电力电子技术在电力系统中的应用(一)

合集下载

电力电子技术在电力系统能源利用中的应用

电力电子技术在电力系统能源利用中的应用

电力电子技术在电力系统能源利用中的应用随着能源危机的愈发严重和对环境的关切日益增加,电力系统的能源利用效率成为了一个全球性的热门话题。

在这方面,电力电子技术扮演着重要的角色,它能够提高电力系统的能源利用效率,同时实现对可再生能源的更好接纳和利用。

本文将探讨电力电子技术在电力系统能源利用中的应用。

一、高效逆变器技术逆变器是电力电子技术的核心器件之一,其主要功能是将直流电转换为交流电。

通过使用高效的逆变器技术,我们可以提高电力系统的能源转换效率。

例如,采用硅碳化物材料的新一代逆变器,其效率可达到98%以上,高于传统的硅基逆变器。

这种技术能够减少转换过程中的能量损耗,提高电力系统的能源利用效率。

二、光伏发电系统光伏发电系统是目前最常见的可再生能源发电方式之一。

在光伏发电系统中,太阳能光伏板将太阳能转换为直流电,而逆变器则将直流电转换为交流电以供电网使用。

为了提高光伏发电系统的能源利用效率,我们可以使用高效的电力电子逆变器以降低能量转换过程中的损耗,并采用最大功率点跟踪技术以提高太阳能光伏板的工作效率。

这些技术的应用可以大大提高光伏发电系统的能源利用效率,进一步推动可再生能源的发展和利用。

三、储能技术随着可再生能源的普及和不稳定性,储能技术在电力系统能源利用中变得越来越重要。

储能技术可以将多余的电力储存起来,以便在需要时供应给电力系统。

电力电子技术在储能技术中发挥着重要的作用。

例如,采用电力电子变流器和控制系统的储能设备,可以实现对电力的高效储存和释放。

此外,使用电力电子技术可以实现对电池储能系统的精确控制和管理,提高系统的安全性和可靠性。

通过这些储能技术的应用,我们可以更好地利用电力系统中的能源,提高能源的利用效率。

四、柔性交直流输电技术在电力系统能源利用中,交直流输电技术是一个重要的应用领域。

交直流输电技术可以将电力以高效的方式从发电厂输送到用户,减少输电过程中的能量损耗。

电力电子技术在交直流输电中发挥着关键的作用,通过使用电力电子器件和转换装置,可以实现高效的输电和适应不同电力系统之间的转换。

电力电子技术在电力系统中的应用文档

电力电子技术在电力系统中的应用文档

电力电子技术在电力系统中的应用文档电力电子技术在电力系统中的应用随着工业化进程的不断推进和能源消费的不断增加,现代社会对电力的需求越来越急切。

而在新能源、能量储存和智能电网等相关技术的不断发展和完善下,电力电子技术也不断被应用于电力系统中,成为支撑电力系统可靠性和安全性的重要技术之一。

一、电力电子技术在智能电网中的应用智能电网是一种基于电力电子技术和通信技术的新型电网,其具有能量效率高、可靠性高、灵活性强、响应速度快等特点。

智能电网中主要应用了以下几种电力电子技术:1.改进的高压直流输电技术直流输电技术可以降低输电损失,提高电力系统的稳定性,满足能源长距离输送的需求。

然而,传统的直流输电技术存在成本高、电压平稳性差等问题。

改进的高压直流输电技术通过引入成熟的电力电子技术,如换流、滤波和快速保护等,可以显著提高电压平稳性和输电效率,有助于实现远距离大容量能量输送。

2.分布式发电系统控制技术分布式发电系统是指将小型发电机与电网连接,形成微网,通过整合不同的能源来满足用户的需求。

而电力电子技术可以通过转换电流、控制电压等方式,实现分布式能源的高效控制和管理,提高系统的负载平衡能力和稳定性。

3.储能技术电力储能技术是指通过将电能转换为其他形式存储,以便在需要时释放电能为电力供应系统所使用。

电力电子技术可以将电力储能系统与电力输配电设施连接起来,并控制电流方向、充放电等过程,提高储能效率和安全性。

二、电力电子技术在新能源领域中的应用1.可再生能源发电控制技术可再生能源发电是科技和环保的结晶,减少了石油、煤炭等传统发电方式所带来的污染和浪费。

然而,可再生能源出现的不稳定性和不可控性,一定程度上受限了其应用范围。

而电力电子技术可以通过电压转换和频率转换等技术手段管理电网输入的不稳定电量,实现对电力输出的更好控制和调节,提高可再生能源的发电效率。

2.电动车充电技术电动车的充电功能离不开电力电子技术,通过电池管理系统、充电器、控制器等设备的配合,可以实现电动车的快速充电和稳定运行。

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用随着电子技术的迅速发展,电力电子技术得到了广泛的应用。

电力电子技术是指将电力和电子技术相结合,通过半导体器件将电力进行变换、传递和控制的技术。

在电力系统中,电力电子技术的应用已经成为了研究的热点之一。

一、电力电子技术的概述电力电子技术是一种电力工程和电子工程相结合的技术。

其主要应用在将电力进行变换、传递和控制的过程中。

电力电子技术的发展可以追溯到1960年代,当时出现了用半导体器件实现交流电到直流电的变换技术,即交流输电系统的直流输电技术(HVDC)。

这项技术实现了对远距离长距离输电的需求,缩短了电力传输距离,减少了线路损耗,提高了电力传输的效率和可靠性。

随着时代的发展,电力电子技术应用领域不断扩大,如市电变频器、电力电容、UPS等系统都是电力电子技术的代表。

电力电子技术的发展,推动了电力系统的革新,提升了电力传输的能力和效率,实现了电网智能化、数字化、可靠性和安全性的大幅提升。

二、1、 HVDC交流输电系统的直流输电技术(HVDC)是电力电子技术在电力系统中的基础应用之一。

它可以将交流电转换成直流电,从而实现不同地点之间的电力互联、跨越海洋和山区、进行长距离电力输送。

HVDC技术可以提高输电线路的容量、减少输电损耗,并且提高电力传输的可靠性。

HVDC技术正在逐渐普及,已经被应用到欧洲、北美、亚洲等地区的多条输电线路中,成为了电力系统中重要的输电方式。

2、 FACTS灵活交流输电系统(FACTS)技术是一种电力电子技术,它可以根据负荷不同而调整电力系统的电压、电流和相角,从而提高电力系统的稳定性、可靠性以及抗干扰能力。

FACTS技术可以使电力系统在电力负载发生变化时,自动调整电力参数和稳定电力系统,从而提高电网的稳定性,减少配电线路的损耗,降低能源消耗和污染排放。

3、 STATCOM静止补偿器(STATCOM)是一种电力电子设备,它可以在电力系统中自动实现电容电抗补偿,从而提高电力系统的稳定性和可靠性,减少电力线路的损耗。

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用摘要:在社会经济快速发展的今天,电力电子技术是我国电力行业经济效益的重要影响因素。

为此,文章概述了电力电子技术的发展,分析了电力电子技术在电力系统中的作用,提出电力电子技术在电力系统中的应用存在的问题,并从电力系统节能、输电环节、发电环节等方面探讨电力电子技术在电力系统中的具体应用,希望可以为电力系统的可持续发展起到良好的推动作用。

关键词:电力电子技术;电力系统;电力电子器件1电力电子技术概述电力电子技术诞生于20世纪50年代,晶闸管的问世代表了电力电子技术的诞生。

电力电子技术是电力系统中一种重要的传动技术,以晶闸管技术为基础,可以开发得到可控硅整流装置。

可控硅整流装置的问世,表明电力电子技术取得了大的进步,标志着电能的变换和控制进人变流器控制时代。

由此可见,可控硅整流装置是电力电子技术的主要标志。

2电力电子技术及电力电子器件的发展历程(1)第一代电力电子器件。

自从开始应用电力电子技术,电力系统和电力电子器件取得了良好的发展,电力二极管和晶闸管是第一代电力电子器件的主要代表。

晶闸管具有耗能低与体积小的特点,可以取代原有电力系统中的老式汞弧整流器,推动电力电子技术的可持续发展;电力二极管可以提高电路的性能,有利于降低电路损耗、提高电源使用率。

(2)第二代电力电子器件。

随着电力电子技术的发展,电力电子器件得到了发展,如整流二极管的多样化。

20世纪70年代,第二代电力电子器件诞生,其主要特点为可以自动关断。

第二代电力电子器件显著提升了开关速度,被应用在开关频率较高的电路.(3)第三代电力电子器件。

20世纪90年代,产生了第三代电力电子器件,其体积更小、结构更紧凑。

此外,还出现了将几种电力器件结合的电子模块,推动了电力电子器件的发展。

在此之后,研究人员以集成模块为基础,将用于电力技术的多种电力器件结合,得到了集成电路。

集成电路的产生标志着我国电力电子技术已经进人智能化与集成化的阶段。

电力电子技术在电力系统自动化中的应用

电力电子技术在电力系统自动化中的应用

电力电子技术在电力系统自动化中的应用随着现代电力系统的不断发展,电力电子技术在电力系统自动化中的应用变得越来越重要。

电力电子技术的出现不仅提高了电力系统的稳定性和可靠性,还为电力系统的智能化和高效化提供了有力支持。

本文将探讨电力电子技术在电力系统自动化中的具体应用,包括逆变技术、短路电流限制技术以及柔性交流输电技术。

1. 逆变技术逆变技术是电力电子技术在电力系统自动化中的重要应用之一。

逆变器是将直流电转换为交流电的装置,由于其具有高效、可靠、灵活等特点,被广泛应用于变频调速、UPS电源、太阳能发电等领域。

在电力系统自动化中,逆变技术被用于实现直流输电、高压直流输电、交流与直流的互联互通等功能。

通过逆变技术,电力系统可以实现不同电压等级之间的互联互通,提高系统的可靠性和供电质量。

2. 短路电流限制技术电力系统中的短路故障常常会对系统的稳定性和安全性造成严重影响。

为了限制短路电流的大小,保护系统的设备和运行状态,电力电子技术被用于短路电流限制技术的研究与应用。

利用电力电子技术,可以通过调节电流限制器的控制策略,实现对短路电流的精确控制。

短路电流限制技术可以减少系统中的电磁力、电流冲击等问题,提高系统的稳定性和可靠性。

3. 柔性交流输电技术柔性交流输电技术是电力电子技术在电力系统自动化中的又一重要应用领域。

通过柔性交流输电技术,可以实现对电力系统中电压、频率等参数的控制和调节,进而优化系统的运行状态。

柔性交流输电技术主要包括STATCOM(静止同步补偿器)和SVC (静止无功补偿器)等装置。

这些装置通过电力电子技术可以实时控制并调整电力系统中的电流和电压,提高系统的稳定性和可靠性。

4. 智能电力电子装置随着信息技术的发展,智能电力电子装置在电力系统自动化中的应用也越来越广泛。

智能电力电子装置通过与传感器、监控系统等设备的联动,可以实时获取电力系统运行状态的信息,并进行智能化的控制和运行。

智能电力电子装置的应用,可以实现电力系统的自动化运行和管理。

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用电力电子技术是当今电力系统中最重要的一个领域,它已经成为电力行业的重要支撑技术之一,广泛应用于电力系统的各个领域。

电力电子技术是将电力电子元件和电力电子系统应用于电力领域,实现电力的控制、调节和变换。

它主要包括变流器技术、逆变器技术、直流输电技术、电机驱动技术等。

这些技术在电力系统中起到了至关重要的作用,它们可以更好地适应各种复杂的电力系统,提高电力系统的质量、效率和可靠性,同时还能更好地满足用户的需求,为电力行业的发展注入新的活力。

变流器技术是电力电子技术中的一个重要分支,它是通过将交流电转换为直流电或直流电转换为交流电,从而实现电力的控制和变换。

变流器技术在电力系统中的应用非常广泛,可以应用于发电机的输出电压控制、直流输电、交流输电、电动汽车充电桩和逆变器等领域。

它可以使电力系统更加高效、可靠和性能更加稳定。

逆变器技术是将直流电转换为交流电的一种技术,它可以将直流电转换为纯正的交流电,从而实现电力的控制和变换。

逆变器技术不仅可以通过电池实现电力存储,还可以应用于太阳能电池板、风力发电机等,从而实现可再生能源的利用。

直流输电技术是近年来出现的一种新的技术,它可以将电力以直流的形式输送到长距离的地方。

直流输电技术可以使电力传输更加高效、节能、可靠和安全,是电力系统中不可或缺的一部分。

电机驱动技术是电力电子技术中的重要分支,它主要应用于各种电机的起动、调速和控制等方面。

电机驱动技术可以使电机更加高效、节能和智能化,提高电机的性能和精度,从而实现各种各样的自动化控制。

总的来说,电力电子技术已经成为电力系统中不可或缺的一部分,它可以更好地适应电力系统的庞大和复杂,提高电力系统的质量、效率和可靠性,同时还能更好地满足用户的需求,为电力行业的发展注入新的活力。

电力电子技术在电力系统中的应用文档

电力电子技术在电力系统中的应用文档

电力电子技术在电力系统中的应用北极星电力网技术频道作者: 2009-5-5 14:05:45 (阅2185次)关键词: 电力电子发电环节输配电电力电子技术是电工技术中的新技术,是电力与电子技术(强电和弱电技术)的融合,已在国民经济中发挥着巨大作用,对未来输电系统性能将产生巨大影响。

目前电力电子技术的应用已涉及电力系统的各个方面,包括发电环节、输配电系统、储能系统等等。

一、发电环节电力系统的发电环节涉及发电机组的多种设备,电力电子技术的应用以改善这些设备的运行特性为主要目的。

ﻫ(二)大型发电机的静止励磁控制。

静止励磁采用晶闸管整流自并励方式,具有结构简单、可靠性高及造价低等优点,被世界各大电力系统广泛采用。

由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有利条件。

(二)水力、风力发电机的变速恒频励磁。

水力发电的有效功率取决于水头压力和流量,当水头的变化幅度较大时(尤其是抽水蓄能机组),机组的最佳转速亦随之发生变化。

风力发电的有效功率与风速的三次方成正比,风车捕捉最大风能的转速随风速而变化。

为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。

此项应用的技术核心是变频电源。

(三)发电厂风机水泵的变频调速。

发电厂的厂用电率平均为8%,风机水泵耗电量约占火电设备总耗电量的65%,且运行效率低。

使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。

低压变频器技术已非常成熟,国内外有众多的生产厂家,并有完整的系列产品,但具备(四)太阳能发电控制系统。

开发利用无穷尽的洁净新能源———太阳能,是调整未来能源结构的一项重要战略措施。

大功率太阳能发电,无论是独立系统还是并网系统,通常需要将太阳能电池阵列发出的直流电转换为交流电,所以具有最大功率跟踪功能的逆变器成为系统的核心。

电力电子技术在电力系统电能经济性中的发展

电力电子技术在电力系统电能经济性中的发展

电力电子技术在电力系统电能经济性中的发展近年来,随着电力系统的不断发展和升级,电能经济性成为了一个重要的话题。

而电力电子技术作为电能转换的核心技术之一,在提高电能经济性方面发挥着重要的作用。

本文将介绍电力电子技术在电力系统中的应用以及对电能经济性的贡献。

一、电力电子技术在电力系统中的应用电力电子技术主要包括逆变器、直流输电、有源电力滤波器等相关技术。

这些技术通过改变电能的形式、控制电能的流动等方式,实现了电能的高效利用和灵活调控。

首先是逆变器技术的应用。

逆变器可以将直流电能转换为交流电能,使得电力系统能够更好地与不同负载进行连接。

逆变器广泛应用于光伏发电站、风力发电等可再生能源发电系统中,将直流发电转换为交流电供电给用户,提高了能源的利用效率。

其次是直流输电技术的应用。

直流输电技术可以降低输电线路的电阻和电感损耗,提高输电效率。

通过采用高压直流输电,可以减少输电线路的电流,减小线路损耗和电压降低,提高电力输送的效率和可靠性。

直流输电技术的应用,不仅可以提高电能经济性,还能满足远距离、大容量输电的需求。

另外,有源电力滤波器技术也在电力系统中得到了广泛应用。

有源电力滤波器可以通过控制电流的相位和幅值,消除电力系统中的谐波和电压波动,保证电力系统的稳定运行。

这种技术可以有效减小电力系统的谐波污染,提高电能质量,降低生产和供电成本。

二、电力电子技术对电能经济性的贡献电力电子技术在电力系统中的应用,对于提高电能经济性具有重要意义。

首先,电力电子技术提高了能源的利用效率。

逆变器技术的应用,可以将不同形式的电能互相转换,使得电力系统能够更好地利用可再生能源。

而直流输电技术的应用,降低了电能的损耗和传输损失,提高了输电效率。

这些技术的应用,使得电能转换和输送更加高效,减少资源浪费,提高电能利用效率。

其次,电力电子技术提高了电力系统的灵活调控能力。

逆变器技术和有源电力滤波器技术的应用,可以通过控制电流的波形和频率,实现对电能的精确调控。

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用关键词:电力电子;电力系统;发展;应用摘要:电力电子技术的发展起着决定性作用的是电力电子器件的发展,因此随着计算机技术的进步以及科技的发展使得新材料、新机构器件的陆续诞生,推动了电力电子技术的快速发展,电力电子技术在各行各业中的应用也越来越广泛。

电力电子技术在电力系统中的应用研究与实际工程也取得了可喜可贺的成绩。

前言电路技术、计算机技术、功率半导体器件、现代控制技术是支撑电力电子技术的技术平台。

50年的发展历程使得电力电子技术在电能质量控制、传统产业设备发行、民用产品及新能源开发等方面得到了更加广泛的应用。

在电力电子技术电力系统的大功率应用中最成功地是直流输电(HVDC)。

柔性交流输电(FACTS)概念自20世纪80年代被提出后,电力系统中的应用研究使得电力电子技术受到了极大的关注,相继出现了多种设备。

本文将着重介绍电力电子技术在发电环节中、输电环节中及在配电环节中的应用和节能环节的运用。

一、电力电子技术的发展电力电子器件的不断升级,推动着电力电子技术的不断发展,电力电子器件的发展经过了以下三个时代。

(一)第一代电力电子器件电力电子技术开始登上现代电气传动技术舞台,是自 20 世纪50 年代末第一只晶闸管的问世开始。

【1】在此基础上开发的可控硅整流装置,是电气传动领域的又一次革命,标志着电力电子技术的诞生,迫使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代。

目前,硅整流管已形成普通整流管、快恢复整流管和肖特基整流管三种主要类型。

晶闸管诞生后,其结构的改进和工艺的改革,为新器件的不断出现提供了条件。

传统的电能变换装置中所存在的能耗大和装置笨重等问题,由晶闸管及其派生器件构成的各种电力电子系统在工业应用中得到了有效解决,在提高电能的利用率的同时也使工业噪声得到了很好的控制。

随后的40余年里,电力电子技术在器件、变流电路、控制技术等方面都发生了日新月异的变化,在国际上,电力电子技术是竞争最激烈的高新技术领域。

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用电力电子技术是一种在电力系统中广泛应用的技术,它在能源转换、电能控制、稳压稳流以及储能等方面发挥着重要作用。

本文将从几个方面论述电力电子技术在电力系统中的应用。

首先,电力电子技术在能源转换方面有着重要的应用。

在电力系统中,能源的形式往往需要经过转换才能被合理利用。

电力电子技术通过使用开关器件(如晶闸管、IGBT等)和控制电路,可以实现直流到交流、交流到直流以及交流频率的变换。

例如,交流变频器可以将交流电源输出的固定频率的电能转化为可变频率的电能,这样就满足了配电系统对不同频率电能的需求。

其次,电力电子技术在电能控制方面也发挥着重要作用。

在电力系统中,对电能的控制和调节是必不可少的。

电力电子技术可以通过智能控制器对电能进行精确的调节和控制,从而实现对电能的合理利用。

例如,使用直流斩波器控制器可以将交流电转换为直流电,并可以通过PWM(脉宽调制)技术调节输出电压的大小,实现对电能的精确调节。

另外,稳压稳流也是电力电子技术在电力系统中的重要应用之一。

在电力输送和供电过程中,往往需要对电流和电压进行稳定控制,以确保电力系统的正常运行。

电力电子技术可以通过电流传感器和电压传感器对电流和电压进行实时监测,并通过反馈控制系统来控制电流和电压的稳定输出。

例如,使用电子稳压器可以实现对电压的精确控制,使电压在规定范围内保持稳定。

此外,电力电子技术在电力系统中的储能方面也有广泛的应用。

随着可再生能源的快速发展,如风能和太阳能等,电网对储能的需求日益增加。

电力电子技术可以将电能转换为另一种形式的能量(如化学能、机械能等)来进行储存,并在需要时再次转换为电能输出。

例如,使用电力电子技术可以将太阳能电池板产生的直流电转换为交流电,然后通过储能系统进行储存,以便夜间或阴天使用。

总结起来,电力电子技术在电力系统中具有重要的应用价值。

通过能源转换、电能控制、稳压稳流和储能等方面的应用,电力电子技术可以实现电能的高效利用和多样化输出,提高电力系统的可靠性和稳定性。

电力电子技术在现代电力系统中的应用

电力电子技术在现代电力系统中的应用

电力电子技术在现代电力系统中的应用电力电子技术是指利用电子器件和电子控制技术来处理、控制和转换电力的技术,广泛应用于现代电力系统中。

它的出现和发展,不仅大大提高了电力系统的运行效率和稳定性,还为新能源的接入和能量互联网的建设提供了可靠的支持。

本文将从电能的传输、转换和控制三个方面,介绍电力电子技术在现代电力系统中的具体应用。

一、电能的传输在现代电力系统中,电能的传输是电力电子技术的重要应用领域之一。

直流输电(DC)是其中的典型代表。

通过将交流电转换为直流电,再经过长距离传输后,再将直流电转换为交流电,可以大大减少线路损耗,提高电网的稳定性。

这种方式适用于远距离的电能传输,如跨海输电、大型水电站等。

此外,换流器技术也广泛应用于高压直流输电(HVDC),通过将交流电转换为直流电,再经过输电线路传输,再将直流电转换为交流电供应给用户,以提高能源利用效率。

二、电能的转换电力电子技术在电能转换方面的应用主要体现在变频器、逆变器、整流器等装置中。

变频器是将交流电转换为可调频率的交流电的装置,广泛应用于变频调速、风能、光能转换等领域。

逆变器则是将直流电转换为交流电的装置,常用于太阳能发电系统和电动汽车充电等方面。

整流器则是将交流电转换为直流电的装置,在电力系统中起到整流电能、滤波等作用,降低电网对谐波的敏感程度,提高电能的稳定性。

三、电能的控制电力电子技术在电能控制方面的应用体现在电力调节器上,如静止无功补偿装置(SVC)、静止有功发电机励磁调节器(AVR)等。

静止无功补偿装置是一种通过电力电子设备对电流和电压进行调节,从而改善电力系统的功率因数,提高电力系统能效的装置。

静止有功发电机励磁调节器是根据负荷的需求,对发电机的励磁电流进行控制,保持电力系统的频率和电压稳定。

此外,电力电子技术还广泛用于电网的保护和控制系统,如故障检测、自愈能力等方面,提供可靠的保护和控制手段。

总结起来,电力电子技术在现代电力系统中的应用十分广泛。

电力电子技术在电力系统中的应用(最新整理)

电力电子技术在电力系统中的应用(最新整理)
据江西省政府介绍,1.5MW直驱永磁变速恒频风电机组是由江西麦德风能 有限公司研究开发,与其他类型风电机组,具有发电效率高等优势。同时,作为 江西首家大型风电机组制造企业,江西麦德风能有限公司已建成中国第一个兆瓦 级低速风力发电机全功率试验中心。
随着各地不断加大能源结构调整力度,推行节能减排,风电作为清洁能源正 越来越受到人们的青睐。据了解,“十一五”期间,中国每年需要 4000 多台 1.5MW 风电机组。但目前中国自产量只有 1000 多台,能够批量生产的企业也只有三四 家。江西麦德风能股份有限公司将总投资 10 亿元,形成年产 800 台 1.5MW直驱永 磁变速恒频风电机组产业化规模,目前已完成首期投资 3.8 亿元。
3
电力电子技术在电力系统中的应用
1.4 太阳能发电控制系统
开发利用无穷尽的洁净新能源———太阳能,是调整未来能源结构的一项重 要战略措施。大功率太阳能发电,无论是独立系统还是并网系统,通常需要将太 阳能电池阵列发出的直流电转换为交流电,所以具有最大功率跟踪功能的逆变器 成为系统的核心。日本实施的阳光计划以 3~4kW 的户用并网发电系统为主,我 国实施的送电到乡工程则以 10~15kW 的独立系统居多,而大型系统有在美国加 州的西门子太阳能发电厂(7.2MW)等。
1.1 大型发电机的静止励磁控制.....................................1 1.2 水力、风力发电机的变速恒频励磁...............................1 1.3 发电厂风机水泵的变频调速.....................................2 1.4 太阳能发电控制系统...........................................4 第二章 输电环节 ...................................................12 2.1 柔性交流输电技术(FACTS)...................................12 2.2 高压直流输电技术(HVDC)....................................12 2.3 静止无功补偿器(SVC).......................................13 第三章 配电环节 ...................................................14 第四章 储能装置 ...................................................15 4.1 储能电站(配合光伏并网发电应用)详细方案....................15

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用摘要一般认为,电力电子技术诞生于1957年,是以美国的通用电气公司研制出第一个晶闸管为标志的。

虽然是一门新兴的学科,但是现已成为电气工程及其自动化专业不可缺少的一门专业基础课,在培养该专业优秀人才中占有非常重要地位,为世界各国培养电力高新技术人才发挥了巨大的作用,备受世界各国重视。

通过对其广泛应用的分析,研究电力电子技术在未来的发展趋势和前景。

关键词:电力电子技术应用电力系统发展前景1. 电力电子技术在电力系统中的应用1.1 在发电环节中的应用各类专业技术人员研制了众多的发电设备用以满足生产和生活的各种需求,电力电子技术的应用使得这些设备的运行更加稳定,更加方便快捷、高效及节省人力物力等资源。

1.1.1 太阳能发电控制系统传统能源的变革正在世界各国内逐步推进,大力开发和利用太阳能在全球都是非常重要的发展步骤和环节。

电能的转换和存储及各类用户的使用都应用到了电力电子技术,逆变器的应用可以满足用户对于电压的要求和电能的使用,方便了因地制宜实事求是的使用各类的太能能发电设备,大到工业和农业生产,小到太阳能路灯使用,特殊地段比如山区的居宅用电等等,太阳能发电控制各方各面都应用到了电力电子技术。

1.1.2 大型发电机的静止励磁控制在电力系统的应用中静止励磁控制的优点是结构相对简单,可靠性比较高及造价相对较低等,因此被广泛应用在世界各大相关电力系统中。

因其具有快速性调节特性,在各类发电机组中都发挥着重要的作用,对机组的控制产生了良好的使用效果。

静止励磁控制是目前世界各国都存在的大型发电机的技术难题,需要进行更进一步的升级更新,用以更便捷高效的在电力系统中发挥更加重要的作用。

1.1.3 水力、风力发电机的变速恒频励磁对水力和风力发电来说,变速恒频励磁是最大的特点。

水力发电的有效功率取决于水流的流量和压力,当水流流量和压力发生变化时,会对发电机组设备产生相应的变化和不稳定。

风力发电是利用风车设备的转动从而产生电能并配套进行存储,风车的转动速度随风速的变化而发生变化,风速越大,风车转速越快,随之为电力系统就提供了更大的功率。

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用摘要:随着社会不断的进步,城市化发展迅速,对电力的需求量越来越大,电力系统已经成为现代化城市和工业的重要基础设施之一。

在电力系统中,电力电子技术应用广泛,可以用来提高电力系统的效率、可靠性和安全性,减少能源浪费和环境污染,其重要性不言而喻。

关键词:电力;电子技术;电力系统引言电力电子技术是电力系统中的重要组成部分,它涉及电力的生成、传输、分配和利用等方面。

随着科技的不断发展,电力电子技术在电力系统中的应用范围逐渐增大。

1电力电子技术的特点将电力电子技术合理应用于风机发电系统中,有利于快速传输、分析各类数据,有利于及时制订和修订方案,确保电网的可靠运行。

现阶段,电力电子技术在电力系统中的应用主要呈现出集成化、高频化和全控化的特点。

(1)集成化。

集成化是基于电力电子技术,通过对各类器件进行集成化构建,保证各元件间既能相互独立又能协同发挥作用。

(2)高频化。

高频化是指各类电气设备在计算机技术、信息技术的支持下,降低各类电子器件的能量损耗,进而提高工作质量与效率。

(3)全控化。

全控化是指以计算机对各电子器件进行全面控制与协调,确保提高整体运行效率。

电力电子技术的应用对发电的多个环节都发挥着关键作用,极大地推动了新能源技术的蓬勃发展,随电力业务不断壮大,电力电子技术的应用范围会被进一步拓宽,推动电力行业健康发展。

2电子技术在电力系统中的作用2.1提高电能的利用效率(1)电子技术可以通过高效节能的电力设备和产品来实现电能的最大化利用。

例如,采用数字控制的电机、逆变器等高效节能的设备可以降低电能的浪费,提高能源使用效率。

此外,采用智能电网技术可以实现对电力负载的预测和控制,避免“用多了”或“用错了”造成的能源浪费。

(2)电子技术可以设计出智能化的电力管理系统,实现对电网全面、高效的管理。

电力管理系统可以根据实时的电力供需情况进行负载调整和电能的分配,提高电能的利用效率和供应稳定性。

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用一、引言电力电子技术是指利用电子器件和电子控制技术来实现电力转换、控制和调节的一门学科。

它在电力系统中的应用广泛而重要。

本文将结合实际案例,探讨电力电子技术在电力系统中的应用。

二、直流输电技术1. 直流输电系统原理直流输电技术是电力电子技术在电力系统中的重要应用之一。

通过将交流电转换为直流电进行输送,可以有效解决长距离传输中所遇到的电压和电流损耗问题,提高输电效率。

例如,高压直流输电(HVDC)系统可以将电能从远距离的火电厂输送到需求地,降低了能源损耗,提高了输电容量。

2. 直流输电技术的优势直流输电技术相对于传统的交流输电技术具有以下优势:低损耗、大容量、节约输电线路、节约投资等。

而且,直流输电技术还具有可靠性高、对负荷变化响应快等特点。

三、电力调速技术1. 电力调速系统原理电力调速技术是指利用电力电子技术对发电机的输出功率进行调整,以满足电力系统的需求。

通过控制并联在发电机轴上的电动机的转速,可以调整发电机的输出功率,使其与负荷需求相匹配。

2. 电力调速系统的应用电力调速技术在调频调速水轮机、风力发电和光电发电等领域得到广泛应用。

例如,调频调速水轮机在水电站中的应用通过控制水轮机的转速,实现对水轮机的输出功率的调整,以满足电力系统负荷需求。

四、电力滤波技术1. 电力滤波技术原理电力滤波技术是指通过引入滤波器将电力系统中的电源谐波进行滤除,改善电力质量的一项技术。

电力谐波是指电力系统中包含在交流电中的频率为基波频率整数倍的电压或电流成分。

电力谐波会导致电力系统的电压失真,影响电力设备的正常工作。

2. 电力滤波技术的应用电力滤波技术在电力系统的主变电所、电动机驱动系统等领域得到广泛应用。

例如,电力滤波器可以通过滤除电力系统中的谐波,避免了负载对电力系统的干扰,保证了电力系统的正常运行。

五、智能电网技术1. 智能电网系统原理智能电网技术是指将信息通信技术与电力系统相结合,实现对电力系统的智能化、自动化管理的技术。

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用

有源电压电流补偿装臵
•PWM开关型并联无功功率发生器(STATCOM) 功用:先进的(或高级的)静止型无功功率发生器ASVG。 也被称为静止同步补偿器STATCOM,又称为静止调相器。
装臵图
电感上电流
V V V V V V i S i S S i I j j jX L XL XL
补偿原理
装臵图
阻抗补偿装臵
设计公式:
Pe V2Icos Pmax sin
发电机功角特性导电
Pmax
V1V2 XG XT XL
极限最大功率
阻抗补偿装臵
•晶闸管控制串联电容器(TCSC)
功用:输电线路的电感越大,其传输功率极限值越小,在 输电线电路中串联介入电容器可以补偿线路电感,提高输 电线的输电能力改善系统稳定性。为了改变等效串联电容 的大小,可将一定容量的电容C与一个晶闸管控制的电感L 相并联,再共同串联在线路上。
结语
引入大功率半导体开关型电力变换器、补偿器、控制 器以后,原有电力系统的结构将发生重大变化。无论是发 电、输配电和电力应用都将获得更好的技术经济效益、更 高的安全可靠性、更灵活有效的控制特性和更优良的供电 质量。随着现代电力电子技术的不断发展和电力电子技术 在电力系统领域中的广泛应用,传统的电力系统将成为一 个其运行更加安全、可靠、经济、控制灵活的柔性电力系 统,传统的电力技术将发生革命性的变革。
T1导电
i(t)
2V 2 (cos cost ) L
V2 L I1 sin 2 2( )
T2导电
X 1
等效基波电抗
阻抗补偿装臵
带TPCI及TSC的电力系统
阻抗补偿装臵
•晶闸管投切电阻(TSR) 功用:防止故障时发电机功率不平衡所引起的矢步,应在 原动机功率调节作用尚未动作之前增加发电机的输出功率。 通过晶闸管接入一个制动(负载)电阻R。以增大发电机 的输出功率使发电机转子受到附加的制动力矩,防止电动 机失步。

电力电子技术在电力系统中的应用研究

电力电子技术在电力系统中的应用研究

电力电子技术在电力系统中的应用研究随着科技的不断进步,电力电子技术在电力系统中的应用越来越广泛。

电力电子技术是通过控制和调节电气能量传输和转换的技术,它在提高电力系统效率、稳定性和可靠性方面发挥着重要作用。

本文将讨论电力电子技术在电力系统中的应用研究,并且探讨其未来发展方向。

1. 可再生能源接入电网随着可再生能源如风能、太阳能等的不断发展和普及,电力系统需要更多的可再生能源接入。

电力电子技术提供了各种变流器和逆变器,可以将可再生能源转换为可控的交流电,以便接入电网。

电力电子技术还提供了各种功率电子器件,用于调节和控制可再生能源的输出功率,确保其安全可靠地接入电网。

2. 电力质量改善电力系统中存在各种电力质量问题,如电压波动、谐波、闪变等。

电力电子技术可以通过各种有源和无源滤波器来改善电力质量问题。

有源滤波器可以通过电力电子器件实时补偿电网中的谐波和无功功率,提高电力质量。

而无源滤波器则可以通过电容、电感等元件来抑制电网中的谐波和波动,改善电力质量。

3. 柔性输电电力电子技术可以实现柔性交流输电(FACTS)和柔性直流输电(HVDC)等技术,从而提高电力系统的稳定性和灵活性。

FACTS可以通过控制电力系统的电压和无功功率来提高系统的稳定性,降低输电损耗。

HVDC可以通过控制换流器来实现不同频率、不同相电网之间的电能传输,提高电力系统的互联互通。

4. 电能质量调节电力电子技术在直流输电和无功补偿方面也发挥着重要作用。

直流输电可以通过换流器实现长距离的高功率电能传输,减少输电损耗和电压降。

无功补偿装置可以通过控制有源或无源电力电子器件来实现高效率的无功功率调节,提高电力系统的稳定性和可靠性。

二、电力电子技术的未来发展方向1. 大功率、高效率未来电力电子技术的发展方向是实现更大功率、更高效率的电力电子器件和系统。

随着电力系统规模的不断扩大,需要更大功率的变流器、逆变器等设备来应对电力系统的需求。

为了提高能源利用效率,电力电子技术需要不断提高其转换效率和功率密度。

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用在电力系统中的应用可以增加传输容量,提高电能质量,增强稳定性,可靠性,灵活性并减少损失。

本文首先介绍了电力、传输、配电和节能方面的专业电子技术应用。

然后,以风力发电为例,介绍应用前景,控制技术和存在的问题,挑战电力电子技术在可再生能源发电中的应用。

最后展望了电力电子技术在智能电网中的应用前景。

关键词:电力系统;直流输电;风力发电第1章电力电子技术在双馈风力发电机组中的应用利用电力技术的综合风力,自动控制等研究成果,已经发展成为电力系统研究的新领域。

随着大规模电子技术的发展,钴诱导风力发电系统已成为发电设备的主要选择之一。

风力发电系统不需要保持风力涡轮机的风速恒定,但是其它控制使得频率更强。

这种风力发电系统的主要优点是:(1)风力发电技术非常庞大。

由于风力涡轮机可变运行的速度,可以在大风速下保持最大功率点和最佳叶尖速度比,从而提高单元生成效率和优化风力涡轮机的运行条件。

(2)功率因数可以通过风力发电技术进行调整。

风力发电方法将低频电流的第三级减小到感应电动机转子侧,识别交流励磁并控制频率,幅度和电流励磁相位,从而找到电力输出的恒定频率和电压。

(3)风能技术使俯仰控制更容易。

当提升速度高时,可以通过调节俯仰角来限制最大输出功率。

当风速很高时,角落仍在那里。

1.1双馈风力发电机组变速恒频运行的基本原理:电动机的结构与绕线感应电动机的结构相似。

定子绕组也被对称的三对称固定频率电源所吸引。

不同之处在于转子回路由具有可调频率的三相可调电源修整。

通常,AC-AC或AC-DC-AC转换器用于提供当前的低频。

转子转速、由转子的外部激振力产生的磁场相对于转子的速度的旋转速度磁场的旋转速度与定子同步之间的关系为:在双动力风力发电机中,大规模运行,定子输出电压和恒定频率不仅可以调节电网中的功率因数,还可以增加系统的稳定性。

该控制方案不仅实现了频率变化的频率控制,从而降低了变频器的容量,实现了有功功率和无功功率的灵活控制,可以作为电网的无功补偿。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子技术在电力系统中的应用(一)
摘要文中概速性地介绍电力电子技术在电力系统中的各类应用,重点在发电环节中、输电环节中、在配电环节中的应用和节能环节的运用。

关键词:直流输电;电力电子;发电机
一、前言
电力电子技术是一个以功率半导体器件、电路技术、计算机技术、现代控制技术为支撑的技术平台。

经过50年的发展历程,它在传统产业设备发行、电能质量控制、新能源开发和民用产品等方面得到了越来越广泛的应用。

最成功地应用于电力系统的大功率电力电子技术是直流输电(HVDC)。

自20世纪80年代,柔性交流输电(FACTS)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。

本文介绍了电力电子技术在发电环节中、输电环节中、在配电环节中的应用和节能环节的运用。

二、电力电子技术的应用
自20世纪80年代,柔性交流输电(FACTS)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。

已有不少文献介绍和总结了相关设备的基本原理和应用现状。

以下按照电力系统的发电、输电和配电以及节电环节,列举电力电子技术的应用研究和现状。

(一)在发电环节中的应用
电力系统的发电环节涉及发电机组的多种设备,电力电子技术的应用以改善这些设备的运行特性为主要目的。

1大型发电机的静止励磁控制
静止励磁采用晶闸管整流自并励方式,具有结构简单、可靠性高及造价低等优点,被世界各大电力系统广泛采用。

由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有利条件。

2水力、风力发电机的变速恒频励磁
水力发电的有效功率取决于水头压力和流量,当水头的变化幅度较大时(尤其是抽水蓄能机组),机组的最佳转速便随之发生变化。

风力发电的有效功率与风速的三次方成正比,风车捕捉最大风能的转速随风速而变化。

为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。

此项应用的技术核心是变频电源。

3发电厂风机水泵的变频调速
发电厂的厂用电率平均为8%,风机水泵耗电量约占火电设备总耗电量的65%,且运行效率低。

使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。

低压变频器技术已非常成熟,国内外有众多的生产厂家,并不完整的系列产品,但具备高压大容量变频器设计和生产能力的企业不多,国内有不少院校和企业正抓紧联合开发。

(二)在输电环节中的应用
电力电子器件应用于高压输电系统被称为“硅片引起的第二次革命”,大幅度改善了电力网的稳定运行特性。

1直流输电(HVDC)和轻型直流输电(HVDCLight)技术
直流输电具有输电容量大、稳定性好、控制调节灵活等优点,对于远距离输电、海底电缆输电及不同频率系统的联网,高压直流输电拥有独特的优势。

1970年世界上第一项晶闸管换流器,标志着电力电子技术正式应用于直流输电。

从此以后世界上新建的直流输电工程均采用晶闸管换流阀。

2柔性交流输电(FACTS)技术
FACTS技术的概念问世干20世纪80年代后期,是一项基于电力电子技术与现代控制技术对
交流输电系统的阻抗、电压及相位实施灵活快速调节的输电技术,可实现对交流输电功率潮流的灵活控制,大幅度提高电力系统的稳定水平。

20世纪90年代以来,国外在研究开发的基础上开始将FACTS技术用于实际电力系统工程。

其输出无功的大小,设备结构简单,控制方便,成本较低,所以较早得到应用。

相关文档
最新文档