小学几何之四燕尾定理

合集下载

燕尾定理公式

燕尾定理公式

燕尾定理公式燕尾定理,又称为“皮克定理”或“握手定理”,是平面几何中的一个定理,已有两百多年的历史。

它描述的是一个简单多边形内部的点数与边数及顶点数之间的关系。

通过该定理,我们可以方便地计算出由卡片拼成的形状中的点数、边数和顶点数,以及对一些技术问题的解决。

下面是详细介绍。

燕尾定理公式为:对于一个平面图形,内部的点数I等于边数B减顶点数V加2,即I=B-V+2。

其中,点数I表示几何图形内部的点的数量;边数B表示几何图形的边数;顶点数V表示几何图形的顶点数。

公式的意义在于,当我们知道了任意两个值时,就可以非常方便地求出第三个值。

例如,当我们知道一张图形内部有m个点,其中包含n条边,那么该图形的顶点数就等于n-m+2。

此外,燕尾定理中的“燕尾”一词来源于几何形状。

燕尾的具体形状为带有斜切角的直角三角形,其两个直角边长度分别与相邻边相等,不同于其他三角形的长和宽的形状。

而燕尾定理中的“燕尾”则指的是这种三角形的形状。

燕尾定理的应用十分广泛。

例如,在计算地图中某个地区所覆盖的面积时,可以利用该定理计算出图形内部的点数、边数和顶点数。

而在计算工艺制图中特定形状的尺寸时,也可以用燕尾定理来计算图形内部的点数、边数和顶点数。

当然,在应用定理时,还需要注意一些细节。

例如,燕尾定理只适用于简单多边形,即多边形内部没有自交(即交叉)。

此外,如果多边形存在空洞或孔,则需要分别计算内外多边形的点数、边数和顶点数,然后用两个结果相减得到最终结果。

总的来说,燕尾定理作为平面几何中的一个基础定理,可以在很多领域中得到应用。

对于初学者而言,掌握该定理的公式和应用方法是十分重要的,有助于提高几何计算的效率和准确性。

燕尾定理详细讲解

燕尾定理详细讲解

燕尾定理详细讲解
燕尾定理是一个关于平面三角形的定理,其得名源于解题图形类似燕尾的形状。

以下是燕尾定理的详细讲解:
1. 定理定义:燕尾定理是一个关于三角形面积的定理,它指出两个相似三角形对应的两条边之间的比例与它们的高成反比。

2. 定理公式:如果两个相似三角形的对应边长分别为a和b,高分别为h和k,那么它们的面积之比为a:b=(h:k)^2。

3. 证明方法:燕尾定理可以通过相似三角形的性质和勾股定理进行证明。

首先,由于两个三角形相似,我们有(a/b)^2=(h/k)^2。

然后,利用勾股定理,我们可以得到a^2=b^2-c^2,其中c是三角形的底边长。

结合上述两个等式,我们可以得到a:b=(h:k)^2。

4. 应用领域:燕尾定理在几何学、三角学等领域有广泛的应用,特别是在解决与三角形面积、相似三角形等有关的问题时。

通过燕尾定理,我们可以快速找到相似三角形之间的面积比例关系,从而简化问题解决过程。

5. 注意事项:在使用燕尾定理时,需要注意确保所涉及的两个三角形是相似的,这是应用该定理的前提条件。

此外,还需要注意单位和坐标系的统一,以确保计算结果的准确性。

总之,燕尾定理是一个重要的几何定理,通过掌握其定义、公式、证明方法、应用领域和注意事项等方面的知识,可以更好地理解和应用该定理,解决与三角形面积和相似三角形有关的问题。

三角形的燕尾定理公式

三角形的燕尾定理公式

三角形的燕尾定理公式摘要:一、燕尾定理公式简介二、燕尾定理公式的推导过程三、燕尾定理公式在实际问题中的应用四、总结正文:一、燕尾定理公式简介燕尾定理公式,是描述三角形中一个重要性质的公式。

它表示了在一个三角形中,如果有一条直线与两条边相交,那么这两条边的长度和这条直线的长度之间将满足一个特定的关系。

这一性质广泛应用于解决各种几何问题,是理解许多复杂几何关系的基础。

二、燕尾定理公式的推导过程燕尾定理公式的推导过程涉及一些复杂的几何知识和数学理论,对于非专业的人来说可能有些晦涩。

然而,我们可以通过一个简单的模型来说明其基本原理。

假设有一个三角形ABC,其中AB 和AC 是两条边,BC 是底边。

现在有一条直线DE 与AB 和AC 相交,交点分别为F 和G。

根据三角形的性质,我们知道AF=BF,AG=CG。

现在我们将这个模型扩展到更一般的情况。

假设我们有一个任意的三角形ABC,其中AB=c,AC=b,BC=a。

我们有一条直线DE 与AB 和AC 相交,交点分别为F 和G。

根据相似三角形的原理,我们可以得出以下比例:AF/AB = AG/AC通过交叉相乘,我们可以得到:AF*AC = AG*AB这个等式就是燕尾定理公式。

三、燕尾定理公式在实际问题中的应用燕尾定理公式在解决各种几何问题中都有广泛的应用。

例如,在测量问题中,如果我们知道了一个三角形的一个角度和其对应的边长,以及另一个角度和其对应的边长,那么我们就可以用燕尾定理公式来计算第三个角度和其对应的边长。

在建筑和工程领域,燕尾定理公式也被广泛应用。

例如,在设计桥梁和建筑物的结构时,需要考虑到各种力的平衡,包括垂直于结构表面的压力和水平方向的张力。

在这些情况下,理解燕尾定理公式是非常重要的。

四、总结总的来说,燕尾定理公式是理解三角形性质的重要工具。

它不仅可以帮助我们解决各种几何问题,也是理解许多复杂几何关系的基础。

小学奥数-几何五大模型(燕尾模型)知识讲解

小学奥数-几何五大模型(燕尾模型)知识讲解

小学奥数-几何五大模型(燕尾模型)燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么,::ABO ACO S S BD DC ∆∆=OFE DCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题 证明燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==S 3S 1S 4S 2EDCBA【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;例题精讲燕尾定理综上可得, 1423:::S S S S BD DC ==.【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA33321F E DC BAABCDEF【解析】 方法一:连接CF ,根据燕尾定理,12ABFACFS BD S DC ==△△,1ABF CBF S AES EC==△△, 设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512.【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积.又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30, 所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABFCBFS AE S EC ==△△,1ABF ACF S BDS CD==△△, 所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以阴影部分面积是30107.512.5--=.(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△, 111111 2.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBAABC DEF FEDCBA【解析】 连接CF ,根据燕尾定理,2639ABF ACFS BD S DC ===△△,36510ABFCBFS AE S EC ===△△, 设6ABF S =△份,则9ACF S =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFES =÷++⨯+=⨯+=【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △ 面积的几分之几?OE DCBA13.54.59211213O E D CBA【解析】 连接CO ,设1AEO S =△份,则其他部分的面积如图所示,所以1291830ABC S =+++=△份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020+===【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X,若ABC △的面积为6,则ABX △的面积等于 .XQPABC XQPABC4411XQPCBA【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQ ABC S S =V V ,1126BPQ BCQ ABC S S S ==V V V .由蝴蝶定理知,21:::4:136ABQ BPQ ABC ABC AX XP S S S S ===V V V V ,所以441226 2.455255ABXABP ABC ABC S S S S ==⨯==⨯=V V V V . 方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积,所以6(1144)4 2.4ABX S =÷+++⨯=△【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?ABCDE F48621ABCDEF【解析】 连接CF ,设1AEF S =△份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEF S =△,62217ABF S ==△,821BDF S =△,242217FDCE S +==【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC 的面积等于222cm ,则三角形ABC 的面积 .ABCDE FABCDEF 2.41.62A BC DE F 12【解析】 连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,23ABF CBF S AE S EC ==△△,设1BDF S =△份,则2DCF S =△份,2ABF S =△份,4AFC S =△份,24 1.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如图所标,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份所以222 4.4945(cm )ABC S =÷⨯=△【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少?【解析】 连接BN .ABC △的面积为3223⨯÷=根据燕尾定理,::2:1ACN ABN CD BD ==△△;同理::1:1CBN CAN BM AM ==△△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112+=份,而ACN △的面积就是224⨯=份,CBN △也是4份,这样ABC △的面积为441110+++=份,所以AMN △的面积为31010.3÷⨯=.【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?y B CD EGE D CBAEDB A【解析】 设1DEF S =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米.【例 2】 如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,那么平行四边形BODC 的面积为.OFE DCBA684621O F E DCB A【解析】 连接,AO BD ,根据燕尾定理::1:2ABO BDO S S AF FD ==△△,::2:1AOD BOD S S AE BE ==△△,设1BEO S =△,则其他图形面积,如图所标,所以221224BODC AEOF S S ==⨯=.【例 3】 ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF与CE 交于G ,则四边形AGCD 的面积是平方厘米.GFE DCBAGFE D CBA【解析】 连接AC 、GB ,设1AGC S =△份,根据燕尾定理得1AGB S =△份,1BGC S =△份,则11126S =++⨯=正方形()份,314ADCG S =+=份,所以22126496(cm )ADCG S =÷⨯=【例 4】 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F是BC 的中点,四边形BGHF 的面积是平方厘米.EDED【解析】 连接BH ,根据沙漏模型得:1:2BG GD =,设1BHC S =△份,根据燕尾定理2CHD S =△份,2BHD S =△份,因此122)210S =++⨯=正方形(份,127236BFHG S =+=,所以712010146BFHG S =÷⨯=(平方厘米).【例 5】 如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = .FE D C BAFE DCB A【解析】 连接CD .由于:1:1ABD BED S S =△△,:3:4BED BCD S S =△△,所以:3:4ABD BCD S S =△△,根据燕尾定理,::3:4ABD BCD AF FC S S ==△△.【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =?ABCDE OABCDE O【解析】 连接OC .因为:3:2BD DC =,根据燕尾定理,::3:2AOB AOC S S BD BC ∆∆==,即32AOB AOC S S ∆∆=;又:3:1AE EC =,所以43AOC AOE S S ∆∆=.则3342223AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=,所以::2:1AOB AOE OB OE S S ∆∆==.【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =?A B CDE O【解析】 题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接OC . 连接OC .A B CDE O因为:2:1BD DC =,根据燕尾定理,::2:1AOB AOC S S BD BC ∆∆==,即2AOB AOC S S ∆∆=;又:1:3AE EC =,所以4AOC AOE S S ∆∆=.则2248AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::8:1AOB AOE OB OE S S ∆∆==.【例 6】 (2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .BEH BEBE【解析】 (法1)如图,过F 做CE 的平行线交AB 于H ,则::1:3EH HB CF FB ==,所以122AE EB EH ==,::2AG GF AE EH ==,即2AG GF =,所以122311033942AEG ABF ABCD S S S ∆∆=⨯⨯=⨯⨯=X .且22313342EG HF EC EC ==⨯=,故CG GE =,则1152CGF AEG S S ∆∆=⨯⨯=.所以两三角形面积之和为10515+=.(法2)如上右图,连接AC 、BG .根据燕尾定理,::3:1ABG ACG S S BF CF ∆∆==,::2:1BCG ACG S S BE AE ∆∆==, 而1602ABC ABCD S S ∆==X ,所以3321ABG S ∆=++,160302ABC S ∆=⨯=,2321BCG S ∆=++,160203ABC S ∆=⨯=,则1103AEGABG S S ∆∆==,154CFG BCG S S ∆∆==, 所以两个三角形的面积之和为15.【例 7】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△::5:615:18AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =GF EDCBA【解析】 根据燕尾定理有:2:310:15ABG ACG S S ==△△,:5:310:6ABG BCG S S ==△△,所以:15:65:2:ACG BCG S S AF BF ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△::5:410:8AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为,三角形AGE 的面积为,三角形GHI 的面积为.I HGFEDCBAI HG FEDCBA【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==;根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=;那么2248551995AGE AGC S S ∆∆==⨯=; 同样分析可得919ACH S ∆=,则::4:9ACG ACH EG EH S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:10EG GH HB =,同样分析可得::10:5:4AG GI ID =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI的面积是1,求三角形ABC 的面积.IH G FEDCBAIH G FEDCBA【解析】 连接,AGC S △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGCABCS S =△△, 同理连接、得619ABH ABCS S =△△,619BIC ABC S S =△△, 所以1966611919GHIABCS S ---==△△ 三角形的面积是1,所以三角形的面积是19【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.BCB【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACI S S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==,所以,::1:2:4ACI BCI ABI S S S ∆∆∆=, 那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DBECFA===,求GHI ABC △的面积△的面积的值.IHG FEDCBAIH G FEDCB A【解析】 连接,设BGC S △=1份,根据燕尾定理::2:1AGC BGC S S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABCS S =△△,同理连接、得27ABH ABC S S =△△,27BIC ABC S S =△△, 所以7222177GHIABCS S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【巩固】如图在ABC △中,13DC EA FB DBECFA===,求GHI ABC △的面积△的面积的值.IHG FEDCBAIH G FEDCB A【解析】 连接,设BGC S △=1份,根据燕尾定理::3:1AGC BGC S S AF FB ==△△,::3:1ABG AGC S S BD DC ==△△,得3AGC S =△(份),9ABG S =△(份),则13ABC S =△(份),因此313AGC ABCS S =△△,同理连接、得13ABH ABC S S =△△,313BIC ABC S S =△△, 所以1333341313GHIABCS S ---==△△【巩固】如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI 的面积.IH G FEDCBAIH G FEDCBA【解析】 连接,AGC S △=12份根据燕尾定理,::4:312:9AGC BGC S S AF FB ===△△,::4:316:12ABG AGC S S BD DC ===△△得9BGC S =△(份),16ABG S =△(份),则9121637ABC S =++=△(份),因此1237AGCABCS S =△△, 同理连接、得1237ABH ABCS S =△△,1237BIC ABC S S =△△, 所以3712121213737GHIABCS S ---==△△ 三角形的面积是74,所以三角形的面积是174237⨯=【例 9】 两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少?【解析】方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC,BE和CD交于F,则BF FE=,再连结DE.所以三角形DEF的面积为3.设三角形ADE的面积为x,则()():33:10:10x AD DB x+==+,所以15x=,四边形的面积为18.方法二:设ADFS x=△,根据燕尾定理::ABF BFC AFE EFCS S S S=△△△△,得到3AEFS x=+△,再根据向右下飞的燕子,有(37):7:3x x++=,解得7.5x=四边形的面积为7.57.5318++=【巩固】右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是.【解析】方法一:整个题目读完,我们没有发现任何与边长相关的条件,也没有任何与高或者垂直有关系的字眼,由此,我们可以推断,这道题不能依靠三角形面积公式求解.我们发现右图三角形中存在一个比例关系:()2:13:4S=+阴影,解得2S=阴影.方法二:回顾下燕尾定理,有2:41:3S+=阴影(),解得2S=阴影.【例 10】如图,三角形ABC被分成6个三角形,已知其中4个三角形的面积,问三角形ABC的面积是多少?35304084OFED CBA【解析】设BOFS x=△,由题意知:4:3BD DC=根据燕尾定理,得::4:3ABO ACO BDO CDOS S S S==△△△△,所以33(84)6344ACOS x x=⨯+=+△,再根据::ABO BCO AOE COE S S S S =△△△△,列方程3(84):(4030)(6335):354x x ++=+-解得56x =:35(5684):(4030)AOE S =++△,所以70AOE S =△所以三角形的面积是844030355670315+++++=【例 11】三角形的面积为15平方厘米,D 为中点,E 为中点,F 为中点,求阴影部分的面积.F CBAF CBA【解析】 令与的交点为M ,与的交点为N ,连接,.在ABC △中,根据燕尾定理,::1:1ABM BCM S S AE CE ==△△,::1:1ACM BCM S S AD BD ==△△, 所以13ABM ACM BCN ABC S S S S ===△△△△由于1122AEM AMC ABM S S S ==△△△S ,所以:2:1BM ME =在EBC △中,根据燕尾定理,::1:1BEN CEN S S BF CF ==△△::1:2CEN CBN S S ME MB ==△△设1CEN S =△(份),则1BEN S =△(份),2BCN S =△(份),4BCE S =△(份),所以1124BCN BCE ABC S S S ==△△△,1148BNE BCE ABC S S S ==△△△,因为:2:1BM ME =为中点,所以221133812BMN BNE ABC ABC S S S S ==⨯=△△△△,11112248BFN BNC ABC S S S ==⨯=△△△,所以115515 3.1251282424ABC ABC S S S ⎛⎫=+==⨯= ⎪⎝⎭△△阴影(平方厘米)【例 12】如右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EFNMGA BC D EF【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBM S S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANGAFCSS =⨯=+△△,所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△. 根据题意,有157.2528ABC ABC S S -=△△,可得336ABC S =△(平方厘米)【巩固】(2007年四中分班考试题)如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是.F ABCDEM NFABCDEMN【解析】 由于点D 是边AC 的中点,点E 、F 是边BC 的三等分点,如果能求出BN 、NM 、MD 三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF 的面积. 连接CM 、CN .根据燕尾定理,::2:1ABM ACM S S BF CF ∆∆==,而2ACM ADM S S ∆∆=,所以24ABM ACM ADM S S S ∆∆∆==,那么4BM DM =,即45BM BD =.那么421453215BMF BCD BM BF S S BDBC∆∆=⨯⨯=⨯⨯=,14721530CDMF S =-=四边形. 另解:得出24ABMACM ADM S S S ∆∆∆==后,可得111155210ADMABD S S ∆∆==⨯=, 则11731030ACF ADM CDMF S S S ∆∆=-=-=四边形.【例 13】如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?GFE D CBAN MQPGF EDCBA【解析】 设与交于点P ,与交于点Q ,与交于点M ,与交于点N .连接,,,.根据燕尾定理,::1:2ABP CBP S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPMS =△121BDM S =△,所以1239273570PQMN S =--=四边形,13953357042MNEDS =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?K JI HABC D EF GKJI HABC D EFG【解析】 连接CK 、CI 、CJ .根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==, 所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==.类似分析可得215AGI S ∆=. 又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=.那么,111742184CGKJ S =-=. 根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABE S S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.【例 14】如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.CBB【解析】 设IG 交HF 于M ,IG 交HD 于N ,DF 交EI 于P .连接AM ,IF .∵:3:4AI AB =,:3:4AF AC =,916AIF ABC S S ∴=△△ ∵::2FIM AMF S S IH HA ==△△,::2FIM AIM S S FG GA ==△△, ∴19464AIM AIF ABC S S S ==△△△ ∵:1:3AH AI = ∴364AHM ABC S S =△△, ∵:1:4AH AB = :3:4AF AC = ∴316AHF ABC S S =△△ . 同理 316CFD BDH ABC S S S ==△△△ ∴716FDH ABC S S =△△ 33::1:46416HM HF ==, ∵ :3:4,:3:4AI AB AF AC ==,∴IF BC ∥ ,又∵:3:4,:1:2IF BC DE BC ==,∴:2:3,:2:3DE IF DP PF ==,同理 :2:3HN ND =,∵:1:4HM HF =,∴:2:5HN HD =, ∴17710160160HMN HDF ABC S S S ===△△△.同理 6个小阴影三角形的面积均为7160. 阴影部分面积721616080=⨯=.【例 15】如图,面积为l 的三角形中,D 、E 、F 、G 、H 、I 分别是、、 的三等分点,求阴影部分面积.GC BAGCBA【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令与的交点为M ,与的交点为N ,与的交点为与的交点为Q ,连接、、 ⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABM ACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△, 所以111()12126ABC ABC ADMIS S S =+=△△四边形, 同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQES五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△ 在ABC △中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△ 所以15ABP ABC S S =△△所以1111152121105ABP ADN BEP ABC ABC DNPQE S S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形同理另外两个五边形面积是ABC △面积的11105所以11113133610570S =-⨯-⨯=阴影【例 16】如图,面积为l 的三角形中,D 、E 、F 、G 、H 、I 分别是、、 的三等分点,求中心六边形面积.GCBAGCBA【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△,::1:2ABR CBR S S AI CI ==△△所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形【例 17】(2009年数学解题能力大赛六年级初试试题)正六边形1A ,2A ,3A ,4A ,5A ,6A 的面积是2009平方厘米,1B ,2B ,3B ,4B ,5B ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.A 4B 5A 3A 45A 3【解析】 (方法一)因为空白的面积等于23A A G △面积的6倍,所以关键求23A A G△的面积,根据燕尾定理可得2312333117732A A G A A A S S S ==⨯⨯△△正六边形,但在123A A A △用燕尾定理时,需要知道13,A D A D 的长度比,连接1363,A A A A ,1A G ,过6B 作12A A 的平行线,交13A A 于E ,根据沙漏模型得1A D DE =,再根据金字塔模型得13A E A E =,因此13:1:3A D A D =,在123A A A △中,设121A A GS=△份,则233A A GS =△份,313A A GS=△份,所以2312333111773214A A G A A A S S S S ==⨯⨯=△△正六边形正六边形, 因此141620091148147S S =-⨯=⨯=阴影正六边形()(平方厘米) (方法二)既然给的图形是特殊的正六边形,且阴影也是正六边形我们可以用下图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为82009114814⨯=(平方厘米)A 3A【例 18】已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b =baEDbaNMHFED【解析】 观察图形,感觉阴影部分像蝴蝶定理,但是细细分析发现用蝴蝶定理无法继续往下走,注意到题目条件中给出了两个正方形的边长,有边长就可以利用比例,再发现在连接辅助线后可以利用燕尾,那么我们就用燕尾定理来求解 连接、,根据燕尾定理:::AOE AOF S S a b =△△,::AOF EOF S S a b =△△ 所以 22::AOE EOF S S a b =△△,作⊥、⊥, ∵=∴22::OM ON a b = ∴33::1:8S S a b ==乙甲∴:1:2a b =。

小学奥数几何燕尾模型

小学奥数几何燕尾模型

目tM怔例题精讲燕尾定理:在三角形ABC中,AD , BE , CF相交于同一点0 , 那么,S小BO :S^co = BD:DC上述定理给出了一个新的转化面积比与线段比的手段,因为ABO 和ACO的形状很象燕子的尾巴,所以这个定理被称为燕尾定理•该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径通过一道例题证明燕尾定理:如右图,D是BC上任意一点,请你说明:S1: S4= S? : S^ BD : DC【解析】三角形BED与三角形CED同高,分别以BD、DC为底,所以有S:S4=BD:DC ;三角形ABE与三角形EBD同高,S!:S^ ^ED:EA ;三角形ACE与三角形CED同高,S4 : S^ = ED : EA,所以S, : S4二S? : S3 ;综上可得,S於4二S2 二BD : DC .燕尾定理【例1】(2009年第七届希望杯五年级一试试题)如图,三角形 ABC 的面积是1, E 是AC 的中点,点D 在BC 上,且BD:DC=1:2,AD 与BE 交于点F .则四边形 DFEC 的面积等于 ______________【解析】方法一:连接CF ,设S A BDF =1份,则S A DCF =2份, S A ABF =3份 , SA AEF - SA EFC =3份,如图所标5 5S A ABC 二1212方法二:连接DE ,由题目条件可得到S AA BD 4S AABC,【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积 •又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD=DC , EC=2AE ,三角形 ABC 的面积是30,、 1 所以SA ABES A ABC -10 , S A ABD -1SABC=15 .32根据燕尾定理, SA ABFAE 1 SA ABF BD-1SA CBFEC22 ACFCD所以 S A ABFS A ABC - 7.5 , S A BFD =15 - 7.5 =7.5 ,4所以阴影部分面积是 30 T0 -7.5 =12.5 .(法二)连接DE ,由题目条件可得到 1S A ABE S A ABC =10 ,31 12 S A BDE S A BEC S A ABC =10 , 2 2 3所以 AF =_§AAB^ , FD BDE 1根据燕尾定理,ABFBD 1 ACFDC2S A ABFS\ CBFAE EC所以S DCE F S A ADE S A ADC2- S A ABC 3 BF FE S A ABD _ 1 S A ADE 1 11 1 小1 1 1 S A DEF S A DEB S A BECX- X S A ABC2 23 ~2 3 2而S A CDE 3 21 5 二-.所以则四边形 DFEC 的面积等于 —.3 12【巩固】如图,已知 BD =DC , EC =2AE ,三角形ABC 的面积是30,求阴影部分面积1 12 2 1S A ABCc1c11c111c S A DEFS ADEAADCS ^ ABC =2.5 ,2 2 323 22 1而S A CDES A ABC =10 •所以阴影部分的面积为 12.5 •3 22【巩固】如图,三角形ABC 的面积是200 cm , E 在AC 上,点D 在BC 上,且AE:EC=3:5 , BD:DC=2:3 ,AD 与BE 交于点F •则四边形 DFEC 的面积等于 __________E F B C D【解析】连接CF ,45452所以 S DCFE =200 亠(6 9 10) (6)=8 (6) =93 (cm ) 88【巩固】如图,已知BD=3DC , EC=2AE , BE 与CD 相交于点O ,则△ ABC 被分成的4部分面积各占 △ ABC 面积的几分之几?方法二:连接CX 设S A CPX /份,根据燕尾定理标出其他部分面积, 所以 S A ABX =6^(1 V._4 4) 4 - 2.4S AABF BD2 6SA ACFDC ~3 9根据燕尾定理,S A ABF AE3 6SA CBFEC510设S A ABF =6份,则 1 2 * * S A ACF =9份 ,S A BCF =10 份,SAEFC - 9 上份, 3S A CD F =10 63+5 82+3【解析】连接CO ,设S A AEO =1份,则其他部分的面积如图所示,所以 S A AB ^1 2 9 *18=30份,所以四部分按从小到大各占1 2+4 5 △ ABC面积的3?右 13 2_色 13.5 9 60,30 ~10,30 - 20【巩固】 (2007年香港圣公会数学竞赛)如图所示,在 △ ABC 中,CP =^CB , CQ=」CA ,2 3点X ,若△ ABC 的面积为6,则△ ABX 的面积等于 ___________ • BQ 与AP 相交于所以S LABXS ABP 5 - 4 1 2 S ABC S ABC 5 2 - 5 - 26 = 2.4•5 【解析】BD=2DC ,CE =2AE ,AD 与BE 相交于点F ,请写出这4部分【解析】连接CF ,设S A AEF=1份,则其他几部分面积可以有燕尾定理标出如图所示,所以【解析】连接BN .△ ABC 的面积为3 2 一'2 =3根据燕尾定理, △ ACN:A ABN 二CD: BD =2:1 ;【巩固】如图,三角形 ABC 的面积是1, S A AEF 右,S6 2。

小学奥数—燕尾定理

小学奥数—燕尾定理

B
DC
4-3-6.燕尾定理 题库
学生版
page 5 of 12
【例 5】 如图 9,三角形 BAC 的面积是 1,E 是 AC 的中点,点 D 在 BC 上,且 BD:DC=1:2,AD 与 BE 交
A
E F
B
C
D
于点 F,则四边形 DEFC 的面积等于

【例 6】 如 图 1 , ABC 中 , 点 E 在 AB 上 , 点 F 在 AC 上 , BF 与 CE 相 交 于 点 P , 如 果
4-3-6.燕尾定理 题库
学生版
page 10 of 12
【巩固】如图, ABC 中,点 D 是边 AC 的中点,点 E 、 F 是边 BC 的三等分点,若 ABC 的面积为 1,那么 四边形 CDMF 的面积是_________.
A
A
D M N
B
EF
C
D M N
B
EF
C
【例 19】 如图,等腰直角三角形 DEF 的斜边在等腰直角三角形 ABC 的斜边上,连接 AE、AD、AF,于是 整个图形被分成五块小三角形.图中已标出其中三块的面积,那么△ABC 的面积是________. (36)
【例 14】 已知四边形 ABCD , CHFG 为正方形, S甲 : S乙 1: 8 , a 与 b 是两个正方形的边长,求 a : b ?
【例 15】 右图的大三角形被分成 5 个小三角形,其中 4 个的面积已经标在图中,那么,阴影三角形的面积 是.
4-3-6.燕尾定理 题库
学生版
page 8 of 12
D
C
D
C
F G
A
E
B
F G

小学奥数几何(燕尾模型)

小学奥数几何(燕尾模型)

燕尾定理:在三角形ABC中,AD,BE,CF相交于同一点O,那么,上述定理给出了一个新的转化面积比与线段比的手段,因为ABO∆和ACO∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个.通过一道例题如右图,D是1423:::S S S S BD DC==【解析】三角形BED与三角形CED同高,分别以BD、DC为底,所以有14::S S BD DC=;三角形ABE与三角形EBD同高,12::S S ED EA=;三角形ACE与三角形CED同高,43::S S ED EA=,所以1423::S S S S=;综上可得,1423:::S S S S BD DC==.【例1】(2009年第七届希望杯五年级一试试题)如图,三角形ABC的面积是1,E是AC的中点,点D在BC 上,且:1:2BD DC=,AD与BE交于点F.则四边形DFEC的面积等于.【解析】方法一:连接CF,根据燕尾定理,12ABFACFS BDS DC==△△,1ABFCBFS AES EC==△△,设1BDFS=△份,则2DCFS=△份,3ABFS=△份,3AEF EFCS S==△△份,如图所标所以551212DCEF ABCS S==△方法二:连接DE,由题目条件可得到1133ABD ABCS S==△△,11212233ADE ADC ABCS S S==⨯=△△△,所以11ABDADESBFFE S==△△,111111122323212DEF DEB BEC ABCS S S S=⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABCS S=⨯⨯=△△.所以则四边形DFEC的面积等于512.【巩固】如图,已知BD DC=,2EC AE=,三角形ABC的面积是30,求阴影部分面积.【解析】题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改例题精讲燕尾定理page 1 of 11page 2 of 11造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30,所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABF CBF S AE S EC ==△△,1ABF ACF S BDS CD==△△,所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以阴影部分面积是30107.512.5--=.(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDES AF FD S ==△△, 1111112.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 . 【解析】 连接CF ,根据燕尾定理,2639ABF ACF S BD S DC ===△△,36510ABF CBF S AE S EC ===△△, 设6ABF S =△份,则9ACF S =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFE S =÷++⨯+=⨯+= 【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △面积的几分之几?【解析】 连接CO ,设1AEO S =△份,则其他部分的面积如图所示,所以1291830ABC S =+++=△份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020+===【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 . 【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQ ABC SS =,1126BPQ BCQABCS S S ==.由蝴蝶定理知,21:::4:136ABQ BPQ ABC ABC AX XP S S S S ===,所以441226 2.455255ABX ABP ABC ABC S S S S ==⨯==⨯=.方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积,page 3 of 11所以6(1144)4 2.4ABX S =÷+++⨯=△【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少? 【解析】 连接CF ,设1AEF S =△份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEF S =△,62217ABF S ==△,821BDF S =△,242217FDCE S +==【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC的面积等于222cm ,则三角形ABC 的面积 .【解析】 连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,23ABF CBF S AE S EC ==△△,设1BDF S =△份,则2D C FS =△份,2ABF S =△份,4AFC S =△份,241.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如图所标,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份 所以222 4.4945(cm )ABC S =÷⨯=△【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少? 【解析】 连接BN .ABC △的面积为3223⨯÷=根据燕尾定理,::2:1ACN ABN CD BD ==△△; 同理::1:1CBN CAN BM AM ==△△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112+=份,而ACN △的面积就是224⨯=份,CBN △也是4份,这样ABC △的面积为441110+++=份,所以AMN △的面积为31010.3÷⨯=.【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?【解析】 设1DEF S =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米.【例 2】 如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,那么平行四边形BODC 的面积为________.【解析】 连接,AO BD ,根据燕尾定理::1:2ABO BDO S S AF FD ==△△,::2:1AOD BOD S S AE BE ==△△,设1BEO S =△,则其他图形面积,如图所标,所以221224BODC AEOF S S ==⨯=. 【例 3】 ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF 与CE 交于G ,则四边形AGCD 的面积是_________平方厘米. 【解析】 连接AC 、GB ,设1A G C S =△份,根据燕尾定理得1AGB S =△份,1BGC S =△份,则11126S =++⨯=正方形()份,314ADCG S =+=份,所以22126496(cm )ADCG S =÷⨯=【例 4】 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米. 【解析】 连接BH ,根据沙漏模型得:1:2BG GD =,设1BHC S =△份,根据燕尾定理2CHD S =△份,2BHD S =△份,因此122)210S =++⨯=正方形(份,127236BFHG S =+=,所以712010146BFHG S =÷⨯=(平方厘米).page 4 of 11【例 5】 如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = . 【解析】 连接CD .由于:1:1ABD BED S S =△△,:3:4BED BCD S S =△△,所以:3:4ABD BCD S S =△△,根据燕尾定理,::3:4ABD BCD AF FC S S ==△△.【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =? 【解析】 连接OC .因为:3:2BD DC =,根据燕尾定理,::3:2AOB AOC S S BD BC ∆∆==,即32AOB AOC S S ∆∆=; 又:3:1AE EC =,所以43AOC AOE S S ∆∆=.则3342223AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::2:1AOB AOE OB OE S S ∆∆==.【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =?【解析】 题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接OC . 连接OC .因为:2:1BD DC =,根据燕尾定理,::2:1AOB AOC S S BD BC ∆∆==,即2AOB AOC S S ∆∆=; 又:1:3AE EC =,所以4AOC AOE S S ∆∆=.则2248AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=,所以::8:1AOB AOE OB OE S S ∆∆==. 【例 6】 (2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 . 【解析】 (法1)如图,过F 做CE 的平行线交AB 于H ,则::1:3EH HB CF FB ==,所以122AE EB EH ==,::2AG GF AE EH ==,即2AG GF =,所以122311033942AEG ABF ABCD S S S ∆∆=⨯⨯=⨯⨯=.且22313342EG HF EC EC ==⨯=,故CG GE =,则1152CGF AEG S S ∆∆=⨯⨯=.所以两三角形面积之和为10515+=.(法2)如上右图,连接AC 、BG .根据燕尾定理,::3:1ABG ACG S S BF CF ∆∆==,::2:1BCG ACG S S BE AE ∆∆==,而1602ABC ABCD S S ∆==,所以3321ABG S ∆=++,160302ABC S ∆=⨯=,2321BCG S ∆=++,160203ABC S ∆=⨯=,则1103AEG ABG S S ∆∆==,154CFG BCG S S ∆∆==,所以两个三角形的面积之和为15.page 5 of 11【例 7】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB . 【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量! 【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB . 【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△(都有AOB △的面积要统一,所以找最小公倍数)所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =【解析】 根据燕尾定理有:2:310:15ABG ACG S S ==△△,:5:310:6ABG BCG S S ==△△,所以:15:65:2:ACG BCG S S AF BF ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量! 【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______. 【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==; 根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=;那么2248551995AGE AGC S S ∆∆==⨯=;同样分析可得919ACH S ∆=,则::4:9A C G A C H E G E H S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:10EG GH HB =,同样分析可得::10:5:4AG GI ID =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC的面积.【解析】 连接BG ,AGC S △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△page 6 of 11得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGC ABC S S =△△, 同理连接AI 、CH 得619ABH ABC S S =△△,619BIC ABC S S =△△, 所以1966611919GHI ABC S S ---==△△ 三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍. 【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACI S S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==, 所以,::1:2:4ACI BCI ABI S S S ∆∆∆=,那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍. 【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. 【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::2:1AGC BGC S S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABH ABC S S =△△,27BIC ABC S S =△△, 所以7222177GHI ABC S S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【巩固】如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. 【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::3:1AGC BGC S S AF FB ==△△,::3:1ABG AGC S S BD DC ==△△,得3AGC S =△(份),9ABG S =△(份),则13ABC S =△(份),因此313AGC ABC S S =△△,同理连接AI 、CH 得13ABH ABC S S =△△,313BIC ABC S S =△△, 所以1333341313GHI ABC S S ---==△△ 【巩固】如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI 的面积.page 7 of 11【解析】 连接BG ,AGC S △=12份根据燕尾定理,::4:312:9AGC BGC S S AF FB ===△△,::4:316:12ABG AGC S S BD DC ===△△得9BGC S =△(份),16ABG S =△(份),则9121637ABC S =++=△(份),因此1237AGC ABC S S =△△,同理连接AI 、CH 得1237ABH ABC S S =△△,1237BIC ABC S S =△△, 所以3712121213737GHI ABC S S ---==△△ 三角形ABC 的面积是74,所以三角形GHI 的面积是174237⨯= 【例 9】 两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少?【解析】 方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC ,BE 和CD 交于F ,则BF FE =,再连结DE . 所以三角形DEF 的面积为3.设三角形ADE 的面积为x ,则()():33:10:10x AD DB x +==+,所以15x =,四边形的面积为18.方法二:设ADF S x =△,根据燕尾定理::ABF BFC AFE EFC S S S S =△△△△,得到3AEF S x =+△,再根据向右下飞的燕子,有(37):7:3x x ++=,解得7.5x =四边形的面积为7.57.5318++= 【巩固】右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是 . 【解析】 方法一:整个题目读完,我们没有发现任何与边长相关的条件,也没有任何与高或者垂直有关系的字眼,由此,我们可以推断,这道题不能依靠三角形面积公式求解.我们发现右图三角形中存在一个比例关系: ()2:13:4S =+阴影,解得2S =阴影.方法二:回顾下燕尾定理,有2:41:3S +=阴影(),解得2S =阴影. 【例 10】 如图,三角形ABC 被分成6个三角形,已知其中4个三角形的面积,问三角形ABC 的面积是多少? 【解析】 设BOF S x =△,由题意知:4:3BD DC =根据燕尾定理,得::4:3ABO ACO BDO CDO S S S S ==△△△△,所以33(84)6344ACO S x x =⨯+=+△,再根据::ABO BCO AOE COE S S S S =△△△△,列方程3(84):(4030)(6335):354x x ++=+-解得56x =:35(5684):(4030)AOE S =++△,所以70AOE S =△所以三角形ABC 的面积是844030355670315+++++=【例 11】 三角形ABC 的面积为15平方厘米,D 为AB 中点,E 为AC 中点,F 为BC 中点,求阴影部分的面积. 【解析】 令BE 与CD 的交点为M ,CD 与EF 的交点为N ,连接AM ,BN .在ABC △中,根据燕尾定理,::1:1ABM BCM S S AE CE ==△△,::1:1ACM BCM S S AD BD ==△△,所以13ABM ACM BCN ABC S S S S ===△△△△由于1122AEM AMC ABM S S S ==△△△S ,所以:2:1BM ME =page 8 of 11在EBC △中,根据燕尾定理,::1:1BEN CEN S S BF CF ==△△::1:2CEN CBN S S ME MB ==△△设1CEN S =△(份),则1BEN S =△(份),2BCN S =△(份),4BCE S =△(份),所以1124BCN BCE ABC S S S ==△△△,1148BNE BCE ABC S S S ==△△△,因为:2:1BM ME =,F 为BC 中点,所以221133812BMN BNE ABC ABC S S S S ==⨯=△△△△,11112248BFN BNC ABC S S S ==⨯=△△△,所以115515 3.1251282424ABC ABC S S S ⎛⎫=+==⨯= ⎪⎝⎭△△阴影(平方厘米)【例 12】 如右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米? 【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBM S S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANG AFC S S =⨯=+△△,所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABC ABC S S -=△△,可得336ABC S =△(平方厘米)【巩固】(2007年四中分班考试题)如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.【解析】 由于点D 是边AC 的中点,点E 、F 是边BC 的三等分点,如果能求出BN 、NM 、MD 三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF 的面积. 连接CM 、CN .根据燕尾定理,::2:1ABM ACM S S BF CF ∆∆==,而2ACM ADM S S ∆∆=,所以24ABM ACM ADM S S S ∆∆∆==,那么4BM DM =,即45BM BD =.那么421453215BMF BCD BM BF S S BD BC ∆∆=⨯⨯=⨯⨯=,14721530CDMF S =-=四边形. 另解:得出24ABM ACM ADM S S S ∆∆∆==后,可得111155210ADM ABD S S ∆∆==⨯=,则11731030ACF ADM CDMF S S S ∆∆=-=-=四边形.【例 13】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少? 【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE 交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2A B P C B P S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.page 9 of 11同理,335BPM S =△121BDM S =△,所以1239273570PQMN S =--=四边形,139********MNED S =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?【解析】 连接CK 、CI 、CJ .根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==,所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==.类似分析可得215AGI S ∆=.又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=.那么,111742184CGKJ S =-=.根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABE S S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.【例 14】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积. 【解析】 设IG 交HF 于M ,IG 交HD 于N ,DF 交EI 于P .连接AM , IF .∵:3:4AI AB =,:3:4AF AC =,916AIF ABC S S ∴=△△ ∵::2FIM AMF S S IH HA ==△△,::2FIM AIM S S FG GA ==△△,∴19464AIM AIF ABC S S S ==△△△ ∵:1:3AH AI = ∴364AHM ABC S S =△△,∵:1:4AH AB = :3:4A F A C = ∴316AHF ABC S S =△△ . 同理 316CFD BDH ABC S S S ==△△△ ∴716FDH ABC S S =△△ 33::1:46416HM HF ==,∵ :3:4,:3:4AI AB AF AC ==,∴IF BC ∥ ,又∵:3:4,:1:2IF BC DE BC ==,∴:2:3,:2:3DE IF DP PF ==,同理 :2:3HN ND =,∵:1:4HM HF =,∴:2:5HN HD =,∴17710160160HMN HDF ABC S S S ===△△△. 同理 6个小阴影三角形的面积均为7160.page 10 of 11阴影部分面积721616080=⨯=. 【例 15】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积. 【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P ,BI 与CE 的交点为Q ,连接AM 、BN 、CP ⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△ 设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABM ACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△,所以111()12126ABC ABC ADMI S S S =+=△△四边形,同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQE S 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△在ABC △中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△所以15ABP ABC S S =△△所以1111152121105ABP ADN BEP ABC ABC DNPQE S S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形 同理另外两个五边形面积是ABC △面积的11105所以11113133610570S =-⨯-⨯=阴影 【例 16】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积. 【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△,所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形【例 17】 (2009年数学解题能力大赛六年级初试试题)正六边形1A ,2A ,3A ,4A ,5A ,6A 的面积是2009平方厘米,1B ,2B ,3B ,4B ,5B ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.【解析】 (方法一)因为空白的面积等于23A A G △面积的6倍,所以关键求23A A G △的面积,根据燕尾定理可得page 11 of 11 2312333117732A A G A A A S S S ==⨯⨯△△正六边形,但在123A A A △用燕尾定理时,需要知道13,A D A D 的长度比,连接1363,A A A A ,1A G ,过6B 作12A A 的平行线,交13A A 于E ,根据沙漏模型得1A D DE =,再根据金字塔模型得13A E A E =,因此13:1:3A D A D =,在123A A A △中,设121A A G S =△份,则233A A G S =△份,313A A G S =△份,所以2312333111773214A A G A A A S S S S ==⨯⨯=△△正六边形正六边形, 因此141620091148147S S =-⨯=⨯=阴影正六边形()(平方厘米) (方法二)既然给的图形是特殊的正六边形,且阴影也是正六边形我们可以用下图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为82009114814⨯=(平方厘米)【例 18】 已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b =【解析】 观察图形,感觉阴影部分像蝴蝶定理,但是细细分析发现用蝴蝶定理无法继续往下走,注意到题目条件中给出了两个正方形的边长,有边长就可以利用比例,再发现在连接辅助线后可以利用燕尾,那么我们就用燕尾定理来求解连接EO 、AF ,根据燕尾定理:::AOE AOF S S a b =△△,::AOF EOF S S a b =△△所以 22::AOE EOF S S a b =△△,作OM ⊥AE 、ON ⊥EF ,∵AE =EF∴22::OM ON a b =∴33::1:8S S a b ==乙甲∴:1:2a b =。

小学数学几何燕尾定理!

小学数学几何燕尾定理!

燕尾模型又称燕尾定理,是指在一个三角形中分别从三个角点向所对的边做三条直线并相交于一点。

如图:S△ABO:S△ACO=BD:DC证明:在△ABC中△ABD与△ACD的高相等,故S△ABD:S△ACD=BD:DC;又因为△OBD与△OCD的高也相等,故S△OBD:S△OCD=BD:DC,那么(S△ABD-S△OBD):(S△ACD- S△OCD )= S△ABO:S△ACO=BD:DC同理可得:S△ABO:S△BCO=AE:EC;S△BCO:S△ACO=BF:FA【例题1】如图,三角形ABC的面积是1,E是AC的中点,点D在BC上,且BD:DC=1:2,AD与BE交于点F,求四边形DFEC的面积?【解题思路】连接FC做辅助线【例题2】如图,三角形ABC的面积是8平方厘米,AF=FD,BD=2/3BC,AD与BE交于点F,求阴影面积?【解题思路】连接FC做辅助线;【例题3】如图,长方形ABCD的面积为120平方厘米,AB=3AE,BD=4FD,求阴影部分面积?【解题思路】连接BG,连接AD做辅助线;【例题4】如图,在四边形ABCD中,AB=3BE,AD=3AF,四边形AEOF的面积是12平方厘米,求平行四边形BODC的面积?【解题思路】连接AO,连接BD做辅助线;设S△BEO的面积为1份;S△BEO:S△AEO=BE:EA=1:2,故S△AEO的面积为2份;根据燕尾定理,S△ABO:S△BDO=AF:FD=1:2,故S△BDO的面积为6份;S△ADO:S△BDO=AE:EB=2:1,故S△ADO的面积为12份;S△AFO:S△DFO= AF:FD=1:2,故S△AFO的面积为12÷3=4份,S△AFO的面积为12÷3×2=8份;四边形AEOF面积为6份与三角形BDO面积相等,故平行四边行BODC的面积=12×2=24平方厘米。

下面给学生们留一道练习题,你们可以做一下。

详解燕尾模型

详解燕尾模型

燕尾模型,研究的是怎样把一个三角形内部两个成燕子尾巴关系的三角形(其实两个三角形的关系是共边)面积的比转化成线段长度之间的比。

一、燕尾模型基本结论如下图,燕尾模型的基本结论为:S1:S2=L1:L2=S3:S4=(S1+S3):(S2+S4),其中S3:S4=(S1+S3):(S2+S4)=L1:L2 是共高得到的结论,S1:S2=L1:L2是燕尾模型的结论。

需注意,一个三角形内部,内部某个点与三个顶点分别相连后,会形成左、右、下三个燕尾三角形,并会形成(左、右)(左、下)(右、下)三组燕尾。

这三组燕尾就是燕尾模型研究的对象!虽然燕尾模型研究的是左、右、下这三个燕尾三角形,但是上面这个图显然无法把两个燕尾三角形的面积比转成成线段的比,所以燕尾模型中最常见的图为下图:图中,根据燕尾模型的结论,有:S△AGB:S△AGC=BE:EC,S△AGB:S△BGC=AF:FC,S△AGC:S△BGC=AD:DB以上就是燕尾模型的基本结论。

二、燕尾模型常考图形其实,燕尾模型经常考察的图形是下面这个图。

即只画出三个顶点中两个顶点出发的两条线AD、BE 交于一点O,并且告诉我们两条线AD、BE分三角形两条边成的两条线段的比BD:DC,AE:EC(即两个外比)。

比如说,已知三角形ABC中,BD:DC=1:1,AE:EC=1:2。

接下来我们就来看一下,这样一个图形中,在就知道这两个外比的情况下,能推出什么样的结论。

对于这个图,因为是在考燕尾模型,所以一定首先要首先作出辅助线,构造出三个燕尾三角形,如下图虚线,此时根据BD:DC=1:1,AE:EC=1:2两个外比,我们可以解决下面三个问题:(1)另一个外比AF:FB(2)图中三条线BE、AD、CF分成的S1、S2、S3、S4、S5、S6六个小三角形的份数关系(3)三个内比,即AG:GD,CG:GF,BG:GE而求解这三个问题的过程是统一的,基本思路就2步:(1)求三个燕尾三角形S左(三角形ABG)、S右(三角形AGC)、S下(三角形BGC)的连比(2)用份数表示每个三角形的面积。

(小学奥数)燕尾定理

(小学奥数)燕尾定理

燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交於同一點O ,那麼::ABO ACO S S BD DC ∆∆=.OFE DCBA上述定理給出了一個新的轉化面積比與線段比的手段,因為ABO ∆和ACO ∆的形狀很象燕子的尾巴,所以這個定理被稱為燕尾定理.該定理在許多幾何題目中都有著廣泛的運用,它的特殊性在於,它可以存在於任何一個三角形之中,為三角形中的三角形面積對應底邊之間提供互相聯繫的途徑.通過一道例題證明一下燕尾定理:如右圖,D 是BC 上任意一點,請你說明:1423:::S S S S BD DC ==S 3S 1S 4S 2EDCBA【解析】 三角形BED 與三角形CED 同高,分別以BD 、DC 為底,所以有14::S S BD DC =;三角形ABE 與三角形EBD 同高,12::S S ED EA =;三角形ACE 與三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;綜上可得1423:::S S S S BD DC ==.【例 1】如右圖,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .例題精講燕尾定理O F EDCBA【考點】燕尾定理 【難度】3星 【題型】解答 【解析】 根據燕尾定理得::4:912:27AOB AOC S S BD CD ===△△::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面積要統一,所以找最小公倍數) 所以:27:16:AOC BOC S S AF FB ==△△【點評】本題關鍵是把AOB △的面積統一,這種找最小公倍數的方法,在我們用比例解題中屢見不鮮,如果能掌握它的轉化本質,我們就能達到解奧數題四兩撥千斤的巨大力量!【答案】27:16【鞏固】如右圖,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【考點】燕尾定理 【難度】3星 【題型】解答 【解析】 根據燕尾定理得::3:415:20AOB AOC S S BD CD ===△△ ::5:615:18AOB BOC S S AE CE ===△△(都有AOB △的面積要統一,所以找最小公倍數) 所以:20:1810:9:AOC BOC S S AF FB ===△△【答案】10:9【鞏固】如圖,:2:3BD DC =,:5:3AE CE =,則:AF BF =GF EDCBA【考點】燕尾定理 【難度】3星 【題型】填空【解析】 根據燕尾定理有:2:310:15ABG ACG S S ==△△,:5:310:6ABG BCG S S ==△△,所以:15:65:2:ACG BCG S S AF BF===△△【答案】5:2【鞏固】如右圖,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【考點】燕尾定理 【難度】3星 【題型】解答 【解析】 根據燕尾定理得::2:310:15AOB AOC S S BD CD ===△△::5:410:8AOB BOC S S AE CE ===△△(都有AOB △的面積要統一,所以找最小公倍數) 所以:15:8:AOC BOC S S AF FB ==△△【點評】本題關鍵是把AOB △的面積統一,這種找最小公倍數的方法,在我們用比例解題中屢見不鮮,如果能掌握它的轉化本質,我們就能達到解奧數題四兩撥千斤的巨大力量!【答案】15:8【例 2】如圖,三角形ABC 被分成6個三角形,已知其中4個三角形的面積,問三角形ABC 的面積是多少?35304084O FED CBA【考點】燕尾定理 【難度】3星 【題型】解答【解析】 設BOF S x =△,由題意知:4:3BD DC =根據燕尾定理,得::4:3ABO ACO BDO CDO S S S S ==△△△△,所以33(84)6344ACO S x x =⨯+=+△,再根據::ABO BCO AOE COE S S S S =△△△△,列方程3(84):(4030)(6335):354x x ++=+-解得56x =:35(5684):(4030)AOE S =++△,所以70AOE S =△所以三角形ABC 的面積是844030355670315+++++= 【答案】315【例 3】如圖,三角形ABC 的面積是1,E 是AC 的中點,點D 在BC 上,且:1:2BD DC =,AD 與BE 交於點F .則四邊形DFEC 的面積等於 .FED CBA33321F E DC BAABCDEF【考點】燕尾定理 【難度】3星 【題型】填空【關鍵字】希望杯,五年級,初賽 【解析】 方法一:連接CF ,根據燕尾定理,12ABF ACFS BD S DC ==△△,1ABF CBF S AES EC==△△, 設1BDF S =△份,則2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如圖所標所以551212DCEF ABC S S ==△ 方法二:連接DE ,由題目條件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以則四邊形DFEC 的面積等於512.【答案】512【鞏固】如圖,已知BD DC =,2EC AE =,三角形ABC 的面積是30,求陰影部分面積.BBB【考點】燕尾定理 【難度】3星 【題型】解答 【解析】 題中條件只有三角形面積給出具體數值,其他條件給出的實際上是比例的關係,由此我們可以初步判斷這道題不應該通過面積公式求面積. 又因為陰影部分是一個不規則四邊形,所以我們需要對它進行改造,那麼我們需要連一條輔助線,(法一)連接CF ,因為BD DC =,2EC AE =,三角形ABC 的面積是30, 所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根據燕尾定理,12ABFCBFS AE S EC ==△△,1ABF ACF S BDS CD==△△, 所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以陰影部分面積是30107.512.5--=.(法二)連接DE ,由題目條件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△, 111111 2.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以陰影部分的面積為12.5.【答案】12.5【鞏固】如圖,三角形ABC的面積是2200cm ,E 在AC上,點D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 與BE 交於點F .則四邊形DFEC 的面積等於 .FED CBAABCDE FFEDCBA【考點】燕尾定理 【難度】3星 【題型】填空 【解析】 連接CF ,根據燕尾定理,2639ABF ACFS BD S DC ===△△,36510ABF CBF S AE S EC ===△△, 設6ABFS =△份,則9ACF S =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFE S =÷++⨯+=⨯+=【答案】93【鞏固】如圖,已知3BD DC =,2EC AE =,BE 與CD 相交於點O ,則ABC △被分成的4部分面積各占ABC △ 面積的幾分之幾?OE DCBA13.54.59211213O E D CBA【考點】燕尾定理 【難度】3星 【題型】解答【解析】 連接CO ,設1AEO S =△份,則其他部分的面積如圖所示,所以1291830ABC S =+++=△份,所以四部分按從小到大各占ABC △面積的12 4.5139313.59,,,30306030103020+===【答案】920【鞏固】如圖所示,在ABC △中,12CP CB =,13CQ CA =,BQ 與AP 相交於點X ,若ABC△的面積為6,則ABX △的面積等於 .XQPABC XQPABC4411XQPCBA【考點】燕尾定理 【難度】3星 【題型】填空 【關鍵字】香港聖公會數學競賽 【解析】 方法一:連接PQ .由於12CP CB =,13CQ CA =,所以23ABQ ABC S S =,1126BPQ BCQ ABC S S S ==.由蝴蝶定理知,21:::4:136ABQ BPQ ABC ABC AX XP S S S S ===, 所以441226 2.455255ABXABPABCABCS S S S ==⨯==⨯=. 方法二:連接CX 設1CPX S =△份,根據燕尾定理標出其他部分面積, 所以6(1144)4 2.4ABX S =÷+++⨯=△ 【答案】2.4【巩固】 兩條線段把三角形分為三個三角形和一個四邊形,如圖所示, 三個三角形的面積 分別是3,7,7,則陰影四邊形的面積是多少?【考點】燕尾定理【難度】3星【題型】解答【解析】方法一:遇到沒有標注字母的圖形,我們第一步要做的就是給圖形各點標注字母,方便後面的計算.再看這道題,出現兩個面積相等且共底的三角形.設三角形為ABC,BE和CD交於F,則BF FE=,再連結DE.所以三角形DEF的面積為3.設三角形ADE的面積為x,則()():33:10:10x AD DB x+==+,所以15x=,四邊形的面積為18.方法二:設ADFS x=△,根據燕尾定理::ABF BFC AFE EFCS S S S=△△△△,得到3AEFS x=+△,再根據向右下飛的燕子,有(37):7:3x x++=,解得7.5x=四邊形的面積為7.57.5318++=【答案】18【鞏固】如圖,三角形ABC的面積是1,2BD DC=,2CE AE=,AD與BE相交於點F,請寫出這4部分的面積各是多少?ABCDEF48621ABCDEF【考點】燕尾定理【難度】3星【題型】解答【解析】連接CF,設1AEFS=△份,則其他幾部分面積可以有燕尾定理標出如圖所示,所以121AEFS=△,62217ABFS==△,821BDFS=△,242217FDCES+==【答案】27【鞏固】如圖,E在AC上,D在BC上,且:2:3AE EC=,:1:2BD DC=,AD與BE交於點F.四邊形DFEC的面積等於222cm,則三角形ABC的面積.A BCDE FA BCDEF 2.41.62A BC DE F 12【考點】燕尾定理 【難度】3星 【題型】填空【解析】 連接CF,根據燕尾定理,12ABFACFS BD S DC ==△△,23ABF CBF S AE S EC ==△△, 設1BDF S =△份,則2DCF S =△份,2ABF S =△份,4AFC S =△份,24 1.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如圖所標,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份 所以222 4.4945(cm )ABC S =÷⨯=△【答案】45【鞏固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那麼三角形AMN (陰影部分)的面積為多少?A【考點】燕尾定理 【難度】3星 【題型】解答 【解析】 連接BN .ABC △的面積為3223⨯÷=根據燕尾定理,::2:1ACN ABN CD BD ==△△; 同理::1:1CBN CAN BM AM ==△△設AMN △面積為1份,則MNB △的面積也是1份,所以ANB △的面積是112+=份,而ACN △的面積就是224⨯=份,CBN △也是4份,這樣ABC △的面積為441110+++=份,所以AMN △的面積為31010.3÷⨯=. 【答案】0.3【例 4】如圖所示,在ABC △中,:3:1BE EC =,D 是AE 的中點,那麼:AF FC = .FE D C B AFE DCB A【考點】燕尾定理 【難度】3星 【題型】填空 【解析】 連接CD .由於:1:1ABD BED S S =△△,:3:4BED BCD S S =△△,所以:3:4ABD BCD S S =△△, 根據燕尾定理,::3:4ABD BCD AF FC S S ==△△. 【答案】3:4【鞏固】在ABC ∆中,:3:2BD DC =,:3:1AE EC =,求:OB OE =?ABCDE OABCDE O【考點】燕尾定理 【難度】3星 【題型】解答 【解析】 連接OC .因為:3:2BD DC =,根據燕尾定理,::3:2AOB AOC S S BD BC ∆∆==,即32AOB AOC S S ∆∆=;又:3:1AE EC =,所以43AOC AOE S S ∆∆=.則3342223AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=,所以::2:1AOB AOE OB OE S S ∆∆==. 【答案】2:1【鞏固】在ABC ∆中,:2:1BD DC =,:1:3AE EC =,求:OB OE =?A B CDE O【考點】燕尾定理 【難度】3星 【題型】解答 【解析】 題目求的是邊的比值,一般來說可以通過分別求出每條邊的值再作比值,也可以通過三角形的面積比來做橋樑,但題目沒告訴我們邊的長度,所以應該通過面積比而得到邊長的比.本題的圖形一看就聯想到燕尾定理,但兩個燕尾似乎少了一個,因此應該補全,所以第一步要連接OC .連接OC .A B CDE O因為:2:1BD DC =,根據燕尾定理,::2:1AOB AOC S S BD BC ∆∆==,即2AOB AOC S S ∆∆=; 又:1:3AE EC =,所以4AOC AOE S S ∆∆=.則2248AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::8:1AOB AOE OB OE S S ∆∆==.【答案】8:1【例 5】如圖9,三角形BAC 的面積是1,E 是AC 的中點,點D 在BC 上,且BD:DC=1:2,AD 與BE 交於點F ,則四邊形DEFC 的面積等於 。

完整版)小学奥数几何(燕尾模型)

完整版)小学奥数几何(燕尾模型)

完整版)小学奥数几何(燕尾模型)燕尾定理是一个关于三角形内部相交线段和三角形面积比的定理。

在三角形ABC中,AD,BE,CF相交于同一点O,那么,S△下面通过一个例题来证明燕尾定理:如图,D是BC上任意一点,请你说明:解析:三角形BED与三角形CED同高,分别以BD、DC 为底,所以有另外,还有一个关于四边形面积的例题:如图,三角形ABC的面积是1,E是AC的中点,点D在BC上,且解析:方法一:连接CF,根据燕尾定理,△ABF/△ACF=BD/DC=1/2,设△BDF的面积为1份,则△DCF的面积为2份,△ABF的面积为3份,△AEF的面积和△XXX的面积都为3份。

所以四边形DFEC的面积为11/12.方法二:连接DE,由题目条件可得到S△ABD=S△ABC=1/3,S△ADE=S△ADC=(1/3)×S△ABC。

所以S△DEF=(1/2)×S△DEB=(1/2)×(2/3)×S△BEC=(1/3)×S△ABC=1 /3.而S△CDE=(1/3)×S△ABC。

所以四边形DFEC的面积为1−1/3−1/3=1/3.已知BD=3DC,EC=2AE,可以发现三角形ABC被分成的四个部分是三角形ABO、三角形AEO、三角形BDC和四边形BCOE。

因为BD=3DC,所以三角形BDC的底边BC上的高是三角形ABO的底边AO上的高的3倍,所以三角形BDC的面积是三角形ABO的面积的3倍。

同理,因为EC=2AE,所以三角形AEO的底边AE上的高是三角形ABO 的底边AO上的高的2倍,所以三角形AEO的面积是三角形ABO的面积的2倍。

因此,四个部分分别占据三角形ABO面积的1/6、1/3、3/10和2/15.解析】连接CF,设S△ABF=1份,则S△ACF=2份,S△CBF=3份,S△BDF=4份,S△DCF=8份。

由于S四边形DFEC=22,所以S△AFC+S△BDF+S△DCF=22.代入可得8份+4份+2份=22,因此S△ABC=3份。

小学奥数-几何五大模型(燕尾模型)

小学奥数-几何五大模型(燕尾模型)

燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么,::ABO ACO S S BD DC ∆∆=OFE DCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题 证明燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==S 3S 1S 4S 2EDCBA【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;综上可得, 1423:::S S S S BD DC ==.例题精讲燕尾定理【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA33321F E DC BAABCDEF【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AES EC==△△,设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512.【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30,所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABF CBF S AE S EC ==△△,1ABF ACF S BDS CD==△△,所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以阴影部分面积是30107.512.5--=.(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△, 1111112.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBAABC DEF FEDCBA【解析】 连接CF ,根据燕尾定理,2639ABF ACF S BD S DC ===△△,36510ABF CBF S AE S EC ===△△, 设6ABF S =△份,则9ACF S =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFE S =÷++⨯+=⨯+=【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △面积的几分之几?OE DCBA13.54.59211213O E D CBA【解析】 连接CO ,设1AEO S =△份,则其他部分的面积如图所示,所以1291830ABC S =+++=△份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020+===【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 .XQPABC XQPABC4411XQPCBA【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQ ABC S S =V V ,1126BPQ BCQ ABC S S S ==V V V .由蝴蝶定理知,21:::4:136ABQ BPQ ABC ABC AX XP S S S S ===V V V V ,所以441226 2.455255ABX ABP ABC ABC S S S S ==⨯==⨯=V V V V .方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积,所以6(1144)4 2.4ABX S =÷+++⨯=△【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?ABCDE F48621ABCDEF【解析】 连接CF ,设1AEF S =△份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEF S =△,62217ABF S ==△,821BDF S =△,242217FDCE S +==【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC的面积等于222cm ,则三角形ABC 的面积 .A BCDE FA BCDEF 2.41.62A BC DE F 12【解析】 连接CF ,根据燕尾定理,12ABFACFS BD S DC ==△△,23ABF CBF S AE S EC ==△△, 设1BDF S =△份,则2DCF S =△份,2ABF S =△份,4AFC S =△份,24 1.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如图所标,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份 所以222 4.4945(cm )ABCS =÷⨯=△【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少?【解析】 连接BN .ABC △的面积为3223⨯÷=根据燕尾定理,::2:1ACN ABN CD BD ==△△; 同理::1:1CBN CAN BM AM ==△△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112+=份,而ACN △的面积就是224⨯=份,CBN △也是4份,这样ABC △的面积为441110+++=份,所以AMN △的面积为31010.3÷⨯=.【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?y B CD EGE D CBAEDB A【解析】 设1DEF S =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米.【例 2】 如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,那么平行四边形BODC 的面积为________.OFE DCBA684621O F E DCB A【解析】 连接,AO BD ,根据燕尾定理::1:2ABO BDO S S AF FD ==△△,::2:1AOD BOD S S AE BE ==△△,设1BEO S =△,则其他图形面积,如图所标,所以221224BODC AEOF S S ==⨯=.【例 3】 ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF 与CE 交于G ,则四边形AGCD 的面积是_________平方厘米.GFE DCBAGFE D CBA【解析】 连接AC 、GB ,设1AGC S =△份,根据燕尾定理得1AGB S =△份,1BGC S =△份,则11126S =++⨯=正方形()份,314ADCG S =+=份,所以22126496(cm )ADCG S =÷⨯=【例 4】如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.EDED【解析】 连接BH ,根据沙漏模型得:1:2BG GD =,设1BHC S =△份,根据燕尾定理2CHD S =△份,2BHD S =△份,因此122)210S =++⨯=正方形(份,127236BFHG S =+=,所以712010146BFHG S =÷⨯=(平方厘米).【例 5】 如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = .FE D C B AFE DCB A【解析】 连接CD .由于:1:1ABD BED S S =△△,:3:4BED BCD S S =△△,所以:3:4ABD BCD S S =△△,根据燕尾定理,::3:4ABD BCD AF FC S S ==△△.【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =?A BCDE OABCDE O【解析】 连接OC .因为:3:2BD DC =,根据燕尾定理,::3:2AOB AOC S S BD BC ∆∆==,即32AOB AOC S S ∆∆=; 又:3:1AE EC =,所以43AOC AOE S S ∆∆=.则3342223AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::2:1AOB AOEOB OE S S ∆∆==.【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =?A B CDE O【解析】 题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接OC . 连接OC .A B CDE O因为:2:1BD DC =,根据燕尾定理,::2:1AOB AOC S S BD BC ∆∆==,即2AOB AOC S S ∆∆=; 又:1:3AE EC =,所以4AOC AOE S S ∆∆=.则2248AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::8:1AOB AOE OB OE S S ∆∆==.【例 6】 (2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .BEH BEBE【解析】 (法1)如图,过F 做CE 的平行线交AB 于H ,则::1:3EH HB CF FB ==,所以122AE EB EH ==,::2AG GF AE EH ==,即2AG GF =,所以122311033942AEG ABF ABCD S S S ∆∆=⨯⨯=⨯⨯=X .且22313342EG HF EC EC ==⨯=,故CG GE =,则1152CGF AEG S S ∆∆=⨯⨯=.所以两三角形面积之和为10515+=. (法2)如上右图,连接AC 、BG .根据燕尾定理,::3:1ABG ACG S S BF CF ∆∆==,::2:1BCG ACG S S BE AE ∆∆==,而1602ABC ABCD S S ∆==X ,所以3321ABG S ∆=++,160302ABC S ∆=⨯=,2321BCG S ∆=++,160203ABC S ∆=⨯=,则1103AEG ABG S S ∆∆==,154CFG BCG S S ∆∆==,所以两个三角形的面积之和为15.【例 7】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△ ::5:615:18AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =GF EDCBA【解析】 根据燕尾定理有:2:310:15ABG ACG S S ==△△,:5:310:6ABG BCGS S ==△△,所以:15:65:2:ACG BCG S S AF BF ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△::5:410:8AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDC BAI HG FEDCBA【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==; 根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=;那么2248551995AGE AGC S S ∆∆==⨯=;同样分析可得919ACH S ∆=,则::4:9ACG ACH EG EH S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:10EG GH HB =,同样分析可得::10:5:4AG GI ID =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.IH G FEDCBAIH G FEDCBA【解析】 连接BG ,AGC S △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGC ABC S S =△△,同理连接AI 、CH 得619ABH ABC S S =△△,619BIC ABC S S =△△, 所以1966611919GHI ABC S S ---==△△ 三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.BCB【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACI S S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==,所以,::1:2:4ACI BCI ABI S S S ∆∆∆=,那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBAIHG FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::2:1AGC BGC S S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABH ABC S S =△△,27BIC ABC S S =△△, 所以7222177GHI ABC S S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【巩固】如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBAIH G FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::3:1AGC BGC S S AF FB ==△△,::3:1ABG AGC S S BD DC ==△△,得3AGC S =△(份),9ABG S =△(份),则13ABC S =△(份),因此313AGC ABC S S =△△,同理连接AI 、CH 得13ABH ABC S S =△△,313BIC ABC S S =△△, 所以1333341313GHI ABC S S ---==△△【巩固】如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI的面积.IH G FEDCBAIH G FEDCBA【解析】 连接BG ,AGC S △=12份根据燕尾定理,::4:312:9AGC BGC S S AF FB ===△△,::4:316:12ABG AGC S S BD DC ===△△得9BGC S =△(份),16ABG S =△(份),则9121637ABC S =++=△(份),因此1237AGC ABC S S =△△,同理连接AI 、CH 得1237ABH ABC S S =△△,1237BIC ABC S S =△△, 所以3712121213737GHI ABC S S ---==△△ 三角形ABC 的面积是74,所以三角形GHI 的面积是174237⨯=【例 9】 两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少?【解析】 方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC ,BE 和CD 交于F ,则BF FE =,再连结DE . 所以三角形DEF 的面积为3.设三角形ADE 的面积为x ,则()():33:10:10x AD DB x +==+,所以15x =,四边形的面积为18.方法二:设ADF S x =△,根据燕尾定理::ABF BFC AFE EFC S S S S =△△△△,得到3AEF S x =+△,再根据向右下飞的燕子,有(37):7:3x x ++=,解得7.5x =四边形的面积为7.57.5318++=【巩固】右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是 .【解析】 方法一:整个题目读完,我们没有发现任何与边长相关的条件,也没有任何与高或者垂直有关系的字眼,由此,我们可以推断,这道题不能依靠三角形面积公式求解.我们发现右图三角形中存在一个比例关系:()2:13:4S =+阴影,解得2S =阴影.方法二:回顾下燕尾定理,有2:41:3S +=阴影(),解得2S =阴影.【例 10】 如图,三角形ABC 被分成6个三角形,已知其中4个三角形的面积,问三角形ABC 的面积是多少?35304084O FED CBA【解析】 设BOF S x =△,由题意知:4:3BD DC =根据燕尾定理,得::4:3ABO ACO BDO CDO S S S S ==△△△△,所以33(84)6344ACO S x x =⨯+=+△,再根据::ABO BCO AOE COE S S S S =△△△△,列方程3(84):(4030)(6335):354x x ++=+-解得56x =:35(5684):(4030)AOE S =++△,所以70AOE S =△所以三角形ABC 的面积是844030355670315+++++=【例 11】 三角形ABC 的面积为15平方厘米,D 为AB 中点,E 为AC 中点,F 为BC 中点,求阴影部分的面积.F CBA F CBA【解析】 令BE 与CD 的交点为M ,CD 与EF 的交点为N ,连接AM ,BN .在ABC △中,根据燕尾定理,::1:1ABM BCM S S AE CE ==△△,::1:1ACM BCM S S AD BD ==△△,所以13ABM ACM BCN ABC S S S S ===△△△△由于1122AEM AMC ABM S S S ==△△△S ,所以:2:1BM ME =在EBC △中,根据燕尾定理,::1:1BEN CEN S S BF CF ==△△::1:2CEN CBN S S ME MB ==△△设1CEN S =△(份),则1BEN S =△(份),2BCN S =△(份),4BCE S =△(份),所以1124BCN BCE ABC S S S ==△△△,1148BNE BCE ABC S S S ==△△△,因为:2:1BM ME =,F 为BC 中点,所以221133812BMN BNE ABC ABC S S S S ==⨯=△△△△,11112248BFN BNC ABC S S S ==⨯=△△△,所以115515 3.1251282424ABC ABC S S S ⎛⎫=+==⨯= ⎪⎝⎭△△阴影(平方厘米)【例 12】 如右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EFNMGA BCD EF【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBM S S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANG AFC S S =⨯=+△△,所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABCABC S S -=△△,可得336ABC S =△(平方厘米)【巩固】(2007年四中分班考试题)如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.F ABCDEM NFABCDE MN【解析】 由于点D 是边AC 的中点,点E 、F 是边BC 的三等分点,如果能求出BN 、NM 、MD 三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF 的面积. 连接CM 、CN .根据燕尾定理,::2:1ABM ACM S S BF CF ∆∆==,而2ACM ADM S S ∆∆=,所以24ABM ACM ADM S S S ∆∆∆==,那么4BM DM =,即45BM BD =.那么421453215BMF BCD BM BF S S BD BC ∆∆=⨯⨯=⨯⨯=,14721530CDMF S =-=四边形. 另解:得出24ABM ACM ADM S S S ∆∆∆==后,可得111155210ADM ABD S S ∆∆==⨯=,则11731030ACF ADM CDMF S S S ∆∆=-=-=四边形.【例 13】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?GFE D CBAN MQPGF EDCBA【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE 交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2ABP CBP S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPM S =△121BDM S =△,所以1239273570PQMN S =--=四边形,139********MNED S =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?K JI HABC D EF GKJI HA BCD EFG【解析】 连接CK 、CI 、CJ .根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==,所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==.类似分析可得215AGI S ∆=.又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=. 那么,111742184CGKJ S =-=. 根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABES S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.【例 14】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.CBB【解析】 设IG 交HF 于M ,IG 交HD 于N ,DF 交EI 于P .连接AM , IF .∵:3:4AI AB =,:3:4AF AC =,916AIF ABC S S ∴=△△∵::2FIM AMF S S IH HA ==△△,::2FIM AIM S S FG GA ==△△,∴19464AIM AIF ABC S S S ==△△△ ∵:1:3AH AI = ∴364AHM ABC S S =△△,∵:1:4AH AB = :3:4AF AC = ∴316AHF ABC S S =△△ .同理 316CFD BDH ABC S S S ==△△△ ∴716FDH ABC S S =△△ 33::1:46416HM HF ==,∵ :3:4,:3:4AI AB AF AC ==, ∴IF BC ∥ ,又∵:3:4,:1:2IF BC DE BC ==,∴:2:3,:2:3DE IF DP PF ==,同理 :2:3HN ND =,∵:1:4HM HF =,∴:2:5HN HD =,∴17710160160HMN HDF ABC S S S ===△△△. 同理 6个小阴影三角形的面积均为7160.阴影部分面积721616080=⨯=.【例 15】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.GCBAGCBA【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P ,BI 与CE 的交点为Q ,连接AM 、BN 、CP⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABM ACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△,所以111()12126ABC ABC ADMI S S S =+=△△四边形,同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQE S 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△在ABC △中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△所以15ABP ABC S S =△△所以1111152121105ABP ADN BEP ABC ABC DNPQE S S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形同理另外两个五边形面积是ABC △面积的11105所以11113133610570S =-⨯-⨯=阴影【例 16】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.GCBAGCBA【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△,::1:2ABR CBR S S AI CI ==△△所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形【例 17】(2009年数学解题能力大赛六年级初试试题)正六边形1A ,2A ,3A ,4A ,5A ,6A 的面积是2009平方厘米,1B ,2B ,3B ,4B ,5B ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.A 4B 5A 3A 45A 3【解析】 (方法一)因为空白的面积等于23A A G △面积的6倍,所以关键求23A A G △的面积,根据燕尾定理可得2312333117732A A G A A A S S S ==⨯⨯△△正六边形,但在123A A A △用燕尾定理时,需要知道13,A D A D 的长度比,连接1363,A A A A ,1A G ,过6B 作12A A 的平行线,交13A A 于E ,根据沙漏模型得1A D DE =,再根据金字塔模型得13A E A E =,因此13:1:3A D A D =,在123A A A △中,设121A A G S =△份,则233A A G S =△份,313A A G S =△份,所以2312333111773214A A G A A A S S S S ==⨯⨯=△△正六边形正六边形,因此141620091148147S S =-⨯=⨯=阴影正六边形()(平方厘米)(方法二)既然给的图形是特殊的正六边形,且阴影也是正六边形我们可以用下图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为82009114814⨯=(平方厘米)FA 3A【例 18】已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b =baEDA baNMHFED【解析】 观察图形,感觉阴影部分像蝴蝶定理,但是细细分析发现用蝴蝶定理无法继续往下走,注意到题目条件中给出了两个正方形的边长,有边长就可以利用比例,再发现在连接辅助线后可以利用燕尾,那么我们就用燕尾定理来求解 连接EO 、AF ,根据燕尾定理:::AOE AOF S S a b =△△,::AOF EOF S S a b =△△所以 22::AOE EOF S S a b =△△,作OM ⊥AE 、ON ⊥EF , ∵AE =EF∴22::OM ON a b = ∴33::1:8S S a b ==乙甲 ∴:1:2a b =。

小学五年级逻辑思维学习—燕尾定理

小学五年级逻辑思维学习—燕尾定理

MDCBAMDCB A M DC B AMD CB A小学五年级逻辑思维学习—燕尾定理知识定位燕尾定理主要考察在三角形中,图形比例的问题,是五大模型中较困难的模型,该模型与蝴蝶,风筝,鸟头等定理的混合运用需要学生对基本模型非常熟悉。

而实际上这几类基本模型都是可以相互转化的,能用燕尾的题一定能用鸟头和蝴蝶。

重点难点1. 燕尾定理四种基本模型。

2 燕尾定理联系到整个图形面积与部分的关系 主要考点:1.通过面积比求图形中某些线段的长度比。

2.通过各部分面积的差求整个图形的面积知识梳理燕尾定理两个有公共边的三角形ABD 和ABC ,ABC 与DC 交于点M ,则三角形ABC 的面积与三角形ABD 的面积之比等于CM 与DM 的比。

(定理描述对下图所示四种图形都成立)例题精讲【题目】如图,已知BD=DC ,AE=EB ,三角形AFC 的面积是30,求三角形A BC 的面积。

A BCDEFA EF DCB【题目】已知BD=DC ,EC=2AE ,三角形AEF 的面积是10,求三角形ABC 的面积。

【题目】如右图,已知BD=DC ,EC=2AE ,三角形ABC 的面积是36,求阴影部分面积。

【题目】在△ABC 中DCBD=2:1, EC AE =1:3,求OE OB =?【题目】如图9,三角形BAC 的面积是1,E 是AC 的中点,点D 在BC 上,且BD:DC=1:2,AD 与BE 交于点F ,则四边形DEFC 的面积等于 。

A EFD CBA EFDCBFA BCDE【题目】三角形ABC 中,C 是直角,已知AC =2,CD =2,CB=3,AM=BM ,那么三角形AMN (阴影部分)的面积为多少?【题目】如图,在面积为1的三角形ABC 中,DC=3BD,F 是AD 的中点,延长CF 交AB 边于E,求三角形AEF 和三角形CDF 的面积之和。

【题目】如图16-5,长方形ABCD 的面积是2平方厘米,EC=2DE ,F 是DG 的中点.阴影部分的面积是多少平方厘米?【题目】如图,四边形ABCD 两条对角线交于点O 。

(完整版)小学奥数几何(燕尾模型)

(完整版)小学奥数几何(燕尾模型)

燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么,::ABO ACO S S BD DC ∆∆=OFE DCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题 证明燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==S 3S 1S 4S 2EDCBA【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;综上可得, 1423:::S S S S BD DC ==.例题精讲燕尾定理【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA33321F E DC BAABCDEF【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AES EC==△△,设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512.【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30,所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABF CBF S AE S EC ==△△,1ABF ACF S BDS CD==△△,所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以阴影部分面积是30107.512.5--=.(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△,1111112.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBAABC DEF FEDCBA【解析】 连接CF ,根据燕尾定理,2639ABF ACF S BD S DC ===△△,36510ABF CBF S AE S EC ===△△, 设6ABF S =△份,则9ACF S =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFE S =÷++⨯+=⨯+=【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △面积的几分之几?OE DCBA13.54.59211213O E D CBA【解析】 连接CO ,设1AEO S =△份,则其他部分的面积如图所示,所以1291830ABC S =+++=△份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020+===【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 .XQPABC XQPAB C4411XQPCBA【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQABC SS =,1126BPQ BCQ ABCS S S ==.由蝴蝶定理知,21:::4:136ABQBPQABC ABC AX XP SSS S ===,所以441226 2.455255ABX ABP ABC ABC SS S S ==⨯==⨯=. 方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积, 所以6(1144)4 2.4ABX S =÷+++⨯=△【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?ABCDE F48621ABCDEF【解析】 连接CF ,设1AEF S =△份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEF S =△,62217ABF S ==△,821BDF S =△,242217FDCE S +==【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC的面积等于222cm ,则三角形ABC 的面积 .A BCDE FA BCDEF 2.41.62A BC DE F 12【解析】 连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,23ABF CBF S AE S EC ==△△, 设1BDF S =△份,则2DCF S =△份,2ABF S =△份,4AFC S =△份,24 1.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如图所标,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份 所以222 4.4945(cm )ABCS =÷⨯=△【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少?【解析】 连接BN .ABC △的面积为3223⨯÷=根据燕尾定理,::2:1ACN ABN CD BD ==△△;同理::1:1CBN CAN BM AM ==△△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112+=份,而ACN △的面积就是224⨯=份,CBN △也是4份,这样ABC △的面积为441110+++=份,所以AMN △的面积为31010.3÷⨯=.【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?y B CD EGE D CBAEDB A【解析】 设1DEF S =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米.【例 2】 如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,那么平行四边形BODC 的面积为________.OFE DCBA684621O F E DCB A【解析】 连接,AO BD ,根据燕尾定理::1:2ABO BDO S S AF FD ==△△,::2:1AOD BOD S S AE BE ==△△,设1BEO S =△,则其他图形面积,如图所标,所以221224BODC AEOF S S ==⨯=.【例 3】 ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF 与CE 交于G ,则四边形AGCD 的面积是_________平方厘米.GFE DCBAGFE D CBA【解析】 连接AC 、GB ,设1AGC S =△份,根据燕尾定理得1AGB S =△份,1BGC S =△份,则11126S =++⨯=正方形()份,314ADCG S =+=份,所以22126496(cm )ADCG S =÷⨯=【例 4】 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.EDCBEDCB【解析】 连接BH ,根据沙漏模型得:1:2BG GD =,设1BHC S =△份,根据燕尾定理2CHD S =△份,2BHD S =△份,因此122)210S =++⨯=正方形(份,127236BFHG S =+=,所以712010146BFHG S =÷⨯=(平方厘米).【例 5】 如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = .FE D C BAFE DCB A【解析】 连接CD .由于:1:1ABD BED S S =△△,:3:4BED BCD S S =△△,所以:3:4ABD BCD S S =△△, 根据燕尾定理,::3:4ABD BCD AF FC S S ==△△.【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =?A BCDE OABCDE O【解析】 连接OC .因为:3:2BD DC =,根据燕尾定理,::3:2AOB AOC S S BD BC ∆∆==,即32AOB AOC S S ∆∆=; 又:3:1AE EC =,所以43AOC AOE S S ∆∆=.则3342223AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::2:1AOB AOEOB OE S S ∆∆==.【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =?A B CDE O【解析】 题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接OC . 连接OC .A B CDE O因为:2:1BD DC =,根据燕尾定理,::2:1AOB AOC S S BD BC ∆∆==,即2AOB AOC S S ∆∆=; 又:1:3AE EC =,所以4AOC AOE S S ∆∆=.则2248AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::8:1AOB AOE OB OE S S ∆∆==.【例 6】 (2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .BEH BEBE【解析】 (法1)如图,过F 做CE 的平行线交AB 于H ,则::1:3EH HB CF FB ==,所以122AE EB EH ==,::2AG GF AE EH ==,即2AG GF =,所以122311033942AEG ABF ABCD S S S ∆∆=⨯⨯=⨯⨯=.且22313342EG HF EC EC ==⨯=,故CG GE =,则1152CGF AEG S S ∆∆=⨯⨯=.所以两三角形面积之和为10515+=.(法2)如上右图,连接AC 、BG .根据燕尾定理,::3:1ABG ACG S S BF CF ∆∆==,::2:1BCG ACG S S BE AE ∆∆==,而1602ABC ABCD S S ∆==,所以3321ABG S ∆=++,160302ABC S ∆=⨯=,2321BCG S ∆=++,160203ABC S ∆=⨯=,则1103AEG ABG S S ∆∆==,154CFG BCG S S ∆∆==,所以两个三角形的面积之和为15.【例 7】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△ ::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△ ::5:615:18AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =GF EDCBA【解析】 根据燕尾定理有:2:310:15ABG ACG S S ==△△,:5:310:6ABG BCGS S ==△△,所以:15:65:2:ACG BCG S S AF BF ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△ ::5:410:8AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDC BAI HG FEDCBA【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==; 根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=;那么2248551995AGE AGC S S ∆∆==⨯=;同样分析可得919ACH S ∆=,则::4:9ACG ACH EG EH S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:10EG GH HB =,同样分析可得::10:5:4AG GI ID =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.IH G FEDCBAIH G FEDCBA【解析】 连接BG ,AGC S △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGC ABC S S =△△,同理连接AI 、CH 得619ABH ABC S S =△△,619BIC ABC S S =△△, 所以1966611919GHI ABC S S ---==△△ 三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.BCB【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACI S S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==, 所以,::1:2:4ACI BCI ABI S S S ∆∆∆=,那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBAIHG FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::2:1AGC BGC S S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABH ABC S S =△△,27BIC ABC S S =△△, 所以7222177GHI ABC S S ---==△△【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【巩固】如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值.IHG FEDCBAIHG FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::3:1AGC BGC S S AF FB ==△△,::3:1ABG AGC S S BD DC ==△△,得3AGC S =△(份),9ABG S =△(份),则13ABC S =△(份),因此313AGC ABC S S =△△,同理连接AI 、CH 得13ABH ABC S S =△△,313BIC ABC S S =△△, 所以1333341313GHI ABC S S ---==△△【巩固】如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI的面积.IH G FEDCBAIH G FEDCBA【解析】 连接BG ,AGC S △=12份根据燕尾定理,::4:312:9AGC BGC S S AF FB ===△△,::4:316:12ABG AGC S S BD DC ===△△得9BGC S =△(份),16ABG S =△(份),则9121637ABC S =++=△(份),因此1237AGC ABC S S =△△,同理连接AI 、CH 得1237ABH ABC S S =△△,1237BIC ABC S S =△△, 所以3712121213737GHI ABC S S ---==△△ 三角形ABC 的面积是74,所以三角形GHI 的面积是174237⨯=【例 9】 两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少?【解析】 方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC ,BE 和CD 交于F ,则BF FE =,再连结DE .所以三角形DEF 的面积为3.设三角形ADE 的面积为x ,则()():33:10:10x AD DB x +==+,所以15x =,四边形的面积为18.方法二:设ADF S x =△,根据燕尾定理::ABF BFC AFE EFC S S S S =△△△△,得到3AEF S x =+△,再根据向右下飞的燕子,有(37):7:3x x ++=,解得7.5x =四边形的面积为7.57.5318++=【巩固】右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是 .【解析】 方法一:整个题目读完,我们没有发现任何与边长相关的条件,也没有任何与高或者垂直有关系的字眼,由此,我们可以推断,这道题不能依靠三角形面积公式求解.我们发现右图三角形中存在一个比例关系:()2:13:4S =+阴影,解得2S =阴影.方法二:回顾下燕尾定理,有2:41:3S +=阴影(),解得2S =阴影.【例 10】 如图,三角形ABC 被分成6个三角形,已知其中4个三角形的面积,问三角形ABC 的面积是多少?35304084O FED CBA【解析】 设BOF S x =△,由题意知:4:3BD DC =根据燕尾定理,得::4:3ABO ACO BDO CDO S S S S ==△△△△,所以33(84)6344ACO S x x =⨯+=+△,再根据::ABO BCO AOE COE S S S S =△△△△,列方程3(84):(4030)(6335):354x x ++=+-解得56x =:35(5684):(4030)AOE S =++△,所以70AOE S =△所以三角形ABC 的面积是844030355670315+++++=【例 11】 三角形ABC 的面积为15平方厘米,D 为AB 中点,E 为AC 中点,F 为BC 中点,求阴影部分的面积.F CBAF CBA【解析】 令BE 与CD 的交点为M ,CD 与EF 的交点为N ,连接AM ,BN .在ABC △中,根据燕尾定理,::1:1ABM BCM S S AE CE ==△△,::1:1ACM BCM S S AD BD ==△△,所以13ABM ACM BCN ABC S S S S ===△△△△由于1122AEM AMC ABM S S S ==△△△S ,所以:2:1BM ME =在EBC △中,根据燕尾定理,::1:1BEN CEN S S BF CF ==△△::1:2CEN CBN S S ME MB ==△△ 设1CEN S =△(份),则1BEN S =△(份),2BCN S =△(份),4BCE S =△(份),所以1124BCN BCE ABC S S S ==△△△,1148BNE BCE ABC S S S ==△△△,因为:2:1BM ME =,F 为BC 中点,所以221133812BMN BNE ABC ABC S S S S ==⨯=△△△△,11112248BFN BNC ABC S S S ==⨯=△△△,所以115515 3.1251282424ABC ABC S S S ⎛⎫=+==⨯= ⎪⎝⎭△△阴影(平方厘米)【例 12】 如右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EFNMGA BCD EF【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBM S S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANG AFC S S =⨯=+△△,所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABCABC S S -=△△,可得336ABC S =△(平方厘米)【巩固】(2007年四中分班考试题)如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.F ABCDEM NFABCDEMN【解析】 由于点D 是边AC 的中点,点E 、F 是边BC 的三等分点,如果能求出BN 、NM 、MD 三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF 的面积. 连接CM 、CN .根据燕尾定理,::2:1ABM ACM S S BF CF ∆∆==,而2ACM ADM S S ∆∆=,所以24ABM ACM ADM S S S ∆∆∆==,那么4BM DM =,即45BM BD =.那么421453215BMF BCD BM BF S S BD BC ∆∆=⨯⨯=⨯⨯=,14721530CDMF S =-=四边形.另解:得出24ABM ACM ADM S S S ∆∆∆==后,可得111155210ADM ABD S S ∆∆==⨯=,则11731030ACF ADM CDMF S S S ∆∆=-=-=四边形.【例 13】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?GFE D CBAN MQPGF EDCBA【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE 交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2ABP CBP S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPM S =△121BDM S =△,所以1239273570PQMN S =--=四边形,139********MNED S =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?K JI HABC D EF GKJI HA BCD EFG【解析】 连接CK 、CI 、CJ .根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==,所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==.类似分析可得215AGI S ∆=.又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=.那么,111742184CGKJ S =-=.根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABE S S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.【例 14】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.CBB【解析】 设IG 交HF 于M ,IG 交HD 于N ,DF 交EI 于P .连接AM , IF .∵:3:4AI AB =,:3:4AF AC =,916AIF ABC S S ∴=△△ ∵::2FIM AMF S S IH HA ==△△,::2FIM AIM S S FG GA ==△△,∴19464AIM AIF ABC S S S ==△△△ ∵:1:3AH AI = ∴364AHM ABC S S =△△,∵:1:4AH AB = :3:4AF AC = ∴316AHF ABC S S =△△ .同理 316CFD BDH ABC S S S ==△△△ ∴716FDH ABC S S =△△ 33::1:46416HM HF ==,∵ :3:4,:3:4AI AB AF AC ==,∴IF BC ∥ ,又∵:3:4,:1:2IF BC DE BC ==,∴:2:3,:2:3DE IF DP PF ==,同理 :2:3HN ND =,∵:1:4HM HF =,∴:2:5HN HD =,∴17710160160HMN HDF ABC S S S ===△△△. 同理 6个小阴影三角形的面积均为7160.阴影部分面积721616080=⨯=.【例 15】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.GCBAGCBA【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P ,BI 与CE 的交点为Q ,连接AM 、BN 、CP⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABM ACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△,所以111()12126ABC ABC ADMI S S S =+=△△四边形,同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQE S 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△在ABC △中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△所以15ABP ABC S S =△△所以1111152121105ABP ADN BEP ABC ABC DNPQE S S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形同理另外两个五边形面积是ABC △面积的11105所以11113133610570S =-⨯-⨯=阴影【例 16】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.GCBAGCBA【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△, ::1:2ABR CBR S S AI CI ==△△所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形【例 17】(2009年数学解题能力大赛六年级初试试题)正六边形1A ,2A ,3A ,4A ,5A ,6A 的面积是2009平方厘米,1B ,2B ,3B ,4B ,5B ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.A 4B 5A 3A 45A 3【解析】 (方法一)因为空白的面积等于23A A G △面积的6倍,所以关键求23A A G △的面积,根据燕尾定理可得2312333117732A A G A A A S S S ==⨯⨯△△正六边形,但在123A A A △用燕尾定理时,需要知道13,A D A D 的长度比,连接1363,A A A A ,1A G ,过6B 作12A A 的平行线,交13A A 于E ,根据沙漏模型得1A D DE =,再根据金字塔模型得13A E A E =,因此13:1:3A D A D =,在123A A A △中,设121A A G S =△份,则233A A G S =△份,313A A G S =△份,所以2312333111773214A A G A A A S S S S ==⨯⨯=△△正六边形正六边形,因此141620091148147S S =-⨯=⨯=阴影正六边形()(平方厘米)(方法二)既然给的图形是特殊的正六边形,且阴影也是正六边形我们可以用下图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为82009114814⨯=(平方厘米)FA 3A【例 18】已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b =baHFEDbaMED【解析】 观察图形,感觉阴影部分像蝴蝶定理,但是细细分析发现用蝴蝶定理无法继续往下走,注意到题目条件中给出了两个正方形的边长,有边长就可以利用比例,再发现在连接辅助线后可以利用燕尾,那么我们就用燕尾定理来求解 连接EO 、AF ,根据燕尾定理:::AOE AOF S S a b =△△,::AOF EOF S S a b =△△所以 22::AOE EOF S S a b =△△,作OM ⊥AE 、ON ⊥EF , ∵AE =EF∴22::OM ON a b = ∴33::1:8S S a b ==乙甲 ∴:1:2a b =。

燕尾定理(含详细解析)

燕尾定理(含详细解析)

燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=.OFE DCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题证明一下燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==S 3S 1S 4S 2EDCBA【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;综上可得1423:::S S S S BD DC ==.【例 1】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【考点】燕尾定理 【难度】3星 【题型】解答【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△ ::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△例题精讲燕尾定理【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【答案】27:16【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【考点】燕尾定理 【难度】3星 【题型】解答【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△ ::5:615:18AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:20:1810:9:AOC BOC S S AF FB ===△△【答案】10:9【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =GF EDCBA【考点】燕尾定理 【难度】3星 【题型】填空【解析】 根据燕尾定理有:2:310:15ABG ACG S S ==△△,:5:310:6ABG BCG S S ==△△,所以:15:65:2:ACG BCG S S AF BF ===△△【答案】5:2【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【考点】燕尾定理 【难度】3星 【题型】解答【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△ ::5:410:8AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【答案】15:8【例 2】 如图,三角形ABC 被分成6个三角形,已知其中4个三角形的面积,问三角形ABC 的面积是多少?35304084O FED CBA【考点】燕尾定理 【难度】3星 【题型】解答【解析】 设BOF S x =△,由题意知:4:3BD DC =根据燕尾定理,得::4:3ABO ACO BDO CDO S S S S ==△△△△,所以33(84)6344ACO S x x =⨯+=+△,再根据::ABO BCO AOE COE S S S S =△△△△,列方程3(84):(4030)(6335):354x x ++=+-解得56x =:35(5684):(4030)AOE S =++△,所以70AOE S =△所以三角形ABC 的面积是844030355670315+++++=【答案】315【例 3】 如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA33321F E DC BAABCDEF【考点】燕尾定理 【难度】3星 【题型】填空 【关键词】希望杯,五年级,初赛【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AES EC==△△,设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512.【答案】512【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【考点】燕尾定理 【难度】3星 【题型】解答【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30,所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABF CBF S AE S EC ==△△,1ABF ACF S BDS CD==△△,所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以阴影部分面积是30107.512.5--=.(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△, 1111112.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.【答案】12.5【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBAABC DEF FEDCBA【考点】燕尾定理 【难度】3星 【题型】填空 【解析】 连接CF ,根据燕尾定理,2639ABF ACF S BD S DC ===△△,36510ABF CBF S AE S EC ===△△, 设6ABF S =△份,则9ACF S =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFE S =÷++⨯+=⨯+= 【答案】93【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △ 面积的几分之几?OE DCBA13.54.59211213O E D CBA【考点】燕尾定理 【难度】3星 【题型】解答【解析】 连接CO ,设1AEO S =△份,则其他部分的面积如图所示,所以1291830ABC S =+++=△份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020+===【答案】920【巩固】如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 .XQPABC XQPABC4411XQPCBA【考点】燕尾定理 【难度】3星 【题型】填空 【关键词】香港圣公会数学竞赛【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQ ABC SS =,1126BPQ BCQABCS S S ==.由蝴蝶定理知,21:::4:136ABQ BPQ ABC ABC AX XP S S S S ===,所以441226 2.455255ABX ABP ABC ABC S S S S ==⨯==⨯=.方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积, 所以6(1144)4 2.4ABX S =÷+++⨯=△【答案】2.4【巩固】 两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积分别是3,7,7,则阴影四边形的面积是多少?【考点】燕尾定理 【难度】3星 【题型】解答【解析】 方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC ,BE 和CD 交于F ,则BF FE =,再连结DE . 所以三角形DEF 的面积为3.设三角形ADE 的面积为x ,则()():33:10:10x AD DB x +==+,所以15x =,四边形的面积为18.方法二:设ADF S x =△,根据燕尾定理::ABF BFC AFE EFC S S S S =△△△△,得到3AEF S x =+△,再根据向右下飞的燕子,有(37):7:3x x ++=,解得7.5x =四边形的面积为7.57.5318++=【答案】18【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?ABCDE F48621ABCDEF【考点】燕尾定理 【难度】3星 【题型】解答【解析】 连接CF ,设1AEF S =△份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEF S =△,62217ABF S ==△,821BDF S =△,242217FDCE S +==【答案】27【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC的面积等于222cm ,则三角形ABC 的面积 .A BCDE FA BCDEF 2.41.62A BC DE F 12【考点】燕尾定理 【难度】3星 【题型】填空【解析】 连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,23ABF CBF S AE S EC ==△△,设1BDF S =△份,则2DCF S =△份,2ABF S =△份,4AFC S =△份,24 1.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如图所标,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份 所以222 4.4945(cm )ABCS =÷⨯=△【答案】45【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少?【考点】燕尾定理 【难度】3星 【题型】解答 【解析】 连接BN .ABC △的面积为3223⨯÷=根据燕尾定理,::2:1ACN ABN CD BD ==△△; 同理::1:1CBN CAN BM AM ==△△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112+=份,而ACN △的面积就是224⨯=份,CBN △也是4份,这样ABC △的面积为441110+++=份,所以AMN △的面积为31010.3÷⨯=.【答案】0.3【例 4】 如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = .FE D C B AFE DCB A【考点】燕尾定理 【难度】3星 【题型】填空 【解析】 连接CD .由于:1:1ABD BED S S =△△,:3:4BED BCD S S =△△,所以:3:4ABD BCD S S =△△, 根据燕尾定理,::3:4ABD BCD AF FC S S ==△△.【答案】3:4【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =?A BCDE OABCDE O【考点】燕尾定理 【难度】3星 【题型】解答 【解析】 连接OC .因为:3:2BD DC =,根据燕尾定理,::3:2AOB AOC S S BD BC ∆∆==,即32AOB AOC S S ∆∆=; 又:3:1AE EC =,所以43AOC AOE S S ∆∆=.则3342223AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=,所以::2:1AOB AOE OB OE S S ∆∆==.【答案】2:1【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =?A B CDE O【考点】燕尾定理 【难度】3星 【题型】解答【解析】 题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接OC . 连接OC .A B CDE O因为:2:1BD DC =,根据燕尾定理,::2:1AOB AOC S S BD BC ∆∆==,即2AOB AOC S S ∆∆=; 又:1:3AE EC =,所以4AOC AOE S S ∆∆=.则2248AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::8:1AOB AOE OB OE S S ∆∆==.【答案】8:1【例 5】 如图9,三角形BAC 的面积是1,E 是AC 的中点,点D 在BC 上,且BD:DC=1:2,AD 与BE 交于点F ,则四边形DEFC 的面积等于 。

小学燕尾定理及应用

小学燕尾定理及应用

小学燕尾定理及应用小学燕尾定理,也被称为小数燕尾定理或十进制燕尾定理,是数学中的一个重要定理。

该定理主要用于求解除法中的燕尾部分。

燕尾部分是指除法中的小数部分,即不完全除尽的部分。

在小学除法运算中,我们经常会遇到有燕尾部分的除法运算,例如10除以3得到的商为3,余数为1,那么商和余数构成了一个带有燕尾部分的除法运算。

小学燕尾定理的公式表达方式为:被除数= 除数×商+ 余数。

它将除法运算中的被除数和除数、商和余数之间的关系清晰地表示出来。

这个公式告诉我们,一个除法运算的被除数可以通过除数乘以商再加上余数来表示。

小学燕尾定理的应用非常广泛,以下是一些常见的应用情况:1. 分数转化为小数小学生在学习数学时经常会遇到将分数转化为小数的情况。

通过小学燕尾定理,我们可以将分数转化为小数。

例如,将数学分数1/4转化为小数,可以进行除法运算1 ÷4,得到商0.25,即1/4等于0.25。

2. 进行无限循环小数的简化在燕尾部分出现无限循环的小数中,我们可以通过小学燕尾定理进行简化。

例如,将无限循环小数1.333...进行简化,可以设被除数为1333,除数为999,进行除法运算1333 ÷999,得到商1.333...,即无限循环小数1.333...等于1⅓。

3. 判断一个小数是否是循环小数通过小学燕尾定理,我们可以判断一个小数是否是循环小数。

如果一个小数的燕尾部分无限循环,则它就是一个循环小数。

例如,将数学分数1/3转化为小数,进行除法运算1 ÷3,得到商0.333...,其燕尾部分无限循环,因此1/3是一个循环小数。

4. 进行不完全除尽的计算在现实生活中,我们经常会遇到一些计算需要进行不完全除尽的情况。

通过小学燕尾定理,我们可以得到除数和商之间的关系,进而进行不完全除尽的计算。

例如,我们需要计算10除以3等于多少,通过小学燕尾定理,可以将其表示为10 = 3 ×3 + 1,即10除以3的商为3,余数为1。

三角形的燕尾定理公式

三角形的燕尾定理公式

三角形的燕尾定理公式(原创实用版)目录1.燕尾定理的定义2.燕尾定理的公式3.燕尾定理的证明4.燕尾定理的应用正文一、燕尾定理的定义燕尾定理,又称三角形的燕尾定理,是指在三角形中,任意两边之和大于第三边,任意两边之差小于第三边的定理。

该定理是三角形稳定性的一个基本原理,广泛应用于各种几何问题的求解。

二、燕尾定理的公式燕尾定理的公式可以表述为:设三角形 ABC 的三边分别为 a、b、c,则有:a +b > ca + c > bb +c > a同时,有:|a - b| < c|a - c| < b|b - c| < a三、燕尾定理的证明为了证明燕尾定理,我们可以采用反证法。

假设三角形 ABC 中存在两边之和小于或等于第三边,即:a +b ≤ c或a + c ≤ b或b +c ≤ a将上述不等式两边同时减去 c,得:a +b -c ≤ 0或a + c -b ≤ 0或b +c - a ≤ 0这说明三角形 ABC 的任意两边之差都小于等于第三边,与三角形的稳定性相矛盾。

因此,原假设不成立,得证燕尾定理。

四、燕尾定理的应用燕尾定理在实际应用中具有重要意义,它可以帮助我们判断一个三角形是否存在,以及在给定三条边长下,能否构成一个三角形。

此外,燕尾定理在解决一些与三角形相关的几何问题时也起到关键作用,如计算三角形的面积、周长等。

总之,三角形的燕尾定理是几何学中的一个基本原理,它对于解决各种与三角形相关的问题具有重要意义。

小学奥数-几何五大模型(燕尾模型)

小学奥数-几何五大模型(燕尾模型)

小学奥数-几何五大模型(燕尾模型)燕尾定理是一个有关于三角形的定理。

它表明在三角形ABC中,若有AD,BE,CF三条线段相交于同一点O,则可以得出以下关系:S△现在我们通过一道例题来证明燕尾定理。

如右图,D是BC上任意一点,请你说明:解析】我们可以通过以下方法来证明燕尾定理。

首先,我们连接CF,然后根据燕尾定理,我们可以得到△ABF/△ACF=BD/DC=1/2.接着,我们可以得到△ABF=3份,△DCF=2份,△AEF=△EFC=3份。

因此,我们可以得到SDFEC=S△ABC/2=1/2.另外一种证明方法是连接DE。

根据题目条件,我们可以得到S△ABD=S△ABC=1/3,S△ADE=S△ADC=1/6.因此,我们可以得到S△DEF/S△DEB=S△ADE/S△ABD*S△BEC/S△ADC=1/2*1/3*2/1=2/3.同时,我们可以得到S△CDE/S△ABC=1/3.因此,我们可以得到SDFEC=S△ABC/2=1/2.综上所述,我们证明了燕尾定理。

已知BD=3DC,EC=2AE,可以得到连接OE,可以得到△OEC和△OEB的面积比为2:3,因此△ABC被分成的第一部分面积为2/5.连接OD,可以得到△OBD和△OCD的面积比为1:3,因此△ABC被分成的第二部分面积为3/20.连接AE,可以得到△ABE和△AEC的面积比为2:5,因此△ABC被分成的第三部分面积为5/20=1/4.连接BO和CO,可以得到△BOC和△BEO的面积比为3:2,因此△ABC被分成的第四部分面积为3/20.因此,△ABC被分成的四部分面积分别为2/5、3/20、1/4、3/20,即它们各占△ABC面积的40%、15%、25%、15%。

解析】连接CF,设S△ABF=1份,则S△ACF=2份,S△BDF=1份,S△DCF=2份,S△AEF=4份,S△EFC=4份。

根据燕尾定理,SDFEC=S△ACF+S△DCF+S△BDF=5份。

燕尾定理

燕尾定理

燕尾定理:在三角形ABC中,AD,BE,CF相交于同一点O,有S△AOB∶S△AOC=BD∶CDS△AOB∶S△COB=AE∶CES△BOC∶S△AOC=BF∶AF1.因此图类似燕尾而得名。

是五大模型之一,是一个关于平面三角形的定理,俗称燕尾定理。

2.此定理是面积法最重要的定理之一。

3.所谓面积法,就是利用面积相等或者成比例,来证明其他的线段相等或为成比例线段的方法。

4.相关定理有以下几个:5.等底等高的两个三角形面积相等;6.等底(或等高)的两三角形面积之比等于其高(或底)之比;7.在两个三角形中,若两边对应相等,其夹角互补,则这两个三角形面积相等;8.若在同一线段的同侧有底边相等面积相等的两个三角形,则连结两个三角形的顶点的直线与底边平行。

验证推导编辑证法1:下面的是第一种方法:利用分比性质(若a÷b=c÷d,则(a-b)÷b=(c-d)÷d,b≠0,d≠0,)注:∵(a-b)÷b=a÷b-b÷b=a÷b-1,(c-d)÷d=c÷d-d÷d=c÷d-1,a/b=c/d∴(a-b)÷b=(c-d)÷d∵△ABD与△ACD同高∴S△ABD:S△ACD=BD:CD同理,S△OBD:S△OCD=BD:CD利用分比性质,得S△ABD-S△OBD:S△ACD-S△OCD=BD:CD即S△AOB:S△AOC=BD:CD命题得证。

(由此可得:若X:Y=a∶b,X1∶Y1=a∶b;则(X±X1)∶(Y±Y1)=a∶b.其中Y、Y1≠0,Y≠Y1且Y-≠Y1)证法2:相似三角形法。

已知:△ABC的两条中线AD、CF相交于点O,连接并延长BO,交AC于点E。

求证:AE=CE 证明:过点O作MN∥BC,,交AB于点M,AC于点N;过点O作PQ∥AB,交BC于点P,交AC于点Q。

(完整版)燕尾定理

(完整版)燕尾定理

(完整版)燕尾定理燕尾定理(Law of Small Numbers)是数学家约翰·波尔(John Poll)所提出的一条规律,也就是“小数定律”。

所谓燕尾定理,就是指任何随机样本中,排名最靠前的一部分,其样本数目总是远小于整个样本数的一半。

例如,100个数字中排名前10的数字的个数,通常只有少于50个。

燕尾定理在各个领域都有应用,包括经济学、统计学、生物学、物理学和计算机科学等等。

例如,在经济学中,市场中的利润和失败者往往集中在少数几家公司,而大多数公司的利润则很少。

同样,社会中的财富、权力和名气,往往只分布在极少数人的手中。

另一个著名的应用是“中产阶级陷阱”(middle-class trap)。

这个概念是指,在某些国家,有一批人成功地摆脱了贫困,但却无法进入富裕阶层。

这是因为,在这些国家中,只有很少的机会能让人们脱颖而出,成为超级富豪。

相反,更多的人会落入中产阶级,收入水平相对较低,但相对稳定。

燕尾定理背后的数学原理可以用概率分布函数来描述。

例如,考虑一个定义在[0,1]区间内的概率分布函数,满足:1. 它是连续的2. 它在[0,1]上积分为1。

3. 它具有较高的峰值。

在这种情况下,排名最靠前的一部分,其概率密度总是很小的。

这是因为峰值通常是在分布函数的中心,而排名最靠前的部分占据的是分布函数的尾部。

燕尾定理的适用性是有限的,因为它只在一些具有特定概率分布的情况下成立。

但即使在其他情况下,燕尾定理也可以为人们提供一个有用的常识指导,来帮助他们更好地理解和分析数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档