博弈论

合集下载

博弈论定义与主要思想

博弈论定义与主要思想

Selten and Harsanyi
泽尔腾(1965)将纳 而海萨尼则发展了刻
什均衡的概念引入了 动态分析,提出了 “精炼纳什均衡”概念; 以及进一步刻画不完 全信息动态博弈的 “完备贝叶斯纳什均
画不完全信息静态博 弈的“贝叶斯纳什均 衡”(1967-1968)。 总之,他俩进一步将 纳什均衡动态化,加 入了接近实际的不完 全信息条件。他们的
著名经济学家保罗.萨缪尔森说:“要想在现代 社会做一个有文化的人,您必须对博弈论有一 个大致了解。”
我们从博弈中学习什么
博弈论告诉人们,要学会理解他人都有自己的 思想,每个个体都是理性的,所以必须了解竞 争对手的思想。商业关系被认为是一种相互作 用。但博弈论并不是疗法,并不是处方,它并 不告诉你该付多少钱买东西,这是计算机或者 字典的任务。博弈论只是提供一些关系的例证, 一些有用的解决问题的方法。这种思维方法也 许是企业家应该学习的。对于经济学家,也许 需要学习它的理论模型,它的实验方式 。
2005年诺奖授予有以色列和美国双重国籍的罗 伯特·奥曼和美国人托马斯·谢林,以表彰他们 在博弈论领域作出的贡献。
主要思想
博弈论并不是经济学的一个分支,它只是一种 方法,这也是为什么许多人将其看成数学的一 个分支的缘故。
在对参与者行为研究这一点上,博弈论和经济 学家的研究模式是完全一样的。经济学越来越 转向人与人关系的研究,特别是人与人之间行 为的相互影响和相互作用,人与人之间利益和 冲突、竞争与合作,而这正是博弈论的研究对 象。
4、信息指的是参与人在博弈中所知道的 关于自己以及其他参与人的行动、策略 及其得益函数等知识;
5、得益是参与人在博弈结束后从博弈中 获得的效用,一般是所有参与人的策略 或行动的函数,这是每个参与人最关心 的东西;

博弈论百度百科

博弈论百度百科

博弈论约翰·冯·诺依曼博弈论的概念博弈论又被称为对策论(Game Theory),它是现代数学的一个新分支,也是运筹学的一个重要组成内容。

在《博弈圣经》中写到:博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的意义。

按照2005年因对博弈论的贡献而获得诺贝尔经济学奖的Robert Aumann教授的说法,博弈论就是研究互动决策的理论。

所谓互动决策,即各行动方(即局中人[player])的决策是相互影响的,每个人在决策的时候必须将他人的决策纳入自己的决策考虑之中,当然也需要把别人对于自己的考虑也要纳入考虑之中……在如此迭代考虑情形进行决策,选择最有利于自己的战略(strategy)。

博弈论的应用领域十分广泛,在经济学、政治科学(国内的以及国际的)、军事战略问题、进化生物学以及当代的计算机科学等领域都已成为重要的研究和分析工具。

此外,它还与会计学、统计学、数学基础、社会心理学以及诸如认识论与伦理学等哲学分支有重要联系。

按照Aumann所撰写的《新帕尔格雷夫经济学大辞典》“博弈论”辞条的看法,标准的博弈论分析出发点是理性的,而不是心理的或社会的角度。

不过,近20年来结合心理学和行为科学、实验经济学的研究成就而对博弈论进行一定改造的行为博弈论(behavoiral game theory )也日益兴起。

博弈论的发展博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论专著。

博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展,正式发展成一门学科则是在20世纪初。

1928年冯·诺意曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。

1944年,冯·诺意曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。

博弈论

博弈论

2.2.1 博弈论的定义现代经济学的最新发展有一个特别引人注目的特点,那就是博弈论在经济学中越来越受到重视。

博弈论,又称为对策论,它是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题。

也就是说,当一个主体,好比说一个人或一个企业的选择受到其他人、其他企业选择的影响,而且反过来影响到其他人、其他企业选择时的决策问题和均衡问题①。

简单地说,就是研究决策主体的行为在发生直接相互作用时,他们如何进行决策,以及这种决策的均衡问题。

1944 年冯·诺依曼和摩根斯特恩(Morgenstern)合作出版了《博弈论与经济行为》(The Theory of Games and Economic Behavior),开始将博弈论引入经济学,成为现代经济博弈论研究的开端。

20 世纪50 年代纳什(John F. Nash)、塔克(Tucker)等人的研究,奠定了现代博弈论的基石。

在其后的几十年里,许多经济学家致力于博弈论的研究,1965 年泽尔腾(Reinhard Selten)将纳什均衡的概念引入了动态分析;1967-1968 年,海萨尼(John C. Harsanyi)把不完全信息分析引入博弈论的研究;1982 年克瑞普斯(David M. Kreps)和威尔逊(RobertWilson)分析了动态不完全信息条件下的博弈问题。

1994 年诺贝尔经济学奖授予了纳什、泽尔腾和海萨尼三位博弈论专家,此后在2001 年诺贝尔经济学奖同样授予了三位博弈论的专家②。

博弈论是一种关于行为主体策略相互作用的理论,它已形成了一套完整的理论体系和方法论体系。

它具有基本假设的合理性、研究对象的普遍性、研究结论的真实性、方法论的实证性等特点。

正是因为这些特点,博弈论的产生和发展引发了一场深刻的经济学革命,使得现代经济学从方法论,到概念和分析的方法体系,都发生了很大的变化。

正如克瑞普斯(Kreps)在《博弈论与经济模型》一书中指出“在过去一二十年中,经济学在方法论,以及语言、概念等等方面,经历了一场温和的革命,非合作博弈已经成为范式的中心……在经济学或者与经济学原理相关的金融、会计、营销和政治科学等学科中,现在人们已经很难找到不①懂纳什均衡能够‘消化’近代文献的领域。

博弈论

博弈论
(一)、博弈论的定义
博弈论是一种建立在抽象推理基础之上“研究处于利益冲突的各方在竞争性活动中制定最优化胜利的策略”的理论。
作为科学行为主义学派的重要一支,博弈论不仅是研究国际冲突的策略理论,而且还是处理国际关系问题的实际手段。
(二)、博弈论的要素
1、弈者(想获得最优结果的参与者);
双方让路
(最保险、最可靠选择) A让B不让
(B的最佳方案)
A不让B让
(A的最佳方案) 相撞
(最差的结果)
双方零合博弈的典型事例是:冷战时期的美苏争夺格局。
②、多方零合博弈
多方零合博弈的典型事例是:国际关系中的领土或资产纠纷。
(3)、零合博弈强调冲突的可能性以及解决冲突的机制。
(结构现实主义理论强调国际结构中冲突的可能性,认为国际结构中的国家为了获取自己的相对收益,常常是以牺牲别国为代价的(零合博弈))。
双方变数博弈的典型即,长期以来美苏之间的军备竞赛政策的运用。
②、多方变数博弈
它是“有三方以上参与者的博弈,并且一方所得并非其他方所失,得失之和并不等于零”。
该博弈与两方变数博弈特点相似。但由于独立决策者的增多,策略的相互依存关系也就更为复杂,策略的数目按几何级数上升(2的n次方),因此目前学术界并没有关于多方非零和博弈的成熟理论。尽管如此,政治学家还是指出,该类博弈的“关键问题就是如何能够实现让所有博弈者都满意的合理的收益分配”。
(二)、支持
博弈论提出假设的有效方法,为对外政策决策者说面临的战略选择作出了解释。
博弈论是国际关系和外交决策研究的“思想发动机”,有助于一国实现最佳的策略选择,有助于认识国际冲突的性质、动力和结果,不失为一种具有实用价值的关于对策的研究方法。

《西方经济学》第七章 博弈论

《西方经济学》第七章 博弈论

21
第五节
不完全信息动态博弈
对应于不完全信息动态博弈的均衡概念是精炼 精炼 贝叶斯均衡(perfect Bayesian equilibrium). 贝叶斯均衡 这个概念是完全信息动态博弈的子博弈精炼纳 什均衡与不完全信息静态均衡的贝叶斯纳什均 衡的结合.具体来说,精炼贝叶斯均衡是所有 参与人战略和信念的一种结合.它满足如下条 件:第一,在给定每个参与人有关其他参与人 类型的信念的条件下,该参与人的战略选择是 最优的.第二,每个参与人关于其他参与人所 属类型的信念,都是使用贝叶斯法则从所观察 到的行为中获得的.
22
贝叶斯法则 贝叶斯法则是概率统计中的应用所观察 到的现象对有关概率分布的主观判断 (即先验概率)进行修正的标准方法.
23


1. 什么是占优策略均衡?什么是重复剔除的占优策 略均衡?什么是纳什均衡? 2. 什么是子博弈精炼纳什均衡?重复博弈与一次性 博弈有何不同? 3. 假定两寡头生产同质产品,两寡头的边际成本为 0.两寡头所进行的是产量竞争.对于寡头产品 的市场需求曲线为P=30-Q,其中Q=Q1+ Q2.Q1是寡头1的产量,Q2是寡头2的产量. (1)假定两个寡头所进行的是一次性博弈. 如果两寡头同时进行产量决策,两个寡头各生产 多少产量?各获得多少利润?
25

第七章
第一节 第三节 第四节 第五节
博弈论
完全信息静态博弈 完全信息动态博弈 不完全信息静态博弈 不完全信息动态博弈
第一节 博弈问题概述
一,博弈的基本概念 二,博弈的分类
2
一,博弈的基本概念
博弈论 博弈论(game theory)是研究决策主体的 行为发生直接相互作用时候的决策以及这 种决策的均衡问题的. 博弈论的基本概念包括:参与人 行动 参与人,行动 参与人 行动, 战略,信息 支付函数,结果 均衡. 信息,支付函数 结果,均衡 战略 信息 支付函数 结果 均衡

什么是博弈论?

什么是博弈论?

什么是博弈论?博弈论是一门研究策略决策的学科,它涉及到两个或多个参与者的博弈过程。

博弈论的研究对象可以是经济、政治、社会等领域,也可以是日常生活中的人际交往。

下面,我们来详细了解一下这门学科。

一、博弈论的起源博弈论起源于20世纪40年代,当时美国数学家冯·诺依曼(John von Neumann)和经济学家奥斯卡·莫根斯特恩(Oskar Morgenstern)合著了《博弈论与经济行为》一书。

这是一本奠定博弈论基础的重要著作,它将博弈论应用于经济学领域,从而成为博弈论的奠基之作。

二、博弈论的基本概念1.参与者博弈论的参与者指的是博弈过程中参与决策的个体或组织,例如一个独立的个人、两个公司或国家之间的竞争。

2.策略策略是指参与者在博弈中所采用的行为方式或决策方法。

不同的策略可能导致不同的博弈结果,因此博弈过程中策略的选择非常重要。

3.收益收益是博弈过程中参与者所能获取的利益,包括经济利益、社会地位、权力等。

收益对参与者而言是决策的目的和结果,因此其大小和分布会影响博弈的结果。

4.博弈形式博弈形式指的是博弈参与者、策略和收益之间的关系,是博弈过程的精神核心。

博弈形式一般分为合作博弈和非合作博弈两种,而在这两种博弈形式下,又分别有多种复杂的形式。

三、博弈论的应用1.经济学领域博弈论在经济学领域的应用最为广泛。

经济学研究的主题之一是市场竞争,而博弈论可以帮助我们透彻理解市场竞争的规律。

例如,博弈论可以用来研究企业之间的价格战、垄断行为、拍卖等问题。

2.政治学领域博弈论在政治学领域的应用也非常重要。

政治学研究的主题之一是国家之间的竞争和协作,而博弈论可以帮助我们研究国际关系、外交政策等问题。

例如,博弈论可以用来研究国际贸易谈判、军备竞赛等问题。

3.人际交往领域博弈论在人际交往领域的应用也相当重要。

通过博弈论,我们可以学习如何有效地沟通和合作,避免双方的冲突和误解。

例如,博弈论可以用来研究双方的协调、合作等问题。

博弈论

博弈论

博弈论是一种处理竞争与合作问题的数学决策方法;研究竞争中参加者为争取最大利益应当如何做出决策的数学方法;根据信息分析及能力判断,研究多决策主体之间行为相互作用及其相互平衡,以使收益或效用最大化的一种对策理论;研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题。

博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。

博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论著作。

博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

近代对于博弈论的研究,开始于策墨洛(Zermelo),波雷尔(Borel)及冯·诺伊曼(von Neumann)。

1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。

1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。

1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。

纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。

此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。

今天博弈论已发展成一门较完善的学科。

博弈的分类根据不同的基准也有所不同。

一般认为,博弈主要可以分为合作博弈和非合作博弈。

它们的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。

从行为的时间序列性,博弈论进一步分为两类:静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。

博弈论概述

博弈论概述
“坦白”是A的占优策略。同样,“坦白”也是B的占优策略。
一般地,称 si*为局中人i的(严格)占优策略, 若对应所有的
si , s i*是i的严格最优策略 , 即:
ui (si*, si ) ui (si' , si ) si , si' si*
对应地,所有的 si' si* 被称为“劣策略”。注意:这
甲的策略
1
2
3
乙的策略
1
7
8
9
2
6
2
3
3
5
4
0
1.乙先行动。若乙选1,则甲选3;乙选2,则甲选1;乙选3, 则甲选1。乙在行动时会估计到甲的行动,它估计三种选择 中的最高代价为策略1(损失900万),其次为策略2(损失 600万),最低为策略3(损失为500万)。因此,乙必选代 价最低的策略3。——最大最小原理。结论:乙选择3,甲选 1作为回应,乙损失500万,甲获益500万。
在博弈论里,一个博弈可以有两种表述方式:一种是策 略式(strategic form representation)表述,另一种是 扩展式( extensive form representation )表述。前者 适合于讨论静态博弈,后者适合于讨论动态博弈。在策略式 表述中,所有参与人同时选择各自的策略,所有参与人选择 的策略一起决定每个参与人的支付。
2007 - Leonid Hurwicz, Eric S. Maskin, Roger B. Myerson 2005 - Robert J. Aumann, Thomas C. Schelling 2001 - George A. Akerlof, A. Michael Spence, Joseph E.

博弈论的定义和主要思想

博弈论的定义和主要思想
著名经济学家保罗.萨缪尔森说:“要想在现代 社会做一个有文化的人,您必须对博弈论有一 个大致了解。”
清华诚志
9
我们从博弈中学习什么
博弈论告诉人们,要学会理解他人都有自己的 思想,每个个体都是理性的,所以必须了解竞 争对手的思想。商业关系被认为是一种相互作 用。但博弈论并不是疗法,并不是处方,它并 不告诉你该付多少钱买东西,这是计算机或者 字典的任务。博弈论只是提供一些关系的例证, 一些有用的解决问题的方法。这种思维方法也 许是企业家应该学习的。对于经济学家,也许 需要学习它的理论模型,它的实验方式 。
清华诚志
12
两种均衡
占优策略是无论其他局中人采取什么策 略对于自己来说都是最好的策略。
占优均衡所有局中人都有占优策略而形 成的均衡。
纳什均衡是指某一局中人在其他局 中人的策略给定时选择最好策略而 形成的均衡。
清华诚志
13
占优均衡一定是纳什均衡,但 纳什均衡不一定是占优均衡。
占优均衡
– “不管你做什么,我所做的都是最佳选择。” – “不管我做什么,你所做的都是最佳选择。”
纳什均衡
– “给定你的行为,我所做的是最佳选择。” – “给定我做什么,你所做的是最佳选择。”
清华诚志
14
博弈的分类
1)根据参与人的多少,可将博弈分为两人 博弈和多人博弈;
2)根据博弈结果的不同,又可分为零和博 弈、常和博弈和变和博弈;
3)根据博弈方策略的数量,可分为有限博 弈和无限博弈;
清华诚志
清华诚志
5
Selten and Harsanyi
泽尔腾(1965)将纳 什均衡的概念引入了 动态分析,提出了 “精炼纳什均衡”概 念;以及进一步刻画 不完全信息动态博弈 的“完备贝叶斯纳什 均衡”

博弈论

博弈论

支付
支付是指在一个指定的战略组合下参与 人得到的确定效用水平,或者是参与人 得到的期望效用水平
结果
结果是博弈分析者所要揭示的东西,是 分析者感兴趣的要素的集合,如均衡战 略组合,均衡行动组合,均衡支付组合 等。
均衡
均衡,是所有参与人的最优战略组合或 行动组合
博弈类型
博弈的类型可以从两个角度描述; (1) 参与人行动的先后顺序。从此度,博 弈可以分为静态和动态两种。(2)参与 人对有关其他参与人(竞争对手)的特 征、战略空间及支付函数的知识。从此 角度,博弈可分为完全信息博弈和不完 全信息博弈
囚犯的难题
博弈的纳什均衡的另一个问题是它并不 一定导致帕累托有效的结果。 囚犯的难题深刻揭示了这一问题。 囚犯的难题在经济和政治现象中有广泛 的应用。如:裁军计划、两个寡头选择 产量的博弈等。
完全信息动态博弈: 子博弈精炼纳什均衡
动态博弈和精炼纳什均衡 有限次重复博弈:“连锁店之迷” 无限次重复博弈:“针锋相对”策略
动态博弈与精炼纳什均衡
用混合策略解决有些博弈中不存在纳什均衡的问题, 除此之外,纳什均衡还有另外的问题,即有些博弈中 可能不止一个(甚至是无穷个)纳什均衡,而究竟哪 个均衡实际上会发生?很难回答。在纳什均衡中,参 与人在选择自己的战略时,把其他参与人的策略当作 给定的,不考虑自己的选择将如何影响对手的 策略。 实际上,当一个人行动在前,另一个人行动在后时, 后者自然会根据前者的选择调整自己的选择,前者在 作选择时自然会理性地考虑这一点,所以,不可能不 考虑自己的选择对其对手选择的影响。由于纳什均衡 中,不考虑这种影响,事实上便允许了“不可置信威 胁的”存在,于是增加了纳什均衡的个数。而泽而腾 机敏地引入动态博弈分析完善了纳什均衡的概念。

博弈论简介

博弈论简介
பைடு நூலகம்
经济学
拍卖理论
1
• 博弈论可以用来解释不同拍卖机制下的拍 卖策略和价格形成。
寡头垄断竞争
2
• 研究寡头垄断企业如何制定竞争策略,以 实现自身利益最大化。
劳动力市场与产品市场
3
• 博弈论被用于分析劳动者和雇主在劳动力 市场上的博弈行为,以及企业在产品市场上
的竞争策略。
政治学
选举行为
01
• 研究选民、政党、候选人之间的策略互动,以及投票行
生态学
• 研究生态系统中的食物链、竞争、共生等关系,以及物种之间的博弈策略。
游戏与计算机科学
01
游戏设计
• 博弈论被用于设计具有挑战性和趣味性的游戏,如棋类游戏、策略游戏 等。
02
计算机科学
• 研究计算机在处理问题时的决策过程和算法设计,如人工智能、机器学
习等领域。
03
信息论
• 研究信息传递过程中的策略选择和最优信息传输,如密码学、信息编码
博弈论简介
contents
目录
• 博弈论的基本概念 • 博弈论的基本理论 • 博弈论的应用 • 博弈论的未来发展 • 结论
01
博弈论的基本概念
定义与特点
• 博弈论(Game Theory)是一门应用数学
1
分支,主要研究在特定情境下个体或团队如 何做出决策以及这些决策之间的相互作用。
• 博弈论的特点在于强调决策的互动性和策
3
,常用于研究长期竞争和合作关系。
合作博弈
• 合作博弈是指参与者可以通过达成协议或联盟来优化整
01
体利益的博弈。
02
• 在合作博弈中,参与者可能会放弃部分利益,以换取整

博弈论简介

博弈论简介
但是,并不是所有博弈的博弈方都像上面这些博弈问题中的那样,有关于 各博弈方得益或了解各博弈方得益所需要的全部信息的。典型的例子是在投标、 拍卖活动构成的博弈中,由于各博弈方(竞投、竞拍者)对其他博弈方关于标的 的估价很难了解,因此即使最后的成交价是大家都能看到的,各个博弈方仍然 无法知道其他博弈方中标、拍得标的物的真正得益究竟是多少。

但并不是所有重复博弈都有事先确定的重复次数,也就是停止重复时间的, 有些重复博弈似乎是会不断重复下去的。我们称这样的重复博弈为“无限次重 复博弈”(Infinitely Repeated Games)

14
(六)博弈的信息结构

所谓信息,是指关于事物运动的状态和规律的表征,也是关
于事物运动的知识。 信息就是用符号、信号或消息所包含的内容,来消除对客观 事物认识的不确定性。它普遍存在于自然界、人类社会和人 的思维之中。 信息的概念是人类社会实践的深刻概括,并随着科学技术的 发展而不断发展。 这里,我们博弈中的信息,是指在博弈中博弈方对其他博弈



方的特征、战略空间及得益函数等的知识。
15
1.关于得益的信息
博弈中最重要的信息之一是关于得益的信息,即每个博弈方 在每种结果(策略组合)下的得益情况。在许多博弈问题中,各 个博弈方不仅对自己的得益情况完全清楚,而且对其他博弈方 的得益也都很清楚。如在囚徒的困境博弈中,因为两囚徒所处 的地位是相同的,而且警察把他们双方的处境给他们都交代清 楚了,因此两个博弈方都对双方在每种情况下的得益非常清楚。
11
2.动态博弈
除了各博弈方同时决策的静态博弈以外,也有大量现实决
策活动构成的博弈中,各博弈方的选择和行动不仅有先后次序,
而且后选择、后行动的博弈方在自己选择、行动之前,可以看 到其他博弈方的选择、行动,甚至还包括自己的选择和行动。

博弈论

博弈论

• 4. 战略(strategy)
• 指参与人在给定信息集的情况下的行动规则, 它规定参与人在什么时候选择什么行动。 • (1)一般用si 表示第i个参与人的一个特定战 略,Si = {si}代表第i 个参与人的所有可选择 的战略集合。如果n个参与人每人选择一个战略, n维向量s=(s1,…,si,…,sn )称为一个战略组 合(strategy profile),其中si是第i个参与人 选择的战略。

囚徒困境引出重要结 论: 一种制度(体制)安 排,要发生效力,必须是 一种纳什均衡。否则,这 种制度安排便不能成立。 现实中囚徒困境问题: 军备竞赛、公共产品私 人提供、寡头竞争等。
领域
纳什均衡 (增产,增 产)
制度安排
寡头竞争 公共产品 私人 提供
• (2)战略与行动是两个不同的概念,战略是行动 的规则而不是行动本身。 • 例如:“人不犯我,我不犯人;人若犯我,我 必犯人”是一种战略,“犯”与“不犯”是两种 行动,战略规定了什么时候“犯”,什么时候 “不犯”。 • (3)作为一种行动规则,战略必须是完备的,它 要给出参与人在每一种可想象到的情况下的行动 选择,即使参与人并不预期这种情况会实际发生。
博 弈 论
西 北 大 学 经济管理学院
课程主体结构
一、博弈论概述 二、博弈论的基本概念 三、完全信息静态博弈 四、完全信息动态博弈
课程主体结构
五、不完全信息静态博弈
六、不完全信息动态博弈
一、博弈论概述
• 1.博弈论概念(game theory) • (1)博弈:又称为对策或游戏,是指一些人或组 织在“策略相互依存”情形下相互影响、互相作 用的状态。 • (2)博弈论:研究决策主体的行为发生直接相互 作用时的决策,以及这种决策的均衡问题,即当 一个主体的选择受到其他主体选择的影响,而且 反过来影响到其他主体选择时的决策问题和均衡 问题。

经典博弈论概述

经典博弈论概述

经典博弈论概述1 什么是博弈论博弈论是一种独特的处于各学科之间的研究人类行为的方法。

与博弈论有关的学科包括数学,经济学和其他社会科学和行为科学。

博弈论是由约翰•冯•诺依曼创立的,该领域第一本重要著作是诺依曼和另一个伟大的数理经济学家奥斯卡•摩根斯坦所著的。

博弈论是关于包含相互依存情况中理性行为的研究。

所谓相互依存,通常是指博弈中的任何一个参与者受到其他参与者行为的影响,反过来,他的行为也影响到其他参与者。

由于这种相互依存性,游戏或博弈的结果依赖于每一个参与者的决策,没有一个人能完全地控制所要发生的事情,也没有一个参与者处于孤独的状态。

相互依存常使博弈中的参与者之间产生竞争。

譬如两个人分蛋糕、每个参与者都希望自己的那块可以分得大一些。

然而,竞争仅仅是博弈论中相互依存的一个方面。

应该指出,通常地博弈并非纯粹是参与者之间的竞争,相互依存的另一个方面是参与者可以有某些共同的兴趣或利益所在。

仍以分蛋糕为例,作为参与者策略行动的结果,蛋糕的大小可以增加或者减少。

参与者的共同兴趣在于增加蛋糕的总量,他们互相“倾轧”之处在于如何分配。

从博弈论研究的角度,增大蛋糕应是博弈的第一步,而分配蛋糕则是博弈的第二步。

在博弈论中还需要对一个词“理性行为” 作一些说明。

博弈论中的所谓理性,一般不是指道德标准。

从参加博弈的参与者的眼光来看,他们试图去实施自己认为可能最好的行为,尽管这样的行为有可能损害了其他参与者。

由于参与者的相互依存性,博弈中一个理性的决策必定建立在预测其他参与者的反应之上。

一个参与者将自己置身于其他参与者的位置并为他着想从而预测其他参与者将选择的行动,在这个基础上该参与者决定自己最理想的行动,这就是博弈论方法的本质与精髓。

博弈论中每一个参与者做出理性决策的重要依据之一是他的可能收益有多少,这就是一个参与者需要认真计算的收益函数(payoff function) 。

对于每一个参与者、如果他们在可供自己选择的策略空间中任取一个策略作为自己的行动,既不会给自己带来盈利,又不会使他们必须付出,这种失去了激励机制的游戏本身也就失去了“博” 的意义,在社会经济领域中尤其不太可能出现这类现象。

博弈论

博弈论

博弈论的基本概念1.博弈论:博弈论,又称对策论,是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题。

博弈论的定义可以这样理解:博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自可选择的行为或策略中进行选择并加以实施,并从中取得相应收益的过程。

2.参与人:参与人指的是博弈中选择行动以最大化自己效用的决策主体(个人、团体)。

3、行动:行动是参与人在博弈的某个时点的决策变量。

一般来讲,把第i个参与人的一个行动为ai,其可供i选择的行动集合表示为Action set: Ai ={ai}。

在一个n人博弈中,n个参与人的行动的有序集为a={a1,…,an},称为行动组合。

根据行动顺序,可以把博弈分为静态博弈、动态博弈。

静态博弈:一般来讲,如果行动时同时发生的或相当于同时发生的,则称之为静态博弈。

动态博弈:如果行动的发生有先后顺序,则称之为动态博弈。

4.信息:信息指的是参与人有关博弈的知识,特别是有关“自然”的选择、其他参与人的特征和行动的知识。

信息集是指参与人在特定时刻所拥有的有关变量的值的知识。

例如:囚徒困境甲不知乙的选择,则甲的信息集为{坦白或者抵赖}乙已经行动,甲观察到乙的选择,则甲的信息集为{坦白}或者是{抵赖}。

5.战略:战略是参与人在给定信息集的情况下的行动规则,是参与人完整的一套行动计划,它规定参与人在什么时候选择什么行动。

战略不同于行动,它是行动的规则,对于战略的表述应该是完备的。

例如:人不犯我,我不犯人;人若犯我,我必犯人”例如:田忌赛马,田忌所选的赛马计划就是一套完整的行动计划,也就是一个战略。

6.战略空间:参与者可以选择的战略的全体组成了战略空间。

田忌赛马,六种行动方案可供选择:上中下,上下中,中上下,中下上,下上中,下中上。

这些可选择的战略的全体组成了战略空间。

任何一人战略的改变都将使结果也随之改变。

7、收益:支付、报酬,指在一个特定的战略组合下参与人得到的效用水平或期望效用水平。

博弈论(整理过名词解释和简答)

博弈论(整理过名词解释和简答)

一、名词解释:1、博弈:一些个人、团体或其他组织,在一定的规则约束下,依据所掌握的信息,同时或者先后,一次或者多次从允许选择的行为或战略进行选择并加以实施,并从中各自取得相应结果或收益的过程。

2、囚徒困境:从博弈中的两个利益主体出发选择行为,结果是既没有实现两人总体的最大利益,也没有真正实现自身的个体最大利益,比如经济领域的寡头竞争、公共产品的供给。

3、非合作博弈与合作博弈:人们行为相互作用时,当事人能达成一个具有约束力的协议,也就是合作博弈,反之,就是非合作博弈。

4、常和博弈:是指博弈双方的得益总和为非零的常数变和博弈:是指在不同的策略组合或者结果下,所有博弈方的得益总和一般是不相同的零和博弈:是指在博弈中,一方的得益就是另一方的损失,所有博弈方的得益总和为零5、博弈论:研究决策主体的行为及其相互决策和均衡问题的学科。

在经济学中,博弈论是研究经济主体的决策相互影响6、战略:参与人在给定信息集的情况下的行为规则的完备描述。

7、均衡:所有参与人的最优战略组合。

8、均衡路径:如果一个博弈有几个子博弈,一个特定的纳什均衡决定了原博弈树上唯一的一条路径,或者说是一个纳什均衡结果在博弈树中所形成的路径。

9、占优均衡:无论其他参与人选择什么战略,参与人的某一种战略均是最优的。

10、重复剔除劣战略的占优均衡:首先找到某个参与人的劣战略(假定存在),把这个劣战略删除掉,重新构造一个不包含已删除的劣战略的新的博弈,然后再删除这个新的博弈中的某个参与人的劣战略,一直重复这个过程,直到只剩下唯一的战略组合为止。

11、纳什均衡:给定你的策略,我的策略是最好的策略;给定我的策略,你的策略也是最好的策略,即双方在给定的战略上不愿意改变自己的策略。

12、混合战略:如果一个战略规定参与人在给定信息情况下以某种概率随机选择不同的行为,我们称该战略为混合战略。

13、子博弈:从单结信息集开始至博弈结束的过程,由一个决策结x和所有的后续决策结T(x)构成,满足条件:(1)决策结x是单结信息集;(2)在一个信息集的决策结必须是同一个决策结的后续结。

博弈论

博弈论

1.什么是博弈论?“博弈论”译自英文“Game Theory”,直译就是“游戏理论”。

博弈论是研究行为人在矛盾和对抗性关系中的行为决策中一般性规律规律的学科。

是系统研究各种博弈问题,寻求在各博弈方具有充分或者有限理性、能力的条件下,合理的策略选择和合理选择策略时博弈的结果,并分析这些结果的经济意义、效率意义的理论和方法。

博弈:一些个人、组织,面对一定的环境条件,在一定的规律下,同时或先后,一次或多次,从各自允许选择的行为或策略中进行选择并加以实施,各自取得相应结果的过程。

包括:博弈的参加者,各博弈方的全部策略或行为集合,进行博弈的次序,博弈方的得益四方面。

纳什均衡:设存在一个策略组合Bx’和By’,且Bx’∈Bx(Bx1,Bx2,……,BxN),By’∈By(By1,By2,……,ByN) ,当x选择Bx’时,y的最优策略选择是By’,同时,当y选择By’时,x的最优选择是Bx’,因此,x和y选择了Bx’和By’时,谁都不会再改变策略。

这种局面称为Nash均衡,是Nash最早提出并证明了它的存在。

1951年Nash提出了Nash均衡的概念,并证明了Nash均衡的存在——真正奠定了博弈论作为一门学科的基础。

之前,虽然有很多人致力于研究博弈对策的规律,但总没有得出有意义的成果,直到Nash。

n人博弈纳什均衡定⏹设:G={A1,A2,A3,…….,AN;U1,U2, U3,…………,UN}⏹如果存在一个策略组合{a1*, a2*,……,aN*},其中a1*∈A1,a2*∈A2,…….,aN*∈AN,使Ui*=Ui{a1*, a2*,…,aN*} ≥Ui{a1*,…,ai-1*,aij*,ai+1*…,aN*}⏹对任意i ∈N都成立,则{a1*, a2*,……,aN*}为Nash均衡。

囚徒困境坦白B不坦白A 坦白A 不坦白两个被捕的囚徒之间的一种特殊博弈,双方的利益不仅取决于他们自己的策略选择也取决于对方的策略选择。

博弈论

博弈论

个词:供给与需求。博弈论专家坎多瑞引申说:要成为现
代经济学家,这只鹦鹉必须再多学一个词,这个词就是 “纳什均衡”。
纳什均衡是完全信息静态博弈的一般情况。占优 战略均衡和重复剔除的占优战略均衡是其中的特例, 并且是均存在唯一的纳什均衡点。
举例: “性别之战”
男方和女方商量共度周末。男方喜欢看足球,而女
1、子博弈精炼纳什均衡
房地产开发博弈
B 开发 A 开发
不开发 不开发
-3,-3 0,1
1,0
0,0
开发商A是先行者。并且在行动之前拥有后行动者B
选择战略的完全信息。
对B的战略进行了预测,在不计较得失的情况下 ,
预测结果无非有这么几种选择:

无论A是否开发,B都要开发。 如果A开发,B也开发;如果A不开发,B也不开发; 如果A开发,B不开发;如果A不开发,B就开发; 无论A是否开发,B必定开发。
高成本
默许
进入
A
低成本
默许 阻挠
阻挠
-10,0 0,300
B
40,50 0,300
30,100 0,400
-10,140
0,400
不进入
假定高成本的概率为x,则低成本的概率为1-x B进入得到的期望利润为40x+(-10)(1-x) B不进入得到的期望利润为0 B最终是否进入取决于两者得到的期望利润,进入的
第七章
博弈论
要想在现代社会中做一个有文化的人, 你必须对博弈论有一个大致了解。 ——保罗.萨谬尔森
主要内容:
博弈问题概述
完全信息静态博弈
完全信息动态博弈
不完全信息静态博弈 不完全信息动态博弈
一、博弈ame Theory ):是研究决策主体的行 为发生直接相互作用时候的决策以及这种决策的均衡问 题的。又称对策论,是描述、分析多人对策行为的理论 现代经济博奕理论始于1944年冯· 诺依曼(John Von Neumann)和莫根施特恩(Oskar Margenston)的《博奕论 与经济行为》一书。

博弈论

博弈论

博弈论研究的主题是:理性人的互动行为。

博弈论作为一种解释力非常强的理论有三个基本假定:1 、理性人假定;2 、利益相关性假定; 3 、每个人是理性的是所有参与者的公共知识。

博弈论是一门数学,这是博弈论的学科特点。

主要有三种博弈:零和博弈;变和博弈;常和博弈。

对于任何一个博弈来说,都有一个均衡点,也就是那什均衡,那什均衡是博弈的解。

博弈论中的典型例子:囚徒困境。

囚徒困境在博弈论中有一个经典案例--囚徒困境,非常耐人寻味。

“囚徒困境”说的是两个囚犯的故事。

这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。

在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作)。

这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪。

但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金。

而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。

当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。

那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。

但他们不得不仔细考虑对方可能采取什么选择。

A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。

这种想法的诱惑力实在太大了。

但他也意识到,他的同伙也不是傻子,也会这样来设想他。

所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论高校考试中的博弈及对策班级:经济三班学号:20094120314姓名:孙亚峰论高校考试中的博弈及对策诚信是中华民族的传统美德;今天, 诚信是人们所需要和坚守的宝贵品质。

青年大学生是国家的未来、民族的希望,本应在道德品质方面做出榜样,可是当前高校考试作弊丑闻层出不穷,并且屡禁不止,极大败坏了高校和社会风气。

因此根除这种现象,营造公正、公平的考试环境对大学生的健康成长、对高等教育是刻不容缓的。

文章运用博弈论的思想进行分析,找出其发生的内在原因,并且提出笔者认为可行的解决措施。

文章将围绕与作弊关系密切的对象:学校,学生群体(区分为优秀生与差等生)一分析舞弊者与他们之间的博弈关系,其中学生与学校的博弈为混合策略博弈,而学生与学生群体之间的博弈为完全静态博弈。

一、大学生与高校的博弈分析1、事实说明:学生参加考试,其作弊行为发生与否,与高校的考试制度息息相关,而考试制度的直接表现者为监考老师,所以本博弈分析,将高校具体为监考老师,即考察学生与老师的博弈分析,而且该博弈用到的信息均为深大目前的考试制度信息。

2学生与监考老师的博弈分析模型(此博弈为混合策略博弈)。

假设:老师和学生都是理性人,二者在决策的过程中不会考虑道德成本,而且只要老师监考尽职,学生舞弊行为一定被发现。

(1)支付矩阵的构建。

假设以下参数:①监考老师认真监考的成本B1;认真监考的收益A1。

②不认真监考的成本C2,监考老师不认真监考的收益R2.③学生诚信考试的收益C1。

④学生舞弊考试的收益G2;学生舞弊的成本M。

老师\学生诚信考试考试舞弊(A1-B1,C1)(A1-B1,-M)监考认真(A1+R2,C1) (R2-C2,C1+G2)监考大意基于以上的参数,得出以下矩阵(第一个数字代表老师,第二个数字代表学生):(2)纳什均衡解的确定:此博弈非纯策略纳什均衡,它是一个混合策略意义上的纳什均衡。

学生舞弊的概率(设为P)和监考老师不认真监考的概率(设为Q)的确定:①在p,q 的条件下,老师获得的效用为:UT=(1- P)(A1- B1)(1- Q)+(A1- B1)(1- Q)P+(A1+R2)Q(1- P)+(R2- C2)PQ=A1- C+B1Q+R2Q- A1QP- QPC2max×UT(Q|P)=A1- CI+B1Q+R2Q- A1QP- QPC2F.O.C: UT(Q│P)B1+R2- A1P- PC2+=0得到P=(B1+R2)(/ R2+C2)所以老师的效用最大时,学生作弊的概率为:P*=(B1+R2)(/ R2+C2)②在P,Q 概率的条件下,学生获得的效用为:US=C1(1- P)(1- Q)- M(1- Q)P+C1Q(1- P)+(C1+G2)QP=C1- C1P- MP+MPQ+C1PQ+G2PQmax×US(P|Q)=C1- C1P- MP+MPQ+C1PQ+G2PQ得到Q*=(M+C1)/(C1+G2+M)所以学生的效用最大时,老师监考不利的概率为:Q*=(M+C1)/(C1+G2+M)(3)均衡意义:通过对上述均衡的推导,我们一定程度可以解释为什么高校会有那么频繁的作弊现象。

①由于学生的作弊概率与老师认真监考的成本B1 和不认真监考的收益R2 成正比,与老师认真监考的收益A1 和不认真监考的成本C2 成反比,而在现实学校生活中,老师认真监考的收益很小,甚至得不到学校任何奖励,而不认真监考的成本也很小,在笔者学校对老师的惩罚也就是通报,纪律处分,实际上都流于形式了,在上述两种背景下,P 会变的很大。

再加上老师监考时很无聊地度时间会使得B1 很大,而老师在监考过程中另寻消遣方式,再加上当前一名老师“一竿子插到底”的制度,即讲课,辅导,考试,阅卷由老师一人承担,这样不认真监考,一定程度可以提高自己所教学生的成绩,这样老师额外的R2 会更大,在上述背景下,P 会变大。

因此在当前对监考老师的奖惩制度以及老师的全程负责制度会使得P 变的很大,这样层出不穷的作弊现象出现也就不足为奇了。

②老师不认真监考的概率Q 与GI 和M成正比,而对于大多数舞弊者来说,他们诚信考试所获得的收益是很小很小的,又当前对作弊惩罚措施比较弱,使得M比较小,这样Q 就比较小:又Q 与G2 成反比,而在学校的制度中,将考试不及格与奖学金的评选,社团部长的竞选资格等联系在一起,就使得G2 非常大,这样使得Q 比较小。

因此在对学生不及格的一些过重惩罚措施和对舞弊者惩罚的过轻处理,使得老师不认真监考的概率很小,这样就为学生作弊创造了条件。

二、舞弊者与大学生群体内部的博弈分析1.大学生内部的诚信问题背景资料:从2010 年来看,大学生内部的诚信问题突出,关于大学生不诚信的报道不绝于耳。

(1)考试作弊成风,这点在前面分析当前考试舞弊现象时已经说明。

(2)抄袭论文现象普遍,有一句很经典的话形容当前大学生如何写论文:上网,复制,粘贴,打印。

(3)为了骗取国家助学金,利用各种关系开出三级证明,将自己包装成贫困生,申请到钱后,大吃大喝,大肆挥霍。

(4)在就业时,伪造简历。

曾有一次人才招聘会上,收到的100 份自荐表中,竟有5 人为来自同一学校的学生会主席。

2.舞弊者在大学生群体缺乏诚信的环境下进行的博弈模型(此博弈为完全静态博弈)。

(1)支付矩阵的构造,假设以下参数:只有A,B 两个学生,两人都处在诚信缺乏的学生环境中。

A,B 在考试中都面临着两个选择:一是诚信,二是舞弊,二者关系为完全静态博弈,可以直接用“囚徒困境”模型分析:①在失信的环境下两人都诚信得到的支付是0。

②两人都舞弊,能从中获利,所以得到的支付是10。

③A守信,B 舞弊,B 可以得到10 个支付,而A损失 5 个。

④A舞弊,B 诚信,A可以得到10 个支付,而B 损失 5 个支付。

由此可得到以下矩阵(第一个数字代表A,第二个数字代表B。

A\B 诚信考试考试舞弊诚信考试(0,0)(-10.,20)考试舞弊(20,-10)(20,20)(2)纳什均衡解的确定。

在此模型下不论其他人是诚信还是失信,选择失信总归是最有利的,所以这个模型的纳什均衡解为(10,10),即双方都失信。

(3)均衡解的意义:从这个模型来看,在失信的群体中,每个人都看到失信带来的好处,自然就没有人选择诚信。

所以说,良好的学生诚信氛围对于学生的舞弊行为有约束行为,反过来不良的学生诚信氛围使更多的学生倾向于从众,原来不良的氛围会发生恶性蔓延。

三、优等生与差等生之间的博弈上面的分析中没有将考试者进行分类, 实际上并不是所有考生都有作弊动机的, 大部分平时认真学习、具有真才实学的考生是很原意通过公平竞争的考试来检验自己的学习成果, 并由此得到别人的承认, 并获得诸如升学、晋级职称、奖学金等等实际收益的. 因此, 他们希望不存在作弊行为而维持这种本应该他们获得的收益, 但差等生的作弊行为将使优等生的精神收益和物质收益受到威胁. 如果作弊行为是不被查处的, 那么优等生将选择作弊, 这是保证其上述收益的唯一途径. 但如果差等生作弊并不能影响他们的收益, 并且作弊将会受到惩罚, 他们则会考虑不作弊.下面以大学中优等生和差等生的博弈为例进行分析, 因为在学校里二者关系较为简单, 其收益和成本也容易量化. 但这个模型是可以推广到其它类型考试中的.首先分析作弊成本, 我们这里假定大学中差等生不采取请人代考或贿赂监考老师等方法因为成本太高, 而且容易被查处, 而采取夹带纸条、偷看他人试卷、交头接耳等基本上不用成本的方法. 那么作弊者的作弊成本主要是被“逮”所受到的惩罚.差等生的作弊动机之所以最为强烈, 是因为他们作弊成本最低, 低到趋于0. 作弊不成功, 所失去的不过是本来就不应该及格的分数记录, 作弊被“逮”的结局和不作弊结局的差异仅仅表现在周围人所表现出来的不同蔑视, 而且这两种蔑视不存在质的区别. 作弊成功了, 其收益则是从不及格到及格这个质的飞跃, 其量的变化绝对超过优等生作弊的收益.而对于优等生而言, 作弊被“逮”, 不仅失去名次精神收益和奖学金物质收益, 同时也会从受人尊重变为受人蔑视. 作弊成功了, 也不一定就能保证获得上述收益, 因为差等生可能作弊手段更高明而在名次上超过了优等生.根据以上分析, 我们假定差等生不作弊收益为0 , 作弊成功收益为6; 作弊和不作弊的成本均为0. 绩优生不作弊成本为0 , 不作弊收益为8 , 作弊成功收益为10 , 作弊失败收益为- 2 ( 因为优等生作弊所冒风险太大,其作弊失败所得收益必然为负. 据此建立了一个完全但不完美的信息博弈模型由图 2 可以看出, 如果监督者加大查处力度, 差等生不管是否作弊, 其所得都为0 , 而优等生如选择作弊, 所得为- 2 ; 不作弊所得为8 , 正是其真实水平的反应, 优等生当然不会选择作弊, 但这只是最理想的状态, 现实中是不大可能的. 如果监督者放任自流, 差等生不作弊所得为0 , 作弊所得为6 , 即完成了由不及格到及格的质的飞跃, 他当然选择作弊. 而优等生因为以往考试得到的监考不严的信息, 并且感到差等生作弊有可能威胁到自身利益, 作为一个经济人, 他很可能铤而走险选择作弊, 从而得到更好的收益收益由8 变为10 . 而在很多考试中, 恰恰是放任自流的可能性大于严格监督的可能性, 这也就不难理解为什么一些好学生也会在考试中作弊了.四、考试舞弊现象的对策研究从学生和学校的博弈模型中,我们得知学生舞弊成风的现象与学校相关制度的不科学,以及监考老师的不作为有密切关系,为此:(1)学校要改革相关的考试制度和奖惩制度:比如加强巡视的力度和强度,使监考老师有第三方的约束,同时加大对不尽职监考老师的惩罚力度,不能流于表面,当然也要加大对于尽职监考的奖励,这样就可以大大提高老师监考的积极性。

同时,学校应改变相应的制度降低学生舞弊的收益,比如成绩不合格者也可以评选奖学金,也可以参加社团主席团的竞选等。

(2)学校应努力改变当前的一名老师“一竿子插到底”的制度,即老师将本班的学习、辅导、监考、阅卷于一体。

这种制度本身就与舞弊相容的因素存在,即老师会为了提供本班的及格率,对本班学生的舞弊睁一只眼闭一只眼。

因而学校应建立科学的老师竞争制度,使竞争老师相互监考对方班级,这样监考老师的不作为概率将大大降低。

(3)加强师德建设,提高教学水平。

教师的作用可谓是贯穿整个教育过程的方方面面,其中很重要的一部分就是教师人格力量的引导作用。

学生的人格塑造很大程度上取决于教师本身的人格影响,老师只有正其身,学生才能敬其师,信其道,仿其行,自觉地诚信考试。

此外老师的教学态度和教学水平直接影响着学生学习的积极性和激情,老师方法得当,自然会引导学生自觉地学习,思考,研究,从根本上调动学生的积极性,激励学生的动力,提高学习效果,这样考试舞弊就会根绝。

相关文档
最新文档