武汉大学2005~2006大学物理下试卷及答案
大学物理课后习题答案(上下册全)武汉大学出版社 第12章 习题解答
第12章 习题与答案12-1 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为[ ]A. 1.5λ.B. 1.5λ/n .C. 1.5n .D. 3λ. [答案:A ]12-2 平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为[ ]A. 2πn 2e / ( n 1λ1).B. 4πn 1e / ( n 2λ1)] +π.C. 4πn 2e / ( n 1λ1) ]+π.D. 4πn 2e / ( n 1λ1).[答案: C ]12-3 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ]A. 间隔变小,并向棱边方向平移.B. 间隔变大,并向远离棱边方向平移.C. 间隔不变,向棱边方向平移.D.间隔变小,并向远离棱边方向平移. [答案: A ]12-4 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如题12-4图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分[ ]A. 凸起,且高度为4λ.B. 凸起,且高度为2λ.C. 凹陷,且深度为2λ.D. 凹陷,且深度为4λ.[答案: C ]12-5 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹[ ]A .中心暗斑变成亮斑. B. 间距变大. C. 间距变小. D. 间距不变. [答案: C ]题12-4图12-6 在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为[ ] A. =3a b . B. =2a b . C. =a b . D. =0.5a b [答案: C ]12-7 对某一定波长的垂直入射光 衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该[ ]A. 换一个光栅常数较小的光栅.B. 换一个光栅常数较大的光栅.C. 将光栅向靠近屏幕的方向移动.D. 将光栅向远离屏幕的方向移动.[答案: B ]12-8如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为[ ]A. I 0 / 8.B. I 0 / 4.C. 3 I 0 / 8.D. 3 I 0 / 4.[答案: A ]12-9一束自然光自空气射向一块平板玻璃(如题12-9图),设入射角等于布儒斯特角i 0,则在上表面的出射光2是[ ]A. 自然光.B. 线偏振光且光矢量的振动方向平行于入射面.C. 线偏振光且光矢量的振动方向垂直于入射面.D. 部分偏振光.[答案: C ]12-10相干光的必要条件为________________________,________________________,________________________。
2005-2006大物下学期期末考试试卷及答案
2005─2006学年第一学期 《 大学物理》(下)考试试卷( A 卷)注意:1、本试卷共4页; 2、考试时间: 120分钟; 3、姓名、序号必须写在指定地方; 4、考试为闭卷考试; 5、可用计算器,但不准借用; 6、考试日期:2006.1.7.e=1.60×10-19C m e =9.11×10-31kg m n =1.67×10-27kg m p =1.67×10-27kgε0= 8.85×10-12 F/m μ0=4π×10-7H/m=1.26×10-6H/m h = 6.63×10-34 J·sb =2.897×10-3m·K R =8.31J·mol -1·K -1 k=1.38×10-23J·K -1 c=3.00×108m/s σ = 5.67×10-8 W·m -2·K -4 1n 2=0.693 1n 3=1.099 R =1.097×107m -1·一.选择题(每小题3分,共30分)1. 已知圆环式螺线管的自感系数为L 。
若将该螺线管锯成两个半环式的螺线管,则两个半环螺线管的自感系数(A) 都等于L /2. (B) 都小于L /2.(C) 都大于L /2. (D) 一个大于L /2,一个小于L /2. 2. 设某微观粒子运动时的能量是静止能量得k 倍,则其运动速度的大小为(A) c /(k -1). (B) c 21k -/k . (C) c 12-k /k . (D) c ()2+k k /(k+1).3. 空间有一非均匀电场,其电场线如图1所示。
若在电场中取一半径为R 的球面,已知通过球面上∆S 面的电通量为∆Φe ,则通过其余部分球面的电通量为(A)-∆Φe(B) 4πR 2∆Φe /∆S , (C)(4πR 2-∆S ) ∆Φe /∆S ,(D) 04. 如图2所示,两个“无限长”的半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的带电量分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A)r 0212πελλ+. (B) )(2)(2202101R r R r -+-πελπελ.图1(C))(22021R r -+πελλ.(D) 20210122R R πελπελ+. 5. 边长为l 的正方形线圈,分别用图3所示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:(A) B 1 = 0 . B 2 = 0.(B) B 1 = 0 . lIB πμ0222=(C) l IB πμ0122=. B 2=0 .(D lI B πμ0122=. l IB πμ0222=.6. 如图4,一半球面的底面园所在的平面与均强电场E 的夹角为30°,球面的半径为R ,球面的法线向外,则通过此半球面的电通量为 (A) π R 2E/2 . (B) -π R 2E/2.(C) π R 2E .(D) -π R 2E .7. 康普顿散射的主要特征是(A) 散射光的波长与入射光的波长全然不同.(B)散射角越大,散射波长越短.(C) 散射光的波长有些与入射光相同,但也有变长的,也有变短的.(D) 散射光的波长有些与入射光相同,有些散射光的波长比入射光的波长长些,且散射角越大,散射光的波长变得越长 .8. 如图5,一环形电流I 和一回路l ,则积分l B d ⋅⎰l应等于(A) 0. (B) 2 I . (C) -2μ0 I . (D) 2μ0 I .9. 以下说法中正确的是(A) 场强大的地方电位一定高; (B) 带负电的物体电位一定为负;P图2图3l(1)d图5(C) 场强相等处电势梯度不一定相等; (D) 场强为零处电位不一定为零. 10. 电荷激发的电场为E 1,变化磁场激发的电场为E 2,则有 (A) E 1、E 2同是保守场. (B) E 1、E 2同是涡旋场.(C) E 1是保守场, E 2是涡旋场. (D) E 1是涡旋场, E 2是保守场.二. 填空题(每小题2分,共30分).1. 氢原子基态的电离能是 eV . 电离能为0.544eV 的激发态氢原子,其电子处在n = 的轨道上运动.2. 不确定关系在x 方向上的表达式为 .3. 真空中两条相距2a 的平行长直导线,通以方向相同,大小相等的电流I ,P 、O 两点与两导线在同一平面内,与导线的距离为a , 如图6所示.则O 点的磁场能量密度w m o ,P 点的磁场能量密度w mP .4. 在半径为R 的圆柱形空间中存在着均匀磁场B ,B 的方向与轴线平行,有一长为l 0的金属棒AB ,置于该磁场中,如图7所示,当d B /d t 以恒定值增长时,金属棒上的感应电动势εi 5. 如图8所示,将半径为R 的无限长导体薄壁管(厚度忽略)沿轴向割去一宽度为h (h <<R )的无限长狭缝后,再沿轴向均匀地流有电流,其面电流的线密度为i ,则管轴线上磁感强度的大小是 .6. 写出包含以下意义的麦克斯韦方程:(1)电力线起始于正电荷,终止于负电荷_____ __. (2)变化的磁场一定伴随有电场7. 半径为R 的细圆环带电线(圆心是O ),其轴线上有两点A 和B ,且OA=AB=R ,如图9若取无限远处为电势零点,设A 、B 两点的电势分别为U 1和U 2,则U 1/U 2为 . 8. .狭义相对论的两条基本假设是9. 点电荷q 1 、q 2、q 3和q 4在真空中的分布如图10所示,图中S 为闭合曲面,则通过该闭合曲面的电通量S E d ⋅⎰S= ,式中的E 是哪些点电荷在闭合曲面上任一点产生的场强的矢量和?答:是 .10. 氢原子光谱的巴耳末线系中,有一光谱线的波长为λ = 434nm ,该谱线是氢原子由能级E n 跃迁到能级E k 产生的,则n = ______,k= ______.图6图7图8图9三.计算题(每小题10分,共40分)1. 求均匀带电球体(343R Qπρ=)外任一点(r>R)的 电势.2. 相距为d =40cm 的两根平行长直导线1、2放在真空 中,每根导线载有电流1I =2I =20A,如图11所示。
大学地球物理学专业《大学物理(下册)》期末考试试题A卷 附答案
大学地球物理学专业《大学物理(下册)》期末考试试题A卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、动方程当t=常数时的物理意义是_____________________。
2、质点p在一直线上运动,其坐标x与时间t有如下关系:(A为常数) (1) 任意时刻t,质点的加速度a =_______; (2) 质点速度为零的时刻t =__________.3、图示为三种不同的磁介质的B~H关系曲线,其中虚线表示的是的关系.说明a、b、c各代表哪一类磁介质的B~H关系曲线:a代表__________________________的B~H关系曲线b代表__________________________的B~H关系曲线c代表__________________________的B~H关系曲线4、一电子以0.99 c的速率运动(电子静止质量为9.11×10-31kg,则电子的总能量是__________J,电子的经典力学的动能与相对论动能之比是_____________。
5、已知质点的运动方程为,式中r的单位为m,t的单位为s。
则质点的运动轨迹方程,由t=0到t=2s内质点的位移矢量______m。
6、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。
7、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。
现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。
8、两个相同的刚性容器,一个盛有氧气,一个盛氦气(均视为刚性分子理想气体)。
大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解.pdf
3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。
若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。
答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。
大学物理期末考试题(光学)
大学物理(下)(强物理类)期末考试试卷 (B)
一、选择题(每小题4分,共5小题,20分)
1、 在单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射在宽度为
3λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半
波带数目为( )
(a) 2个
大学物理(下)(强物理类)期末考试试卷 (A)参考答案及评分标 准
一、选择题(每小题4分,共5小题,20分) 1~5题答案:B E C D A 二、填空题(6~13每小题3分,14题6分,合计30分) 6题答案:100nm 7题答案: 8题答案:米 9题答案:
10题答案: 11题答案: 12题答案:10条 13题答案:9.3或9.4 14题答案:电子动能, 动量
9、在两个正交的偏振片之间再插入一个偏振片,该偏振片的透振方
向与第一个偏振片的夹角为,入射自然光的光强为,则透射光的光强为
。
10、一列固有长度长为的火车,以高速通过一个固有长度为的大
桥,火车上的观察者测得火车通过大桥所需的时间为
。
11、实验室中观察到静止质量均为的两个粒子,同时相对于实验室 以0.8C的速度相向飞行,并作完全非弹性碰撞,碰撞后结合为一个新粒 子。则该新粒子的静止质量为:
2007—2008学年第一学期
大学物理(下)(强物理类)期末考试试卷 (A)
院系
专业
姓名
学号
.
一、选择题(每小题4分,共5小题,20分)
1、右图所示是迈克耳逊干涉仪的光路图及其干涉图照片,S是单色 点光源,M1、M2是两个平面反射镜。下列说法正确的是:( )
M1 M2 S 第1题图
A、这是等倾干涉图,M1、M2不严格垂直,中间条纹的干涉级次 较高;
《大学物理学》第二版下册习题解答
第九章 静电场中的导体9.1 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20rRU . (D) r U 0. [ C ] 9.2如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B)2εσ. (C) 0εσh . (D) 02εσh. [ A ]9.3 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为 (A) 0 . (B)dq04επ.(C)R q 04επ-. (D) )11(4Rd q -πε. [ D ]9.4 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变.(D) 球壳内、外场强分布均改变. [ B ]9.5在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:(A) 内表面均匀,外表面也均匀. (B) 内表面不均匀,外表面均匀. (C) 内表面均匀,外表面不均匀.(D) 内表面不均匀,外表面也不均匀. [ B ]9.6当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高.(D) 导体内任一点与其表面上任一点的电势差等于零. [ D ]9.7如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势.解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q .(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为adqU q 04επ=⎰-aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ04επ+9.8有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷.如图所示,试求: (1) 导体板面上各点的感生电荷面密度分布.(2) 面上感生电荷的总电荷.解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为σ.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()024cos 0220=++=⊥εσεθb r q E P π 2分 ∴ ()2/3222/b r qb +-=πσ 1分(2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()2/322/d d b r qbrdr S Q +-==σ总电荷为 ()q brrdrqb dS Q S-=+-==⎰⎰∞2/322σ 2分O9.9 如图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为q A 和q B 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净带电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为σ. ()()0004///4/d εεσπ++π⋅==⎰⎰a q a q R S U U B A S P A∵0d =⋅⎰⎰AS S σ∴ ()()04///επ+=a q a q U B A P9.10三个电容器如图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C第十章 静电场中的电介质10.1 关于D的高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量D为零.(B) 高斯面上处处D为零,则面内必不存在自由电荷.(C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ C ]10.2一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E .(C) ε r E . (D) (ε 0 ε r - ε 0)E . [ B ]10.3 一平行板电容器中充满相对介电常量为εr 的各向同性均匀电介质.已知介质表面极化电荷面密度为±σ′,则极化电荷在电容器中产生的电场强度的大小为:(A) 0εσ'. (B) r εεσ0'. (C) 02εσ'. (D)rεσ'. [ A ]10.4一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E ,电位移为D,则(A) r E E ε/0 =,0D D =. (B) 0E E =,0D D rε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=. [ B ]10.5如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将 (A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定. [ B ]q10.6将一空气平行板电容器接到电源上充电到一定电压后,断开电源.再将一块与极板面积相同的各向同性均匀电介质板平行地插入两极板之间,如图所示. 则由于介质板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与介质板相对极板的位置无关. (B) 储能减少,且与介质板相对极板的位置有关. (C) 储能增加,但与介质板相对极板的位置无关.(D) 储能增加,且与介质板相对极板的位置有关. [ A ]介质板10.7静电场中,关系式 P E D+=0ε(A) 只适用于各向同性线性电介质. (B) 只适用于均匀电介质. (C) 适用于线性电介质.(D) 适用于任何电介质. [ D ]10.8一半径为R 的带电介质球体,相对介电常量为εr ,电荷体密度分布ρ = k / r 。
大学物理下考试题及其答案
静电场11、在真空中有两个点电荷,设其中一个所带电量是另一个的四倍,它们相距米时,相互排斥力为1.6牛顿;当它们相距0.1米时,排斥力是牛顿。
(结果保留到小数点后1位)2、点电荷、、和在真空中的分布如图所示,图中S 为闭合曲面,则通过该闭合曲面的电通量,式中的是点电荷在闭合曲面上任一点产生的场强的矢量和。
3、一半径为,电荷线密度为的均匀带正电细圆环,在环心处的电场强度的大小为,若将圆环切掉长为的一小段,且,则环心处电场强度的大小为。
静电场24、均匀带电球体,半径为R,带电量为Q,设某点与球心相距r,当时,该点的电场强度的大小为,当时,该点的电场强度的大小为。
5、如图所示在场强为的均匀电场中,A、B 两点距离为d,AB 连线方向与方向一致, 从A 点经任意路径到B 点的场强线积分。
6、均匀带电细圆环,半径为a,把点电荷q从无穷远处移到圆环中心所需作的功为A,细圆环上的电荷量大小为。
静电场中的导体7、实心导体处于静电平衡状态时,它所带的电荷只分布在,导体内部净电荷,且越尖的表面处电场强度。
8、导体A 接地方式如图,导体B 带电为+Q,则导体A()(A) 带正电.(B) 带负电.(C) 不带电.(D) 左边带正电,右边带负电。
9、如图所示,三块平行的金属板A,B和C,面积均为200cm2,A与B相距4mm,A与C相距2mm,B和C两板均接地,若A板所带电量Q=3.0×10-7C,忽略边缘效应,则B上的感应电荷为C。
(答案用科学计数法,小数点后保留一位有效数字,如:1.0×102)静电场中的电介质、电容和静电场的能量10、一平行板电容器,若增大两极板的带电量,则其电容值;若在两极板间充入均匀电介质,会使其两极板间的电势差。
(填“增大”、“减小”或“不变”)11、分别标有200PF、500V和300PF、900V的两个电容器C1和C2串联起来,如果在串联的两个电容器两端加上1000V的电压,电容器_____被击穿。
武汉大学出版社 大学物理下册答案
第9章 静电场一、选择题 9.1 答案:B 9.2 答案:C解:根据高斯定理,通过整个立方体表面的电通量为d εqse =⋅=Φ⎰S E ,由于电荷位于立方体的中心,从立方体各个面穿出的电力线一样多,所以穿过一个表面的电场强度通量为06εq. 9.3 答案:B 9.4 答案:A解:根据电势的定义式)0(,d =⋅=⎰BBP V V l E 知,空间中某点的电势高低与电势零点的选择有关,所以B 、C 、D 均不正确;如果某一区域内电势为常数,则该区域内任意两点的电势差为0,即0d =⋅=-⎰BA B A V V l E ,要使其成立,该区域内电场强度必为零. 9.5 答案:A解:根据电势和电势差的定义式)0(,d =⋅=⎰B BPV V l E ,⎰⋅=-=B AB A AB V V U l E d 知,空间中某点电势的高低与电势零点的选择有关,选择不同的电势零点,同一点的电势数值是不一样的.而任意两点的电势差总是确定的,与电势零点的选择无关. 9.6 答案:D解:根据电势叠加原理,两个点电荷中垂线上任意一点的电势为BB AA B A r q r q V V V 0044πεπε+=+=由于中垂线上的任意一点到两电荷的距离相等,即r r r B A ==,所以rq q V B A 04πε+=.要使其为零,则0=+B A q q ,所以B A q q -=.9.7 答案:A解:根据保守力做功和势能的关系PB PA BA AB E E q -=⋅=⎰l E d W 0知,负电荷沿电力线移动电场力做负功,所以电势能增加.根据等势面的定义,等势面上各点的电势相等,而电势相等的点场强不一定相等;根据电场力做功的公式AB B A AB qU V V q =-=)(W 知,初速度为零的点电荷, 仅在电场力的作用下,如何运动取决于点电荷本身和电势的高低.正电荷从高电势向低电势运动;负电荷从低电势向高电势运动. 9.8答案:C解:达到静电平衡后,根据高斯定理设各板上的电荷密度如图所示.根据静电平衡条件,有B A BA P E σσεσσ=⇒=-=020由于A 、B 板由导线相连,所以其与中间板C 的电势差必然相等,所以12210220112222d dd d U U A B B A BC AC =⇒--⨯=--⨯⇒=σσεσσσεσσσ9.9 答案:D解:根据动能定理,有)11(41221)44()(W 21022010r r m e m r e r e e V V e B A AB -=⇒⨯=-=-=πευυπεπε 二、填空题 9.10 答案:3028R qd επ;方向水平向右解:根据场强叠加原理,本题可以利用割补法,等效于一个均匀带电圆环和一个带相同电荷密度的异号电荷缺口在圆心处的电场.由于均匀带电圆环电荷分布的对称性,在圆心处产生的电场强度为零.异号电荷缺口在圆心处产生的电场强度大小为3022*******R qd R dR qR dq E εππεππε=⨯== 方向水平向右.9.11 答案:2R E π⋅解:根据题意知穿过半球面的电力线条数和穿过底面的电力线的条数相同,所以根据电通量的定义,有2d E d d d RE S S E e π⋅==⋅=⋅=⋅=Φ⎰⎰⎰⎰底面底面底面半球面S E S E9.12 答案:02εσ,水平向左;023εσ,水平向左;02εσ,水平向右 解:根据教材例9-7的结果和电场强度叠加原理,以水平向右为正有00212222εσεσεσ-=-=+=E E E A 0002123222εσεσεσ-=--=+=E E E B 000212222εσεσεσ+=+=+=E E E C “+”表示电场强度的方向水平向右,“-” 表示电场强度的方向水平向左.习题9.10图 习题9.11图 习题9.12图三、计算题 9.13解:(1)如图所示,在θ处取一小段弧为电荷元,其电量为θλλRd dl dq ==根据点电荷的场强分布知,它在O 点处产生的电场强度大小为Rd R dq dE 02044πεθλπε==在 x 、y 轴上的分量为θcos dE dE x -=,θsin dE dE y -=根据场强叠加原理,有⎰=-=πθθπελ00cos 4d R E xRd R E y 0002sin 4πελθθπελπ-=-=⎰ 所以 j j i E RλE E y x 08ε-=+=(2)根据点电荷的电势分布,有044πεθλπεd Rdq dV ==根据电势叠加原理,有⎰=-=πελθπελ044d V 9.14解:(1)由于均匀带电的球体可以看作是由许多半径不同均匀带习题9.13图解习题9.13图电的球面构成,根据教材例9.5的分析知,均匀带电球面的电场分布具有球对称性分布,所以均匀带电球体的电场分布也具有球对称性分布,即到球心距离为r 的所有点的电场强度的大小都相等,方向为各自的径向.可以利用高斯定理求解.根据电场的这种球对称性分布,过P 点作半径为r 的同心球面为高斯面,如图所示.根据高斯定理,有∑⎰⎰⎰⎰=π==⋅=⋅=⋅=Φise qE r ds E ds E ds E 0214cos d εθS E根据已知,有电荷的分布为:=∑iq )()(343433R r Q R r r R Q><⨯ππ 所以,电场强度的大小为=E )(4)(42030R r r QR r R Qr><πεπε根据分析知,电场强度E 的方向为径向.如果Q >0,则电场强度的方向沿径向指向外;若Q <0,则电场强度的方向沿径向指向球心. (2)根据电势的定义式⎰∞⋅=P V l E d ,为了便于积分,我们沿径向移到无穷远,所以⎰∞⋅=r V lE d 1⎰⎰∞⋅+⋅=RR rrE r E d d 30200302288348)(R Qr R Q R Q Rr R Q πεπεπεπε-=+-=)(R r <rQ r E V rr024d d πε=⋅=⋅=⎰⎰∞∞l E解习题9.14图)(R r >9.15解:(1)如图所示,在空间任取一点P ,过P 点作无限长圆柱面轴的垂线交于O 点,O 、P 的距离为r .为了便于分析P 点的电场强度,作其俯视图,则俯视图圆上任意一段弧代表一根无限长均匀带电直线.根据教材例9-6的分析知,无限长均匀带电直线周围的电场强度呈轴对称分布,即任意点的场强方向垂直于直线.由于圆柱面电荷分布的对称性,所以P 点的场强方向沿垂线向外(假设λ>0).同理,距离直线也为r 的另一点P '的电场强度方向也沿该点的垂线方向向外.可见,到柱面的轴距离相同的所有点的场强大小都相等,方向沿各点的垂线方向向外,即场强也呈轴对称分布,可以用高斯定理求解. 根据电场强度的这种对称性分布,过P 点作同轴的圆柱面为高斯面,如图所示.该闭合的高斯面由上、下底面和侧面组成,其面积分别为S 1、S 2和S 3,半径为r ,长为l . 根据高斯定理有⎰⎰⎰⎰⋅+⋅+⋅=⋅=Φ321s s s d d d d S E S E S E S E se由于上、下底面的外法线方向都与场强E 垂直,0cos =θ,所以上式前两项积分为零;又由于圆柱侧面外法线方向与场强E 的方向一致,因此有⎰⎰⎰⎰==⋅=⋅=Φ333s d d s s se dsE Eds S E S E解习题9.15图2επ∑=⋅=iq rl E根据已知,有电荷的分布为:=∑i q)()(0R r l R r ><λ所以,电场强度的大小为=E )(2)(00R r rR r ><πελ根据分析知,场强的方向是垂直于轴的垂线方向.如果λ>0,则电场强度的方向沿垂线向外辐射;若λ<0,则电场强度的方向沿垂线指向直线.(2)由于均匀带电无限长圆柱面的电荷分布到无限远,所以不能选择无穷远处为电势零点,必须另选零电势的参考点.原则上来说,除“无穷远”处外,其他地方都可选.本题我们选择距圆柱面轴为)(00R R R >处电势为零,即00=R V .根据电势的定义式⎰⋅=0d R PV l E ,有RR r E r E V R RRrR P01ln 2d d d 0πελ=⋅+⋅=⋅=⎰⎰⎰l E )(R r <rR r E V R rR P02ln 2d d 00πελ=⋅=⋅=⎰⎰l E )(R r >9.16解:(1)由于圆盘是由许多小圆环组成的,取一半径为r 宽度为dr 的细圆环,此圆环上带电量为rdr dq πσ2⋅=,由教材例9-9的结果知,圆环轴线上到环心的距离为x 的任意点P 的电势为2204xr dq dV +=πε根据电势叠加原理,有P 点电势为)(242220220x x R x r dr r dV V R-+=+==⎰⎰εσπεσπ (2)根据分析知,圆盘轴线上的电场强度方向沿轴线方向,所以根据电场强度与电势梯度的关系gradV -=E ,有轴线上到环心的距离为x 的任意点P 的电场强度为i i k j i E ])(1[2)(21220x R x dx dV V z y x gradV +-=-=∂∂+∂∂+∂∂-=-=εσ 此结果与教材例9-4的结果一样,很明显这种方法比较简单,去掉了复杂的矢量积分. 9.17解:由于自由电荷和电介质分布的球对称性,所以E 和D 的分布具有球对称性,可以用有介质时的高斯定理.根据电位移矢量D 的这种球对称性分布,过P 点作半径为r 的同心球面为高斯面,如图所示.根据D 的高斯定理,有∑⎰⎰⎰⎰=π==⋅=⋅=⋅isq D rds D ds D ds D 24cos d θS D根据已知,有电荷的分布为:=∑i q)()(0R r Q R r ><所以,电位移矢量D 的大小为=D )(4)(02R r r QR r >⋅<π根据分析知,电位移矢量D 的方向为径向.如果Q >0,则D 的方向沿径向指向外;若Q <0,则D 的方向沿径向指向球心. 根据电场强度E 和电位移矢量D 关系E E D εεε==r 0,有电场强度E的大小为==rDE εε0)(4)(020R r r Q R r r ><επε方向也为径向.根据极化强度与电场强度的关系E P )1(0-=r εε,知极化强度的大小为=-=E P r )1(0εε )(4)1()(0200R r r QR r r r >-<επεεε根据极化电荷密度和极化强度的关系n n 'P =⋅=e P σ,有2004)1('r Q r r επεεεσ--= 所以,球外的电场分布以及贴近金属球表面的油面上的极化电荷'q 为Q R R Q q r r r )11(344)1('3200-=⨯--=επεπεεε第10章 稳恒电流的磁场一、选择题 10.1 答案:B 10.2 答案:C解:根据洛伦兹力公式B υF ⨯=q m 知,洛伦兹力始终与运动速度垂直,所以对运动电荷不做功,根据动能定理电荷的动能不变。
大学物理下册课后答案 超全超详细
第十二章 导体电学【例题精选】例12-1 把A ,B 两块不带电的导体放在一带正电导体的电场中,如图所示. 设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则 (A) U B > U A ≠0. (B) U B > U A = 0.(C) U B = U A . (D) U B < U A . [ D ]例12-2 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20r RU . (D) r U 0. [ C ] *例12-3 如图所示,封闭的导体壳A 内有两个导体B 和C 。
A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是(A ) U A = UB = UC (B ) U B > U A = U C (C ) U B > U C > U A (D ) U B > U A > U C例12-4 在一个不带电的导体球壳内,先放进一个电荷为 +q 的点电荷,点电荷不与球壳内壁接触。
然后使该球壳与地接触一下,再将点电荷+q 取走。
此时,球壳的电荷为 ;电场分布的范围是 . -q 球壳外的整个空间例12-5 如图所示,A 、B 为靠得很近的两块平行的大金属平板,两板的面积均为S ,板间的距离为d .今使A 板带电荷q A ,B 板带电荷q B ,且q A > q B .则A 板的靠近B 的一侧所带电荷为 ;两板间电势差U = .)(21B A q q - Sd q q B A 02)(ε- 例12-6 一空气平行板电容器,电容为C ,两极板间距离为d 。
充电后,两极板间相互作用力为F 。
则两极板间的电势差为 ;极板上的电荷为 。
C Fd /2 FdC 2例12-7 C 1和C 2两个电容器,其上分别标明200 pF (电容量)、500 V (耐压值) 和300 pF 、900 V .把它们串连起来在两端加上1000 V 电压,则(A) C 1被击穿,C 2不被击穿. (B) C 2被击穿,C 1不被击穿.(C) 两者都被击穿. (D) 两者都不被击穿. [ C ]ABA C Bd例12-8 半径分别为1.0 cm 与2.0 cm 的两个球形导体,各带电荷 1.0³10-8 C ,两球相距很远.若用细导线将两球相连接.求:(1) 每个球所带电荷;(2) 每个球的电势.(22/C m N 1094190⋅⨯=πε) 解:两球相距很远,可视为孤立导体,互不影响.球上电荷均匀分布.设两球半径分别为r 1和r 2,导线连接后的电荷分别为q 1和q 2,而q 1 + q 1 = 2q , 则两球电势分别是 10114r q U επ=, 20224r q U επ=两球相连后电势相等 21U U =,则有 21212122112r r qr r q q r q r q +=++== 由此得到 921111067.62-⨯=+=r r qr q C 92122103.132-⨯=+=r r qr q C两球电势 310121100.64⨯=π==r q U U ε V例12-9 如图所示,三个“无限长”的同轴导体圆柱面A 、B 和C ,半径分别为 R a 、 R b 、R c .圆柱面B 上带电荷,A 和C 都接地.求B的内表面上电荷线密度λ1和外表面上电荷线密度λ2之比值λ1/ λ2.解:设B 上带正电荷,内表面上电荷线密度为λ1,外表面上电荷线密度为λ2,而A 、C 上相应地感应等量负电荷,如图所示.则A 、B 间场强分布为 E 1=λ1 / 2πε0r ,方向由B 指向AB 、C 间场强分布为E 2=λ2 / 2πε0r ,方向由B 指向CB 、A 间电势差 a b R R R R BA R R r r r E U ab a bln 2d 2d 0111ελελπ=π-=⋅=⎰⎰B 、C 间电势差 b c R R R R BC R R r r r E U cb cb ln 2d 2d 0222ελελπ=π-=⋅=⎰⎰ 因U BA =U BC ,得到()()a b b c R R R R /ln /ln 21=λλ 【练习题】*12-1 设地球半径R =6.4⨯106 m ,求其电容?解:C=4πε0R=7.12³10-4F12-2三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面二板用导线连接.中间板上带电,设左右两面上电荷面密度分别为σ1和σ2,如图所示.则比值σ1 / σ2为λ2(A) d 1 / d 2. (B) d 2 / d 1. (C) 1. (D) 2122/d d . [ B ]12-3 充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F 与两极板间的电压U 的关系:(A) F ∝U . (B) F ∝1/U . (C) F ∝1/U 2. (D) F ∝U 2. [ D ] 12-4 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ C ] 12-5 一导体A ,带电荷Q 1,其外包一导体壳B ,带电荷Q 2,且不与导体A 接触.试证在静电平衡时,B 的外表面带电荷为Q 1 + Q 2.证明:在导体壳内部作一包围B 的内表面的闭合面,如图.设B 内表面上带电荷Q 2′,按高斯定理,因导体内部场强E 处处为零,故0/)(d 021='+=⎰⋅εQ Q S E S∴ 12Q Q -=' 根据电荷守恒定律,设B 外表面带电荷为2Q '',则 222Q Q Q =''+' 由此可得 21222Q Q Q Q Q +='-='' 第十三章 电介质【例题精选】例13-1 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E . (C) ε r E . (D) (ε 0 ε r - ε 0)E . [ B ] 例13-2 C 1和C 2两空气电容器串联起来接上电源充电。
大学物理课后习题答案(上下册全)武汉大学出版社 习题2详解
2-1 如题2-1图所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为[ ]A. 3mg .B. 2mg .C. 1mg .D. 8mg / 3.答案: D题 2-1图 2-2 一质点作匀速率圆周运动时,[ ] A.它的动量不变,对圆心的角动量也不变。
B.它的动量不变,对圆心的角动量不断改变。
C.它的动量不断改变,对圆心的角动量不变。
D.它的动量不断改变,对圆心的角动量也不断改变。
答案: C2-3 质点系的内力可以改变[ ] A.系统的总质量。
B.系统的总动量。
C.系统的总动能。
D.系统的总角动量。
答案: C2-4 一船浮于静水中,船长L ,质量为m ,一个质量也为m 的人从船尾走到船头。
不计水和空气阻力,则在此过程中船将:[ ] A.不动 B.后退LC.后退L 21 D.后退L 31答案: C2-5 对功的概念有以下几种说法:[ ]①保守力作正功时,系统内相应的势能增加。
②质点运动经一闭合路径,保守力对质点作的功为零。
③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
在上述说法中:A.①、②是正确的。
B.②、③是正确的。
C.只有②是正确的。
D.只有③是正确的。
答案: C2-6 某质点在力(45)F x i =+(SI )的作用下沿x 轴作直线运动。
在从x=0移动到x=10m的过程中,力F所做功为 。
答案: 290J2-7 如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最小加速度 。
< < < < <m 2m答案: ()cos sin g μθθ-2-8 一质量为1Kg 的球A ,以5m /s 的速率与原来静止的另一球B 作弹性碰撞,碰后A 球以4m /s 的速率垂直于它原来的运动方向,则B 球的动量大小为 。
大学物理(上))末试卷A、B及其解答.
武汉大学物理科学与技术学院2007—2008学年第二学期考试试卷 A强物理类《大学物理(上)》班号 姓名 学号 成绩一、单项选择题(1-6题、共6题,每小题3分、共18分)1、质点作曲线运动,若r表示位矢,s 表示路程,v 表示速度,v 表示速率,τa 表示切向加速度,则下列四组表达式中,正确的是:( )A 、a tv=d d ,v t r =d d ; B 、τa t v =d d , v t r =d d ; C 、ν=t s d d ,τa t v =d d; D 、ν=trd d ,a t v =d d 2、在升降机天花板上拴一轻绳,其下端系有一重物。
当升降机以匀加速度a 上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,当绳子刚好被拉断时升降机上升的加速度为:( )A 、2a ;B 、 2(a+g );C 、2a+g ;D 、a+g 3、一弹簧振子在光滑的水平面上作简谐运动,已知振动系统的最大势能为100 J 。
当振子在最大位移的一半时,振子的动能为:( )A 、 100 JB 、 75 JC 、50 JD 、25 J4、S 1和S 2为两列平面简谐波的相干波源,其振动表达式为ωt A y cos 11= , ()2cos 22π-=ωt A y S 1、S 2到达P 点的距离相等,则P 点处合振动的振幅为( )A 、21A A +B 、21A A -C 、2221A A +D 、2221A A -5、两个体积不等的容器,分别储有氦气和氧气,若它们的压强相同,温度相同,则下列答案中相同的是( )。
A 、单位体积中的分子数B 、单位体积中的气体内能C 、单位体积中的气体质量D 、容器中的分子总数6、如图所示,理想气体卡诺循环过程中两条绝热线下面的面积为1S 和2S ,则( )。
A 、 1S >2SB 、1S =2SC 、1S <2SD 、无法确定二、填空题(7-12题,共22分)7、(3分)质量为m 的小球,在合外力F= - kx 作用下运动,已知t A x cos ω=,其中k 、ω、A 均为正常量,在t = 0到ωπ2=t 时间内小球动量的增量为 。
大学物理课后习题答案(上下册全)武汉大学出版社-习题3详解
3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J+ B. 02)(ωR m J J + C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。
若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。
答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。
06级大学物理I(下)练习题参考答案
06级大学物理I (下)练习题参考答案140001:D 140006: A 140011:D 140012:D 140017:B 140020: B 141002:3π-;π32; cm t x )332cos(2ππ-=;B 处向下,C 处向上141028: 10.04cos()2t ππ-141033: 3/4π 141035: b,f ; a,e 141054:141057:141059:332ππππ-,,-,141075:2/45.2;/7.0;72;/98s m s m s m N π142008:(1)cm t x )4/34/cos(10252ππ-⨯=-(2)s cm v /93.3=142018:解:(1) s l mg m k m T 201.0)//(2/2/2=∆===ππωπ (2) J A l mg kA E 3221092.3)/(2121-⨯=∆==150001:B 150003:C 150009:C 150040: B150044: C 151005: π 151006: 0.8m ;0.2m ;125Hz 151008:3/π 151013:2.4m ;6.0m/s151035:)/2cos(λππωx t A y -+= 151045:A, π2/B , C /2π, B /2π, B/C , ()Cl Bt A y -=cos , DC 152004:152011解∶(1) 振动方程Hzv f s f cm A t A y 5.0/210)cos(10=====+=-λππωφω初始条件y(0,0)=00)0,0(>y得πφ210-=故得原点振动方程∶cm t y )21cos(10ππ-=(2) x=150cm 是在原点“下游”4/3λ处位相比原点落后π23,所以cmt t y )2cos(10)2321cos(10πππππ-=--=只考虑这一点振动情况时,也可以写成)(cos 10cm t y π=17-1,A 17-2,A 17-3,B 17-4,D 17-5,B 17- 6,B 17-7,同振动方向 17-8,1微米 17-10,暗;暗;2/3 17-11,1200 0A 17-12,48000A 17-14,70000A 17-15,3/133cm17-16:3 17-17: mm 2106.7-⨯ 17-18,n 2/λ17-19,分波阵面;分振幅17-21,(1)60000A ; (2)15条 17-22,6328.80A 17-23,6637.93nm 17-24,54480A17-25,A 17-26,C 17-27,C 17-28,C 17-29,A 17-30,C 17-31,A 17-32,A 17-33,B 17-34,B17-35,l D /2λ 17-36,25cm 17-38,B 17-39,m 51025.1⨯ 17-40,424 17-42,03.0≈θ;3cm17-43,(1)0.2356cm ;(2)0.1178cm 17-44,3,2,1,0±±±=k 共7条17-45,k=3;2k+1=7 17-46,A 17-47:D060002: A 060005: B 060006: D 060017: C 060026: C060031: C 060040: B 060043: B 060047: D 060050: B 060061: B 061012:061015: 260J ;-280J 061056: 等压 ;等压061079: k mu 3/2061080: 气体分子热运动的每个自由度的平均能量 062031:解∶(1) 过程ab 与bc 为吸热过程,吸热总和为J V p V p V p V p T T C T T C Q b b c c a a b b b c P a b V 800)(25)(23)()(1=-+-=-+-=(2) 循环过程对外所作总功为图中矩形面积JV V p V V p A a d d b c b 100)()(=---=(3)db c a d d b b d b c c a a c a d d d b b b c c c a a a T T T T R R V p V p T T R R V p V p T T R V p T R V p T R V p T R V p T =⨯==⨯======242242/)1012(/)(/)1012(/)(/,//,/070019: A ,D 070024: A 070040: D 071022: kT w 23=; 气体的温度是分子平均平动动能的量度 071023:2000m/s ; 500m/s 071037:12.5J ; 20.8J18-1,B 18-2,D 18-3,C 18-4,D 18-5,C 18-6,B 18-7,B 180010:A 18-8,2/c h ν;νh ;c h /ν 18-9, ()20/1c v m m -=,()220/1c v c m E -=,202c m mc E k -=18-10, 2025.1c m ,2025.0c m ,c m 075.0181001:112/(/)-u c m 181005:m 0c 2(n-1) 181019:32c 19-1,D 19-2,D 19-4,A19-5,B 19-6,B 19-7,B 19-8,D 19-9,B 19-10,D 19-11,C 19-12,D 19-13,D 19-14,D 19-15,λhc;λh19-17,α粒子散射;有核;卢瑟福原子有核模型190025: D 190050: D 190071: (2) 190077: (4)190093: A 191007: 150V 191040: π; 0191064: A191063.6-⨯ 191069: >; > ; = 191079: 电子自旋的角动量的空间取向量子化192035: m B e R hcA 2222-=λ; meB R e mv U a 22222==。
大学物理课后习题答案(上下册全)武汉大学出版社 第7章 热力学基础习题解答
第7章 热力学基础7-1在下列准静态过程中,系统放热且内能减少的过程是[ D ] A .等温膨胀. B .绝热压缩. C .等容升温. D .等压压缩.7-2 如题7-2图所示,一定量的理想气体从体积V 1膨胀到体积V 2分别经历的过程是:A →B 等压过程; A →C 等温过程; A →D 绝热过程 . 其中吸热最多的过程是[ A ] A .A →B 等压过程 B .A →C 等温过程.C .A →D 绝热过程. 题7-2图 D .A →B 和A → C 两过程吸热一样多.7-3 一定量某理想气体所经历的循环过程是:从初态(V 0 ,T 0)开始,先经绝热膨胀使其体积增大1倍,再经等容升温回复到初态温度T 0, 最后经等温过程使其体积回复为V 0 , 则气体在此循环过程中[ B ]A .对外作的净功为正值.B .对外作的净功为负值.C .内能增加了.D .从外界净吸收的热量为正值. 7-4 根据热力学第二定律,判断下列说法正确的是 [ D ] A .功可以全部转化为热量,但热量不能全部转化为功.B .热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体.C .不可逆过程就是不能向相反方向进行的过程.D .一切自发过程都是不可逆的.7-5 关于可逆过程和不可逆过程有以下几种说法,正确的是[ A ] A .可逆过程一定是准静态过程. B .准静态过程一定是可逆过程. C .无摩擦过程一定是可逆过程.D .不可逆过程就是不能向相反方向进行的过程.7-6 理想气体卡诺循环过程的两条绝热线下的面积大小(题7-6图中阴影部分)分别为S 1和S 2 , 则二者的大小关系是[ B ] A .S 1 > S 2 . B .S 1 = S 2 .C .S 1 < S 2 .D .无法确定. 题7-6图 7-7 理想气体进行的下列各种过程,哪些过程可能发生[ D ] A .等容加热时,内能减少,同时压强升高 B . 等温压缩时,压强升高,同时吸热 C .等压压缩时,内能增加,同时吸热 D .绝热压缩时,压强升高,同时内能增加7-8 在题7-8图所示的三个过程中,a →c 为等温过程,则有[ B ] A .a →b 过程 ∆E <0,a →d 过程 ∆E <0. B .a →b 过程 ∆E >0,a →d 过程 ∆E <0. C .a →b 过程 ∆E <0,a →d 过程 ∆E >0.D .a →b 过程 ∆E >0,a →d 过程 ∆E >0. 题7-8图7-9 一定量的理想气体,分别进行如题7-9图所示的两个卡诺循环,若在p V -图上这两个循环过程曲线所围的面积相等,则这两个循环的[ D ] A .效率相等.B .从高温热源吸收的热量相等.C .向低温热源放出的热量相等.D .对外做的净功相等. 题7-9图7-10一定质量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单原子分子气体,则该过程中需吸热__500__ J ;若为双原子分子气体,则需吸热__700___ J 。
大学地球物理学专业《大学物理(下册)》期末考试试卷 附答案
大学地球物理学专业《大学物理(下册)》期末考试试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、如图所示,一束自然光入射到折射率分别为n1和n2的两种介质的交界面上,发生反射和折射.已知反射光是完全偏振光,那么折射角r的值为_______________________。
2、一条无限长直导线载有10A的电流.在离它 0.5m远的地方它产生的磁感强度B为____________。
一条长直载流导线,在离它1cm处产生的磁感强度是T,它所载的电流为____________。
3、一质量为0.2kg的弹簧振子, 周期为2s,此振动系统的劲度系数k为_______ N/m。
4、一长为的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。
抬起另一端使棒向上与水平面呈60°,然后无初转速地将棒释放,已知棒对轴的转动惯量为,则(1) 放手时棒的角加速度为____;(2) 棒转到水平位置时的角加速度为____。
()5、一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为(SI),(SI).其合振运动的振动方程为x=____________。
6、质量为的物体,初速极小,在外力作用下从原点起沿轴正向运动,所受外力方向沿轴正向,大小为。
物体从原点运动到坐标为点的过程中所受外力冲量的大小为_________。
7、动方程当t=常数时的物理意义是_____________________。
8、两列简谐波发生干涉的条件是_______________,_______________,_______________。
9、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。