2020年北京市海淀区、大兴区中考数学二模试卷(含解析)

合集下载

2020年北京市海淀区中考数学二模试卷(解析版)

2020年北京市海淀区中考数学二模试卷(解析版)

2020年北京市海淀区中考数学二模试卷一.选择题(共8小题)1.下面的四个图形中,是圆柱的侧面展开图的是()A.B.C.D.2.若代数式有意义,则实数x的取值范围是()A.x=0B.x=2C.x≠0D.x≠23.如图,在△ABC中,AB=3cm,通过测量,并计算△ABC的面积,所得面积与下列数值最接近的是()A.1.5cm2B.2cm2C.2.5cm2D.3cm24.图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在()A.区域①处B.区域②处C.区域③处D.区域④处5.如图,在△ABC中,EF∥BC,ED平分∠BEF,且∠DEF=70°,则∠B的度数为()A.70°B.60°C.50°D.40°6.如果a2﹣a﹣2=0,那么代数式(a﹣1)2+(a+2)(a﹣2)的值为()A.1B.2C.3D.47.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于90°,那么圆心O到弦AB的距离为()A.B.2C.2D.38.在平面直角坐标系xOy中,对于点P(a,b),若ab>0,则称点P为“同号点”.下列函数的图象中不存在“同号点”的是()A.y=﹣x+1B.y=x2﹣2x C.y=﹣D.y=x2+二.填空题(共8小题)9.单项式3x2y的系数为.10.如图,点A,B,C在⊙O上,点D在⊙O内,则∠ACB∠ADB.(填“>”,“=”或“<”)11.如表记录了一名篮球运动员在罚球线上投篮的结果:投篮次数n4882124176230287328投中次数m335983118159195223投中频率0.690.720.670.670.690.680.68根据如表,这名篮球运动员投篮一次,投中的概率约为.(结果精确到0.01)12.函数y=kx+1(k≠0)的图象上有两点P1(﹣1,y1),P2(1,y2),若y1<y2,写出一个符合题意的k的值.13.如图,在△ABC中,AB=BC,∠ABC=120°,过点B作BD⊥BC,交AC于点D,若AD=1,则CD的长度为.14.如图,在平面直角坐标系xOy中,已知点C(3,2),将△ABC关于直线x=4对称,得到△A1B1C1,则点C的对应点C1的坐标为;再将△A1B1C1向上平移一个单位长度,得到△A2B2C2,则点C1的对应点C2的坐标为.15.小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行18km,小明每小时骑行12km,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为xkm,依题意,可列方程为.16.如图,在平面直角坐标系xOy中,有五个点A(2,0),B(0,﹣2),C(﹣2,4),D (4,﹣2),E(7,0),将二次函数y=a(x﹣2)2+m(m≠0)的图象记为W.下列的判断中:①点A一定不在W上;②点B,C,D可以同时在W上;③点C,E不可能同时在W上.所有正确结论的序号是.三.解答题(共12小题)17.计算:()﹣1+(2020﹣π)0+|﹣1|﹣2cos30°.18.解不等式2(x﹣1)<4﹣x,并在数轴上表示出它的解集.19.下面是小王同学“过直线外一点作该直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l外取一点A,作射线AP与直线l交于点B,②以A为圆心,AB为半径画弧与直线l交于点C,连接AC,③以A为圆心,AP为半径画弧与线段AC交于点Q,则直线PQ即为所求.根据小王设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:∵AB=AC,∴∠ABC=∠ACB,()(填推理的依据).∵AP=,∴∠APQ=∠AQP.∵∠ABC+∠ACB+∠A=180°,∠APQ+∠AQP+∠A=180°,∴∠APQ=∠ABC.∴PQ∥BC()(填推理的依据).即PQ∥l.20.已知关于x的一元二次方程x2﹣2x+n=0.(1)如果此方程有两个相等的实数根,求n的值;(2)如果此方程有一个实数根为0,求另外一个实数根.21.如图,在Rt△ABC中,∠ACB=90°,D为AB边的中点,连接CD,过点A作AG∥DC,过点C作CG∥DA,AG与CG相交于点G.(1)求证:四边形ADCG是菱形;(2)若AB=10,tan∠CAG=,求BC的长.22.坚持节约资源和保护环境是我国的基本国策,国家要求加强生活垃圾分类回收与再生资源回收有效衔接,提高全社会资源产出率,构建全社会的资源循环利用体系.图1反映了2014﹣2019年我国生活垃圾清运量的情况.图2反映了2019年我国G市生活垃圾分类的情况.根据以上材料回答下列问题:(1)图2中,n的值为;(2)2014﹣2019年,我国生活垃圾清运量的中位数是;(3)据统计,2019年G市清运的生活垃圾中可回收垃圾约为0.02亿吨,所创造的经济总价值约为40亿元.若2019年我国生活垃圾清运量中,可回收垃圾的占比与G市的占比相同,根据G市的数据估计2019年我国可回收垃圾所创造的经济总价值是多少.23.如图,AB为⊙O的直径,C为⊙O上一点,CE⊥AB于点E,⊙O的切线BD交OC的延长线于点D.(1)求证:∠DBC=∠OCA;(2)若∠BAC=30°,AC=2.求CD的长.24.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=kx(k≠0)交于点P(1,p).M是函数y=(x>0)图象上一点,过M作x轴的平行线交直线y=kx(k≠0)于点N.(1)求k和p的值;(2)设点M的横坐标为m.①求点N的坐标;(用含m的代数式表示)②若△OMN的面积大于,结合图象直接写出m的取值范围.25.如图1,在四边形ABCD中,对角线AC平分∠BAD,∠B=∠ACD=90°,AC﹣AB=1.为了研究图中线段之间的数量关系,设AB=x,AD=y.(1)由题意可得=,(在括号内填入图1中相应的线段)y关于x的函数表达式为y=;(2)如图2,在平面直角坐标系xOy中,根据(1)中y关于x的函数表达式描出了其图象上的一部分点,请依据描出的点画出该函数的图象;(3)结合函数图象,解决问题:①写出该函数的一条性质:;②估计AB+AD的最小值为.(结果精确到0.1)26.在平面直角坐标系xOy中,已知二次函数y=mx2+2mx+3的图象与x轴交于点A(﹣3,0),与y轴交于点B,将其图象在点A,B之间的部分(含A,B两点)记为F.(1)求点B的坐标及该函数的表达式;(2)若二次函数y=x2+2x+a的图象与F只有一个公共点,结合函数图象,求a的取值范围.27.如图1,等边三角形ABC中,D为BC边上一点,满足BD<CD,连接AD,以点A为中心,将射线AD顺时针旋转60°,与△ABC的外角平分线BM交于点E.(1)依题意补全图1;(2)求证:AD=AE;(3)若点B关于直线AD的对称点为F,连接CF.①求证:AE∥CF;②若BE+CF=AB成立,直接写出∠BAD的度数为°.28.在平面内,对于给定的△ABC,如果存在一个半圆或优弧与△ABC的两边相切,且该弧上的所有点都在△ABC的内部或边上,则称这样的弧为△ABC的内切弧.当内切弧的半径最大时,称该内切弧为△ABC的完美内切弧.(注:弧的半径指该弧所在圆的半径)在平面直角坐标系xOy中,A(8,0),B(0,6).(1)如图1,在弧G1,弧G2,弧G3中,是△OAB的内切弧的是;(2)如图2,若弧G为△OAB的内切弧,且弧G与边AB,OB相切,求弧G的半径的最大值;(3)如图3,动点M(m,3),连接OM,AM.①直接写出△OAM的完美内切弧的半径的最大值;②记①中得到的半径最大时的完美内切弧为弧T.点P为弧T上的一个动点,过点P作x轴的垂线,分别交x轴和直线AB于点D,E,点F为线段PE的中点,直接写出线段DF长度的取值范围.参考答案与试题解析一.选择题(共8小题)1.下面的四个图形中,是圆柱的侧面展开图的是()A.B.C.D.【分析】从圆柱的侧面沿它的一条母线剪开,可以圆柱的侧面展开图的是长方形.【解答】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是长方形.故选:A.2.若代数式有意义,则实数x的取值范围是()A.x=0B.x=2C.x≠0D.x≠2【分析】直接利用分式有意义则分母不为零进而得出答案.【解答】解:若代数式有意义,则x﹣2≠0,解得:x≠2.故选:D.3.如图,在△ABC中,AB=3cm,通过测量,并计算△ABC的面积,所得面积与下列数值最接近的是()A.1.5cm2B.2cm2C.2.5cm2D.3cm2【分析】过C作CD⊥AB于D,根据三角形的面积公式即可得到结论.【解答】解:过C作CD⊥AB于D,通过测量,CD=2cm,∴S△ABC=AB•CD==3(cm2),故选:D.4.图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在()A.区域①处B.区域②处C.区域③处D.区域④处【分析】根据中心对称图形的概念解答.【解答】解:在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,这个正方形应该添加区域②处,故选:B.5.如图,在△ABC中,EF∥BC,ED平分∠BEF,且∠DEF=70°,则∠B的度数为()A.70°B.60°C.50°D.40°【分析】由EF∥BC,∠DEF=70°,ED平分∠BEF,可推出∠EDB=∠DEF=70°,∠BED=∠DEF=70°,根据三角形内角和定理得出∠B的度数.【解答】解:∵EF∥BC,∠DEF=70°,ED平分∠BEF,∴∠EDB=∠DEF=70°,∠BED=∠DEF=70°,∴∠B=180°﹣∠EDB﹣∠BED=180°﹣70°﹣70°=40°.故选:D.6.如果a2﹣a﹣2=0,那么代数式(a﹣1)2+(a+2)(a﹣2)的值为()A.1B.2C.3D.4【分析】由已知条件求得a2﹣a的值,再化简原式,把代数式转化成a2﹣a的形式,后整体代入求值便可.【解答】解:原式=a2﹣2a+1+a2﹣4=2a2﹣2a﹣3=2(a2﹣a)﹣3,∵a2﹣a﹣2=0,∴a2﹣a=2,∴原式=2×2﹣3=1.故选:A.7.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于90°,那么圆心O到弦AB的距离为()A.B.2C.2D.3【分析】过O作OC⊥AB于C,根据等腰直角三角形的性质即可得到结论.【解答】解:过O作OC⊥AB于C,∵OA=OB=4,∠AOB=90°,∴AB=OA=4,∴OC=AB=2,故选:C.8.在平面直角坐标系xOy中,对于点P(a,b),若ab>0,则称点P为“同号点”.下列函数的图象中不存在“同号点”的是()A.y=﹣x+1B.y=x2﹣2x C.y=﹣D.y=x2+【分析】根据“同号点”的定义可知,“同号点”的横纵坐标乘积大于零即可,所以可以在每个函数两边同时乘以x,这样每个函数的左边就变成了xy,接着我们讨论函数等号右边的式子是否大于零就可以了.【解答】解:∵y=﹣x+1,∴xy=x(﹣x+1),显然x=时,xy=>0,∴A选项存在“同号点”,故A排除.∵y=x2﹣2x,∴xy=x(x2﹣2x),显然x=3时,xy=9>0,∴B选项也存在“同号点”,故B排除.∵y=﹣,∴xy=﹣2<0,∴C选项一定不会存在“同号点”,故答案C符合题意.∵y=x2+,∴xy=x3+1,显然x=1时,xy=2>0,∴D选项存在“同号点”,故D排除.故选:C.二.填空题(共8小题)9.单项式3x2y的系数为3.【分析】把原题单项式变为数字因式与字母因式的积,其中数字因式即为单项式的系数.【解答】解:3x2y=3•x2y,其中数字因式为3,则单项式的系数为3.故答案为:3.10.如图,点A,B,C在⊙O上,点D在⊙O内,则∠ACB<∠ADB.(填“>”,“=”或“<”)【分析】延长AD交⊙O于E,连接BE,如图,根据三角形外角性质得∠ADB>∠E,根据圆周角定理得∠ACB=∠E,于是∠ACB<∠ADB.【解答】解:∠ACB<∠ADB.理由如下:延长AD交⊙O于E,连接BE,如图,∵∠ADB>∠E,而∠ACB=∠E,∴∠ACB<∠ADB.故答案为<.11.如表记录了一名篮球运动员在罚球线上投篮的结果:投篮次数n4882124176230287328投中次数m335983118159195223投中频率0.690.720.670.670.690.680.68根据如表,这名篮球运动员投篮一次,投中的概率约为0.68.(结果精确到0.01)【分析】根据频率估计概率的方法结合表格数据可得答案.【解答】解:由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.68附近,∴这名篮球运动员投篮一次,投中的概率约为0.68,故答案为:0.68.12.函数y=kx+1(k≠0)的图象上有两点P1(﹣1,y1),P2(1,y2),若y1<y2,写出一个符合题意的k的值k=1(答案不唯一).【分析】由﹣1<1且y1<y2可得出y值随x值的增大而增大,利用一次函数的性质可得出k>0,任取一个大于0的值即可.【解答】解:∵﹣1<1,且y1<y2,∴y值随x值的增大而增大,∴k>0.故答案为:k=1(答案不唯一).13.如图,在△ABC中,AB=BC,∠ABC=120°,过点B作BD⊥BC,交AC于点D,若AD=1,则CD的长度为2.【分析】由BD⊥BC,推出∠CDB=90°,所以∠ABD=∠ABC﹣∠CDB=120°﹣90°=30°,由AB=BC,∠ABC=120°,推出∠A=∠C=30°,所以∠A=∠ABD,DB=AD=1,在Rt△CBD中,由30°角所对的直角边等于斜边的一半.CD=2AD=2.【解答】解:∵BD⊥BC,∴∠CDB=90°,∴∠ABD=∠ABC﹣∠CDB=120°﹣90°=30°,∵AB=BC,∠ABC=120°,∴∠A=∠C=30°,∴∠A=∠ABD,∴DB=AD=1,在Rt△CBD中,∵∠C=30°,∴CD=2AD=2.故答案为2.14.如图,在平面直角坐标系xOy中,已知点C(3,2),将△ABC关于直线x=4对称,得到△A1B1C1,则点C的对应点C1的坐标为(5,2);再将△A1B1C1向上平移一个单位长度,得到△A2B2C2,则点C1的对应点C2的坐标为(5,3).【分析】根据轴对称,平移的性质画出三角形即可.【解答】解:如图△A1B1C1,△A2B2C2,即为所求.C1(5,2),C2(5,3).故答案为(5,2),(5,3).15.小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行18km,小明每小时骑行12km,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为xkm,依题意,可列方程为.【分析】根据“完成全部行程所用的时间,小明比小华多半小时”列出方程即可.【解答】解:设他们这次骑行线路长为xkm,依题意,可列方程为,故答案为:.16.如图,在平面直角坐标系xOy中,有五个点A(2,0),B(0,﹣2),C(﹣2,4),D (4,﹣2),E(7,0),将二次函数y=a(x﹣2)2+m(m≠0)的图象记为W.下列的判断中:①点A一定不在W上;②点B,C,D可以同时在W上;③点C,E不可能同时在W上.所有正确结论的序号是①②.【分析】由二次函数y=a(x﹣2)2+m(m≠0)可知,对称轴为直线x=2,顶点为(2,m),然后根据二次函数图象上点的坐标特征进行分析判定即可.【解答】解:由二次函数y=a(x﹣2)2+m(m≠0)可知,对称轴为直线x=2,顶点为(2,m),①∵点A(2,0),∴点A在对称轴上,∵m≠0,∴点A一定不在W上;故①正确;②∵B(0,﹣2),C(﹣2,4),D(4,﹣2),∴三点不在一条直线上,且B、D关于直线x=2对称,∴点B,C,D可以同时在W上;故②正确;③∵E(7,0),∴E关于对称轴的对称点为(﹣3,0),∵C(﹣2,4),∴三点不在一条直线上,∴点C,E可能同时在W上,故③错误;故正确结论的序号是①②,故答案为①②.三.解答题(共12小题)17.计算:()﹣1+(2020﹣π)0+|﹣1|﹣2cos30°.【分析】先计算负整数指数幂、零指数幂、去绝对值符号、代入三角函数值,再计算乘法,最后计算加减可得.【解答】解:原式=2+1+﹣1﹣2×=2+1+﹣1﹣=2.18.解不等式2(x﹣1)<4﹣x,并在数轴上表示出它的解集.【分析】根据解一元一次不等式的步骤,可得答案.【解答】解:去括号,得2x﹣2<4﹣x,移项,得2x+x<4+2,合并同类项,得3x<6,系数化为1,得x<2.解集在数轴上表示如图:19.下面是小王同学“过直线外一点作该直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l外取一点A,作射线AP与直线l交于点B,②以A为圆心,AB为半径画弧与直线l交于点C,连接AC,③以A为圆心,AP为半径画弧与线段AC交于点Q,则直线PQ即为所求.根据小王设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:∵AB=AC,∴∠ABC=∠ACB,(等边对等角)(填推理的依据).∵AP=PQ,∴∠APQ=∠AQP.∵∠ABC+∠ACB+∠A=180°,∠APQ+∠AQP+∠A=180°,∴∠APQ=∠ABC.∴PQ∥BC(同位角相等,两直线平行)(填推理的依据).即PQ∥l.【分析】(1)根据角平分线的尺规作图即可得;(2)分别根据等腰三角形的性质和平行线的判定求解可得.【解答】解:(1)如图所示,直线PQ即为所求.(2)证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角),∵AP=AQ,∴∠APQ=∠AQP.∵∠ABC+∠ACB+∠A=180°,∠APQ+∠AQP+∠A=180°,∴∠APQ=∠ABC.∴PQ∥BC(同位角相等,两直线平行),即PQ∥l.故答案为:等边对等角;AQ;同位角相等,两直线平行.20.已知关于x的一元二次方程x2﹣2x+n=0.(1)如果此方程有两个相等的实数根,求n的值;(2)如果此方程有一个实数根为0,求另外一个实数根.【分析】(1)由于方程有两个相等的实数根,利用判别式可以列出关于n的方程即可求解;(2)把x=0代入方程得到x2﹣2x=0,解方程即可得到结论.【解答】解:(1)∵方程有两个相等的实数根,∴(﹣2)2﹣4n=0,解得:n=1;(2)当此方程有一个实数根为0时,代入方程得,n=0,∴原方程可化为x2﹣2x=0,解得:x1=0,x2=2,故另外一个实数根为2.21.如图,在Rt△ABC中,∠ACB=90°,D为AB边的中点,连接CD,过点A作AG∥DC,过点C作CG∥DA,AG与CG相交于点G.(1)求证:四边形ADCG是菱形;(2)若AB=10,tan∠CAG=,求BC的长.【分析】(1)根据直角三角形的性质和菱形的判定定理即可得到结论;(2)根据平行线的性质得到∠BAC=∠ACG,设BC=3x,AC=4x,根据勾股定理即可得到结论.【解答】(1)证明:∵AG∥DC,CG∥DA,∴四边形ADCG是平行四边形,∵在Rt△ABC中,∠ACB=90°,D为AB边的中点,∴AD=CD=AB,∴四边形ADCG是菱形;(2)解:∵CG∥DA,∴∠BAC=∠ACG,∴tan∠CAG=tan∠BAC==,∴设BC=3x,AC=4x,∴AB=5x=10,∴x=2,∴BC=3x=6.22.坚持节约资源和保护环境是我国的基本国策,国家要求加强生活垃圾分类回收与再生资源回收有效衔接,提高全社会资源产出率,构建全社会的资源循环利用体系.图1反映了2014﹣2019年我国生活垃圾清运量的情况.图2反映了2019年我国G市生活垃圾分类的情况.根据以上材料回答下列问题:(1)图2中,n的值为18;(2)2014﹣2019年,我国生活垃圾清运量的中位数是 2.1亿吨;(3)据统计,2019年G市清运的生活垃圾中可回收垃圾约为0.02亿吨,所创造的经济总价值约为40亿元.若2019年我国生活垃圾清运量中,可回收垃圾的占比与G市的占比相同,根据G市的数据估计2019年我国可回收垃圾所创造的经济总价值是多少.【分析】(1)根据题意列式计算即可;(2)根据中位数的定义即可得到结论;(3)根据样本估计总体列式计算即可.【解答】解:(1)n=100﹣20﹣55﹣7=18,故答案为:18;(2)∵在1.8,1.9,2.0,2.2,2.3,2.5中,2.2和2.2处在中间位置,∴2014﹣2019年,我国生活垃圾清运量的中位数是=2.1(亿吨)故答案为:2.1亿吨;(3)2.5×20%×(40÷0.02)=1000(亿元),答:估计2019年我国可回收垃圾所创造的经济总价值是1000亿元,23.如图,AB为⊙O的直径,C为⊙O上一点,CE⊥AB于点E,⊙O的切线BD交OC的延长线于点D.(1)求证:∠DBC=∠OCA;(2)若∠BAC=30°,AC=2.求CD的长.【分析】(1)根据圆周角定理得到∠ACB=90°,∠A+∠ABC=90°,根据切线的性质得到∠DBC+∠ABC=90°,得到∠A=∠DBC,根据等腰三角形的性质、等量代换证明结论;(2)根据正切的定义求出BC,证明CD=BC,得到答案.【解答】(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵BD为⊙O的切线,∴AB⊥BD,∴∠DBC+∠ABC=90°,∴∠A=∠DBC,∵OA=OC,∴∠A=∠OCA,∴∠OCA=∠DBC;(2)解:在Rt△ABC中,tan A=,∴BC=AC•tan A=,由(1)可知,∠DBC=∠BAC=30°,由圆周角定理得,∠BOC=2∠BAC=60°,∴∠D=30°,∴∠D=∠DBC,∴CD=BC=.24.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=kx(k≠0)交于点P(1,p).M是函数y=(x>0)图象上一点,过M作x轴的平行线交直线y=kx(k≠0)于点N.(1)求k和p的值;(2)设点M的横坐标为m.①求点N的坐标;(用含m的代数式表示)②若△OMN的面积大于,结合图象直接写出m的取值范围.【分析】解:(1)将点P的坐标分别代入两个函数表达式,即可求解;(2)①点M的横坐标为m,则点M(m,),MN∥x轴,故点N的纵坐标为,即可求解;②△OMN的面积=×MN×y M=×(﹣m)×>(m>0),即可求解.【解答】解:(1)将点P的坐标代入y=(x>0)得:2=1×p,解得:p=2,故点P(1,2);将点P的坐标代入y=kx得:2=k×1,解得:k=2;(2)①点M的横坐标为m,则点M(m,),∵MN∥x轴,故点N的纵坐标为,将点N的纵坐标代入直线y=2x得:=2x,解得:x=,故点N的坐标为(,);②△OMN的面积=×MN×y M=×(﹣m)×>(m>0),解得:m<,故0<m.25.如图1,在四边形ABCD中,对角线AC平分∠BAD,∠B=∠ACD=90°,AC﹣AB=1.为了研究图中线段之间的数量关系,设AB=x,AD=y.(1)由题意可得=,(在括号内填入图1中相应的线段)y关于x的函数表达式为y=y=x++2(x>0);(2)如图2,在平面直角坐标系xOy中,根据(1)中y关于x的函数表达式描出了其图象上的一部分点,请依据描出的点画出该函数的图象;(3)结合函数图象,解决问题:①写出该函数的一条性质:函数的最小值是4或当x>1时,y随x的增大而增大;②估计AB+AD的最小值为 4.8.(结果精确到0.1)【分析】(1)利用相似三角形的性质求解即可.(2)利用描点法画出函数图象即可.(3)①结合图象解决问题(答案不唯一).②由x+y=2x++2≥2+2可得结论.【解答】解:(1)∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠B=∠ACD=90°,∴△ABC∽△ACD,∴,∵AC﹣AB=1,∴AC=1+AB,∵AB=x,AD=y,∴,∴y=x++2(x>0);故答案为y=x++2(x>0).(2)函数图象如图所示:(3)①函数的最小值是4或当x>1时,y随x的增大而增大.故答案为函数的最小值是4或当x>1时,y随x的增大而增大.②∵x+y=2x++2≥2+2,∴x+y≥4.8,故答案为4.8.26.在平面直角坐标系xOy中,已知二次函数y=mx2+2mx+3的图象与x轴交于点A(﹣3,0),与y轴交于点B,将其图象在点A,B之间的部分(含A,B两点)记为F.(1)求点B的坐标及该函数的表达式;(2)若二次函数y=x2+2x+a的图象与F只有一个公共点,结合函数图象,求a的取值范围.【分析】(1)令x=0,解得y=3,即可求得B的坐标,然后根据待定系数法即可求得解析式;(2)画出函数y=﹣x2﹣2x+3的图象,根据图象即可求得.【解答】解:(1)∵二次函数y=mx2+2mx+3的图象与x轴交于点A(﹣3,0),与y轴交于点B,∴令x=0,则y=3,∴B(0,3),把A(﹣3,0)代入y=mx2+2mx+3,求得m=﹣1,∴函数的表达式为y=﹣x2﹣2x+3;(2)画出函数y=﹣x2﹣2x+3的图象如图所示:把A(﹣3,0)代入y=x2+2x+a得0=9﹣6+a,解得a=﹣3,由图象可知,二次函数y=x2+2x+a的图象与F只有一个公共点,a的取值范围为﹣3≤a <3.27.如图1,等边三角形ABC中,D为BC边上一点,满足BD<CD,连接AD,以点A为中心,将射线AD顺时针旋转60°,与△ABC的外角平分线BM交于点E.(1)依题意补全图1;(2)求证:AD=AE;(3)若点B关于直线AD的对称点为F,连接CF.①求证:AE∥CF;②若BE+CF=AB成立,直接写出∠BAD的度数为20°.【分析】(1)由旋转即可补全图形;(2)先判断出∠BAE=∠CAD,再判断出∠ABE=60°=∠C,进而判断出△ABE≌△ACD,即可得出结论;(3)①先判断出AFC=∠ACF,设∠BAD=α,进而表示出∠F AD=α,∠CAF=60°﹣2α,进而得出∠ACF=60°+α再判断出∠CAE=120°﹣α,即可得出结论;②先判断出∠CBG=30°﹣α,进而判断出∠CDF=60°﹣2α,再判断出DF=CF,进而得出∠DCF=∠CDF=60°﹣2α,再判断出∠DCF=α,即可得出结论.【解答】解:(1)补全图形如图1所示;(2)由旋转知,∠DAE=60°,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠C=∠BAC=60°,∴∠DAE=∠BAC,∴∠BAE=∠CAD,∵BE是△ABC的外角的平分线,∴∠ABM=(180°﹣60°)=60°=∠C,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE;(3)①如图2,连接AF,∵点F是点B关于AD的对称点,∴∠BAD=∠F AD,AF=AB,∴AF=AC,∴∠AFC=∠ACF,设∠BAD=α,则∠F AD=α,∴∠CAF=∠BAC﹣∠BAD﹣∠F AD=60°﹣2α,∴∠ACF=(180°﹣∠CAF)=60°+α,由(2)知,∠BAE=∠CAD=60°﹣α,∴∠CAE=∠BAE+∠BAC=60°﹣α+60°=120°﹣α,∴∠ACF+∠CAE=60°+α+120°﹣α=180°,∴AE∥CF;②如图2,连接BF,设∠BAD=α,∵点F是点B关于AD的对称点,∴AD⊥BF,垂足记作点G,则∠AGB=90°,∴∠ABG=90°﹣α,∵∠ABC=60°,∴∠CBG=30°﹣α,连接DF,则BD=DF,∴∠CDF=2∠CBG=60°﹣2α,由(2)知,△ABE≌△ACD,∴BE=CD,∵BE+CF=AB,∴CD+CF=BC=BD+CD,∴BD=CF,∴DF=CF,∴∠DCF=∠CDF=60°﹣2α,由①知,∠ACF=60°+α,∴∠DCF=∠ACF﹣∠ACB=α,∴60°﹣2α=α,∴α=20°,即∠BAD=20°,故答案为:20.28.在平面内,对于给定的△ABC,如果存在一个半圆或优弧与△ABC的两边相切,且该弧上的所有点都在△ABC的内部或边上,则称这样的弧为△ABC的内切弧.当内切弧的半径最大时,称该内切弧为△ABC的完美内切弧.(注:弧的半径指该弧所在圆的半径)在平面直角坐标系xOy中,A(8,0),B(0,6).(1)如图1,在弧G1,弧G2,弧G3中,是△OAB的内切弧的是G3,G2;(2)如图2,若弧G为△OAB的内切弧,且弧G与边AB,OB相切,求弧G的半径的最大值;(3)如图3,动点M(m,3),连接OM,AM.①直接写出△OAM的完美内切弧的半径的最大值;②记①中得到的半径最大时的完美内切弧为弧T.点P为弧T上的一个动点,过点P作x轴的垂线,分别交x轴和直线AB于点D,E,点F为线段PE的中点,直接写出线段DF长度的取值范围.【分析】(1)根据内切弧的定义解决问题即可.(2)当弧G与边AB,OB相切,且弧所在的圆的圆心在∠ABO的角平分线上,当点J 落在x轴上时,⊙J的半径最大.(3)①如图3﹣1中,当MO=MA时,△OAM的完美内切弧的半径最大,设圆心为H,T,G为切点,连接HT,HG,MH.解直角三角形求出HT即可.②如图3﹣2中,当直线DE经过切点T时,可证MF⊥DE,此时DF的值最大,此时DF=3.如图3﹣3中,当DE与半圆弧相切时,DF的值最小.当直线DE经过切点G时,线段DE不存在,此时DF===,由此即可解决问题.【解答】解:(1)如图1,在弧G1,弧G2,弧G3中,是△OAB的内切弧的是G3,G2.故答案为G3,G2.(2)如图,∵弧G与边AB,OB相切,∴弧所在的圆的圆心在∠ABO的角平分线上,当点J落在x轴上时,⊙J的半径最大,过点J作JM⊥AB于M.∵∠BOJ=∠BMJ=90°,BJ=BJ,∠JBO=∠JBM,∴△JBO≌△JBM(AAS),∴BM=BO=6,OJ=JM,在Rt△AOB中,AB===10,∴AM=10﹣6=4,设OJ=JM=x,则有(8﹣x)2=42+x2,∴x=3,∴JO=JM=3,∴弧G的半径的最大值为3.(3)①如图3﹣1中,当MO=MA时,△OAM的完美内切弧的半径最大,设圆心为H,T,G为切点,连接HT,HG,MH.∵HT=HG,HM=HM,∠HTM=∠HGM=90°,∴Rt△HMT≌Rt△HMG(HL),∴∠HMO=∠HMA,∴MH⊥OA,OH=HA=4,∵MH=3,∴OM===5,∵•OH•HM=•OM•HT,∴HT=,∴△OAM的完美内切弧的半径的最大值为.②如图3﹣2中,当直线DE经过切点T时,可证MF⊥DE,此时DF的值最大,此时DF=3,如图3﹣3中,当DE与半圆弧相切时,DF的值最小,∵AD=AH﹣DH=4﹣=,∴DF=AD•tan∠BAO=×=,∴DF=DE=,当直线DE经过切点G时,线段DE不存在,此时DF===,综上所述,满足条件的DF的值为:≤DF≤3且DF≠.。

2020年北京市海淀区部分学校中考数学二模试卷(含答案解析)

2020年北京市海淀区部分学校中考数学二模试卷(含答案解析)

2020年北京市海淀区部分学校中考数学二模试卷一、选择题(本大题共8小题,共16.0分)1.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是()A. 点A与点BB. 点B与点CC. 点B与点DD. 点A与点D2.如图,在△ABC中,AB边上的高是()A. CEB. ADC. CFD. AB3.下列选项的四个图形中是如图所示的侧面展开图的是()A.B.C.D.4.掷一个骰子时,观察上面的点数,点数为奇数的概率是()A. 12B. 13C. 14D. 155.下列四个图形中,是中心对称图形的是()A. 等腰梯形B. 正三角形C. D. 正五边形6.一个正方形的面积等于30,则它的边长a满足()A. 4<a<5B. 5<a<6C. 6<a<7D. 7<a<87.数据21、12、18、16、20、21的众数和中位数分别是()A. 21和19B. 21和17C. 20和19D. 20和188.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是()A. 这是一次1500m赛跑B. 甲、乙同时起跑C. 甲、乙两人中先到达终点的是乙D. 甲在这次赛跑中的速度为5m/s二、填空题(本大题共8小题,共16.0分)9.分解因式:ax2−4ax+4a=.10.对于分式x2−2x−3,当x=______ 时,分式无意义;当x=______ 时,分式值为零.x−311.有一个函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可以是________.(任写出一个)12.七年级和八年级学生分别到甲、乙纪念馆参观,共529人,到乙纪念馆的人数比到甲纪念馆人数的2倍少26人.设到甲纪念馆的人数为x人,则可列方程为________________.13.已知代数式x2+2x的值是2,则代数式3x2+6x−8的值是______.14.如图,在平面直角坐标系xOy中,图形L2可以看作是由图形L1经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由图形L1得到图形L2的过程____.15.如图,⊙O的半径为5,PA、PB是⊙O的切线,切点分别为A、B,∠APB=90°,则PA=__________,PO=__________,AB=__________.16.如图,已知等边三角形OAB的顶点O(0,0),A(0,3),将该三角形绕点O顺时针旋转,每次旋转60°,则旋转2018次后,顶点B的坐标为______.三、计算题(本大题共1小题,共8.0分)17.解不等式1−x3≤1−2x7,并把它的解集表示在数轴上.四、解答题(本大题共7小题,共60.0分)18.计算:(13)−1−√12+3tan30°+|√3−2|.19.已知关于x的一元二次方程:x2−2x−k−2=0有两个不相等的实数根.(1)求k的取值范围;(2)给k取一个负整数值,解这个方程.20.如图,一次函数y=kx+2的图形与反比例函数y=mx的图象交于点P,点P在第一象限,PA⊥x轴于点A,一次函数的图象分别交x轴、y轴于点C、D,且S△COD=1,COOA =12.(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象直接写出当x>0时,一次函数值大于反比例函数的值的x的取值范围.21.如图,AB是⊙O的直径,PA,PC与⊙O分别相切于点A,C,连接AC,BC,OP,AC与OP相交于点D.(1)求证:∠B+∠CPO=90°;(2)连结BP,若AC=125,sin∠CPO=35,求BP的长.22.已知抛物线y=−12x2+bx+c经过点(1,0),(0,32).(1)求该抛物线的表达式.(2)将抛物线y=−12x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后抛物线的表达式.23.如图,在△ABC中,AC=BC,F为底边AB上一点,BF:AF=3:2,取CF的中点D,连接AD并延长交BC于点E,求BEEC的值.24.若两个位置不同的二次函数的图象经过适当平移能完全重合,则称这两个二次函数为“全等二次函数”.(1)请写出两个“全等二次函数”,并说明怎样平移能使它们的图象重合;(2)已知关于x的二次函数y1=a1x2+b1x+c1和y2=a2x2+b2x+c2是“全等二次函数”,若函数y1−y2的图象经过原点,求c1−c2b1−b2(b1−b2≠0)的值;(3)已知关于x的两个“全等二次函数”y1=a1x2+b1x+c1和y2=a2x2+b2x+c2的图象的顶点A、B均在x轴上,与y轴的交点分别为点C、D.当AB=CD时,求c1−c2b1−b2的值(用含a1或a2的式子表示)(b1−b2≠0).【答案与解析】1.答案:D解析:解:如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是点A和点D,故选D观察数轴,利用相反数的定义判断即可.此题考查了相反数,以及数轴,熟练掌握相反数的定义是解本题的关键.2.答案:A解析:解:过点C作AB的垂线段CE,则CE为AB边上的高,故选:A.从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.本题考查了三角形的高线的定义,是三角形的顶点到对边所在直线的垂线段.3.答案:C解析:【试题解析】本题主要考查几何体侧面展开图的知识,解答本题的关键是知道几何体侧面展开图的特点.解:根据几何体侧面展开图的特点,知道的侧面展开图是.故选C.4.答案:A解析:解:掷一个骰子,观察向上的面的点数,有6种情况,则点数为奇数有3种情况,故点数为奇数的概率为36=12,故选:A.本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.本题主要考查概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m.n5.答案:C解析:此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.6.答案:B解析:解:∵√25<√30<√36,∴5<√30<6.故选:B.直接得出5<√30<6,进而得出答案.此题主要考查了估算无理数的大小,正确估算出√30的取值范围是解题关键.7.答案:A解析:解:在这一组数据中21是出现次数最多的,故众数是21;数据按从小到大排列:12、16、18、20、21、21,中位数是(18+20)÷2=19,故中位数为19.故选:A.根据众数和中位数的定义求解即可.本题考查了中位数,众数的意义.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两个数的平均数.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.8.答案:B解析:本题考查了函数图象,读函数的图象时首先要理解横、纵坐标表示的含义.根据函数图象对各选项分析判断后利用排除法求解.解:A.路程为1500m后不在增加,所以,这是一次1500m赛跑,正确,故本选项不符合题意;B.加起跑后一段时间乙开始起跑,错误,故本选项符合题意;C.乙计时283秒到达终点,甲计时300秒到达终点,正确,故本选项不符合题意;=5m/s,正确,故本选项不符合题意.D.甲在这次赛跑中的速度为1500300故选B.9.答案:a(x−2)2解析:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式,首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2−2ab+b2=(a−b)2.解:ax2−4ax+4a=a(x2−4x+4)=a(x−2)2.故答案为a(x−2)2.10.答案:3;−1解析:本题考查了分式有意义的条件和分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.分式无意义时,分母等于零;分式的值为零时,分子等于零且分母不等于零.解:依题意得:x−3=0,解得x=3,所以x=3时,分式无意义;依题意得:x2−2x−3=0且x−3≠0,即(x−3)(x+1)=0且x−3≠0,所以x+1=0,解得x=−1.故答案是:3;−1.11.答案:y=−x+3(答案不唯一)解析:本题考查的知识点是一次函数的性质,待定系数法求一次函数解析式,设函数得解析式为y=kx+b,将(1,2)代入y=kx+b得,k+b=2,又因为y随x的增大而减小,故k<0,符合此条件即可.解:设函数得解析式为y=kx+b,将(1,2)代入y=kx+b得,k+b=2,又因为y随x的增大而减小,故k<0,如:k=−1,则b=3,这个函数的解析式可能是y=−x+3(答案不唯一),故答案为y=−x+3(答案不唯一).12.答案:x+2x−26=529解析:本题主要考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,列出方程.若设到甲纪念馆的人数为x人,则到乙纪念馆的人数为(2x−26)人,根据到甲、乙纪念馆参观,共529人,因此x+2x−26=529,据此解答.解:设到甲纪念馆的人数为x人,根据题意得:x+2x−26=529.故答案为x+2x−26=529.13.答案:−2解析:本题主要考查的是求代数式的值,整体代入法的应用是解题的关键.由题意得:3x2+6x−8=3(x2+2x)−8,然后将x2+2x=2的值整体代入求解即可.解:由题意得:x2+2x=2,3x2+6x−8=3(x2+2x)−8=3×2−8=−2.故答案为−2.14.答案:由图形L1绕B点顺时针旋转90°,并向左平移7个单位得到图形L2.解析:本题考查了坐标与图形变化(旋转、平移、对称),解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.根据旋转的性质,平移的性质即可解决问题.解:图形L2可以看作是由图形L1绕B点顺时针旋转90°,并向左平移7个单位得到图形L2.故答案为:由图形L1绕B点顺时针旋转90°,并向左平移7个单位得到图形L2.15.答案:5;5√2;5√2解析:本题主要考查了切线的性质,切线长定理,勾股定理,正方形的判定与性质,连接OA,OB,由切线的性质可得OA⊥PA,OB⊥PB,再由∠APB=90°,PA=PB,可得四边形ABCP为正方形,由圆的半径为5,结合正方形的性质和勾股定理进行求解即可.解:连接OA,OB,∵PA、PB是⊙O的切线,∴PA=PB,OA⊥PA,OB⊥PB,∵∠APB=90°,∴四边形ABCP是正方形,∴PA=OA=5,PO=AB=√52+52=5√2.故答案为5;5√2;5√2.16.答案:(0,−3)解析:本题主要考查坐标与图形的变化−旋转,根据题意得出点B的旋转周期为6及旋转的性质是解题的关键.由点B的旋转周期为6知点B旋转2018次后的坐标与旋转2次后的坐标相同,再结合图形得出点B 旋转2次后的坐标即可得.=6次后与点B重合,即点B的旋转周期为6,解:由题意知点B旋转360°60∘∵2018÷6=336…2,∴点B旋转2018次后的坐标与旋转2次后的坐标相同,如图,∵∠AOB=60°,∴∠BOC=120°,则两次旋转后点B落在y轴的负半轴,且OB=3,所以点B的坐标为(0,−3).故答案为:(0,−3).17.答案:解:去分母得,7(1−x)≤3(1−2x),去括号得,7−7x≤3−6x,移项合并同类项得,−x≤−4,两边同时除以−1得,x≥4.把解集表示在数轴上得:解析:利用不等式的基本性质:先去分母,再去括号,再移项合并同类项,最后系数化1即可解答.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.18.答案:解:原式=3−2√3+3×√3+2−√33=5−2√3.解析:此题主要考查了实数运算,正确化简各数是解题关键.直接利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简得出答案.19.答案:解:(1)根据题意得,Δ=(−2)2−4(−k−2)>0,解得k>−3;(2)答案不唯一,如取k=−2,则方程变形为x2−2x=0,解得x1=0,x2=2.解析:本题考查了根的判别式,解一元二次方程.一元二次方程ax2+bx+c=0(a≠0)的根与Δ= b2−4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.(1)利用判别式的意义得到Δ=(−2)2−4(−k−2)>0,然后解不等式即可;(2)在(1)中的k的范围内取−2,方程变形为x2−2x=0,然后利用因式分法解方程即可.20.答案:解:(1)在y=kx+2中,令x=0,得y=2,∴点D的坐标为(0,2);(2)∵PA//OD,∴Rt△PAC∽Rt△DOC,∵COOA =12,OD=2,∴ODPA =COCA=13,解得:PA=6,由S△COD=1,可得:12OC⋅OD=1,解得:OC=1,∴OA=2,∴P(2,6),把P(2,6)分别代入y=kx+2与y=mx,则一次函数解析式为:y=2x+2和反比例函数解析式为:y=12x(x>0);(3)由图象知x>2时,反比例函数y=12x<6,一次函数y=2x+2>6,则一次函数值大于反比例函数的值的x的取值范围x>2.解析:(1)对于一次函数解析式,令x=0求出y的值,即可确定出D的坐标即可;(2)由PA与OD平行,得到直角三角形PAC与直角三角形DOC相似,由相似得比例求出PA的长,再由三角形COD面积求出OC的长,进而确定出OA的长,确定出P坐标,即可求出一次函数与反比例函数解析式;(3)由一次函数与反比例函数解析式,及P 坐标,根据图象确定出满足题意x 的范围即可.此题属于反比例函数综合题,涉及的知识有:一次函数与坐标轴的交点,相似三角形的判定与性质,以及待定系数法确定函数解析式,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键. 21.答案:(1)证明:连接OC ,如图.∵PA ,PC 与⊙O 分别相切于点A ,C ,∴OC ⊥PC ,OA ⊥PA ,∠APC =2∠CPO .∴∠OCP =∠OAP =90°.∵∠AOC +∠APC +∠OCP +∠OAP =360°,∴∠AOC +∠APC =180°.∵∠AOC =2∠B ,∴∠B +∠CPO =90°.(2)解:连接BP ,如图.∵AB 是⊙O 的直径,∴∠ACB =90°.∴∠ABC +∠BAC =90°.∵∠ABC +∠CPO =90°,∴∠BAC =∠CPO =∠APO .∵AC =125,sin∠BAC =35, ∴AB =3,OA =32.∵OA =32,sin∠APO =35, ∴AP =2.∴PB =√AP 2+AB 2=√13.解析:(1)连接OC ,如图.根据切线的性质得到OC ⊥PC ,OA ⊥PA ,∠APC =2∠CPO.由垂直的定义得到∠OCP =∠OAP =90°.求得∠AOC +∠APC =180°.于是得到结论;(2)连接BP ,如图.根据圆周角定理得到∠ACB =90°.推出∠BAC =∠CPO =∠APO.解直角三角形即可得到结论.本题考查了切线的性质,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.22.答案:解:(1)把(1,0),(0,32)代入抛物线解析式得:{−12+b +c =0c =32, 解得:{b =−1c =32,则抛物线解析式为y =−12x 2−x +32;(2)抛物线解析式为y =−12x 2−x +32=−12(x +1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y =−12x 2.解析:此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.(1)把已知点的坐标代入抛物线解析式求出b 与c 的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可. 23.答案:解:过F 作FT//BC 交AE 于T ,∵FT//BC ,∴△TFD∽△ECD ,∴FT CE =FDCD ,∵D 为CF 中点,∴CD =FD ,∴FT =CE ,∵FT//BC ,∴△AFT∽△ABE ,∴FT BE =AF AB ,∵BF :AF =3:2,FT =CE ,∴CE BE =25,∴BE:CE=5:2.解析:本题考查了相似三角形的性质和判定,过F作FT//BC交AE于T,证△TFD∽△ECD,求出CE=FT,证△AFT∽△ABE,得出FTBE =AFAB,即可得出答案.24.答案:解:(1)答案不唯一,如y=x2−2x+1和y=x2−2x+3.将y=x2−2x+1和y=x2−2x+3配方,得y=(x−1)2和y=(x−1)2+2,∴将y=(x−1)2的图象向上平移2个单位可得y=(x−1)2+2的图象.(2)∵关于x的二次函数=a1x 2+b1x+c1和y2=a2x2+b2x+c2是“全等二次函数”∴a1=a2,∴y1−y2=(b1−b2)x+c1−c2,若函数y1−y2的图象经过原点,则c1−c2=0,∴c1−c2b1−b2(b1−b2≠0)的值为0.(3)易知y1=a1x2+b1x+c1和y2=a2x2+b2x+c2的图象的对称轴分别为x=−b12a1和x=−b22a2.不妨设点A在点B的左侧,则AB=−b22a2−(−b12a1)=b1−b22a1.当a1=a2>0时,若点A到y轴的距离比点B到y轴的距离近,则CD=c2−c1.∵b1−b2≠0,AB=CD,∴b1−b22a1=c2−c1,即c1−c2b1−b2=−12a1.若点B到y轴的距离比点A到y轴的距离近,则CD=c1−c2,∵b1−b2≠0,AB=CD,∴b1−b22a1=c1−c2,即c1−c2b1−b2=12a1.同理,当a1=a2<0时,c1−c2b1−b2=±12a1.综上所述,c1−c2b1−b2=12a1或c1−c2b1−b2=−12a1.解析:本题考查二次函数的综合题,新定义;二次函数的几何变换,二次函数图像是点的坐标特征,(1)根据全等二次函数的定义和二次函数的几何变换即可解答;(2)根据全等二次函数的定义得a1=a2,求得y1−y2=(b1−b2)x+c1−c2,再根据此函数图像根据原点即可解答;(3)易知y1=a1x 2+b1x+c1和y2=a2x 2+b2x+c2的图象的对称轴分别为x=−b12a1和x=−b2,根据点到坐标轴的距离d得AB,CD的长的表示,再根据AB=CD等式即可解答.2a2。

2020学年北京市海淀区初三二模数学试题及答案

2020学年北京市海淀区初三二模数学试题及答案

2020北京海淀初三二模净考证号1•本试卷共8页,共三道大題,28道小題。

满分100分。

考WlBJI20分钟• 2•在试卷和答题卡上准确填写学校名称、姓名和淮考证号。

3•试题答秦一律填涂或书与在答迩卡上,任常卷上作答无效。

4・在答题卡丄,选择题冃2E 钻笙作答,其他题用黒鱼字逝签字笔作答。

5•考试结束'情将本试誉、答题卡和草稿纟壬一并交回。

一、选径弱冬暫共16分,毎小西2分) 第「8题均有四个选项,符合题竜的选项只有一个・1 •下面的因个图形口,是圆枉的侧面展廿图的罡2若代娠為有意义,贝廡如的取值范围是3・如图,IZVZLeC π. ΛB=3cm ;適过测里,并计算NABC 旳面积,所得面积与=列数直最按近的定A. L5CJW E. 2onD. 3cm4•團中阴彩咅吩是由4个左全柜同的的正方形拼接而成,若吏左①,②,③,④四个区域中笊某个曲馳添加一 个同样的正万形,吏它三阴影部分组或的新图形罡中心对称图枚 刃这个正万形应该添页E2023.6姓名A. K = OE. X= 2C ∙ κ≠OD. x≠2A.区域①处B.区域②处C.区域②处D.区域④处≡Φ ③: A投篮次数H 48 82124176 230 287 328 投中次数M 3359 83 118 1S9 195223 Tn 投中频率右0.69 0.720.670.670.690.680.685・如图,^NABCEFfIBC.ED 平分ZfiEP ,且ZZ)EF = 70°,则Zfi 的度数为A. 70AB ∙ 6D° C. 50° D. 40φ6.如果d t-a-2 = Q^ 那么代数^(fl-l)2+(α÷2)(σ-2)的道为A.lB.2C.3D.47 •如虱go 的土径筹于4,如果弦JLe 所对的圆心角等于90S 那么區心。

到弦刖的距克为A. √2B. 2C. 20D. 3y∕28•在平总亘甬坐标系妙甲,苗于点P(O J b),⅛α&>0>则称点P 为“同号点” ∙F 列匡数的图象中不存在“同 号点”的是A. y=-x÷lB. j = r 2-2ry = x 2+-I二、填空题体题共16分,每4颌2分)9.单项式3X >的系数是 ______________ .D.10j□S,在eθ上,点D 在eθ内,则厶6 _________________ ZADB. (1XC13•解不等式2(x-l)<4-r,并在数轴上表示出它的解集・・4 ∙ 3 ∙ 2 ・1 0 1 2 3 4 X19•下面足丁王同学“过宜线夕卜一点作该亘纸的平佬捫的尺规作團辺程.己知:直纟如及直线!外一点P ∙12. ι≡),y=*r+l(Jt≠0)J i ]图养•上言两点若XV>V 芍出一个符合题意的Jt 的值; ___________ .13•如團,在中,ΛB BC. NJire 三120° >过点占作妙丄BC,交力C 于点Q,若JD=B 则CD 笊长度为 _____________________ .14•如囲 在平面直甬坐标系I 0F 中,已弭点C(3,2) > ^yABC 关于直 线兀=4对称,得贸u ⅛¾q,则点C 的对应点q 的坐标为 ________________ ____再将y ⅛¾c l 向上平移 Y 单位虫度,得到V∕⅛⅞c 2,则点q 的 对应点・G 的坐标为 _____________ .::]■ • ■ Wr丁IC !S •・ ・AZ ∖ ∙:・ φ • 15•小华和小明周末到北京三山云园绿道骑行•他们按设计好的同一条纟牖同时出岌,小华每小时骑行19, 4朋每小时骑行12S,他们完成全部行程所用的盯间,小明比小 华多半小S 寸.设他们这次骑行线路长为如,依题意,可列方 程为 _________________ .16.如图,在平面直甬生标糸 Q 中,肖五个点A(Z f O)3B(Q,-2),C(r 2,4),D(4-2),E 亿0),将二勉 数> =α(r -2)2+ w(m≠0)的團象记^矿.下列的尹断中① 点/—宦不在JF 上; ② 点JJCD 可以同时在JK 上: ② 点、C.忙不可能同时在Ir7 6 5 C- 43 21AIftI•- •A E1 I 1 1 I ∙4∙ 3 -2 -IO 1 23456 7门 --2 B ・£>•3.所有正确结论的序号是 __________ •三、鮮答題(本题共68分,第1T22題,野小融5分,第23'26题,毎小题6分,第2厂28题,每小题7分)眸答 应写出文字说明X :WM 步機或证明过程. M 计算:(”(202。

2020北京海淀初三二模数学及答案

2020北京海淀初三二模数学及答案

2020北京海淀初三二模数学 2020.6学校姓名准考证号考生须知1.本试卷共8页,共三道大题,28道小题。

满分100分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题用2B铅笔作答,其他题用黑色字迹签字笔作答。

5.考试结束,请将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下面的四个图形中,是圆柱的侧面展开图的是2.若代数式12x-有意义,则实数x的取值范围是A. 0x= B. 2x= C. 0x≠ D. 2x≠3.如图,在ABC中,3AB cm=,通过测量,并计算ABC的面积,所得面积与下列数值最接近的是A. 21.5cmB. 22cmC. 22.5cmD. 23cm4.图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在A. 区域①处B. 区域②处C. 区域③处D. 区域④处5.如图,在ABC 中, //,EF BC ED 平分BEF ∠,且70DEF ∠=︒,则B ∠的度数为A.70°B.60°C.50°D.40°6.如果220a a --=,那么代数式()()()2122a a a -++-的值为A.1B.2C.3D.47.如图,O 的半径等于4,如果弦AB 所对的圆心角等于90︒,那么圆心O 到弦AB 的距离为A.2B.2C.22D.328.在平面直角坐标系xOy 中,对于点(),P a b ,若0ab >,则称点P 为“同号点”.下列函数的图象中不存在“同号点”的是 A.1y x =-+B.22y x x =-C.2y x=-D.21y x x=+二、填空题(本题共16分,每小题2分) 9.单项式23x y 的系数是 .10.如图,点,,A B C 在O 上,点D 在O 内,则ACB ∠ADB ∠.(填 >=<“”,“”或“”) 11.下表记录了一名篮球运动员在罚球线上投篮的结果: 投篮次数n 48 82 124 176 230 287 328 投中次数m 33 59 83 118 159 195 223 投中频率mn0.690.720.670.67 0.690.680.68根据上表,这名篮球运动员投篮一次,投中的概率约为.(结果精确到0.01)12.函数)1(0y kx k =+≠的图象上有两点()()11221,1,P y P y -,,若12y y <,写出一个符合题意的k 的值:.13.如图,在ABC 中,120AB BC ABC =∠=︒,,过点B 作BD BC ⊥,交AC 于点D ,若1AD =,则CD 的长度为.14.如图,在平面直角坐标系xOy 中,已知点 ()3,2C ,将ABC 关于直线4x =对称,得到111A B C ,则点C 的对应点1C 的坐标为;再将111A B C 向上平移一个单位长度,得到222A B C ,则点1C 的对应点2C 的坐标为.15.小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行18km ,小明每小时骑行12km ,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为xkm ,依题意,可列方程为.16.如图,在平面直角坐标系xOy 中,有五个点()()()()()2,0,0,2,2,4,4,2,7,0A B C D E ---,将二次函数()2)0(2y a x m m =-+≠的图象记为W .下列的判断中 ①点A 一定不在W 上; ②点,,B C D 可以同时在W 上; ③点C E ,不可能同时在W 上. 所有正确结论的序号是.三、解答题(本题共68分,第17~22题,每小题5分,第23~26题,每小题6分,第27~28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:101312cos302π-++--()(2020-)18.解不等式()214x x -<-,并在数轴上表示出它的解集.19.下面是小王同学“过直线外一点作该直线的平行线”的尺规作图过程.已知:直线l 及直线l 外一点P . 求作:直线PQ ,使得//PQ l .作法:如图,①在直线l 外取一点A ,作射线AP 与直线l 交于点B , ②以A 为圆心,AB 为半径画弧与直线l 交于点C ,连接AC , ③以A 为圆心,AP 为半径画弧与线段AC 交于点Q , 则直线PQ 即为所求.根据小王设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明. 证明:AB AC =,ABC ACB ∴∠=∠,()(填推理的依据)AP = , APQ AQP ∴∠=∠.180ABC ACB A ∠+∠+∠=︒, 180APQ AQP A ∠+∠+∠=︒,APQ ABC ∴∠=∠. //PQ BC ∴ ()(填推理的依据).即//PQ l .20.已知关于x 的一元二次方程220x x n -+=.(1)如果此方程有两个相等的实数根,求n 的值; (2)如果此方程有一个实数根为0,求另外一个实数根.21.如图,在Rt ABC 中,90,ACB D ∠=︒为AB 边的中点,连接CD ,过点A 作//AG DC ,过点C 作//CG DA AG ,与CG 相交于点G(1)求证:四边形ADCG 是菱形; (2)若3104AB tan CAG =∠=,,求BC 的长.22.坚持节约资源和保护环境是我国的基本国策,国家要求加强生活垃圾分类回收与再生资源回收有效衔接,提高全社会资源产出率,构建全社会的资源循环利用体系.图1反映了2014-2019年我国生活垃圾清运量的情况.图2反映了2019年我国G 市生活垃圾分类的情况.根据以上材料回答下列问题:(1)图2中,n 的值为;(2)2014-2019年,我国生活垃圾清运量的中位数是;(3)据统计,2019年G 市清运的生活垃圾中可回收垃圾约为0.02亿吨,所创造的经济总价值约为40亿元.若2019年我国生活垃圾清运量中,可回收垃圾的占比与G 市的占比相同,根据G 市的数据估计2019年我国可回收垃圾所创造的经济总价值是多少.23.如图,AB 为O 的直径,C 为O 上一点,CE AB ⊥于点E ,O 的切线BD交OC 的延长线于点D . (1)求证:DBC OCA ∠=∠;(2)若302BAC AC ∠=︒=,.求CD 的长.24.如图,在平面直角坐标系xOy 中,函数2(0)y x x=>的图象与直线(0)y kx k =≠交于点(1,)P p .M 是函数2(0)y x x=>图象上一点,过M 作x 轴的平行线交直线(0)y kx k =≠于点N . (1)求k 和p 的值; (2)设点M 的横坐标为m .①求点N 的坐标;(用含m 的代数式表示) ②若OMN 的面积大于12,结合图象直接写出m 的取值范围.25.如图1,在四边形ABCD 中,对角线AC 平分,901BAD B ACD AC AB ∠∠=∠=︒-=,.为了研究图中线段之间的数量关系,设,AB x AD y ==.(1)由题意可得(),AB AC AD=(在括号内填入图1中相应的线段) y 关于x 的函数表达式为y =;(2)如图2,在平面直角坐标系xOy 中,根据(1)中y 关于x 的函数表达式描出了其图象上的一部分点,请依据描出的点画出该函数的图象;(3)结合函数图象,解决问题:①写出该函数的一条性质: ;②估计AB AD +的最小值为 .(结果精确到0.1)26.在平面直角坐标系xOy 中,已知二次函数223y mx mx =++的图象与x 轴交于点()3,0A -,与y 轴交于点B ,将其图象在点,A B 之间的部分(含,A B 两点)记为F .(1)求点B 的坐标及该函数的表达式;(2)若二次函数22y x x a =++的图象与F 只有一个公共点,结合函数图象,求a 的取值范围.27.如图1,等边三角形ABC 中,D 为BC 边上一点,满足BD CD <,连接AD ,以点A 为中心将射线AD 顺时针旋转60︒,与ABC 的外角平分线BM 交于点E . (1)依题意补全图1; (2)求证:AD AE =;(3)若点B 关于直线AD 的对称点为F ,连接CF . ①求证://AE CF ;②若BE CF AB +=成立,直接写出BAD ∠的度数为°28.在平面内,对于给定的ABC ,如果存在一个半圆或优弧与ABC 的两边相切,且该弧上的所有点都在ABC 的内部或边上,则称这样的弧为ABC 的内切弧.当内切弧的半径最大时,称该内切弧为ABC 的完美内切弧.(注:弧的半径指该弧所在圆的半径)在平面直角坐标系xOy 中,()()8,0,0,6A B . (1)如图1,在弧1G ,弧2G ,弧3G 中,是OAB 的内切弧的是;(2)如图2,若弧G 为OAB 的内切弧,且弧G 与边,AB OB 相切,求弧G 的半径的最大值; (3)如图3,动点(),3M m ,连接,OM AM . ①直接写出OAM 的完美内切弧的半径的最大值;②记①中得到的半径最大时的完美内切弧为弧T .点P 为弧T 上的一个动点,过点P 作x 轴的垂线,分别交x 轴和直线AB 于点,D E ,点F 为线段PE 的中点,直接写出线段DF 长度的取值范围.。

2020年北京市海淀区中考数学二模试卷

2020年北京市海淀区中考数学二模试卷

中考数学二模试卷题号一二三总分得分一、选择题(本大题共8小题,共16.0分)1.-27的立方根是()A. -3B. 3C. ±3D.2.如图,两条直线AB,CD交于点O,射线OM是∠AOC的平分线,若∠BOD=80°,则∠BOM等于()A. 140°B. 120°C. 100°D. 803.科学家在海底下约4.8公里深处的沙岩中,发现了一种世界上最小的神秘生物,它们的最小身长只有0.00000002米,甚至比已知的最小细菌还要小.将0.00000002用科学记数法表示为()A. 2×10-7B. 2×10-8C. 2×10-9D. 2×10-104.实数a,b在数轴上的对应点的位置如图所示,若-a<c<b,则实数c的值可能是()A. B. 0 C. 1 D.5.图1是矗立千年而不倒的应县木塔一角,它使用了六十多种形态各异的斗栱(dǒugǒng).斗栱是中国古代匠师们为减少立柱与横梁交接处的剪力而创造的一种独特的结构,位于柱与梁之间,斗栱是由斗、升、栱、翘、昂组成,图2是其中一个组成部件的三视图,则这个部件是()A. B. C. D.6.已知a>b,则下列不等式一定成立的是()A. -5a>-5bB. 5ac>5bcC. a-5<b+5D. a+5>b-57.下面的统计图反映了2013-2018年中国城镇居民人均可支配收入与人均消费支出的情况.根据统计图提供的信息,下列推断不合理的是()A. 2013-2018年,我国城镇居民人均可支配收入和人均消费支出均逐年增加B. 2013-2018年,我国城镇居民人均可支配收入平均每年增长超过2400元C. 从2015年起,我国城镇居民人均消费支出超过20000元D. 2018年我国城镇居民人均消费支出占人均可支配收入的百分比超过70%8.如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道a和南北向的交通主干道b,若他希望租住的小区到主干道a和主干道b的直线距离之和最小,则图中符合他要求的小区是()A. 甲B. 乙C. 丙D. 丁二、填空题(本大题共8小题,共16.0分)9.当x=______时,分式的值为0.10.如图,在△ABC中,∠BAC=90°,D为BC中点,若AD=,AC=3,则AB的长为______.11.如图,在⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ABC=20°,则∠C的度数为______.12.如果m=n+4,那么代数式的值是______.13.如图,在△ABC中,P,Q分别为AB,AC的中点.若S△APQ=1,则S四边形PBCQ=______.14.某学习小组做抛掷一枚纪念币的实验,整理同学们获得的实验数据,如下表.抛掷次数5010020050010002000300040005000“正面向上”的次193868168349707106914001747数“正面向上”的频0.38000.38000.34000.33600.34900.35350.35630.35000.3494率下面有三个推断:①在用频率估计概率时,用实验5000次时的频率0.3494一定比用实验4000次时的频率0.3500更准确;②如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在0.35附近摆动;③通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的.其中正确的是______.15.按《航空障碍灯(MH/T6012-1999)》的要求,为保障飞机夜间飞行的安全,在高度为45米至105米的建筑上必须安装中光强航空障碍灯(AviationObstructionlight).中光强航空障碍灯是以规律性的固定模式闪光.在下图中你可以看到某一种中光强航空障碍灯的闪光模式,灯的亮暗呈规律性交替变化,那么在一个连续的10秒内,该航空障碍灯处于亮的状态的时间总和最长可达______秒.16.如图是在浦东陆家嘴明代陆深古墓中发掘出来的宝玉--明白玉幻方.其背面有方框四行十六格,为四阶幻方(从1到16,一共十六个数目,它们的纵列、横行与两条对角线上4个数相加之和均为34).小明探究后发现,这个四阶幻方中的数满足下面规律:在四阶幻方中,当数a,b,c,d有如图1的位置关系时,均有a+b=c+d=17.如图2,已知此幻方中的一些数,则x的值为______.三、解答题(本大题共12小题,共68.0分)17.计算:4cos45°+(-1)0-+|2-|.18.解不等式组:19.下面是小宇设计的“作已知直角三角形的中位线”的尺规作图过程.已知:在△ABC中,∠C=90°.求作:△ABC的中位线DE,使点D在AB上,点E在AC上.作法:如图,①分别以A,C为圆心,大于AC长为半径画弧,两弧交于P,Q两点;②作直线PQ,与AB交于点D,与AC交于点E.所以线段DE就是所求作的中位线.根据小宇设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接PA,PC,QA,QC,DC,∵PA=PC,QA=______,∴PQ是AC的垂直平分线(______)(填推理的依据).∴E为AC中点,AD=DC.∴∠DAC=∠DCA,又在Rt△ABC中,有∠BAC+∠ABC=90°,∠DCA+∠DCB=90°.∴∠ABC=∠DCB(______)(填推理的依据).∴DB=DC.∴AD=BD=DC.∴D为AB中点.∴DE是△ABC的中位线.20.关于x的一元二次方程x2-(2k-1)x+k2-1=0,其中k<0.(1)求证:方程有两个不相等的实数根;(2)当k=-1时,求该方程的根.21.如图,在▱ABCD中,∠BAD的角平分线交BC于点E,交DC的延长线于点F,连接DE.(1)求证:DA=DF;(2)若∠ADE=∠CDE=30°,DE=2,求▱ABCD的面积.22.如图,AB是⊙O的直径,PA,PC与⊙O分别相切于点A,C,连接AC,BC,OP,AC与OP相交于点D.(1)求证:∠B+∠CPO=90°;(2)连结BP,若AC=,sin∠CPO=,求BP的长.23.如图,在平面直角坐标系xOy中,直线y=x+b与x轴、y轴分别交于点A,B,与双曲线y=的交点为M,N.(1)当点M的横坐标为1时,求b的值;(2)若MN≤3AB,结合函数图象,直接写出b的取值范围.24.有这样一个问题:探究函数y=的图象与性质.小宇从课本上研究函数的活动中获得启发,对函数y=的图象与性质进行了探究.下面是小宇的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)如图,在平面直角坐标系xOy中,完成以下作图步骤:①画出函数y=和y=-的图象;②在x轴上取一点P,过点P作x轴的垂线l,分别交函数y=和y=-的图象于点M,N,记线段MN的中点为G;③在x轴正半轴上多次改变点P的位置,用②的方法得到相应的点G,把这些点用平滑的曲线连接起来,得到函数y=在y轴右侧的图象.继续在x轴负半轴上多次改变点P的位置,重复上述操作得到该函数在y轴左侧的图象.(3)结合函数y=的图象,发现:①该函数图象在第二象限内存在最低点,该点的横坐标约为(保留小数点后一位);②该函数还具有的性质为:______(一条即可).25.某学校共有六个年级,每个年级10个班,每个班约40名同学.该校食堂共有10个窗口,中午所有同学都在食堂用餐.经了解,该校同学年龄分布在12岁(含12岁)到18岁(含18岁)之间,平均年龄约为15岁.小天、小东和小云三位同学,为了解全校同学对食堂各窗口餐食的喜爱情况,各自进行了抽样调查,并记录了相应同学的年龄,每人调查了60名同学,将收集到的数据进行了整理.小天从初一年级每个班随机抽取6名同学进行调查,绘制统计图表如下:小东从全校每个班随机抽取1名同学进行调查,绘制统计图表如下:小云在食堂门口,对用餐后的同学采取每隔10人抽取1人进行调查,绘制统计图表如下:根据以上材料回答问题:(1)写出图2中m的值,并补全图2;(2)小天、小东和小云三人中,哪个同学抽样调查的数据能较好地反映出该校同学对各窗口餐食的喜爱情况,并简要说明其余同学调查的不足之处;(3)为使每个同学在中午尽量吃到自己喜爱的餐食,学校餐食管理部门应为______窗口尽量多的分配工作人员,理由为______.26.在平面直角坐标系xOy中,抛物线C:y=ax2-2ax+3与直线l:y=kx+b交于A,B两点,且点A在y轴上,点B在x轴的正半轴上.(1)求点A的坐标;(2)若a=-1,求直线l的解析式;(3)若-3<k<-1,求a的取值范围.27.已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P在射线CM上,连接PA,PQ,记BQ=kCP.(1)若α=60°,k=1,①如图1,当Q为BC中点时,求∠PAC的度数;②直接写出PA、PQ的数量关系;(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.28.对于平面直角坐标系xOy中的两个图形M和N,给出如下定义:若在图形M上存在一点A,图形N上存在两点B,C,使得△ABC是以BC为斜边且BC=2的等腰直角三角形,则称图形M与图形N具有关系φ(M,N).(1)若图形X为一个点,图形Y为直线y=x,图形X与图形Y具有关系φ(X,Y),则点,P2(1,1),P3(2,-2)中可以是图形X的是______;(2)已知点P(2,0),点Q(0,2),记线段PQ为图形X.①当图形Y为直线y=x时,判断图形X与图形Y是否既具有关系φ(X,Y)又具有关系φ(Y,X),如果是,请分别求出图形X与图形Y中所有点A的坐标;如果不是,请说明理由;②当图形Y为以T(t,0)为圆心,为半径的⊙T时,若图形X与图形Y具有关系φ(X,Y),求t的取值范围.答案和解析1.【答案】A【解析】解:=-3.故选:A.根据立方根的知识,直接开立方即可.本题考查了立方根的知识,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.【答案】A【解析】解:∵∠BOD=80°,∴∠COB=100°,又∵∠COB+∠AOC=180°∴∠AOC=180°-∠COB=180°-100°=80°∵射线OM是∠AOC的平分线,∴∠COM=40°,∴∠BOM=∠COM+∠COB=40°+100°=140°,故选:A.先根据互补两角之和为180°,求出∠COB与∠AOC,再根据角平分线的定义得出∠COM,最后解答即可.此题考查角平分线的定义,互补两角之和为180°,熟练掌握以上知识点是解题的关键.3.【答案】B【解析】解:将数字0.00000002用科学记数法表示应为2×10-8,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:据数轴可得-2<a<-1<4<b<5,∵-a<c<b,即1,即1<c<5∴实数c的值可能是.故选:D.根据数轴得出-2<a<-1<4<b,据此解答即可.本题考查了数轴,有理数的大小比较的应用,能根据数轴得出-a<c<b,是解此题的关键.5.【答案】C【解析】解:根据俯视图是一个正方形知:C正确,其他选项均不正确,故选:C.根据三视图结合四个选项找到正确的答案即可.本题考查了由三视图判断几何体的知识,解题的关键是有较强的空间想象能力,难度不大.6.【答案】D【解析】解:∵a>b,∴-5a<5b,故选项A不合题意;5ac>5bc,错误,故选项B不合题意;a-5<b+5错误,故选项C不合题意;a+5>b-5,正确,故本选项符合题意.故选:D.根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.7.【答案】D【解析】解:A.2013-2018年,我国城镇居民人均可支配收入和人均消费支出均逐年增加,正确;B.2013-2018年,我国城镇居民人均可支配收入平均每年增长(39251-26955)÷5=2459.2元,超过2400元,正确;C.从2015年起,我国城镇居民人均消费支出超过20000元,正确;D.2018年我国城镇居民人均消费支出占人均可支配收入的百分比,未超过70%,此项错误.故选:D.折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.本题考查了折线统计图,正确理解折线统计图的意义是解题的关键.8.【答案】C【解析】解:分别作甲、乙、丙、丁四个小区关于道路a和道路b的对称点,分别连接对称点,线段最短的即为所求,如图:从图中可知丙小区最短;故选:C.分别作甲、乙、丙、丁四个小区关于道路a和道路b的对称点,分别连接对称点,线段最短的即为所求;本题考查轴对称求最短路径;通过两次作轴对称,将问题转化为对称点的连线最短是解题的关键.9.【答案】2【解析】解:当x-2=0时,即x=2时,分式的值为0,故答案为:2.根据分式的值为0的条件进行解答即可.本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零.10.【答案】4【解析】解:∵在△ABC中,∠BAC=90°,D为BC中点,若AD=,∴BC=2AD=5,∵AC=3,∴AB=,故答案为:4.根据直角三角形的性质和勾股定理解答即可.此题考查直角三角形的性质,关键是根据直角三角形的性质得出BC的长.11.【答案】40°【解析】解:∵∠A=60°,∠ABC=20°,∴∠ODC=180°-20°-60°=100°,∠ABC=20°,∴∠AOC=2∠ABC=40°,∴∠C=180°-100°-40°=40°故答案为:40°直接利用三角形外角的性质以及邻补角的关系得出∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.12.【答案】8【解析】解:原式===2(m-n),∵m=n+4,∴m-n=4,∴原式=2×4=8,故答案为8.先化简分式,然后将m-n的值代入计算即可.本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.13.【答案】3【解析】解:∵P,Q分别为AB,AC的中点,∴PQ∥BC,PQ=BC,∴△APQ∽△ABC,∴=()2=,∵S△APQ=1,∴S△ABC=4,∴S四边形PBCQ=S△ABC-S△APQ=3,故答案为3.利用三角形中位线定理以及相似三角形的性质解决问题即可.本题考查相似三角形的判定和性质,三角形中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.【答案】②③【解析】解:①在用频率估计概率时,用实验5000次时的频率0.3494一定比用实验4000次时的频率0.3500更准确,错误;②如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在0.35附近摆动,正确;③通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的,正确,故答案为:②③.根据图表和各个小题的说法可以判断是否正确,从而可以解答本题.本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.15.【答案】7【解析】解:根据题意,当该航空障碍灯处于亮的状态的时间总和最长时,灯的亮暗呈规律性交替变化为:亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,在这10秒中,航空障碍灯处于亮的状态的时间总和为7秒,故答案为7.观察者所处的位置定为一点,叫视点.当该航空障碍灯处于亮的状态的时间总和最长时,灯的亮暗呈规律性交替变化为亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,在这10秒中,航空障碍灯处于亮的状态的时间总和为7秒.本题考查了视点,正确理解图示是解题的关键.16.【答案】1【解析】解:如图,根据小明的发现,在实线的三阶区域内有y右下角对应的是17-y,在虚线的三阶区域内,2对应右下角的数是15,在第四列中,四个数分别是x,x+y,17-y,15,∴x+x+y+17-y+15=34,∴x=1;故答案为1.根据小明的发现,将四阶幻方分解为三阶幻方进行研究,右图中给出数据,在实线的三阶区域内有y右下角对应的是17-y,在虚线的三阶区域内,2对应右下角的数是15,再根据每列和是34,即可求解;本题考查代数式的加减法;能够通过三阶幻方的规律解决四阶幻方,合理的进行分割幻方是解题的关键.17.【答案】解:原式=4×+1-2+2-,=2+1-2+2-,=3-.【解析】本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.【答案】解:解不等式①,得x<3.解不等式②,得x<2.∴原不等式组的解集为x<2.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.19.【答案】QC到线段两端点距离相等的点在线段的垂直平分线上等角的余角相等【解析】解:(1)如图线段DE即为所求.(2)连接PA,PC,QA,QC,DC,∵PA=PC,QA=QC,∴PQ是AC的垂直平分线(到线段两端点距离相等的点在线段的垂直平分线上),∴E为AC中点,AD=DC.∴∠DAC=∠DCA,又在Rt△ABC中,有∠BAC+∠ABC=90°,∠DCA+∠DCB=90°.∴∠ABC=∠DCB(等角的余角相等),∴DB=DC.∴AD=BD=DC.∴D为AB中点.∴DE是△ABC的中位线.故答案为:QC,到线段两端点距离相等的点在线段的垂直平分线上,等角的余角相等.(1)作线段AC的垂直平分线PQ,交AB于D,交AC于E.(2)想办法证明AE=EC,AD=DC即可解决问题.本题考查作图-复杂作图,线段的垂直平分线的性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.【答案】解:(1)依题意可知,△=(2k-1)2-4(k2-1)=5-4k,∵k<0,∴△>0.∴方程有两个不相等的实数根.(2)当k=-1时,方程为x2+3x=0.解得x1=-3,x2=0.【解析】(1)利用一元二次方程根的判别式就可以证明结论;(2)把k=-1代入原方程即可得到结论.本题考查了一元二次方程的解及根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.21.【答案】(1)证明:∵四边形ABCD为平行四边形,∴AB∥CD.∴∠BAF=∠F.∵AF平分∠BAD,∴∠BAF=∠DAF.∴∠F=∠DAF.∴AD=FD.(2)解:∵∠ADE=∠CDE=30°,AD=FD,∴DE⊥AF.∵tan∠ADE=,,∴AE=2.∴S平行四边形ABCD=2S△ADE=AE•DE=4.【解析】(1)根据平行四边形的性质证得∠F=∠DAF,然后利用等角对等边证得结论;(2)利用S平行四边形ABCD=2S△ADE求解即可.本题考查了平行四边形的性质及解直角三角形的知识,体现了转化的数学思想,难度不大.22.【答案】(1)证明:连接OC,如图.∵PA,PC与⊙O分别相切于点A,C,∴OC⊥PC,OA⊥PA,∠APC=2∠CPO.∴∠OCP=∠OAP=90°.∵∠AOC+∠APC+∠OCP+∠OAP=360°,∴∠AOC+∠APC=180°.∵∠AOC=2∠B,∴∠B+∠CPO=90°.(2)解:连接BP,如图.∵AB是⊙O的直径,∴∠ACB=90°.∴∠ABC+∠BAC=90°.∵∠ABC+∠CPO=90°,∴∠BAC=∠CPO=∠APO.∵AC=,sin∠BAC=,∴AB=3,.∵,sin∠APO=,∴AP=2.∴.【解析】(1)连接OC,如图.根据切线的性质得到OC⊥PC,OA⊥PA,∠APC=2∠CPO.由垂直的定义得到∠OCP=∠OAP=90°.求得∠AOC+∠APC=180°.于是得到结论;(2)连接BP,如图.根据圆周角定理得到∠ACB=90°.推出∠BAC=∠CPO=∠APO.解直角三角形即可得到结论.本题考查了切线的性质,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.23.【答案】解:(1)∵点M是双曲线上的点,且点M的横坐标为1,∴点M的坐标为(1,2).∵点M是直线y=x+b上的点,∴b=1.(2)当b=±1时,满足MN=3AB,结合函数图象可得,b的取值范围是b≤-1或b≥1..【解析】(1)把x=1代入y=求得纵坐标,然后根据待定系数法即可求得b;(2)当b=±1时,满足MN=3AB,根据题意即可求得若MN≤3AB,b的取值范围.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,也考查了待定系数法求函数解析式.24.【答案】当x>0时,y随x的增大而增大【解析】解:(1)∵x在分母上,∴x≠0.故函数y=的自变量x的取值范围是x≠0;(2)画出该函数在y轴左侧的图象如图:(3)①点的横坐标约为-1.6;(在-1.9至-1.3之间即可)②该函数的其它性质:当x>0时,y随x的增大而增大.故答案为:当x>0时,y随x的增大而增大.(1)由分母不为0,可得出自变量x的取值范围;(2)连线,画出函数图象;(3)观察函数图象,找出最低点和找出函数性质.本题考查了分式有意义的条件、反比例函数的图象、二次函数的图象以及函数的最值,解题的关键是:(1)根据分母不为0,找出x的取值范围;(2)连点,画出函数图象;(3)根据函数图象,寻找函数的性质.25.【答案】6号和8号从小东的调查结果看,这几个窗口受到更多的同学的喜爱,应该适当增加这几个窗口的工作人员.【解析】解:(1)60-(5+9+11+10+10+5)=10(人),(12×5+13×9+14×11+15×10+16×10+17×10+18×5)÷60≈15.0岁,故m的值为15.0,补全图如下:(2)小东.理由:小天调查的不足之处:仅对初一年级抽样,不能代表该学校学生总体的情况;小云调查的不足之处:抽样学生的平均年龄为16岁,远高于全校学生的平均年龄,不能代表该学校学生总体情况.(3)6号和8号(或者只有8;或者5,6,8).理由:从小东的调查结果看,这几个窗口受到更多的同学的喜爱,应该适当增加这几个窗口的工作人员.故答案为6号和8号,从小东的调查结果看,这几个窗口受到更多的同学的喜爱,应该适当增加这几个窗口的工作人员.注意:(2)(3)的答案不唯一(1)60-(5+9+11+10+10+5)=10(人),(12×5+13×9+14×11+15×10+16×10+17×10+18×5)÷60≈15.0岁,(2)小东.理由:小天调查的不足之处:仅对初一年级抽样,不能代表该学校学生总体的情况;小云调查的不足之处:抽样学生的平均年龄为16岁,远高于全校学生的平均年龄,不能代表该学校学生总体情况;(3)6号和8号(或者只有8;或者5,6,8).理由:从小东的调查结果看,这几个窗口受到更多的同学的喜爱,应该适当增加这几个窗口的工作人员.本题考查了统计图,熟练掌握条形统计图是解题的关键.26.【答案】解:(1)∵抛物线C:y=ax2-2ax+3与y轴交于点A,∴点A的坐标为(0,3).(2)当a=-1时,抛物线C为y=-x2+2x+3.∵抛物线C与x轴交于点B,且点B在x轴的正半轴上,∴点B的坐标为(3,0).∵直线l:y=kx+b过A,B两点,∴解得∴直线l的解析式为y=-x+3.(3)如图,当a>0时,当a=3时,抛物线C过点B(1,0),此时k=-3.结合函数图象可得a>3.当a<0时,当a=-1时,抛物线C过点B(3,0),此时k=-1.结合函数图象可得a<-1.综上所述,a的取值范围是a<-1或a>3.【解析】(1)抛物线C:y=ax2-2ax+3与y轴交于点A,令x=0,即可求得A的坐标;(2)令y=0,解方程即可求得B的坐标,然后根据待定系数法即可求得直线l的解析式;(3)当a=3时,抛物线C过点B(1,0),此时k=-3.当a=-1时,抛物线C过点B(3,0),此时k=-1.结合图象即可求得.本题考查了二次函数的图象和系数的关系,待定系数法求一次函数的解析式,数形结合是解题的关键.27.【答案】解:(1)①如图1,在CM上取点D,使得CD=CA,连接AD,∵∠ACM=60°,∴△ADC为等边三角形.∴∠DAC=60°.∵C为AB的中点,Q为BC的中点,∴AC=BC=2BQ.∵BQ=CP,∴AC=BC=CD=2CP.∴AP平分∠DAC.∴∠PAC=∠PAD=30°.②∵△ADC是等边三角形,∴∠ACP=60°,∵PC=CQ,∴∠PQC=∠CPQ=30°,∴∠PAC=∠PQC=30°,∴PA=PQ;(2)存在,使得②中的结论成立.证明:过点P作PC的垂线交AC于点D.∵∠ACM=45°,∴∠PDC=∠PCD=45°.∴PC=PD,∠PDA=∠PCQ=135°.∵,,∴CD=BQ.∵AC=BC,∴AD=CQ.∴△PAD≌△PQC(SAS).∴PA=PQ.【解析】(1)如图1,作辅助线,构建等边三角形,证明△ADC为等边三角形.根据等边三角形三线合一可得∠PAC=∠PAD=30°;②根据①中得结论:∠PAC=∠PQC=30°,则PA=PQ;(2)存在,如图2,作辅助线,构建全等三角形,证明△PAD≌△PQC(SAS).可得结论.本题是三角形的综合题,考查三角形全等的性质和判定、等边三角形、等腰直角三角形、勾股定理等知识,解题的关键是作辅助线,构建等边三角形和三角形全等,难度适中,属于中考常考题型.28.【答案】P1【解析】解:(1)P1;如图1,过P1作P1C I⊥y轴交直线y=x于点C1,作P1B1⊥x轴于B1(B1与O重合),∵P1(0,),∴P1O=,将y=代入y=x中,得x=∴C1(,),即:C1P1=B1P1=∴==2∴P1(0,)与图形Y(直线y=x)具有关系φ(X,Y);∵P2(1,1)在直线y=x上,∴P2(1,1)与图形Y(直线y=x)不具有关系φ(X,Y);∵P3(2,-2)∴B3(-2,-2),C3(2,2),∴B3C3==4≠2∴P3(2,-2)与图形Y(直线y=x)不具有关系φ(X,Y);故答案为P1(0,)(2)①是,如图2,在直线y=x上取点B,C,且BC=2,则满足△ABC是以BC为斜边的等腰直角三角形的点A,在到直线y=x距离为1的两条平行直线上.这两条平行直线与PQ分别交于A1,A2两点.故图形X与图形Y满足φ(X,Y).直线y=x与线段PQ交于点M(1,1),过点M作MH⊥y轴于H,与A1B交于点N,则MA1=1,,可得A1(,).同理可求得A2(,).如图3,在线段PQ上取点B,C,且BC=2,则满足△ABC是以BC为斜边的等腰直角三角形的点A在图中的两条线段上,这两条线段与直线y=x交于A3,A4两点.故图形X 与图形Y满足φ(Y,X).同上可求得A3(,),A4(,).②如图3,当△QB1C1为等腰直角三角形,且斜边B1C1=2时,连接QT1交B1C1于S,则QS=B1S=C1S=1,B1T1=,∴T1S=2,T1Q=2+1=3∴T1O==∴T1(-,0),同理可求得:T2(-1,0),T3(2-,0),T4(5,0),∴或.(1)逐个点进行验证判断是否符合新定义的要求,要紧扣“使得△ABC是以BC为斜边且BC=2的等腰直角三角形”;(2)①按照新定义和条件正确画出图形,结合图形进行求解;②分别找出t的最大值和最小值.本题是一道新定义的圆综合题,考查了等腰直角三角形的性质,圆的性质等,关键是要理解新定义,并能够运用新定义解决问题.。

2020年北京市海淀区部分学校中考数学二模试卷(有答案解析)

2020年北京市海淀区部分学校中考数学二模试卷(有答案解析)

2020年北京市海淀区部分学校中考数学二模试卷一、选择题(本大题共8小题,共16.0分)1.数轴上的点A表示的数是a,当点A在数轴上向右平移了6个单位长度后得到点B,若点A和点B表示的数恰好互为相反数,则数a是A. 6B.C. 3D.2.如图,在中,BC边上的高是A. AFB. BHC. CDD. EC3.如图是某个几何体的侧面展开图,则该几何体是A. 三棱锥B. 四棱锥C. 三棱柱D. 四棱柱4.任意掷一枚骰子,下列情况出现的可能性比较大的是A. 面朝上的点数是6B. 面朝上的点数是偶数C. 面朝上的点数大于2D. 面朝上的点数小于25.下列是一组l o go设计的图片不考虑颜色,其中不是中心对称图形的是A. B. C. D.6.一个正方形的面积是12,估计它的边长大小在A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间7.月份月123456789101112销售额万元8710则这组数据的众数和中位数分别是A. 10,8B. ,C. ,D. ,8.甲、乙两位同学进行长跑训练,甲和乙所跑的路程单位:米与所用时间单位:秒之间的函数图象分别为线段OA和折线则下列说法正确的是A. 两人从起跑线同时出发,同时到达终点B. 跑步过程中,两人相遇一次C. 起跑后160秒时,甲、乙两人相距最远D. 乙在跑前300米时,速度最慢二、填空题(本大题共8小题,共16.0分)9.分解因式:______.10.若分式的值为0,则______.11.已知,一次函数的图象经过点,且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:______.12.某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少30人,若设到植物园的人数为x人,依题意,可列方程为______.13.若,则代数式的值为______.14.如图,在平面直角坐标系xOy中,点A、B的坐标分别为、,在经过两次变化平移、轴对称、旋转得到对应点、的坐标分别为、,则由线段AB得到线段的过程是:______,由线段得到线段的过程是:______.15.如图,的半径为2,切线AB的长为,点P是上的动点,则AP的长的取值范围是______.16.在平面直角坐标系xOy中,点绕坐标原点O顺时针旋转后,恰好落在图中阴影区域包括边界内,则m的取值范围是______.三、计算题(本大题共1小题,共8.0分)17.解不等式,并把它的解集在数轴上表示出来.四、解答题(本大题共7小题,共60.0分)18.计算:.19.已知关于x的一元二次方程.当m为何非负整数时,方程有两个不相等的实数根;在的条件下,求方程的根.20.在平面直角坐标系xOy中,直线:与x轴,y轴分别交于点,B,与反比例函数图象的一个交点为.求反比例函数的表达式;设直线:与x轴,y轴分别交于点C,D,且,直接写出m的值______.21.如图,在中,,点D是AB边上一点,以BD为直径的与边AC相切于点E,与边BC交于点F,过点E作于点H,连接BE.求证:;若,,求AD的长.22.在平面直角坐标系xOy中,抛物线经过点和.求抛物线的表达式和顶点坐标;将抛物线在A、B之间的部分记为图象含A、B两点将图象M沿直线翻折,得到图象若过点的直线与图象M、图象N都相交,且只有两个交点,求b 的取值范围.23.在中,,,点M是线段BC的中点,点N在射线MB上,连接AN,平移,使点N移动到点M,得到点D与点A对应,点E与点B对应,DM交AC于点P.若点N是线段MB的中点,如图1.依题意补全图1;求DP的长;若点N在线段MB的延长线上,射线DM与射线AB交于点Q,若,求CE的长.24.对某一个函数给出如下定义:若存在实数k,对于函数图象上横坐标之差为1的任意两点,,都成立,则称这个函数是限减函数,在所有满足条件的k中,其最大值称为这个函数的限减系数.例如,函数,当x取值a和时,函数值分别为,,故,因此函数是限减函数,它的限减系数为.写出函数的限减系数;,已知是限减函数,且限减系数,求m的取值范围.已知函数的图象上一点P,过点P作直线l垂直于y轴,将函数的图象在点P右侧的部分关于直线l翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数,直接写出P点横坐标n的取值范围.-------- 答案与解析 --------1.答案:D解析:解:由题意可得:B点对应的数是:,点A和点B表示的数恰好互为相反数,,解得:.故选:D.根据题意表示出B点对应的数,再利用互为相反数的性质分析得出答案.此题主要考查了数轴以及相反数,正确表示出B点对应的数是解题关键.2.答案:A解析:解:根据高的定义,AF为中BC边上的高.故选:A.根据三角形的高线的定义解答.本题主要考查了三角形的高的定义,熟记概念是解题的关键.3.答案:B解析:解:观察图形可知,这个几何体是四棱锥.故选:B.侧面为4个三角形,底边为正方形,故原几何体为四棱锥.本题考查的是四棱锥的展开图,考法较新颖,需要对四棱锥有充分的理解.4.答案:C解析:解:抛掷一枚骰子共有1、2、3、4、5、6这6种等可能结果,面朝上的点数是6的概率为;B.面朝上的点数是偶数的概率为;C.面朝上的点数大于2的概率为;D.面朝上的点数小于2的概率为.故选C.根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率.5.答案:A解析:解:A、不是中心对称图形,故此选项正确;B、是中心对称图形,故此选项错误;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选:A.根据把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.6.答案:B解析:解:设正方形的边长等于a,正方形的面积是12,,,,即.故选:B.先设正方形的边长等于a,再根据其面积公式求出a的值,估算出a的取值范围即可.本题考查的是估算无理数的大小及算术平方根,估算无理数的大小时要用有理数逼近无理数,求无理数的近似值.7.答案:C解析:解:从小到大排列此数据为:、、7、、、、8、、、、、10,数据出现了4次最多为众数,处在第6、7位的是、8,中位数为.故选:C.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.答案:C解析:解:A、两人从起跑线同时出发,甲先到达终点,错误;B、跑步过程中,两人相遇两次,错误;C、起跑后160秒时,甲、乙两人相距最远,正确;D、乙在跑后200米时,速度最慢,错误;故选:C.根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.9.答案:解析:解:.故答案为:.首先提取公因式x,进而利用完全平方公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.10.答案:2解析:解:,,当时,,当时,.当时,分式的值是0.故答案为:2.分式的值是0的条件是,分子为0,分母不为0.分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.11.答案:答案不唯一如:解析:解:随x的增大而减小可选取,那么一次函数的解析式可表示为:把点代入得:要求的函数解析式为:.根据题意可知,这时可任设一个满足条件的k,则得到含x、y、b三求知数的函数式,将代入函数式,求得b,那么符合条件的函数式也就求出.本题需注意应先确定x的系数,然后把适合的点代入求得常数项.12.答案:解析:解:设到植物园的人数为x人,则到野生动物园的人数为人,根据题意得:.故答案为:.设到植物园的人数为x人,则到野生动物园的人数为人,根据到野生动物园和植物园开展社会实践活动的总人数为600人,即可得出关于x的一元一次方程.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.13.答案:13解析:解:,,把代入,故答案为:13由代数式,得出,整体代入代数式求得数值即可.此题考查代数式求值,注意整体代入,渗透整体思想.14.答案:向右平移4个单位长度绕原点顺时针旋转解析:解:如图所示,点A、B的坐标分别为、,点、的坐标分别为、,由线段AB得到线段的过程是向右平移4个单位长度;连接“,“,作这两条线段的垂直平分线,交于点O,“,则由线段得到线段的过程是:绕原点O顺时针旋转;故答案为:向右平移4个单位长度;绕原点顺时针旋转.依据对应点的坐标,即可得到平移的方向和距离;依据对应点的位置,即可得到旋转中心和旋转角度.本题主要考查了坐标与图形变换,在平移变换下,对应线段平行且相等.两对应点连线段与给定的有向线段平行共线且相等.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.15.答案:解析:解:连接OB,是的切线,,,当点P在线段AO上时,AP最小为2,当点P在线段AO的延长线上时,AP最大为6,的长的取值范围是,故答案为:.连接OB,根据切线的性质得到,根据勾股定理求出OA,根据题意计算即可.本题考查的是切线的性质、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.16.答案:解析:解:如图,将阴影区域绕着点O逆时针旋转,与直线交于C,D两点,则点在线段CD上,又点D的纵坐标为,点C的纵坐标为3,的取值范围是,故答案为:.将阴影区域绕着点O逆时针旋转,与直线交于C,D两点,则点A在线段CD上,据此可得m的取值范围.本题主要考查了旋转的性质,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.17.答案:解:去分母,得,去括号,得,移项,合并同类项:,系数化为1:,把解集表示在数轴上:解析:先去分母、去括号,再移项、合并同类项,最后系数化为1即可.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.答案:解:原式.解析:直接利用特殊角的三角函数值以及负指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.答案:解:方程有两个不相等的实数根,,解得又m为非负整数,;当时,方程变形为,解得,.解析:判别式的意义得到,再解不等式得到m的范围,然后在此范围内找出非负整数即可;利用中m的值得到,然后利用因式分解法解方程.本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的两个实数根;当时,方程有两个相等的两个实数根;当时,方程无实数根.20.答案:解:一次函数的图象过点,.解得,.一次函数的表达式为.一次函数的图象与反比例函数图象交于点,,解得,.由反比例函数图象过点,得,反比例函数的表达式为..解析:解答:见答案;由一次函数的表达式为,可得,即,直线:与直线:互相平行,∽,又,,即,又,,的值为.故答案为:.【分析】依据一次函数的图象过点,即可得到一次函数的表达式为再根据一次函数的图象与反比例函数图象交于点,即可得出a的值,由反比例函数图象过点,可得反比例函数的表达式为.由一次函数的表达式为,可得,依据直线:与直线:互相平行,即可得出∽,依据,即可得到,进而得出m的值为.本题主要考查一次函数与反比例函数的交点问题,解题的关键是利用待定系数法求函数解析式,利用相似三角形的性质建立方程.21.答案:证明:连接OE,与边AC相切,,,,,,,又,,;解:在中,,,,,,即,解得,,.解析:连接OE,根据切线的性质得到,根据平行线的性质、角平分线的性质证明结论;根据正弦的定义求出AB,根据相似三角形的性质求出OB,计算即可.本题考查的是切线的性质、解直角三角形、圆周角定理,掌握相关的判定定理和性质定理是解题的关键.22.答案:解:抛物线经过点和,可得:解得:抛物线的表达式为.,顶点坐标为;设点关于的对称点为,则点.若直线经过点和,可得.若直线经过点和,可得.直线平行x轴时,.综上,或.解析:把点A、B的坐标代入抛物线解析式,列出关于a、c的方程组,通过解该方程可以求得它们的值.由函数解析式求得顶点坐标;根据题意作出函数图象,由图象直接回答问题.本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式.解题时,注意数形结合,使抽象的问题变得具体化,降低了解题的难度.23.答案:解:如图1,补全图形连接AD,如图1.在中,,,,线段AN平移得到线段DM,,,,∽.连接NQ,由平移知:,且.,.,且.四边形ANQP是平行四边形...又,.,.又是BC的中点,且,.负数舍去..解析:利用平移的性质画出图形,再利用相似得出比例,即可求出线段DP的长.根据条件,利用平行四边形的性质和相似三角形的性质,求出BN的长即可解决.本题考察的是等腰三角形的性质与相似三角形的综合应用,利用相似比求线段长是重难点,按题意画出图形是解决本题的关键.24.答案:解:当x取值a和时,函数值分别为,,故,因此函数是限减函数,它的限减系数为2.若,则,和是函数图象上两点,,与函数的限减系数不符,.若,和是函数图象上横坐标之差为1的任意两点,则,,,且,,与函数的限减系数不符..若,和是函数图象上横坐标之差为1的任意两点,则,,,且,,当时,等号成立,故函数的限减系数.的取值范围是.设,则翻折后的抛物线的解析式为,对于抛物线,,是抛物线图象上两点,由题意:,解得,对于抛物线,,是抛物线图象上两点,由题意:解得,满足条件的P点横坐标n的取值范围:.解析:根据限减函数的定义即可判断;根据限减函数分,,,分别构建不等式即可解决问题;设,则翻折后的抛物线的解析式为,对于抛物线,,是抛物线图象上两点,由题意:,解得,对于抛物线,,是抛物线图象上两点,由题意:解得,由此即可解决问题;本题考查二次函数综合题、限减函数的定义、不等式等知识,解题的关键是理解题意,学会用转化的思想思考问题,学会利用参数解决问题,学会用分类讨论的思想解决问题,属于中考压轴题.。

大兴区2020年初三检测试题附参考答案及评分标准

大兴区2020年初三检测试题附参考答案及评分标准

北京市大兴区2020年初三检测试题数学参考答案及评分标准一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.x ≠2 10. ()()m m n m n +- 11.甲 12. 135 13. 4 14. 15π15. 如果AB ∥DC ,∠A =∠C .那么AD =BC ; 16. ①②③三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程.17.解: ()01141230()°cos π----++2124=-+⨯+………………………………… 4分3=+………………………………… 5分18. 解: 114436x x -+≤- ………………………………… 1分 721x -≤-………………………………… 3分3x ≥………………………………… 4分在数轴上表示其解集为:………………………………… 5分19.解:(1)∵2=[(3)]4(1)4m m m∆---⨯- =59m -+. ………………………………… 1分依题意,得0,590,m m ≠∆=-+⎧⎨⎩≥解得95m ≤且0m ≠. ………………………………… 3分(2)∵m 为正整数,∴1m =. ………………………………… 4分 ∴原方程为22014x x +=. 解得10x =,28x =-. ………………………………… 5分 20.解:(1)作CN ⊥AB 于点N .∵AB ∥DC ,DM ⊥AB ,CN ⊥AB ,∴ ∠DMN =∠CNM =∠MDC =90︒.∴ 四边形MNCD 是矩形. ……………… 1分∴ MN =CD ,DM=CN .∵AD BC =,∴ △ADM ≌△BCN . ……………… 2分 又∵10AB =,CD =4 ∴ AM =BN =()11(104)322AB MN -=⨯-=. ∴ MB =BN +MN =7.……………………………………………………………3分 (2)∵EF AB ⊥,∴ ∠F =90︒.∵∠DMN =90︒, ∴ ∠F =∠DMN .∴ DM ∥EF .∴ △BDM ∽△BEF . ∵DE BD =,∴12BM BD BF BE ==. ∴ BF =2BM =14. ……………………………………………………………4分 ∴AF =BF -AB =14-10=4. …………………………………………………5分21.(1) ①④………………………………………………4分(2)说明:通过结合本题的信息及当前防疫形势能提出积极看法. ……………5分22.解:设甲、乙两超市cc 饮料每瓶价格分别为x 元和y 元,根据题意,得⎩⎨⎧=-=+1881251610x y y x ……………………………………………………………2分 解,得⎩⎨⎧==5.33y x ……………………………………………………………4分∵3.5>3,∴到甲超市购买cc 饮料便宜. …………………………………………………6分23.(1)证明:连接OD . ……………………………………………………………1分∵OB OD =, ∴1B ∠=∠. 又∵B C ∠=∠, ∴1C ∠=∠. ∴OD ∥AC . ∵DE ⊥AC 于E , ∴∠DEC =90°=∠EDO . ∴DE ⊥OD . ∵点D 在⊙O 上, ∴DE 与⊙O 相切.……………………………………………………………2分(2)解:连接AD . ∵AB 为⊙O 的直径, ∴∠ADB =90°.∵AB =8,sin B =55,∴sin AD AB B =⋅.…………………………………………………………3分∵123290∠+∠=∠+∠=︒,∴13∠=∠. ∴ 3.B ∠=∠在△AED 中,∠AED =90°.∵sinB=sin 3AE AD ∠==,∴85AE AD ===. …………………………………………………………4分 又∵OD ∥AE ,∴△FAE ∽△FOD . ∴FA AEFO OD=. ∵8AB =, ∴4OD AO ==. ∴245FA FA =+.∴83FA =. ……………………………………………………………6分24.………………………………………………………4分(2)1.5 ………………………………………………………6分25.解:(1)由题意可得: A 的坐标是(5,3) ∵C (9,0) ,将A ,C 两点坐标代入y =kx +b 中,得53,90k b k b +=⎧⎨+=⎩解得 34,274k b ⎧=-⎪⎪⎨⎪=⎪⎩32744y x ∴=-+∴直线y =kx +b 的表达式是32744y x =-+……………………………………2分(2)①3……………………………………3分 ② n ≥3……………………………………5分26. 解:(1)由题意可得,43m -=- . ∴m =1……………………………………1分(2)∵m =1,∴抛物线为223y x x =--.令y =0,得2230x x --= 解得11x =-,23x =∵A 点在B 点左侧,∴点A 的坐标为(-1,0).……………………………………2分∵一次函数5y kx =+(0k ≠)的图象过点A ,∴5k =.……………………………………3分(3)当平移后的直线与图象G 有公共点时,直接写出n 的取值范围是25n ≤≤ ……………6分27.(1)1分(2)①证明:∴△ACE≌△AHE.∴CE=EH. ··········································································2分∵ EF垂直平分BC,∴CE=EB.∴EB=EH.∴△EHB是等腰三角形……………………………………………………3分②作EM⊥AB于点M由①可知△EHB是等腰三角形.28.(1)A ……………………………………………………………1分 (2)①…………………………………………………2分②解:过逆转点G ,F 的直线与x 轴的位置关系为 互相垂直 …………3分 证明:∵ 点F 是线段EO 关于点E 的逆转点,点G 是线段EP 关于点E 的逆转点, ∴ 90OEF PEG ∠=∠=︒,EG EP =,OE EF =. ∵ 190PEF ∠=︒-∠,290PEF ∠=︒-∠,∴ 12∠=∠. ∴ △GEF ≌△PEO . ∴ GFE POE ∠=∠. ∵ EO OP ⊥, ∴ 90POE ∠=︒. ∴ 90GFE ∠=︒ .∴ 90EFH ∠=︒. 在四边形OEFH 中∴ 90FHO ∠=︒.∴ 过逆转点G ,F 的直线与x 轴垂直……………………………………5分 ③y 与x 之间的函数关系式及自变量x 的取值范围是21522y x x =-(x >5) …………………………………………………6分或21522y x x =-+(0<x <5). ……………………………………………7分。

北京市大兴区2019-2020学年中考数学二模试卷含解析

北京市大兴区2019-2020学年中考数学二模试卷含解析

北京市大兴区2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正确的结论有( )A.2个B.3个C.4个D.5个2.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍D.骑车人数占20%3.当a>0 时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2D.(a2)3=a54.如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°5.半径为R的正六边形的边心距和面积分别是()A 3R2332R B.12R2332RC 3R23R D.12R23R6.如图,点P(x,y)(x>0)是反比例函数y=kx(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是()A.S的值增大B.S的值减小C.S的值先增大,后减小D.S的值不变7.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是()A.B.C.D.8.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A.(﹣4,﹣2﹣3)B.(﹣4,﹣2+3)C.(﹣2,﹣2+3)D.(﹣2,﹣2﹣3)9.下列运算正确的是()A.(a2)3 =a5B.23a a ag C.(3ab)2=6a2b2D.a6÷a3 =a210.下列美丽的图案中,不是轴对称图形的是()A.B.C.D.11.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )A.1 B.12C.14D.1512.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为()A.(2,1)B.(1,2)C.(1,3)D.(3,1)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_____ °.14.已知21xy=⎧⎨=⎩是方程组ax5{1bybx ay+=+=的解,则a﹣b的值是___________15.某风扇在网上累计销量约1570000台,请将1570000用科学记数法表示为_____.16.如图,⊙O在△ABC三边上截得的弦长相等,∠A=70°,则∠BOC=_____度.172633=________.18.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.20.(6分)已知:如图,在矩形纸片ABCD 中,AB 4=,BC 3=,翻折矩形纸片,使点A 落在对角线DB 上的点F 处,折痕为DE ,打开矩形纸片,并连接EF .()1BD 的长为多少;()2求AE 的长;()3在BE 上是否存在点P ,使得PF PC +的值最小?若存在,请你画出点P 的位置,并求出这个最小值;若不存在,请说明理由.21.(6分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A ,B ,C ,D 四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C 等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A 等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.22.(8分)如图,AD 是△ABC 的中线,CF ⊥AD 于点F ,BE ⊥AD ,交AD 的延长线于点E ,求证:AF+AE=2AD .23.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x/(元/千克) 50 60 70销售量y/千克100 80 60(1)求y与x之间的函数表达式;设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?24.(10分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.25.(10分)已知:a是﹣2的相反数,b是﹣2的倒数,则(1)a=_____,b=_____;(2)求代数式a2b+ab的值.26.(12分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯30 40乙种节能灯35 50()1求甲、乙两种节能灯各进多少只?()2全部售完100只节能灯后,该商场获利多少元?27.(12分)计算:﹣2212+|1﹣4sin60°|参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】①观察图象可知a <0,b >0,c >0,由此即可判定①;②当x=﹣1时,y=a ﹣b+c 由此可判定②;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c >0,由此可判定③;④当x=3时函数值小于0,即y=9a+3b+c<0,且x=﹣2b a =1,可得a=﹣2b ,代入y=9a+3b+c <0即可判定④;⑤当x=1时,y 的值最大.此时,y=a+b+c ,当x=n 时,y=an 2+bn+c ,由此即可判定⑤.【详解】①由图象可知:a <0,b >0,c >0,abc <0,故此选项错误;②当x=﹣1时,y=a ﹣b+c <0,即b >a+c ,故此选项错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c >0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c <0,且x=﹣2b a =1即a=﹣2b ,代入得9(﹣2b )+3b+c <0,得2c <3b ,故此选项正确;⑤当x=1时,y 的值最大.此时,y=a+b+c ,而当x=n 时,y=an 2+bn+c ,所以a+b+c >an 2+bn+c ,故a+b >an 2+bn ,即a+b >n (an+b ),故此选项正确.∴③④⑤正确.故选B .【点睛】本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键.2.B【解析】【分析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A 、总人数是:25÷50%=50(人),故A 正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.A【解析】【分析】直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.【详解】A选项:a0=1,正确;B选项:a﹣1= 1a,故此选项错误;C选项:(﹣a)2=a2,故此选项错误;D选项:(a2)3=a6,故此选项错误;故选A.【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算,正确掌握相关运算法则是解题关键.4.D【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选D.点睛:本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.5.A【解析】【分析】首先根据题意画出图形,易得△OBC是等边三角形,继而可得正六边形的边长为R,然后利用解直角三角形求得边心距,又由S正六边形=6V OBCS求得正六边形的面积.【详解】解:如图,O为正六边形外接圆的圆心,连接OB,OC,过点O作OH⊥BC于H,∵六边形ABCDEF 是正六边形,半径为R ,∴∠BOC=3600166⨯︒=︒, ∵OB=OC=R ,∴△OBC 是等边三角形,∴BC=OB=OC=R ,60OBC ∠=︒∵OH ⊥BC ,∴在Rt OBH V 中,sin sin 60∠=︒=OH OBH OB, 即32=OH R ∴32=OH R ,即边心距为32R ; ∵2113322=⋅==V OBC S BC OH R R , ∴S 正六边形=2233366==V OBC S R R , 故选:A .【点睛】本题考查了正多边形和圆的知识;求得正六边形的中心角为60°,得到等边三角形是正确解答本题的关键.6.D【解析】【分析】作PB ⊥OA 于B ,如图,根据垂径定理得到OB=AB ,则S △POB =S △PAB ,再根据反比例函数k 的几何意义得到S △POB =12|k|,所以S=2k ,为定值. 【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.7.B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B.点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.8.D【解析】解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=23,∴AD=AB AC BC ⋅=2324⨯=3,∴BD=2AB BC =2234()=1.∵点B 坐标为(1,0),∴A 点的坐标为(4,3).∵BD=1,∴BD 1=1,∴D 1坐标为(﹣2,0),∴A 1坐标为(﹣2,﹣3).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣3﹣2).故选D .点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.9.B【解析】分析:本题考察幂的乘方,同底数幂的乘法,积的乘方和同底数幂的除法.解析: ()326a a = ,故A 选项错误; a 3·a = a 4故B 选项正确;(3ab)2 = 9a 2b 2故C 选项错误; a 6÷a 3 = a 3故D 选项错误.故选B.10.A【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是轴对称图形,故本选项正确;B 、是轴对称图形,故本选项错误;C 、是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项错误.故选A .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 11.B【解析】【分析】直接利用概率的意义分析得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12,故选B.【点睛】此题主要考查了概率的意义,明确概率的意义是解答的关键.12.D【解析】【分析】过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.【详解】如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO =∠CAD.在△ABO和△CAD中,,∴△ABO≌△CAD,∴AD=OB=2,CD=OA=1,∴OD=OA+AD=1+2=3,∴C点坐标为(3,1).故选D.【点睛】本题主要考查一次函数的基本概念。

2020年北京市海淀区中考数学二模试卷(详解版)

2020年北京市海淀区中考数学二模试卷(详解版)


16.(2 分)如图,在平面直角坐标系 xOy 中,有五个点 A(2,0),B(0,﹣2),C(﹣2, 4),D(4,﹣2),E(7,0),将二次函数 y=a(x﹣2)2+m(m≠0)的图象记为 W.下
列的判断中:
①点 A 一定不在 W 上;
②点 B,C,D 可以同时在 W 上;
③点 C,E 不可能同时在 W 上.
A.y=﹣x+1
B.y=x2﹣2x
二、填空题(本题共 16 分,每小题 2 分)

2
C.y=﹣
x
D.y=x2+ 1 x
9.(2 分)单项式 3x2y 的系数为

10.(2 分)如图,点 A,B,C 在⊙O 上,点 D 在⊙O 内,则∠ACB
∠ADB.(填“>”,
“=”或“<”)
11.(2 分)如表记录了一名篮球运动员在罚球线上投篮的结果:
对称图形,则这个正方形应该添加在( )
A.区域①处
B.区域②处
C.区域③处
D.区域④处
5.(2 分)如图,在△ABC 中,EF∥BC,ED 平分∠BEF,且∠DEF=70°,则∠B 的度数
为( )
第 1页(共 30页)
A.ห้องสมุดไป่ตู้0°
B.60°
C.50°
D.40°
6.(2 分)如果 a2﹣a﹣2=0,那么代数式(a﹣1)2+(a+2)(a﹣2)的值为( )
①求点 N 的坐标;(用含 m 的代数式表示)
1
②若△OMN 的面积大于 ,结合图象直接写出 m 的取值范围.
2
25.(6 分)如图 1,在四边形 ABCD 中,对角线 AC 平分∠BAD,∠B=∠ACD=90°,AC ﹣AB=1.为了研究图中线段之间的数量关系,设 AB=x,AD=y.

2020年北京市海淀区中考数学二模试卷

2020年北京市海淀区中考数学二模试卷

2020年北京市海淀区中考数学二模试卷
一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.
1.(2分)下面的四个图形中,是圆柱的侧面展开图的是()
A.B.
C.D.
2.(2分)若代数式有意义,则实数x的取值范围是()
A.x=0B.x=2C.x≠0D.x≠2
3.(2分)如图,在△ABC中,AB=3cm,通过测量,并计算△ABC的面积,所得面积与下列数值最接近的是()
A.1.5cm2B.2cm2C.2.5cm2D.3cm2
4.(2分)图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在()
A.区域①处B.区域②处C.区域③处D.区域④处
5.(2分)如图,在△ABC中,EF∥BC,ED平分∠BEF,且∠DEF=70°,则∠B的度数为()
A.70°B.60°C.50°D.40°
6.(2分)如果a2﹣a﹣2=0,那么代数式(a﹣1)2+(a+2)(a﹣2)的值为()
A.1B.2C.3D.4。

北京市海淀区2020年中考数学二模试卷(含解析)

北京市海淀区2020年中考数学二模试卷(含解析)

2020年北京市海淀区中考数学二模试卷一.选择题(共8小题)1.下面的四个图形中,是圆柱的侧面展开图的是()A.B.C.D.2.若代数式有意义,则实数x的取值范围是()A.x=0B.x=2C.x≠0D.x≠23.如图,在△ABC中,AB=3cm,通过测量,并计算△ABC的面积,所得面积与下列数值最接近的是()A.1.5cm2B.2cm2C.2.5cm2D.3cm24.图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在()A.区域①处B.区域②处C.区域③处D.区域④处5.如图,在△ABC中,EF∥BC,ED平分∠BEF,且∠DEF=70°,则∠B的度数为()A.70°B.60°C.50°D.40°6.如果a2﹣a﹣2=0,那么代数式(a﹣1)2+(a+2)(a﹣2)的值为()A.1B.2C.3D.47.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于90°,那么圆心O到弦AB的距离为()A.B.2C.2D.38.在平面直角坐标系xOy中,对于点P(a,b),若ab>0,则称点P为“同号点”.下列函数的图象中不存在“同号点”的是()A.y=﹣x+1B.y=x2﹣2x C.y=﹣D.y=x2+二.填空题(共8小题)9.单项式3x2y的系数为.10.如图,点A,B,C在⊙O上,点D在⊙O内,则∠ACB∠ADB.(填“>”,“=”或“<”)11.如表记录了一名篮球运动员在罚球线上投篮的结果:投篮次数n4882124176230287328投中次数m335983118159195223投中频率0.690.720.670.670.690.680.68根据如表,这名篮球运动员投篮一次,投中的概率约为.(结果精确到0.01)12.函数y=kx+1(k≠0)的图象上有两点P1(﹣1,y1),P2(1,y2),若y1<y2,写出一个符合题意的k的值.13.如图,在△ABC中,AB=BC,∠ABC=120°,过点B作BD⊥BC,交AC于点D,若AD=1,则CD的长度为.14.如图,在平面直角坐标系xOy中,已知点C(3,2),将△ABC关于直线x=4对称,得到△A1B1C1,则点C的对应点C1的坐标为;再将△A1B1C1向上平移一个单位长度,得到△A2B2C2,则点C1的对应点C2的坐标为.15.小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行18km,小明每小时骑行12km,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为xkm,依题意,可列方程为.16.如图,在平面直角坐标系xOy中,有五个点A(2,0),B(0,﹣2),C(﹣2,4),D (4,﹣2),E(7,0),将二次函数y=a(x﹣2)2+m(m≠0)的图象记为W.下列的判断中:①点A一定不在W上;②点B,C,D可以同时在W上;③点C,E不可能同时在W上.所有正确结论的序号是.三.解答题(共12小题)17.计算:()﹣1+(2020﹣π)0+|﹣1|﹣2cos30°.18.解不等式2(x﹣1)<4﹣x,并在数轴上表示出它的解集.19.下面是小王同学“过直线外一点作该直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l外取一点A,作射线AP与直线l交于点B,②以A为圆心,AB为半径画弧与直线l交于点C,连接AC,③以A为圆心,AP为半径画弧与线段AC交于点Q,则直线PQ即为所求.根据小王设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:∵AB=AC,∴∠ABC=∠ACB,()(填推理的依据).∵AP=,∴∠APQ=∠AQP.∵∠ABC+∠ACB+∠A=180°,∠APQ+∠AQP+∠A=180°,∴∠APQ=∠ABC.∴PQ∥BC()(填推理的依据).即PQ∥l.20.已知关于x的一元二次方程x2﹣2x+n=0.(1)如果此方程有两个相等的实数根,求n的值;(2)如果此方程有一个实数根为0,求另外一个实数根.21.如图,在Rt△ABC中,∠ACB=90°,D为AB边的中点,连接CD,过点A作AG∥DC,过点C作CG∥DA,AG与CG相交于点G.(1)求证:四边形ADCG是菱形;(2)若AB=10,tan∠CAG=,求BC的长.22.坚持节约资源和保护环境是我国的基本国策,国家要求加强生活垃圾分类回收与再生资源回收有效衔接,提高全社会资源产出率,构建全社会的资源循环利用体系.图1反映了2014﹣2019年我国生活垃圾清运量的情况.图2反映了2019年我国G市生活垃圾分类的情况.根据以上材料回答下列问题:(1)图2中,n的值为;(2)2014﹣2019年,我国生活垃圾清运量的中位数是;(3)据统计,2019年G市清运的生活垃圾中可回收垃圾约为0.02亿吨,所创造的经济总价值约为40亿元.若2019年我国生活垃圾清运量中,可回收垃圾的占比与G市的占比相同,根据G市的数据估计2019年我国可回收垃圾所创造的经济总价值是多少.23.如图,AB为⊙O的直径,C为⊙O上一点,CE⊥AB于点E,⊙O的切线BD交OC的延长线于点D.(1)求证:∠DBC=∠OCA;(2)若∠BAC=30°,AC=2.求CD的长.24.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=kx(k≠0)交于点P(1,p).M是函数y=(x>0)图象上一点,过M作x轴的平行线交直线y=kx(k≠0)于点N.(1)求k和p的值;(2)设点M的横坐标为m.①求点N的坐标;(用含m的代数式表示)②若△OMN的面积大于,结合图象直接写出m的取值范围.25.如图1,在四边形ABCD中,对角线AC平分∠BAD,∠B=∠ACD=90°,AC﹣AB=1.为了研究图中线段之间的数量关系,设AB=x,AD=y.(1)由题意可得=,(在括号内填入图1中相应的线段)y关于x的函数表达式为y=;(2)如图2,在平面直角坐标系xOy中,根据(1)中y关于x的函数表达式描出了其图象上的一部分点,请依据描出的点画出该函数的图象;(3)结合函数图象,解决问题:①写出该函数的一条性质:;②估计AB+AD的最小值为.(结果精确到0.1)26.在平面直角坐标系xOy中,已知二次函数y=mx2+2mx+3的图象与x轴交于点A(﹣3,0),与y轴交于点B,将其图象在点A,B之间的部分(含A,B两点)记为F.(1)求点B的坐标及该函数的表达式;(2)若二次函数y=x2+2x+a的图象与F只有一个公共点,结合函数图象,求a的取值范围.27.如图1,等边三角形ABC中,D为BC边上一点,满足BD<CD,连接AD,以点A为中心,将射线AD顺时针旋转60°,与△ABC的外角平分线BM交于点E.(1)依题意补全图1;(2)求证:AD=AE;(3)若点B关于直线AD的对称点为F,连接CF.①求证:AE∥CF;②若BE+CF=AB成立,直接写出∠BAD的度数为°.28.在平面内,对于给定的△ABC,如果存在一个半圆或优弧与△ABC的两边相切,且该弧上的所有点都在△ABC的内部或边上,则称这样的弧为△ABC的内切弧.当内切弧的半径最大时,称该内切弧为△ABC的完美内切弧.(注:弧的半径指该弧所在圆的半径)在平面直角坐标系xOy中,A(8,0),B(0,6).(1)如图1,在弧G1,弧G2,弧G3中,是△OAB的内切弧的是;(2)如图2,若弧G为△OAB的内切弧,且弧G与边AB,OB相切,求弧G的半径的最大值;(3)如图3,动点M(m,3),连接OM,AM.①直接写出△OAM的完美内切弧的半径的最大值;②记①中得到的半径最大时的完美内切弧为弧T.点P为弧T上的一个动点,过点P作x轴的垂线,分别交x轴和直线AB于点D,E,点F为线段PE的中点,直接写出线段DF长度的取值范围.参考答案与试题解析一.选择题(共8小题)1.下面的四个图形中,是圆柱的侧面展开图的是()A.B.C.D.【分析】从圆柱的侧面沿它的一条母线剪开,可以圆柱的侧面展开图的是长方形.【解答】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是长方形.故选:A.2.若代数式有意义,则实数x的取值范围是()A.x=0B.x=2C.x≠0D.x≠2【分析】直接利用分式有意义则分母不为零进而得出答案.【解答】解:若代数式有意义,则x﹣2≠0,解得:x≠2.故选:D.3.如图,在△ABC中,AB=3cm,通过测量,并计算△ABC的面积,所得面积与下列数值最接近的是()A.1.5cm2B.2cm2C.2.5cm2D.3cm2【分析】过C作CD⊥AB于D,根据三角形的面积公式即可得到结论.【解答】解:过C作CD⊥AB于D,通过测量,CD=2cm,∴S△ABC=AB•CD==3(cm2),故选:D.4.图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在()A.区域①处B.区域②处C.区域③处D.区域④处【分析】根据中心对称图形的概念解答.【解答】解:在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,这个正方形应该添加区域②处,故选:B.5.如图,在△ABC中,EF∥BC,ED平分∠BEF,且∠DEF=70°,则∠B的度数为()A.70°B.60°C.50°D.40°【分析】由EF∥BC,∠DEF=70°,ED平分∠BEF,可推出∠EDB=∠DEF=70°,∠BED=∠DEF=70°,根据三角形内角和定理得出∠B的度数.【解答】解:∵EF∥BC,∠DEF=70°,ED平分∠BEF,∴∠EDB=∠DEF=70°,∠BED=∠DEF=70°,∴∠B=180°﹣∠EDB﹣∠BED=180°﹣70°﹣70°=40°.故选:D.6.如果a2﹣a﹣2=0,那么代数式(a﹣1)2+(a+2)(a﹣2)的值为()A.1B.2C.3D.4【分析】由已知条件求得a2﹣a的值,再化简原式,把代数式转化成a2﹣a的形式,后整体代入求值便可.【解答】解:原式=a2﹣2a+1+a2﹣4=2a2﹣2a﹣3=2(a2﹣a)﹣3,∵a2﹣a﹣2=0,∴a2﹣a=2,∴原式=2×2﹣3=1.故选:A.7.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于90°,那么圆心O到弦AB的距离为()A.B.2C.2D.3【分析】过O作OC⊥AB于C,根据等腰直角三角形的性质即可得到结论.【解答】解:过O作OC⊥AB于C,∵OA=OB=4,∠AOB=90°,∴AB=OA=4,∴OC=AB=2,故选:C.8.在平面直角坐标系xOy中,对于点P(a,b),若ab>0,则称点P为“同号点”.下列函数的图象中不存在“同号点”的是()A.y=﹣x+1B.y=x2﹣2x C.y=﹣D.y=x2+【分析】根据“同号点”的定义可知,“同号点”的横纵坐标乘积大于零即可,所以可以在每个函数两边同时乘以x,这样每个函数的左边就变成了xy,接着我们讨论函数等号右边的式子是否大于零就可以了.【解答】解:∵y=﹣x+1,∴xy=x(﹣x+1),显然x=时,xy=>0,∴A选项存在“同号点”,故A排除.∵y=x2﹣2x,∴xy=x(x2﹣2x),显然x=3时,xy=9>0,∴B选项也存在“同号点”,故B排除.∵y=﹣,∴xy=﹣2<0,∴C选项一定不会存在“同号点”,故答案C符合题意.∵y=x2+,∴xy=x3+1,显然x=1时,xy=2>0,∴D选项存在“同号点”,故D排除.故选:C.二.填空题(共8小题)9.单项式3x2y的系数为3.【分析】把原题单项式变为数字因式与字母因式的积,其中数字因式即为单项式的系数.【解答】解:3x2y=3•x2y,其中数字因式为3,则单项式的系数为3.故答案为:3.10.如图,点A,B,C在⊙O上,点D在⊙O内,则∠ACB<∠ADB.(填“>”,“=”或“<”)【分析】延长AD交⊙O于E,连接BE,如图,根据三角形外角性质得∠ADB>∠E,根据圆周角定理得∠ACB=∠E,于是∠ACB<∠ADB.【解答】解:∠ACB<∠ADB.理由如下:延长AD交⊙O于E,连接BE,如图,∵∠ADB>∠E,而∠ACB=∠E,∴∠ACB<∠ADB.故答案为<.11.如表记录了一名篮球运动员在罚球线上投篮的结果:投篮次数n4882124176230287328投中次数m335983118159195223投中频率0.690.720.670.670.690.680.68根据如表,这名篮球运动员投篮一次,投中的概率约为0.68.(结果精确到0.01)【分析】根据频率估计概率的方法结合表格数据可得答案.【解答】解:由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.68附近,∴这名篮球运动员投篮一次,投中的概率约为0.68,故答案为:0.68.12.函数y=kx+1(k≠0)的图象上有两点P1(﹣1,y1),P2(1,y2),若y1<y2,写出一个符合题意的k的值k=1(答案不唯一).【分析】由﹣1<1且y1<y2可得出y值随x值的增大而增大,利用一次函数的性质可得出k>0,任取一个大于0的值即可.【解答】解:∵﹣1<1,且y1<y2,∴y值随x值的增大而增大,∴k>0.故答案为:k=1(答案不唯一).13.如图,在△ABC中,AB=BC,∠ABC=120°,过点B作BD⊥BC,交AC于点D,若AD=1,则CD的长度为2.【分析】由BD⊥BC,推出∠CDB=90°,所以∠ABD=∠ABC﹣∠CDB=120°﹣90°=30°,由AB=BC,∠ABC=120°,推出∠A=∠C=30°,所以∠A=∠ABD,DB=AD=1,在Rt△CBD中,由30°角所对的直角边等于斜边的一半.CD=2AD=2.【解答】解:∵BD⊥BC,∴∠CDB=90°,∴∠ABD=∠ABC﹣∠CDB=120°﹣90°=30°,∵AB=BC,∠ABC=120°,∴∠A=∠C=30°,∴∠A=∠ABD,∴DB=AD=1,在Rt△CBD中,∵∠C=30°,∴CD=2AD=2.故答案为2.14.如图,在平面直角坐标系xOy中,已知点C(3,2),将△ABC关于直线x=4对称,得到△A1B1C1,则点C的对应点C1的坐标为(5,2);再将△A1B1C1向上平移一个单位长度,得到△A2B2C2,则点C1的对应点C2的坐标为(5,3).【分析】根据轴对称,平移的性质画出三角形即可.【解答】解:如图△A1B1C1,△A2B2C2,即为所求.C1(5,2),C2(5,3).故答案为(5,2),(5,3).15.小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行18km,小明每小时骑行12km,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为xkm,依题意,可列方程为.【分析】根据“完成全部行程所用的时间,小明比小华多半小时”列出方程即可.【解答】解:设他们这次骑行线路长为xkm,依题意,可列方程为,故答案为:.16.如图,在平面直角坐标系xOy中,有五个点A(2,0),B(0,﹣2),C(﹣2,4),D (4,﹣2),E(7,0),将二次函数y=a(x﹣2)2+m(m≠0)的图象记为W.下列的判断中:①点A一定不在W上;②点B,C,D可以同时在W上;③点C,E不可能同时在W上.所有正确结论的序号是①②.【分析】由二次函数y=a(x﹣2)2+m(m≠0)可知,对称轴为直线x=2,顶点为(2,m),然后根据二次函数图象上点的坐标特征进行分析判定即可.【解答】解:由二次函数y=a(x﹣2)2+m(m≠0)可知,对称轴为直线x=2,顶点为(2,m),①∵点A(2,0),∴点A在对称轴上,∵m≠0,∴点A一定不在W上;故①正确;②∵B(0,﹣2),C(﹣2,4),D(4,﹣2),∴三点不在一条直线上,且B、D关于直线x=2对称,∴点B,C,D可以同时在W上;故②正确;③∵E(7,0),∴E关于对称轴的对称点为(﹣3,0),∵C(﹣2,4),∴三点不在一条直线上,∴点C,E可能同时在W上,故③错误;故正确结论的序号是①②,故答案为①②.三.解答题(共12小题)17.计算:()﹣1+(2020﹣π)0+|﹣1|﹣2cos30°.【分析】先计算负整数指数幂、零指数幂、去绝对值符号、代入三角函数值,再计算乘法,最后计算加减可得.【解答】解:原式=2+1+﹣1﹣2×=2+1+﹣1﹣=2.18.解不等式2(x﹣1)<4﹣x,并在数轴上表示出它的解集.【分析】根据解一元一次不等式的步骤,可得答案.【解答】解:去括号,得2x﹣2<4﹣x,移项,得2x+x<4+2,合并同类项,得3x<6,系数化为1,得x<2.解集在数轴上表示如图:19.下面是小王同学“过直线外一点作该直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l外取一点A,作射线AP与直线l交于点B,②以A为圆心,AB为半径画弧与直线l交于点C,连接AC,③以A为圆心,AP为半径画弧与线段AC交于点Q,则直线PQ即为所求.根据小王设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:∵AB=AC,∴∠ABC=∠ACB,(等边对等角)(填推理的依据).∵AP=PQ,∴∠APQ=∠AQP.∵∠ABC+∠ACB+∠A=180°,∠APQ+∠AQP+∠A=180°,∴∠APQ=∠ABC.∴PQ∥BC(同位角相等,两直线平行)(填推理的依据).即PQ∥l.【分析】(1)根据角平分线的尺规作图即可得;(2)分别根据等腰三角形的性质和平行线的判定求解可得.【解答】解:(1)如图所示,直线PQ即为所求.(2)证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角),∵AP=AQ,∴∠APQ=∠AQP.∵∠ABC+∠ACB+∠A=180°,∠APQ+∠AQP+∠A=180°,∴∠APQ=∠ABC.∴PQ∥BC(同位角相等,两直线平行),即PQ∥l.故答案为:等边对等角;AQ;同位角相等,两直线平行.20.已知关于x的一元二次方程x2﹣2x+n=0.(1)如果此方程有两个相等的实数根,求n的值;(2)如果此方程有一个实数根为0,求另外一个实数根.【分析】(1)由于方程有两个相等的实数根,利用判别式可以列出关于n的方程即可求解;(2)把x=0代入方程得到x2﹣2x=0,解方程即可得到结论.【解答】解:(1)∵方程有两个相等的实数根,∴(﹣2)2﹣4n=0,解得:n=1;(2)当此方程有一个实数根为0时,代入方程得,n=0,∴原方程可化为x2﹣2x=0,解得:x1=0,x2=2,故另外一个实数根为2.21.如图,在Rt△ABC中,∠ACB=90°,D为AB边的中点,连接CD,过点A作AG∥DC,过点C作CG∥DA,AG与CG相交于点G.(1)求证:四边形ADCG是菱形;(2)若AB=10,tan∠CAG=,求BC的长.【分析】(1)根据直角三角形的性质和菱形的判定定理即可得到结论;(2)根据平行线的性质得到∠BAC=∠ACG,设BC=3x,AC=4x,根据勾股定理即可得到结论.【解答】(1)证明:∵AG∥DC,CG∥DA,∴四边形ADCG是平行四边形,∵在Rt△ABC中,∠ACB=90°,D为AB边的中点,∴AD=CD=AB,∴四边形ADCG是菱形;(2)解:∵CG∥DA,∴∠BAC=∠ACG,∴tan∠CAG=tan∠BAC==,∴设BC=3x,AC=4x,∴AB=5x=10,∴x=2,∴BC=3x=6.22.坚持节约资源和保护环境是我国的基本国策,国家要求加强生活垃圾分类回收与再生资源回收有效衔接,提高全社会资源产出率,构建全社会的资源循环利用体系.图1反映了2014﹣2019年我国生活垃圾清运量的情况.图2反映了2019年我国G市生活垃圾分类的情况.根据以上材料回答下列问题:(1)图2中,n的值为18;(2)2014﹣2019年,我国生活垃圾清运量的中位数是 2.1亿吨;(3)据统计,2019年G市清运的生活垃圾中可回收垃圾约为0.02亿吨,所创造的经济总价值约为40亿元.若2019年我国生活垃圾清运量中,可回收垃圾的占比与G市的占比相同,根据G市的数据估计2019年我国可回收垃圾所创造的经济总价值是多少.【分析】(1)根据题意列式计算即可;(2)根据中位数的定义即可得到结论;(3)根据样本估计总体列式计算即可.【解答】解:(1)n=100﹣20﹣55﹣7=18,故答案为:18;(2)∵在1.8,1.9,2.0,2.2,2.3,2.5中,2.2和2.2处在中间位置,∴2014﹣2019年,我国生活垃圾清运量的中位数是=2.1(亿吨)故答案为:2.1亿吨;(3)2.5×20%×(40÷0.02)=1000(亿元),答:估计2019年我国可回收垃圾所创造的经济总价值是1000亿元,23.如图,AB为⊙O的直径,C为⊙O上一点,CE⊥AB于点E,⊙O的切线BD交OC的延长线于点D.(1)求证:∠DBC=∠OCA;(2)若∠BAC=30°,AC=2.求CD的长.【分析】(1)根据圆周角定理得到∠ACB=90°,∠A+∠ABC=90°,根据切线的性质得到∠DBC+∠ABC=90°,得到∠A=∠DBC,根据等腰三角形的性质、等量代换证明结论;(2)根据正切的定义求出BC,证明CD=BC,得到答案.【解答】(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵BD为⊙O的切线,∴AB⊥BD,∴∠DBC+∠ABC=90°,∴∠A=∠DBC,∵OA=OC,∴∠A=∠OCA,∴∠OCA=∠DBC;(2)解:在Rt△ABC中,tan A=,∴BC=AC•tan A=,由(1)可知,∠DBC=∠BAC=30°,由圆周角定理得,∠BOC=2∠BAC=60°,∴∠D=30°,∴∠D=∠DBC,∴CD=BC=.24.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=kx(k≠0)交于点P(1,p).M是函数y=(x>0)图象上一点,过M作x轴的平行线交直线y=kx(k≠0)于点N.(1)求k和p的值;(2)设点M的横坐标为m.①求点N的坐标;(用含m的代数式表示)②若△OMN的面积大于,结合图象直接写出m的取值范围.【分析】解:(1)将点P的坐标分别代入两个函数表达式,即可求解;(2)①点M的横坐标为m,则点M(m,),MN∥x轴,故点N的纵坐标为,即可求解;②△OMN的面积=×MN×y M=×(﹣m)×>(m>0),即可求解.【解答】解:(1)将点P的坐标代入y=(x>0)得:2=1×p,解得:p=2,故点P(1,2);将点P的坐标代入y=kx得:2=k×1,解得:k=2;(2)①点M的横坐标为m,则点M(m,),∵MN∥x轴,故点N的纵坐标为,将点N的纵坐标代入直线y=2x得:=2x,解得:x=,故点N的坐标为(,);②△OMN的面积=×MN×y M=×(﹣m)×>(m>0),解得:m<,故0<m.25.如图1,在四边形ABCD中,对角线AC平分∠BAD,∠B=∠ACD=90°,AC﹣AB=1.为了研究图中线段之间的数量关系,设AB=x,AD=y.(1)由题意可得=,(在括号内填入图1中相应的线段)y关于x的函数表达式为y=y=x++2(x>0);(2)如图2,在平面直角坐标系xOy中,根据(1)中y关于x的函数表达式描出了其图象上的一部分点,请依据描出的点画出该函数的图象;(3)结合函数图象,解决问题:①写出该函数的一条性质:函数的最小值是4或当x>1时,y随x的增大而增大;②估计AB+AD的最小值为 4.8.(结果精确到0.1)【分析】(1)利用相似三角形的性质求解即可.(2)利用描点法画出函数图象即可.(3)①结合图象解决问题(答案不唯一).②由x+y=2x++2≥2+2可得结论.【解答】解:(1)∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠B=∠ACD=90°,∴△ABC∽△ACD,∴,∵AC﹣AB=1,∴AC=1+AB,∵AB=x,AD=y,∴,∴y=x++2(x>0);故答案为y=x++2(x>0).(2)函数图象如图所示:(3)①函数的最小值是4或当x>1时,y随x的增大而增大.故答案为函数的最小值是4或当x>1时,y随x的增大而增大.②∵x+y=2x++2≥2+2,∴x+y≥4.8,故答案为4.8.26.在平面直角坐标系xOy中,已知二次函数y=mx2+2mx+3的图象与x轴交于点A(﹣3,0),与y轴交于点B,将其图象在点A,B之间的部分(含A,B两点)记为F.(1)求点B的坐标及该函数的表达式;(2)若二次函数y=x2+2x+a的图象与F只有一个公共点,结合函数图象,求a的取值范围.【分析】(1)令x=0,解得y=3,即可求得B的坐标,然后根据待定系数法即可求得解析式;(2)画出函数y=﹣x2﹣2x+3的图象,根据图象即可求得.【解答】解:(1)∵二次函数y=mx2+2mx+3的图象与x轴交于点A(﹣3,0),与y轴交于点B,∴令x=0,则y=3,∴B(0,3),把A(﹣3,0)代入y=mx2+2mx+3,求得m=﹣1,∴函数的表达式为y=﹣x2﹣2x+3;(2)画出函数y=﹣x2﹣2x+3的图象如图所示:把A(﹣3,0)代入y=x2+2x+a得0=9﹣6+a,解得a=﹣3,由图象可知,二次函数y=x2+2x+a的图象与F只有一个公共点,a的取值范围为﹣3≤a <3.27.如图1,等边三角形ABC中,D为BC边上一点,满足BD<CD,连接AD,以点A为中心,将射线AD顺时针旋转60°,与△ABC的外角平分线BM交于点E.(1)依题意补全图1;(2)求证:AD=AE;(3)若点B关于直线AD的对称点为F,连接CF.①求证:AE∥CF;②若BE+CF=AB成立,直接写出∠BAD的度数为20°.【分析】(1)由旋转即可补全图形;(2)先判断出∠BAE=∠CAD,再判断出∠ABE=60°=∠C,进而判断出△ABE≌△ACD,即可得出结论;(3)①先判断出AFC=∠ACF,设∠BAD=α,进而表示出∠F AD=α,∠CAF=60°﹣2α,进而得出∠ACF=60°+α再判断出∠CAE=120°﹣α,即可得出结论;②先判断出∠CBG=30°﹣α,进而判断出∠CDF=60°﹣2α,再判断出DF=CF,进而得出∠DCF=∠CDF=60°﹣2α,再判断出∠DCF=α,即可得出结论.【解答】解:(1)补全图形如图1所示;(2)由旋转知,∠DAE=60°,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠C=∠BAC=60°,∴∠DAE=∠BAC,∴∠BAE=∠CAD,∵BE是△ABC的外角的平分线,∴∠ABM=(180°﹣60°)=60°=∠C,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE;(3)①如图2,连接AF,∵点F是点B关于AD的对称点,∴∠BAD=∠F AD,AF=AB,∴AF=AC,∴∠AFC=∠ACF,设∠BAD=α,则∠F AD=α,∴∠CAF=∠BAC﹣∠BAD﹣∠F AD=60°﹣2α,∴∠ACF=(180°﹣∠CAF)=60°+α,由(2)知,∠BAE=∠CAD=60°﹣α,∴∠CAE=∠BAE+∠BAC=60°﹣α+60°=120°﹣α,∴∠ACF+∠CAE=60°+α+120°﹣α=180°,∴AE∥CF;②如图2,连接BF,设∠BAD=α,∵点F是点B关于AD的对称点,∴AD⊥BF,垂足记作点G,则∠AGB=90°,∴∠ABG=90°﹣α,∵∠ABC=60°,∴∠CBG=30°﹣α,连接DF,则BD=DF,∴∠CDF=2∠CBG=60°﹣2α,由(2)知,△ABE≌△ACD,∴BE=CD,∵BE+CF=AB,∴CD+CF=BC=BD+CD,∴BD=CF,∴DF=CF,∴∠DCF=∠CDF=60°﹣2α,由①知,∠ACF=60°+α,∴∠DCF=∠ACF﹣∠ACB=α,∴60°﹣2α=α,∴α=20°,即∠BAD=20°,故答案为:20.28.在平面内,对于给定的△ABC,如果存在一个半圆或优弧与△ABC的两边相切,且该弧上的所有点都在△ABC的内部或边上,则称这样的弧为△ABC的内切弧.当内切弧的半径最大时,称该内切弧为△ABC的完美内切弧.(注:弧的半径指该弧所在圆的半径)在平面直角坐标系xOy中,A(8,0),B(0,6).(1)如图1,在弧G1,弧G2,弧G3中,是△OAB的内切弧的是G3,G2;(2)如图2,若弧G为△OAB的内切弧,且弧G与边AB,OB相切,求弧G的半径的最大值;(3)如图3,动点M(m,3),连接OM,AM.①直接写出△OAM的完美内切弧的半径的最大值;②记①中得到的半径最大时的完美内切弧为弧T.点P为弧T上的一个动点,过点P作x轴的垂线,分别交x轴和直线AB于点D,E,点F为线段PE的中点,直接写出线段DF长度的取值范围.【分析】(1)根据内切弧的定义解决问题即可.(2)当弧G与边AB,OB相切,且弧所在的圆的圆心在∠ABO的角平分线上,当点J 落在x轴上时,⊙J的半径最大.(3)①如图3﹣1中,当MO=MA时,△OAM的完美内切弧的半径最大,设圆心为H,T,G为切点,连接HT,HG,MH.解直角三角形求出HT即可.②如图3﹣2中,当直线DE经过切点T时,可证MF⊥DE,此时DF的值最大,此时DF=3.如图3﹣3中,当DE与半圆弧相切时,DF的值最小.当直线DE经过切点G时,线段DE不存在,此时DF===,由此即可解决问题.【解答】解:(1)如图1,在弧G1,弧G2,弧G3中,是△OAB的内切弧的是G3,G2.故答案为G3,G2.(2)如图,∵弧G与边AB,OB相切,∴弧所在的圆的圆心在∠ABO的角平分线上,当点J落在x轴上时,⊙J的半径最大,过点J作JM⊥AB于M.∵∠BOJ=∠BMJ=90°,BJ=BJ,∠JBO=∠JBM,∴△JBO≌△JBM(AAS),∴BM=BO=6,OJ=JM,在Rt△AOB中,AB===10,∴AM=10﹣6=4,设OJ=JM=x,则有(8﹣x)2=42+x2,∴x=3,∴JO=JM=3,∴弧G的半径的最大值为3.(3)①如图3﹣1中,当MO=MA时,△OAM的完美内切弧的半径最大,设圆心为H,T,G为切点,连接HT,HG,MH.∵HT=HG,HM=HM,∠HTM=∠HGM=90°,∴Rt△HMT≌Rt△HMG(HL),∴∠HMO=∠HMA,∴MH⊥OA,OH=HA=4,∵MH=3,∴OM===5,∵•OH•HM=•OM•HT,∴HT=,∴△OAM的完美内切弧的半径的最大值为.②如图3﹣2中,当直线DE经过切点T时,可证MF⊥DE,此时DF的值最大,此时DF=3,如图3﹣3中,当DE与半圆弧相切时,DF的值最小,∵AD=AH﹣DH=4﹣=,∴DF=AD•tan∠BAO=×=,∴DF=DE=,当直线DE经过切点G时,线段DE不存在,此时DF===,综上所述,满足条件的DF的值为:≤DF≤3且DF≠.。

2020届北京中考各区数学二模试卷及参考答案(海淀区)

2020届北京中考各区数学二模试卷及参考答案(海淀区)

2020届北京中考各区数学二模试卷(海淀区)一、单项选择题(本题共16分,每小题2分) 1.下面的四个图形中,是圆柱的侧面展开图的是2.若代数式12x -有意义,则实数x 的取值范围是 A. 0x =B. 2x =C. 0x ≠D. 2x ≠3.如图,在ABC V 中,3AB cm =,通过测量,并计算ABC V 的面积,所得面积与下列数值最接近的是A. 21.5cm B. 22cmC. 22.5cmD. 23cm4.图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在 A. 区域①处 B. 区域②处 C. 区域③处D. 区域④处5.如图,在ABC V 中, //,EF BC ED 平分BEF ∠,且70DEF ∠=︒,则B ∠的度数为A.70°B.60°C.50°D.40°6.如果220a a --=,那么代数式()()()2122a a a -++-的值为A.1B.2C.3D.47.如图,O e 的半径等于4,如果弦AB 所对的圆心角等于90︒,那么圆心O 到弦AB 的距离为A.2B.2C.22D.328.在平面直角坐标系xOy 中,对于点(),P a b ,若0ab >,则称点P 为“同号点”.下列函数的图象中不存在“同号点”的是 A.1y x =-+B.22y x x =-C.2y x=-D.21y x x=+二、填空题(本题共16分,每小题2分) 9.单项式23x y 的系数是.10.如图,点,,A B C 在O e 上,点D 在O e 内,则ACB ∠ADB ∠.(填>=<“”,“”或“”) 11.下表记录了一名篮球运动员在罚球线上投篮的结果: 投篮次数n 48 82 124 176 230 287 328 投中次数m 33 59 83 118 159 195 223 投中频率mn0.690.720.670.670.69 0.680.68根据上表,这名篮球运动员投篮一次,投中的概率约为.(12.函数)1(0y kx k =+≠的图象上有两点()()11221,1,P y P y -,,若12y y <,写出一个符合题意的k 的值:.13.如图,在ABC V 中,120AB BC ABC =∠=︒,,过点B 作BD BC ⊥,交AC 于点D ,若1AD =,则CD 的长度为.14.如图,在平面直角坐标系xOy 中,已知点()3,2C ,将ABC V 关于直线4x =对称,得到111A B C V ,则点C 的对应点1C 的坐标为;再将111A B C V 向上平移一个单位长度,得到222A B C V ,则点1C 的对应点2C 的坐标为.15.小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行18km ,小明每小时骑行12km ,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为xkm ,依题意,可列方程为.16.如图,在平面直角坐标系xOy 中,有五个点()()()()()2,0,0,2,2,4,4,2,7,0A B C D E ---,将二次函数()2)0(2y a x m m =-+≠的图象记为W .下列的判断中①点A 一定不在W 上; ②点,,B C D 可以同时在W 上; ③点C E ,不可能同时在W 上. 所有正确结论的序号是.三、解答题(本题共68分,第17~22题,每小题5分,第23~26题,每小题6分,第27~28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:101312cos302π-++--o ()(2020-)18.解不等式()214x x -<-,并在数轴上表示出它的解集.19.下面是小王同学“过直线外一点作该直线的平行线”的尺规作图过程.已知:直线l 及直线l 外一点P . 求作:直线PQ ,使得//PQ l .作法:如图,①在直线l 外取一点A ,作射线AP 与直线l 交于点B ,②以A 为圆心,AB 为半径画弧与直线l 交于点C ,连接AC ,③以A 为圆心,AP 为半径画弧与线段AC 交于点Q ,则直线PQ 即为所求.根据小王设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明. 证明:AB AC =Q ,ABC ACB ∴∠=∠,()(填推理的依据)AP =Q ,APQ AQP ∴∠=∠.180ABC ACB A ∠+∠+∠=︒Q , 180APQ AQP A ∠+∠+∠=︒,APQ ABC ∴∠=∠. //PQ BC ∴ ()(填推理的依据).即//PQ l .20.已知关于x 的一元二次方程220x x n -+=.(1)如果此方程有两个相等的实数根,求n 的值; (2)如果此方程有一个实数根为0,求另外一个实数根.21.如图,在Rt ABC V 中,90,ACB D ∠=︒为AB 边的中点,连接CD ,过点A 作//AG DC ,过点C 作//CG DA AG ,与CG 相交于点G(1)求证:四边形ADCG 是菱形; (2)若3104AB tan CAG =∠=,,求BC 的长.22.坚持节约资源和保护环境是我国的基本国策,国家要求加强生活垃圾分类回收与再生资源回收有效衔接,提高全社会资源产出率,构建全社会的资源循环利用体系.图1反映了2014-2019年我国生活垃圾清运量的情况.图2反映了2019年我国G 市生活垃圾分类的情况.根据以上材料回答下列问题: (1)图2中,n 的值为;(2)2014-2019年,我国生活垃圾清运量的中位数是;(3)据统计,2019年G 市清运的生活垃圾中可回收垃圾约为0.02亿吨,所创造的经济总价值约为40亿元.若2019年我国生活垃圾清运量中,可回收垃圾的占比与G 市的占比相同,根据G 市的数据估计2019年我国可回收垃圾所创造的经济总价值是多少.23.如图,AB 为O e 的直径,C 为O e 上一点,CE AB ⊥于点E ,O e 的切线BD 交OC 的延长线于点D .(1)求证:DBC OCA ∠=∠;(2)若302BAC AC ∠=︒=,.求CD 的长.24.如图,在平面直角坐标系xOy 中,函数2(0)y x x=>的图象与直线(0)y kx k =≠交于点(1,)P p .M 是函数2(0)y x x=>图象上一点,过M 作x 轴的平行线交直线(0)y kx k =≠于点N .(1)求k 和p 的值; (2)设点M 的横坐标为m .①求点N 的坐标;(用含m 的代数式表示) ②若OMN V 的面积大于12,结合图象直接写出m 的取值范围.25.如图1,在四边形ABCD中,对角线AC平分,901BAD B ACD AC AB∠∠=∠=︒-=,.为了研究图中线段之间的数量关系,设,AB x AD y==.(1)由题意可得(),ABAC AD=(在括号内填入图1中相应的线段)y关于x的函数表达式为y=;(2)如图2,在平面直角坐标系xOy中,根据(1)中y关于x的函数表达式描出了其图象上的一部分点,请依据描出的点画出该函数的图象;(3)结合函数图象,解决问题:①写出该函数的一条性质: ;②估计AB AD+的最小值为.(结果精确到0.1)26.在平面直角坐标系xOy 中,已知二次函数223y mx mx =++的图象与x 轴交于点()3,0A -,与y 轴交于点B ,将其图象在点,A B 之间的部分(含,A B 两点)记为F .(1)求点B 的坐标及该函数的表达式;(2)若二次函数22y x x a =++的图象与F 只有一个公共点,结合函数图象,求a 的取值范围.27.如图1,等边三角形ABC 中,D 为BC 边上一点,满足BD CD <,连接AD ,以点A 为中心将射线AD 顺时针旋转60︒,与ABC V 的外角平分线BM 交于点E . (1)依题意补全图1; (2)求证:AD AE =;(3)若点B 关于直线AD 的对称点为F ,连接CF . ①求证://AE CF ;②若BE CF AB +=成立,直接写出BAD ∠的度数为°28.在平面内,对于给定的ABC V ,如果存在一个半圆或优弧与ABC V 的两边相切,且该弧上的所有点都在ABC V 的内部或边上,则称这样的弧为ABC V 的内切弧.当内切弧的半径最大时,称该内切弧为ABC V 的完美内切弧.(注:弧的半径指该弧所在圆的半径)在平面直角坐标系xOy 中,()()8,0,0,6A B .(1)如图1,在弧1G ,弧2G ,弧3G 中,是OAB V 的内切弧的是;(2)如图2,若弧G 为OAB V 的内切弧,且弧G 与边,AB OB 相切,求弧G 的半径的最大值;(3)如图3,动点(),3M m ,连接,OM AM . ①直接写出OAM V 的完美内切弧的半径的最大值;②记①中得到的半径最大时的完美内切弧为弧T .点P 为弧T 上的一个动点,过点P 作x 轴的垂线,分别交x 轴和直线AB 于点,D E ,点F 为线段PE 的中点,直接写出线段DF 长度的取值范围.。

北京市大兴区2019-2020学年中考数学二模考试卷含解析

北京市大兴区2019-2020学年中考数学二模考试卷含解析

北京市大兴区2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-22.2 的相反数是( ) A .﹣2 B .2C .12D .23.若()292m m --=1,则符合条件的m 有( )A .1个B .2个C .3个D .4个4.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件才能按时交货,则x 应满足的方程为( )A .72072054848x -=+ B .72072054848x +=+ C .720720548x-= D .72072054848x-=+ 5.在同一坐标系中,反比例函数y =kx与二次函数y =kx 2+k(k≠0)的图象可能为( ) A . B .C .D .6.如图,在平面直角坐标系xOy 中,A (2,0),B (0,2),⊙C 的圆心为点C (﹣1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于E 点,则△ABE 面积的最小值是( )A .2B .C .D .7.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为( ) A .14.4×103B .144×102C .1.44×104D .1.44×10﹣48.下列图形中,既是中心对称图形又是轴对称图形的是 ( )A .B .C .D .9.如图,AB ∥CD ,E 为CD 上一点,射线EF 经过点A ,EC=EA .若∠CAE=30°,则∠BAF=( )A .30°B .40°C .50°D .60° 10.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-. 11.若一元二次方程x 2﹣2kx+k 2=0的一根为x =﹣1,则k 的值为( ) A .﹣1B .0C .1或﹣1D .2或012.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,OB 在x 轴上,∠ABO =90°,点A 的坐标为(2,4),将△AOB 绕点A 逆时针旋转90°,点O 的对应点C 恰好落在反比例函数y =kx的图象上,则k 的值为_____.14.如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.(1)线段BE与AF的位置关系是,AFBE=.(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣23,求旋转角a的度数.15.如图,在平面直角坐标系中,抛物线y=﹣x2+4x与x轴交于点A,点M是x轴上方抛物线上一点,过点M作MP⊥x轴于点P,以MP为对角线作矩形MNPQ,连结NQ,则对角线NQ的最大值为_________.16.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线11+22y x图象上的概率为__.17.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是14,则袋中小球的总个数是_____18.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(﹣1,0),(﹣4,0),将△ABC沿x轴向左平移,当点C落在直线y=﹣2x﹣6上时,则点C沿x轴向左平移了_____个单位长度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶.在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB 的距离(结果保留根号).20.(6分)如图,在△ABC中,∠ABC=90°,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE.(1)求证:四边形BCFE是平行四边形;(2)当∠ACB=60°时,求证:四边形BCFE是菱形.21.(6分)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD、CD.(1)求证:AD=CD;(2)若AB=10,OE=3,求tan∠DBC的值.22.(8分)我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确数字x 人数A 0≤x <8 10B 8≤x <16 15C 16≤x <24 25D 24≤x <32 m E32≤x <40n根据以上信息解决下列问题:(1)在统计表中,m= ,n= ,并补全条形统计图. (2)扇形统计图中“C 组”所对应的圆心角的度数是 .(3)有三位评委老师,每位老师在E 组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E 组学生王云参加鄂州市“汉字听写”比赛的概率.23.(8分)西安汇聚了很多人们耳熟能详的陕西美食.李华和王涛同时去选美食,李华准备在“肉夹馍(A )、羊肉泡馍(B )、麻酱凉皮(C )、(biang )面(D )”这四种美食中选择一种,王涛准备在“秘制凉皮(E )、肉丸胡辣汤(F )、葫芦鸡(G )、水晶凉皮(H )”这四种美食中选择一种. (1)求李华选择的美食是羊肉泡馍的概率;(2)请用画树状图或列表的方法,求李华和王涛选择的美食都是凉皮的概率. 24.(10分)如图,已知AB 是O 的直径,点C 、D 在O 上,60D ∠=且6AB =,过O 点作OE AC ⊥,垂足为E .()1求OE 的长; ()2若OE 的延长线交O 于点F ,求弦AF 、AC 和弧CF 围成的图形(阴影部分)的面积S .25.(10分)先化简,再求值:22144(1)1a aa a a-+-÷--,其中a是方程a(a+1)=0的解.26.(12分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=2,反比例函数y=kx的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=kx图象上时,求点D经过的路径长.27.(12分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x-b>0恰有两个负整数解,可得x 的负整数解为-1和-20x b -> x b ∴>综合上述可得32b -≤<- 故选A. 【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定. 2.A 【解析】 分析:根据相反数的定义结合实数的性质进行分析判断即可. 详解:的相反数是.故选A.点睛:熟记相反数的定义:“只有符号不同的两个数(实数)互为相反数”是正确解答这类题的关键. 3.C 【解析】 【分析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m 的等式,即可得出. 【详解】()292m m --=1∴m 2-9=0或m-2= ±1 即m= ±3或m=3,m=1 ∴m 有3个值 故答案选C. 【点睛】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法. 4.D 【解析】 【详解】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:72048x+,根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048x+,可以列出方程:7207205 4848x-=+.故选D.5.D【解析】【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=kx,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=kx,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.6.C【解析】当⊙C与AD相切时,△ABE面积最大,连接CD,则∠CDA=90°,∵A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1,∴CD=1,AC=2+1=3,∴AD==2,∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴即,∴OE=,∴BE=OB+OE=2+∴S△ABE=BE?OA=×(2+)×2=2+故答案为C.7.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】14400=1.44×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.C【解析】试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;B. 是轴对称图形,不是中心对称图形,故本选项错误;C. 既是中心对称图又是轴对称图形,故本选项正确;D. 是轴对称图形,不是中心对称图形,故本选项错误.故选C.9.D【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选D.点睛:本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.10.C【解析】【分析】直接利用反比例函数的性质分别分析得出答案.【详解】A、关于反比例函数y=-4x,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-4x,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-4x,当x>0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-4x,当x>1时,y>-4,故此选项错误;故选C.【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.11.A【解析】【分析】把x=﹣1代入方程计算即可求出k的值.【详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12.B【解析】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B.考点:规律型:图形变化类.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1 【解析】 【分析】根据题意和旋转的性质,可以得到点C 的坐标,把点C 坐标代入反比例函数y=kx中,即可求出k 的值.【详解】∵OB 在x 轴上,∠ABO=90°,点A 的坐标为(2,4),∴OB=2,AB=4 ∵将△AOB 绕点A 逆时针旋转90°,∴AD=4,CD=2,且AD//x 轴 ∴点C 的坐标为(6,2),∵点O 的对应点C 恰好落在反比例函数y=kx的图象上, ∴k=2612⨯=, 故答案为1. 【点睛】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答.14.(1;(2)结论仍然成立,证明见解析;(3)135°. 【解析】 【分析】(1)结合已知角度以及利用锐角三角函数关系求出AB 的长,进而得出答案; (2)利用已知得出△BEC ∽△AFC ,进而得出∠1=∠2,即可得出答案;(3)过点D 作DH ⊥BC 于H ,则DB=4-(,进而得出-1,,求出CH=BH ,得出∠DCA=45°,进而得出答案. 【详解】解:(1)如图1,线段BE 与AF 的位置关系是互相垂直; ∵∠ACB=90°,BC=2,∠A=30°,∴∵点E ,F 分别是线段BC ,AC 的中点,∴AEBE; (2))如图2,∵点E ,F 分别是线段BC ,AC 的中点,∴EC=12BC,FC=12AC,∴12 EC FCBC AC==,∵∠BCE=∠ACF=α,∴△BEC∽△AFC,∴1330AF ACBE BC tan===︒,∴∠1=∠2,延长BE交AC于点O,交AF于点M∵∠BOC=∠AOM,∠1=∠2∴∠BCO=∠AMO=90°∴BE⊥AF;(3)如图3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°过点D作DH⊥BC于H∴DB=4-(33-2,∴3,3,又∵CH=2-3-1)3,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.15.4【解析】∵四边形MNPQ是矩形,∴NQ=MP,∴当MP 最大时,NQ 就最大.∵点M 是抛物线24y x x =-+在x 轴上方部分图象上的一点,且MP ⊥x 轴于点P , ∴当点M 是抛物线的顶点时,MP 的值最大. ∵224(2)4y x x x =-+=--+,∴抛物线24y x x =-+的顶点坐标为(2,4), ∴当点M 的坐标为(2,4)时,MP 最大=4, ∴对角线NQ 的最大值为4. 16.16【解析】 【分析】根据题意列出图表,即可表示(a ,b )所有可能出现的结果,根据一次函数的性质求出在11+22y x =图象上的点,即可得出答案. 【详解】 画树状图得:∵共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线11+22y x = 图象上的只有(3,2), ∴点(a ,b )在11+22y x =图象上的概率为16. 【点睛】本题考查了用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验. 17.8个 【解析】 【分析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数. 【详解】袋中小球的总个数是:2÷14=8(个). 故答案为8个. 【点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.18.1【解析】【分析】先根据勾股定理求得AC的长,从而得到C点坐标,然后根据平移的性质,将C点纵轴代入直线解析式求解即可得到答案.【详解】解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,∴AC=22BC AB=1,∴点C的坐标为(﹣1,1).当y=﹣2x﹣6=1时,x=﹣5,∵﹣1﹣(﹣5)=1,∴点C沿x轴向左平移1个单位长度才能落在直线y=﹣2x﹣6上.故答案为1.【点睛】本题主要考查平移的性质,解此题的关键在于先利用勾股定理求得相关点的坐标,然后根据平移的性质将其纵坐标代入直线函数式求解即可.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1003米.【解析】【分析】如图,作PC⊥AB于C,构造出Rt△PAC与Rt△PBC,求出AB的长度,利用特殊角的三角函数值进行求解即可得.【详解】如图,过P点作PC⊥AB于C,由题意可知:∠PAC=60°,∠PBC=30°,在Rt△PAC中,tan∠PAC=PCAC,∴3,在Rt△PBC中,tan∠PBC=PCBC,∴3,∵3340=400,∴PC=1003,答:建筑物P到赛道AB的距离为1003米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形,利用特殊角的三角函数值进行解答是关键.20.(1)见解析;(2)见解析【解析】【分析】(1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行四边形.(2)根据菱形的判定证明即可.【详解】(1)证明::∵D.E为AB,AC中点∴DE为△ABC的中位线,DE=BC,∴DE∥BC,即EF∥BC,∵EF=BC,∴四边形BCEF为平行四边形.(2)∵四边形BCEF为平行四边形,∵∠ACB=60°,∴BC=CE=BE,∴四边形BCFE是菱形.【点睛】本题考查平行四边形的判定和性质、菱形的判定、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(1)见解析;(2)tan∠DBC=12.【解析】【分析】(1)先利用圆周角定理得到∠ACB=90°,再利用平行线的性质得∠AEO=90°,则根据垂径定理得到AD DC,从而有AD=CD;(2)先在Rt△OAE中利用勾股定理计算出AE,则根据正切的定义得到tan∠DAE的值,然后根据圆周角定理得到∠DAC=∠DBC,从而可确定tan∠DBC的值.【详解】(1)证明:∵AB为直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OE⊥AC,∴AD DC=,∴AD=CD;(2)解:∵AB=10,∴OA=OD=5,∴DE=OD﹣OE=5﹣3=2,在Rt△OAE中,AE4,∴tan∠DAE=2142 DEAE==,∵∠DAC=∠DBC,∴tan∠DBC=12.【点睛】垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周角定理是解题的关键.22.(1)m=30,n=20,图详见解析;(2)90°;(3)7 27.【解析】分析:(1)、根据B的人数和百分比得出总人数,从而根据总人数分别求出m和n的值;(2)、根据C的人数和总人数的比值得出扇形的圆心角度数;(3)、首先根据题意画出树状图,然后根据概率的计算法则得出答案.详解:(1)∵总人数为15÷15%=100(人),∴D组人数m=100×30%=30,E组人数n=100×20%=20,补全条形图如下:(2)扇形统计图中“C组”所对应的圆心角的度数是360°×=90°,(3)记通过为A、淘汰为B、待定为C,画树状图如下:由树状图可知,共有27种等可能结果,其中获得两位评委老师的“通过”有7种情况,∴E组学生王云参加鄂州市“汉字听写”比赛的概率为7 27.点睛:本题主要考查的就是扇形统计图、条形统计图以及概率的计算法则,属于基础题型.解决这个问题,我们一定要明白样本容量=频数÷频率,根据这个公式即可进行求解.23.(1)14;(2)见解析.【解析】【分析】(1)直接根据概率的意义求解即可;(2)列出表格,再找到李华和王涛同时选择的美食都是凉皮的情况数,利用概率公式即可求得答案.【详解】解:(1)李华选择的美食是羊肉泡馍的概率为;(2)列表得:E F G HA AE AF AG AHB BE BF BG BHC CE CF CG CHD DE DF DG DH由列表可知共有16种情况,其中李华和王涛选择的美食都是凉皮的结果数为2,所以李华和王涛选择的美食都是凉皮的概率为=.【点睛】本题涉及树状图或列表法的相关知识,难度中等,考查了学生的分析能力.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)OE=32;(2)阴影部分的面积为32【解析】【分析】(1)由题意不难证明OE为△ABC的中位线,要求OE的长度即要求BC的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE≌△AFE,进而将要求的阴影部分面积转化为扇形FOC的面积,利用扇形面积公式求解即可.【详解】解:(1) ∵AB是⊙O的直径,∴∠ACB=90°,∵OE⊥AC,∴OE // BC,又∵点O是AB中点,∴OE是△ABC的中位线,∵∠D=60°,∴∠B=60°,又∵AB=6,∴BC=AB·cos60°=3,∴OE=12BC=32;(2)连接OC,∵∠D=60°,∴∠AOC=120°,∵OF⊥AC,∴AE=CE,AF=CF,∴∠AOF=∠COF=60°,∴△AOF为等边三角形,∴AF=AO=CO,∵在Rt △COE 与Rt △AFE 中,AF COAE CE =⎧⎨=⎩, ∴△COE ≌△AFE ,∴阴影部分的面积=扇形FOC 的面积,∵S 扇形FOC =2603360π⨯=32π.∴阴影部分的面积为32π.【点睛】本题主要考查圆的性质、全等三角形的判定与性质、中位线的证明以及扇形面积的计算,较为综合. 25.13【解析】 【分析】根据分式运算性质,先化简,再求出方程的根a=0或-1,分式有意义分母不等于0,所以将a=-1代入即可求解. 【详解】解:原式=()()2a a 1a 11a 1a 2---⨯-- =a a 2- ∵a(a+1)=0,解得:a=0或-1, 由题可知分式有意义,分母不等于0, ∴a=-1, 将a=-1代入aa 2-得, 原式=13【点睛】本题考查了分式的化简求值,中等难度,根据分式有意义的条件代值计算是解题关键. 26.(1)k=2;(2)点D 6. 【解析】 【分析】(1)根据题意求得点B的坐标,再代入kyx=求得k值即可;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.【详解】(1)∵△AOB和△COD为全等三的等腰直角三角形,OC=2,∴AB=OA=OC=OD=2,∴点B坐标为(2,2),代入kyx=得k=2;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,∵2,∠AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函数图象上,∴t(t+2)=2,解得31或t=31(舍去),∴D′313+1),∴22(311)(311)6-+++-=,即点D经过的路径长为6.【点睛】本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.27.(1)1;(2)详见解析;(3)750;(4)15.【解析】【分析】(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;(3)计算足球的百分比,根据样本估计总体,即可解答;(4)利用概率公式计算即可.【详解】(1)30÷15%=1(人).答:共抽取1名学生进行问卷调查;故答案为1.(2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.如图所示:(3)3000×0.25=750(人).答:全校学生喜欢足球运动的人数为750人.(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)共有25种等可能的结果数,选同一项目的结果数为5,所以甲乙两人中有且选同一项目的概率P(A)=15.【点睛】本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.。

北京市大兴区2019-2020学年中考第二次质量检测数学试题含解析

北京市大兴区2019-2020学年中考第二次质量检测数学试题含解析

北京市大兴区2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.1806x+=1206x-B.1806x-=1206x+C.1806x+=120xD.180x=1206x-2.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是()A.B.C.D.3.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为()A.9.5×106B.9.5×107C.9.5×108D.9.5×1094.吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为()A.27.1×102B.2.71×103C.2.71×104D.0.271×1055.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A.甲B.乙C.丙D.丁6.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A .1个B .2个C .3个D .4个7.安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是( ) A .3804.2×103 B .380.42×104 C .3.8042×106 D .3.8042×1058.下列几何体中,其三视图都是全等图形的是( )A .圆柱B .圆锥C .三棱锥D .球9.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .56 10.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1,2C .1,1,3D .1,2,311.我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为( )米.A .42.3×104B .4.23×102C .4.23×105D .4.23×10612.若矩形的长和宽是方程x 2-7x+12=0的两根,则矩形的对角线长度为( )A .5B .7C .8D .10二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形ABCD 中,8AB =,4BC =,将矩形沿AC 折叠,点D 落在点'D 处.则重叠部分AFC ∆的面积为______.14.(2017四川省攀枝花市)若关于x 的分式方程7311mx x x +=--无解,则实数m=_______. 15.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为 .16.如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=______.17.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).18.点A(1,2),B(n,2)都在抛物线y=x2﹣4x+m上,则n=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:(1)该班学生选择观点的人数最多,共有人,在扇形统计图中,该观点所在扇形区域的圆心角是度.(2)利用样本估计该校初三学生选择“中技”观点的人数.(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).20.(6分)某车间的甲、乙两名工人分别同时生产500只同一型号的零件,他们生产的零件y(只)与生产时间x(分)的函数关系的图象如图所示.根据图象提供的信息解答下列问题:(1)甲每分钟生产零件_______只;乙在提高生产速度之前已生产了零件_______只;(2)若乙提高速度后,乙的生产速度是甲的2倍,请分别求出甲、乙两人生产全过程中,生产的零件y(只)与生产时间x(分)的函数关系式;(3)当两人生产零件的只数相等时,求生产的时间;并求出此时甲工人还有多少只零件没有生产.21.(6分)先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣1 222.(8分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?23.(8分)如图(1),P 为△ABC 所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P 叫做△ABC 的费马点.(1)如果点P 为锐角△ABC 的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB= .(2)已知锐角△ABC,分别以AB、AC 为边向外作正△ABE 和正△ACD,CE 和BD相交于P 点.如图(2)①求∠CPD 的度数;②求证:P 点为△ABC 的费马点.24.(102112(1)6tan303π-︒⎛⎫--+-⎪⎝⎭解方程:544101236x xx x-++=--25.(10分)如图,在△ABC中,∠C=90°.作∠BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面积.26.(12分)计算:2344 (1)11x xxx x++-+÷++.27.(12分)计算:﹣12+2132-⎛⎫+-⎪⎝⎭﹣(3.14﹣π)0﹣|1﹣3|.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:1806x+=1206x-.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.2.B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B.点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.3.B【解析】试题分析:15000000=1.5×2.故选B.考点:科学记数法—表示较大的数4.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将27100用科学记数法表示为:. 2.71×104.故选:C.【点睛】本题考查科学记数法—表示较大的数。

北京市大兴区2019-2020学年中考二诊数学试题含解析

北京市大兴区2019-2020学年中考二诊数学试题含解析

北京市大兴区2019-2020学年中考二诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果关于x的方程220x x c++=没有实数根,那么c在2、1、0、3-中取值是()A.2;B.1;C.0;D.3-.2.如图,一次函数y=x﹣1的图象与反比例函数2yx=的图象在第一象限相交于点A,与x 轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为()A.(0,1)B.(0,2)C.50,2⎛⎫⎪⎝⎭D.(0,3)3.下列各式中,不是多项式2x2﹣4x+2的因式的是()A.2 B.2(x﹣1)C.(x﹣1)2D.2(x﹣2)4.若关于x的不等式组255332xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a的取值范围( )A.1162a-<-„B.116a2-<<-C.1162a-<-„D.1162a--剟5.为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指()A.80 B.被抽取的80名初三学生C.被抽取的80名初三学生的体重D.该校初三学生的体重6.若关于x的分式方程2122x ax-=-的解为非负数,则a的取值范围是()A.a≥1B.a>1 C.a≥1且a≠4D.a>1且a≠47.下列四个图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C .8折D .9折9.如图,直线y=3x+6与x ,y 轴分别交于点A ,B ,以OB 为底边在y 轴右侧作等腰△OBC ,将点C 向左平移5个单位,使其对应点C′恰好落在直线AB 上,则点C 的坐标为( )A .(3,3)B .(4,3)C .(﹣1,3)D .(3,4)10.不等式23x +…的解集在数轴上表示正确的是( )A .B .C .D .11.将抛物线()2y x 13=-+向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A .()2y x 2=-B .()2y x 26=-+C .2y x 6=+D .2y x =12.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm 和3cm ,大圆的弦AB 与小圆相切,则劣弧AB 的长为( )A .2πcmB .4πcmC .6πcmD .8πcm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:________.14.正八边形的中心角为______度.15.化简:=_____.16.已知关于x 的一元二次方程kx 2+3x ﹣4k+6=0有两个相等的实数根,则该实数根是_____. 17.如图,Rt △ABC 中,∠ACB=90°,D 为AB 的中点,F 为CD 上一点,且CF=13CD ,过点B 作BE ∥DC 交AF 的延长线于点E ,BE=12,则AB 的长为_____.18.2017年7月27日上映的国产电影《战狼2》,风靡全国.剧中“犯我中华者,虽远必诛”鼓舞人心,彰显了祖国的强大实力与影响力,累计票房56.8亿元.将56.8亿元用科学记数法表示为_____元.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:2221()4244a a a a a a -÷--++,其中a 是方程a 2+a ﹣6=0的解. 20.(6分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:等级 非常了解 比较了解 只听说过 不了解频数 40120 36 4 频率 0.2 m 0.18 0.02(1)本次问卷调查取样的样本容量为 ,表中的m 值为 ;(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?21.(6分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.22.(8分)如图,点是线段的中点,,.求证:.23.(8分)已知x1﹣1x﹣1=1.求代数式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.24.(10分)先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.25.(10分)已知如图,直线y=﹣3x+43与x轴相交于点A,与直线y=33x相交于点P.(1)求点P的坐标;(2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.直接写出:S与a之间的函数关系式(3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1:3若存在直接写出Q点坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年北京市海淀区、大兴区中考数学二模试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下面的四个图形中,是圆柱的侧面展开图的是()A. B.C. D.2.若代数式1有意义,则实数x的取值范围是()x−2A.x=0B.x=2C.x≠0D.x≠23.如图,在△ABC中,AB=3cm,通过测量,并计算△ABC的面积,所得面积与下列数值最接近的是()A.1.5cm2B.2cm2C.2.5cm2D.3cm24.图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在()A.区域①处B.区域②处C.区域③处D.区域④处5.如图,在△ABC中,EF // BC,ED平分∠BEF,且∠DEF=70∘,则∠B的度数为()A.70∘B.60∘C.50∘D.40∘6.如果a2−a−2=0,那么代数式(a−1)2+(a+2)(a−2)的值为()A.1B.2C.3D.47.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于90∘,那么圆心O到弦AB的距离为()A.√2B.2C.2√2D.3√28.在平面直角坐标系xOy中,对于点P(a, b),若ab>0,则称点P为“同号点”.下列函数的图象中不存在“同号点”的是()A.y=−x+1B.y=x2−2xC.y=−2x D.y=x2+1x二、填空题(本题共16分,每小题2分)9.单项式3x2y的系数为________.10.如图,点A,B,C在⊙O上,点D在⊙O内,则∠ACB<∠ADB.(填“>”,“=”或“<”)11.如表记录了一名篮球运动员在罚球线上投篮的结果:根据如表,这名篮球运动员投篮一次,投中的概率约为________.(结果精确到0.01)12.函数y=kx+1(k≠0)的图象上有两点P1(−1, y1),P2(1, y2),若y1<y2,写出一个符合题意的k 的值________.13.如图,在△ABC中,AB=BC,∠ABC=120∘,过点B作BD⊥BC,交AC于点D,若AD=1,则CD 的长度为________.14.如图,在平面直角坐标系xOy中,已知点C(3, 2),将△ABC关于直线x=4对称,得到△A1B1C1,则点C的对应点C1的坐标为________;再将△A1B1C1向上平移一个单位长度,得到△A2B2C2,则点C1的对应点C2的坐标为________.15.小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行18km,小明每小时骑行12km,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为xkm,依题意,可列方程为________.16.如图,在平面直角坐标系xOy中,有五个点A(2, 0),B(0, −2),C(−2, 4),D(4, −2),E(7, 0),将二次函数y=a(x−2)2+m(m≠0)的图象记为W.下列的判断中:①点A一定不在W上;②点B,C,D可以同时在W上;③点C,E不可能同时在W上.所有正确结论的序号是________.三、解答题(本题共68分,第17~22题,每小题5分,第23-26题,每小题5分,第27~28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.计算:(1)−1+(2020−π)0+|√3−1|−2cos30∘.18.解不等式2(x−1)<4−x,并在数轴上表示出它的解集.19.下面是小王同学“过直线外一点作该直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ // l.作法:如图,①在直线l外取一点A,作射线AP与直线l交于点B,②以A为圆心,AB为半径画弧与直线l交于点C,连接AC,③以A为圆心,AP为半径画弧与线段AC交于点Q,则直线PQ即为所求.根据小王设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:∵AB=AC,∴∠ABC=∠ACB,(________)(填推理的依据).∵AP=________,∴∠APQ=∠AQP.∵∠ABC+∠ACB+∠A=180∘,∠APQ+∠AQP+∠A=180∘,∴∠APQ=∠ABC.∴PQ // BC(________)(填推理的依据).即PQ // l.20.已知关于x的一元二次方程x2−2x+n=0.(1)如果此方程有两个相等的实数根,求n的值;(2)如果此方程有一个实数根为0,求另外一个实数根.21.如图,在Rt△ABC中,∠ACB=90∘,D为AB边的中点,连接CD,过点A作AG // DC,过点C作CG // DA,AG与CG相交于点G.(1)求证:四边形ADCG是菱形;,求BC的长.(2)若AB=10,tan∠CAG=3422.坚持节约资源和保护环境是我国的基本国策,国家要求加强生活垃圾分类回收与再生资源回收有效衔接,提高全社会资源产出率,构建全社会的资源循环利用体系.图1反映了2014−2019年我国生活垃圾清运量的情况.图2反映了2019年我国G市生活垃圾分类的情况.根据以上材料回答下列问题:(1)图2中,n的值为________;(2)2014−2019年,我国生活垃圾清运量的中位数是________;(3)据统计,2019年G市清运的生活垃圾中可回收垃圾约为0.02亿吨,所创造的经济总价值约为40亿元.若2019年我国生活垃圾清运量中,可回收垃圾的占比与G市的占比相同,根据G市的数据估计2019年我国可回收垃圾所创造的经济总价值是多少.23.如图,AB为⊙O的直径,C为⊙O上一点,CE⊥AB于点E,⊙O的切线BD交OC的延长线于点D.(1)求证:∠DBC=∠OCA;(2)若∠BAC=30∘,AC=2.求CD的长.24.如图,在平面直角坐标系xOy中,函数y=2x(x>0)的图象与直线y=kx(k≠0)交于点P(1, p).M是函数y=2x(x>0)图象上一点,过M作x轴的平行线交直线y=kx(k≠0)于点N.(1)求k和p的值;(2)设点M的横坐标为m.①求点N的坐标;(用含m的代数式表示)②若△OMN的面积大于12,结合图象直接写出m的取值范围.25.如图1,在四边形ABCD中,对角线AC平分∠BAD,∠B=∠ACD=90∘,AC−AB=1.为了研究图中线段之间的数量关系,设AB=x,AD=y.(1)由题意可得ABAC =()AD,(在括号内填入图1中相应的线段)y关于x的函数表达式为y=________;(2)如图2,在平面直角坐标系xOy中,根据(1)中y关于x的函数表达式描出了其图象上的一部分点,请依据描出的点画出该函数的图象;(3)结合函数图象,解决问题:①写出该函数的一条性质:________;②估计AB+AD的最小值为________.(结果精确到0.1)26.在平面直角坐标系xOy中,已知二次函数y=mx2+2mx+3的图象与x轴交于点A(−3, 0),与y轴交于点B,将其图象在点A,B之间的部分(含A,B两点)记为F.(1)求点B的坐标及该函数的表达式;(2)若二次函数y=x2+2x+a的图象与F只有一个公共点,结合函数图象,求a的取值范围.27.如图1,等边三角形ABC中,D为BC边上一点,满足BD<CD,连接AD,以点A为中心,将射线AD顺时针旋转60∘,与△ABC的外角平分线BM交于点E.(1)依题意补全图1;(2)求证:AD=AE;(3)若点B关于直线AD的对称点为F,连接CF.①求证:AE // CF;②若BE+CF=AB成立,直接写出∠BAD的度数________∘.28.在平面内,对于给定的△ABC,如果存在一个半圆或优弧与△ABC的两边相切,且该弧上的所有点都在△ABC的内部或边上,则称这样的弧为△ABC的内切弧.当内切弧的半径最大时,称该内切弧为△ABC的完美内切弧.(注:弧的半径指该弧所在圆的半径)在平面直角坐标系xOy中,A(8, 0),B(0, 6).(1)如图1,在弧G1,弧G2,弧G3中,是△OAB的内切弧的是________;(2)如图2,若弧G为△OAB的内切弧,且弧G与边AB,OB相切,求弧G的半径的最大值;(3)如图3,动点M(m, 3),连接OM,AM.①直接写出△OAM的完美内切弧的半径的最大值;②记①中得到的半径最大时的完美内切弧为弧T.点P为弧T上的一个动点,过点P作x轴的垂线,分别交x轴和直线AB于点D,E,点F为线段PE的中点,直接写出线段DF长度的取值范围.2020年北京市海淀区、大兴区中考数学二模试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下面的四个图形中,是圆柱的侧面展开图的是()A. B.C. D.【解答】根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是长方形.2.若代数式1x−2有意义,则实数x的取值范围是()A.x=0B.x=2C.x≠0D.x≠2【解答】若代数式1x−2有意义,则x−2≠0,解得:x≠2.3.如图,在△ABC中,AB=3cm,通过测量,并计算△ABC的面积,所得面积与下列数值最接近的是()A.1.5cm2B.2cm2C.2.5cm2D.3cm2【解答】过C作CD⊥AB于D,通过测量,CD=1.7cm,∴S△ABC=12AB⋅CD=12×1.7×3=2.55(cm2),4.图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在()A.区域①处B.区域②处C.区域③处D.区域④处【解答】在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,这个正方形应该添加区域②处,5.如图,在△ABC中,EF // BC,ED平分∠BEF,且∠DEF=70∘,则∠B的度数为()A.70∘B.60∘C.50∘D.40∘【解答】∵EF // BC,∠DEF=70∘,ED平分∠BEF,∴∠EDB=∠DEF=70∘,∠BED=∠DEF=70∘,∴∠B=180∘−∠EDB−∠BED=180∘−70∘−70∘=40∘.6.如果a2−a−2=0,那么代数式(a−1)2+(a+2)(a−2)的值为()A.1B.2C.3D.4【解答】原式=a2−2a+1+a2−4=2a2−2a−3=2(a2−a)−3,∵a2−a−2=0,∴a2−a=2,∴原式=2×2−3=1.7.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于90∘,那么圆心O到弦AB的距离为()A.√2B.2C.2√2D.3√2【解答】过O作OC⊥AB于C,∵OA=OB=4,∠AOB=90∘,∴AB=√2OA=4√2,∴OC=12AB=2√2,8.在平面直角坐标系xOy中,对于点P(a, b),若ab>0,则称点P为“同号点”.下列函数的图象中不存在“同号点”的是()A.y=−x+1B.y=x2−2xC.y=−2x D.y=x2+1x【解答】由题意,图象经过第一和第三象限的函数都是满足条件的,函数y=−2x的图象在二四象限,不满足条件,二、填空题(本题共16分,每小题2分)9.单项式3x2y的系数为________.【解答】3x2y=3⋅x2y,其中数字因式为3,则单项式的系数为3.10.如图,点A,B,C在⊙O上,点D在⊙O内,则∠ACB<∠ADB.(填“>”,“=”或“<”)【解答】∠ACB<∠ADB.理由如下:延长AD交⊙O于E,连接BE,如图,∵∠ADB>∠E,而∠ACB=∠E,∴∠ACB<∠ADB.11.如表记录了一名篮球运动员在罚球线上投篮的结果:根据如表,这名篮球运动员投篮一次,投中的概率约为________.(结果精确到0.01)【解答】由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.68附近,∴这名篮球运动员投篮一次,投中的概率约为0.68,12.函数y=kx+1(k≠0)的图象上有两点P1(−1, y1),P2(1, y2),若y1<y2,写出一个符合题意的k 的值________.【解答】∵−1<1,且y1<y2,∴y值随x值的增大而增大,∴k>0.13.如图,在△ABC中,AB=BC,∠ABC=120∘,过点B作BD⊥BC,交AC于点D,若AD=1,则CD 的长度为________.【解答】∵BD⊥BC,∴∠CBD=90∘,∴∠ABD=∠ABC−∠CBD=120∘−90∘=30∘,∵AB=BC,∠ABC=120∘,∴∠A=∠C=30∘,∴∠A=∠ABD,∴DB=AD=1,在Rt△CBD中,∵∠C=30∘,∴CD=2BD=2.14.如图,在平面直角坐标系xOy中,已知点C(3, 2),将△ABC关于直线x=4对称,得到△A1B1C1,则点C的对应点C1的坐标为________;再将△A1B1C1向上平移一个单位长度,得到△A2B2C2,则点C1的对应点C2的坐标为________.【解答】如图△A1B1C1,△A2B2C2,即为所求.C1(5, 2),C2(5, 3).15.小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行18km,小明每小时骑行12km,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为xkm,依题意,可列方程为________.【解答】设他们这次骑行线路长为xkm,依题意,可列方程为x18+12=x12,16.如图,在平面直角坐标系xOy中,有五个点A(2, 0),B(0, −2),C(−2, 4),D(4, −2),E(7, 0),将二次函数y=a(x−2)2+m(m≠0)的图象记为W.下列的判断中:①点A一定不在W上;②点B,C,D可以同时在W上;③点C,E不可能同时在W上.所有正确结论的序号是________.【解答】由二次函数y=a(x−2)2+m(m≠0)可知,对称轴为直线x=2,顶点为(2, m),①∵点A(2, 0),∴点A在对称轴上,∵m≠0,∴点A一定不在W上;故①正确;②∵B(0, −2),C(−2, 4),D(4, −2),∴三点不在一条直线上,且B、D关于直线x=2对称,∴点B,C,D可以同时在W上;故②正确;③∵E(7, 0),∴E关于对称轴的对称点为(−3, 0),∵C(−2, 4),∴三点不在一条直线上,∴点C,E可能同时在W上,故③错误;故正确结论的序号是①②,三、解答题(本题共68分,第17~22题,每小题5分,第23-26题,每小题5分,第27~28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.)−1+(2020−π)0+|√3−1|−2cos30∘.17.计算:(12【解答】原式=2+1+√3−1−2×√32=2+1+√3−1−√3=2.18.解不等式2(x−1)<4−x,并在数轴上表示出它的解集.【解答】去括号,得2x−2<4−x,移项,得2x+x<4+2,合并同类项,得3x<6,系数化为1,得x<2.解集在数轴上表示如图:19.下面是小王同学“过直线外一点作该直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ // l.作法:如图,①在直线l外取一点A,作射线AP与直线l交于点B,②以A为圆心,AB为半径画弧与直线l交于点C,连接AC,③以A为圆心,AP为半径画弧与线段AC交于点Q,则直线PQ即为所求.根据小王设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:∵AB=AC,∴∠ABC=∠ACB,(________)(填推理的依据).∵AP=________,∴∠APQ=∠AQP.∵∠ABC+∠ACB+∠A=180∘,∠APQ+∠AQP+∠A=180∘,∴∠APQ=∠ABC.∴PQ // BC(________)(填推理的依据).即PQ // l.【解答】如图所示,直线PQ即为所求.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角),∵AP=AQ,∴∠APQ=∠AQP.∵∠ABC+∠ACB+∠A=180∘,∠APQ+∠AQP+∠A=180∘,∴∠APQ=∠ABC.∴PQ // BC(同位角相等,两直线平行),即PQ // l.故答案为:等边对等角;AQ;同位角相等,两直线平行.20.已知关于x的一元二次方程x2−2x+n=0.(1)如果此方程有两个相等的实数根,求n的值;(2)如果此方程有一个实数根为0,求另外一个实数根.【解答】∵方程有两个相等的实数根,∴(−2)2−4n=0,解得:n=1;当此方程有一个实数根为0时,代入方程得,n=0,∴原方程可化为x2−2x=0,解得:x1=0,x2=2,故另外一个实数根为2.21.如图,在Rt△ABC中,∠ACB=90∘,D为AB边的中点,连接CD,过点A作AG // DC,过点C作CG // DA,AG与CG相交于点G.(1)求证:四边形ADCG是菱形;(2)若AB=10,tan∠CAG=34,求BC的长.【解答】证明:∵AG // DC,CG // DA,∴四边形ADCG是平行四边形,∵在Rt△ABC中,∠ACB=90∘,D为AB边的中点,∴AD=CD=12AB,∴四边形ADCG是菱形;∵CG // DA,∴∠BAC=∠ACG,∴tan∠CAG=tan∠BAC=BCAC =34,∴设BC=3x,AC=4x,∴AB=5x=10,∴x=2,∴BC=3x=6.22.坚持节约资源和保护环境是我国的基本国策,国家要求加强生活垃圾分类回收与再生资源回收有效衔接,提高全社会资源产出率,构建全社会的资源循环利用体系.图1反映了2014−2019年我国生活垃圾清运量的情况.图2反映了2019年我国G市生活垃圾分类的情况.根据以上材料回答下列问题:(1)图2中,n的值为________;(2)2014−2019年,我国生活垃圾清运量的中位数是________;(3)据统计,2019年G市清运的生活垃圾中可回收垃圾约为0.02亿吨,所创造的经济总价值约为40亿元.若2019年我国生活垃圾清运量中,可回收垃圾的占比与G市的占比相同,根据G市的数据估计2019年我国可回收垃圾所创造的经济总价值是多少.【解答】n=100−20−55−7=18,故答案为:18;∵在1.8,1.9,2.0,2.2,2.3,2.5中,2.2和2.2处在中间位置,=2.1(亿吨)∴2014−2019年,我国生活垃圾清运量的中位数是2.0+2.22故答案为:2.1亿吨;2.5×20%×(40÷0.02)=1000(亿元),答:估计2019年我国可回收垃圾所创造的经济总价值是1000亿元,23.如图,AB为⊙O的直径,C为⊙O上一点,CE⊥AB于点E,⊙O的切线BD交OC的延长线于点D.(1)求证:∠DBC=∠OCA;(2)若∠BAC=30∘,AC=2.求CD的长.证明:∵AB为⊙O的直径,∴∠ACB=90∘,∴∠A+∠ABC=90∘,∵BD为⊙O的切线,∴AB⊥BD,∴∠DBC+∠ABC=90∘,∴∠A=∠DBC,∵OA=OC,∴∠A=∠OCA,∴∠OCA=∠DBC;,在Rt△ABC中,tanA=BCAC,∴BC=AC⋅tanA=2√33由(1)可知,∠DBC=∠BAC=30∘,由圆周角定理得,∠BOC=2∠BAC=60∘,∴∠D=30∘,∴∠D=∠DBC,.∴CD=BC=2√33(x>0)的图象与直线y=kx(k≠0)交于点24.如图,在平面直角坐标系xOy中,函数y=2x(x>0)图象上一点,过M作x轴的平行线交直线y=kx(k≠0)于点N.P(1, p).M是函数y=2x(1)求k和p的值;(2)设点M的横坐标为m.①求点N的坐标;(用含m的代数式表示),结合图象直接写出m的取值范围.②若△OMN的面积大于12将点P的坐标代入y=2x(x>0)得:2=1×p,解得:p=2,故点P(1, 2);将点P的坐标代入y=kx得:2=k×1,解得:k=2;①点M的横坐标为m,则点M(m, 2m),∵MN // x轴,故点N的纵坐标为2m,将点N的纵坐标代入直线y=2x得:2m =2x,解得:x=1m,故点N的坐标为(1m , 2m);②△OMN的面积=12×MN×y M=12×|(1m−m)|×2m>12(m>0),解得:m<√63或m>√2,故0<m<√63或m>√2.25.如图1,在四边形ABCD中,对角线AC平分∠BAD,∠B=∠ACD=90∘,AC−AB=1.为了研究图中线段之间的数量关系,设AB=x,AD=y.(1)由题意可得ABAC =()AD,(在括号内填入图1中相应的线段)y关于x的函数表达式为y=________;(2)如图2,在平面直角坐标系xOy中,根据(1)中y关于x的函数表达式描出了其图象上的一部分点,请依据描出的点画出该函数的图象;(3)结合函数图象,解决问题:①写出该函数的一条性质:________;②估计AB+AD的最小值为________.(结果精确到0.1)【解答】∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠B=∠ACD=90∘,∴△ABC∽△ACD,∴ABAC =ACAD,∵AC−AB=1,∴AC=1+AB,∵AB=x,AD=y,∴x1+x =1+xy,∴y=x+1x+2(x>0);故答案为y=x+1x+2(x>0).函数图象如图所示:①函数的最小值是4或当x>1时,y随x的增大而增大.故答案为函数的最小值是4或当x>1时,y随x的增大而增大.②∵x+y=2x+1x+2≥2√2+2,∴x+y≥4.8,故答案为4.8.26.在平面直角坐标系xOy中,已知二次函数y=mx2+2mx+3的图象与x轴交于点A(−3, 0),与y轴交于点B,将其图象在点A,B之间的部分(含A,B两点)记为F.(1)求点B的坐标及该函数的表达式;(2)若二次函数y=x2+2x+a的图象与F只有一个公共点,结合函数图象,求a的取值范围.【解答】∵二次函数y=mx2+2mx+3的图象与x轴交于点A(−3, 0),与y轴交于点B,∴令x=0,则y=3,∴B(0, 3),把A(−3, 0)代入y=mx2+2mx+3,求得m=−1,∴函数的表达式为y=−x2−2x+3;画出函数y=−x2−2x+3的图象27.如图1,等边三角形ABC中,D为BC边上一点,满足BD<CD,连接AD,以点A为中心,将射线AD顺时针旋转60∘,与△ABC的外角平分线BM交于点E.(1)依题意补全图1;(2)求证:AD=AE;(3)若点B关于直线AD的对称点为F,连接CF.①求证:AE // CF;②若BE+CF=AB成立,直接写出∠BAD的度数为________∘.【解答】补全图形如图1所示;由旋转知,∠DAE=60∘,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠C=∠BAC=60∘,∴∠DAE=∠BAC,∴∠BAE=∠CAD,∵BE是△ABC的外角的平分线,∴∠ABM=12(180∘−60∘)=60∘=∠C,在△ABE和△ACD中,{∠BAE=∠CAD AB=AC∠ABE=∠ACD=60,∴△ABE≅△ACD(SAS),∴AD=AE;①如图2,连接AF,∵点F是点B关于AD的对称点,∴∠BAD=∠FAD,AF=AB,∴AF=AC,∴∠AFC=∠ACF,设∠BAD=α,则∠FAD=α,∴∠CAF=∠BAC−∠BAD−∠FAD=60∘−2α,∴∠ACF=12(180∘−∠CAF)=60∘+α,由(2)知,∠BAE=∠CAD=60∘−α,∴∠CAE=∠BAE+∠BAC=60∘−α+60∘=120∘−α,∴∠ACF+∠CAE=60∘+α+120∘−α=180∘,∴AE // CF;②如图2,连接BF,设∠BAD=α,∵点F是点B关于AD的对称点,∴AD⊥BF,垂足记作点G,则∠AGB=90∘,∴∠ABG=90∘−α,∵∠ABC=60∘,∴∠CBG=30∘−α,连接DF,则BD=DF,∴∠CDF=2∠CBG=60∘−2α,由(2)知,△ABE≅△ACD,∴BE=CD,∵BE+CF=AB,∴CD+CF=BC=BD+CD,∴BD=CF,∴DF=CF,∴∠DCF=∠CDF=60∘−2α,由①知,∠ACF=60∘+α,∴∠DCF=∠ACF−∠ACB=α,∴60∘−2α=α,∴α=20∘,即∠BAD=20∘,故答案为:20.28.在平面内,对于给定的△ABC,如果存在一个半圆或优弧与△ABC的两边相切,且该弧上的所有点都在△ABC的内部或边上,则称这样的弧为△ABC的内切弧.当内切弧的半径最大时,称该内切弧为△ABC的完美内切弧.(注:弧的半径指该弧所在圆的半径)在平面直角坐标系xOy中,A(8, 0),B(0, 6).(1)如图1,在弧G1,弧G2,弧G3中,是△OAB的内切弧的是________;(2)如图2,若弧G为△OAB的内切弧,且弧G与边AB,OB相切,求弧G的半径的最大值;(3)如图3,动点M(m, 3),连接OM,AM.①直接写出△OAM的完美内切弧的半径的最大值;②记①中得到的半径最大时的完美内切弧为弧T.点P为弧T上的一个动点,过点P作x轴的垂线,分别交x轴和直线AB于点D,E,点F为线段PE的中点,直接写出线段DF长度的取值范围.【解答】如图1,在弧G1,弧G2,弧G3中,是△OAB的内切弧的是G3,G2.故答案为G3,G2.如图,∵弧G与边AB,OB相切,∴弧所在的圆的圆心在∠ABO的角平分线上,当点J落在x轴上时,⊙J的半径最大,过点J作JM⊥AB于M.∵∠BOJ=∠BMJ=90∘,BJ=BJ,∠JBO=∠JBM,∴△JBO≅△JBM(AAS),∴BM=BO=6,OJ=JM,在Rt△AOB中,AB=√OA2+OB2=√62+82=10,∴AM=10−6=4,设OJ=JM=x,则有(8−x)2=42+x2,∴x=3,∴JO=JM=3,∴弧G的半径的最大值为3.①如图3−1中,当MO=MA时,△OAM的完美内切弧的半径最大,设圆心为H,T,G为切点,连接HT,HG,MH.∵HT=HG,HM=HM,∠HTM=∠HGM=90∘,∴Rt△HMT≅Rt△HMG(HL),∴∠HMO=∠HMA,∴MH⊥OA,OH=HA=4,∵MH=3,∴OM=√OH2+MH2=√32+42=5,∵12⋅OH⋅HM=12⋅OM⋅HT,∴HT=125,∴△OAM的完美内切弧的半径的最大值为125.②如图3−2中,当直线DE经过切点T时,可证MF⊥DE,此时DF的值最大,此时DF=3,如图3−3中,当DE与半圆弧相切时,DF的值最小,∵AD=AH−DH=4−125=85,∴DF=AD⋅tan∠BAO=85×34=65,∴DF=12DE=35,当直线DE经过切点G时,线段DE不存在,此时DF=GH⋅AGAH =165×1254=4825,综上所述,满足条件的DF的值为:35≤DF≤3且DF≠4825.。

相关文档
最新文档