广东省2017中考数学复习检测 第2部分 专题突破 专题三 解答题突破—数与式(无答案)
广东省深圳市2017年中考数学二模试卷(解析版)
广东省深圳市2017年中考数学二模试卷(解析版)一、选择题1.﹣的倒数是()A. ﹣B.C. ﹣3D. 32.人民网北京1月24日电(记者杨迪)财政部23日公布了2016年财政收支数据,全国一股公共预算收入159600亿元,将159600亿元用科学记数法表示为()A. 1.596×105元B. 1.596×1013元C. 15.96×1013元D. 0.1596×106元3.下列四个图案中,具有一个共有的性质,那么下面四个数中,满足上述共有性质的一个是()A. 228B. 707C. 808D. 6094.下列运算正确的是()A. 8a﹣a=8B. (﹣a)4=a4C. a3•a2=a6D. (a﹣b)2=a2﹣b25.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是()A. B. C. D.6.一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为360元,则每件服装的进价是()A. 168元B. 300元C. 60元D. 400元7.定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”,例如:M(1,1),N(﹣2,﹣2)都是“平衡点”,当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A. 0≤m≤1B. ﹣1≤m≤0C. ﹣3≤m≤3D. ﹣3≤m≤18.如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2的度数为()A. 140°B. 130°C. 120°D. 110°9.如图,已知△ABC(AB<BC<AC),用尺规在AC上确定一点P,使PB+PC=AC,则下列选项中,一定符合要求的作图痕迹是()A. B. C. D.10.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为36,则PD+PE+PF=()A. 12B. 8C. 4D. 311.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QO,设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A. B. C. D.12.如图,▱ABCD中,AE平分∠BAD,交BC于E,DE⊥AE,下列结论::①DE平分∠ADC;②E是BC的中点;③AD=2CD;④梯形ADCE的面积与△ABE的面积比是3:1,其中正确的结论的个数有()A. 4B. 3C. 2D. 1二、填空题13.分解因式:2a2﹣8=________.14.若x2y m与2x n y6是同类项,则m+n=________.15.如图,在平面直角坐标系中,A,B两点分别在x轴和y轴上,OA=1,OB= ,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,连接A1B1,再过A1B1中点C2作x轴和y轴的垂线,照此规律依次作下去,则点C n的坐标为________.16.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E,F,与双曲线y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点,直线x=a与l交于点A,与双曲线交于点B(不同于A),PA=PB,则a=________.三、解答题17.计算:(﹣)﹣2﹣|﹣|+2sin60°+(π﹣4)0.18.先化简,再求值:÷(﹣),其中x= ﹣1.19.我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数统计表根据图表中提供的信息,解答下列问题:(1)m=________,n=________,p=________;(2)请根据以上信息直接补全条形统计图;(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.20.如图,在矩形ABCD中,AE平分∠BAD,交BC于E,过E做EF⊥AD于F,连接BF交AE于P,连接PD.(1)求证:四边形ABEF是正方形;(2)如果AB=6,AD=8,求tan∠ADP的值.21.某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?22.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC= AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN•MC的值.23.如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(﹣3,0),B(1,0),与y轴的交点为D,对称轴与抛物线交于点C,与x轴负半轴交于点H.(1)求抛物线的表达式;(2)点E,F分别是抛物线对称轴CH上的两个动点(点E在点F上方),且EF=1,求使四边形BDEF的周长最小时的点E,F坐标及最小值;(3)如图2,点P为对称轴左侧,x轴上方的抛物线上的点,PQ⊥AC于点Q,是否存在这样的点P使△PCQ与△ACH相似?若存在请求出点P的坐标,若不存在请说明理由.答案解析部分一、<b >选择题</b>1.【答案】C2.【答案】B3.【答案】C4.【答案】B5.【答案】A6.【答案】B7.【答案】D8.【答案】B9.【答案】C10.【答案】A11.【答案】D12.【答案】D二、<b >填空题</b>13.【答案】2(a+2)(a﹣2)14.【答案】815.【答案】16.【答案】﹣2三、<b >解答题</b>17.【答案】解:原式=4﹣+ +1=5.18.【答案】解:原式= ÷[ ﹣]= ÷= •= ,当x= ﹣1时,原式= =19.【答案】(1)200;80;30(2)解:如图所示:(3)解:2000×40%=800(人),答:估计该校2000名学生中有800名学生最喜欢跳大绳.20.【答案】(1)证明:∵四边形ABCD是矩形,∴∠FAB=∠ABE=90°,AF∥BE,∵EF⊥AD,∴∠FAB=∠ABE=∠AFE=90°,∴四边形ABEF是矩形,∵AE平分∠BAD,AF∥BE,∴∠FAE=∠BAE=∠AEB,∴AB=BE,∴四边形ABEF是正方形;(2)解:过点P作PH⊥AD于H,如图所示:∵四边形ABEF是正方形,∴BP=PF,BA⊥AD,∠PAF=45°,∴AB∥PH,∵AB=6,∴AH=PH=3,∵AD=8,∴DH=AD﹣AH=8﹣3=5,在Rt△PHD中,∠PHD=90°.∴tan∠ADP= = .21.【答案】(1)解:设孔明同学测试成绩为x分,平时成绩为y分,依题意得:解之得:,答:孔明同学测试成绩为90分,平时成绩为95分;(2)解:由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.(3)解:设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a分,根据题意可得:20+80%a≥80,解得:a≥75答:他的测试成绩应该至少为75分.22.【答案】(1)证明:∵OA=OC,∴∠A=∠ACO.又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC⊥CP,∵OC是⊙O的半径.∴PC是⊙O的切线.(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC.∴BC= AB(3)解:连接MA,MB,∵点M是的中点,∴= ,∴∠ACM=∠BCM.∵∠ACM=∠ABM,∴∠BCM=∠ABM.∵∠BMN=∠BMC,∴△MBN∽△MCB.∴= .∴BM2=MN•MC.又∵AB是⊙O的直径,= ,∴∠AMB=90°,AM=BM.∵AB=8,∴BM=4 .∴MN•MC=BM2=32.23.【答案】(1)解:∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3(2)解:∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4).将D点向下平移1个单位,得到点M,连结AM交对称轴于F,作DE∥FM交对称轴于E点,如图1所示.∵EF∥DM,DE∥FM,∴四边形EFMD是平行四边形,∴DE=FM,EF=DM=1,DE+FB=FM+FA=AM.由勾股定理,得AM= = = ,BD= = = ,四边形BDEF周长的最小值=BD+DE+EF+FB=BD+EF+(DE+FB)=BD+EF+AM= +1+ ;设AM的解析式为y=mx+n,将A(﹣3,0),M(0,2)代入,解得m= ,n=2,则AM的解析式为y=x+2,当x=﹣1时,y= ,即F(﹣1,),由EF=1,得E(﹣1,).故四边形BDEF的周长最小时,点E的坐标为(﹣1,),点F坐标为(﹣1,),四边形BDEF周长的最小值是+1+ ;(3)解:点P在对称轴左侧,当△PCQ∽△ACH时,∠PCQ=∠ACH.过点A作CA的垂线交PC与点F,作FN⊥x轴与点N.则AF∥PQ,∴△CPQ∽△CFA,∴= =2.∵∠CAF=90°,∴∠NAF+∠CAH=90°,∠NFA+∠NAF=90°,∴∠BFA=∠CAH.又∵∠FNA=∠AHC=90°,∴△FNA∽△AHC,∴= = = ,即= = .∴AN=2,FN=1.∴F(﹣5,1).设直线CF的解析式为y=kx+b,将点C和点F的坐标代入得:,解得:k= ,b= .∴直线CF的解析式为y= x+ .将y= x+ 与y=﹣x2﹣2x+3联立得:解得:或(舍去).∴P(﹣,).∴满足条件的点P的坐标为(﹣,).。
2017年广东省中考数学试卷及答案
2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( )A.15B.5C.-15D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×910B.0.4×1010C.4×910D.4×1010 3.已知70A ∠=︒,则A ∠的补角为( )A.110︒B.70︒C.30︒D.20︒ 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A.1B.2C.-1D.-2 5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( ) A.95 B.90 C.85 D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲 线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2) 8.下列运算正确的是( )A.223a a a += B.325·a a a = C.426()a a = D.424a a a +=9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△;④2ADF CDF S S =△△,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是720︒,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则a b ÷ 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,题7图4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b ÷=,则整式863a b ÷-的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭.18.先化简,再求值211(x 4)22x x ⎛⎫+÷- ⎪-+⎝⎭,其中.19.学校团委组织志愿者到图书馆整理一批新进的图书。
(完整版)2017年广东省中考数学试题与参考答案
2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( ) A. B.5 C.- D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×B.0.4×C.4×D.4× 3.已知,则的补角为( )A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲线 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( ) A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)15159101010910101070A ∠=︒A ∠110︒70︒30︒20︒230x x k -+=11(0)y k x k =≠22(0)k y k x=≠题7图8.下列运算正确的是( )A. B. C. D.9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③; ④,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .223a a a +=325·a a a =426()a a =424a a a +=ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△720︒ab ÷431a b ÷=863a b ÷-三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中x =√5 .19.学校团委组织志愿者到图书馆整理一批新进的图书。
2024年中考数学总复习第二部分题型突破题型六 二次函数综合题
题型六 二次函数综合题
广东8年高频点考情考分析情及趋势分析
类型 年份 题号 题型 分值 条件特点
已知情况 情况数
设问
二次函数
与特殊图
解答题(三
2018 23(3)
4
形存在性
)
已知角度为
角度定值问题
2种
定值(15°)
求满足条件的点 坐标
问题
【考情总结】
1.题位分析:均在解答题考查;
2.考查特点:①考查二次函数与线段有关的问题(2次),二次函数与面积有关的问题(1次),二次函
∵y=-x2+3x+4=-(x- 3 )2+ 25 ,
2
∴抛物线的对称轴为直线x=
3
,
4
2
设点P(m,-m2+3m+4),
则点D(3-m,-m2+3m+4),E(m,0),
第1题图
题型六 二次函数综合题
∵DF=EF,
∴点F是DE的中点,
∴点F( 3 m m,m2 3m 4 0),即F( 3,m2 3m 4),
8
)
关的问题
面积最大
已知情况 /
情况数
设问
求直线BD的函数 /
解析式
/
/
求点的坐标
求三角形面积的
/
/ 最大值,及此时
的点坐标
题型六 二次函数综合题
广东8年高频点考情考分析情及趋势分析
类型 年份 题号 题型 分值 条件特点
已知情况 情况数
设问
解答题(三
2021 25(2)
6
)
平行四边形 已知平行四边形
将A(4,0),B′(0,4)代入,得
解得
dk11
1
2017年广东省中考数学试卷含答案-答案在前
广东省2017年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】根据相反数的定义有:5的相反数是5﹣,故选:D 。
【考点】相反数的概念 2.【答案】C【解析】94000000000410=⨯,故选:C 。
【考点】科学计数法 3.【答案】A【解析】∵70A ∠=︒,∴A ∠的补角为110︒,故选A 。
【考点】补角的概念 4.【答案】B【解析】∵2是一元二次方程230x x k -+=的一个根,∴22320k -⨯+=,解得,2k =,故选:B 。
【考点】一元二次方程的根 5.【答案】B【解析】数据90出现了两次,次数最多,所以这组数据的众数是90,故选B 。
【考点】众数的概念 6.【答案】D【解析】等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形,故选D 。
【考点】轴对称图形和中心对称图形的判定 7.【答案】A【解析】∵点A 与B 关于原点对称,∴B 点的坐标为(1,2)--,故选:A 。
【考点】一次函数和反比例函数的图像和性质 8.【答案】B【解析】A .23a a a +=,此选项错误;B .325a a a =,此选项正确;C .428()a a =,此选项错误; D .4a 与2a 不是同类项,不能合并,此选项错误;故选:B 。
【考点】整式的运算 9.【答案】C【解析】∵50CBE ∠=︒,∴180********ABC CBE ∠=︒-∠=︒-︒=︒。
∵四边形ABCD 为O 的内接四边形, ∴180********D ABC ∠=︒-∠=︒-︒=︒。
∵DA DC =,∴180652DDAC ︒-∠∠==︒,故选C 。
【考点】圆内接四边形的性质,等腰三角形的性质 10.【答案】C【解析】∵四边形ABCD 是正方形,∴AD CB ∥,AD BC AB ==,FAD FAB ∠=∠。
在AFD △和AFB △中,AF AF FAD FAB AD AB =⎧⎪∠=∠⎨⎪=⎩,∴AFD AFB △≌△,∴ABF ADF S S =△△,故①正确。
2017年广东省中考数学试卷-答案
广东省2017年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】D【解析】根据相反数的定义有:5的相反数是5﹣,故选:D 。
【考点】相反数的概念2.【答案】C【解析】94000000000410=⨯,故选:C 。
【考点】科学计数法3.【答案】A【解析】∵70A ∠=︒,∴A ∠的补角为110︒,故选A 。
【考点】补角的概念4.【答案】B【解析】∵2是一元二次方程230x x k -+=的一个根,∴22320k -⨯+=,解得,2k =,故选:B 。
【考点】一元二次方程的根5.【答案】B【解析】数据90出现了两次,次数最多,所以这组数据的众数是90,故选B 。
【考点】众数的概念6.【答案】D【解析】等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形,故选D 。
【考点】轴对称图形和中心对称图形的判定7.【答案】A【解析】∵点A 与B 关于原点对称,∴B 点的坐标为(1,2)--,故选:A 。
【考点】一次函数和反比例函数的图像和性质8.【答案】B【解析】A .23a a a +=,此选项错误;B .325a a a =,此选项正确;C .428()a a =,此选项错误;D .4a 与2a 不是同类项,不能合并,此选项错误;故选:B 。
【考点】整式的运算9.【答案】C【解析】∵50CBE ∠=︒,∴180********ABC CBE ∠=︒-∠=︒-︒=︒。
∵四边形ABCD 为O 的内接四边形,∴180********D ABC ∠=︒-∠=︒-︒=︒。
∵DA DC =,∴180652D DAC ︒-∠∠==︒,故选C 。
【考点】圆内接四边形的性质,等腰三角形的性质10.【答案】C【解析】∵四边形ABCD 是正方形,∴AD CB ∥,AD BC AB ==,FAD FAB ∠=∠。
在AFD △和AFB △中,AF AF FAD FAB AD AB =⎧⎪∠=∠⎨⎪=⎩,∴AFD AFB △≌△,∴ABF ADF S S =△△,故①正确。
2017年广州市中考数学试题【精编解析版】 .doc
2017年广州市中考数学试题【精编解析版】由于版式的问题,试题可能会出现乱码的现象,为了方便您的阅读请点击全屏查看第一部分选择题(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图1,数轴上两点,A B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定答案:B解析:-6的相反数是6,A点表示-6,所以,B点表示6。
2.如图2,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到图形为()答案:A解析:顺时针90°后,AD转到AB边上,所以,选A。
3. 某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁)12,13,14,15,15,15.这组数据中的众数,平均数分别为()A.12,14 B.12,15 C.15,14D.15,13答案:C解析:15出现次数最多,有3次,所以,众数为15平均数为:11213141515156+++++()=14。
4. 下列运算正确的是()A.362a b a b++=B.2233a b a b++⨯=C.2a a=D.()0a a a=≥答案:D解析:因为3626a b a b+=+,故A错,又22233a b a b++⨯=,B错,因为2||a a=,所以,C也错,只有D是正确的。
5.关于x 的一元二次方程280x x q ++=有两个不相等的实数根,则q 的取值范围是()A .16q <B .16q > C. 4q ≤ D .4q ≥ 答案:A解析:根的判别式为△=6440q ->,解得:16q <。
6. 如图3,O e 是ABC ∆的内切圆,则点O 是ABC ∆的()图3A . 三条边的垂直平分线的交点B .三角形平分线的交点C. 三条中线的交点 D .三条高的交点 答案:B解析:内心到三角形三边距离相等,到角的两边距离相等的点在这个角的角平分线上,故选B 。
中考数学二轮复习 专题二 解答重难点题型突破 题型六 二次函数与几何图形综合题试题-人教版初中九年级
题型六 二次函数与几何图形综合题类型一 二次函数与图形判定1.(2017·某某)在同一直角坐标系中,抛物线C 1:y =ax 2-2x -3与抛物线C 2:y =x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧.(1)求抛物线C 1,C 2的函数表达式; (2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.2.(2017·随州)在平面直角坐标系中,我们定义直线y =ax -a 为抛物线y =ax 2+bx +c(a 、b 、c 为常数,a ≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“梦想三角形”.已知抛物线y =-233x 2-433x +23与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为__________,点A的坐标为__________,点B的坐标为__________;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.(2017·某某模拟)已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.4.(2016·某某)如图①,直线y =-43x +n 交x 轴于点A ,交y 轴于点C(0,4),抛物线y =23x 2+bx +c 经过点A ,交y 轴于点B(0,-2).点P 为抛物线上一个动点,过点P 作x轴的垂线PD ,过点B 作BD⊥PD 于点D ,连接PB ,设点P 的横坐标为m.(1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图②,将△BDP 绕点B 逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P 的对应点P′落在坐标轴上时,请直接写出点P 的坐标.类型二 二次函数与图形面积1.(2017·某某)如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C ,抛物线y =-12x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点;①连接BC 、CD ,设直线BD 交线段AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2,求S 1S 2的最大值; ②过点D 作DF⊥AC,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.2.(2017·某某)如图甲,直线y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).3.(2017·某某模拟)如图,抛物线y=ax2+bx-3与x轴交于点A(1,0)和点B,与y 轴交于点C,且其对称轴l为x=-1,点P是抛物线上B,C之间的一个动点(点P不与点B,C重合).(1)直接写出抛物线的解析式;(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PB⊥NB,且PB=NB的关系,请求出点P的坐标;(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值;若不存在,请说明理由.4.(2017·某某模拟)如图①,已知抛物线y=ax2+bx-3的对称轴为x=1,与x轴分别交于A、B两点,与y轴交于点C,一次函数y=x+1经过A,且与y轴交于点D.(1)求该抛物线的解析式.(2)如图②,点P为抛物线B、C两点间部分上的任意一点(不含B,C两点),设点P的横坐标为t,设四边形DCPB的面积为S,求出S与t的函数关系式,并确定t为何值时,S取最大值?最大值是多少?(3)如图③,将△ODB沿直线y=x+1平移得到△O′D′B′,设O′B′与抛物线交于点E,连接ED′,若ED′恰好将△O′D′B′的面积分为1∶2两部分,请直接写出此时平移的距离.类型三二次函数与线段问题1.(2017·某某)如图,已知抛物线y=ax2-23ax-9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,1AM +1AN均为定值,并求出该定值.2.(2017·某某模拟)如图①,直线y =34x +m 与x 轴、y 轴分别交于点A 和点B(0,-1),抛物线y =12x 2+bx +c 经过点B ,点C 的横坐标为4.(1)请直接写出抛物线的解析式;(2)如图②,点D 在抛物线上,DE ∥y 轴交直线AB 于点E ,且四边形DFEG 为矩形,设点D 的横坐标为x(0<x <4),矩形DFEG 的周长为l ,求l 与x 的函数关系式以及l 的最大值;(3)将△AOB 绕平面内某点M 旋转90°或180°,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A 1的横坐标.3.(2017·某某)已知点A(-1,1),B(4,6)在抛物线y=ax2+bx上.(1)求抛物线的解析式;(2)如图①,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,,连接FH、AE,求证:FH∥AE;(3)如图②,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.类型四二次函数与三角形相似1.(2016·某某)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x-2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.2.(2017·某某模拟)如图,抛物线y=ax2+bx+1与直线y=-ax+c相交于坐标轴上点A(-3,0),C(0,1)两点.(1)直线的表达式为__________;抛物线的表达式为__________;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交直线AC于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)P为抛物线上一动点,且P在第四象限内,过点P作PN垂直x轴于点N,使得以P、A、N为顶点的三角形与△ACO相似,请直接写出点P的坐标.3.如图①,二次函数y =ax 2+bx +33经过A(3,0),G(-1,0)两点. (1)求这个二次函数的解析式;(2)若点M 是抛物线在第一象限图象上的一点,求△ABM 面积的最大值;(3)抛物线的对称轴交x 轴于点P ,过点E(0,233)作x 轴的平行线,交AB 于点F ,是否存在着点Q ,使得△FEQ∽△BEP?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.4.(2017·某某)抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0). (1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=错误!x+3相交于C、D两点,点P是抛物线上的动点且位于x 轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连接PC、PD,如图①,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连接PB,过点C作CQ⊥PM,垂足为点Q,如图②,是否存在点P,使得△Q与△PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.题型六第23题二次函数与几何图形综合题类型一二次函数与图形判定1.解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=-3,∴C1的对称轴为x=1,∴C2的对称轴为x=-1,∴m=2,∴C1的函数表示式为y=x2-2x-3,C2的函数表达式为y=x2+2x-3;(2)在C2的函数表达式为y=x2+2x-3中,令y=0可得x2+2x-3=0,解得x=-3或x=1,∴A(-3,0),B(1,0);(3)存在.设P(a ,b),则Q(a +4,b)或(a -4,b), ①当Q(a +4,b)时,得:a 2-2a -3=(a +4)2+2(a +4)-3, 解得a =-2,∴b =a 2-2a -3=4+4-3=5, ∴P 1(-2,5),Q 1(2,5). ②当Q(a -4,b)时,得:a 2-2a -3=(a -4)2+2(a -4)-3, 解得a =2.∴b =4-4-3=-3, ∴P 2(2,-3),Q 2(-2,-3).综上所述,所求点的坐标为P 1(-2,5),Q 1(2,5); P 2(2,-3),Q 2(-2,-3). 2.解:(1)∵抛物线y =-233x 2-433x +23, ∴其梦想直线的解析式为y =-233x +233,联立梦想直线与抛物线解析式可得⎩⎪⎨⎪⎧y =-233x +233y =-233x 2-433x +23,解得⎩⎨⎧x =-2y =23或⎩⎪⎨⎪⎧x =1y =0,∴A(-2,23),B(1,0);(2)当点N 在y 轴上时,△AMN 为梦想三角形, 如解图①,过A 作AD ⊥y 轴于点D ,则AD =2,在y =-233x 2-433x +23中,令y =0可求得x =-3或x =1,∴C(-3,0),且A(-2,23), ∴AC =(-2+3)2+(23)2=13, 由翻折的性质可知AN =AC =13,在Rt △AND 中,由勾股定理可得DN =AN 2-AD 2=13-4=3, ∵OD =23,∴ON =23-3或ON =23+3,当ON =23+3时,则MN >OD >CM ,与MN =CM 矛盾,不合题意, ∴N 点坐标为(0,23-3);当M 点在y 轴上时,则M 与O 重合,过N 作NP ⊥x 轴于点P ,如解图②,在Rt △AMD 中,AD =2,OD =23,∴tan ∠DAM =MDAD =3,∴∠DAM =60°,∵AD ∥x 轴,∴∠AMC =∠DAM =60°, 又由折叠可知∠NMA =∠AMC =60°, ∴∠NMP =60°,且MN =CM =3, ∴MP =12MN =32,NP =32MN =332,∴此时N 点坐标为(32,332);综上可知N 点坐标为(0,23-3)或(32,332);(3)①当AC 为平行四边形的边时,如解图③,过F 作对称轴的垂线FH ,过A 作AK ⊥x 轴于点K ,则有AC ∥EF 且AC =EF ,∴∠ACK =∠EFH , 在△ACK 和△EFH 中,⎩⎪⎨⎪⎧∠ACK =∠EFH ∠AKC =∠EHF AC =EF,∴△ACK ≌△EFH(AAS ), ∴FH =CK =1,HE =AK =23,∵抛物线对称轴为x =-1,∴F 点的横坐标为0或-2,∵点F 在直线AB 上,∴当F 点横坐标为0时,则F(0,233),此时点E 在直线AB 下方,∴E 到x 轴的距离为EH -OF =23-233=433,即E 点纵坐标为-433,∴E(-1,-433); 当F 点的横坐标为-2时,则F 与A 重合,不合题意,舍去; ②当AC 为平行四边形的对角线时, ∵C(-3,0),且A(-2,23), ∴线段AC 的中点坐标为(-52,3),设E(-1,t),F(x ,y),则x -1=2×(-52),y +t =23,∴x =-4,y =23-t ,代入直线AB 解析式可得23-t =-233×(-4)+233,解得t =-433,∴E(-1,-433),F(-4,1033);综上可知存在满足条件的点F ,此时E(-1,-433)、F(0,233)或E(-1,-433)、F(-4,1033).3.解:(1)由题意,得⎩⎪⎨⎪⎧0=16a -8a +c 4=c ,解得⎩⎪⎨⎪⎧a =-12c =4, ∴所求抛物线的解析式为y =-12x 2+x +4;(2) 设点Q 的坐标为(m ,0),如解图①,过点E 作EG ⊥x 轴于点G. 由-12x 2+x +4=0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0),∴AB =6,BQ =m +2,∵QE ∥AC ,∴△BQE ∽△BAC ,∴EG CO =BQ BA ,即EG 4=m +26,∴EG =2m +43,∴S △CQE =S △CBQ -S △EBQ =12BQ·CO-12BQ·EG=12(m +2)(4-2m +43)=-13m 2+23m +83=-13(m-1)2+3,又∵-2≤m ≤4,∴当m =1时,S △CQE 有最大值3,此时Q(1,0);图①图②(3)存在.在△ODF 中. (ⅰ)若DO =DF ,∵A(4,0),D(2,0),∴AD =OD =DF =2, 又∵在Rt △AOC 中,OA =OC =4,∴∠OAC =45°, ∴∠DFA =∠OAC =45°,∴∠ADF =90°,此时,点F 的坐标为(2,2), 由-12x 2+x +4=2,得x 1=1+5,x 2=1-5,此时,点P 的坐标为P(1+5,2)或P(1-5,2); (ⅱ)若FO =FD ,如解图②,过点F 作FM ⊥x 轴于点M , 由等腰三角形的性质得:OM =MD =1,∴AM =3, ∴在等腰直角△AMF 中,MF =AM =3,∴F(1,3), 由-12x 2+x +4=3,得x 1=1+3,x 2=1-3,此时,点P 的坐标为:P(1+3,3)或P(1-3,3); (ⅲ)若OD =OF ,∵OA =OC =4,且∠AOC =90°,∴AC =42,∴点O 到AC 的距离为22,而OF =OD =2<22,与OF ≥22矛盾, ∴AC 上不存在点使得OF =OD =2,此时,不存在这样的直线l ,使得△ODF 是等腰三角形. 综上所述,存在这样的直线l ,使得△ODF 是等腰三角形.所求点P 的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3). 4.解:(1)∵点C(0,4)在直线y =-43x +n 上,∴n =4,∴y =-43x +4,令y =0,解得x =3,∴A(3,0),∵抛物线y =23x 2+bx +c 经过点A ,交y 轴于点B(0,-2),∴c =-2,6+3b -2=0,解得b =-43,∴抛物线的解析式为y =23x 2-43x -2;(2)∵点P 的横坐标为m ,且点P 在抛物线上, ∴P(m ,23m 2-43m -2),∵PD ⊥x 轴,BD ⊥PD ,∴点D 坐标为(m ,-2), ∴|BD|=|m|,|PD|=|23m 2-43m -2+2|,当△BDP 为等腰直角三角形时,PD =BD , ∴|m|=|23m 2-43m -2+2|=|23m 2-43m|.∴m 2=(23m 2-43m)2,解得:m 1=0(舍去),m 2=72,m 3=12,∴当△BDP 为等腰直角三角形时,线段PD 的长为72或12;(3)∵∠PBP′=∠OAC ,OA =3,OC =4,∴AC =5, ∴sin ∠PBP ′=45,cos ∠PBP ′=35,①当点P′落在x 轴上时,如解图①,过点D′作D′N⊥x 轴,垂足为N ,交BD 于点M ,∠DBD ′=∠ND′P′=∠PBP′,由旋转知,P ′D ′=PD =23m 2-43m ,在Rt △P ′D ′N 中,cos ∠ND ′P ′=ND′P′D′=cos ∠PBP ′=35,∴ND ′=35(23m 2-43m),在Rt △BD ′M 中,BD ′=-m ,sin ∠DBD ′=D′M BD′=sin ∠PBP ′=45,∴D ′M =-45m ,∴ND ′-MD′=2,∴35(23m 2-43m)-(-45m)=2, 解得m =5(舍去)或m =-5,如解图②, 同①的方法得,ND ′=35(23m 2-43m),MD ′=45m ,ND ′+MD′=2, ∴35(23m 2-43m)+45m =2, ∴m =5或m =-5(舍去),∴P(-5,45+43)或P(5,-45+43),②当点P′落在y 轴上时,如解图③,过点D′作D′M⊥x 轴,交BD 于M ,过点P′作P′N⊥y 轴,交MD′的延长线于点N , ∴∠DBD ′=∠ND′P′=∠PBP′,同①的方法得:P′N=45(23m 2-43m),BM =35m ,∵P ′N =BM ,∴45(23m 2-43m)=35m , 解得m =258或m =0(舍去),∴P(258,1132),∴P(-5,45+43)或P(5,-45+43)或P(258,1132).类型二 二次函数与图形面积1.解:(1)根据题意得A(-4,0),C(0,2), ∵抛物线y =-12x 2+bx +c 经过A 、C 两点,∴⎩⎪⎨⎪⎧0=-12×16-4b +c 2=c ,解得⎩⎪⎨⎪⎧b =-32c =2, ∴y =-12x 2-32x +2;(2)①令y =0,∴-12x 2-32x +2=0,解得x 1=-4,x 2=1,∴B(1,0),如解图①,过D 作DM ∥y 轴交AC 于M ,过B 作BN ⊥x 轴交AC 于N , ∴DM ∥BN ,∴△DME ∽△BNE ,∴S 1S 2=DE BE =DMBN ,设D(a ,-12a 2-32a +2),∴M(a ,12a +2),∵B(1,0),∴N(1,52),∴S 1S 2=DMBN =-12a 2-2a 52=-15(a +2)2+45; ∴当a =-2时,S 1S 2有最大值,最大值是45;②∵A(-4,0),B(1,0),C(0,2), ∴AC =25,BC =5,AB =5, ∵AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,∴P(-32,0),∴PA =PC =PB =52,∴∠CPO =2∠BAC ,∴tan ∠CPO =tan (2∠BAC)=43,如解图②,过D 作x 轴的平行线交y 轴于R ,交AC 的延长线于G , 情况一:∠DCF =2∠BAC =∠DGC +∠CDG ,∴∠CDG =∠BAC , ∴tan ∠CDG =tan ∠BAC =12,即RC DR =12,令D(a ,-12a 2-32a +2),∴DR =-a ,RC =-12a 2-32a ,∴-12a 2-32a -a =12,解得a 1=0(舍去),a 2=-2, ∴x D =-2,情况二:∠FDC =2∠BAC , ∴tan ∠FDC =43,设FC =4k ,∴DF =3k ,DC =5k , ∵tan ∠DGC =3k FG =12,∴FG =6k ,∴CG =2k ,DG =35k ,∴RC =255k ,RG =455k , DR =35k -455k =1155k ,∴DR RC =1155k 255k =-a -12a 2-32a ,解得a 1=0(舍去),a 2=-2911, ∴点D 的横坐标为-2或-2911.2.解:(1)∵直线y =-x +3与x 轴、y 轴分别交于点B 、点C , ∴B(3,0),C(0,3),把B 、C 坐标代入抛物线解析式可得⎩⎪⎨⎪⎧9+3b +c =0c =3,解得⎩⎪⎨⎪⎧b =-4c =3,∴抛物线的解析式为y =x 2-4x +3; (2)∵y =x 2-4x +3=(x -2)2-1, ∴抛物线对称轴为x =2,P(2,-1), 设M(2,t),且C(0,3),∴MC =22+(t -3)2=t 2-6t +13,MP =|t +1|,PC =22+(-1-3)2=25, ∵△CPM 为等腰三角形,∴有MC =MP 、MC =PC 和MP =PC 三种情况,①当MC =MP 时,则有t 2-6t +13=|t +1|,解得t =32,此时M(2,32);②当MC =PC 时,则有t 2-6t +13=25,解得t =-1(与P 点重合,舍去)或t =7,此时M(2,7);③当MP =PC 时,则有|t +1|=25,解得t =-1+25或t =-1-25,此时M(2,-1+25)或(2,-1-25);综上可知存在满足条件的点M ,其坐标为(2,32)或(2,7)或(2,-1+25)或(2,-1-25);(3)如解图,在0<x <3对应的抛物线上任取一点E ,过E 作EF ⊥x 轴,交BC 于点F ,交x 轴于点D ,设E(x ,x 2-4x +3),则F(x ,-x +3), ∵0<x <3,∴EF =-x +3-(x 2-4x +3)=-x 2+3x ,∴S △CBE =S △EFC +S △EFB =12EF·OD+12EF·BD=12EF·OB=12×3(-x 2+3x)=-32(x -32)2+278,∴当x =32时,△CBE 的面积最大,此时E 点坐标为(32,-34),即当E 点坐标为(32,-34)时,△CBE 的面积最大.3.解:(1)∵A(1,0),对称轴l 为x =-1,∴B(-3,0),∴⎩⎪⎨⎪⎧a +b -3=09a -3b -3=0,解得⎩⎪⎨⎪⎧a =1b =2, ∴抛物线的解析式为y =x 2+2x -3; (2)如解图①,过点P 作PM ⊥x 轴于点M ,设抛物线对称轴l 交x 轴于点Q. ∵PB ⊥NB ,∴∠PBN =90°, ∴∠PBM +∠NBQ =90°.∵∠PMB =90°,∴∠PBM +∠BPM =90°, ∴∠BPM =∠NBQ.又∵∠BMP =∠BQN =90°,PB =NB ,∴△BPM ≌△NBQ ,∴PM =BQ.∵抛物线y =x 2+2x -3与x 轴交于点A(1,0)和点B ,且对称轴为x =-1, ∴点B 的坐标为(-3,0),点Q 的坐标为(-1,0), ∴BQ =2,∴PM =BQ =2.∵点P 是抛物线y =x 2+2x -3上B 、C 之间的一个动点, ∴结合图象可知点P 的纵坐标为-2,将y =-2代入y =x 2+2x -3,得-2=x 2+2x -3, 解得x 1=-1-2,x 2=-1+2(舍去), ∴此时点P 的坐标为(-1-2,-2); (3) 存在.如解图②,连接AC ,PC.可设点P 的坐标为(x ,y)(-3<x <0),则y =x 2+2x -3, ∵点A(1,0),∴OA =1.∵点C 是抛物线与y 轴的交点,∴令x =0,得y =-3,即点C(0,-3),∴OC =3. 由(2)可知S四边形PBAC=S △BPM +S四边形PMOC+S △AOC =12BM·PM+12(PM +OC)·OM+12OA·OC=12(x+3)(-y)+12(-y +3)(-x)+12×1×3=-32y -32x +32,将y =x 2+2x -3代入可得S 四边形PBAC =-32(x 2+2x -3)-32x +32=-32(x +32)2+758.∵-32<0,-3<x <0,∴当x =-32时,S 四边形PBAC 有最大值758,此时,y =x 2+2x -3=-154.∴当点P 的坐标为(-32,-154)时,四边形PBAC 的面积最大,最大值为758.4.解:(1)把y =0代入直线的解析式得x +1=0,解得x =-1,∴A(-1,0). ∵抛物线的对称轴为x =1,∴B 的坐标为(3,0). 将x =0代入抛物线的解析式得y =-3,∴C(0,-3).设抛物线的解析式为y =a(x +1)(x -3),将C(0,-3)代入得-3a =-3,解得a =1, ∴抛物线的解析式为y =(x +1)(x -3)=x 2-2x -3; (2)如解图①,连接OP.将x =0代入直线AD 的解析式得y =1,∴OD =1. 由题意可知P(t ,t 2-2t -3). ∵S 四边形DCPB =S △ODB +S △OBP +S △OCP ,∴S =12×3×1+12×3×(-t 2+2t +3)+12×3×t ,整理得S =-32t 2+92t +6,配方得:S =-32(t -32)2+758,∴当t =32时,S 取得最大值,最大值为758;(3)如解图②,设点D′的坐标为(a ,a +1),O ′(a ,a).当△D′O′E 的面积∶△D′EB′的面积=1∶2时,则O′E∶EB ′=1∶2. ∵O ′B ′=OB =3,∴O ′E =1, ∴E(a +1,a).将点E 的坐标代入抛物线的解析式得(a +1)2-2(a +1)-3=a ,整理得:a 2-a -4=0,解得a =1+172或a =1-172,∴O ′的坐标为(1+172,1+172)或(1-172,1-172),∴OO ′=2+342或OO′=34-22, ∴△DOB 平移的距离为2+342或34-22, 当△D′O′E 的面积∶△D ′EB ′的面积=2∶1时,则O′E∶EB ′=2∶1. ∵O ′B ′=OB =3,∴O ′E =2,∴E(a +2,a).将点E 的坐标代入抛物线的解析式得:(a +2)2-2(a +2)-3=a ,整理得:a 2+a -3=0,解得a =-1+132或a =-1-132.∴O ′的坐标为(-1+132,-1+132)或(-1-132,-1-132).∴OO′=-2+262或OO′=2+262.∴△DOB 平移的距离为-2+262或2+262.综上所述,当△D′O′B′沿DA 方向平移2+342或2+262单位长度,或沿AD 方向平移34-22或-2+262个单位长度时,ED ′恰好将△O′D′B′的面积分为1∶2两部分. 类型三 二次函数与线段问题1.(1)解:∵C(0,3),∴-9a =3,解得a =-13.令y =0,得ax 2-23ax -9a =0,∵a ≠0,∴x 2-23x -9=0,解得x =-3或x =3 3. ∴点A 的坐标为(-3,0),点B 的坐标为(33,0),∴抛物线的对称轴为x =3; (2)解:∵OA =3,OC =3, ∴tan ∠CAO =3,∴∠CAO =60°. ∵AE 为∠BAC 的平分线,∴∠DAO =30°, ∴DO =33AO =1,∴点D 的坐标为(0,1), 设点P 的坐标为(3,a).∴AD 2=4,AP 2=12+a 2,DP 2=3+(a -1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a -1)2,解得a =0或a =2, ∴点P 的坐标为(3,0)或(3,2).当AP =DP 时,12+a 2=3+(a -1)2,解得a =-4. ∴点P 的坐标为(3,-4).综上所述,点P 的坐标为(3,0)或(3,-4)或(3,2);(3)证明:设直线AC 的解析式为y =mx +3,将点A 的坐标代入得-3m +3=0,解得m =3,∴直线AC 的解析式为y =3x +3. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1,得kx +1=0,解得:x =-1k ,∴点N 的坐标为(-1k ,0),∴AN =-1k +3=3k -1k.将y =3x +3与y =kx +1联立,解得x =2k -3,∴点M 的横坐标为2k -3.如解图,过点M 作MG ⊥x 轴,垂足为G.则AG =2k -3+ 3.∵∠MAG =60°,∠AGM =90°, ∴AM =2AG =4k -3+23=23k -2k -3.∴1AM +1AN =k -323k -2+k 3k -1=k -323k -2+2k 23k -2=3k -323k -2=3(3k -1)2(3k -1)=32. 2.解:(1)∵直线l :y =34x +m 经过点B(0,-1),∴m =-1,∴直线l 的解析式为y =34x -1,∵直线l :y =34x -1经过点C ,且点C 的横坐标为4,∴y =34×4-1=2,∵抛物线y =12x 2+bx +c 经过点C(4,2)和点B(0,-1),∴⎩⎪⎨⎪⎧12×42+4b +c =2c =-1,解得⎩⎪⎨⎪⎧b =-54c =-1, ∴抛物线的解析式为y =12x 2-54x -1;(2)令y =0,则34x -1=0,解得x =43,∴点A 的坐标为(43,0),∴OA =43,在Rt △OAB 中,OB =1,∴AB =OA 2+OB 2=(43)2+12=53, ∵DE ∥y 轴,∴∠ABO =∠DEF ,在矩形DFEG 中,EF =DE·cos ∠DEF =DE·OB AB =35DE ,DF =DE·sin ∠DEF =DE·OA AB =45DE ,∴l =2(DF +EF)=2×(45+35)DE =145DE ,∵点D 的横坐标为t(0<t <4), ∴D(t ,12t 2-54t -1),E(t ,34t -1),∴DE =(34t -1)-(12t 2-54t -1)=-12t 2+2t ,∴l =145×(-12t 2+2t)=-75t 2+285t ,∵l =-75(t -2)2+285,且-75<0,∴当t =2时,l 有最大值285;(3)“落点”的个数有4个,如解图①,解图②,解图③,解图④所示.如解图③,设A 1的横坐标为m ,则O 1的横坐标为m +43,∴12m 2-54m -1=12(m +43)2-54(m +43)-1, 解得m =712,如解图④,设A 1的横坐标为m ,则B 1的横坐标为m +43,B 1的纵坐标比A 1的纵坐标大1,∴12m 2-54m -1+1=12(m +43)2-54(m +43)-1,解得m =43, ∴旋转180°时点A 1的横坐标为712或43.3.(1)解:将点A(-1,1),B(4,6)代入y =ax 2+bx 中, 得⎩⎪⎨⎪⎧a -b =116a +4b =6,解得⎩⎪⎨⎪⎧a =12b =-12, ∴抛物线的解析式为y =12x 2-12x ;(2)证明:设直线AF 的解析式为y =kx +m , 将点A(-1,1)代入y =kx +m 中,即-k +m =1, ∴k =m -1,∴直线AF 的解析式为y =(m -1)x +m. 联立直线AF 和抛物线解析式成方程组,⎩⎪⎨⎪⎧y =(m -1)x +m y =12x 2-12x ,解得⎩⎪⎨⎪⎧x 1=-1y 1=1,⎩⎪⎨⎪⎧x 2=2my 2=2m 2-m , ∴点G 的坐标为(2m ,2m 2-m). ∵GH ⊥x 轴,∴点H 的坐标为(2m ,0). ∵抛物线的解析式为y =12x 2-12x =12x(x -1),∴点E 的坐标为(1,0).设直线AE 的解析式为y =k 1x +b 1,将A(-1,1),E(1,0)代入y =k 1x +b 1中,得⎩⎪⎨⎪⎧-k 1+b 1=1k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-12b 1=12,∴直线AE 的解析式为y =-12x +12.设直线FH 的解析式为y =k 2x +b 2,将F(0,m)、H(2m ,0)代入y =k 2x +b 2中,得⎩⎪⎨⎪⎧b 2=m 2mk 2+b 2=0,解得:⎩⎪⎨⎪⎧k 2=-12b 2=m, ∴直线FH 的解析式为y =-12x +m.∴FH ∥AE ;(3)解:设直线AB 的解析式为y =k 0x +b 0,将A(-1,1),B(4,6)代入y =k 0x +b 0中,⎩⎪⎨⎪⎧-k 0+b 0=14k 0+b 0=6,解得⎩⎪⎨⎪⎧k 0=1b 0=2, ∴直线AB 的解析式为y =x +2.当运动时间为t 秒时,点P 的坐标为(t -2,t),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如解图所示.∵QM =2PM , ∴QM′QP′=MM′PP′=23,∴QM ′=43,MM ′=23t ,∴点M 的坐标为(t -43,23t),又∵点M 在抛物线y =12x 2-12x 上,∴23t =12(t -43)2-12(t -43), 解得t =15±1136,当点M 在线段QP 的延长线上时, 同理可得出点M 的坐标为(t -4,2t), ∵点M 在抛物线y =12x 2-12x 上,∴2t =12×(t -4)2-12(t -4),解得t =13±892.综上所述:当运动时间为15-1136秒、15+1136秒、13-892秒或13+892秒时,QM =2PM.类型四 二次函数与三角形相似 1.(1)解:∵顶点坐标为(1,1), ∴设抛物线解析式为y =a(x -1)2+1,又∵抛物线过原点,∴0=a(0-1)2+1,解得a =-1, ∴抛物线的解析式为y =-(x -1)2+1,即y =-x 2+2x ,联立抛物线和直线解析式可得⎩⎪⎨⎪⎧y =-x 2+2x y =x -2,解得⎩⎪⎨⎪⎧x =2y =0或⎩⎪⎨⎪⎧x =-1y =-3, ∴B(2,0),C(-1,-3);(2)证明:如解图,分别过A 、C 两点作x 轴的垂线,交x 轴于D 、E 两点, 则AD =OD =BD =1,BE =OB +OE =2+1=3,EC =3, ∴∠ABO =∠CBO =45°,即∠ABC =90°, ∴△ABC 是直角三角形;(3)解:假设存在满足条件的点N ,设N(x ,0),则M(x ,-x 2+2x), ∴ON =|x|,MN =|-x 2+2x|,由(2)在Rt △ABD 和Rt △CEB 中,可分别求得AB =2,BC =32, ∵MN ⊥x 轴于点N ∴∠MNO =∠ABC =90°,∴当△MNO 和△ABC 相似时有MN AB =ON BC 或MN BC =ONAB,①当MN AB =ON BC 时,则有|-x 2+2x|2=|x|32,即|x|×|-x +2|=13|x|,∵当x =0时M 、O 、N 不能构成三角形, ∴x ≠0,∴|-x +2|=13,即-x +2=±13,解得x =53或x =73,此时N 点坐标为(53,0)或(73,0),②当MN BC =ON AB 时,则有|-x 2+2x|32=|x|2,即|x|×|-x +2|=3|x|,∴|-x +2|=3,即-x +2=±3,解得x =5或x =-1, 此时N 点坐标为(-1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(53,0)或(73,0)或(-1,0)或(5,0).2.解:(1)把A 、C 两点坐标代入直线y =-ax +c 可得⎩⎪⎨⎪⎧3a +c =0c =1,解得⎩⎪⎨⎪⎧a =-13c =1, ∴直线的表达式为y =13x +1,把A 点坐标和a =-13代入抛物线解析式可得9×(-13)-3b +1=0,解得b =-23,∴抛物线的表达式为y =-13x 2-23x +1;(2)∵点D 为抛物线在第二象限部分上的一点,∴可设D(t ,-13t 2-23t +1),则F(t ,13t +1),∴DF =-13t 2-23t +1-(13t +1)=-13t 2-t =-13(t +32)2+34.∵-13<0,∴当t =-32时,DF 有最大值,最大值为34,此时D 点坐标为(-32,54);(3)设P(m ,-13m 2-23m +1),如解图,∵P 在第四象限,∴m >0,-13m 2-23m +1<0,∴AN =m +3,PN =13m 2+23m -1,∵∠AOC =∠ANP =90°,∴当以P 、A 、N 为顶点的三角形与△ACO 相似时有△AOC ∽△PNA 和△AOC ∽△ANP ,①当△AOC ∽△PNA 时,则有OC NA =AO PN ,即1m +3=313m 2+23m -1,解得m =-3或m =10,经检验当m =-3时,m +3=0(舍去), ∴m =10,此时P 点坐标为(10,-39);②当△AOC ∽△ANP 时,则有OC NP =AO AN ,即113m 2+23m -1=3m +3,解得m =2或m =-3,经检验当m =-3时,m +3=0(舍去), ∴m =2,此时P 点坐标为(2,-53);综上可知P 点坐标为(10,-39)或(2,-53).3.解:(1)将A 、G 点坐标代入函数解析式,得⎩⎨⎧9a +3b +33=0,a -b +33=0,解得⎩⎨⎧a =-3b =23,∴抛物线的解析式为y =-3x 2+23x +33; (2)如解图①,作ME ∥y 轴交AB 于E 点, 当x =0时,y =33,即B 点坐标为(0,33), 直线AB 的解析式为y =-3x +33,设M(n ,-3n 2+23n +33),E(n ,-3n +33), ME =-3n 2+23n +33-(-3n +33)=-3n 2+33n , S △ABM =12ME·AO=12(-3n 2+33n)×3=-332(n -32)2+2738,当n =32时,△ABM 面积的最大值是2738;(3)存在;理由如下:OE =233,AP =2,OP =1,BE =33-233=733,当y =233时,-3x +33=233,解得x =73,即EF =73,将△BEP 绕点E 顺时针方向旋转90°,得到△B′EC(如解图②), ∵OB ⊥EF ,∴点B′在直线EF 上,∵C 点横坐标绝对值等于EO 长度,C 点纵坐标绝对值等于EO -PO 长度, ∴C 点坐标为(-233,233-1),如解图,过F 作FQ ∥B′C,交EC 于点Q , 则△FEQ ∽△B′EC,由BE EF =B′E EF =CEEQ =3,可得Q 的坐标为(-23,-33);根据对称性可得,Q 关于直线EF 的对称点Q′(-23,533)也符合条件.4.解:(1)∵抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0), ∴⎩⎪⎨⎪⎧a +b +3=025a +5b +3=0,解得⎩⎪⎨⎪⎧a =35b =-185, ∴该抛物线对应的函数解析式为y =35x 2-185x +3;(2)①∵点P 是抛物线上的动点且位于x 轴下方,∴可设P(t ,35t 2-185t +3)(1<t <5),∵直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N , ∴M(t ,0),N(t ,35t +3),∴PN =35t +3-(35t 2-185t +3)=-35(t -72)2+14720,联立直线CD 与抛物线解析式可得⎩⎪⎨⎪⎧y =35x +3y =35x 2-185x +3,解得⎩⎪⎨⎪⎧x =0y =3或⎩⎪⎨⎪⎧x =7y =365,∴C(0,3),D(7,365),分别过C 、D 作直线PN 的垂线,垂足分别为E 、F ,如解图①,则CE =t ,DF =7-t ,∴S △PCD =S △P +S △PDN =12PN·CE+12PN·DF=72PN =72[-35(t -72)2+14720]=-2110(t -72)2+102940, ∴当t =72时,△PCD 的面积最大,最大值为102940;②存在.∵∠CQN =∠PMB =90°, ∴当△Q 与△PBM 相似时,有NQ CQ =PM BM 或NQ CQ =BMPM两种情况, ∵CQ ⊥PN ,垂足为Q ,∴Q(t ,3),且C(0,3),N(t ,35t +3),∴CQ =t ,NQ =35t +3-3=35t ,∴NQ CQ =35,∵P(t ,35t 2-185t +3),M(t ,0),B(5,0),∴BM =5-t ,PM =0-(35t 2-185t +3)=-35t 2+185t -3,当NQ CQ =PM BM 时,则PM =35BM ,即-35t 2+185t -3=35(5-t),解得t =2或t =5(舍去),此时P(2,-95);当NQ CQ =BM PM 时,则BM =35PM ,即5-t =35(-35t 2+185t -3),解得t =349或t =5(舍去),此时P(349,-5527);综上可知存在满足条件的点P ,其坐标为(2,-95)或(349,-5527).。
2017年广东省中考数学试题(含参考答案)
2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( ) A.B.5C.-D.-5 2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×B.0.4×C.4×D.4× 3.已知,则的补角为( )A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.正五边形 D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲 线 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )15159101010910101070A ∠=︒A ∠110︒70︒30︒20︒230x x k -+=11(0)y k x k =≠22(0)k y k x=≠A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2) 8.下列运算正确的是( )A. B. C. D.9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③;④,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.分解因式:a a +2 .12.一个n 边形的内角和是,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .223a a a +=325·a a a =426()a a =424a a a +=ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△720︒ab ÷431a b ÷=863a b ÷-三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中x =√5 .19.学校团委组织志愿者到图书馆整理一批新进的图书。
2017年广东省中考数学试卷(含答案,word高清版)
2017年广东省中考数学试卷一、选择题(共10小题;共50分)1. 的相反数是B.2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃。
据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过 4000000000美元,将 4000000000用科学记数法表示为A. B. C. D.3. 已知,则的补角为A. B. C. D.4. 如果是方程的一个根,则常数的值为A. B.5. 在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:,,,,,则这组的数据的众数是A. B. C. D.6. 下列所述图形中,既是轴对称图形又是中心对称图形的是A. 等边三角形B. 平行四边形C. 正五边形D. 圆7. 如图,在同一平面直角坐标系中,直线与双曲线相交于,两点,已知点的坐标为,则点的坐标为8. 下列运算正确的是A. B. C. D.9. 如图,四边形内接于,,,则的大小为A. B. C. D.10. 如图,已知正方形,点是边的中点,与相交于点,连接,下列结论:①;②;③;④,其中正确的是A. ①③B. ②③C. ①④D. ②④二、填空题(共6小题;共30分)11. 分解因式:.12. 一个边形的内角和是,那么.13. 已知实数,在数轴上的对应点的位置如图所示,则(填“”,“”或“”).14. 在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为,,,,.随机摸出一个小球,摸出的小球标号为偶数的概率是.15. 已知,则的值为.16. 如图,矩形纸片中,,,先按图操作,将矩形纸片沿过点的直线折叠,使点落在边上的点处,折痕为;再按图操作:沿过点的直线折叠,使点落在上的点处,折痕为,则,两点间的距离为.三、解答题(共9小题;共117分)17. .18. 先化简,再求值:,其中.19. 学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理本,女生每人整理本,共能整理本;若男生每人整理本,女生每人整理本,共能整理本,求男生、女生志愿者各有多少人?20. 如图,在中,.(1)作边的垂直平分线,与,分别相交于点,(用尺规作图,保留作图痕迹,不要求写作法);(2)在()的条件下,连接,若,求的度数.21. 如图所示,已知四边形,都是菱形,,为锐角.(1)求证:;(2)若,求的度数.22. 某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表(1)填空:①(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有名学生,请估算九年级体重低于千克的学生大约有多少人?23. 如图,在平面直角坐标系中,抛物线交轴于,两点,点是抛物线上在第一象限内的一点,直线与轴相交于点.(1)求抛物线的解析式;(2)当点是线段的中点时,求点的坐标;(3)在()的条件下,求的值.24. 如图,是的直径,,点为线段上一点(不与,重合),作,交于点,垂足为点,作直径,过点的切线交的延长线于点,作于点,连接.(1)求证:是的平分线;(2)求证:;(3)当时,求的长度(结果保留).25. 如图,,在平面直角坐标系中,为原点,四边形是矩形,点,的坐标分别是和,点是对角线上一动点(不与,重合),连接,作交轴于点,以线段,为邻边作矩形.(1)填空:点的坐标为;(2)是否存在这样的点,使得是等腰三角形?若存在,请求出的长度;若不存在,请说明理由;(3)①求证:;②设,矩形的面积为,求关于的函数关系式(可利用①的结论),并求出的最小值.答案第一部分1. D2. C3. A4. B5. B6. D7. A8. B9. C10. C第二部分11.12.13.16.第三部分17.18.当时,.19. 设男生人,女生人,则有解得答:男生有人,女生有人.20. (1)如图,(2)如图,是的垂直平分线,,,是的外角,.21. (1)如图,四边形,是菱形,.,由等腰三角形的三线合一性质可得.(2),,是等边三角形,.,,四边形是菱形,,.22. (1);(2)(人),答:估计九年级体重低于千克的学生大约有人.23. (1)把,代入得解得所以(2)过作轴于点,则轴.为的中点,轴,为的中点,的横坐标为把代入得,点的坐标为.(3),,,,,,.24. (1)连接,如图,为直径,,,,,,为的切线,,,为的直径,,,,,,,即:是的平分线.(2),,,由()得,,在和中,,.(3)延长交于点,如图,,设:,,由()得,是的角平分线,,,.,,,,,,,,,即,,在中,,,,,,,,的长度为:.25. (1)(2)存在理由:①如图,若,,,.,.,是等边三角形,.,.②如图,若,依题意知:,.,,.四边形是矩形,.,.是等腰三角形,.③若,则或(舍去),则,不合题意,故舍去.综上所述:的值为或者时,为等腰三角形.(3)①如图,过点作于点,于点.,.在和中,,.,,.②如图,作于点.,,,,当时,取得最小值.。
2017年广东省中考数学试卷(含答案,word高清版)(2021年整理精品文档)
(完整版)2017年广东省中考数学试卷(含答案,word高清版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2017年广东省中考数学试卷(含答案,word高清版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2017年广东省中考数学试卷(含答案,word高清版)的全部内容。
2017年广东省中考数学试卷一、选择题(共10小题;共50分)1. 的相反数是A。
B。
C. D.2。
“一带一路”倡议提出三年以来,广东企业到“一带一路"国家投资越来越活跃。
据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过 4000000000美元,将 4000000000用科学记数法表示为A. B。
C. D。
3. 已知,则的补角为A. B。
C. D.4. 如果是方程的一个根,则常数的值为A。
B。
C. D.5. 在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:,,,,,则这组的数据的众数是A. B。
C。
D.6. 下列所述图形中,既是轴对称图形又是中心对称图形的是A. 等边三角形B。
平行四边形 C. 正五边形 D. 圆7. 如图,在同一平面直角坐标系中,直线与双曲线相交于,两点,已知点的坐标为,则点的坐标为A。
D。
8。
下列运算正确的是A。
B。
C. D.9. 如图,四边形内接于,,,则的大小为A. B. C. D。
10。
如图,已知正方形,点是边的中点,与相交于点,连接,下列结论:① ;② ;③ ;④,其中正确的是A。
①③ B. ②③C。
①④ D. ②④二、填空题(共6小题;共30分)11. 分解因式:.12. 一个边形的内角和是,那么.13。
2017年广东省中考模拟数学试题(二)含答案
19.解不等式组
x 3 0 ① 并把解集在数轴上表示出来. 3( x 1) 2(2 x 1) 1 ②
四、解答题(二) (本题共 3 题,每小题 7 分,共 21 分) 20.已知关于 x 的方程 x 2 2 x a 2 0 . (1)若该方程有两个不相等的实数根,求实数 a 的取值范围; (2)当该方程的一个根为 1 时,求 a 的值及方程的另一根.
6.某商品的标价为 200 元,8 折销售仍赚 40 元,则商品进价为(
7.已知 2 是关于 x 的方程 x 2 2 mx 3m 0 的一个根,并且这个方程的两个根恰好是等腰三角形 ABC 的 两条边长,则三角形 ABC 的周长为( A. 10 B. 14 ) D. 8 或 10 ) C. 10 或 14
21.下表为深圳市居民每月用水收费标准, (单位:元/m ) . 用水量 单价
3
x 22
剩余部分 (1)某用户用水 10 立方米,共交水费 23 元,求 a 的值;
a
a 1.1
(2)在(1)的前提下,该用户 5 月份交水费 71 元,请问该用户用水多少立方米?
22.某地区 2013 年投入教育经费 2500 万元,2015 年投入教育经费 3025 万元. (1)求 2013 年至 2015 年该地区投入教育经费的年平均增长率; (2)根据(1)所得的年平均增长率,预计 2016 年该地区将投入教育经费多少万元.
25.某汽车销售公司销售的汽车价格全在 11 万元以上,最近推出两种分期付款购车活动:①首付款满 11 万 元,减 1 万元;②首付款满 10 万元,分期交付的余款可享受八折优惠. (1)小王看中了一款汽车,交了首付款后,还有 12 万余款需要分期交付,设他每月付款 p 万元,n 个 月结清余款,用关于 p 的代数式表示 n; (2)设小王看中的汽车的价格为 x 万元,他应该采取哪种付款方式最省钱?请说明理由; (3)已知小王分期付款的能力是每月 0.2 万元,若不考虑其他因素,只希望早点结清余款,他该怎样选 择?请说明理由.
2017年广东省中考数学试卷解析版
2017年广东省中考数学试卷(解)析版.年广东省中考数学试卷2017分)分,共30一、选择题(本大题共10小题,每小题3) 1.5的相反数是(.﹣ D.﹣.5 CA5. B2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超)用科学记数法表示为(过4000000000美元,将400000000010991010D.4 C.4×10A.0.4×10× B.0.4×10) 3.已知∠A=70°,则∠A的补角为(.20°DC.30° A.110° B.70°2﹣3x+k=0的一个根,则常数k的值为(.如果2是方程x )42.﹣C.﹣1 DA.1 B.25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()80.85 DB.90 C.A.95 6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形 D.圆y=0)与双曲线x(k≠.如图,在同一平面直角坐标系中,直线7y=kk(112≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为())22,﹣) D.(﹣(﹣2,﹣1)C.(﹣1,﹣1 1A.(﹣,﹣2)B.) 8.下列运算正确的是(6452222443(a.a+a)=aB.a?a=a=a C.a+2a=3aA. D9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()第2页(共26页).50° DA.130° B.100° C.65°,连接F10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点,其中S,下列结论:①=S;②S=4S;③S=2S=2S;④SBF CDF△ABF△△ADFCEF△CDFADF△CEF△ADF△△)正确的是(.②④ D.②③ C.①④BA.①③分)分,共6小题,每小题424二、填空题(本大题共2.+a= a 11.分解因式:.n= 12.一个n边形的内角和是720°,则(填0,b在数轴上的对应点的位置如图所示,则.a+b 13.已知实数a“>”,“<”或“=”),,214.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1.,5,随机摸出一个小球,摸出的小球标号为偶数的概率是,34.的值为 15.已知4a+3b=1,则整式8a+6b﹣3ABCD,先按图(2)操作:将矩形纸片中,16.如图,矩形纸片ABCDAB=5,BC=3);再按图(3EAB上的点处,折痕为AF沿过点A的直线折叠,使点D落在边HA、,则上的点C落在EFH处,折痕为FG的直线折叠,使点操作,沿过点F.两点间的距离为263第页(共页)分)186分,共三、解答题(本大题共3小题,每小题1﹣0.(+17.计算:|﹣7|﹣(1﹣π))2x=,其中(﹣+4).)?(x18.先化简,再求值:本,若男生每人整理3019.学校团委组织志愿者到图书馆整理一批新进的图书.本,女生每人整理本;若男生每人整理5020本,共能整理680女生每人整理本.求男生、女生志愿者各有多少人?40本,共能整理1240分)21小题,每小题7分,共四、解答题(本大题共3.BA>∠20.如图,在△ABC中,∠(用尺规作图,,E,BC分别相交于点D,与(1)作边AB的垂直平分线DEAB;保留作图痕迹,不要求写作法)的度数.AEC)的条件下,连接AE,若∠B=50°,求∠1(2)在(为锐角.BAD∠FAD,∠∠ABCD21.如图所示,已知四边形,ADEF都是菱形,BAD=;BF⊥(1)求证:AD的度数.ADC)若2BF=BC,求∠( 264第页(共页).某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,22将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表体重(千人数组边克)5045A ≤x<1255xB<50m≤60<C≤5580x65<60≤D40x7065≤x16E<; m= (直接写出结果))填空:①(1度;组所在扇形的圆心角的度数等于②在扇形统计图中,C千克的学生大名学生,请估算九年级体重低于60(2)如果该校九年级有1000约有多少人?分)27小题,每小题9分,共五、解答题(本大题共32,3,B(0A+ax+b交x 轴于(1,)xy=在平面直角坐标系中,.23如图,抛物线﹣.C与BPy轴相交于点是抛物线上在第一象限内的一点,直线)两点,点0P 265第页(共页)2的解析式;x+ax+b(1)求抛物线y=﹣的坐标;P是线段BC的中点时,求点(2)当点P的值.sin∠OCB)在((32)的条件下,求,,B重合)为线段OB上一点(不与O24.如图,AB是⊙O的直径,AB=4,点E 的延长的切线交DBE,作直径CD,过点COB作CE⊥,交⊙O于点C,垂足为点.CBPC 于点F,连接AF线于点P,⊥的平分线;CB是∠ECP1()求证:;)求证:CF=CE2(π)时,求劣弧(3=)当的长度(结果保留的坐C是矩形,点A,25.如图,在平面直角坐标系中,O为原点,四边形ABCO重,CAC,点D是对角线上一动点(不与AA标分别是(0,2)和C(2,0).,DB为邻边作矩形BDEFE,作DE⊥DB,交x轴于点,以线段DEBD合),连结;的坐标为(1)填空:点B(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;; =(3)①求证:②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),的最小值.y并求出第6页(共26页)页)26页(共7第年广东省中考数学试卷2017参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是().﹣ D.﹣B.5 CA5.:相反数.14【考点】【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5..D故选:2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超)4000000000美元,将4000000000用科学记数法表示为(过109910104×10× D..0.4×10B .0.4×10. C4A:科学记数法—表示较大的数.1I【考点】n的形式,其中1≤|a|<10,n【分析】科学记数法的表示形式为a×10为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1是负数.n 时,9.10解:4000000000=4×【解答】.C故选:3.已知∠A=70°,则∠A的补角为()A.110° B.70° D.20°C.30°:余角和补角.IL【考点】页)26页(共8第的度数求出其补角即可.A【分析】由∠解:∵∠A=70°,【解答】110°,A的补角为∴∠A故选2﹣3x+k=0的一个根,则常数kx的值为()4.如果2是方程A.1 B.2 C.﹣1 D.﹣2【考点】A3:一元二次方程的解.【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.2﹣3x+k=0的一个根,2是一元二次方程x解:∵【解答】2,×2+k=0﹣3∴2.解得,k=2.故选:B 5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()80D.90 C.85 .A.95 B:众数.W5【考点】【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90..B故选6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形 D.圆:轴对称图形.:中心对称图形;R5P3【考点】【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形. 269第页(共页).故选Dy=0)与双曲线(k(k≠7.如图,在同一平面直角坐标系中,直线y=kx112≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为())22,﹣) D.(﹣1(﹣2,﹣1) C.(﹣,﹣11A.(﹣,﹣2) B.:反比例函数与一次函数的交点问题.G8【考点】【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2)..故选:A8.下列运算正确的是()2325264244a?aA=a C.(a)..Da=a+a=aa+2a=3aB.【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.,此选项错误;a+2a=3aA、【解答】解:325,此选项正确;a?a=aB、428,此选项错误;)C、(a=a24不是同类项,不能合并,此选项错误;与D、aa.B故选:9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()页(共10第26页).50°DC.65° A.130° B.100°:圆内接四边形的性质.【考点】M6再由圆内接四边形的性质求出∠的度数,【分析】先根据补角的性质求出∠ABC的度数.DACADC的度数,由等腰三角形的性质求得∠解:∵∠CBE=50°,【解答】∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,的内接四边形,OABCD为⊙∵四边形∴∠D=180°﹣∠ABC=180°﹣130°=50°,,∵DA=DC=65°,∴∠DAC=.C故选,连接相交于点F边的中点,DE与AC.如图,已知正方形10ABCD,点E是BC,其中=2S=2SS;④S=SBF,下列结论:①S;②S=4S;③CDFADF△ABF△△ADFCEFCDF△ADF△CEF△△△)正确的是(.②④D.①④ B.②③ CA.①③:正方形的性质.【考点】LE,BE=EC=AD故①正确,即可推出AFB,S=S,由BC=AFD【分析】由△≌△ADFABF△△,故②③S=2S,S,推出=2S==,可得=S,=4SECAD∥CDFADF△CEF△CDF△ADF△△CEF△页)26页(共11第错误④正确,由此即可判断.是正方形,解:∵四边形ABCD【解答】,FAB,AD=BC=AB,∠FAD=∠∴AD∥CB中,AFB在△AFD和△,,AFB∴△AFD≌△,故①正确,=S∴S ADFABF△△,,AD∵∥BE=EC=ECBC=AD,∴===,S=2S=2S∴S,S=4S,CDF△△CDF△CEFADF△△ADF△CEF故②③错误④正确,.C 故选分)46小题,每小题分,共24二、填空题(本大题共2.) 11.分解因式:a+a= a(a+1:因式分解﹣提公因式法.【考点】53直接提取公因式分解因式得出即可.【分析】2.a)+a=a(a+1【解答】解:.a(a+1)故答案为:.n= .一个12n边形的内角和是720°,则6:多边形内角与外角.【考点】L3 2612第页(共页))?180°,依此列方程可求解.n﹣2【分析】多边形的内角和可以表示成(,边形边数为n【解答】解:设所求正n)?180°=720°,则(n﹣2.n=6解得< 0,b在数轴上的对应点的位置如图所示,则.(填“>”,a+b 13.已知实数a“<”或“=”)【考点】2A:实数大小比较;29:实数与数轴.【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离大,∴|a|>|b|,.<0∴a+b故答案为:<.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,,随机摸出一个小球,摸出的小球标号为偶数的概率是,5,. 34:概率公式.【考点】X4【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,,∴摸出的小球标号为偶数的概率是故答案为:2613第页(共页).1 的值为﹣15.已知4a+3b=1,则整式8a+6b﹣3:代数式求值.【考点】33【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.,4a+3b=1【解答】解:∵,∴8a+6b=28a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H.两点间的距离为:矩形的性质.LB:翻折变换(折叠问题);【考点】PB【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3,计算即可.AH=﹣2=1,根据.AH3中,连接【解答】解:如图,2=1﹣HF=3﹣EH=EFAEH由题意可知在Rt△中,AE=AD=3,,==∴AH=.故答案为2614第页(共页)分)18小题,每小题6分,共三、解答题(本大题共310﹣.+﹣π)()17.计算:|﹣7|﹣(1【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3.=92(.先化简,再求值:x)?(.﹣4),其中18x=+【考点】6D:分式的化简求值.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.=[【解答】解:原式xx+2)(﹣2)+]?()2x+2)(x﹣?(=,=2x时,x=当.=2原式19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理本.求男生、女生志愿者各有多少人?124040本,共能整理:二元一次方程组的应用.【考点】9A【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,页(共15第26页),根据题意得:.解得:人.人,女生志愿者有16答:男生志愿者有12分)分,共213小题,每小题7四、解答题(本大题共.B中,∠A>∠ABC20.如图,在△(用尺规作图,ED,分别相交于点DE,与AB,BC)作边(1AB的垂直平分线;保留作图痕迹,不要求写作法)的度数.AECAE,若∠B=50°,求∠2)在(1)的条件下,连接(:线段垂直平分线的性质.KG【考点】N2:作图—基本作图;)根据题意作出图形即可;【分析】(1,根据等腰三角形的性质得到∠AE=BE是AB的垂直平分线,得到(2)由于DE∠B=50°,由三角形的外角的性质即可得到结论.EAB=)如图所示;(1【解答】解:的垂直平分线,是AB(2)∵DE,∴AE=BE∠B=50°,EAB=∴∠∠B=100°.EAB+∠∴∠AEC=2616第页(共页)21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【考点】L8:菱形的性质.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A;⊥BFBF的垂直平分线上,进而证明AD在线段DG=CD.在直角△CDG于G,证明中得出∠C=30°,BC⊥(2)设ADBF于H,作DG⊥再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°..DFDB、【解答】(1)证明:如图,连结∵四边形ABCD,ADEF都是菱形,.AD=DE=EF=FAAB=BC=CD=DA∴,中,FAD在△BAD与△,∴△BAD≌△FAD,,DB=DF∴∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,的垂直平分线,BF是线段∴AD;BF⊥∴AD 第17页(共26页)是矩形,,则四边形BGDHBC于G,作AD⊥BF于HDG⊥(2)如图,设.∴BFDG=BH=∵BF=BC,BC=CD,.∴CDDG=DG=CD中,∵∠CGD=90°,,在直角△CDG∴∠C=30°,,ADBC∥∵∴∠ADC=180°﹣∠C=150°.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表体重(千组边人数克)50<xA≤451255x50mB≤<60x55C≤80<65<40Dx≤60第页(共1826页)1665<70≤xE52 (直接写出结果)(1)填空:①m= ;②在扇形统计图中,C组所在扇形的圆心角的度数等于 144 度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?:频数(率)分布表.V7V5:用样本估计总体;【考点】VB:扇形统计图;【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九千克的学生数量.60年级体重低于【解答】解:(1)①调查的人数为:40÷20%=200(人),;﹣16=5280﹣4012∴m=200﹣﹣组所在扇形的圆心角的度数为②C×360°=144°;;,故答案为:52144×1000=720(人).(2)九年级体重低于60千克的学生大约有五、解答题(本大题共3小题,每小题9分,共27分)2+ax+b交x轴于A(1,0),B(3,﹣如图,23.在平面直角坐标系中,抛物线y=x0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.2的解析式;+ax+b ﹣1)求抛物线y=x((2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.第19页(共26页):T7轴的交点;H8:待定系数法求二次函数解析式;HA【考点】:抛物线与x解直角三角形.2可得解析式;b,解得ay=﹣x,+ax+b、【分析】(1)将点AB代入抛物线)中抛物线解1P点横坐标代入(点横坐标为0可得P点横坐标,将C (2)由点坐标;析式,易得P长,BCC的坐标,利用勾股定理可得A、B、(3)由P点的坐标可得C点坐标,可得结果.OCB=sin利用∠2可得,+ax+b代入抛物线y=﹣x【解答】解:(1)将点A、B,,﹣3a=4,b=解得,2;3+4x﹣∴抛物线的解析式为:y=﹣x轴上,yC在(2)∵点,x=0所以C点横坐标的中点,是线段BC∵点P,==x∴点P横坐标P2上,3+4x﹣y=∵点P在抛物线﹣x,∴y﹣3==P;P,的坐标为()∴点的中点,BC,点)P是线段P3()∵点的坐标为(, 2620第页(共页),0=×﹣∴点C的纵坐标为2,,)∴点C的坐标为(0,∴=BC==OCB=.∴sin∠=AB=4的直径,是⊙O重合),24.如图,AB,点E为线段OB上一点(不与O,B 作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.的平分线;是∠ECP)求证:(1CB;CF=CE)求证:(2π)=3(的长度(结果保留)当时,求劣弧【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;,)证明:∵OC=OB(【解答】1,OBC∴∠OCB=∠∵PF是⊙O的切线,CE⊥AB,∠CEB=90°,∴∠OCP=第2621页(共页)∠OBC=90°,BCE+PCB+∠OCB=90°,∠∴∠∴∠BCE=∠BCP,.平分∠PCE ∴BC.)证明:连接AC(2∵AB是直径,∴∠ACB=90°,∠BCE=90°,∠ACF=90°,∠ACE+∴∠BCP+∵∠BCP=∠BCE,,∴∠ACF=∠ACE,AC=AC∵∠F=∠AEC=90°,,ACF≌△ACE∴△.∴CF=CE(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,,∽△PMB∵△BMC,∴=22,∴BM=CM?PM=3aBM=a∴,BCM=,∴=tan∠∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,=∴=π.的长第22页(共26页)的坐,C.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A252((0,重2)和C标分别是AD,0),点是对角线AC上一动点(不与A,C.DE,DB为邻边作矩形BDEF,以线段合),连结BD,作DE⊥DB,交x轴于点E; 2,(1)填空:点B2)的坐标为(的长是等腰三角形?若存在,请求出ADDEC2)是否存在这样的点D,使得△(度;若不存在,请说明理由;;(3)①求证: =,的函数关系式(可利用①的结论)y关于x矩形AD=x,BDEF的面积为y,求②设的最小值.y并求出:相似形综合题.SO【考点】的长即可解决问题;BC)求出AB、【分析】(1四点、C、D、EBK)存在.连接BE,取BE的中点,连接DK、KC.首先证明(2ACO=∠,由tan∠DBC=∠DCE,∠,=推出∠ACO=30°,EDC=EBC共圆,可得∠∠DBC=ED=EC,推出∠DEC∠ACD=60°由△是等腰三角形,观察图象可知,只有是等边三角形,推∠BCD=60°,可得△DBCEDC=DCE=∠∠EBC=30°,推出∠DBC=,由此即可解决问题;DC=BC=2出∠DCE=30°,由此即DBC=、EC四点共圆,推出∠、、)可知,)①由((32BD 2623第页(共页)可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;是矩形,AOCB1)∵四边形【解答】解:(∠BAO=90°,BCO=OC=AB=2∴BC=OA=2,,∠.),B(22∴.2故答案为()2,)存在.理由如下:(2.、KCK,连接DKBE连接,取BE的中点∠BCE=90°,∵∠BDE=,KD=KB=KE=KC∴四点共圆,C、E、∴B、D,EBCEDC=∠DBC=∴∠∠DCE,∠,ACO=∵tan∠=∴∠ACO=30°,∠ACB=60°,是等腰三角形,观察图象可知,只有ED=EC①如图1中,△DEC∠EBC=30°,EDC=∠DCE=∠∴∠DBC=∠BCD=60°,∴∠DBC=是等边三角形,∴△DBC,∴DC=BC=2,OA=2Rt在△AOC 中,∵∠ACO=30°,,AC=2AO=4∴.﹣2=2AD=AC∴﹣CD=4是等腰三角形.AD=2∴当时,△DEC 2624第页(共页)∠CDE=15°,DEC=,∠DBC=∠②如图2中,∵△DCE是等腰三角形,易知CD=CE ∠ADB=75°,∴∠ABD=,AB=AD=2∴2或AD.的值为2综上所述,满足条件的(3)①由(2)可知,B、D、E、C四点共圆,∠DCE=30°,DBC=∴∠,DBE=∴tan∠.∴=②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,,x∴AH=DH==AD=x,,﹣∴xBH=2BD=中,Rt=在△BDH,?,DE=∴BD=22 [BDEF6x+12),的面积为]y==x(∴矩形﹣2,2﹣y=x+4即x2+﹣,3)(x∴y=,0>∵有最小值时,∴x=3y.页(共25第26页)页)26页(共26第。
广东省广州市2017年初中毕业生学业考试数学(扫描版,含答案)
原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!随风潜入夜,润物细无声。
出自杜甫的《春夜喜雨》原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!玉壶存冰心,朱笔写师魂。
——冰心《冰心》原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!举世不师,故道益离。
柳宗元上信中学陈道锋长郡中学史李东杭信一中何逸冬2017年广州市初中毕业生学业考试数学答案第一部分选择题(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B2.A3. C4. D5.A6. B7. A8.C9.D10. D第二部分非选择题(共120分)二、填空题:本大题共6小题,每小题3分,满分18分11.70°12.(3)(3)+-x y y13.1 , 514.1715.16.①③三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17. 解析:(1)×3,得:3x+3y=15,减去(2),得x=4解得:41x y =⎧⎨=⎩18. 证明:因为AE =BF ,所以,AE +EF =BF +EF ,即AF =BE , 在△ADF 和△BCE 中,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩所以,ADF BCE ∆≅∆19.解析:(1)E 类:50-2-3-22-18=5(人),统计图略(2)D 类:18÷50×100%=36%20. 解析:(1)如下图所示:21.解析:(1)乙队筑路的总公里数:4603=80(公里);22.解析:23.解析:24.解析:25. 解析:【素材积累】1、冬天是纯洁的。
冬天一来,世界变得雪白一片,白得毫无瑕疵,白雪松软软地铺摘大地上,似为大地铺上了一层银色的地毯。
松树上压着厚厚的白雪,宛如慈爱的妈妈温柔地抱着自己的孩子。
白雪下的松枝还露出点绿色,为这白茫茫的世界增添了一点不一样的色彩。
2017年广东省广州市中考数学试卷及答案解析
2017年广东省广州市中考数学试卷及答案解析一、选择题(本大题共10小题,每小题3分,共30分)1.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为( )A .﹣6B .6C .0D .无法确定解:∵数轴上两点A ,B 表示的数互为相反数,点A 表示的数为﹣6,∴点B 表示的数为6,故选:B .2.如图,将正方形ABCD 中的阴影三角形绕点A 顺时针旋转90°后,得到的图形为( )A .B .C .D .解:由旋转的性质得,将正方形ABCD 中的阴影三角形绕点A 顺时针旋转90°后,得到的图形为A ,故选:A .3.某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为( )A .12,14B .12,15C .15,14D .15,13解:∵这组数据中,12出现了1次,13出现了1次,14出现了1次,15出现了3次, ∴这组数据的众数为15,∵这组数据分别为:12、13、14、15、15、15∴这组数据的平均数12+13+14+15+15+156=14.故选:C .4.下列运算正确的是( )A .3a+b 6=a+b 2B .2×a+b 3=2a+b 3C .√a 2=aD .|a |=a (a ≥0)解:A 、3a+b 6无法化简,故此选项错误;B 、2×a+b 3=2a+2b 3,故此选项错误;C 、√a 2=|a |,故此选项错误;D 、|a |=a (a ≥0),正确.故选:D .5.关于x 的一元二次方程x 2+8x +q =0有两个不相等的实数根,则q 的取值范围是()A .q <16B .q >16C .q ≤4D .q ≥4解:∵关于x 的一元二次方程x 2+8x +q =0有两个不相等的实数根,∴△=82﹣4q =64﹣4q >0,解得:q <16.故选:A .6.如图,⊙O 是△ABC 的内切圆,则点O 是△ABC 的( )A .三条边的垂直平分线的交点B .三条角平分线的交点C .三条中线的交点D .三条高的交点解:∵⊙O 是△ABC 的内切圆,则点O 到三边的距离相等,∴点O 是△ABC 的三条角平分线的交点;故选:B .7.计算(a 2b )3•b 2a 的结果是( )A .a 5b 5B .a 4b 5C .ab 5D .a 5b 6解:原式=a 6b 3•b 2a =a 5b 5,故选:A . 8.如图,E ,F 分别是▱ABCD 的边AD 、BC 上的点,EF =6,∠DEF =60°,将四边形EFCD沿EF 翻折,得到EFC ′D ′,ED ′交BC 于点G ,则△GEF 的周长为( )A .6B .12C .18D .24解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG =∠EGF ,∵将四边形EFCD 沿EF 翻折,得到EFC ′D ′,∴∠GEF =∠DEF =60°,∴∠AEG =60°,∴∠EGF =60°,∴△EGF 是等边三角形,∵EF =6,∴△GEF 的周长=18,故选:C .9.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD ,垂足为E ,连接CO ,AD ,∠BAD=20°,则下列说法中正确的是( )A .AD =2OBB .CE =EOC .∠OCE =40°D .∠BOC =2∠BAD解:∵AB ⊥CD ,∴BĈ=BD ̂,CE =DE ,∴∠BOC=2∠BAD=40°,∴∠OCE=90°﹣40°=50°.故选:D.10.a≠0,函数y=ax与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A.B.C.D.解:当a>0时,函数y=ax的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=ax的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选:D.二、填空题(本大题共6小题,每小题3分,共18分)11.如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B=70°.解:∵AD∥BC,∴∠A+∠B=180°,又∵∠A=110°,∴∠B=70°,故答案为:70°.12.分解因式:xy2﹣9x=x(y+3)(y﹣3).解:xy2﹣9x=x(y2﹣9)=x(y﹣3)(y+3).故答案为:x(y﹣3)(y+3).13.当x = 1 时,二次函数y =x 2﹣2x +6有最小值 5 .解:∵y =x 2﹣2x +6=(x ﹣1)2+5,∴当x =1时,二次函数y =x 2﹣2x +6有最小值5.故答案为:1、5.14.如图,Rt △ABC 中,∠C =90°,BC =15,tan A =158,则AB = 17 .解:∵Rt △ABC 中,∠C =90°,tan A =158,BC =15, ∴15AC =158,解得AC =8,根据勾股定理得,AB =√AC 2+BC 2=√82+152=17.故答案为:17.15.如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是√5,则圆锥的母线l = 3√5 .解:圆锥的底面周长=2π×√5=2√5πcm ,则:120π×l 180=2√5π,解得l =3√5.故答案为:3√5.16.如图,平面直角坐标系中O 是原点,▱OABC 的顶点A ,C 的坐标分别是(8,0),(3,4),点D ,E 把线段OB 三等分,延长CD 、CE 分别交OA 、AB 于点F ,G ,连接FG .则下列结论:①F 是OA 的中点;②△OFD 与△BEG 相似;③四边形DEGF 的面积是203;④OD =4√53 其中正确的结论是 ①③ (填写所有正确结论的序号).解:①∵四边形OABC 是平行四边形,∴BC ∥OA ,BC =OA ,∴△CDB ∽△FDO ,∴BC OF =BD OD ,∵D 、E 为OB 的三等分点,∴BD OD =21=2, ∴BC OF =2,∴BC =2OF ,∴OA =2OF ,∴F 是OA 的中点;所以①结论正确;②如图2,延长BC 交y 轴于H ,由C (3,4)知:OH =4,CH =3,∴OC =5,∴AB =OC =5,∵A (8,0),∴OA =8,∴OA ≠AB ,∴∠AOB ≠∠EBG ,∴△OFD ∽△BEG 不成立,所以②结论不正确;③由①知:F 为OA 的中点,同理得;G 是AB 的中点,∴FG 是△OAB 的中位线,∴FG =12OB ,FG ∥OB ,∵OB =3DE ,∴FG =32DE ,∴FG DE =32, 过C 作CQ ⊥AB 于Q ,S ▱OABC =OA •OH =AB •CQ ,∴4×8=5CQ ,∴CQ =325, S △OCF =12OF •OH =12×4×4=8, S △CGB =12BG •CQ =12×52×325=8,S △AFG =12×4×2=4,∴S △CFG =S ▱OABC ﹣S △OFC ﹣S △CBG ﹣S △AFG =8×4﹣8﹣8﹣4=12,∵DE ∥FG ,∴△CDE ∽△CFG ,∴S △CDE S △CFG =(DE FG )2=49, ∴S 四边形DEGF S △CFG =59, ∴S 四边形DEGF 12=59,∴S 四边形DEGF =203;所以③结论正确;④在Rt △OHB 中,由勾股定理得:OB 2=BH 2+OH 2,∴OB =√42+(3+8)2=√137,∴OD =√1373,所以④结论不正确;故本题结论正确的有:①③;故答案为:①③.三、解答题(本大题共9小题,共102分)17.(9分)解方程组{x +y =52x +3y =11. 解:{x +y =5①2x +3y =11②, ①×3﹣②得:x =4,把x =4代入①得:y =1,则方程组的解为{x =4y =1. 18.(9分)如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF .求证:△ADF ≌△BCE .解:∵AE =BF ,∴AE +EF =BF +EF ,∴AF =BE ,在△ADF 与△BCE 中,{AD =BC ∠A =∠B AF =BE∴△ADF ≌△BCE (SAS )19.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(0≤t ≤2),B 类(2<t ≤4),C 类(4<t ≤6),D 类(6<t ≤8),E 类(t >8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E 类学生有 5 人,补全条形统计图;(2)D 类学生人数占被调查总人数的 36 %;(3)从该班做义工时间在0≤t ≤4的学生中任选2人,求这2人做义工时间都在2<t ≤4中的概率.解:(1)E 类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D 类学生人数占被调查总人数的1850×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为310.20.(10分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2√3.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.解:(1)如图所示,DE即为所求;(2)由题可得,AE=12AC=√3,∠A=30°,∴Rt△ADE中,DE=12AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+(√3)2=(2x)2,解得x=1,∴△ADE的周长a=1+2+√3=3+√3,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+√3时,T=3(3+√3)+1=10+3√3.21.(12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里. 解:(1)60×43=80(公里).答:乙队筑路的总公里数为80公里.(2)设乙队平均每天筑路8x 公里,则甲队平均每天筑路5x 公里,根据题意得:605x −808x =20,解得:x =0.1,经检验,x =0.1是原方程的解,且符合题意,∴8x =0.8.答:乙队平均每天筑路0.8公里.22.(12分)将直线y =3x +1向下平移1个单位长度,得到直线y =3x +m ,若反比例函数y =k x的图象与直线y =3x +m 相交于点A ,且点A 的纵坐标是3.(1)求m 和k 的值;(2)结合图象求不等式3x +m >k x 的解集.解:(1)由平移得:y =3x +1﹣1=3x ,∴m =0,当y =3时,3x =3,x =1,∴A (1,3),∴k =1×3=3;(2)画出直线y =3x 和反比例函数y =3x 的图象:如图所示,由图象得:不等式3x +m >k x的解集为:﹣1<x <0或x >1.23.(12分)已知抛物线y 1=﹣x 2+mx +n ,直线y 2=kx +b ,y 1的对称轴与y 2交于点A (﹣1,5),点A 与y 1的顶点B 的距离是4.(1)求y 1的解析式;(2)若y 2随着x 的增大而增大,且y 1与y 2都经过x 轴上的同一点,求y 2的解析式. 解:(1)∵抛物线y 1=﹣x 2+mx +n ,直线y 2=kx +b ,y 1的对称轴与y 2交于点A (﹣1,5),点A 与y 1的顶点B 的距离是4.∴B (﹣1,1)或(﹣1,9),∴−m 2×(−1)=−1,4×(−1)n−m 24×(−1)=1或9, 解得m =﹣2,n =0或8,∴y 1的解析式为y 1=﹣x 2﹣2x 或y 1=﹣x 2﹣2x +8;(2)①当y 1的解析式为y 1=﹣x 2﹣2x 时,抛物线与x 轴交点是(0,0)和(﹣2,0), ∵y 1的对称轴与y 2交于点A (﹣1,5),∴y 1与y 2都经过x 轴上的同一点(﹣2,0),把(﹣1,5),(﹣2,0)代入得{−k +b =5−2k +b =0, 解得{k =5b =10, ∴y 2=5x +10.②当y 1=﹣x 2﹣2x +8时,解﹣x 2﹣2x +8=0得x =﹣4或2,∵y 2随着x 的增大而增大,且过点A (﹣1,5),∴y 1与y 2都经过x 轴上的同一点(﹣4,0),把(﹣1,5),(﹣4,0)代入得{−k +b =5−4k +b =0, 解得{k =53b =203; ∴y 2=53x +203. 24.(14分)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,△COD 关于CD 的对称图形为△CED .(1)求证:四边形OCED 是菱形;(2)连接AE ,若AB =6cm ,BC =√5cm .①求sin ∠EAD 的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1cm /s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段P A 匀速运动到点A ,到达点A 后停止运动,当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.(1)证明:∵四边形ABCD 是矩形.∴OD =OB =OC =OA ,∵△EDC 和△ODC 关于CD 对称,∴DE =DO ,CE =CO ,∴DE =EC =CO =OD ,∴四边形CODE 是菱形.(2)①设AE 交CD 于K .∵四边形CODE 是菱形,∴DE ∥AC ,DE =OC =OA ,∴DK KC =DE AC =12 ∵AB =CD =6,∴DK =2,CK =4,在Rt △ADK 中,AK =√AD 2+DK 2=√(√5)2+22=3,∴sin ∠DAE =DK AK =23,②作PF ⊥AD 于F .易知PF =AP •sin ∠DAE =23AP ,∵点Q 的运动时间t =OP 1+AP 32=OP +23AP =OP +PF , ∴当O 、P 、F 共线时,OP +PF 的值最小,此时OF 是△ACD 的中位线,∴OF =12CD =3.AF =12AD =√52,PF =12DK =1,∴AP =(√52)2+12=32,∴当点Q 沿上述路线运动到点A 所需要的时间最短时,AP 的长为32cm ,点Q 走完全程所需的时间为3s .25.(14分)如图,AB 是⊙O 的直径,AĈ=BC ̂,AB =2,连接AC . (1)求证:∠CAB =45°;(2)若直线l 为⊙O 的切线,C 是切点,在直线l 上取一点D ,使BD =AB ,BD 所在的直线与AC 所在的直线相交于点E ,连接AD .①试探究AE 与AD 之间的数量关系,并证明你的结论;②EBCD 是否为定值?若是,请求出这个定值;若不是,请说明理由.解:(1)如图1,连接BC ,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=BC,∴∠CAB=∠CBA=180°−90°2=45°;(2)①当∠ABD为锐角时,如图2所示,作BF⊥l于点F,由(1)知△ACB是等腰直角三角形,∵OA=OB=OC,∴△BOC为等腰直角三角形,∵l是⊙O的切线,∴OC⊥l,又BF⊥l,∴四边形OBFC是矩形,∴AB=2OC=2BF,∵BD=AB,∴BD=2BF,∴∠BDF=30°,∴∠DBA=30°,∠BDA=∠BAD=75°,∴∠CBE=∠CBA﹣∠DBA=45°﹣30°=15°,∴∠DEA=∠CEB=90°﹣∠CBE=75°,∴∠ADE=∠AED,∴AD=AE;②当∠ABD为钝角时,如图3所示,同理可得BF=12BD,即可知∠BDC=30°,∵OC⊥AB、OC⊥直线l,∴AB∥直线l,∴∠ABD=150°,∠ABE=30°,∴∠BEC=90°﹣(∠ABE+∠ABC)=90°﹣(30°+45°)=15°,∵AB=DB,∴∠ADB=12∠ABE=15°,∴∠BEC=∠ADE,∴AE=AD;(3)①如图2,当D在C左侧时,由(2)知CD∥AB,∠ACD=∠BAE,∠DAC=∠EBA=30°,∴△CAD∽△BAE,∴ACBA =CDAE=√2,∴AE=√2CD,作EI⊥AB于点I,∵∠CAB=45°、∠ABD=30°,∴BE=2EI=2×√22AE=√2AE=√2×√2CD=2CD,∴BE CD =2;②如图3,当点D 在点C 右侧时,过点E 作EI ⊥AB 于I , 由(2)知∠ADC =∠BEA =15°,∵AB ∥CD ,∴∠EAB =∠ACD ,∴△ACD ∽△BAE ,∴AC BA =CD AE =√2,∴AE =√2CD ,∵BA =BD ,∠BAD =∠BDA =15°,∴∠IBE =30°,∴BE =2EI =2×√22AE =√2AE =√2×√2CD =2CD , ∴BE CD =2.。
2017年广东省中考数学试卷(带完整解析)
2017年广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣ D.﹣52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×10103.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.806.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a49.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=.12.一个n边形的内角和是720°,则n=.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.已知4a+3b=1,则整式8a+6b﹣3的值为.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H 两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.18.先化简,再求值:(+)•(x2﹣4),其中x=.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.2017年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣ D.﹣5【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4000000000=4×109.故选:C.3.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°【考点】IL:余角和补角.【分析】由∠A的度数求出其补角即可.【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【考点】A3:一元二次方程的解.【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【考点】W5:众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【考点】G8:反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a4【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【考点】M6:圆内接四边形的性质.【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④【考点】LE:正方形的性质.【分析】由△AFD≌△AFB,即可推出S△ABF =S△ADF,故①正确,由BE=EC=BC=AD,AD∥EC,推出===,可得S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.【解答】解:∵四边形ABCD是正方形,∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,在△AFD和△AFB中,,∴△AFD≌△AFB,=S△ADF,故①正确,∴S△ABF∵BE=EC=BC=AD,AD∥EC,∴===,=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,∴S△CDF故②③错误④正确,故选C.二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=a(a+1).【考点】53:因式分解﹣提公因式法.【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).12.一个n边形的内角和是720°,则n=6.【考点】L3:多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则(n﹣2)•180°=720°,解得n=6.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b<0.(填“>”,“<”或“=”)【考点】2A:实数大小比较;29:实数与数轴.【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离大,∴|a|>|b|,∴a+b<0.故答案为:<.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【考点】X4:概率公式.【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:15.已知4a+3b=1,则整式8a+6b﹣3的值为﹣1.【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H 两点间的距离为.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可.【解答】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3=9.18.先化简,再求值:(+)•(x2﹣4),其中x=.【考点】6D:分式的化简求值.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解答】解:原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【考点】9A:二元一次方程组的应用.【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【考点】L8:菱形的性质.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表人数组边体重(千克)A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C 组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式;T7:解直角三角形.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;(3)由P点的坐标可得C点坐标,A、B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,∴点P横坐标x P==,∵点P在抛物线y=﹣x2+4x﹣3上,∴y P=﹣3=,∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.2017年7月3日。
2017年广东省广州市中考数学试卷含解析(同名12543)
2017年广东省广州市中考数学试卷含解析(同名12543)D三、解答题(本大题共9小题,共102分)17.(9分)解方程组.18.(9分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.19.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.20.(10分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.21.(12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.22.(12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>的解集.23.(12分)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.24.(14分)如图,矩形ABCD的对角线AC,BD 相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.25.(14分)如图,AB是⊙O的直径,=,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.2017年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣6 B.6 C.0 D.无法确定【分析】根据数轴上点的位置,利用相反数定义确定出B表示的数即可.【解答】解:∵数轴上两点A,B表示的数互为相反数,点A表示的数为﹣6,∴点B表示的数为6,故选B【点评】此题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键.2.(3分)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为()A.B. C. D.【分析】根据旋转的性质即可得到结论.【解答】解:由旋转的性质得,将正方形ABCD 中的阴影三角形绕点A顺时针旋转90°后,得到的图形为A,故选A.【点评】本题考查了旋转的性质,正方形的性质,正确的识别图形是解题的关键.3.(3分)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A.12,14 B.12,15 C.15,14 D.15,13 【分析】观察这组数据发现15出现的次数最多,进而得到这组数据的众数为15,将六个数据相加求出之和,再除以6即可求出这组数据的平均数.【解答】解:∵这组数据中,12出现了1次,13出现了1次,14出现了1次,15出现了3次,∴这组数据的众数为15,∵这组数据分别为:12、13、14、15、15、15 ∴这组数据的平均数=14.故选C【点评】此题考查了众数及算术平均数,众数即为这组数据中出现次数最多的数,算术平均数即为所有数之和与数的个数的商.4.(3分)下列运算正确的是()A.=B.2×=C.=a D.|a|=a(a ≥0)【分析】直接利用分式的基本性质以及绝对值的性质、二次根式的性质分别化简求出答案.【解答】解:A、无法化简,故此选项错误;B、2×=,故此选项错误;C、=|a|,故此选项错误;D、|a|=a(a≥0),正确.故选:D.【点评】此题主要考查了分式的基本性质以及绝对值的性质、二次根式的性质,正确掌握相关性质是解题关键.5.(3分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6.(3分)如图,⊙O是△ABC的内切圆,则点O 是△ABC的()A.三条边的垂直平分线的交点B.三条角平分线的交点C.三条中线的交点D.三条高的交点【分析】根据三角形的内切圆得出点O到三边的距离相等,即可得出结论.【解答】解:∵⊙O是△ABC的内切圆,则点O到三边的距离相等,∴点O是△ABC的三条角平分线的交点;故选:B.【点评】本题考查了三角形的内切圆与内心;熟练掌握三角形的内切圆的圆心性质是关键.7.(3分)计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5 D.a5b6【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.【解答】解:原式=a6b3•=a5b5,故选:A.【点评】本题考查了分式的乘除法,熟记法则并根据法则计算是解题关键.8.(3分)如图,E,F分别是▱ABCD的边AD、BC 上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A.6 B.12 C.18 D.24【分析】根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的性质得到∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠EGF,∵将四边形EFCD沿EF翻折,得到EFC′D′,∴∠GEF=∠DEF=60°,∴∠AEG=60°,∴∠EGF=60°,∴△EGF是等边三角形,∵EF=6,∴△GEF的周长=18,故选C.【点评】本题考查了翻折变换的性质、平行四边形的性质、等边三角形的判定,熟练掌握翻折变换的性质是解决问题的关键.9.(3分)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD【分析】先根据垂径定理得到=,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【解答】解:∵AB⊥CD,∴=,CE=DE,∴∠BOC=2∠BAD=40°,∴∠OCE=90°﹣40°=50°.故选D.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.10.(3分)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A. B. C.D.【分析】分a>0和a<0两种情况分类讨论即可确定正确的选项.【解答】解:当a>0时,函数y=的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选D.【点评】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B= 70°.【分析】根据平行线的性质即可得到结论.【解答】解:∵AD∥BC,∴∠A+∠B=180°,又∵∠A=110°,∴∠B=70°,故答案为:70°.【点评】本题考查了平行线的性质,熟练掌握平行线的性质即可得到结论.12.(3分)分解因式:xy2﹣9x= x(y+3)(y ﹣3).【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣9x=x(y2﹣9)=x(y﹣3)(y+3).故答案为:x(y﹣3)(y+3).【点评】本题考查对多项式的分解能力,一般先考虑提公因式,再考虑利用公式分解因式,要注意分解因式要彻底,直到不能再分解为止.13.(3分)当x= 1 时,二次函数y=x2﹣2x+6有最小值 5 .【分析】把x2﹣2x+6化成(x﹣1)2+5,即可求出二次函数y=x2﹣2x+6的最小值是多少.【解答】解:∵y=x2﹣2x+6=(x﹣1)2+5,∴当x=1时,二次函数y=x2﹣2x+6有最小值5.故答案为:1、5.【点评】此题主要考查了二次函数的最值,要熟练掌握,确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.14.(3分)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB= 17 .【分析】根据∠A的正切求出AC,再利用勾股定理列式计算即可得解.【解答】解:∵Rt△ABC中,∠C=90°,tanA=,BC=15,∴=,解得AC=8,根据勾股定理得,AB===17.故答案为:17.【点评】本题考查了解直角三角形,勾股定理,主要利用了锐角的正切等于对边比邻边.15.(3分)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l= 3.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×=2πcm,则:=2π,解得l=3.故答案为:3.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.16.(3分)如图,平面直角坐标系中O是原点,▱ABCD的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=其中正确的结论是①③(填写所有正确结论的序号).【分析】①证明△CDB∽△FDO,列比例式得:,再由D、E为OB的三等分点,则=,可得结论正确;②如图2,延长BC交y轴于H证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG不成立;③如图3,利用面积差求得:S△CFG =S▱OABC﹣S△OFC﹣S△OBG ﹣S△AFG=12,根据相似三角形面积的比等于相似比的平方进行计算并作出判断;④根据勾股定理进行计算OB的长,根据三等分线段OB可得结论.【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴,∵D、E为OB的三等分点,∴=,∴,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论不正确;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,∴S△CFG =S▱OABC﹣S△OFC﹣S△OBG﹣S△AFG=8×4﹣8﹣8﹣4=12,∵DE∥FG,∴△CDE∽△CFG,∴==,∴=,∴,∴S=;四边形DEGF所以③结论正确;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论不正确;故本题结论正确的有:①③;故答案为:①③.【点评】本题是四边形的综合题,考查了平行四边形的性质、图形与坐标特点、勾股定理、三角形的中位线定理、三角形相似的性质和判定、平行四边形和三角形面积的计算等知识,难度适中,熟练掌握平行四边形和相似三角形的性质是关键.三、解答题(本大题共9小题,共102分)17.(9分)解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3﹣②得:x=4,把x=4代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(9分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.【分析】根据全等三角形的判定即可求证:△ADF ≌△BCE【解答】解:∵AE=BF,∴AE+EF=BF+EF,∴AF=BE,在△ADF与△BCE中,∴△ADF≌△BCE(SAS)【点评】本题考查全等三角形的判定,解题的关键是求证AF=BE,本题属于基础题型.19.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有 5 人,补全条形统计图;(2)D类学生人数占被调查总人数的36 %;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.【分析】(1)根据总人数等于各类别人数之和可得E类别学生数;(2)用D类别学生数除以总人数即可得;(3)列举所有等可能结果,根据概率公式求解可得.【解答】解:(1)E类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查条形统计图.20.(10分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE;(2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.【点评】本题主要考查了基本作图以及含30度角的直角三角形的性质,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.21.(12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.【分析】(1)根据甲队筑路60公里以及乙队筑路总公里数是甲队筑路总公里数的倍,即可求出乙队筑路的总公里数;(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据甲队比乙队多筑路20天,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:(1)60×=80(公里).答:乙队筑路的总公里数为80公里.(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据题意得:﹣=20,解得:x=0.1,经检验,x=0.1是原方程的解,∴8x=0.8.答:乙队平均每天筑路0.8公里.【点评】本题考查了分式方程的应用,解题的关键是:(1)根据数量关系列式计算;(2)找准等量关系,列出分式方程.22.(12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>的解集.【分析】(1)根据平移的原则得出m的值,并计算点A的坐标,因为A在反比例函数的图象上,代入可以求k的值;(2)画出两函数图象,根据交点坐标写出解集.【解答】解:(1)由平移得:y=3x+1﹣1=3x,∴m=0,当y=3时,3x=3,x=1,∴A(1,3),∴k=1×3=3;(2)画出直线y=3x和反比例函数y=的图象:如图所示,由图象得:不等式3x+m>的解集为:﹣1<x<0或x>1.【点评】本题考查的是一次函数与反比例函数的交点问题和一次函数的图象的平移问题,涉及到用待定系数法求反比例函数的解析式,并熟知函数图象平移时“上加下减,左加右减”的法则.23.(12分)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.【分析】(1)根据题意求得顶点B的坐标,然后根据顶点公式即可求得m、n,从而求得y1的解析式;(2)分两种情况讨论:当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴的交点是抛物线的顶点(﹣1,0),不合题意;当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0求得抛物线与x轴的交点坐标,然后根据A的坐标和y2随着x的增大而增大,求得y1与y2都经过x轴上的同一点(﹣4,0),然后根据待定系数法求得即可.【解答】解:(1)∵抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.∴B(﹣1,1)或(﹣1,9),∴﹣=﹣1,=1或9,解得m=﹣2,n=0或8,∴y1的解析式为y1=﹣x2﹣2x或y1=﹣x2﹣2x+8;(2)①当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴交点是(0.0)和(﹣2.0),∵y1的对称轴与y2交于点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣2,0),把(﹣1,5),(﹣2,0)代入得,解得,∴y2=5x+10.②当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0得x=﹣4或2,∵y2随着x的增大而增大,且过点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣4,0),把(﹣1,5),(﹣4,0)代入得,解得;=x+.∴y2【点评】本题考查了一次函数的性质,二次函数的性质,待定系数法求一次函数和二次函数的解析式,根据题意求得顶点坐标是解题的关键.24.(14分)如图,矩形ABCD的对角线AC,BD 相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.【分析】(1)只要证明四边相等即可证明;(2)①设AE交CD于K.由DE∥AC,DE=OC=OA,推出==,由AB=CD=6,可得DK=2,CK=4,在Rt△ADK中,AK===3,根据sin∠DAE=计算即可解决问题;②作PF⊥AD于F.易知PF=AP•sin∠DAE=AP,因为点Q的运动时间t=+=OP+AP=OP+PF,所以当O、P、F共线时,OP+PF的值最小,此时OF 是△ACD的中位线,由此即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形.∴OD=OB=OC=OA,∵△EDC和△ODC关于CD对称,∴DE=DO,CE=CO,∴DE=EC=CO=OD,∴四边形CODE是菱形.(2)①设AE交CD于K.∵四边形CODE是菱形,∴DE∥AC,DE=OC=OA,∴==∵AB=CD=6,∴DK=2,CK=4,在Rt△ADK中,AK===3,∴sin∠DAE==,②作PF⊥AD于F.易知PF=AP•sin∠DAE=AP,∵点Q的运动时间t=+=OP+AP=OP+PF,∴当O、P、F共线时,OP+PF的值最小,此时OF 是△ACD的中位线,∴OF=CD=3.AF=AD=,PF=DK=1,∴AP==,∴当点Q沿上述路线运动到点A所需要的时间最短时,AP的长为,点Q走完全程所需的时间为3s.【点评】本题考查四边形综合题、矩形的性质、菱形的判定和性质、锐角三角函数、平行线分线段成比例定理、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用垂线段最短解决最值问题,所以中考压轴题.25.(14分)如图,AB是⊙O的直径,=,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.【分析】(1)由AB是⊙O的直径知∠ACB=90°,由=即AC=BC可得答案;(2)分∠ABD为锐角和钝角两种情况,①作BF ⊥l于点F,证四边形OBFC是矩形可得AB=2OC=2BF,结合BD=AB知∠BDF=30°,再求出∠BDA和∠DEA度数可得;②同理BF=BD,即可知∠BDC=30°,分别求出∠BEC、∠ADB即可得;(3)分D在C左侧和点D在点C右侧两种情况,作EI⊥AB,证△CAD∽△BAE得==,即AE=CD,结合EI=BE、EI=AE,可得BE=2EI=2×AE=AE=×CD=2CD,从而得出结论.【解答】解:(1)如图1,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=BC,∴∠CAB=∠CBA==45°;(2)①当∠ABD为锐角时,如图2所示,作BF ⊥l于点F,由(1)知△ACB是等腰直角三角形,∵OA=OB=OC,∴△BOC为等腰直角三角形,∵l是⊙O的切线,∴OC⊥l,又BF⊥l,∴四边形OBFC是矩形,∴AB=2OC=2BF,∵BD=AB,∴BD=2BF,∴∠BDF=30°,∴∠DBA=30°,∠BDA=∠BAD=75°,∴∠CBE=∠CBA﹣∠DBA=45°﹣30°=15°,∴∠DEA=∠CEB=90°﹣∠CBE=75°,∴∠ADE=∠AED,∴AD=AE;②当∠ABD为钝角时,如图3所示,同理可得BF=BD,即可知∠BDC=30°,∵OC⊥AB、OC⊥直线l,∴AB∥直线l,∴∠ABD=150°,∠ABE=30°,∴∠BEC=90°﹣(∠ABE+∠ABC)=90°﹣(30°+45°)=15°,∵AB=DB,∴∠ADB=∠ABE=15°,∴∠BEC=∠ADE,∴AE=AD;(3)①如图2,当D在C左侧时,由(2)知CD∥AB,∠ACD=∠BAE,∠DAC=∠EBA=30°,∴△CAD∽△BAE,∴==,∴AE=CD,作EI⊥AB于点I,∵∠CAB=45°、∠ABD=30°,∴BE=2EI=2×AE=AE=×CD=2CD,∴=2;②如图3,当点D在点C右侧时,过点E作EI ⊥AB于I,由(2)知∠ADC=∠BEA=15°,∵AB∥CD,∴∠EAB=∠ACD,∴△ACD∽△BAE,∴==,∴CD,∵BA=BD,∠BAD=∠BDA=15°,∴∠IBE=30°,∴BE=2EI=2×AE=AE=×CD=2CD,∴=2.【点评】本题主要考查圆的综合问题,熟练掌握切线的性质、等腰直角三角形的判定与性质、圆心角定理及相似三角形的判定与性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题三 解答题突破——数与式
类型一 实数的运算
【例1】 (原创)计算:2-1
-(2-8)+4sin 30°-( 2 016)0
.
误区警示 括号前面是“-”运算时,去括号后注意变号;任何不等于0的数的0次冪都等于1.
类型二 整式的运算
【例2】 (原创)先化简,再求值:(a +2b )(a -2b )-(a -b )2
,其中a =3,b = 2.
【例3】 设y =ax ,若代数式(x +y )(x -2y )+3y (x +y )化简的结果为x 2
,请你求出满足条件的a 值.
误区警示 本题容易出现(x +y )2
=x 2
,得出y =0,即ax =0,出现a =0这样的漏解.正确的做法是利用y =ax 的关系,用ax 代替y 代入原式中得到(1+a )2x 2
=x 2
,从而得到(1+
a )2=1,解得a =-2或a =0,确保不会出现漏解.
类型三 分式的运算
【例4】 (2016·东营)先化简,再求值:⎝ ⎛⎭⎪⎫a +1-4a -5a -1÷⎝ ⎛⎭
⎪⎫1a -1a 2-a ,其中a =2+ 3.
【例5】 (2016·齐齐哈尔)先化简,再求值:⎝ ⎛⎭
⎪⎫1-2x ÷x 2
-4x +4x 2
-4-x +4x +2,其中x 2+2x
-15=0.
1.(2016·安顺)计算:cos 60°-2-1
+-
2
-(π-3)0
.
2.(2016·娄底)计算:(π-10)0
+|2-1|+⎝ ⎛⎭
⎪⎫12-1-2sin 45°.
3.(2016·大庆)已知a +b =3,ab =2,求代数式a 3b +2a 2b 2+ab 3
的值.
4.(2016·凉山州)先化简,再求值:⎝ ⎛⎭⎪
⎫1x -y +2x 2-xy ÷x +22x
,
其中实数x 、y 满足y =x -2-4-2x +1.。