顺城区第二中学2018-2019学年高三上学期11月月考数学试卷含答案
城区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(1)
城区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )=a x (a >0且a ≠1)在(0,2)内的值域是(1,a 2),则函数y=f (x )的图象大致是( )A. B. C. D.2. 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c,若﹣+1=0,则角B 的度数是( )A .60°B .120°C .150°D .60°或120°3. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( ) A .()11-, B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,4. 某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )A .程序流程图B .工序流程图C .知识结构图D .组织结构图 5. 已知点P (x ,y )的坐标满足条件,(k 为常数),若z=3x+y 的最大值为8,则k 的值为( )A .B .C .﹣6D .66. ,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( ) (A ) 13 ( B ) 49 (C ) 23 (D ) 897. 已知函数(5)2()e22()2xf x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩,则(2016)f -=( ) A .2e B .e C .1 D .1e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.8. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D.9. 设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式0)2(4)2014()2014(2>--++f x f x 的解集为班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A 、)2012,(--∞ B 、)0,2012(- C 、)2016,(--∞ D 、)0,2016(-10.方程x= 所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分11.如果(m ∈R ,i 表示虚数单位),那么m=( )A .1B .﹣1C .2D .012.已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( )A .{1}-B .{1}C .{-D . 二、填空题13.如果实数,x y 满足等式()2223x y -+=,那么yx的最大值是 . 14.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .15.已知是圆为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为 .16.若函数y=f (x )的定义域是[,2],则函数y=f (log 2x )的定义域为 .17.经过A (﹣3,1),且平行于y 轴的直线方程为 .18.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .三、解答题19.已知f ()=﹣x ﹣1.(1)求f (x );(2)求f (x )在区间[2,6]上的最大值和最小值.20.已知数列{a n}与{b n},若a1=3且对任意正整数n满足a n+1﹣a n=2,数列{b n}的前n项和S n=n2+a n.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)求数列{}的前n项和T n.21.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM 的斜率与l的斜率的乘积为定值.22.如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,E,F,G分别是AC,AD,BC的中点.求证:(I)AB∥平面EFG;(II)平面EFG⊥平面ABC.23.已知命题p:不等式|x﹣1|>m﹣1的解集为R,命题q:f(x)=﹣(5﹣2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.24.已知椭圆C:=1(a>2)上一点P到它的两个焦点F1(左),F2(右)的距离的和是6.(1)求椭圆C的离心率的值;(2)若PF2⊥x轴,且p在y轴上的射影为点Q,求点Q的坐标.城区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】B【解析】解:函数f (x )=a x (a >0且a ≠1)在(0,2)内的值域是(1,a 2), 则由于指数函数是单调函数,则有a >1,由底数大于1指数函数的图象上升,且在x 轴上面,可知B 正确. 故选B .2. 【答案】A【解析】解:根据正弦定理有: =,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB ﹣cosBsinC=sinBcosC , 即2sinAcosB=sinBcosC+cosBsinC=sin (B+C ), 又∵A+B+C=180°, ∴sin (B+C )=sinA , 可得2sinAcosB=sinA , ∵sinA ≠0,∴2cosB=1,即cosB=, 则B=60°. 故选:A .【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.3. 【答案】B 【解析】试题分析:由()()()()()212102102x x x f x f x f x f x --<⇒⇒-<--,即整式21x -的值与函数()f x 的值符号相反,当0x >时,210x ->;当0x <时,210x -<,结合图象即得()()11-∞-+∞,,.考点:1、函数的单调性;2、函数的奇偶性;3、不等式. 4. 【答案】D【解析】解:用来描述系统结构的图示是结构图,某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示.故选D .【点评】本题考查结构图和流程图的概念,是基础题.解题时要认真审题,仔细解答.5. 【答案】 B【解析】解:画出x ,y 满足的可行域如下图:z=3x+y 的最大值为8, 由,解得y=0,x=,(,0)代入2x+y+k=0,∴k=﹣,故选B .【点评】如果约束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x ,y 后,即可求出参数的值.6. 【答案】C【解析】由1(),21(2),2AD AB AC BE AB AC ⎧=+⎪⎪⎨⎪=-+⎪⎩解得2233,4233AB AD BE AC AD BE⎧=-⎪⎪⎨⎪=+⎪⎩ 22422()()33333AB AC AD BE AD BE ⋅=-⋅+=.7. 【答案】B【解析】(2016)(2016)(54031)(1)f f f f e -==⨯+==,故选B . 8. 【答案】A【解析】解:因为两条直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8,l 1与l 2平行.所以,解得m=﹣7.故选:A .【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力.9. 【答案】C.【解析】由,得:,即,令,则当时,,即在是减函数,,,,在是减函数,所以由得,,即,故选10.【答案】C【解析】解:x=两边平方,可变为3y2﹣x2=1(x≥0),表示的曲线为双曲线的一部分;故选C.【点评】本题主要考查了曲线与方程.解题的过程中注意x的范围,注意数形结合的思想.11.【答案】A【解析】解:因为,而(m∈R,i表示虚数单位),所以,m=1.故选A.【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的概念,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题.12.【答案】D【解析】考点:1.复数的相关概念;2.集合的运算二、填空题13.3【解析】考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方的最值转化为直线与圆相切是解答的关键,属于中档试题.法,本题的解答中把yx14.【答案】+=1.【解析】解:设动圆圆心为B,半径为r,圆B与圆C的切点为D,∵圆C:(x+4)2+y2=100的圆心为C(﹣4,0),半径R=10,∴由动圆B与圆C相内切,可得|CB|=R﹣r=10﹣|BD|,∵圆B经过点A(4,0),∴|BD|=|BA|,得|CB|=10﹣|BA|,可得|BA|+|BC|=10,∵|AC|=8<10,∴点B的轨迹是以A、C为焦点的椭圆,设方程为(a>b>0),可得2a=10,c=4,∴a=5,b2=a2﹣c2=9,得该椭圆的方程为+=1.故答案为:+=1.15.【答案】.【解析】解:依题意可知|BP|+|PF|=2,|PB|=|PA|∴|AP|+|PF|=2根据椭圆的定义可知,点P的轨迹为以A,F为焦点的椭圆,a=1,c=,则有b=故点P的轨迹方程为故答案为【点评】本题主要考查了用定义法求轨迹方程的问题.考查了学生综合分析问题和解决问题的能力.16.【答案】[,4].【解析】解:由题意知≤logx≤2,即log2≤log2x≤log24,∴≤x≤4.故答案为:[,4].【点评】本题考查函数的定义域及其求法,正确理解“函数y=f(x)的定义域是[,2],得到≤log2x≤2”是关键,考查理解与运算能力,属于中档题.17.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.18.【答案】0【解析】【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1E与GF所成的角的余弦值.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,∴A1(1,0,2),E(0,0,1),G(0,2,1),F(1,1,0),=(﹣1,0,﹣1),=(1,﹣1,﹣1),=﹣1+0+1=0,∴A1E⊥GF,∴异面直线A1E与GF所成的角的余弦值为0.故答案为:0.三、解答题19.【答案】【解析】解:(1)令t=,则x=,∴f(t)=,∴f(x)=(x≠1)…(2)任取x1,x2∈[2,6],且x1<x2,f(x1)﹣f(x2)=﹣=,∵2≤x1<x2≤6,∴(x1﹣1)(x2﹣1)>0,2(x2﹣x1)>0,∴f(x1)﹣f(x2)>0,∴f(x)在[2,6]上单调递减,…∴当x=2时,f(x)max=2,当x=6时,f(x)min=…20.【答案】【解析】解:(Ⅰ)由题意知数列{a n}是公差为2的等差数列,又∵a1=3,∴a n=3+2(n﹣1)=2n+1.列{b n}的前n项和S n=n2+a n=n2+2n+1=(n+1)2当n=1时,b1=S1=4;当n≥2时,.上式对b1=4不成立.∴数列{b n}的通项公式:;(Ⅱ)n=1时,;n≥2时,,∴.n=1仍然适合上式.综上,.【点评】本题考查了求数列的通项公式,训练了裂项法求数列的和,是中档题.21.【答案】【解析】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.22.【答案】【解析】证明:(I)在三棱锥A﹣BCD中,E,G分别是AC,BC的中点.所以AB∥EG…因为EG⊂平面EFG,AB⊄平面EFG所以AB∥平面EFG…(II)因为AB⊥平面BCD,CD⊂平面BCD所以AB⊥CD…又BC⊥CD且AB∩BC=B所以CD⊥平面ABC…又E,F分别是AC,AD,的中点所以CD∥EF所以EF⊥平面ABC…又EF⊂平面EFG,所以平面平面EFG⊥平面ABC.…【点评】本题考查线面平行,考查面面垂直,掌握线面平行,面面垂直的判定是关键.23.【答案】【解析】解:不等式|x﹣1|>m﹣1的解集为R,须m﹣1<0,即p是真命题,m<1f(x)=﹣(5﹣2m)x是减函数,须5﹣2m>1即q是真命题,m<2,由于p或q为真命题,p且q为假命题,故p、q中一个真,另一个为假命题因此,1≤m<2.【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.属中档题.24.【答案】【解析】解:(1)根据椭圆的定义得2a=6,a=3;∴c=;∴;即椭圆的离心率是;(2);∴x=带入椭圆方程得,y=;所以Q(0,).。
城区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
【点评】本题主要题的关键.注意使用数形结合进 行求解. 3. 【答案】
第 5 页,共 14 页
【解析】选 D.设圆的方程为(x-a)2+(y-b)2=r2(r>0). 2a+b=0 由题意得 (-1-a)2+(-1-b)2=r2 , (2-a)2+(2-b)2=r2
(2)试确定 θ 的值,使得∠MPN 取得最大值.
21.已知数列{an}的前 n 项和为 Sn,首项为 b,若存在非零常数 a,使得(1﹣a)Sn=b﹣an+1 对一切 n∈N*都成立. (Ⅰ)求数列{an}的通项公式; (Ⅱ)问是否存在一组非零常数 a,b,使得{Sn}成等比数列?若存在,求出常数 a,b 的值,若不存在,请说 明理由.
城区第二高级中学 2018-2019 学年高三上学期 11 月月考数学试卷含答案 一、选择题
1. 己知 y=f(x)是定义在 R 上的奇函数,当 x<0 时,f(x)=x+2,那么不等式 2f(x)﹣1<0 的解集是 ( A. 班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________ C. ) B. D. ) 或 或
当 a=3,b=2,c=1 时, 所以设 a,b,c,∈R+,则“abc=1”是“ 故选 A. 9. 【答案】A 【解析】解:联立 ∴交点为(1,3), 过直线 3x﹣2y+3=0 与 x+y﹣4=0 的交点,
,得 x=1,y=3,
与直线 2x+y﹣1=0 平行的直线方程为:2x+y+c=0, 把点(1,3)代入,得:2+3+c=0,
城区二中2018-2019学年高三上学期11月月考数学试卷含答案(3)
城区二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设是偶函数,且在上是增函数,又,则使的的取值范围是( )()f x (0,)+∞(5)0f =()0f x >A .或B .或C .D .或50x -<<5x >5x <-5x >55x -<<5x <-05x <<2. 已知在R 上可导的函数f (x )的图象如图所示,则不等式f (x )•f ′(x )<0的解集为()A .(﹣2,0)B .(﹣∞,﹣2)∪(﹣1,0)C .(﹣∞,﹣2)∪(0,+∞)D .(﹣2,﹣1)∪(0,+∞)3. 若当时,函数(且)始终满足,则函数的图象大致是R x ∈||)(x a x f =0>a 1≠a 1)(≥x f 3||log x x y a =()【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.4. 已知集合,,则( ){2,1,1,2,4}A =--2{|log ||1,}B y y x x A ==-∈A B =I A .B .C .D .{2,1,1}--{1,1,2}-{1,1}-{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力.5. 若集合A={x|﹣2<x <1},B={x|0<x <2},则集合A ∩B=( )A .{x|﹣1<x <1}B .{x|﹣2<x <1}C .{x|﹣2<x <2}D .{x|0<x <1}6. 函数(,)的部分图象如图所示,则 f (0)的值为( )()2cos()f x x ωϕ=+0ω>0ϕ-π<<A. B. C. D. 32-1-班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.7. 已知a=21.2,b=(﹣)﹣0.8,c=2log 52,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a 8. 函数的定义域是()A .[0,+∞)B .[1,+∞)C .(0,+∞)D .(1,+∞)9. 如果对定义在上的函数,对任意,均有成立,则称R )(x f n m ≠0)()()()(>--+m nf n mf n nf m mf 函数为“函数”.给出下列函数:)(x f H ①;②;③;④()ln 25x f x =-34)(3++-=x x x f )cos (sin 222)(x x x x f --=.其中函数是“函数”的个数为( )⎩⎨⎧=≠=0,00|,|ln )(x x x x f H A .1B .2C .3D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.10.甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:分组[70,80[80,90[90,100[100,110频数34815分组[110,120[120,130[130,140[140,150]频数15x32乙校:分组[70,80[80,90[90,100[100,110频数1289分组[110,120[120,130[130,140[140,150]频数1010y3则x ,y 的值分别为 A 、12,7B 、 10,7C 、 10,8D 、 11,911.若f (x )=sin (2x+θ),则“f (x )的图象关于x=对称”是“θ=﹣”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件12.已知直线与圆交于两点,为直线上任意34110m x y +-=:22(2)4C x y -+=:A B 、P 3440n x y ++=:一点,则的面积为()PAB ∆A .B.C. D. 二、填空题13.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ .14.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题:①存在一条定直线与所有的圆均相切;②存在一条定直线与所有的圆均相交;③存在一条定直线与所有的圆均不相交;④所有的圆均不经过原点.其中真命题的代号是 (写出所有真命题的代号). 15.已知f (x )=x (e x +a e -x )为偶函数,则a =________.16.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 . 17.曲线在点(3,3)处的切线与轴x 的交点的坐标为 .18.已知数列{a n }中,a 1=1,a n+1=a n +2n ,则数列的通项a n = .三、解答题19.(本小题满分10分)已知圆过点,.P )0,1(A )0,4(B (1)若圆还过点,求圆的方程; P )2,6(-C P (2)若圆心的纵坐标为,求圆的方程.P P 20.在极坐标系中,圆C 的极坐标方程为:ρ2=4ρ(cos θ+sin θ)﹣6.若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系.(Ⅰ)求圆C 的参数方程;(Ⅱ)在直角坐标系中,点P (x ,y )是圆C 上动点,试求x+y 的最大值,并求出此时点P 的直角坐标.21.已知椭圆C:+=1(a>b>0)的一个长轴顶点为A(2,0),离心率为,直线y=k(x﹣1)与椭圆C交于不同的两点M,N,(Ⅰ)求椭圆C的方程;(Ⅱ)当△AMN的面积为时,求k的值.22.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD﹣A1C1D1,且这个几何体的体积为10.(Ⅰ)求棱AA1的长;(Ⅱ)若A1C1的中点为O1,求异面直线BO1与A1D1所成角的余弦值.23.设极坐标与直角坐标系xOy有相同的长度单位,原点O为极点,x轴坐标轴为极轴,曲线C1的极坐标方程为ρ2cos2θ+3=0,曲线C2的参数方程为(t是参数,m是常数).(Ⅰ)求C 1的直角坐标方程和C 2的普通方程;(Ⅱ)若C 1与C 2有两个不同的公共点,求m 的取值范围. 24.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位得到的数据:赞同反对合计男50 150200女30 170 200合计80320400(Ⅰ)能否有能否有的把握认为对这一问题的看法与性别有关?97.5%(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述发言,设发言的女士人数为,求的分布列和期望.X X 参考公式:,22()K ()()()()n ad bc a b c d a c b d -=++++()n a b c d =+++城区二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于轴对称,单调性在轴两侧相反,即在时单调递增,当时,y y 0x >0x <函数单调递减.结合和对称性,可知,再结合函数的单调性,结合图象就可以求得最后的(5)0f =(5)0f ±=解集.12. 【答案】B【解析】解:由f (x )图象单调性可得f ′(x )在(﹣∞,﹣1)∪(0,+∞)大于0,在(﹣1,0)上小于0,∴f (x )f ′(x )<0的解集为(﹣∞,﹣2)∪(﹣1,0).故选B . 3. 【答案】C【解析】由始终满足可知.由函数是奇函数,排除;当时,||)(x a x f =1)(≥x f 1>a 3||log x x y a =B )1,0(∈x ,此时,排除;当时,,排除,因此选.0||log <x a 0||log 3<=x x y a A +∞→x 0→y D C 4. 【答案】C【解析】当时,,所以,故选C .{2,1,1,2,4}x ∈--2log ||1{1,1,0}y x =-∈-A B =I {1,1}-5. 【答案】D【解析】解:A ∩B={x|﹣2<x <1}∩{x|0<x <2}={x|0<x <1}.故选D . 6. 【答案】D【解析】易知周期,∴.由(),得112()1212T π5π=-=π22T ωπ==52212k ϕπ⨯+=πk ∈Z 526k ϕπ=-+π(),可得,所以,则,故选D.k Z ∈56ϕπ=-5()2cos(26f x x π=-5(0)2cos()6f π=-=7. 【答案】A【解析】解:∵b=(﹣)﹣0.8=20.8<21.2=a ,且b >1,又c=2log 52=log 54<1,∴c <b <a .故选:A . 8. 【答案】A【解析】解:由题意得:2x ﹣1≥0,即2x ≥1=20,因为2>1,所以指数函数y=2x 为增函数,则x ≥0.所以函数的定义域为[0,+∞)故选A【点评】本题为一道基础题,要求学生会根据二次根式的定义及指数函数的增减性求函数的定义域. 9. 【答案】B第10.【答案】B 【解析】 1从甲校抽取110×=60人,1 2001 200+1 000从乙校抽取110×=50人,故x =10,y =7.1 0001 200+1 00011.【答案】B【解析】解:若f (x )的图象关于x=对称,则2×+θ=+k π,解得θ=﹣+k π,k ∈Z ,此时θ=﹣不一定成立,反之成立,即“f (x )的图象关于x=对称”是“θ=﹣”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键. 12.【答案】 C【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,之间的距离为,∴C m 1d =||AB ==m n 、3d '=PAB∆的面积为,选C .1||2AB d '⋅=二、填空题13.【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f ′(x )>0或f ′(x )<0求单调区间;第二步:解f ′(x )=0得两个根x 1、x 2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.14.【答案】 ②④ 【解析】解:根据题意得:圆心(k ﹣1,3k ),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确;考虑两圆的位置关系,圆k :圆心(k ﹣1,3k ),半径为k 2,圆k+1:圆心(k ﹣1+1,3(k+1)),即(k ,3k+3),半径为(k+1)2,两圆的圆心距d==,两圆的半径之差R ﹣r=(k+1)2﹣k 2=2k+,任取k=1或2时,(R ﹣r >d ),C k 含于C k+1之中,选项①错误;若k 取无穷大,则可以认为所有直线都与圆相交,选项③错误;将(0,0)带入圆的方程,则有(﹣k+1)2+9k 2=2k 4,即10k 2﹣2k+1=2k 4(k ∈N*),因为左边为奇数,右边为偶数,故不存在k 使上式成立,即所有圆不过原点,选项④正确.则真命题的代号是②④.故答案为:②④【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题. 15.【答案】【解析】解析:∵f(x)是偶函数,∴f(-x)=f(x)恒成立,即(-x)(e-x+a e x)=x(e x+a e-x),∴a(e x+e-x)=-(e x+e-x),∴a=-1.答案:-116.【答案】 A .【解析】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.17.【答案】 (,0) .【解析】解:y′=﹣,∴斜率k=y′|x=3=﹣2,∴切线方程是:y﹣3=﹣2(x﹣3),整理得:y=﹣2x+9,令y=0,解得:x=,故答案为:.【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题.18.【答案】 2n﹣1 .【解析】解:∵a1=1,a n+1=a n+2n,∴a2﹣a1=2,a3﹣a2=22,…a n﹣a n﹣1=2n﹣1,相加得:a n﹣a1=2+22+23+2…+2n﹣1,a n=2n﹣1,故答案为:2n﹣1,三、解答题19.【答案】(1);(2).047522=++-+y x y x 425)2(25(22=-+-y x 【解析】试题分析:(1)当题设给出圆上三点时,求圆的方程,此时设圆的一般方程,将022=++++F Ey Dx y x 三点代入,求解圆的方程;(2)AB 的垂直平分线过圆心,所以圆心的横坐标为,圆心与圆上任一点连线25段为半径,根据圆心与半径求圆的标准方程.试题解析:(1)设圆的方程是,则由已知得P 022=++++F Ey Dx y x ,解得.⎪⎩⎪⎨⎧=+-+-+=++++=++++026)2(6004040001222222F E D F D F D ⎪⎩⎪⎨⎧==-=475F E D 故圆的方程为.P 047522=++-+y x y x (2)由圆的对称性可知,圆心的横坐标为,故圆心,P 25241=+)2,25(P 故圆的半径,P 25)20()251(||22=-+-==AP r 故圆的标准方程为.P 425)2()25(22=-+-y x 考点:圆的方程20.【答案】【解析】(本小题满分10分)选修4﹣4:坐标系与参数方程解:(Ⅰ)因为ρ2=4ρ(cos θ+sin θ)﹣6,所以x 2+y 2=4x+4y ﹣6,所以x 2+y 2﹣4x ﹣4y+6=0,即(x ﹣2)2+(y ﹣2)2=2为圆C 的普通方程.…所以所求的圆C 的参数方程为(θ为参数).…(Ⅱ)由(Ⅰ)可得,…当时,即点P 的直角坐标为(3,3)时,…x+y 取到最大值为6.…21.【答案】【解析】解:(Ⅰ)∵椭圆一个顶点为A (2,0),离心率为,∴∴b=∴椭圆C的方程为;(Ⅱ)直线y=k(x﹣1)与椭圆C联立,消元可得(1+2k2)x2﹣4k2x+2k2﹣4=0设M(x1,y1),N(x2,y2),则x1+x2=,∴|MN|==∵A(2,0)到直线y=k(x﹣1)的距离为∴△AMN的面积S=∵△AMN的面积为,∴∴k=±1.【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查三角形面积的计算,解题的关键是正确求出|MN|.22.【答案】【解析】解:(Ⅰ)设AA1=h,由题设=﹣=10,∴即,解得h=3.故A1A的长为3.(Ⅱ)∵在长方体中,A1D1∥BC,∴∠O1BC为异面直线BO1与A1D1所成的角(或其补角).在△O1BC中,AB=BC=2,A1A=3,∴AA1=BC1=,=,∴,则cos∠O1BC===.∴异面直线BO1与A1D1所成角的余弦值为.【点评】本题主要考查了点,线和面间的距离计算.解题的关键是利用了法向量的方法求点到面的距离. 23.【答案】【解析】解:(I )曲线C 1的极坐标方程为ρ2cos2θ+3=0,即ρ2(cos 2θ﹣sin 2θ)+3=0,可得直角坐标方程:x 2﹣y 2+3=0.曲线C 2的参数方程为(t 是参数,m 是常数),消去参数t 可得普通方程:x ﹣2y ﹣m=0.(II )把x=2y+m 代入双曲线方程可得:3y 2+4my+m 2+3=0,由于C 1与C 2有两个不同的公共点,∴△=16m 2﹣12(m 2+3)>0,解得m <﹣3或m >3,∴m <﹣3或m >3.【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与双曲线的位置关系,考查了推理能力与计算能力,属于中档题.24.【答案】【解析】【命题意图】本题考查统计案例、超几何分布、分层抽样等基础知识,意在考查统计思想和基本运算能力.的分布列为:X 的数学期望为X ………………12分()51515190123282856568E X =⨯+⨯+⨯+⨯=X0123P 52815281556156。
城区二中2018-2019学年高三上学期11月月考数学试卷含答案(1)
城区二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数2. 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( ) A.B.C.D.3. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点 )0,43(π,则ω的最小值是( ) A .31 B . C .35D .4. 下列说法正确的是( )A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.5.不等式≤0的解集是( )A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]6. 函数y=x 3﹣x 2﹣x 的单调递增区间为( )A.B.C.D.7. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在方向上的投影为( )A.B.﹣C.D.﹣8. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 29. 已知全集U R =,{|239}xA x =<≤,{|02}B y y =<≤,则有( )A .A ØB B .A B B =C .()R A B ≠∅ðD .()R A B R =ð10.+(a ﹣4)0有意义,则a 的取值范围是( )A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠4班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β12.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且c=2a ,则cosB=( )A .B .C .D .二、填空题13.在直角三角形ABC 中,∠ACB=90°,AC=BC=2,点P 是斜边AB 上的一个三等分点,则= .14.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .15.函数y=lgx 的定义域为 .16.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .17.数列{a n }是等差数列,a 4=7,S 7= .18.若函数63e ()()32e x xbf x x a =-∈R 为奇函数,则ab =___________. 【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.三、解答题19.(本小题满分12分)已知()()2,1,0,2A B 且过点()1,1P -的直线与线段AB 有公共点, 求直 线的斜率的取值范围.20.如图所示,一动圆与圆x 2+y 2+6x+5=0外切,同时与圆x 2+y 2﹣6x ﹣91=0内切,求动圆圆心M 的轨迹方程,并说明它是什么样的曲线.21.已知函数f (x )=lnx 的反函数为g (x ).(Ⅰ)若直线l :y=k 1x 是函数y=f (﹣x )的图象的切线,直线m :y=k 2x 是函数y=g (x )图象的切线,求证:l ⊥m ;(Ⅱ)设a ,b ∈R ,且a ≠b ,P=g (),Q=,R=,试比较P ,Q ,R 的大小,并说明理由.22.(本小题满分10分)选修4-5:不等式选讲 已知函数|1||2|)(+--=x x x f ,x x g -=)(. (1)解不等式)()(x g x f >;(2)对任意的实数,不等式)()(22)(R m m x g x x f ∈+≤-恒成立,求实数m 的最小值.111]23.如图所示,在菱形ABCD 中,对角线AC ,BD 交于E 点,F ,G 分别为AD ,BC 的中点,AB=2,∠DAB=60°,沿对角线BD 将△ABD 折起,使得AC=.(1)求证:平面ABD ⊥平面BCD ; (2)求二面角F ﹣DG ﹣C 的余弦值.24.(本小题满分12分)如图,在直二面角C AB E --中,四边形ABEF 是矩形,2=AB ,32=AF ,ABC ∆是以A 为直角顶点的等腰直角三角形,点P 是线段BF 上的一点,3=PF . (1)证明:⊥FB 面PAC ;(2)求异面直线PC 与AB 所成角的余弦值.PCABEF城区二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:∵对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,∴令x1=x2=0,得f(0)=﹣1∴令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1,∴f(x)+1=﹣f(﹣x)﹣1=﹣[f(﹣x)+1],∴f(x)+1为奇函数.故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.2.【答案】C【解析】解:如图所示,△BCD是圆内接等边三角形,过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,显然当弦为CD时就是△BCD的边长,要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,记事件A={弦长超过圆内接等边三角形的边长}={弦中点在内切圆内},由几何概型概率公式得P(A)=,即弦长超过圆内接等边三角形边长的概率是.故选C.【点评】本题考查了几何概型的运用;关键是找到事件A对应的集合,利用几何概型公式解答.3.【答案】D考点:由()ϕω+=x A y sin 的部分图象确定其解析式;函数()ϕω+=x A y sin 的图象变换. 4. 【答案】C 【解析】考点:几何体的结构特征. 5. 【答案】D【解析】解:依题意,不等式化为,解得﹣1<x ≤2, 故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.6. 【答案】A【解析】解:∵y=x 3﹣x 2﹣x ,∴y ′=3x 2﹣2x ﹣1,令y ′≥0即3x 2﹣2x ﹣1=(3x+1)(x ﹣1)≥0解得:x ≤﹣或x ≥1故函数单调递增区间为,故选:A .【点评】本题主要考查导函数的正负和原函数的单调性的关系.属基础题.7. 【答案】D【解析】解:∵;∴在方向上的投影为==.故选D .【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算.8. 【答案】B【解析】解:根据题意球的半径R 满足(2R )2=6a 2, 所以S 球=4πR 2=6πa 2.故选B9. 【答案】A【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A . 10.【答案】B【解析】解:∵+(a ﹣4)0有意义,∴,解得2≤a <4或a >4. 故选:B .11.【答案】D【解析】【分析】由题设条件,平面α∩β=l ,m 是α内不同于l 的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面; 综上D 选项中的命题是错误的 故选D12.【答案】B【解析】解:△ABC 中,a 、b 、c 成等比数列,则b 2=ac , 由c=2a ,则b=a ,=,故选B .【点评】本题考查余弦定理的运用,要牢记余弦定理的两种形式,并能熟练应用.二、填空题13.【答案】 4 .【解析】解:由题意可建立如图所示的坐标系可得A (2,0)B (0,2),P (,)或P (,),故可得=(,)或(,),=(2,0),=(0,2),所以+=(2,0)+(0,2)=(2,2),故==(,)•(2,2)=4或=(,)•(2,2)=4, 故答案为:4【点评】本题考查平面向量的数量积的运算,建立坐标系是解决问题的关键,属基础题.14.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x ﹣1)2++y 2=1 故圆的圆心为(1,0),半径为1 直线与圆相切∴圆心到直线的距离为半径 即=1,求得m=8或﹣18故答案为:8或﹣1815.【答案】 {x|x >0} .【解析】解:对数函数y=lgx 的定义域为:{x|x >0}.故答案为:{x|x >0}.【点评】本题考查基本函数的定义域的求法.16.【答案】 9 .【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22, 所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18, 所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:917.【答案】49【解析】解:==7a 4 =49. 故答案:49.【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解.18.【答案】2016【解析】因为函数()f x 为奇函数且x ∈R ,则由(0)0f =,得0063e 032e ba -=,整理,得2016ab =. 三、解答题19.【答案】3k ≤-或2k ≥. 【解析】试题分析:根据两点的斜率公式,求得2PA k =,3PB k =-,结合图形,即可求解直线的斜率的取值范围.试题解析:由已知,11212PA k --==-,12310PB k --==-- 所以,由图可知,过点()1,1P -的直线与线段AB 有公共点,所以直线的斜率的取值范围是:3k ≤-或2k ≥.考点:直线的斜率公式.20.【答案】【解析】解:(方法一)设动圆圆心为M (x ,y ),半径为R ,设已知圆的圆心分别为O 1、O 2,将圆的方程分别配方得:(x+3)2+y 2=4,(x ﹣3)2+y 2=100, 当动圆与圆O 1相外切时,有|O 1M|=R+2…①当动圆与圆O2相内切时,有|O2M|=10﹣R…②将①②两式相加,得|O1M|+|O2M|=12>|O1O2|,∴动圆圆心M(x,y)到点O1(﹣3,0)和O2(3,0)的距离和是常数12,所以点M的轨迹是焦点为点O1(﹣3,0)、O2(3,0),长轴长等于12的椭圆.∴2c=6,2a=12,∴c=3,a=6∴b2=36﹣9=27∴圆心轨迹方程为,轨迹为椭圆.(方法二):由方法一可得方程,移项再两边分别平方得:2两边再平方得:3x2+4y2﹣108=0,整理得所以圆心轨迹方程为,轨迹为椭圆.【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键.21.【答案】【解析】解:(Ⅰ)∵函数f(x)=lnx的反函数为g(x).∴g(x)=e x.,f(﹣x)=ln(﹣x),则函数的导数g′(x)=e x,f′(x)=,(x<0),设直线m与g(x)相切与点(x1,),则切线斜率k2==,则x1=1,k2=e,设直线l与f(x)相切与点(x2,ln(﹣x2)),则切线斜率k1==,则x2=﹣e,k1=﹣,故k2k1=﹣×e=﹣1,则l⊥m.(Ⅱ)不妨设a>b,∵P﹣R=g()﹣=﹣=﹣<0,∴P<R,∵P﹣Q=g()﹣=﹣==,令φ(x)=2x﹣e x+e﹣x,则φ′(x)=2﹣e x﹣e﹣x<0,则φ(x)在(0,+∞)上为减函数,故φ(x)<φ(0)=0,取x=,则a ﹣b ﹣+<0,∴P <Q ,⇔==1﹣令t (x )=﹣1+,则t ′(x )=﹣=≥0,则t (x )在(0,+∞)上单调递增,故t (x )>t (0)=0,取x=a ﹣b ,则﹣1+>0,∴R >Q ,综上,P <Q <R ,【点评】本题主要考查导数的几何意义的应用以及利用作差法比较大小,考查学生的运算和推理能力,综合性较强,难度较大.22.【答案】(1)13|{<<-x x 或}3>x ;(2).【解析】试题解析:(1)由题意不等式)()(x g x f >可化为|1||2|+>+-x x x ,当1-<x 时,)1()2(+->+--x x x ,解得3->x ,即13-<<-x ;当21≤≤-x 时,1)2(+>+--x x x ,解得1<x ,即11<≤-x ;当2>x 时,12+>+-x x x ,解得3>x ,即3>x (4分)综上所述,不等式)()(x g x f >的解集为13|{<<-x x 或}3>x . (5分)(2)由不等式m x g x x f +≤-)(22)(可得m x x ++≤-|1||2|,分离参数m ,得|1||2|+--≥x x m ,∴max |)1||2(|+--≥x x m∵3|)1(2||1||2|=+--≤+--x x x x ,∴3≥m ,故实数m 的最小值是. (10分)考点:绝对值三角不等式;绝对值不等式的解法.123.【答案】【解析】(1)证明;在菱形ABCD 中,AB=2,∠DAB=60°,∴△ABD ,△CBD 为等边三角形,∵E 是BD 的中点,∴AE ⊥BD ,AE=CE=,∵AC=,∴AE 2+CE 2=AC 2,∴AE ⊥EC ,∴AE ⊥平面BCD ,又∵AE ⊂平面ABD ,∴平面ABD ⊥平面BCD ;(2)解:由(1)可知建立以E 为原点,EC 为x 轴,ED 为y 轴,EA 为z 轴的空间直角坐标系E ﹣xyz , 则D (0,1,0),C(,0,0),F (0,,)G(﹣,1,),平面CDG的一个法向量=(0,0,1),设平面FDG的法向量=(x ,y ,z),=(0,﹣,),=(﹣,1,)∴,即,令z=1,得x=3,y=, 故平面FDG的一个法向量=(3,,1), ∴cos==,∴二面角F ﹣DG ﹣C的余弦值为﹣.【点评】本题考查平面垂直,考查平面与平面所成的角,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.24.【答案】【解析】(1)证明:以A 为原点,建立空间直角坐标系,如图,则(0,0,0)A ,(2,0,0)B ,(0,2,0)C,F .∵4BF ==,3PF =,∴3(2P,(2,0,FB =-, (0,2,0)AC =,3(,0,22AP =. ∵0FB AC ⋅=,∴FB AC ⊥.∵0FB AP ⋅=,∴FB AP ⊥.∵FB AC ⊥,FB AP ⊥,ACAP A =, ∴FB ⊥平面APC .(2)∵(2,0,0)AB =,3(,2,2PC =-, 记AB 与PC 夹角为θ,则3cos =142AB PC AB PC θ⋅-==【方法2】(1)4FB =,cos cos PFA BFA ∠=∠=,PA==∵2223912PA PF AF +=+==,∴PA BF ⊥.∵平面ABEF ⊥平面ABC ,平面ABEF 平面ABC AB =,AB AC ⊥,AC ⊂平面ABC ,∴AC ⊥平面ABEF .∵BF ⊂平面ABEF ,∴AC BF ⊥.∵PA AC A =I ,∴BF ⊥平面PAC .(2)过P 作//,//PM AB PN AF ,分别交,BE BA 于,M N 点, MPC ∠的补角为PC 与AB 所成的角.连接MC ,NC .PN MB ==32AN =,52NC ==,BC =PC =,MC ==,135744cos 11422MPC +-∠===-⋅. ∴异面直线PC 与AB.。
城区二中2018-2019学年高三上学期11月月考数学试卷含答案(2)
城区二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.双曲线=1(m ∈Z )的离心率为( ) A.B .2C.D .32. 已知三次函数f (x )=ax 3+bx 2+cx+d的图象如图所示,则=( )A .﹣1B .2C .﹣5D .﹣33. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .120 4. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 5. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x>},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}6. 已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )A. B. C.1: D(1 7. 在△ABC 中,已知D 是AB边上一点,若=2,=,则λ=( )A.B. C.﹣ D.﹣8. 为了得到函数y=sin3x 的图象,可以将函数y=sin (3x+)的图象( )A.向右平移个单位 B.向右平移个单位 C.向左平移个单位 D.向左平移个单位班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用. 10.函数1ln(1)y x=-的定义域为( ) A . (,0]-∞ B .(0,1) C .(1,)+∞ D .(,0)(1,)-∞+∞11.将y=cos (2x+φ)的图象沿x 轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为( )A .B .﹣C .﹣D .12.在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件二、填空题13.17.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x=1对称.14.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .15.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k ,2k+1)”;其中所有正确结论的序号是 .16.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>xx e x f e (其 中为自然对数的底数)的解集为 .17.等比数列{a n}的公比q=﹣,a6=1,则S6=.18.在(2x+)6的二项式中,常数项等于(结果用数值表示).三、解答题19.中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0<p <1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率(Ⅰ)设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P′(列代数式表示)(Ⅱ)现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率.20.已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.21.设△ABC的内角A,B,C所对应的边长分别是a,b,c且cosB=,b=2(Ⅰ)当A=30°时,求a的值;(Ⅱ)当△ABC的面积为3时,求a+c的值.22.如图,四面体ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°,点E在BD上,且CE=DE.(Ⅰ)求证:AB⊥CE;(Ⅱ)若AC=CE,求二面角A﹣CD﹣B的余弦值.23.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.24.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.城区二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B【解析】解:由题意,m 2﹣4<0且m ≠0,∵m ∈Z ,∴m=1∵双曲线的方程是y 2﹣x 2=1 ∴a 2=1,b 2=3, ∴c 2=a 2+b 2=4∴a=1,c=2,∴离心率为e==2. 故选:B .【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c 2=a 2+b 2.2. 【答案】C【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,即2,﹣1是f ′(x )=0的两个根,∵f (x )=ax 3+bx 2+cx+d , ∴f ′(x )=3ax 2+2bx+c , 由f ′(x )=3ax 2+2bx+c=0,得2+(﹣1)==1,﹣1×2==﹣2,即c=﹣6a ,2b=﹣3a ,即f ′(x )=3ax 2+2bx+c=3ax 2﹣3ax ﹣6a=3a (x ﹣2)(x+1),则===﹣5,故选:C【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.3. 【答案】C【解析】解析:本题考查程序框图中的循环结构.121123mn n n n n m S C m---+=⋅⋅⋅⋅=,当8,10m n ==时,82101045m n C C C ===,选C .4. 【答案】B【解析】根据三角函数图象的平移变换理论可得,将)(x f 的图象向左平移4π个单位得到函数)4(π+x f 的图象,再将)4(π+x f 的图象向上平移3个单位得到函数3)4(++πx f 的图象,因此=)(x g 3)4(++πx f3)43sin(23]6)4(31sin[2++=+++=πππx x .5. 【答案】D【解析】解:由题意可知f (x )>0的解集为{x|﹣1<x <},故可得f (10x )>0等价于﹣1<10x<, 由指数函数的值域为(0,+∞)一定有10x>﹣1,而10x<可化为10x <,即10x<10﹣lg2,由指数函数的单调性可知:x <﹣lg2 故选:D6. 【答案】D 【解析】考点:1、抛物线的定义; 2、抛物线的简单性质.【 方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M 到焦点的距离转化为到准线的距离后进行解答的. 7. 【答案】A【解析】解:在△ABC 中,已知D 是AB 边上一点∵=2,=,∴=,∴λ=, 故选A .【点评】经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想,基底给定时,分解形式唯一,字母系数是被基底唯一确定的数量.8. 【答案】A【解析】解:由于函数y=sin (3x+)=sin[3(x+)]的图象向右平移个单位,即可得到y=sin[3(x+﹣)]=sin3x 的图象,故选:A .【点评】本题主要考查函数y=Asin (ωx+∅)的图象平移变换,属于中档题.9. 【答案】D 【解析】易知周期112()1212T π5π=-=π,∴22T ωπ==.由52212k ϕπ⨯+=π(k ∈Z ),得526k ϕπ=-+π(k Z ∈),可得56ϕπ=-,所以5()2cos(2)6f x x π=-,则5(0)2cos()6f π=-= D. 10.【答案】B 【解析】∵110x ->,∴10x x ->,∴10x x-<,∴01x <<. 11.【答案】D【解析】解:将y=cos (2x+φ)的图象沿x 轴向右平移个单位后,得到一个奇函数y=cos=cos (2x+φ﹣)的图象,∴φ﹣=k π+,即 φ=k π+,k ∈Z ,则φ的一个可能值为,故选:D .12.【答案】A【解析】解:∵sinB+sin (A ﹣B )=sinC=sin (A+B ), ∴sinB+sinAcosB ﹣cosAsinB=sinAcosB+cosAsinB , ∴sinB=2cosAsinB , ∵sinB ≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A二、填空题13.【答案】【解析】解:∵f(x)=a x g(x)(a>0且a≠1),∴=a x,又∵f′(x)g(x)>f(x)g′(x),∴()′=>0,∴=a x是增函数,∴a>1,∵+=.∴a1+a﹣1=,解得a=或a=2.综上得a=2.∴数列{}为{2n}.∵数列{}的前n项和大于62,∴2+22+23+…+2n==2n+1﹣2>62,即2n+1>64=26,∴n+1>6,解得n>5.∴n的最小值为6.故答案为:6.【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.14.【答案】6.【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;∴判断框中的条件为i<6?故答案为:6.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题15.【答案】①②④.【解析】解:∵x∈(1,2]时,f(x)=2﹣x.∴f(2)=0.f(1)=f(2)=0.∵f(2x)=2f(x),∴f(2k x)=2k f(x).①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.…一般地当x∈(2m,2m+1),则∈(1,2],f(x)=2m+1﹣x≥0,从而f(x)∈[0,+∞),故正确;③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,即2n﹣1=9,∴2n=10,∵n∈Z,∴2n=10不成立,故错误;④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.16.【答案】),0(【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得()()01>-'+x f x f ,结合要求的不等式可知在不等式两边同时乘以xe ,即()()0>-'+x x x e x f e x f e ,因此构造函数()()x x e x f e x g -=,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令()4=x f 也可以求解.117.【答案】 ﹣21 .【解析】解:∵等比数列{a n }的公比q=﹣,a 6=1,∴a 1(﹣)5=1,解得a 1=﹣32,∴S 6==﹣21故答案为:﹣2118.【答案】 240【解析】解:由(2x+)6,得=.由6﹣3r=0,得r=2.∴常数项等于.故答案为:240.三、解答题19.【答案】【解析】解:(Ⅰ)由题意可知:X ~B (9,p ),故EX=9p .在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:.通讯器械正常工作的概率P′=;(Ⅱ)当电路板上有11个元件时,考虑前9个元件,为使通讯器械正常工作,前9个元件中至少有4个元件正常工作.①若前9个元素有4个正常工作,则它的概率为:.此时后两个元件都必须正常工作,它的概率为:p2;②若前9个元素有5个正常工作,则它的概率为:.此时后两个元件至少有一个正常工作,它的概率为:;③若前9个元素至少有6个正常工作,则它的概率为:;此时通讯器械正常工作,故它的概率为:P″=p2++,可得P″﹣P′=p2+﹣,==.故当p=时,P″=P′,即增加2个元件,不改变通讯器械的有效率;当0<p时,P″<P′,即增加2个元件,通讯器械的有效率降低;当p时,P″>P′,即增加2个元件,通讯器械的有效率提高.【点评】本题考查二项分布,考查了相互独立事件及其概率,关键是对题意的理解,属概率统计部分难度较大的题目.20.【答案】【解析】解:(1)由||x﹣1|+2|<5,得﹣5<|x﹣1|+2<5∴﹣7<|x﹣1|<3,得不等式的解为﹣2<x<4…(2)因为任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,所以{y|y=f(x)}⊆{y|y=g(x)},又f(x)=|2x﹣a|+|2x+3|≥|(2x﹣a)﹣(2x+3)|=|a+3|,g(x)=|x﹣1|+2≥2,所以|a+3|≥2,解得a≥﹣1或a≤﹣5,所以实数a的取值范围为a≥﹣1或a≤﹣5.…【点评】本题考查函数的恒成立,绝对值不等式的解法,考查分析问题解决问题的能力以及转化思想的应用.21.【答案】【解析】解:(Ⅰ)∵cosB=,B∈(0,π),∴sinB==,由正弦定理可知:,∴a=.(Ⅱ)∵S△ABC===3,∴ac=.由余弦定理得:b2=a2+c2﹣2accosB=(a+c)2﹣2ac﹣2ac×=4,∴(a+c)2=+4=28,故:a+c=2.22.【答案】【解析】解:(Ⅰ)证明:△BCD中,CB=CD,∠BCD=120°,∴∠CDB=30°,∵EC=DE,∴∠DCE=30°,∠BCE=90°,∴EC⊥BC,又∵平面ABC⊥平面BCD,平面ABC与平面BCD的交线为BC,∴EC⊥平面ABC,∴EC⊥AB.(Ⅱ)解:取BC的中点O,BE中点F,连结OA,OF,∵AC=AB,∴AO⊥BC,∵平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AO⊥平面BCD,∵O是BC中点,F是BE中点,∴OF⊥BC,以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系,设DE=2,则A(0,0,1),B(0,,0),C(0,﹣,0),D(3,﹣2,0),∴=(0,﹣,﹣1),=(3,﹣,0),设平面ACD的法向量为=(x,y,z),则,取x=1,得=(1,,﹣3),又平面BCD的法向量=(0,0,1),∴cos<>==﹣,∴二面角A﹣CD﹣B的余弦值为.【点评】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用.本小题对考生的空间想象能力与运算求解能力有较高要求.23.【答案】【解析】解:(1)y=﹣2x 2+40x ﹣98,x ∈N *.(2)由﹣2x 2+40x ﹣98>0解得,,且x ∈N *,所以x=3,4,,17,故从第三年开始盈利.(3)由,当且仅当x=7时“=”号成立,所以按第一方案处理总利润为﹣2×72+40×7﹣98+30=114(万元).由y=﹣2x 2+40x ﹣98=﹣2(x ﹣10)2+102≤102,所以按第二方案处理总利润为102+12=114(万元). ∴由于第一方案使用时间短,则选第一方案较合理.24.【答案】(1)3,2,1;(2)710. 【解析】111]试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有10种情况,其中第组的名志愿者12,B B 至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1(2)记第3组的3名志愿者为123,,A A A ,第4组的2名志愿者为12,B B ,则从5名志愿者中抽取2名志愿者有12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共10种,其中第4组的2名志愿者12,B B 至少有一名志愿者被抽中的有11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共7种,所以第4组至少有一名志愿都被抽中的概率为710. 考点:1、分层抽样的应用;2、古典概型概率公式.。
城区二中2018-2019学年高三上学期11月月考数学试卷含答案
12.设 x,y∈R,且满足 A.1 B.2
二、填空题
13.在 ABC 中,有等式:① a sin A b sin B ;② a sin B b sin A ;③ a cos B b cos A ;④
a bc .其中恒成立的等式序号为_________. sin A sin B sin C
2 形或直角三角形,所以不正确;对于②中, a sin B b sin A ,即 sin A sin B sin B sin A 恒成立,所以是正
确的;对于③中, a cos B b cos A ,可得 sin( B A) 0 ,不满足一般三角形,所以不正确;对于④中,由 正弦定理以及合分比定理可知
第 6 页,共 12 页
∴|AB|的最小值为 4, 当 AB⊥x 轴时,|AB|取得最小值为 4, ∴ =4,解得 b2=6,b= .
故选:D. 【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题. 9. 【答案】D 【解析】【分析】由题设条件,平面 α∩β=l,m 是 α 内不同于 l 的直线,结合四个选项中的条件,对结论进行 证明,找出不能推出结论的即可 【解答】解:A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行; B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面; C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线; D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面; 综上 D 选项中的命题是错误的 故选 D 10.【答案】A 【解析】解:当 x>2 时,x>1 成立,即 x>1 是 x>2 的必要不充分条件是, x<1 是 x>2 的既不充分也不必要条件, x>3 是 x>2 的充分条件, x<3 是 x>2 的既不充分也不必要条件, 故选:A 【点评】本题主要考查充分条件和必要条件的判断,比较基础. 11.【答案】A 【解析】解:由复数虚部的定义知,i﹣1 的虚部是 1, 故选 A. 【点评】该题考查复数的基本概念,属基础题. 12.【答案】D 【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2, ∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2, ∵(y﹣2)3+2y+sin(y﹣2)=6, ∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2, 设 f(t)=t3+2t+sint, 则 f(t)为奇函数,且 f'(t)=3t2+2+cost>0, 即函数 f(t)单调递增. 由题意可知 f(x﹣2)=﹣2,f(y﹣2)=2, 即 f(x﹣2)+f(y﹣2)=2﹣2=0, 即 f(x﹣2)=﹣f(y﹣2)=f(2﹣y),
城区第二中学2018-2019学年高三上学期11月月考数学试卷含答案
城区第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( )A .0.42B .0.28C .0.3D .0.72. 函数f (x ﹣)=x 2+,则f (3)=( )A .8B .9C .11D .103. 函数f (x )=3x +x 的零点所在的一个区间是( )A .(﹣3,﹣2)B .(﹣2,﹣1)C .(﹣1,0)D .(0,1)4. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积为、、,则( )1S 2S 3S A .B .C .D .123S S S <<123S S S >>213S S S <<213S S S >>5. 如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm ),则此几何体的表面积是()A .8cm 2B . cm 2C .12 cm 2D . cm 26. 已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为()A .[﹣9,+∞)B .[0,+∞)C .(﹣9,1)D .[﹣9,1)7. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( )A . 4B . ﹣4C . 2D . ﹣28. 若函数()()22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象关于直线12x π=对称,且当12172123x x ππ⎛⎫∈-- ⎪⎝⎭,,,12x x ≠时,()()12f x f x =,则()12f x x +等于()ABD9. 定义运算,例如.若已知,则=()A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( )A .3B .C .±D .以上皆非11.某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,则m 的值为()A .5B .7C .9D .1112.函数f (x )的定义域为[﹣1,1],图象如图1所示:函数g (x )的定义域为[﹣2,2],图象如图2所示,方程f (g (x ))=0有m 个实数根,方程g (f (x ))=0有n 个实数根,则m+n=()A .14B .12C .10D .8二、填空题13.阅读下图所示的程序框图,运行相应的程序,输出的的值等于_________. n 14.经过A (﹣3,115.已知.,0()1,0x e x f x x ì³ï=í<ïî16.在△ABC 中,a=4,b=5,= 17.如图,E ,F 分别为正方形2的正方形折起来,围成一18.设等差数列{a n }的前n 项和为S n ,若﹣1<a 3<1,0<a 6<3,则S 9的取值范围是 . 三、解答题19.已知集合A={x|1<x <3},集合B={x|2m <x <1﹣m}.(1)若A ⊆B ,求实数m 的取值范围;(2)若A ∩B=∅,求实数m 的取值范围.20.已知函数f (x )=lnx 的反函数为g (x ).(Ⅰ)若直线l :y=k 1x 是函数y=f (﹣x )的图象的切线,直线m :y=k 2x 是函数y=g (x )图象的切线,求证:l ⊥m ;(Ⅱ)设a ,b ∈R ,且a ≠b ,P=g (),Q=,R=,试比较P ,Q ,R 的大小,并说明理由. 21.(本小题满分12分)已知函数.21()cos cos 2f x x x x =--(1)求函数在上的最大值和最小值;()y f x =[0,2π(2)在中,角所对的边分别为,满足,,,求的值.1111]ABC ∆,,A B C ,,a b c 2c =3a =()0f B =sin A22.已知函数f (x )=.(1)求函数f (x )的最小正周期及单调递减区间;(2)当时,求f (x )的最大值,并求此时对应的x 的值.23.(本小题满分12分)某市拟定2016年城市建设三项重点工程,该市一大型城建公司准备参加这,,A B C 三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对三项重点工程竞标成功的概率分,,A B C 别为,,,已知三项工程都竞标成功的概率为,至少有一项工程竞标成功的概率为.a b 14()a b >12434(1)求与的值;a b (2)公司准备对该公司参加三个项目的竞标团队进行奖励,项目竞标成功奖励2万元,项目竞,,A B C A B 标成功奖励4万元,项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.C 【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.24.(本小题满分12分)已知在中,角所对的边分别为且ABC ∆C B A ,,,,,c b a .)3(sin ))(sin (sin c b C a b B A -=-+(Ⅰ)求角的大小;A(Ⅱ) 若,,求.2a =ABC ∆c b ,城区第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:∵口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,在口袋中摸球,摸到红球,摸到黑球,摸到白球这三个事件是互斥的摸出红球的概率是0.42,摸出白球的概率是0.28,∵摸出黑球是摸出红球或摸出白球的对立事件,∴摸出黑球的概率是1﹣0.42﹣0.28=0.3,故选C.【点评】本题考查互斥事件的概率,注意分清互斥事件与对立事件之间的关系,本题是一个简单的数字运算问题,只要细心做,这是一个一定会得分的题目.2.【答案】C【解析】解:∵函数=,∴f(3)=32+2=11.故选C.3.【答案】C【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,又f(﹣1)=﹣1<0,f(0)=30+0=1>0,∴f(﹣1)f(0)<0,可知:函数f(x)的零点所在的区间是(﹣1,0).故选:C.【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.4.【答案】A【解析】考点:棱锥的结构特征.5.【答案】C【解析】解:由已知可得:该几何体是一个四棱锥,侧高和底面的棱长均为2,故此几何体的表面积S=2×2+4××2×2=12cm2,故选:C .【点评】本题考查的知识点是棱柱、棱锥、棱台的体积和表面积,空间几何体的三视图,根据已知判断几何体的形状是解答的关键. 6. 【答案】D【解析】解:函数f (x )=lg (1﹣x )在(﹣∞,1)上递减,由于函数的值域为(﹣∞,1],则lg (1﹣x )≤1,则有0<1﹣x ≤10,解得,﹣9≤x <1.则定义域为[﹣9,1),故选D .【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题. 7. 【答案】D【解析】: 解:∵∥,∴﹣4﹣2x=0,解得x=﹣2.故选:D .8. 【答案】C 【解析】考点:函数的图象与性质.【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型.首先利用数形结合思想和转化化归思想可得()2122k k ππϕπ⨯+=+∈Z ,解得3πϕ=,从而()23f x x π⎛⎫=+ ⎪⎝⎭,再次利用数形结合思想和转化化归思想可得()()()()1122x f x x f x ,,,关于直线1112x π=-对称,可得12116x x π+=-,从而()121133f x x ππ⎛⎫+=-+=⎪⎝⎭.9.【答案】D【解析】解:由新定义可得,=== =.故选:D.【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.10.【答案】C【解析】解:∵a3,a9是方程3x2﹣11x+9=0的两个根,∴a3a9=3,又数列{a n}是等比数列,则a62=a3a9=3,即a6=±.故选C11.【答案】C【解析】解:若果树前n年的总产量S与n在图中对应P(S,n)点则前n年的年平均产量即为直线OP的斜率由图易得当n=9时,直线OP的斜率最大即前9年的年平均产量最高,故选C12.【答案】A【解析】解:由图象可知,若f(g(x))=0,则g(x)=﹣1或g(x)=0或g(x)=1;由图2知,g(x)=﹣1时,x=﹣1或x=1;g(x)=0时,x的值有3个;g(x)=1时,x=2或x=﹣2;故m=7;若g(f(x))=0,则f(x)=﹣1.5或f(x)=1.5或f(x)=0;由图1知,f(x)=1.5与f(x)=﹣1.5各有2个;f(x)=0时,x=﹣1,x=1或x=0;故n=7;故m+n=14;故选:A . 二、填空题13.【答案】6【解析】解析:本题考查程序框图中的循环结构.第1次运行后,;第2次运行后,9,2,2,S T n S T ===>;第3次运行后,;第4次运行后,13,4,3,S T n S T ===>17,8,4,S T n S T ===>;第5次运行后,,此时跳出循环,输出结果21,16,5,S T n S T ===>25,32,6,S T n S T ===<6n =程序结束.14.【答案】 x=﹣3 .【解析】解:经过A (﹣3,1),且平行于y 轴的直线方程为:x=﹣3.故答案为:x=﹣3. 15.【答案】(-【解析】函数在递增,当时,,解得;当时,,()f x [0,)+¥0x <220x ->0x -<<0x ³22x x ->解得,综上所述,不等式的解集为.01x £<2(2)()f x f x ->(-16.【答案】 1 .【解析】解:∵△ABC 中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.【点评】本题考查余弦定理,考查学生的计算能力,比较基础. 17.【答案】 .【解析】解:由题意图形折叠为三棱锥,底面为△EFC ,高为AC ,所以三棱柱的体积:××1×1×2=,故答案为:.【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力. 18.【答案】 (﹣3,21) .【解析】解:∵数列{a n}是等差数列,∴S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=6.∵﹣3<3a3<3,0<6a6<18,∴两式相加即得﹣3<S9<21.∴S9的取值范围是(﹣3,21).故答案为:(﹣3,21).【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.三、解答题19.【答案】【解析】解:(1)由A⊆B知:,得m≤﹣2,即实数m的取值范围为(﹣∞,﹣2];(2)由A∩B=∅,得:①若2m≥1﹣m即m≥时,B=∅,符合题意;②若2m<1﹣m即m<时,需或,得0≤m<或∅,即0≤m<,综上知m≥0.即实数m的取值范围为[0,+∞).【点评】本题主要考查集合的包含关系判断及应用,交集及其运算.解答(2)题时要分类讨论,以防错解或漏解.20.【答案】【解析】解:(Ⅰ)∵函数f(x)=lnx的反函数为g(x).∴g(x)=e x.,f(﹣x)=ln(﹣x),则函数的导数g′(x)=e x,f′(x)=,(x<0),设直线m与g(x)相切与点(x1,),则切线斜率k2==,则x1=1,k2=e,设直线l与f(x)相切与点(x2,ln(﹣x2)),则切线斜率k1==,则x2=﹣e,k1=﹣,故k 2k 1=﹣×e=﹣1,则l ⊥m .(Ⅱ)不妨设a >b ,∵P ﹣R=g ()﹣=﹣=﹣<0,∴P <R ,∵P ﹣Q=g ()﹣=﹣==,令φ(x )=2x ﹣e x +e ﹣x ,则φ′(x )=2﹣e x ﹣e ﹣x <0,则φ(x )在(0,+∞)上为减函数,故φ(x )<φ(0)=0,取x=,则a ﹣b ﹣+<0,∴P <Q ,⇔==1﹣令t (x )=﹣1+,则t ′(x )=﹣=≥0,则t (x )在(0,+∞)上单调递增,故t (x )>t (0)=0,取x=a ﹣b ,则﹣1+>0,∴R >Q ,综上,P <Q <R ,【点评】本题主要考查导数的几何意义的应用以及利用作差法比较大小,考查学生的运算和推理能力,综合性较强,难度较大.21.【答案】(1)最大值为,最小值为;(2.32-【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简()sin(2)16f x x π=--再利用的性质可求在上的最值;(2)利用,可得,()sin()(0,||2f x A x b πωϕωϕ=++><[0,2π()0f B =B 再由余弦定理可得,再据正弦定理可得.1AC sin A 试题解析:(2)因为,即()0f B =sin(216B π-=∵,∴,∴,∴(0,)B π∈112(,666B πππ-∈-262B ππ-=3B π=又在中,由余弦定理得,ABC ∆,所以.22212cos 49223732b c a c a π=+-⋅⋅=+-⨯⨯⨯=AC =由正弦定理得:,所以.sin sin b a B A =3sin A =sin A =考点:1.辅助角公式;2.性质;3.正余弦定理.()sin()(0,||2f x A x b πωϕωϕ=++><【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角.22.【答案】【解析】解:(1)f (x )=﹣=sin 2x+sinxcosx ﹣=+sin2x ﹣=sin (2x ﹣)…3分周期T=π,因为cosx ≠0,所以{x|x ≠+k π,k ∈Z}…5分当2x ﹣∈,即+k π≤x ≤+k π,x ≠+k π,k ∈Z 时函数f (x )单调递减,所以函数f (x )的单调递减区间为,,k ∈Z …7分(2)当,2x ﹣∈,…9分sin (2x ﹣)∈(﹣,1),当x=时取最大值,故当x=时函数f (x )取最大值为1…12分【点评】本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数最值的解法,属于基础题.23.【答案】【解析】(1)由题意,得,因为,解得.…………………4分11424131(1)(1)(1)44ab a b ⎧=⎪⎪⎨⎪----=⎪⎩a b >1213a b ⎧=⎪⎪⎨⎪=⎪⎩(Ⅱ)由题意,令竞标团队获得奖励金额为随机变量,X 则的值可以为0,2,4,6,8,10,12.…………5分X 而;;41433221)0(=⨯⨯==X P 1231(2)2344P X ==⨯⨯=; ;1131(4)2348P X ==⨯⨯=1211135(6)23423424P X ==⨯⨯+⨯⨯=; ;1211(8)23412P X ==⨯⨯=1111(10)23424P X ==⨯⨯=.…………………9分1111(12)23424P X ==⨯⨯=所以的分布列为:X X 024681012P 414181245121241241于是,.……………12分1115111()012345644824122424E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯2312=24.【答案】解:(Ⅰ)由正弦定理及已知条件有, 即. 3分2223c bc a b -=-bc a c b 3222=-+ 由余弦定理得:,又,故.6分232cos 222=-+=bc a c b A ),0(π∈A 6π=A (Ⅱ) ,,①, 8分ABC ∆3sin 21=∴A bc 34=∴bc 又由(Ⅰ)及得,② 10分2223c bc a b -=-,2=a 1622=+c b 由 ①②解得或. 12分32,2==c b 2,32==c b。
城区第二中学2018-2019学年高三上学期11月月考数学试卷含答案(1)
城区第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 复数Z=(i 为虚数单位)在复平面内对应点的坐标是( )A .(1,3)B .(﹣1,3)C .(3,﹣1)D .(2,4)2. 设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( )A .(0,1)B .(e ﹣1,1)C .(0,e ﹣1)D .(1,e )3. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .04.已知,则f{f[f (﹣2)]}的值为( ) A .0B .2C .4D .85. 下列正方体或四面体中,P 、Q 、R 、S 分别是所在棱的中点,这四个点不共面的一个图形是 ( )6. 已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )AB . C. D.7. 已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为( )A. B.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .D .8. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为( )A .4B .8C .10D .139. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系式如图所示,那么水瓶的形状是( )A .B .C .D .10.函数2-21y x x =-,[0,3]x ∈的值域为( ) A. B. C. D.11.双曲线的焦点与椭圆的焦点重合,则m 的值等于( )A .12B .20C .D .12.某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A.83 B .4 C.163D .203二、填空题13.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下: 甲说:“我们四人都没考好.” 乙说:“我们四人中有人考的好.” 丙说:“乙和丁至少有一人没考好.” 丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的 两人说对了.14.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“茭草形段”第一个问题“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.问底子在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,M 是BC 的中点,BM=2,AM=c ﹣b ,△ABC 面积的最大值为 .15.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .16.下列函数中,①;②y=;③y=log 2x+log x 2(x >0且x ≠1);④y=3x +3﹣x ;⑤;⑥;⑦y=log 2x 2+2最小值为2的函数是 (只填序号)17.下列四个命题申是真命题的是 (填所有真命题的序号) ①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等; ③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆.18.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF 的重心到准线距离为 .三、解答题19.设函数f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=﹣f(x),当x∈[0,2]时,f(x)=2x﹣x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)求f(0)+f(1)+f(2)+…+f(2015)的值.20.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.21.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=﹣1.(1)用定义证明f(x)在(0,+∞)上是减函数;(2)求函数f(x)的解析式.22.如图所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=20,PB=10,∠BAC的角平分线与BC和圆O分别交于点D和E.(Ⅰ)求证AB•PC=PA•AC(Ⅱ)求AD•AE的值.23.已知函数,(其中常数m>0)(1)当m=2时,求f(x)的极大值;(2)试讨论f(x)在区间(0,1)上的单调性;(3)当m∈[3,+∞)时,曲线y=f(x)上总存在相异两点P(x1,f(x1))、Q(x2,f(x2)),使得曲线y=f(x)在点P、Q处的切线互相平行,求x1+x2的取值范围.24.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a的值;(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.城区第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:复数Z===(1+2i)(1﹣i)=3+i在复平面内对应点的坐标是(3,1).故选:A.【点评】本题考查了复数的运算法则、几何意义,属于基础题.2.【答案】D【解析】解:由题意知:f(x)﹣lnx为常数,令f(x)﹣lnx=k(常数),则f(x)=lnx+k.由f[f(x)﹣lnx]=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,所以f(x)=lnx+e,f′(x)=,x>0.∴f(x)﹣f′(x)=lnx﹣+e,令g(x)=lnx﹣+﹣e=lnx﹣,x∈(0,+∞)可判断:g(x)=lnx﹣,x∈(0,+∞)上单调递增,g(1)=﹣1,g(e)=1﹣>0,∴x0∈(1,e),g(x0)=0,∴x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D.【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.3.【答案】B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法种数为2A44=48.故选B.【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.4.【答案】C【解析】解:∵﹣2<0∴f(﹣2)=0∴f(f(﹣2))=f(0)∵0=0∴f(0)=2即f(f(﹣2))=f(0)=2∵2>0∴f(2)=22=4即f{f[(﹣2)]}=f(f(0))=f(2)=4故选C.5.【答案】D【解析】考点:平面的基本公理与推论.6.【答案】A【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.7.【答案】B【解析】解:∵函数的周期为T==,∴ω=又∵函数的最大值是2,相应的x值为∴=,其中k∈Z取k=1,得φ=因此,f(x)的表达式为,故选B【点评】本题以一个特殊函数求解析式为例,考查由y=Asin(ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.8.【答案】C【解析】解:模拟执行程序,可得,当a≥b时,则输出a(b+1),反之,则输出b(a+1),∵2tan=2,lg=﹣1,∴(2tan)⊗lg=(2tan)×(lg+1)=2×(﹣1+1)=0,∵lne=1,()﹣1=5,∴lne⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,∴+=0+10=10.故选:C.9.【答案】A【解析】解:考虑当向高为H的水瓶中注水为高为H一半时,注水量V与水深h的函数关系.如图所示,此时注水量V与容器容积关系是:V<水瓶的容积的一半.对照选项知,只有A符合此要求.故选A.【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.10.【答案】A 【解析】试题分析:函数()222112y x x x =--=--在区间[]0,1上递减,在区间[]1,3上递增,所以当x=1时,()()min 12f x f ==-,当x=3时,()()max 32f x f ==,所以值域为[]2,2-。
城区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(3)
城区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .20 2.已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,若双曲线右支上存在一点P ,使得F 2关于直线PF 1的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .1<e<B .e>C .e>D .1<e<3. 用秦九韶算法求多项式f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2,当x=﹣2时,v 1的值为( ) A .1B .7C .﹣7D .﹣54. 已知椭圆,长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .85. 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( ) A .1B.C .2D .46. 已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率是( ) A.5B.2D.2【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力. 7.如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A.B.C.D.8. 如图,长方形ABCD 中,AB=2,BC=1,半圆的直径为AB .在长方形ABCD 内随机取一点,则该点取自阴影部分的概率是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A. B .1﹣ C. D .1﹣9. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )A .{2,1,0}--B .{1,0,1,2}-C .{2,1,0}--D .{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力. 10.已知a=log 23,b=8﹣0.4,c=sinπ,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a11.设a >0,b >0,若是5a 与5b的等比中项,则+的最小值为( )A .8B .4C .1D .12.已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(﹣1,0)D .(﹣∞,﹣1)二、填空题13.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.14.-23311+log 6-log 42()= . 15.设p :实数x 满足不等式x 2﹣4ax+3a 2<0(a <0),q :实数x 满足不等式x 2﹣x ﹣6≤0,已知¬p 是¬q 的必要非充分条件,则实数a 的取值范围是 .16.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________.17.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 . 18.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .三、解答题19.已知函数f (x )=2cosx (sinx+cosx )﹣1 (Ⅰ)求f (x )在区间[0,]上的最大值;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围.20.已知函数f(x)=a x(a>0且a≠1)的图象经过点(2,).(1)求a的值;(2)比较f(2)与f(b2+2)的大小;(3)求函数f(x)=a(x≥0)的值域.21.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t0,试确定t0的取值范围22.已知数列{a n}满足a1=,a n+1=a n+,数列{b n}满足b n=(Ⅰ)证明:b n∈(0,1)(Ⅱ)证明:=(Ⅲ)证明:对任意正整数n有a n.23.设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.24.函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示(Ⅰ)求函数f(x)的解析式(Ⅱ)在△ABC中,角A,B,C所对的边分别是a,b,c,其中a<c,f(A)=,且a=,b=,求△ABC的面积.城区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】B 【解析】试题分析:若{}n a 为等差数列,()()111212nn n na S d a n nn -+==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭为等差数列公差为2d ,2017171100,2000100,201717210S S d d ∴-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式. 2. 【答案】B【解析】解:设点F 2(c ,0),由于F 2关于直线PF 1的对称点恰在y 轴上,不妨设M 在正半轴上, 由对称性可得,MF 1=F 1F 2=2c , 则MO==c ,∠MF 1F 2=60°,∠PF 1F 2=30°,设直线PF 1:y=(x+c ),代入双曲线方程,可得,(3b 2﹣a 2)x 2﹣2ca 2x ﹣a 2c 2﹣3a 2b 2=0,则方程有两个异号实数根,则有3b 2﹣a 2>0,即有3b 2=3c 2﹣3a 2>a 2,即c>a ,则有e=>.故选:B .3. 【答案】C【解析】解:∵f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2 =(((((x ﹣5)x+6)x+0)x+2)x+0.3)x+2, ∴v 0=a 6=1,v 1=v 0x+a 5=1×(﹣2)﹣5=﹣7, 故选C .4. 【答案】D【解析】解:将椭圆的方程转化为标准形式为,显然m ﹣2>10﹣m ,即m >6,,解得m=8故选D【点评】本题主要考查了椭圆的简单性质.要求学生对椭圆中对长轴和短轴即及焦距的关系要明了.5.【答案】B【解析】解:设圆柱的高为h,则V圆柱=π×12×h=h,V球==,∴h=.故选:B.6.【答案】A.【解析】7.【答案】D【解析】古典概型及其概率计算公式.【专题】计算题;概率与统计.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;∴所求的概率为=故选D.【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.8.【答案】B【解析】解:由题意,长方形的面积为2×1=2,半圆面积为,所以阴影部分的面积为2﹣,由几何概型公式可得该点取自阴影部分的概率是;故选:B.【点评】本题考查了几何概型公式的运用,关键是明确几何测度,利用面积比求之.9. 【答案】C【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .10.【答案】B【解析】解:1<log 23<2,0<8﹣0.4=2﹣1.2,sin π=sin π,∴a >c >b , 故选:B .【点评】本题主要考查函数值的大小比较,根据对数函数,指数函数以及三角函数的图象和性质是解决本题的关键.11.【答案】B 【解析】解:∵是5a 与5b的等比中项, ∴5a •5b=()2=5,即5a+b =5, 则a+b=1,则+=(+)(a+b )=1+1++≥2+2=2+2=4,当且仅当=,即a=b=时,取等号, 即+的最小值为4, 故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换.12.【答案】D【解析】解:若a=0,则函数f (x )=﹣3x 2+1,有两个零点,不满足条件.若a ≠0,函数的f (x )的导数f ′(x )=6ax 2﹣6x=6ax (x ﹣),若 f (x )存在唯一的零点x 0,且x 0>0,若a >0,由f ′(x )>0得x >或x <0,此时函数单调递增,由f ′(x )<0得0<x <,此时函数单调递减,故函数在x=0处取得极大值f (0)=1>0,在x=处取得极小值f (),若x 0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.若a <0,由f ′(x )>0得<x <0,此时函数递增,由f ′(x )<0得x <或x >0,此时函数单调递减,即函数在x=0处取得极大值f (0)=1>0,在x=处取得极小值f (),若存在唯一的零点x 0,且x 0>0,则f ()>0,即2a ()3﹣3()2+1>0,()2<1,即﹣1<<0,解得a <﹣1, 故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.二、填空题13.【答案】)3,0(【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.14.【答案】332【解析】试题分析:原式=233331334log log 16log 16log 1622+=+=++=。
城区第二中学2018-2019学年高三上学期11月月考数学试卷含答案(2)
城区第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( ) A .(﹣1,2] B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)2. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±33. 已知直线l :2y kx =+过椭圆)0(12222>>=+b a b y a x 的上顶点B 和左焦点F ,且被圆224x y +=截得的弦长为L,若L ≥e 的取值范围是( ) (A ) ⎥⎦⎤⎝⎛550, ( B )0⎛⎝⎦ (C ) ⎥⎦⎤⎝⎛5530, (D ) ⎥⎦⎤⎝⎛5540, 4.是z 的共轭复数,若z+=2,(z﹣)i=2(i 为虚数单位),则z=( ) A .1+i B .﹣1﹣iC .﹣1+iD .1﹣i5. 如图所示的程序框图,若输入的x 值为0,则输出的y 值为( )A. B .0 C .1 D.或06. 给出下列函数: ①f (x )=xsinx ; ②f (x )=e x +x ; ③f (x )=ln(﹣x );∃a >0,使f (x )dx=0的函数是( ) A .①②B .①③C .②③D .①②③7. 已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,则不等式x 2f()﹣f (x )>0的解集为( )A .(0,1)B .(1,2)C .(1,+∞)D .(2,+∞)班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V≈L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L 2h 相当于将圆锥体积公式中的π近似取为( )A.B.C.D.9. 实数x ,y满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )A .(1,1)B .(0,3) C.(,2) D.(,0)10.有以下四个命题: ①若=,则x=y . ②若lgx 有意义,则x >0. ③若x=y,则=.④若x >y ,则 x 2<y 2. 则是真命题的序号为( ) A .①②B .①③C .②③D .③④11.如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )A1 B1C. 1 D1 12.若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( )A .B .12C .12- D .2-二、填空题13.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}22sincos []1x x +=的实数解为6π-;③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -;④当0100x ≤≤时,函数{}22()sin []sin 1f x x x =+-的零点个数为m ,函数{}()[]13xg x x x =⋅--的 零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。
城区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(2)
城区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若满足约束条件,则当取最大值时,的值为( )y x ,⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x 31++x y y x +A . B . C . D .1-3-32. 函数f (x )=()x2﹣9的单调递减区间为()A .(﹣∞,0)B .(0,+∞)C .(﹣9,+∞)D .(﹣∞,﹣9)3. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=()A .4B .425C .2D .2254. 若函数y=x 2+(2a ﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a 的取值范围是()A .[﹣,+∞)B .(﹣∞,﹣]C .[,+∞)D .(﹣∞,]5. 已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( )A .垂直B .平行C .重合D .相交但不垂直6. (﹣6≤a ≤3)的最大值为( )A .9B .C .3D .7. 已知α∈(0,π),且sin α+cos α=,则tan α=( )A .B .C .D .8. 已知椭圆,长轴在y 轴上,若焦距为4,则m 等于()A .4B .5C .7D .89. 已知AC ⊥BC ,AC=BC,D 满足=t +(1﹣t ),若∠ACD=60°,则t 的值为( )A .B .﹣C .﹣1D .10.已知向量=(2,1),=10,|+|=,则||=( )A .B .C .5D .2511.已知两不共线的向量,,若对非零实数m ,n 有m +n 与﹣2共线,则=( )A .﹣2B .2C .﹣D .12.棱长为的正方体的8个顶点都在球的表面上,则球的表面积为()2O O 班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .π4π6π8π10二、填空题13.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .14.不等式恒成立,则实数的值是__________.()2110ax a x +++≥15.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ .16.设不等式组表示的平面区域为M ,若直线l :y=k (x+2)上存在区域M 内的点,则k 的取值范围是 .17.已知实数x ,y 满足,则目标函数z=x ﹣3y 的最大值为 18.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k ,2k+1)”;其中所有正确结论的序号是 .三、解答题19.(本题满分12分)在中,已知角所对的边分别是,边,且ABC ∆,,A B C ,,a b c 72c =,又的面积为,求的值.tan tan tan A B A B +=-g ABC ∆ABC S ∆=a b +20.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).(1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.21.已知平面直角坐标系xoy 中的一个椭圆,它的中心在原点,左焦点为,右顶点为D (2,0),设点A (1,).(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程;(3)过原点O 的直线交椭圆于B ,C 两点,求△ABC 面积的最大值,并求此时直线BC 的方程.22.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且bcosC=3acosB ﹣ccosB .(Ⅰ)求cosB 的值;(Ⅱ)若,且,求a 和c 的值.23.(本小题满分10分)选修44:坐标系与参数方程.在直角坐标系中,曲线C 1:(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐{x =1+3cos αy =2+3sin α)标系,C 2的极坐标方程为ρ=.2sin (θ+π4)(1)求C 1,C 2的普通方程;(2)若直线C 3的极坐标方程为θ=(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面3π4积.24.如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2﹣6x﹣91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线.城区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】D 【解析】考点:简单线性规划.2. 【答案】B【解析】解:原函数是由t=x 2与y=()t ﹣9复合而成,∵t=x 2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;又y=()t ﹣9其定义域上为减函数,∴f (x )=()x2﹣9在(﹣∞,0)上是增函数,在(0,+∞)为减函数,∴函数ff (x )=()x2﹣9的单调递减区间是(0,+∞).故选:B .【点评】本题考查复合函数的单调性,讨论内层函数和外层函数的单调性,根据“同増异减”再来判断是关键. 3. 【答案】【解析】选D.设圆的方程为(x -a )2+(y -b )2=r 2(r >0).由题意得,{2a +b =0(-1-a )2+(-1-b )2=r 2(2-a )2+(2-b )2=r 2)解之得a =-1,b =2,r =3,∴圆的方程为(x +1)2+(y -2)2=9,令y =0得,x =-1±,5∴|MN |=|(-1+)-(-1-)|=2,选D.5554.【答案】B【解析】解:∵函数y=x2+(2a﹣1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又∵函数在区间(﹣∞,2]上是减函数,故2≤解得a≤﹣故选B.5.【答案】A【解析】解:由题意可得直线l1的斜率k1==1,又∵直线l2的倾斜角为135°,∴其斜率k2=tan135°=﹣1,显然满足k1•k2=﹣1,∴l1与l2垂直故选A6.【答案】B【解析】解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得函数f (a)的最大值为,故(﹣6≤a≤3)的最大值为=,故选B.【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.7.【答案】D【解析】解:将sinα+cosα=①两边平方得:(sinα+cosα)2=1+2sinαcosα=,即2sinαcosα=﹣<0,∵0<α<π,∴<α<π,∴sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②解得:sinα=,cosα=﹣,则tanα=﹣.故选:D.8.【答案】D【解析】解:将椭圆的方程转化为标准形式为,显然m﹣2>10﹣m,即m>6,,解得m=8故选D【点评】本题主要考查了椭圆的简单性质.要求学生对椭圆中对长轴和短轴即及焦距的关系要明了.9.【答案】A【解析】解:如图,根据题意知,D在线段AB上,过D作DE⊥AC,垂足为E,作DF⊥BC,垂足为F;若设AC=BC=a,则由得,CE=ta,CF=(1﹣t)a;根据题意,∠ACD=60°,∠DCF=30°;∴;即;解得.故选:A.【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义.10.【答案】C【解析】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注意对于变量的应用.11.【答案】C【解析】解:两不共线的向量,,若对非零实数m,n有m+n与﹣2共线,∴存在非0实数k 使得m +n =k (﹣2)=k ﹣2k ,或k (m +n )=﹣2,∴,或,则=﹣.故选:C .【点评】本题考查了向量共线定理、向量共面的基本定理,考查了推理能力与计算能力,属于中档题. 12.【答案】B 【解析】考点:球与几何体二、填空题13.【答案】 .【解析】解:ρ==,tan θ==﹣1,且0<θ<π,∴θ=.∴点P 的极坐标为.故答案为:.14.【答案】1a =【解析】试题分析:因为不等式恒成立,所以当时,不等式可化为,不符合题意;()2110ax a x +++≥0a =10x +≥当时,应满足,即,解得.10a ≠20(1)40a a a >⎧⎨∆=+-≤⎩2(1)0a a >⎧⎨-≤⎩1a =考点:不等式的恒成立问题.15.【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.16.【答案】 .【解析】解:作出不等式组对应的平面区域,直线y=k(x+2)过定点D(﹣2,0),由图象可知当直线l经过点A时,直线斜率最大,当经过点B时,直线斜率最小,由,解得,即A(1,3),此时k==,由,解得,即B(1,1),此时k==,故k的取值范围是,故答案为:【点评】本题主要考查线性规划的应用以及直线斜率的公式的计算,利用数形结合是解决此类问题的基本方法.17.【答案】 5 【解析】解:由z=x﹣3y得y=,作出不等式组对应的平面区域如图(阴影部分):平移直线y=,由图象可知当直线y=经过点C时,直线y=的截距最小,此时z最大,由,解得,即C(2,﹣1).代入目标函数z=x ﹣3y ,得z=2﹣3×(﹣1)=2+3=5,故答案为:5.18.【答案】 ①②④ .【解析】解:∵x ∈(1,2]时,f (x )=2﹣x .∴f (2)=0.f (1)=f (2)=0.∵f (2x )=2f (x ),∴f (2k x )=2k f (x ).①f (2m )=f (2•2m ﹣1)=2f (2m ﹣1)=…=2m ﹣1f (2)=0,故正确;②设x ∈(2,4]时,则x ∈(1,2],∴f (x )=2f ()=4﹣x ≥0.若x ∈(4,8]时,则x ∈(2,4],∴f (x )=2f ()=8﹣x ≥0.…一般地当x ∈(2m ,2m+1),则∈(1,2],f (x )=2m+1﹣x ≥0,从而f (x )∈[0,+∞),故正确;③由②知当x ∈(2m ,2m+1),f (x )=2m+1﹣x ≥0,∴f (2n +1)=2n+1﹣2n ﹣1=2n ﹣1,假设存在n 使f (2n +1)=9,即2n ﹣1=9,∴2n =10,∵n ∈Z ,∴2n =10不成立,故错误;④由②知当x ∈(2k ,2k+1)时,f (x )=2k+1﹣x 单调递减,为减函数,∴若(a ,b )⊆(2k ,2k+1)”,则“函数f (x )在区间(a ,b )上单调递减”,故正确.故答案为:①②④. 三、解答题19.【答案】.112【解析】试题解析:由tan tan tan A B A B +=g可得,即.tan tan 1tan tan A BA B+=-g tan()A B +=∴,∴,∴tan()C π-=tan C -=tan C =∵,∴.(0,)C π∈3C π=又的面积为,∴,即.ABC ∆ABC S ∆=1sin 2ab C =12ab =6ab =又由余弦定理可得,∴,2222cos c a b ab C =+-2227(2cos 23a b ab π=+-∴,∴,∵,∴.122227()()32a b ab a b ab =+-=+-2121()4a b +=0a b +>112a b +=考点:解三角形问题.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到两角和与两角差的正切函数公式、三角形的面积、正弦定理和余弦定理,以及特殊角的三角函数值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,其中熟练掌握基本公式和灵活运用公式是解答本题的关键,属于中档试题.20.【答案】(1)(2)见解析(3)【解析】试题分析:(1)由题意转化为在区间上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,解不等式得实数的取值范围;(2)导函数有一个零点,再根据a 的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在x 轴上的截距,最后根据a 的正负以及基本不等式求截距的取值范围.试题解析:(1)函数的导函数,则在区间上恒成立,且等号不恒成立,又,所以在区间上恒成立,记,只需, 即,解得.(2)由,得,①当时,有;,所以函数在单调递增,单调递减,所以函数在取得极大值,没有极小值.②当时,有;,所以函数在单调递减,单调递增,所以函数在取得极小值,没有极大值.综上可知: 当时,函数在取得极大值,没有极小值;当时,函数在取得极小值,没有极大值.(3)设切点为,则曲线在点处的切线方程为,当时,切线的方程为,其在轴上的截距不存在.当时,令,得切线在轴上的截距为,当时,,当且仅当,即或时取等号;当时,,当且仅当,即或时取等号.所以切线在轴上的截距范围是.点睛:函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求→求方程的根→列表检验在的根的附近两侧的符号→下结论.(3)已知极值求参数.若函数在点处取得极值,则,且在该点左、右两侧的导数值符号相反.21.【答案】【解析】解;(1)由题意可设椭圆的标准方程为,c为半焦距.∵右顶点为D(2,0),左焦点为,∴a=2,,.∴该椭圆的标准方程为.(2)设点P(x0,y0),线段PA的中点M(x,y).由中点坐标公式可得,解得.(*)∵点P是椭圆上的动点,∴.把(*)代入上式可得,可化为.即线段PA的中点M的轨迹方程为一焦点在x轴上的椭圆.(3)①当直线BC的斜率不存在时,可得B(0,﹣1),C(0,1).∴|BC|=2,点A到y轴的距离为1,∴=1;②当直线BC的斜率存在时,设直线BC的方程为y=kx,B(x1,y1),C(﹣x1,﹣y1)(x1<0).联立,化为(1+4k2)x2=4.解得,∴.∴|BC|==2=.又点A到直线BC的距离d=.∴==,∴==,令f(k)=,则.令f′(k)=0,解得.列表如下:又由表格可知:当k=时,函数f(x)取得极小值,即取得最大值2,即.而当x→+∞时,f(x)→0,→1.综上可得:当k=时,△ABC的面积取得最大值,即.【点评】熟练掌握椭圆的标准方程及其性质、中点坐标公式及“代点法”、分类讨论的思想方法、直线与椭圆相交问题转化为直线的方程与椭圆的方程联立解方程组、两点间的距离公式、点到直线的距离公式、三角形的面积计算公式、利用导数研究函数的单调性及其极值.22.【答案】【解析】解:(I)由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,则2RsinBcosC=6RsinAcosB﹣2RsinCcosB,故sinBcosC=3sinAcosB﹣sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即sin(B+C)=3sinAcosB,可得sinA=3sinAcosB.又sinA≠0,因此.(II)解:由,可得accosB=2,,由b2=a2+c2﹣2accosB,可得a2+c2=12,所以(a﹣c)2=0,即a=c,所以.【点评】本题考查了正弦定理、余弦定理、两角和与差的正弦公式、诱导公式、向量数量积的定义等基础知识,考查了基本运算能力. 23.【答案】【解析】解:(1)由C 1:(α为参数){x =1+3cos αy =2+3sin α)得(x -1)2+(y -2)2=9(cos 2α+sin 2α)=9.即C 1的普通方程为(x -1)2+(y -2)2=9,由C 2:ρ=得2sin (θ+π4)ρ(sin θ+cos θ)=2,即x +y -2=0,即C 2的普通方程为x +y -2=0.(2)由C 1:(x -1)2+(y -2)2=9得x 2+y 2-2x -4y -4=0,其极坐标方程为ρ2-2ρcos θ-4ρsin θ-4=0,将θ=代入上式得3π4ρ2-ρ-4=0,2ρ1+ρ2=,ρ1ρ2=-4,2∴|MN |=|ρ1-ρ2|==3.(ρ1+ρ2)2-4ρ1ρ22C 3:θ=π(ρ∈R )的直角坐标方程为x +y =0,34∴C 2与C 3是两平行直线,其距离d ==.222∴△PMN 的面积为S =|MN |×d =×3×=3.121222即△PMN 的面积为3.24.【答案】【解析】解:(方法一)设动圆圆心为M (x ,y ),半径为R ,设已知圆的圆心分别为O 1、O 2,将圆的方程分别配方得:(x+3)2+y 2=4,(x ﹣3)2+y 2=100,当动圆与圆O 1相外切时,有|O 1M|=R+2…①当动圆与圆O 2相内切时,有|O 2M|=10﹣R …②将①②两式相加,得|O 1M|+|O 2M|=12>|O 1O 2|,∴动圆圆心M (x ,y )到点O 1(﹣3,0)和O 2(3,0)的距离和是常数12,所以点M 的轨迹是焦点为点O 1(﹣3,0)、O 2(3,0),长轴长等于12的椭圆.∴2c=6,2a=12,∴c=3,a=6∴b 2=36﹣9=27∴圆心轨迹方程为,轨迹为椭圆.(方法二):由方法一可得方程,移项再两边分别平方得:2两边再平方得:3x2+4y2﹣108=0,整理得所以圆心轨迹方程为,轨迹为椭圆.【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键. 。
城区二中2018-2019学年高三上学期11月月考数学试卷含答案(2)
城区二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 双曲线=1(m ∈Z )的离心率为()A .B .2C .D .32. 已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则=()A .﹣1B .2C .﹣5D .﹣33. 阅读右图所示的程序框图,若,则输出的的值等于()8,10m n ==S A .28B .36C .45D .1204. 将函数的图象向左平移个单位,再向上平移3个单位,得到函数的图象,)63sin(2)(π+=x x f 4π)(x g 则的解析式为( ))(x g A . B .3)43sin(2)(--=πx x g 343sin(2)(++=πx x g C .D .3123sin(2)(+-=πx x g 3)123sin(2)(--=πx x g 【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.5. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( )A .{x|x <﹣1或x >﹣lg2}B .{x|﹣1<x <﹣lg2}C .{x|x >﹣lg2}D .{x|x <﹣lg2}6. 已知抛物线:的焦点为,定点,若射线与抛物线交于点,与抛C 24y x =F (0,2)A FA C M 物线的准线交于点,则的值是( )C N||:||MNFN A .B .C .D2)21:(1+7. 在△ABC中,已知D 是AB 边上一点,若=2,=,则λ=( )A .B .C .﹣D .﹣8. 为了得到函数y=sin3x 的图象,可以将函数y=sin (3x+)的图象( )A .向右平移个单位B .向右平移个单位C .向左平移个单位D .向左平移个单位班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 函数(,)的部分图象如图所示,则 f (0)的值为( )()2cos()f x x ωϕ=+0ω>0ϕ-π<<A. B. C. D. 32-1-【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.10.函数的定义域为( )1ln(1)y x=- A .B .C .D .(,0]-∞(0,1)(1,)+∞(,0)(1,)-∞+∞U 11.将y=cos (2x+φ)的图象沿x 轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为()A .B .﹣C .﹣D .12.在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件二、填空题13.17.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x=1对称.14.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .15.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k ,2k+1)”;其中所有正确结论的序号是 . 16.定义在上的函数满足:,,则不等式(其R )(x f 1)(')(>+x f x f 4)0(=f 3)(+>xx e x f e中为自然对数的底数)的解集为.17.等比数列{a n}的公比q=﹣,a6=1,则S6= .18.在(2x+)6的二项式中,常数项等于 (结果用数值表示).三、解答题19.中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0<p <1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率(Ⅰ)设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P′(列代数式表示)(Ⅱ)现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率.20.已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.21.设△ABC的内角A,B,C所对应的边长分别是a,b,c且cosB=,b=2(Ⅰ)当A=30°时,求a的值;(Ⅱ)当△ABC的面积为3时,求a+c的值.22.如图,四面体ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°,点E在BD上,且CE=DE .(Ⅰ)求证:AB⊥CE;(Ⅱ)若AC=CE,求二面角A﹣CD﹣B的余弦值.23.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.24.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.城区二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B【解析】解:由题意,m 2﹣4<0且m ≠0,∵m ∈Z ,∴m=1∵双曲线的方程是y 2﹣x 2=1∴a 2=1,b 2=3,∴c 2=a 2+b 2=4∴a=1,c=2,∴离心率为e==2.故选:B .【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c 2=a 2+b 2.2. 【答案】C【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,即2,﹣1是f ′(x )=0的两个根,∵f (x )=ax 3+bx 2+cx+d ,∴f ′(x )=3ax 2+2bx+c ,由f ′(x )=3ax 2+2bx+c=0,得2+(﹣1)==1,﹣1×2==﹣2,即c=﹣6a ,2b=﹣3a ,即f ′(x )=3ax 2+2bx+c=3ax 2﹣3ax ﹣6a=3a (x ﹣2)(x+1),则===﹣5,故选:C【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力. 3. 【答案】C【解析】解析:本题考查程序框图中的循环结构.,当121123mnn n n n m S C m---+=⋅⋅⋅⋅=L 8,10m n ==时,,选C .82101045mn C C C ===4. 【答案】B【解析】根据三角函数图象的平移变换理论可得,将的图象向左平移个单位得到函数的图)(x f 4π4(π+x f象,再将的图象向上平移3个单位得到函数的图象,因此)4(π+x f 3)4(++πx f =)(x g 3)4(++πx f .3)43sin(23]6)4(31sin[2++=+++=πππx x 5. 【答案】D【解析】解:由题意可知f (x )>0的解集为{x|﹣1<x <},故可得f (10x )>0等价于﹣1<10x <,由指数函数的值域为(0,+∞)一定有10x >﹣1,而10x <可化为10x <,即10x <10﹣lg2,由指数函数的单调性可知:x <﹣lg2故选:D6. 【答案】D 【解析】考点:1、抛物线的定义; 2、抛物线的简单性质.【 方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将到焦点的距离转化为到准线的距离后进行解答的.M7. 【答案】A【解析】解:在△ABC 中,已知D 是AB 边上一点∵=2,=,∴=,∴λ=,故选A .【点评】经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想,基底给定时,分解形式唯一,字母系数是被基底唯一确定的数量. 8. 【答案】A【解析】解:由于函数y=sin (3x+)=sin[3(x+)]的图象向右平移个单位,即可得到y=sin[3(x+﹣)]=sin3x 的图象,故选:A .【点评】本题主要考查函数y=Asin (ωx+∅)的图象平移变换,属于中档题. 9. 【答案】D【解析】易知周期,∴.由(),得112()1212T π5π=-=π22T ωπ==52212k ϕπ⨯+=πk ∈Z 526k ϕπ=-+π(),可得,所以,则,故选D.k Z ∈56ϕπ=-5()2cos(26f x x π=-5(0)2cos()6f π=-=10.【答案】B 【解析】∵,∴,∴,∴.110x ->10x x ->10x x-<01x <<11.【答案】D【解析】解:将y=cos (2x+φ)的图象沿x 轴向右平移个单位后,得到一个奇函数y=cos=cos (2x+φ﹣)的图象,∴φ﹣=k π+,即 φ=k π+,k ∈Z ,则φ的一个可能值为,故选:D .12.【答案】A【解析】解:∵sinB+sin (A ﹣B )=sinC=sin (A+B ),∴sinB+sinAcosB ﹣cosAsinB=sinAcosB+cosAsinB ,∴sinB=2cosAsinB ,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A二、填空题13.【答案】【解析】解:∵f(x)=a x g(x)(a>0且a≠1),∴=a x,又∵f′(x)g(x)>f(x)g′(x),∴()′=>0,∴=a x是增函数,∴a>1,∵+=.∴a1+a﹣1=,解得a=或a=2.综上得a=2.∴数列{}为{2n}.∵数列{}的前n项和大于62,∴2+22+23+…+2n==2n+1﹣2>62,即2n+1>64=26,∴n+1>6,解得n>5.∴n的最小值为6.故答案为:6.【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.14.【答案】 6 .【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;∴判断框中的条件为i<6?故答案为:6.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题15.【答案】 ①②④ .【解析】解:∵x∈(1,2]时,f(x)=2﹣x.∴f(2)=0.f(1)=f(2)=0.∵f(2x)=2f(x),∴f(2k x)=2k f(x).①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.…一般地当x∈(2m,2m+1),则∈(1,2],f(x)=2m+1﹣x≥0,从而f(x)∈[0,+∞),故正确;③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,即2n﹣1=9,∴2n=10,∵n∈Z,∴2n=10不成立,故错误;④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.16.【答案】),0(+∞【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得,结合要求的不等式可知在不等式两边同时乘以,即()()01>-'+x f x f xe ,因此构造函数,求导利用函数的单调性解不等式.另外本题也可()()0>-'+x x x e x f e x f e ()()x x e x f e x g -=以构造满足前提的特殊函数,比如令也可以求解.1()4=x f 17.【答案】 ﹣21 .【解析】解:∵等比数列{a n }的公比q=﹣,a 6=1,∴a 1(﹣)5=1,解得a 1=﹣32,∴S 6==﹣21故答案为:﹣21 18.【答案】 240 【解析】解:由(2x+)6,得=.由6﹣3r=0,得r=2.∴常数项等于.故答案为:240. 三、解答题19.【答案】【解析】解:(Ⅰ)由题意可知:X ~B (9,p ),故EX=9p .在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:.通讯器械正常工作的概率P′=;(Ⅱ)当电路板上有11个元件时,考虑前9个元件,为使通讯器械正常工作,前9个元件中至少有4个元件正常工作.①若前9个元素有4个正常工作,则它的概率为:.此时后两个元件都必须正常工作,它的概率为:p2;②若前9个元素有5个正常工作,则它的概率为:.此时后两个元件至少有一个正常工作,它的概率为:;③若前9个元素至少有6个正常工作,则它的概率为:;此时通讯器械正常工作,故它的概率为:P″=p2++,可得P″﹣P′=p2+﹣,==.故当p=时,P″=P′,即增加2个元件,不改变通讯器械的有效率;当0<p时,P″<P′,即增加2个元件,通讯器械的有效率降低;当p时,P″>P′,即增加2个元件,通讯器械的有效率提高.【点评】本题考查二项分布,考查了相互独立事件及其概率,关键是对题意的理解,属概率统计部分难度较大的题目.20.【答案】【解析】解:(1)由||x﹣1|+2|<5,得﹣5<|x﹣1|+2<5∴﹣7<|x﹣1|<3,得不等式的解为﹣2<x<4…(2)因为任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,所以{y|y=f(x)}⊆{y|y=g(x)},又f(x)=|2x﹣a|+|2x+3|≥|(2x﹣a)﹣(2x+3)|=|a+3|,g(x)=|x﹣1|+2≥2,所以|a+3|≥2,解得a≥﹣1或a≤﹣5,所以实数a的取值范围为a≥﹣1或a≤﹣5.…【点评】本题考查函数的恒成立,绝对值不等式的解法,考查分析问题解决问题的能力以及转化思想的应用. 21.【答案】【解析】解:(Ⅰ)∵cosB=,B∈(0,π),∴sinB==,由正弦定理可知:,∴a=.(Ⅱ)∵S△ABC===3,∴ac=.由余弦定理得:b2=a2+c2﹣2accosB=(a+c)2﹣2ac﹣2ac×=4,∴(a+c)2=+4=28,故:a+c=2.22.【答案】【解析】解:(Ⅰ)证明:△BCD中,CB=CD,∠BCD=120°,∴∠CDB=30°,∵EC=DE,∴∠DCE=30°,∠BCE=90°,∴EC⊥BC,又∵平面ABC⊥平面BCD,平面ABC与平面BCD的交线为BC,∴EC⊥平面ABC,∴EC⊥AB.(Ⅱ)解:取BC的中点O,BE中点F,连结OA,OF,∵AC=AB,∴AO⊥BC,∵平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AO⊥平面BCD,∵O是BC中点,F是BE中点,∴OF⊥BC,以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系,设DE=2,则A(0,0,1),B(0,,0),C(0,﹣,0),D(3,﹣2,0),∴=(0,﹣,﹣1),=(3,﹣,0),设平面ACD的法向量为=(x,y,z),则,取x=1,得=(1,,﹣3),又平面BCD的法向量=(0,0,1),∴cos<>==﹣,∴二面角A﹣CD﹣B的余弦值为.【点评】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用.本小题对考生的空间想象能力与运算求解能力有较高要求. 23.【答案】【解析】解:(1)y=﹣2x 2+40x ﹣98,x ∈N *.(2)由﹣2x 2+40x ﹣98>0解得,,且x ∈N *,所以x=3,4,,17,故从第三年开始盈利.(3)由,当且仅当x=7时“=”号成立,所以按第一方案处理总利润为﹣2×72+40×7﹣98+30=114(万元).由y=﹣2x 2+40x ﹣98=﹣2(x ﹣10)2+102≤102,所以按第二方案处理总利润为102+12=114(万元).∴由于第一方案使用时间短,则选第一方案较合理. 24.【答案】(1);(2) .3,2,1710【解析】111]试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有种情况,10其中第组的名志愿者12,B B 至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1(2)记第3组的3名志愿者为123,,A A A ,第4组的2名志愿者为12,B B ,则从5名志愿者中抽取2名志愿者有12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共10种,其中第4组的2名志愿者12,B B 至少有一名志愿者被抽中的有11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共7种,所以第4组至少有一名志愿都被抽中的概率为710.考点:1、分层抽样的应用;2、古典概型概率公式.。
城区第二中学2018-2019学年高三上学期11月月考数学试卷含答案(3)
城区第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是()A .6B .0C .2D .22. 已知向量=(1,1,0),=(﹣1,0,2)且k+与2﹣互相垂直,则k 的值是( )A .1B .C .D .3. 已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是( )A .p ∧qB .¬p ∧qC .p ∧¬qD .¬p ∧¬q4. 将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( )A .B .C .D .5. 已知M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅,则实数a 的取值范围为( )A .(﹣∞,1)B .(﹣∞,1]C .(﹣∞,0)D .(﹣∞,0]6. 棱长都是1的三棱锥的表面积为( )A .B .C .D .7. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )A .B .C .D .8. 若双曲线M 上存在四个点A ,B ,C ,D ,使得四边形ABCD 是正方形,则双曲线M 的离心率的取值范围是( )A .B .C .D .9. 抛物线x 2=4y 的焦点坐标是( )A .(1,0)B .(0,1)C .()D .()10.已知集合,,则( ){2,1,0,1,2,3}A =--{|||3,}B y y x x A ==-∈A B =I A .B .C .D .{2,1,0}--{1,0,1,2}-{2,1,0}--{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力.11.已知f (x )=,则f (2016)等于()A .﹣1B .0C .1D .2 12.已知平面向量=(1,2),=(﹣2,m ),且∥,则=()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)二、填空题13.【泰州中学2018届高三10月月考】设函数是奇函数的导函数,,当时,()f x '()f x ()10f -=0x >,则使得成立的的取值范围是__________.()()0xf x f x -<'()0f x >x 14.如图所示,圆中,弦的长度为,则的值为_______.C AB 4AB AC ×u u u r u u u r【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.15.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜率的取值范围是 .16.下列函数中,①;②y=;③y=log 2x+log x 2(x >0且x ≠1);④y=3x +3﹣x ;⑤;⑥;⑦y=log 2x 2+2最小值为2的函数是 (只填序号)17.【泰州中学2018届高三10月月考】设二次函数(为常数)的导函数为()2f x ax bx c =++,,a b c ,对任意,不等式恒成立,则的最大值为__________.()f x 'x R ∈()()f x f x ≥'222b a c+18.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).三、解答题19.已知等差数列满足:=2,且,成等比数列。
顺城区二中2018-2019学年高三上学期11月月考数学试卷含答案
④双曲线 ﹣ =1 与椭圆
有相同的焦点.
三、解答题
19 . 本 小 题 满 分 12 分
已 知 数 列 an中 , a1 3, a2 5 , 其 前 n 项 和 Sn 满 足
Sn Sn2 2Sn1 2n1(n 3) .
Ⅰ求数列 an的通项公式 an ;
Ⅱ
若 bn
(1)求直方图中的值; (2)求月平均用电量的众数和中位数.
1111] 21.设 0<| |≤2,函数 f(x)=cos2x﹣| |sinx﹣| |的最大值为 0,最小值为﹣4,且 与 的夹角为 45°,求| + |.
22.已知函数 f x x2 bx a ln x .
(1)当函数 f x 在点 1, f 1 处的切线方程为 y 5x 5 0 ,求函数 f x 的解析式;
A. B. C. D.
11.两座灯塔 A 和 B 与海洋观察站 C 的距离都等于 a km,灯塔 A 在观察站 C 的北偏东 20°,灯塔 B 在观察站
C 的南偏东 40°,则灯塔 A 与灯塔 B 的距离为( )
A.akm
B. akm
C.2akm
D. akm
12.已知条件 p:|x+1|≤2,条件 q:x≤a,且 p 是 q 的充分不必要条件,则 a 的取值范围是( )
D.15
A.
B.
C.
D.
6. sin(﹣510°)=( )
A. B. C.﹣ D.﹣
7. 棱长为 2 的正方体的 8 个顶点都在球 O 的表面上,则球 O 的表面积为(
A. 4
B. 6
C. 8
D.10
8. 数列{an}满足 a1=3,an﹣an•an+1=1,An 表示{an}前 n 项之积,则 A2016 的值为(
顺城区第二中学2018-2019学年高三上学期11月月考数学试卷含答案
顺城区第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知圆方程为,过点与圆相切的直线方程为( )C 222x y +=(1,1)P -C A . B .C .D .20x y -+=10x y +-=10x y -+=20x y ++=2. 在等比数列中,,,且数列的前项和,则此数列的项数}{n a 821=+n a a 8123=⋅-n a a }{n a n 121=n S n等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.3. 若直线上存在点满足约束条件2y x =(,)x y 则实数的最大值为 30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩m A 、B 、C 、D 、1-3224. 集合,是的一个子集,当时,若有{}5,4,3,2,1,0=S A S A x ∈,则称为的一个“孤立元素”.集合是A x A x ∉+∉-11且x A B S 的一个子集,中含4个元素且中无“孤立元素”,这样的集合共有个B B B A.4B. 5C.6D.75.过点(2,﹣2)且与双曲线﹣y 2=1有公共渐近线的双曲线方程是( )A .﹣=1B .﹣=1C .﹣=1D .﹣=16. 若,则1sin()34πα-=cos(2)3πα+= A 、 B 、 C 、 D 、78-14-14787. 若x ,y 满足且z=y ﹣x 的最小值为﹣2,则k 的值为()A .1B .﹣1C .2D .﹣28. 已知数列{}满足().若数列{}的最大项和最小项分别为n a nn n a 2728-+=*∈N n n a M 和,则( )m =+m M A .B .C .D .21122732259324359. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )A .33%B .49%C .62%D .88%班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2B.1C.D.11.设等比数列{a n}的公比q=2,前n项和为S n,则=()A.2B.4C.D.12.“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的()A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件二、填空题13.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()t﹣a(a为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.14.已知函数f(x)=,若f(f(0))=4a,则实数a= .15.某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.16.已知函数y=f(x),x∈I,若存在x0∈I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0∈I ,使得f(f(x0))=x0,则称x0为函数y=f(x)的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)①﹣,1是函数g(x)=2x2﹣1有两个不动点;②若x0为函数y=f(x)的不动点,则x0必为函数y=f(x)的稳定点;③若x0为函数y=f(x)的稳定点,则x0必为函数y=f(x)的不动点;④函数g(x)=2x2﹣1共有三个稳定点;⑤若函数y=f(x)在定义域I上单调递增,则它的不动点与稳定点是完全相同.17.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 .18.已知一个动圆与圆C:(x+4)2+y2=100相内切,且过点A(4,0),则动圆圆心的轨迹方程 .三、解答题19.已知y=f(x)是R上的偶函数,x≥0时,f(x)=x2﹣2x(1)当x<0时,求f(x)的解析式.(2)作出函数f(x)的图象,并指出其单调区间.20.已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.21.已知函数f(x)=|x﹣a|.(1)若不等式f(x)≤3的解集为{x|﹣1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.22.如图,已知椭圆C,点B坐标为(0,﹣1),过点B的直线与椭圆C的另外一个交点为A,且线段AB的中点E在直线y=x上.(1)求直线AB的方程;(2)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,直线BM交椭圆C于另外一点Q.①证明:OM•ON为定值;②证明:A、Q、N三点共线.23.设集合{}{}2|8150,|10A x x x B x ax =-+==-=.(1)若15a =,判断集合A 与B 的关系;(2)若,求实数组成的集合C .A B B =I 24.如图1,∠ACB=45°,BC=3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使∠BDC=90°(如图2所示),(1)当BD 的长为多少时,三棱锥A ﹣BCD 的体积最大;(2)当三棱锥A ﹣BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小。
顺城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案
顺城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图所示的程序框图,若输入的x 值为0,则输出的y 值为()A .B .0C .1D .或02. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为()A .a <c <bB .b <a <cC .c <a <bD .c <b <a3. 如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是()A .{3}B .{0,1}C .{0,1,2}D .{0,1,2,3}4. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A .B .(4+π)C .D.5. 在中,角,,的对边分别是,,,为边上的高,,若ABC ∆A B C BH AC 5BH =班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________,则到边的距离为( )2015120aBC bCA cAB ++=u u u r u u u r u u u r rH AB A .2 B .3 C.1D .46. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是()A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点7. 设a ,b ∈R ,i 为虚数单位,若=3+b i ,则a -b 为( )2+a i1+iA .3B .2C .1D .08. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为()A .B .﹣C .2D .﹣29. 已知a 为常数,则使得成立的一个充分而不必要条件是()A .a >0B .a <0C .a >eD .a <e10.将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )A .x=πB .C .D .11.某学校10位同学组成的志愿者组织分别由李老师和张老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲冋学收到李老师或张老师所发活动通知信息的概率为( )A .B .C .D .12.“p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要二、填空题13.若函数f (x )=x 2﹣2x (x ∈[2,4]),则f (x )的最小值是 .14.如图是正方体的平面展开图,则在这个正方体中①与平行;②与是异面直线;BM ED CN BE ③与成角;④与是异面直线.CN BM 60︒DM BN 以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).15.二面角α﹣l ﹣β内一点P 到平面α,β和棱l 的距离之比为1::2,则这个二面角的平面角是 度.16.已知(x 2﹣)n )的展开式中第三项与第五项的系数之比为,则展开式中常数项是 .17.在中,,,为的中点,,则的长为_________.ABC ∆90C ∠=o2BC =M BC 1sin 3BAM ∠=AC 18.已知实数,满足约束条件,若目标函数仅在点取得最小值,则的x y ⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ay x z +=2)4,3(a 取值范围是.三、解答题19.(本小题满分12分)已知过抛物线的焦点,斜率为的直线交抛物线于2:2(0)C y px p =>11A x y (,)和()两点,且.22B x y (,)12x x <92AB =(I )求该抛物线的方程;C (II )如图所示,设为坐标原点,取上不同于的点,以为直径作圆与相交另外一点,O C O S OS C R 求该圆面积的最小值时点的坐标.S20.已知函数f(x)=x3+ax+2.(Ⅰ)求证:曲线=f(x)在点(1,f(1))处的切线在y轴上的截距为定值;(Ⅱ)若x≥0时,不等式xe x+m[f′(x)﹣a]≥m2x恒成立,求实数m的取值范围.21.过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程.22.已知数列{a n}是等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.23.在极坐标系内,已知曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数).(Ⅰ)求曲线C1的直角坐标方程以及曲线C2的普通方程;(Ⅱ)设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值.24.设不等式的解集为.(1)求集合;(2)若,∈,试比较与的大小。
顺城区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
顺城区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设函数f (x )=的最小值为﹣1,则实数a 的取值范围是( )A .a ≥﹣2B .a >﹣2C .a ≥﹣ D .a>﹣2. 图1是由哪个平面图形旋转得到的( )A .B .C .D .3. 已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是( )A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)4. 已知,y 满足不等式430,35250,1,x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩则目标函数2z x y =+的最大值为( )A .3B .132C .12D .15 5. 若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为 A 、1- B 、 C 、32D 、2 6. 若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( )A.B.C.D.7. 独立性检验中,假设H 0:变量X 与变量Y 没有关系.则在H 0成立的情况下,估算概率P (K 2≥6.635)≈0.01表示的意义是( )A .变量X 与变量Y 有关系的概率为1%B .变量X 与变量Y 没有关系的概率为99%班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C.变量X与变量Y有关系的概率为99%D.变量X与变量Y没有关系的概率为99.9%8.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)﹣g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为()A.(﹣,﹣2] B.[﹣1,0] C.(﹣∞,﹣2] D.(﹣,+∞)9.直线在平面外是指()A.直线与平面没有公共点B.直线与平面相交C.直线与平面平行D.直线与平面最多只有一个公共点10.在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有()A.20种B.22种C.24种D.36种11.已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是()A.M∪N B.M∩N C.∁I M∪∁I N D.∁I M∩∁I N12.在△ABC中,已知a=2,b=6,A=30°,则B=()A.60°B.120°C.120°或60°D.45°二、填空题13.对于|q|<1(q为公比)的无穷等比数列{a n}(即项数是无穷项),我们定义S n(其中S n是数列{a n}的前n项的和)为它的各项的和,记为S,即S=S n=,则循环小数0.的分数形式是.14.已知x,y满足条件,则函数z=﹣2x+y的最大值是.15.若正方形P1P2P3P4的边长为1,集合M={x|x=且i,j∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2;②当i=3,j=1时,x=0;③当x=1时,(i,j)有4种不同取值;④当x=﹣1时,(i,j)有2种不同取值;⑤M中的元素之和为0.其中正确的结论序号为.(填上所有正确结论的序号)16.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .17.若a ,b 是函数f (x )=x 2﹣px+q (p >0,q >0)的两个不同的零点,且a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 .18.定义在R 上的可导函数()f x ,已知()f x y e =′的图象如图所示,则()y f x =的增区间是 ▲ .cos 10ρθ+=,将曲线1cos :sin x C y θθ=⎧⎨=⎩,(α为参数),经过伸缩变换32x xy y'=⎧⎨'=⎩后得到曲线2C . (1)求曲线2C 的参数方程;(2)若点M 的在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.20.已知等比数列中,。
城区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
城区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是( )A .①②B .②③C .③D .③④2. 已知函数f (x )满足:x ≥4,则f (x )=;当x <4时f (x )=f (x+1),则f (2+log 23)=( )A.B.C.D.3. “双曲线C 的渐近线方程为y=±x ”是“双曲线C的方程为﹣=1”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .不充分不必要条件4. 下列命题中正确的是( )A .复数a+bi 与c+di 相等的充要条件是a=c 且b=dB .任何复数都不能比较大小 C.若=,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1=5. 若f (x )为定义在区间G 上的任意两点x 1,x 2和任意实数λ(0,1),总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是( ) ①f (x )=,②f (x )=,③f (x )=,④f (x )=.A .4B .3C .2D .16. 已知正项等差数列{}n a 中,12315a a a ++=,若1232,5,13a a a +++成等比数列,则10a =( ) A .19 B .20 C .21 D .227. 已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( ) A .2B .6C .4D .28. 下列结论正确的是( )A .若直线l ∥平面α,直线l ∥平面β,则α∥β.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________B.若直线l⊥平面α,直线l⊥平面β,则α∥β.C.若直线l1,l2与平面α所成的角相等,则l1∥l2D.若直线l上两个不同的点A,B到平面α的距离相等,则l∥α9.已知tanx=,则sin2(+x)=()A.B.C.D.10.下列函数在(0,+∞)上是增函数的是()A.B.y=﹣2x+5 C.y=lnx D.y=11.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为()A.y=sinx B.y=1g2x C.y=lnx D.y=﹣x3【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.12.执行右面的程序框图,若输入x=7,y=6,则输出的有数对为()A.(11,12)B.(12,13)C.(13,14)D.(13,12)二、填空题13.平面内两定点M(0,一2)和N(0,2),动点P(x,y)满足,动点P的轨迹为曲线E,给出以下命题:①∃m,使曲线E过坐标原点;②对∀m,曲线E与x轴有三个交点;③曲线E只关于y轴对称,但不关于x轴对称;④若P、M、N三点不共线,则△PMN周长的最小值为+4;⑤曲线E上与M,N不共线的任意一点G关于原点对称的另外一点为H,则四边形GMHN的面积不大于m 。
顺城区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)
顺城区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a=,c=2,cosA=,则b=( )A.B.C .2D .32. 已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),则以下结论正确的是( )A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定3. 如果命题p ∨q 是真命题,命题¬p 是假命题,那么( ) A .命题p 一定是假命题 B .命题q 一定是假命题C .命题q 一定是真命题D .命题q 是真命题或假命题4. (2014新课标I )如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 做直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数f (x ),则y=f (x )在[0,π]的图象大致为( )A. B.C.D.5. 如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C 对隧道底AB 的张角θ最大时采集效果最好,则采集效果最好时位置C 到AB 的距离是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.2m B.2m C.4 m D.6 m6.已知数列,则5是这个数列的()A.第12项B.第13项C.第14项D.第25项7.已知函数f(x)=x2﹣,则函数y=f(x)的大致图象是()A.B.C.D.8.设S n为等差数列{a n}的前n项和,已知在S n中有S17<0,S18>0,那么S n中最小的是()A.S10B.S9C.S8D.S79.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示.若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为()A. B. C. D.10.函数f(x)=Asin(ωx+φ)(A>0,ω>0,)的部分图象如图所示,则函数y=f(x)对应的解析式为()A.B. C.D.11.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.12.设函数f(x)的定义域为A,若存在非零实数l使得对于任意x∈I(I⊆A),有x+l∈A,且f(x+l)≥f(x),则称f(x)为I上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2,且函数f(x)为R上的1高调函数,那么实数a的取值范围为()A.0<a<1 B.﹣≤a≤C.﹣1≤a≤1 D.﹣2≤a≤2二、填空题13.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是.14.阅读下图所示的程序框图,运行相应的程序,输出的n的值等于_________.15.设抛物线C:y2=3px(p>0,若以MF为直径的圆过点(0,2),则C的方程为.16.给出下列命题:(1)命题p p∨q是假命题(2)命题“若x2﹣4x+3=0,则x=3”(3)“1<x<3”是“x2﹣4x+3<0”(4)若命题p:∀x∈R,x2+4x+5≠0.其中叙述正确的是.(填上所有正确命题的序号)17.(﹣)518.设全集U=R,集合M={x|2a﹣1<,若N⊆M,则实数a的取值范围是.三、解答题19.关于x的不等式a2x+b2(1﹣x)≥[ax+b(1﹣x)]2(1)当a=1,b=0时解不等式;(2)a,b∈R,a≠b解不等式.20.已知抛物线C:x2=2y的焦点为F.(Ⅰ)设抛物线上任一点P(m,n).求证:以P为切点与抛物线相切的方程是mx=y+n;(Ⅱ)若过动点M (x 0,0)(x 0≠0)的直线l 与抛物线C 相切,试判断直线MF 与直线l 的位置关系,并予以证明.21.设A=2{x|2x+ax+2=0},2A ∈,集合2{x |x 1}B ==(1)求a 的值,并写出集合A 的所有子集;(2)若集合{x |bx 1}C ==,且C B ⊆,求实数b 的值。
顺城区实验中学2018-2019学年高三上学期11月月考数学试卷含答案
顺城区实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如果集合 ,同时满足,就称有序集对,A B {}{}{}{}1,2,3,41,1,1A B B A B =≠≠U I ,A =为“ 好集对”. 这里有序集对是指当时,和是不同的集对, 那么(),A B (),A B A B ≠(),A B (),B A “好集对” 一共有()个A .个B .个C .个D .个2. 设a >0,b >0,若是5a 与5b 的等比中项,则+的最小值为()A .8B .4C .1D .3. 已知||=3,||=1,与的夹角为,那么|﹣4|等于()A .2B .C .D .13 4. 已知,则f{f[f (﹣2)]}的值为( )A .0B .2C .4D .85. 如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为()A .②④B .③④C .①②D .①③6. 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y=3﹣5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程y=bx+a 必过;④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( )A .0B .1C .2D .37. 的展开式中,常数项是( )62)21(x x -A .B .C .D .45-451615-16158. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为()A .a <c <bB .b <a <cC .c <a <bD .c <b <a班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 下列函数中,与函数的奇偶性、单调性相同的是( )()3x xe ef x --=A .B .C .D .(ln y x =+2y x =tan y x =xy e=10.“互联网”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶+段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( )A .10B .20C .30D .4011.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257393027556488730113 537989据此估计,这三天中恰有两天下雨的概率近似为( )A .0.35B .0.25C .0.20D .0.1512.设a=lge ,b=(lge )2,c=lg,则()A .a >b >cB .c >a >bC .a >c >bD .c >b >a二、填空题13.已知数列的各项均为正数,为其前项和,且对任意N ,均有、、成等差数列,}{n a n S n ∈n *n a n S 2n a 则.=n a 14.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中:①f (x )是周期函数;②f (x ) 的图象关于x=1对称;③f (x )在[0,1]上是增函数;④f (x )在[1,2]上为减函数;⑤f (2)=f (0).正确命题的个数是 . 15.设向量=(1,﹣3),=(﹣2,4),=(﹣1,﹣2),若表示向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量的坐标是 . 16.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 . 17.已知(ax+1)5的展开式中x2的系数与的展开式中x3的系数相等,则a= .18.过点(0,1)的直线与x2+y2=4相交于A、B两点,则|AB|的最小值为 .三、解答题19.已知函数,且.(Ⅰ)求的解析式;(Ⅱ)若对于任意,都有,求的最小值;(Ⅲ)证明:函数的图象在直线的下方.20.如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,∠A1AD=.若O为AD的中点,且CD⊥A1O(Ⅰ)求证:A1O⊥平面ABCD;(Ⅱ)线段BC上是否存在一点P,使得二面角D﹣A1A﹣P为?若存在,求出BP的长;不存在,说明理由. 21.已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.22.设f(x)=x2﹣ax+2.当x∈,使得关于x的方程f(x)﹣tf(2a)=0有三个不相等的实数根,求实数t的取值范围.23.设△ABC的内角A,B,C所对应的边长分别是a,b,c且cosB=,b=2(Ⅰ)当A=30°时,求a的值;(Ⅱ)当△ABC的面积为3时,求a+c的值.24.在平面直角坐标系xOy中.己知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4.(1)写出直线l的普通方程与曲线C的直角坐标系方程;(2)直线l与曲线C相交于A、B两点,求∠AOB的值.顺城区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B 【解析】试题分析:因为,所以当时,;当{}{}{}{}1,2,3,41,1,1A B B A B =≠≠U I ,A ={1,2}A ={1,2,4}B =时,;当时,;当时,;当时,{1,3}A ={1,2,4}B ={1,4}A ={1,2,3}B ={1,2,3}A ={1,4}B ={1,2,4}A =;当时,;所以满足条件的“好集对”一共有个,故选B.{1,3}B ={1,3,4}A ={1,2}B =考点:元素与集合的关系的判断.【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]2. 【答案】B 【解析】解:∵是5a 与5b 的等比中项,∴5a •5b =()2=5,即5a+b =5,则a+b=1,则+=(+)(a+b )=1+1++≥2+2=2+2=4,当且仅当=,即a=b=时,取等号,即+的最小值为4,故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换. 3. 【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos <,>=3×1×=,即有|﹣4|===.故选:C .【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题. 4.【答案】C【解析】解:∵﹣2<0∴f(﹣2)=0∴f(f(﹣2))=f(0)∵0=0∴f(0)=2即f(f(﹣2))=f(0)=2∵2>0∴f(2)=22=4即f{f[(﹣2)]}=f(f(0))=f(2)=4故选C.5.【答案】A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN.在①中:由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;在②中:由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=M,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.在③中:由①同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.在④中:由②可知平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.故选:A.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养. 6. 【答案】C【解析】解:对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变,正确;对于②,设有一个回归方程y=3﹣5x ,变量x 增加一个单位时,y 应平均减少5个单位,②错误;对于③,线性回归方程y=bx+a 必过样本中心点,正确;对于④,在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病,错误;综上,其中错误的个数是2.故选:C . 7. 【答案】D【解析】,2612316611()()()22r r r r r r r T C x C x x --+=-=-令,解得.1230r -=4r =∴常数项为.446115()216C -=8. 【答案】C【解析】解:由题意f (x )=f (|x|).∵log 43<1,∴|log 43|<1;2>|ln |=|ln3|>1;∵|0.4﹣1.2|=|1.2|>2∴|0.4﹣1.2|>|ln |>|log 43|.又∵f (x )在(﹣∞,0]上是增函数且为偶函数,∴f (x )在[0,+∞)上是减函数.∴c <a <b .故选C 9. 【答案】A 【解析】试题分析:所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与不相同,D 为非()()f x f x -=-()f x 奇非偶函数,故选A.考点:函数的单调性与奇偶性.10.【答案】B【解析】试题分析:设从青年人抽取的人数为,故选B .800,,2050600600800x x x ∴=∴=++考点:分层抽样.11.【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为.故选B . 12.【答案】C【解析】解:∵1<e <3<,∴0<lge <1,∴lge >lge >(lge )2.∴a >c >b .故选:C .【点评】本题主要考查对数的单调性.即底数大于1时单调递增,底数大于0小于1时单调递减. 二、填空题13.【答案】n【解析】∵,,成等差数列,∴n a n S 2n a 22n n nS a a =+当时, 又 ∴1n =2111122a S a a ==+10a >11a =当时,,2n ≥2211122()n n n n n n n a S S a a a a ---=-=+--∴,2211()()0n n n n a a a a ----+=∴, 111()()()0n n n n n n a a a a a a ---+--+=又,∴,10n n a a -+>11n n a a --=∴是等差数列,其公差为1,{}n a ∵,∴.11a =*(N )n a n n =∈14.【答案】 3个 .【解析】解:∵定义在(﹣∞,+∞)上的偶函数f (x ),∴f (x )=f (﹣x );∵f (x+1)=﹣f (x ),∴f (x+1)=﹣f (x ),∴f (x+2)=﹣f (x+1)=f (x ),f (﹣x+1)=﹣f (x )即f (x+2)=f (x ),f (﹣x+1)=f (x+1),周期为2,对称轴为x=1所以①②⑤正确,故答案为:3个15.【答案】 (﹣2,﹣6) .【解析】解:向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量=﹣[4+4﹣2+2(﹣)]=﹣(6+4﹣4)=﹣[6(1,﹣3)+4(﹣2,4)﹣4(﹣1,﹣2)]=﹣(2,6)=(﹣2,﹣6),故答案为:(﹣2,﹣6).【点评】本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题.16.【答案】 {1,6,10,12} .【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.17.【答案】 .【解析】解:(ax+1)5的展开式中x2的项为=10a2x2,x2的系数为10a2,与的展开式中x3的项为=5x3,x3的系数为5,∴10a2=5,即a2=,解得a=.故答案为:.【点评】本题主要考查二项式定理的应用,利用展开式的通项公式确定项的系数是解决本题的关键.18.【答案】 2 【解析】解:∵x2+y2=4的圆心O(0,0),半径r=2,∴点(0,1)到圆心O(0,0)的距离d=1,∴点(0,1)在圆内.如图,|AB|最小时,弦心距最大为1,∴|AB|min=2=2.故答案为:2.三、解答题19.【答案】【解析】【知识点】导数的综合运用利用导数研究函数的单调性【试题解析】(Ⅰ)对求导,得,所以,解得,所以.(Ⅱ)由,得,因为,所以对于任意,都有.设,则.令,解得.当x变化时,与的变化情况如下表:所以当时,.因为对于任意,都有成立,所以.所以的最小值为.(Ⅲ)证明:“函数的图象在直线的下方”等价于“”,即要证,所以只要证.由(Ⅱ),得,即(当且仅当时等号成立).所以只要证明当时,即可.设,所以,令,解得.由,得,所以在上为增函数.所以,即.所以.故函数的图象在直线的下方.20.【答案】【解析】满分(13分).(Ⅰ)证明:∵∠A1AD=,且AA1=2,AO=1,∴A1O==,…(2分)∴+AD2=AA12,∴A1O⊥AD.…(3分)又A1O⊥CD,且CD∩AD=D,∴A1O⊥平面ABCD.…(5分)(Ⅱ)解:过O作Ox∥AB,以O为原点,建立空间直角坐标系O﹣xyz(如图),则A(0,﹣1,0),A1(0,0,),…(6分)设P(1,m,0)m∈[﹣1,1],平面A1AP的法向量为=(x,y,z),∵=,=(1,m+1,0),且取z=1,得=.…(8分)又A1O⊥平面ABCD,A1O⊂平面A1ADD1∴平面A1ADD1⊥平面ABCD.又CD⊥AD,且平面A1ADD1∩平面ABCD=AD,∴CD⊥平面A1ADD1.不妨设平面A1ADD1的法向量为=(1,0,0).…(10分)由题意得==,…(12分)解得m=1或m=﹣3(舍去).∴当BP的长为2时,二面角D﹣A1A﹣P的值为.…(13分)【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想.21.【答案】【解析】证明:(I)∵数列{a n}为等比数列,a1=,q=∴a n=×=,S n=又∵==S n∴S n=(II)∵a n=∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣nlog33)=﹣(1+2+…+n)=﹣∴数列{b n}的通项公式为:b n=﹣【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质.22.【答案】【解析】设f(x)=x2﹣ax+2.当x∈,则t=,∴对称轴m=∈(0,],且开口向下;∴时,t取得最小值,此时x=9∴税率t的最小值为.【点评】此题是个指数函数的综合题,但在求解的过程中也用到了构造函数的思想及二次函数在定义域内求最值的知识.考查的知识全面而到位!23.【答案】【解析】解:(Ⅰ)∵cosB=,B∈(0,π),∴sinB==,由正弦定理可知:,∴a=.(Ⅱ)∵S△ABC===3,∴ac=.由余弦定理得:b2=a2+c2﹣2accosB=(a+c)2﹣2ac﹣2ac×=4,∴(a+c)2=+4=28,故:a+c=2.24.【答案】【解析】解:(1)∵直线l的参数方程为(t为参数),∴直线l的普通方程为.∵曲线C的极坐标方程是ρ=4,∴ρ2=16,∴曲线C的直角坐标系方程为x2+y2=16.(2)⊙C的圆心C(0,0)到直线l:+y﹣4=0的距离:d==2,∴cos,∵0,∴,∴.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
顺城区第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++= 2. 在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.3. 若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为 A 、1- B 、 C 、32D 、2 4. 集合{}5,4,3,2,1,0=S ,A 是S 的一个子集,当A x ∈时,若有A x A x ∉+∉-11且,则称x 为A 的一个“孤立元素”.集合B 是S 的一个子集,B 中含4个元素且B 中无“孤立元素”,这样的集合B 共有个A.4B. 5C.6D.7 5. 过点(2,﹣2)且与双曲线﹣y 2=1有公共渐近线的双曲线方程是( )A.﹣=1B.﹣=1 C.﹣=1 D.﹣=16. 若1sin()34πα-=,则cos(2)3πα+=A 、78-B 、14- C 、14 D 、787. 若x ,y满足且z=y ﹣x 的最小值为﹣2,则k 的值为( ) A .1B .﹣1C .2D .﹣28. 已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( ) A .211 B .227 C . 32259 D .32435 9. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88%班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.11.设等比数列{a n}的公比q=2,前n项和为S n,则=()A.2 B.4 C.D.12.“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的()A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件二、填空题13.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()t﹣a(a为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室.14.已知函数f(x)=,若f(f(0))=4a,则实数a=.15.某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种.16.已知函数y=f(x),x∈I,若存在x0∈I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0∈I,使得f(f(x0))=x0,则称x0为函数y=f(x)的稳定点.则下列结论中正确的是.(填上所有正确结论的序号)①﹣,1是函数g(x)=2x2﹣1有两个不动点;②若x0为函数y=f(x)的不动点,则x0必为函数y=f(x)的稳定点;③若x0为函数y=f(x)的稳定点,则x0必为函数y=f(x)的不动点;④函数g(x)=2x2﹣1共有三个稳定点;⑤若函数y=f(x)在定义域I上单调递增,则它的不动点与稳定点是完全相同.17.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为.18.已知一个动圆与圆C:(x+4)2+y2=100相内切,且过点A(4,0),则动圆圆心的轨迹方程.三、解答题19.已知y=f(x)是R上的偶函数,x≥0时,f(x)=x2﹣2x(1)当x<0时,求f(x)的解析式.(2)作出函数f(x)的图象,并指出其单调区间.20.已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.21.已知函数f(x)=|x﹣a|.(1)若不等式f(x)≤3的解集为{x|﹣1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.22.如图,已知椭圆C,点B坐标为(0,﹣1),过点B的直线与椭圆C的另外一个交点为A,且线段AB的中点E在直线y=x上.(1)求直线AB的方程;(2)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,直线BM交椭圆C于另外一点Q.①证明:OM •ON 为定值; ②证明:A 、Q 、N 三点共线.23.设集合{}{}2|8150,|10A x x x B x ax =-+==-=.(1)若15a =,判断集合A 与B 的关系; (2)若A B B =,求实数组成的集合C .24.如图1,∠ACB=45°,BC=3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使∠BDC=90°(如图2所示),(1)当BD 的长为多少时,三棱锥A ﹣BCD 的体积最大;(2)当三棱锥A ﹣BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小。
顺城区第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】A 【解析】试题分析:圆心(0,0),C r ,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=,由,1d r k =∴=,所以切线方程为20x y -+=,故选A.考点:直线与圆的位置关系. 2. 【答案】B3. 【答案】B【解析】如图,当直线m x =经过函数x y 2=的图象 与直线03=-+y x 的交点时,函数x y 2=的图像仅有一个点P 在可行域内,由230y x x y =⎧⎨+-=⎩,得)2,1(P ,∴1≤m .4. 【答案】C 【解析】试题分析:根据题中“孤立元素”定义可知,若集合B中不含孤立元素,则必须没有三个连续的自然数存在,所有B 的可能情况为:{}0,1,3,4,{}0,1,3,5,{}0,1,4,5,{}0,2,3,5,{}0,2,4,5,{}1,2,4,5共6个。
故选C 。
考点:1.集合间关系;2.新定义问题。
5. 【答案】A【解析】解:设所求双曲线方程为﹣y 2=λ,把(2,﹣2)代入方程﹣y 2=λ,解得λ=﹣2.由此可求得所求双曲线的方程为.故选A .42541415432【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用.6. 【答案】A【解析】 选A ,解析:2227cos[(2)]cos(2)[12sin ()]3338πππαπαα--=--=---=-7. 【答案】B【解析】解:由z=y ﹣x 得y=x+z , 作出不等式组对应的平面区域如图:平移直线y=x+z 由图象可知当直线y=x+z 经过点A 时,直线y=x+z 的截距最小, 此时最小值为﹣2,即y ﹣x=﹣2,则x ﹣y ﹣2=0, 当y=0时,x=2,即A (2,0),同时A 也在直线kx ﹣y+2=0上,代入解得k=﹣1, 故选:B【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.本题主要考查的难点在于对应的区域为线段.8. 【答案】D 【解析】试题分析: 数列n n n a 2728-+=,112528++-+=∴n n n a ,11252722n n n nn n a a ++--∴-=- ()11252272922n n n n n ++----+==,当41≤≤n 时,n n a a >+1,即12345a a a a a >>>>;当5≥n 时,n n a a <+1,即...765>>>a a a .因此数列{}n a 先增后减,32259,55==∴a n 为最大项,8,→∞→n a n ,2111=a ,∴最小项为211,M m +∴的值为3243532259211=+.故选D.考点:数列的函数特性.9.【答案】B【解析】10.【答案】C【解析】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.11.【答案】C【解析】解:由于q=2,∴∴;故选:C.12.【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x﹣1=0,2x﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.故选:B.【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.二、填空题13.【答案】0.6【解析】解:当t>0.1时,可得1=()0.1﹣a∴0.1﹣a=0a=0.1由题意可得y≤0.25=,即()t﹣0.1≤,即t﹣0.1≥解得t≥0.6,由题意至少需要经过0.6小时后,学生才能回到教室.故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.14.【答案】2.【解析】解:∵f(0)=2,∴f(f(0))=f(2)=4+2a=4a,所以a=2故答案为:2.15.【答案】75【解析】计数原理的应用.【专题】应用题;排列组合.【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:75.【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.16.【答案】①②⑤【解析】解:对于①,令g(x)=x,可得x=或x=1,故①正确;对于②,因为f(x0)=x0,所以f(f(x0))=f(x0)=x0,即f(f(x0))=x0,故x0也是函数y=f(x)的稳定点,故②正确;对于③④,g(x)=2x2﹣1,令2(2x2﹣1)2﹣1=x,因为不动点必为稳定点,所以该方程一定有两解x=﹣,1,由此因式分解,可得(x﹣1)(2x+1)(4x2+2x﹣1)=0还有另外两解,故函数g(x)的稳定点有﹣,1,,其中是稳定点,但不是不动点,故③④错误;对于⑤,若函数y=f(x)有不动点x0,显然它也有稳定点x0;若函数y=f(x)有稳定点x0,即f(f(x0))=x0,设f(x0)=y0,则f(y0)=x0即(x0,y0)和(y0,x0)都在函数y=f(x)的图象上,假设x0>y0,因为y=f(x)是增函数,则f(x0)>f(y0),即y0>x0,与假设矛盾;假设x0<y0,因为y=f(x)是增函数,则f(x0)<f(y0),即y0<x0,与假设矛盾;故x0=y0,即f(x0)=x0,y=f(x)有不动点x0,故⑤正确.故答案为:①②⑤.【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力.17.【答案】60°.【解析】解:∵|﹣|=,∴∴=3,∴cos<>==∵∴与的夹角为60°.故答案为:60°【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式.18.【答案】+=1.【解析】解:设动圆圆心为B,半径为r,圆B与圆C的切点为D,∵圆C:(x+4)2+y2=100的圆心为C(﹣4,0),半径R=10,∴由动圆B与圆C相内切,可得|CB|=R﹣r=10﹣|BD|,∵圆B经过点A(4,0),∴|BD|=|BA|,得|CB|=10﹣|BA|,可得|BA|+|BC|=10,∵|AC|=8<10,∴点B的轨迹是以A、C为焦点的椭圆,设方程为(a>b>0),可得2a=10,c=4,∴a=5,b2=a2﹣c2=9,得该椭圆的方程为+=1.故答案为:+=1.三、解答题19.【答案】【解析】解:(1)设x<0,则﹣x>0,∵x>0时,f(x)=x2﹣2x.∴f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x∵y=f(x)是R上的偶函数∴f(x)=f(﹣x)=x2+2x(2)单增区间(﹣1,0)和(1,+∞);单减区间(﹣∞,﹣1)和(0,1).【点评】本题主要考查利用函数的奇偶性来求对称区间上的解析式,然后作出分段函数的图象,进而研究相关性质,本题看似简单,但考查全面,具体,检测性很强.20.【答案】【解析】解:(1)c=asinC﹣ccosA,由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,即sinC•(sinA﹣cosA﹣1)=0,又,sinC≠0,所以sinA﹣cosA﹣1=0,即2sin(A﹣)=1,所以A=;(2)S△ABC=bcsinA=,所以bc=4,a=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,即有,解得b=c=2.21.【答案】【解析】解:(1)由f(x)≤3得|x﹣a|≤3,解得a﹣3≤x≤a+3.又已知不等式f(x)≤3的解集为{x|﹣1≤x≤5},所以解得a=2.(2)当a=2时,f(x)=|x﹣2|.设g(x)=f(x)+f(x+5),于是所以当x<﹣3时,g(x)>5;当﹣3≤x≤2时,g(x)=5;当x>2时,g(x)>5.综上可得,g(x)的最小值为5.从而,若f(x)+f(x+5)≥m即g(x)≥m对一切实数x恒成立,则m的取值范围为(﹣∞,5].【点评】本题考查函数恒成立问题,绝对值不等式的解法,考查转化思想,是中档题,22.【答案】【解析】(1)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),∵点A在椭圆C上,∴,整理得:6t2+4t=0,解得t=﹣或t=0(舍去),∴E(﹣,﹣),A(﹣,﹣),∴直线AB的方程为:x+2y+2=0;(2)证明:设P(x0,y0),则,①直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:x M=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:x N=,∴OM•ON=|x M||x N|=2•||•||=||=||=||=.②设直线MB 的方程为:y=kx ﹣1(其中k==),联立,整理得:(1+2k 2)x 2﹣4kx=0,∴x Q =,y Q =,∴k AN ===1﹣,k AQ ==1﹣,要证A 、Q 、N 三点共线,只需证k AN =k AQ ,即3x N +4=2k+2,将k=代入,即证:x M •x N =,由①的证明过程可知:|x M |•|x N |=,而x M 与x N 同号,∴x M •x N =,即A 、Q 、N 三点共线.【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值、三点共线等问题,考查运算求解能力,注意解题方法的积累,属于中档题.23.【答案】(1)A B ⊆;(2){}5,3,0=C . 【解析】考点:1、集合的表示;2、子集的性质. 24.【答案】(1)1 (2)60°【解析】(1)设BD=x ,则CD=3﹣x ∵∠ACB=45°,AD ⊥BC ,∴AD=CD=3﹣x∵折起前AD⊥BC,∴折起后AD⊥BD,AD⊥CD,BD∩DC=D∴AD⊥平面BCD∴V A﹣BCD=×AD×S△BCD=×(3﹣x)××x(3﹣x)=(x3﹣6x2+9x)设f(x)=(x3﹣6x2+9x) x∈(0,3),∵f′(x)=(x﹣1)(x﹣3),∴f(x)在(0,1)上为增函数,在(1,3)上为减函数∴当x=1时,函数f(x)取最大值∴当BD=1时,三棱锥A﹣BCD的体积最大;(2)以D为原点,建立如图直角坐标系D﹣xyz,。