基于51单片机的电子体温计设计
51单片机电子体温计的设计
51单片机电子体温计的设计
51单片机电子体温计的设计大致包括以下步骤:
1. 确定传感器:根据测量温度范围、精确度和稳定性等要求,选择适合的体温传感器,如LM35、DS18B20等。
2. 连接传感器:将传感器接到单片机的ADC口上,通过采集传感器的模拟电信号,获取体温数据。
3. 编写程序:编写相应的单片机程序,实现温度采集、处理和显示等功能。
4. 设计显示屏:可以使用12864液晶显示屏或者OLED显示屏等,将温度值图形化显示出来。
5. 添加温度报警:通过程序判断触发温度报警,并通过声音或者震动等方式提醒使用者。
6. 完善电路设计:加装电源管理电路、保护电路、稳压电路等,提高电路的可靠性,实现长时间稳定的测量。
7. 调试和测试:将设计好的电路烧录到单片机上,通过测试验证程序的正确性和准确性。
需要注意的是,设计过程中要充分考虑电路的安全性和稳定性,保证使用者的安全和使用效果。
同时,在开发过程中要注意保护用户隐私,不得泄露个人信息。
51单片机数字温度计设计与应用
51单片机数字温度计设计与应用数字温度计在现代生活中有着广泛的应用,它能够将环境温度转换为数字信号,提供直观、准确的温度数据。
本文将介绍基于51单片机的数字温度计的设计与应用。
设计思路:1. 硬件设计首先,我们需要选取一个合适的温度传感器,例如DS18B20。
该传感器具有高精度、数字输出、带有内部校准和非易失性存储器等特点,非常适合作为数字温度计的传感器。
其次,我们需要引入一个51单片机,常用的有AT89C51、AT89S52等。
单片机负责控制传感器和显示器,并处理温度数据。
接下来,我们需要一个LED数码管或液晶显示屏作为温度显示器。
数码管简单且易于操作,而液晶显示屏可以提供更多的信息显示。
最后,我们还需添加一些辅助电路,如稳压电路、时钟电路等,以确保正常的运行。
2. 软件设计在单片机的程序设计方面,我们需要考虑以下几个步骤:(1)初始化各个引脚和外部设备,如温度传感器和显示屏。
(2)读取温度传感器输出的数字信号,通过数据线将其与单片机相连。
(3)通过一系列算法将数字信号转换为实际的温度值。
因为DS18B20传感器提供数字输出,所以支持该类算法的编程非常简单。
(4)将计算得到的温度值通过数码管或液晶显示屏进行显示。
如果是数码管,可以通过数码管驱动芯片来实现多位数的显示。
(5)可选的增加报警功能,当温度超过一定阈值时,触发报警。
应用场景:数字温度计可以在许多场景中应用,下面介绍几个常见的应用场景:1. 家庭温度监测在家庭中,我们可以将数字温度计放置在客厅、卧室等常用区域,用于监测室内温度。
通过数字温度计,我们可以实时了解室内的温度状况,根据需要进行调节,提供舒适的生活环境。
2. 温室控制在温室种植中,保持适宜的温度对于植物的生长至关重要。
数字温度计可以帮助种植者实时监测温室内的温度,并及时采取相应的措施,维持温室内的温度在适宜的范围内。
3. 实验室温度监测实验室需要严格控制温度,以确保实验的准确性和稳定性。
51单片机数字温度计设计与实现
51单片机数字温度计设计与实现温度计是一种常见的电子测量设备,用于测量环境或物体的温度。
而数字温度计基于单片机的设计与实现,能够更准确地测量温度并提供数字化的显示,具备更多功能。
一、设计原理数字温度计的设计原理基于温度传感器和单片机。
温度传感器用于感测温度,而单片机负责将传感器读取的模拟信号转化为数字信号,并进行温度计算及显示。
二、所需材料1. 51单片机2. 温度传感器(例如DS18B20)3. 数码管或液晶显示屏4. 连接线5. 电源电路电容、电阻等元件三、设计步骤1. 连接电路:按照电路原理图将51单片机、温度传感器和显示器等元件进行连接。
注意正确连接引脚,以及电源电路的设计和连接。
2. 编写程序:利用汇编语言或C语言编写51单片机的程序,实现温度读取、计算和显示功能。
3. 温度传感器设置:根据温度传感器的型号和数据手册,配置单片机相应的输入输出口、温度转换方式等参数。
4. 读取温度:通过单片机对温度传感器进行读取,获取传感器采集的温度数据。
5. 温度计算:根据传感器输出的数据和转换方法,进行温度计算,得到更准确的温度数值。
6. 数字显示:将计算得到的温度数值通过数码管或液晶显示屏进行数字显示。
可以选择合适的显示格式和单位。
7. 添加附加功能:可以根据实际需求,增加其他功能,如报警功能、数据记录、温度曲线显示等。
8. 系统测试与优化:将设计的数字温度计进行系统测试,确保其正常运行和准确显示温度。
根据测试结果进行可能的优化或改进。
四、注意事项1. 连接线应牢固可靠,避免出现松动或接触不良的情况。
2. 选择合适的温度传感器,并正确设置传感器的相关参数。
3. 程序设计时应注意算法的准确性和优化性,以确保测量的准确性和实时性。
4. 温度传感器的安装和环境选择也会影响温度计的准确性,应避免与外部环境干扰和热源过近的情况。
五、应用领域1. 家庭和工业温度监测:数字温度计可以广泛应用于室内、室外温度监测,工业生产中的温度控制等。
数字温度计(基于51单片机的设计思路)
一.设计目的
1.理解掌握MCS-51系列单片机的功能和实际应用。
2.掌握仿真开发软件的使用。
3.掌握数字式温度计电路的设计、组装与调试方法。
二.设计要求
1.以MCS-51系列单片机为核心器件,组成一个数字式温度计。
2.采用数字式温度传感器为检测器件,进行单点温度检测,检测精度为0.4 C
3.温度显示采用4位LED数码管显示,三位整数,一位小数。
三.设计思路
1.根据设计要求,选择AT89C52单片机为核心器件。
2.温度检测器件采用DS18B20数字式温度传感器。
与单片机的接口为
P3.6引脚。
硬件电路设计总体框图为图4.1:
四、系统的硬件构成及功能
1.主控制器
图5.1
2.显示电路
显示电路采用四位共阳LED数码管,从P3口RXD,TXD串口输出段码。
LED数码管在仿真软件中如图5.2
图5.2
3.温度传感器
图5.3. 五.系统整体硬件电路
六.技术难点
1.程序设计
2.电路设计
3.电路焊接
4.硬件调试。
基于51单片机的数字温度计
引言:数字温度计是一种基于51单片机的温度测量装置,它通过传感器感知环境的温度,并使用单片机将温度值转换为数字形式,并显示在液晶屏上。
本文将详细介绍数字温度计的设计原理、硬件连接、软件编程以及应用领域。
概述:数字温度计基于51单片机的设计理念,其基本原理是通过传感器将温度转换为电信号,然后通过ADC(模数转换器)将电信号转换为数字信号,最后使用单片机将数字信号转换为温度值。
同时,数字温度计还将温度值显示在液晶屏上,方便用户直观地了解环境温度。
正文内容:1. 硬件连接:1.1 使用温度传感器感知环境温度:常用的温度传感器有NTC热敏电阻和DS18B20数字温度传感器。
通过将传感器连接到51单片机的引脚上,可以实现对环境温度的感知。
1.2 连接ADC进行模数转换:ADC是将模拟信号转换为数字信号的关键部件。
通过将51单片机的引脚连接到ADC芯片的输入端,可以将模拟的温度信号转换为数字信号。
1.3 连接液晶屏显示温度值:通过将51单片机的引脚连接到液晶屏的控制引脚和数据引脚,可以将温度值以数字形式显示在液晶屏上。
2. 软件编程:2.1 初始化引脚和ADC:在软件编程中,需要初始化51单片机的引脚设置和ADC的工作模式。
通过设置引脚为输入或输出,以及设置ADC的参考电压和工作模式,可以确保硬件正常工作。
2.2 温度测量算法:根据传感器的工作原理和电压-温度特性曲线,可以编写相应的算法将ADC测得的电压值转换为温度值。
例如,对于NTC热敏电阻,可以使用Steinhart-Hart公式进行温度计算。
2.3 温度值显示:将温度值以数字形式显示在液晶屏上。
通过设置液晶屏的控制引脚和数据引脚,可以控制液晶屏的显示内容,并将温度值以数字形式显示在屏幕上。
3. 基于51单片机的数字温度计应用:3.1 家庭温度监测:数字温度计可以安装在家庭中的不同区域,实时监测室内温度,并通过数字显示提供直观的温度信息。
这对于家庭的舒适性和节能都有重要意义。
基于51单片机的数字温度计
基于AT89S51的温度计院系:电子和信息工程学院专业:电子信息科学和技术班级:09信本学生姓名:刘辉学号:093621059第一部分 设计要求:采用AT89C51单片机和LCD 液晶显示器设计一个数字温度计,当外界温度变化时,显示屏上的温度值也随着变化。
数字温度计的测温范围为-55°C 到125°C 之间。
第二部分 硬件原理框图:硬件部分主要分为晶振振荡电路、复位电路、LCD 液晶显示电路、DS18B20温度传感器采集电路、电源电路等部分组成。
第三部分 硬件原理图:硬件模块原理图:AT89C51单片机晶振振荡电路 复位电路 L CD 液晶显示电路温度传感器采集电路电 源 电 路一、晶振振荡电路该电路是由两个电容和一个晶振组成,晶振产生基本的时钟信号它给单片机提供时钟信号。
二、复位电路复位的主要作用是把特殊功能寄存器的数据刷新为默认数据,单片机在运算过程中由于干扰等外界原因造成寄存器中数据混乱不能使其正常继续执行程序或产生的结果不正确时均需要复位,以使程序重新开始运行。
三、LCD液晶显示电路经过温度传感器,将采集到的温度信息传给单片机,单片机处理后又将信息发给P0口,P0口和LCD的数据口相连接,液晶屏上会显示采集到的温度值。
四、温度传感器采集电路单线数字温度传感器DS18B20测量温度范围为-55°C~+125°C,-10~+85°C范围内,精度为±0.5°C。
DS1822的精度较差为± 2°C 。
DS18B20的管脚排列如下: DQ 为数字信号输入/输出端;GND 为电源地;VDD 为外接供电电源输入端(在寄生电源接线方式时接地)。
根据DS18B20的通讯协议,主机控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM 指令,最后发送RAM 指令,这样才能对DS18B20进行预定的操作。
51单片机数字温度计的设计与实现
51单片机数字温度计的设计与实现温度计是一种广泛使用的电子测量仪器,它能够通过感知温度的变化来提供精准的温度数值。
本文将介绍如何使用51单片机设计并实现一款数字温度计。
一、硬件设计1. 采集温度传感器温度传感器是用来感知环境温度的关键器件。
常见的温度传感器有DS18B20、LM35等。
在本次设计中,我们选择DS18B20温度传感器。
通过电路连接将温度传感器与51单片机相连,使51单片机能够读取温度传感器的数值。
2. 单片机选型与连接选择适合的51单片机型号,并根据其引脚功能图对单片机进行合理的引脚连接。
确保温度传感器与单片机之间的数据传输通畅,同时保证电源和地线的正确连接。
3. 显示模块选型与连接选择合适的数字显示模块,如数码管、液晶显示屏等。
将显示模块与51单片机相连,使温度数值能够通过显示模块展示出来。
4. 电源供应为电路提供稳定的电源,保证整个系统的正常运行。
选择合适的电源模块,并根据其规格连接电路。
二、软件设计1. 温度传感器读取程序编写程序代码,使用单片机GPIO口将温度传感器与单片机连接,并通过相应的通信协议读取温度数值。
例如,DS18B20采用一线制通信协议,需要使用单总线协议来读取温度数值。
2. 数字显示模块驱动程序编写程序代码,通过单片机的GPIO口控制数字显示模块的数码管或液晶显示屏进行温度数值显示。
根据显示模块的规格,编写合适的驱动程序。
3. 温度转换算法将温度传感器读取到的模拟数值转换为实际温度数值。
以DS18B20为例,它输出的温度数值是一个16位带符号的数,需要进行相应的转换操作才能得到实际的温度数值。
4. 系统控制程序整合以上各部分代码,编写系统控制程序。
该程序通过循环读取温度数值并进行数据处理,然后将处理后的数据送到数字显示模块进行实时显示。
三、实现步骤1. 硬件连接按照前文所述的硬件设计,将温度传感器、51单片机和数字显示模块进行正确的连接。
确保连接无误,并进行必要的电源接入。
基于51单片机的智能电子体温计
智能体温计摘要:本智能体温计采用AT89S52作为核心器件实现对系统的自动控制,单片机将采集到温度值在LED数码管上显示出来。
此外温度预制,报警电路模块功能也由单片机完成。
通过系统的设计与实现说明本设计方案切实可以,能够完成题目所要求的基本功能部分,并留有相应的接口,为完成扩展功能打下基础。
关键字:单片机AD590 ADC0809 ISD2560一、主要模块的方案论证与比较1、温度传感器的选择方案一:采用热敏电阻。
热敏电阻价格便宜,对温度灵敏,原理简单,但线性度不好,如不进行线性补偿,对于本设计归一化输出的要求,难于达到设计精度;如要对非线性进行补偿,则电路结构复杂,难于调整。
故不采用。
方案二:采用热电偶。
热电偶在测温范围内热电性质稳定,不随时间变化而变化,电阻温度系数小,导电率高,比热小,但热电偶一般体积较大,使用不方便,价格相对较高。
作为一个智能体温计的温度传感器,要求体积小,使用方便,便于携带,故此方案不合适。
方案三:采用集成温度传感器。
集成温度传感器一般且有具有线性好、精度高、灵敏度高、体积小、使用方便等优点。
根据实验室现有材料可选取AD590。
AD590的测温范围为-55℃~+150℃,能满足本设计的0~50度测量要求。
根据相关技术资料:AD590线性电流输出为1 A/K,正比于绝对温度;AD590的电源电压范围为4V~30V,并可承受44V正向电压和20V反向电压,因而器件反接也不会被损坏。
该方案能完全满足此设计的要求,故采用此方案。
2、A/D转换器的选择方案一:选用AD574。
AD574的数字量位数可设成8位也可以设为12位,且无需外接CLOCK时钟,转换时间达到25μs,输出模拟电压可以是单极性的0-10V或0-20V,也可以是双极性的±5V或±10V之间。
AD574精度高,但与8位的单片机接口较复杂,且价格昂贵,考虑到体温计是对温度的测量,其响应时间的要求不高。
基于51单片机的数字温度计设计及优化
基于51单片机的数字温度计设计及优化数字温度计是一种常见的电子测量设备,用于测量周围环境的温度,并将温度以数字形式显示。
本文将介绍一种基于51单片机的数字温度计的设计及其优化。
首先,为了设计一个基于51单片机的数字温度计,我们需要以下材料和器件:51单片机、温度传感器、LCD显示屏、电阻、电容、晶体振荡器等。
在电路设计方面,我们可以将温度传感器连接到单片机的模拟输入引脚上,通过读取模拟输入,可以获取传感器测量到的温度值。
接下来,我们可以通过串口通信将温度值发送到PC机,并通过PC机上的软件进行温度的实时显示和记录。
在软件设计方面,我们需要首先编写单片机的程序,以读取传感器的模拟信号,并将其转换为数字温度值。
然后,我们可以通过串口通信将温度值发送给PC机。
在PC机上的软件中,我们需要编写一个接收温度数据的程序,并通过图形界面显示温度值。
为了进一步优化数字温度计设计,我们可以考虑以下几个方面:1. 精度优化:通过选用更高精度的温度传感器,可以提高温度测量的准确性。
此外,在单片机的程序中,我们可以进行数学运算和滤波算法的优化,以提高温度测量的精度。
2. 功耗优化:在设计数字温度计时,我们应该尽可能降低系统的功耗。
例如,可以选择低功耗的单片机,合理设置时钟频率和休眠模式,以减少系统能耗。
3. 可靠性优化:数字温度计在长时间使用时应保持可靠性,尽量减少出现故障的可能性。
为此,我们可以对电路进行严格的电气设计,使用高质量的电子元器件,并进行必要的温度校准和测试。
4. 功能扩展:基于数字温度计的设计还可以考虑添加一些额外的功能,如报警功能、记录功能和远程监测功能等。
这些功能可以通过扩展硬件和改进软件来实现。
总结一下,本文介绍了基于51单片机的数字温度计的设计及其优化。
通过合理的电路设计和软件编程,我们可以实现一个精度高、功耗低、可靠性强的数字温度计。
此外,我们还可以通过优化算法和添加额外功能来进一步提升数字温度计的性能。
基于51单片机和DS18B20的数字温度计设计说明
基于51单片机和DS18B20的数字温度计设计说明
1.硬件设计:
-51单片机:选择合适的型号,如STC89C52或AT89C52等。
-DS18B20温度传感器:该传感器是一种数字温度传感器,具有单总线接口和高精度测量能力。
-接口电路:将51单片机和DS18B20传感器连接起来,要注意电平转换和信号线的阻抗匹配。
2.软件设计:
-初始化:在主函数中,首先对单片机进行初始化设置,包括时钟设置、串口配置等。
-DS18B20通信协议:使用单总线协议与DS18B20传感器进行通信,包括发送复位信号、读写数据等操作。
-温度测量:通过向DS18B20发送读取温度的命令,从传感器中读取温度值并保存。
-数据传输:将温度值转换为可显示的格式,如摄氏度或华氏度,并通过串口输出或LED显示。
3.程序流程:
-初始化单片机,设置时钟和串口参数。
-进入主循环,循环执行以下操作:
-发送复位信号,启动温度转换。
-等待转换完成,发送读取温度命令。
-读取温度值,并进行数据处理转换。
-输出温度值。
4.其他功能:
-可以添加LCD显示模块,将温度值显示在液晶屏上。
-可以添加按键输入模块,通过按键切换温度单位或进行其他操作。
需要注意的是,该设计只是一个简单的示例,实际应用中可能需要根据具体需求进行扩展和修改。
同时,在程序设计过程中,也要注意低功耗和数据稳定性等方面的考虑。
51单片机数字温度计的设计与实现方法论
51单片机数字温度计的设计与实现方法论1.引言温度计是一种常见的电子设备,用于测量温度并将其转化为数字显示。
本文将介绍在51单片机上设计与实现数字温度计的方法论。
2.硬件设计2.1 温度传感器选择温度传感器是数字温度计的核心组件,常用的温度传感器有热敏电阻、热敏电容和数字温度传感器等。
需要根据实际需求选择合适的温度传感器,并根据其特性调整硬件设计。
2.2 温度传感器接口电路设计温度传感器需要与51单片机进行通信,因此需要设计相应的接口电路来连接传感器与单片机。
根据传感器的通信协议选择合适的接口设计方案,例如I2C、SPI等。
2.3 数字显示模块选型数字温度计需要将测量到的温度以数字形式显示出来,因此需要选择合适的数码管、液晶显示屏或其他数字显示模块。
根据实际需求选择合适的显示模块,并考虑与51单片机的接口兼容性。
3.软件设计3.1 接口通信协议根据温度传感器的通信协议选择合适的接口设计方案,并在软件中实现相应的协议处理算法。
其中包括数据传输的初始化、发送和接收等功能。
3.2 温度测量与转换算法根据选用的温度传感器,编写软件算法将传感器采集到的模拟温度值转换为数字温度值。
具体算法根据传感器的特性来设计,可能需要使用模拟转数字转换技术、纠偏算法等。
3.3 数字温度值显示算法编写显示算法,在数码管、液晶屏或其他数字显示模块上将转换后的数字温度值进行显示。
可以根据具体需求设计温度的显示格式和精度。
4.系统实现4.1 硬件连接根据硬件设计的要求,按照相应的电路连接方式将温度传感器、51单片机和数字显示模块进行硬件连接。
4.2 软件编程利用汇编语言或高级编程语言(如C语言)编写相应的软件程序,分别实现接口通信、温度测量与转换、数字温度值显示等功能。
4.3 调试与测试对整个系统进行调试和测试,确保温度传感器能够准确采集温度、转换算法正确运行并实现数字温度值的显示等功能。
5.总结本文介绍了51单片机数字温度计的设计与实现方法论。
基于51单片机的数字温度计设计及应用
基于51单片机的数字温度计设计及应用数字温度计是一种测量环境温度的设备,它使用数字技术来转换和显示温度值。
基于51单片机的数字温度计设计及应用,我们将使用51单片机作为主控芯片,采集传感器的温度数据并将其转换为数字信号,然后通过数码管显示出来。
首先,我们需要选择合适的温度传感器。
常见的温度传感器有热敏电阻、热电偶和数字温度传感器等。
在本设计中,我们将使用DS18B20数字温度传感器。
DS18B20具有高精度、数字输出、通信简单等优点,非常适合于数字温度计的设计。
接下来,我们需要设计硬件电路。
首先,将DS18B20传感器连接到51单片机的GPIO引脚,并通过一条数据线进行通信。
接下来,将51单片机的引脚连接到数码管显示模块,用于将温度值显示出来。
此外,还可以添加其他功能,如按键开关用于控制菜单切换、蜂鸣器用于报警等。
在软件设计上,首先需要初始化51单片机的GPIO引脚,配置为输入或输出模式,通信时需要配置为模拟输入模式。
然后,利用51单片机的定时器模块生成一定频率的时钟信号,用于与DS18B20传感器通信。
在温度读取过程中,我们需要发送一系列的指令给DS18B20传感器,然后接收传感器返回的温度值。
根据DS18B20传感器的数据手册,我们可以编写相应的C语言代码进行数据的读取和解析。
接着,我们需要将读取到的温度值进行转换和显示。
由于DS18B20传感器输出的温度值为16位二进制补码形式,我们可以使用移位和逻辑运算等操作进行转换。
转换后的温度值可以直接显示在数码管上,通过扫描显示的方式实时更新温度数值。
在应用方面,基于51单片机的数字温度计可以广泛应用于各种温度测量场景。
例如,可以应用于室内温度测量,工业过程控制,农业温室监测等。
由于51单片机具有低功耗、成本低廉等优点,这种数字温度计可以在各种资源有限的环境中使用。
除了基本功能外,我们还可以进行功能扩展。
例如,可以添加存储功能,将温度数据保存到外部存储器中,以便进行后续分析和处理。
基于51单片机的数字温度计实时监测方案探究
基于51单片机的数字温度计实时监测方案探究数字温度计是一种能够实时监测环境温度的仪器。
本方案通过使用51单片机,将温度传感器与单片机相连接,以实现对环境温度的实时监测。
以下是本方案的详细内容。
一、硬件设计1. 硬件器材准备:准备一个51单片机开发板,一个温度传感器(如DS18B20)、若干杜邦线、一个电阻和一个LCD液晶显示屏。
2. 连接电路:将温度传感器的Vcc引脚连接到单片机的VCC引脚,将GND引脚连接到单片机的GND引脚。
将传感器的DATA引脚连接到单片机的一个IO引脚,并通过一个4.7kΩ的上拉电阻连接到VCC引脚。
将LCD显示屏的引脚连接到单片机相应的IO引脚和电源引脚。
3. 编写单片机程序:使用C语言编写单片机程序,通过读取传感器数据并将结果显示到LCD屏幕上。
程序中需要包括初始化函数、温度读取函数以及数据显示函数。
二、软件设计1. 初始化函数:在初始化函数中设置单片机的工作模式、引脚功能和相关参数,如为LCD显示屏设置数据总线引脚和控制引脚等。
2. 温度读取函数:通过单片机的IO口读取传感器数据。
使用51单片机的串行通信功能与温度传感器进行通信,并读取传感器发送的数据。
根据传感器的规格说明书,将接收到的数据转换为温度值。
3. 数据显示函数:将读取到的温度值显示到LCD屏幕上。
先清除LCD屏幕上的内容,然后使用LCD屏幕上的光标控制函数将温度值显示到特定位置。
可以选择在LCD屏幕上显示华氏度或摄氏度。
三、实时监测方案1. 循环读取温度值:在主函数中,使用一个无限循环来实现连续地读取温度值。
在每次循环中调用温度读取函数,读取传感器当前的温度值。
2. 设置温度报警:根据实际需求,在主函数中添加一个判断语句,当温度值超过或低于某个阈值时,触发温度报警。
可以通过LED灯、蜂鸣器等外设来实现报警。
3. 数据保存和上传:根据需求,可以将读取的实时温度值保存到相应的存储介质中,如SD卡或EEPROM。
基于51单片机的电子体温计设计_毕业设计
基于51单片机的电子体温计设计_毕业设计摘要本文设计一种基于单片机控制的电子体温计,实现了实时测量显示和语音播报与声音报警的功能。
主要由电源电路模块,A/D转换电路模块,温度控制模块,自动控制模块,温度设制、显示及报警电路模块,串行通信模块和语音播放模块组成。
自动控制模块采用双AT89S52构成主从串行处理结构实现对系统的自动控制。
温度控制模块选用AD590集成温度传感器来采集外界温度,转换为线性电压信号。
线性电压经由OP07构成高精度低温漂的放大电路处理后,由A/D转换电路模块中的ADC0809完成A/D转换,得到8位的数字信号送入自动控制模块的主机中。
主机将采集到温度值在LED数码管上显示出来,并通过串口通信将温度信号传到从机。
此外,主机完成温度预制和报警电路模块功能,从机完成温度值的语音播放功能。
关键词单片机;AD590;ADC0809;ISD25601 绪论温度是存在于客观世界的一个基本物理量,它与人类的生活和生存有着密切的联系。
温测量的历史,可以追溯到l6世纪。
当时Saatorio用空气热膨胀的原理,制出了第一支测量口腔温度的体温计。
本世纪初,开始用水银来制作体温计,至今在临床上得到了广泛的应用。
根据1928年Ebstein的报告,当时除测量口腔及腋下的温度外,还可以测量直肠、颈部、大腿根部,外耳及尿温。
这些都是用被测皮肤温度与玻璃球内积存的水银温度相等的原理实现的。
由于水银体温计使用方便、精度高,因而应用很广。
由于用水银体温计进行体温监测很不方便,水银的污染的可能也很严重等,为了正确测量人体局部温度,促使人们开发了各种不同的测温仪器和测温方法。
现在已有许多医院采用了电子体温计,用其它电子仪器测量体温也日益普及。
电子温度测量方式是随着电子技术的兴起而发展的一门学科。
它利用材料随温度变化的参数转换成电信号[1]对温度进行测量。
早期的电子温度测量均采用模拟技术的方法,对传感器的非线性补偿采用分立式电路进行各种方法的补偿,线路复杂、体积庞大、可靠性低,应用受到很大的制约,微电子技术的发展使这一希望逐步变成了现实。
基于51单片机数字温度计的设计与实现
基于51单片机数字温度计的设计与实现数字温度计是一种能够测量环境温度并显示数值的设备。
基于51单片机的数字温度计设计与实现是指利用51单片机作为核心,结合温度传感器和其他辅助电路,实现一个能够测量温度并通过数码管显示温度数值的系统。
本文将从硬件设计和软件实现两个方面介绍基于51单片机数字温度计的具体设计与实现过程。
一、硬件设计1. 温度传感器选取在设计数字温度计时,首先需要选取合适的温度传感器。
市面上常用的温度传感器有热敏电阻、功率型温度传感器(如PT100)、数字温度传感器(如DS18B20)等。
根据设计需求和成本考虑,我们选择使用DS18B20数字温度传感器。
2. 电路设计基于51单片机的数字温度计的电路设计主要包括单片机与温度传感器的连接、数码管显示电路和电源电路。
(1)单片机与温度传感器的连接在电路中将51单片机与DS18B20数字温度传感器相连接,可采用一线总线的方式。
通过引脚的连接,实现单片机对温度传感器的读取控制。
(2)数码管显示电路为了能够显示温度数值,我们需要设计一个数码管显示电路。
根据温度传感器测得的温度值,通过数字转换和数码管驱动,将温度数值显示在数码管上。
(3)电源电路电源电路采用稳压电源设计,保证整个系统的稳定供电。
根据实际需求选择合适的电源电压,并添加滤波电容和稳压芯片,以稳定电源输出。
3. PCB设计根据电路设计的原理图,进行PCB设计。
根据电路元件的布局和连线的走向,绘制PCB板的线路、元件和连接之间。
二、软件实现1. 单片机的编程语言选择对于基于51单片机的数字温度计的软件实现,我们可以选择汇编语言或者C语言进行编程。
汇编语言的效率高,但编写难度大;C语言的可读性好,开发效率高。
根据实际情况,我们选择使用C语言进行编程。
2. 温度传感器数据获取利用单片机的IO口与温度传感器相连,通过一线总线协议进行数据的读取。
根据温度传感器的通信规则,编写相应的代码实现数据的读取。
基于51单片机数字体温计设计
基于STC89C52最小系统的数字体温计设计摘要现代信息技术的三大基础是信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)。
传感器属于信息技术的前沿尖端产品,尤其是温度传感器种类日益繁多,数字温度传感器更因适用于各种微处理器接口组成的自动温度控制系统具有可以克服模拟传感器与微处理器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子体温计、测温仪器等各种温度控制系统中。
智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。
它是微电子技术、计算机技术和自动测试技术(ATE)的结晶。
它们内部都包含温度传感器、A/D转换器、信号处理器、存储器(或寄存器)和接口电路。
有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。
智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU);并且它是在硬件的基础上通过软件来实现测试功能的,其智能化程度也取决于软件的开发水平。
对某些智能温度传感器而言,单片机还可通过相应的寄存器来设定其A/D转换速率(典型产品为MAX6654),分辨力及最大转换时间(典型产品为DS1624)。
随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,采用单片机控制已经成为了一种潮流。
本文将介绍一种基于STC89C52单片机控制的数字体温计,配合采用DS18B20为温度采集模块,HS1602液晶显示模块显示结果,另外用MAX232模块进行电压转换进行程序的烧写,实现对体温的采集与再现。
关键词:52单片机,DSI8B20,HS1602,体温计THE DIGITAL THERMOMETERS DESIGN BASED ON ST C89C52’S MINUIMUM SYSTEMABSTRACTModern information technology is based on the three information collection (ie, sensor technology), information transfer (ICT) and information processing (computer technology). Sensor belongs to the forefront of cutting-edge information technology products, especially the increasingly diverse types of temperature sensors, digital temperature sensor is more suitable for a variety of microprocessor interface for the composition of the automatic temperature control system can overcome the analog sensors and signal conditioning required for microprocessor interfacing circuit and A / D converter defects, etc., are widely used in industrial control, electronic thermometer, thermometer, etc. of various temperature control systems. Smart temperature sensor (also known as digital temperature sensor) in the mid-1990s, came out. It is the micro-electronics technology, computer technology and automated testing techniques (ATE) of the crystal. They contain the internal temperature sensor, A / D converter, signal processor, memory (or registers) and the interface circuit. Some products are also with the multiplexer, the central controller (CPU), random access memory (RAM) and read-only memory (ROM). Smart temperature sensor is characterized by the temperature data can be exported and the related amount of temperature control, fit a variety of microcontrollers (MCU); and it is based on the hardware to achieve through software testing capabilities, and its degree depends on intelligent in the software development level. Some smart temperature sensor, the controller can also register through the appropriate set of its A / D conversion rate (typical products MAX6654), the maximum resolution and conversion time (typical product DS1624). With the progress and development, microcontroller technology has spread to our lives, work, research in various fields, has become a relatively mature technology, using SCM hasbecome a trend. This article describes a microcontroller based control of digital thermometers STC89C52, with the use of DS18B20 the temperature acquisition module, HS1602 liquid crystal display module displays the results, another module with a MAX232 voltage conversion, to achieve the temperature of the acquisition and reproduction.Keywords: 52 microcontroller; DSI8B20; HS1602; thermometer目录1引言-------------------------------------------------------------- 1 2总体设计方案------------------------------------------------------ 32.1方案论证----------------------------------------------------- 32.1.1单片机系统--------------------------------------------- 32.1.2电源模块----------------------------------------------- 32.1.3温度传感器--------------------------------------------- 32.1.4显示模块----------------------------------------------- 42.1.5确定方案----------------------------------------------- 42.2总体设计----------------------------------------------------- 43 硬件设计---------------------------------------------------------- 53.1 单片机系统-------------------------------------------------- 53.1.1单片机最小系统----------------------------------------- 73.1.2 复位电路----------------------------------------------- 83.1.3 时钟振荡电路------------------------------------------- 83.1.4电源模块----------------------------------------------- 9 3.2温度传感器模块-------------------------------------------------- 93.2.1 DS18B20原理------------------------------------------- 93.2.2 DS18B20电路连接-------------------------------------- 133.3 液晶显示模块----------------------------------------------- 133.4串口通信模块------------------------------------------------ 15 4软件设计--------------------------------------------------------- 174.1 软件流程--------------------------------------------------- 174.2 DS18B20模块程序设计--------------------------------------- 184.2.1 程序流程------------------------------- 错误!未定义书签。
基于51单片机数字温度计设计与实现
基于51单片机数字温度计设计与实现数字温度计是一种常见的电子仪器,用于测量和显示温度。
本文将介绍如何基于51单片机设计和实现一个数字温度计。
首先,我们需要了解51单片机的基本原理和工作方式。
51单片机是一款广泛应用于嵌入式系统中的微控制器,具有低成本、易编程、可扩展等特点。
它由中央处理器、存储器、输入输出端口和定时器等组成,可以实现各种功能。
接下来,我们可以开始设计数字温度计的硬件部分。
首先,我们需要一个温度传感器,如DS18B20数字温度传感器。
该传感器具有高精度和数字输出的特点,可以直接与51单片机进行通信。
然后,将传感器与51单片机的引脚相连,通过读取传感器输出的温度值,即可得到实时的温度数据。
为了方便用户查看温度,我们可以通过数码管或LCD显示屏显示温度值。
数码管是一种7段显示器件,可以显示数字0-9的字符。
我们可以通过将温度值拆分成各个位数,然后将对应的数字发送到数码管上,实现温度的显示。
此外,我们还可以为温度计添加一些附加功能。
例如,可以通过按键切换温度的单位,从摄氏度切换到华氏度。
还可以设置温度报警功能,当温度超过一定阈值时,触发蜂鸣器或LED灯进行报警。
在软件设计方面,我们需要编写51单片机的固件程序来实现温度计的功能。
首先,我们需要初始化51单片机的引脚和定时器。
然后,可以设置一个定时器中断,用于定时读取温度传感器的数值。
在定时器中断的处理函数中,读取温度传感器的数值,并将其转换为摄氏度或华氏度,然后发送到数码管或LCD显示屏上。
此外,我们还可以添加一些交互功能,例如按键实现温度单位切换或报警阈值的设置功能。
通过按键检测的方式,可以在主循环中判断按键的按下和释放,并根据按键的状态进行相应的操作。
最后,我们需要将编写好的固件程序下载到51单片机的存储器中。
可以使用ISP编程器或者串口下载方式进行下载。
下载完成后,将51单片机与硬件连接好,就可以通过操作按键和观察数码管或LCD显示屏来实现数字温度计的功能了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3电源电路模块
如图3-3所示,220V交流电经变压器降压、桥式整流、电容滤波后由7905、7805、7812三端集成稳压管分别得到-5V、+5V、+12V电压,整个系统供电。
图3-3电源电路图
3.4温度控制模块
温度控制模块选用AD590,主要功能是负责采集温度,把温度值进过放大后传送给A/D转换电路模块
如上所述,故选用方案三来进行设计。
3系统硬件电路设计
电子体温计主要由电源电路模块,A/D转换电路模块,温度控制模块,自动控制模块,温度设制、显示及报警电路模块,串行通信模块和语音播放模块组成。
3.1自动控制模块
3.1.1单片机的概述
单片机,又称为微控制器。是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统[7,8]。
AD590主要特性如下:
(1)具有线性输出电流。
(2)宽广的操作温度范围(-55℃~150℃)。
(3)宽广的工作电压范围(+4V~+30V)。
(4)良好的隔离性。
AD590的包装与等效电路如图3-4所示。
图3-4 AD590外形及符号
AD590是电流型温度传感器,通过对电流的测量可得到所需要的温度值。根据特性分挡,AD590的后缀以I,J,K,L,M表示。AD590L,AD590M一般用于精密温度测量电路,它采用金属壳3脚封装,其中1脚为电源正端V+;2脚为电流输出端I0;3脚为管壳,一般不用。
表3-1 ADC0809通择表
C
B
A
选择的通道
0
0
0
IN0
0
0
1
IN1
0
1
0
IN2
0
1
1
IN3
1
0
0
IN4
1
0
1
IN5
1
10Leabharlann IN611
1
IN7
ST为转换启动信号。当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。EOC为转换结束信号。当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。D7-D0为数字量输出线。CLK为时钟输入信号线。ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ。
(1)主要性能特点
①8路8位A/D转换器,即分辨率8位
②具有转换起停控制端
③转换时间为100μs
④单个+5V电源供电
⑤模拟输入电压范围0~+5V,不需零点和满刻度校准
⑥工作温度范围为-40~+85摄氏度
⑦低功耗,约15mW
(2)引脚特性
IN0-IN7:8条模拟量输入通道
ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。
3.5A/D转换电路模块
A/D转换电路模块选用ADC0809,其功能是从温度控制模块接受数据后,经过A/D转换,把模拟量转换成数字量传送给主机进行处理。
3.5.1 ADC0809概述
ADC0809是美国国家半导体公司生产的CMOS工艺8通道,8位逐次逼近式A/D转换器。其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D转换。是目前国内应用最广泛的8位通用A/D芯片[14,15]
图2-1热电偶温差电路测温系统框图
方案二:采用数字温度芯片DS18B20测量温度,输出信号全数字化。该系统利用单片机控制温度传感器DS18B20进行实时温度检测并显示,能够实现快速测量环境温度,并可根据需要设定上下限报警温度。该系统扩展性非常强,在数据处理同时显示时间,利用键盘来进行调时和温度查询,获得的数据可通过MAX232芯片与RS232接口进行串口通信,方便采集和整理时间温度数据。系统框图如图2-2所示。
(2)在外部结构上,AT89S52单片机和MCS-51系列单片机的结构相同,有三种封装形式,分别是PDIP形式,为40针脚;PLCC形式,为44针脚;TAFP形式,也为44针脚。其中,常用的为PDIP形式,如图3-1所示。
图3-1 AT89S52的引脚图
3.2串行通信模块
串行通信模块的主要功能是主机把温度值数据发送到从机,从机接收数据并控制语音芯片报出当前的温度值。主机与从机串行通信电路图如图3-2所示。
因此,鉴于传统的水银体温计汞的污染及其携带不方便易破碎,尤其是测量时间过长等缺点,本课题设计出一种数字式电子体温计。
2系统方案与论证
2.1方案论证与比较
方案一:采用热电偶温差电路测温,温度检测部分可以使用低温热偶,热电偶由两个焊接在一起的异金属导线所组成,通过将参考结点保持在已知温度并测量该电压,便可推断出检测结点的温度。数据采集部分使用带有A/D通道的单片机,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。系统包括对A/D的数据采集,温度的显示等,这几项功能信号通过输入输出电路由单片机处理。[4]此外还有复位电路,晶振电路等。现场输入硬件有手动复位键、A/D转换芯片,处理芯片为51芯片,执行机构有数码管、报警器等。系统框图如图2-1所示。
关键词单片机;AD590;ADC0809;ISD2560
1绪论
温度是存在于客观世界的一个基本物理量,它与人类的生活和生存有着密切的联系。温测量的历史,可以追溯到l6世纪。当时Saatorio用空气热膨胀的原理,制出了第一支测量口腔温度的体温计。本世纪初,开始用水银来制作体温计,至今在临床上得到了广泛的应用。根据1928年Ebstein的报告,当时除测量口腔及腋下的温度外,还可以测量直肠、颈部、大腿根部,外耳及尿温。这些都是用被测皮肤温度与玻璃球内积存的水银温度相等的原理实现的。
由于水银体温计使用方便、精度高,因而应用很广。由于用水银体温计进行体温监测很不方便,水银的污染的可能也很严重等,为了正确测量人体局部温度,促使人们开发了各种不同的测温仪器和测温方法。现在已有许多医院采用了电子体温计,用其它电子仪器测量体温也日益普及。
电子温度测量方式是随着电子技术的兴起而发展的一门学科。它利用材料随温度变化的参数转换成电信号[1]对温度进行测量。早期的电子温度测量均采用模拟技术的方法,对传感器的非线性补偿采用分立式电路进行各种方法的补偿,线路复杂、体积庞大、可靠性低,应用受到很大的制约,微电子技术的发展使这一希望逐步变成了现实。现在数字集成电路技术和相应的数字信号处理理论相对成熟,开发制造成本大幅下降,为新一代电子体温计的开发创造了良好的先决条件,以数字技术为主要技术的新一代电子体温计[2,3]又一次成为关注和研究的对象。
(1)标准功能:8k字节Flash,256字节RAM,32位I/O口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。另外,AT89S52可降至0Hz静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。
单片机的主要特点:有优异的性能价格比;集成度高、体积小、可靠性高;控制功能强;低电压、低功耗。单片机的主要应用领域有:工业控制、仪器仪表、电信技术、办公自动化和计算机外部设备、汽车和节能、制导和导航等。[9,10]
3.1.2AT89S52芯片
自动控制模块选用AT89S52,它是一种低功耗、高性能CMOS 8位微控制器,具有8K在系统可编程Flash存储器。使用Atmel公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8位CPU和在系统可编程Flash,使得AT89S52在众多嵌入式控制应用系统中得到广泛应用。[11]
它是两端子的半导体温度感测组件,另有一端子是外壳接脚,可接地以减少噪声干扰。AD590如同一个随温度而改变输出电流的定电流源,输出电流与外壳的开氏(K)温度成正比。开氏温度与摄氏温度的单位相等,0℃等于273.2K,100℃等于373.2K。当温度为0℃时,AD590的输出电流是273.2μA。而温度为100℃时,输出电流是373.2μA。温度每升高1℃,输出电流增加1μA,及温度系数为1 μA/℃。
3.4.3温度检测与放大电路
该模块的主要功能是实时检测温度并转换放大,传送给A/D转换电路。
温度检测、放大电路主要器件的作用:OP1:设置温度阀值;OP2:采集AD590转换温度数据;OP3:完成A/D数模转换所需的模拟信号输入;AD590:温度传感器;SVR:零位调整。如图3-5所示。
图3-5 AD590温度检测、放大电路图
地址输入和控制线:4条
ALE为地址锁存允许输入线,高电平有效。当ALE线为高电平时,地址锁存与译码器将A、B、C三条地址线的地址信号进行锁存,经译码后被选中的通.的模拟量进转换器进行转换。A、B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。数字量输出及控制线:11条。ADC通道选择表如表3-1所示。
图2-2 DS18B20温度测温系统框图
方案三:外部温度信号经过集成温度传感器采集转换成相应的电压信号,经过信号放大后成为模拟输入信号,AD将该模拟信号转换成数字信号,通过并口送入到主机。主机处理这些信号后通过LED数码管显示出来,同时还处理按键和报警模块的程序。温度值由主机通过串行通信传送给聪机,从机控制语音芯片报出对应的温度值。系统框图如图2-3所示。