用平方差公式进行运算.【详解】解:(1)原式=1-3+2-1=-1(2)原式=68a - +6a -64a =611a -(3)原式=27x x + -()26x x -- =27x x +26x x -++ =86x +(4)原式=()2a c - -()22b =222a ac c -+ -24b【点睛】本题主要考查了数的计算,整式的加减与乘法,解题的关键要对零指数幂,绝对值,负指数幂以及幂的运算和整式的乘法法则熟悉.24.(1)105°;(2)150°;(3)5或17;11或23.【分析】(1)根据三角形的内角和定理可得180CEN DCN MNO ∠=︒-∠-∠,代入数据计算即可得解;(2)根据角平分线的定义求出45DON ∠=︒,利用内错角相等两直线平行求出//CD AB ,再根据两直线平行,同旁内角互补求解即可;(3)①分CD 在AB 上方时,//CD MN ,设OM 与CD 相交于F ,根据两直线平行,同位角相等可得60OFD M ∠=∠=︒,然后根据三角形的内角和定理列式求出MOD ∠,即可得解;CD 在AB 的下方时,//CD MN ,设直线OM 与CD 相交于F ,根据两直线平行,内错角相等可得60DFO M ∠=∠=︒,然后利用三角形的内角和定理求出DOF ∠,再求出旋转角即可;②分CD 在OM 的右边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出CGN ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和求出CON ∠,再求出旋转角即可,CD 在OM 的左边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出NGD ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出AOC ∠ ,然后求出旋转角,计算即可得解.【详解】解:(1)在CEN ∆中,180CEN DCN MNO ∠=︒-∠-∠1804530=︒-︒-︒105=︒;(2)OD 平分MON ∠,11904522DON MPN ∴∠=∠=⨯︒=︒, 45DON D ∴∠=∠=︒,//CD AB ∴,180********CEN MNO ∴∠=︒-∠=︒-︒=︒;(3)如图1,CD 在AB 上方时,设OM 与CD 相交于F ,//CD MN ,60OFD M ∴∠=∠=︒,在ODF ∆中,180MOD D OFD ∠=︒-∠-∠,1804560=︒-︒-︒,75=︒,∴旋转角为75︒,75155t =︒÷︒=秒;CD 在AB 的下方时,设直线OM 与CD 相交于F ,//CD MN ,60DFO M ∴∠=∠=︒,在DOF ∆中,180180456075DOF D DFO ∠=︒-∠-∠=︒-︒-︒=︒,∴旋转角为75180255︒+︒=︒,2551517t =︒÷︒=秒;综上所述,第5或17秒时,边CD 恰好与边MN 平行;如图2,CD 在OM 的右边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGC MNO ∴∠=︒-∠=︒-︒=︒,604515CON NGC OCD ∴∠=∠-∠=︒-︒=︒,∴旋转角为180********CON ︒-∠=︒-︒=︒,1651511t =︒÷︒=秒,CD 在OM 的左边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGD MNO ∴∠=︒-∠=︒-︒=︒,604515AOC NGD C ∴∠=∠-∠=︒-︒=︒,∴旋转角为36036015345AOC ︒-∠=︒-︒=︒,3451523t =︒÷︒=秒,综上所述,第11或23秒时,直线CD 恰好与直线MN 垂直.故答案为:5或17;11或23.【点睛】本题考查了旋转的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,熟记各性质并熟悉三角板的度数特点是解题的关键.25.(1)()(2)(2)x y a a -+-;(2)22(1)x --;(3)(2)(8)a a +-【分析】(1)先提公因式再利用平方差因式分解;(2)先提公因式再利用完全平方公式因式分解;(3)直接利用2(x+p)(x+q)x +(p+q)x+pq =公式因式分解. 【详解】解:(1)2()4()a x y x y ---()2()4x y a =--()(2)(2)x y a a =-+-(2)2242x x -+-()2221x x =--+22(1)x =--(3)2616a a --(2)(8)a a =+-【点睛】此题考查因式分解的几种常见的方法,主要考查运算能力.26.(1)①40°;②30°;(2)50°,130°,10°【解析】试题分析:(1)①根据三角形的内角和得到∠ABC=80°,由角平分线的定义得到∠ABE=12∠ABC=40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD=180°-∠ACB=140°,根据角平分线的定义得到∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,根据三角形的外角的性质即可得到结论;(2)①如图1,当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.试题解析:(1)①∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=12∠ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∠ACD=180°-∠ACB=140°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,∴∠BEC=∠ECD-∠CBE=30°;(2)①如图1,当CE⊥BC时,∵∠CBE=40°,∴∠BEC=50°;②如图2,当CE⊥AB于F时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-40°-40°-90°=10°.【点睛】本题考查了平行线的性质,角平分线的定义,垂直的定义,三角形的内角和,三角形的外角的性质,正确的画出图形是解题的关键.27.(1)x (x-y )2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).【分析】(1)首先提公因式x ,然后利用完全平方公式即可分解;(2)根据完全平方公式进行因式分解即可;(3)首先提公因式(m-1)然后利用平方差公式即可分解.【详解】解:(1)原式=x (x 2-2xy+y 2)=x (x-y )2;(2)原式=(3x )2-2×(3x )(y+1)+(y+1)2=(3x-y-1)2;(3)原式=(m-1)(m 2-4)=(m-1)(m+2)(m-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.28.(1) ()2222222.a b c a b c ab ac bc ++=+++++(2)证明见解析;(3) 30; (4) 15.【分析】(1)依据正方形的面积=()2a b c ++ ;正方形的面积=222a +b +c +2ab+2ac+2bc.,可得等式;(2)运用多项式乘多项式进行计算即可;(3)依据()2222a b +c a b c -2ab-2ac-2bc,+=++ 进行计算即可;(4)依据所拼图形的面积为:22xa yb zab ++ , 而()()222224284249a b a b a ab ab b a b ab ++=+++=++ ,即可得到x, y, z 的值,即可求解.【详解】解: (1) 正方形的面积=()2a b c ++ ;大正方形的面积=222a +b +c +2ab+2ac+2bc. 故答案为:()2222222.a b c a b c ab ac bc ++=+++++(2)证明: (a+b+c) (a+b+c) ,=222a ab ac ab b bc ac bc c ++++++++ ,=222222a b c ab ac bc +++++ .(3)()2222222,a b c a b c ab ac bc ++=++---=()2102ab ac bc -++ , =100235-⨯ ,=30.故答案为: 30;(4)由题可知,所拼图形的面积为:22xa yb zab ++ ,(2a+b) (a+4b)=222a 8ab ab 4b ,+++=222a 4b 9ab,++∴x=2,y=4, z=9.∴x+y+z=2+4+9=15.故答案为: 15.【点睛】本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.。
2013年七年级下册数学期中质检题(带答案)
2013年七年级下册数学期中质检题(带答案)福建省龙岩市2012-2013学年第二学期期中质量检查七年级数学试卷(满分100分,考试时间100分钟)第Ⅰ卷(共48分)出卷人:丘真一、选择题:(每题3分,共30分)1.下列各图中,∠1与∠2是对顶角的是:()2.如右图所示,点在的延长线上,下列条件中能判断()A.B.C.D.3.在-1.732,,π,3.,2+,3.212212221…这些数中,无理数的个数为().A.2B.3C.4D.54.下列各式中,正确的是().A.B.5.下列说法错误的是()A.是9的平方根B.的平方等于5C.的平方根是D.9的算术平方根是36、在平面直角坐标系中,点(-3,4)在()A第一象限B第二象限C第三象限D第四象限¬7、若,且点M(a,b)在第四象限,则点M的坐标是()A、(5,4)B、(-5,4)C、(-5,-4)D、(5,-4)8、将A(1,1)先向左平移2个单位,再向下平移2个单位得点B,则点B的坐标是()A.(-1,-1)B.(3,3)C.(0,0)D.(-1,3)9、经过两点A(2,3)、B(-4,3)作直线AB,则直线AB()A.平行于轴B.平行于轴C.经过原点D.无法确定10、下列命题是真命题的是()A.有且只有一条直线垂直于已知直线。
B.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
C.互相垂直的两条线段一定相交。
D.直线c外一点A与直线c上各点连接而成的所有线段中,最短线段的长是3cm,则点A到直线c的距离是3cm。
二、填空:(每题2分,共18分)11、李明的座位在第5排第4列,简记为(5,4),张扬的座位在第3排第2列,简记为12、已知点P的坐标为(,),则点P到y轴的距离为_________。
13、如果点P在X轴上,那么点P的坐标为.14、-的相反数是_________,16的算术平方根是15、若,则++=.16、比较大小:______;17、如图1,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A=120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的度数是(图1)(图2)18、如图2,一个宽度相等的纸条按如图所示方法折叠一下,则______________.19、把命题“对顶角相等”写成“如果……,那么…….”的形式为三、解答题:(共52分)20、计算下列各式的值(每小题4分,共8分)21、求的值(每小题4分,共8分)22、(本题8分)如图3,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.因为EF∥AD(已知)所以∠2=____(____________________________)又因为∠1=∠2所以∠1=∠3(______________)所以AB∥_____(_____________________________)所以∠BAC+______=180°(_____________________)因为∠BAC=80°所以∠AGD=_______(图3)23、(本题8分)如图4,在平面直角坐标系中,,,.(1)的面积是.(2分)(2)在图4中画出向下平移2个单位,向右平移5个单位后的.(3分)(3)写出点的坐标.(3分)24.(本题10分)如图所示,直线AB、CD相交于O,OE平分∠AOD,OF⊥CD,∠1=400,求∠2和∠3的度数.25、(本题10分)如图所示,直线AB∥CD,直线AB、CD被直线EF 所截,EG平分∠BEF,FG平分∠DFE,(1)若∠AEF=500,求∠EFG的度数。
福建省厦门市双十中学思明分校2023-2024学年七年级下学期月考数学试题
福建省厦门市双十中学思明分校2023-2024学年七年级下学期月考数学试题一、单选题1.下列实数中是无理数的是()AB C .13D .02.如图,小手盖住的点的坐标可能为( ).A .()3,2B .()3,2-C .()3,2--D .()3,2-3.9 的算术平方根是( ) A .3B .-3C .±3D .814.直角坐标系中,点(1,0)A -、(4,0)B ,则线段AB 的长度是( ) A .1B .3C .4D .55.如图,点A ,D 在直线m 上,点B ,C 在直线n 上,AB n ⊥,AC m ⊥,BD m ⊥,点A 到直线BD 的距离是( )A .线段AD 的长度B .线段BC 的长度 C .线段AB 的长度D .线段BD 的长度6.能说明“相等的角是对顶角”是假命题的一个反例是( )A .B .C .D .7.如图,点E 在BC 的延长线上,下列条件能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠DAB+∠B =180°D .∠D =∠58.将一副学生用的三角板按如图所示的位置放置,若AE BC ∥,则DAF ∠的度数是( )A .10︒B .15︒C .30︒D .45︒9.如图,直径为2个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点O ',则点O '对应的数是( )A .2πB .πC .2π+D .22π+10.如图,在平面直角坐标系中,动点P 从()11,0A 出发,沿着()()()()()()()()123456781,02,02,11,11,23,23,41,4A A A A A A A A →→→→→→→()()9101,64,6A A →→→L 的路线运动,按此规律,则点P 运动到45A 时坐标为( )A .()1132,B .()1133,C .()12121,D .()13121,二、填空题 11.填空:(1=;(2;(3=;(41=.12.平面直角坐标系中点()4,3-到y 轴的距离为.13.请将命题“邻补角互补”写成“如果……那么……”的形式:.14.如图,将长为6,宽为4的长方形ABCD 先向右平移2,再向下平移1,得到长方形A B CD ''',则阴影部分的面积为.15.如图,直线EF 分别与直线AB 、CD 相交于点G 、H ,已知1270∠=∠=︒,GM 平分HGB ∠交直线CD 于点M ,则3∠=.16.如图,直线AB CD ∥,点E 、F 分别为直线AB 和CD 上的点,点P 为两条平行线间的一点,连接PE 和PF ,过点P 作EPF ∠的平分线交直线CD 于点G ,过点F 作FH PG ⊥,垂足为H ,若120DGP PFH ∠-∠=︒,则AEP ∠=°.三、解答题 17.计算:2(2)-1)(3-.18.如图,已知直线EF 与AB 和CD 分别相交于点G 和点H ,且1270∠=∠=︒,60D ∠=︒,则B ∠的度数.19.已知31x +的算术平方根是24=,z 是27-的立方根. (1)求x ,y ,z 的值; (2)求2x y z +-的平方根.20.如图,在平面直角坐标系内,三角形ABC 三个顶点的坐标分别是()02A ,,()30B ,,()64C ,,将三角形ABC 向右平移3格,再向下平移4格,得到三角形A B C ''',其中点A ,B ,C 的对应点分别为点,,A B C '''.(1)画出三角形A B C ''';(2)写出点,,A B C '''的坐标:A '(______),B '(______),C '(______); (3)三角形A B C '''的面积是______.21.完成下列推理,并在括号内填写推理的依据. 如图,EF AD ∥,12∠=∠,82BAC ∠=︒,求AGD ∠.解:∵EF AD ∥, ∴23∠∠=(______). 又∵12∠=∠, ∴13∠=∠(______), ∴AB ∥ ______(______), ∴BAC ∠+∠______180=︒. ∵82BAC ∠=︒, ∴98AGD ∠=︒.22.(1)如图1,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______cm ;(2)如图2,若正方形的面积为36cm 2,李明同学想沿这块大正方形边的方向裁出一块面积为24cm 2的长方形纸片,使它的长和宽之比为4:3,他能裁出吗?请说明理由.23.已知AB CD P ,E 为射线BC 上一点,AE 平分BAD ∠,且BAE BEA ∠=∠.(1)如图1,当点E 在线段BC 上时,求证:AD BC ∥;(2)如图2,当点E 在线段BC 延长线上时,连接DE ,若3A D E C D E ∠=∠,50AED ∠=︒.求C E D ∠的度数.24.在平面直角坐标系xOy 中,已知点(),M a b ,对于点(),P x y ,将点(),Q x a y b +-称为点P 关于点M 的关联点.(1)点()3,4P -关于点()2,3M 的关联点Q 的坐标是______;(2)若点(),P x y 关于(),M a b 的关联点为P ',直线PP x '∥轴,且线段PP '的长度为2,求a ,b 的值;(3)点()1,1P t --,()2,5N t t 关于点()3,M b 的关联点分别是点1P ,1N ,且点1P 在x 轴上,点O 为坐标原点,三角形11OPN 的面积为2,求点1N 的坐标.25.大龙湖音乐喷泉灯光秀成为茶乡一道美丽的风景.“灯光秀”为了强化灯光效果,在湖的两岸安置了可旋转探照灯.假定湖两岸是平行的,如图1所示,EF GH ∥,AB GH ⊥,灯A射线从AF开始绕点A顺时针旋转至AE后立即回转,灯B射线从BG开始绕点B顺时针旋转至BH后立即回转,两灯不停旋转交叉照射.若灯A、灯B转动的速度分别是a度/秒、b度/秒.且满足|1|0a-.a______,b=______;(1)填空:=(2)若灯A射线转动20秒后,灯B射线开始转动,在灯A射线到达AE之前,B灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯B射线到达BH之前,两灯射出的光束交于点C.点D在∠=⋅∠,则在转动过程中,是否存在一点D,使得k为定值?若射线AF上,且ABC k ACD∠的度数和k的值;若不存在,请说明理由.存在,请求出BCD。
厦门市英贤学校2013-2014学年七年级下期中考试数学试题
七年级数学试卷
(考试时间:120分钟,满分:120分)
一、 选择题(8*2=16分)
1. 下列 A、B、C、D 四幅图案中,能通过平移图案(1)得到的是(
)
(1)
A.
B.
2. 在同一平面内,两直线可能的位置关系是(
C.
D.
)。
A.相交
B.平行
C.相交或平行
(4)标出到 X 轴 Y 轴距离为 3 的点,并连接各点,求出所画图形的面积。
y
1
-1 0 1
X
-1
3. 下面四个图形中,∠1 与∠2 是邻补角的是(
D.相交、平行或垂直 )。
2 1
1
1
2
2
12
A.
B.
C.
D.
4、若 m 2, n 3 ,则点 A(m ,n ) (
)
A、四个象限均有可能
B、在第一象限或第三象限或第四象限
C、在第一象限或第二象限
D、在第二象限或第三象限或第四象限
5. 已知 y 轴上的点 P 到原点的距离为 5,则点 P 的坐标为(
A.(5,0) Βιβλιοθήκη .(0,5)B.(0,5)或(0, 5)
)。
D.(5,0)或( 5,0)
6.
a ∥b ,则 ABD 的度数是(
)。
A.38°
B.48°
C.42°
D.100°
7.在平面角坐标系中,点 1, m 2 1 一定在(
A.第一象限
B.第二象限
C.第三象限
8.下列各式正确的是( )
①有理数集合{
②无理数集合{ 22.(7分)一个正数 a 的平方根是 3x―4 与 2―x,则 a 是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
B
A E
2013~2014厦门双十中学下学期七年级数学试卷
一、选择题。
(每小题4分,共32分)
1.下列图形中表示∠1与∠2是对顶角的是( )
A B C D 2.在平面直角坐标系中,点A (2011,-2012)在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3.有下列各数,0.456,2
π
3,3.14,0.80108,27,0.36·
,0.101001…,4,其中无
理数有( )
A .1个
B .2个
C .3个
D .4个 4.下列命题是真命题的是( )
A .若a <b ,则a 2>b 2
B .若|x |=|y |,则x =y
C .若a >|b |,则a 2>b 2
D .若a <1,则a >
3
a 5.如图是小刚的一张脸,他对妹妹说如果我用(0,2) 表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )
A .(1,0)
B .(-1,0)
C .(-1,1)
D .(1,-1) 6.如图,点
E 在BC 的延长线上,下列条件中能判断AB ∥CD 的是( )
A .∠1=∠2
B .∠3=∠4
C .∠
D +∠BCD =180° D .∠D =∠5
7.如图,直线AB ∥CD ,∠A =70°,∠C =40°,则∠E 等于( ) A .30° B .40° C .60° D .70° 8.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,在从原点
跳动到(0,1),然后接着按中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第25
秒
1
2
1
1
1
2
2
2
E
C
A
B
D
时跳蚤所在位置的坐标是( ) A .(4,0) B .(5,0) C .(0,5) D .(5,5) 二、填空题。
(每小题4分,共32分)
9.将点P 向左平移2个单位长度,再向上平移1个单位长度得到P 1(-1,3),则点P 坐标是 。
10.-64的立方根的相反数是 。
11.如图所示,直线AC 、CD 被直线EF 所截,若∠ 1=∠2, 则∠AEF +∠CFE = 度。
12.如图所示,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,FG 平分∠DFE ,∠FEG =60°,则∠EFG = 。
13.已知点P (a ,a +3)在直角坐标系的y 轴上,则点P 的坐标
为 。
14.把命题“等角的补角相等”写成 “如果…,那么…”的形式为: 15.若实数y =2x x 2-+-,则x 2+y 2= 。
16.如图,把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,且D 、C 分别在M 、N 的位置上,若∠EFG =55°,则∠1= °。
三、解答题。
(共86分)
17.(8分)(-2)3×2
)4(--16×(-
2
1)2-3
27
18.(8分)推理填空:
如图,点D 、E 、F 分别在AB 、BC 、AC 上,且DE ∥AC ,EF ∥AB ,下面写出了证明“∠A +∠B +∠C =80°”的过程,请补充完整。
D
B C
A
G
E
F
证明:∵DE ∥AC ,EF ∥AB ( )
∴∠1=∠ ,∠3=∠ ( ) ∵AB ∥EF (已知) ∴∠2=∠ ( ) ∵DE ∥AC (已知) ∴∠4=∠ ( ) ∴∠2=∠A (等量代换)
∵∠1+∠2+∠3=180°(平角定义) ∴∠A +∠B +∠C =180°(等量代换)
19. (8分)
已知在平面直角坐标系内有点P (x ,y ),其中x 、y 满足|3x +3|+(x +y )2=0: (1)求点P 的坐标;
(2)点Q (x +1,y -1)在坐标平面内的什么位置?说明你的理由?
(3)点P 先向 平移 个单位长度,再向 平移 个单位长度就能与点Q 重合。
20.(8分)已知实数a 、b 、c 在数轴上的位置如图所示,化简:
|a |+|a +b |-2
)a c ( -22c
21.(8分)某中学在创建绿色和谐校园活动中要在一块三角形花圃里种植两种不同的花草,同时拟从A 点修建一条花间小径到边BC 。
(1)若要使修建小路所使用的材料最少,请在图中画小路AD
,你的理由
是 。
(2)3月12日是植树节,图中树需进行平移,请将树根A 移到F 处,作出平移后的树。
22.(10分)
(1)在平面直角坐标系中画出下列各点:A (-2,-3)、D (0,2) (2)点B 的坐标是 ,点C 的坐标是 ;
(3)点A 到x 轴的距离是 个单位长度,点D 到原点的距离是 个单位长度;
(4)顺次连接O 、B 、C 、D ,求四边形OBCD 的面积。
23.(10分)已知35-2的整数部分是a ,小数部分是b ,求a 2-b 的值。
C
B
24.(12分)如图所示,CD ⊥AB 于D ,点F 为BC 上任意一点,FE ⊥AB 于E ,且∠1=∠2=30°,∠3=84°,求∠ACB 的度数。
25.(14分)如图所示,已知AB ∥DE ,∠B =60°,CM 平分∠DCB ,CM ⊥CN ,垂足为C ,求∠NCE 的度数。
C
E
D
A N
M
B
B C F。