江苏专用2018高考数学一轮复习第二章函数概念与基本初等函数Ⅰ第4课函数的概念及其表示教师用书

合集下载

高考数学学业水平测试一轮复习专题二函数的概念与基本初等函数Ⅰ第4讲函数的奇偶性与周期性课件

高考数学学业水平测试一轮复习专题二函数的概念与基本初等函数Ⅰ第4讲函数的奇偶性与周期性课件

B.f(x)为奇函数,g(x)为偶函数
C.f(x)与g(x)均为奇函数 D.f(x)为偶函数,g(x)为奇函数 解析:(1)A、C选项中的函数不是奇函数,D选项中 的函数在定义域内不是增函数. (2)因为函数f(x)与g(x)的定义域均为R, f(-x)=3-x+3x=f(x),所以为偶函数, g(-x)=3-x-3x=-g(x),所以为奇函数. 答案:(1)B (2)D
则f(-2)=( )
A.-10
B.10
C.-12
D.12
解析:依题意有f(2)=22 017a+bsin 2-1=10,
所以22 017a+bsin 2=11.
所以f(-2)=(-2)2 017a+bsin(-2)-1
=-(22 017a+bsin 2)-1
=-11-1
=-12.
答案:C
3.已知定义在R上的奇函数f(x)满足f(x+2)=-
f(x),当0≤x≤1时,f(x)=x2,则f(1)+f(2)+f(3)+…+
f(2 019)=( )
A.2019
B.0
C.1
D.-1
解析:由f(x+4)=-f(x+2)=f(x)得,f(x)的周期为4.
又f(x)为奇函数,
则f(1)=1,f(2)=-f(0)=0,f(3)=f(-1)=-f(1)=
么函数f(x)是奇函数
关于______ 对称
答案:f(-x)=f(x) y轴 f(-x)=-f(x) 原点
2.周期性 (1)周期函数:对于函数y=f(x),如果存在一个非零常 数T,使得当x取定义域内的任何值时,都有_____,那么 就称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中 ________________的正数,那么这个最小正数就叫做f(x) 的最小正周期. 答案:(1)f(x+T)=f(x) (2)存在一个最小

江苏专版高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ第四节函数的图象课件理

江苏专版高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ第四节函数的图象课件理

角度二:求参数的值或范围
2.(2019·苏州实验中学测试)定义min{a,b}=
a,a≤b, b,b<a,
已知函数f(x)=min{x,x2-4x+4}+4,若动直线y=m与
函数y=f(x)的图象有3个交点,则实数m的取值范围为
________.
解析:设g(x)=min{x,x2-4x+4},则f(x)
4.若不等式(x-1)2<logax(a>0,且a≠1)在x∈(1,2)内恒成立, 则实数a的取值范围为________. 解析:要使当x∈(1,2)时,不等式(x-1)2< logax恒成立,只需函数y=(x-1)2在(1,2)上的 图象在y=logax的图象的下方即可. 当0<a<1时,显然不成立;当a>1时,如图,要使x∈(1,2) 时,y=(x-1)2的图象在y=logax的图象的下方,只需(2-1)2≤ loga2,即loga2≥1,解得1<a≤2,故实数a的取值范围是(1,2]. 答案:(1,2]
答案:(-3,1)
2.(2019·扬州中学高三调研)已知函数f(x)=
sinπ2x-1,x<0,
的图象上关于y轴对称的点恰
logaxa>0,a≠1,x>0
有9对,则实数a的取值范围是________.
解析:若x>0,则ห้องสมุดไป่ตู้x<0,∵x<0时,f(x)=sinπ2x-1,
[题点全练] 角度一:研究函数的性质 1.已知函数 f(x)=|x2-4x+3|.
(1)求函数 f(x)的单调区间,并指出其增减性; (2)求集合 M={m|使方程 f(x)=m 有四个不相等的实根}. 解:f(x)=-x-x-222-21+,1x,∈x∈-∞1,,31.]∪[3,+∞, 作出函数f(x)的图象如图所示. (1)由图知函数f(x)的单调递增区间为[1,2]和[3,+∞),单调递减 区间为(-∞,1]和[2,3]. (2)由图象可知,若y=f(x)与y=m图象有四个不同的交点, 则0<m<1,所以集合M={m|0<m<1}.

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

1.二次函数(1)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③零点式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函数的图象和性质(1)定义:一般地,形如y=xα的函数称为幂函数,其中x是自变量,α是常数.(2)幂函数的图象比较(3)幂函数的性质①幂函数在(0,+∞)上都有定义; ②幂函数的图象过定点(1,1);③当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ④当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 【知识拓展】1.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎪⎨⎪⎧ a >0,Δ<0时恒有f (x )>0,当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0. 2.幂函数的图象和性质(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性.(2)幂函数的图象过定点(1,1),如果幂函数的图象与坐标轴相交,则交点一定是原点. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b 24a.( × )(2)二次函数y =ax 2+bx +c ,x ∈R 不可能是偶函数.( × )(3)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( √ )(4)函数122y x =是幂函数.( × )(5)如果幂函数的图象与坐标轴相交,则交点一定是原点.( √ ) (6)当n <0时,幂函数y =x n 是定义域上的减函数.( × )1.(教材改编)若幂函数f (x )的图象经过点(2,22),则f (9)=________. 答案 27解析 设f (x )=x α,则2α=22, ∴α=32,∴f (x )=32x .∴f (9)=329=27.2.(教材改编)设α∈{-1,1,12,3},则使函数y =x α的定义域为R 且为奇函数的所有α值和为__________. 答案 4解析 当α=1,3时,函数y =x α的定义域为R ,且为奇函数;当α=-1时,y =1x 的定义域是{x |x ≠0,x ∈R };当α=12时,y =12x =x 的定义域是{x |x ≥0}.∴满足题意的a 值为1和3,其和为4.3.(教材改编)函数f (x )=2x 2-mx +3,当x ∈[2,+∞)时是增函数,当x ∈(-∞,2]时是减函数,则f (1)=______. 答案 -3解析 f (x )=2(x -m 4)2+3-m 28,由题意m4=2,∴m =8,∴f (1)=2×12-8×1+3=-3.4.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为________. 答案 [1,2]解析 如图,由图象可知m 的取值范围是[1,2].5.(教材改编)已知幂函数y =f (x )的图象过点⎝⎛⎭⎫2,22,则此函数的解析式为________;在区间________上单调递减. 答案 y =12x- (0,+∞)解析 设f (x )=x a ,则2a =22, ∴a =-12,即幂函数的解析式为y =12x -,单调减区间为(0,+∞).题型一 求二次函数的解析式例1 (1)(2016·南京模拟)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________. 答案 x 2+2x解析 设函数的解析式为f (x )=ax (x +2), 所以f (x )=ax 2+2ax ,由4a ×0-4a 24a=-1,得a =1,所以f (x )=x 2+2x .(2)已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),求f (x )的解析式. 解 ∵f (2+x )=f (2-x )对任意x ∈R 恒成立, ∴f (x )的对称轴为x =2.又∵f (x )的图象被x 轴截得的线段长为2. ∴f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0), 又f (x )的图象过点(4,3), ∴3a =3,a =1,∴所求f (x )的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.思维升华 求二次函数解析式的方法(1)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________.(2)若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________. 答案 (1)x 2+2x +1 (2)-2x 2+4解析 (1)设函数f (x )的解析式为f (x )=a (x +1)2=ax 2+2ax +a , 由已知f (x )=ax 2+bx +1,∴a =1, 故f (x )=x 2+2x +1.(2)由f (x )是偶函数知f (x )图象关于y 轴对称, ∴-a =-(-2ab),即b =-2,∴f (x )=-2x 2+2a 2,又f (x )的值域为(-∞,4], ∴2a 2=4,故f (x )=-2x 2+4. 题型二 二次函数的图象和性质 命题点1 二次函数的单调性例2 函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是__________. 答案 [-3,0]解析 当a =0时,f (x )=-3x +1在[-1,+∞)上递减,满足条件. 当a ≠0时,f (x )的对称轴为x =3-a2a ,由f (x )在[-1,+∞)上递减知⎩⎪⎨⎪⎧a <0,3-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 引申探究若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a =________. 答案 -3解析 由题意知a <0, 又3-a2a=-1,∴a =-3. 命题点2 二次函数的最值例3 已知函数f (x )=ax 2-2x (0≤x ≤1),求函数f (x )的最小值. 解 (1)当a =0时,f (x )=-2x 在[0,1]上单调递减, ∴f (x )min =f (1)=-2.(2)当a >0时,f (x )=ax 2-2x 的图象开口向上 且对称轴为x =1a.①当0<1a ≤1,即a ≥1时,f (x )=ax 2-2x 的对称轴在[0,1]内,∴f (x )在[0,1a ]上单调递减,在[1a ,1]上单调递增.∴f (x )min =f (1a )=1a -2a =-1a.②当1a >1,即0<a <1时,f (x )=ax 2-2x 的对称轴在[0,1]的右侧,∴f (x )在[0,1]上单调递减.∴f (x )min =f (1)=a -2.(3)当a <0时,f (x )=ax 2-2x 的图象开口向下 且对称轴x =1a <0,在y 轴的左侧,∴f (x )=ax 2-2x 在[0,1]上单调递减, ∴f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1,-1a ,a ≥1.命题点3 二次函数中的恒成立问题例4 (1)已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为________. 答案 ⎝⎛⎭⎫-∞,12 解析 2ax 2+2x -3<0在[-1,1]上恒成立. 当x =0时,-3<0,成立;当x ≠0时,a <32⎝⎛⎭⎫1x -132-16,因为1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,所以a <12.综上,实数a 的取值范围是 ⎝⎛⎭⎫-∞,12. (2)(2016·江苏徐州一中质检改编)若14t 2-kt -1≤0在t ∈[-1,1]上恒成立,求实数k 的取值范围.解 求二次函数f (t )=14t 2-kt -1在给定区间[-1,1]上的最大值M ,二次函数f (t )的图象的对称轴为直线t =2k .①当2k ∈[-1,1],即k ∈[-12,12]时,M =f (-1)或f (1),由M ≤0,得f (-1)≤0且f (1)≤0,解得-34≤k ≤34,又k ∈[-12,12],故-12≤k ≤12;②当2k <-1,即k <-12时,函数f (t )在[-1,1]上单调递增,故M =f (1)=14-k -1,由M ≤0,得k ≥-34,又k <-12,故-34≤k <-12;③当2k >1,即k >12时,函数f (t )在[-1,1]上单调递减,故M =f (-1)=14+k -1,由M ≤0,得k ≤34,又k >12,故12<k ≤34.综上知,实数k 的取值范围为[-34,34].思维升华 (1)二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成. (2)由不等式恒成立求参数取值范围的思路及关键①一般有两个解题思路:一是分离参数;二是不分离参数.②两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .(1)设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a的取值范围为________. 答案 ⎝⎛⎭⎫12,+∞解析 由题意得a >2x -2x 2对1<x <4恒成立,又2x -2x 2=-2⎝⎛⎭⎫1x -122+12,14<1x <1, ∴⎝⎛⎭⎫2x -2x 2max =12,∴a >12. (2)已知函数f (x )=x 2-2x ,若x ∈[-2,a ],求f (x )的最小值. 解 ∵函数y =x 2-2x =(x -1)2-1, ∴对称轴为直线x =1,∵x =1不一定在区间[-2,a ]内,∴应进行讨论,当-2<a ≤1时,函数在[-2,a ]上单调递减,则当x =a 时,y 取得最小值,即y min =a 2-2a ;当a >1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,y 取得最小值,即y min =-1. 综上,当-2<a ≤1时,y min =a 2-2a , 当a >1时,y min =-1. 题型三 幂函数的图象和性质例5 (1)若12(21)m +>122(1)m m +-,则实数m 的取值范围是__________. 答案 ⎣⎢⎡⎭⎪⎫5-12,2解析 因为函数y =12x 的定义域为[0,+∞) 且在定义域内为增函数,所以不等式等价于⎩⎪⎨⎪⎧2m +1≥0,m 2+m -1≥0,2m +1>m 2+m -1,解2m +1≥0,得m ≥-12;解m 2+m -1≥0,得m ≤-5-12或m ≥5-12;解2m +1>m 2+m -1,得-1<m <2. 综上所述,m 的取值范围是5-12≤m <2. (2)已知函数f (x )=x-m +3(m ∈N *)是偶函数,且f (3)<f (5),求m 的值,并确定f (x )的函数解析式. 解 由f (3)<f (5),得3-m +3<5-m +3,所以(35)-m +3<1=(35)0.因为y =(35)x 是减函数,所以-m +3>0.解得m <3. 又因为m ∈N *,所以m =1或2; 当m =2时,f (x )=x -m +3=x 为奇函数,所以m =2舍去. 当m =1时,f (x )=x-m +3=x 2为偶函数,所以m =1,此时f (x )=x 2.思维升华 (1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.(2016·盐城模拟)幂函数的图象经过点(4,2),若0<a <b <1,则下列各式正确的是________.①f (a )<f (b )<f (1a )<f (1b )②f (1a )<f (1b )<f (b )<f (a )③f (a )<f (b )<f (1b )<f (1a )④f (1a )<f (a )<f (1b )<f (b )答案 ③解析 设幂函数为f (x )=x α,将(4,2)代入得α=12,所以f (x )=12x ,该函数在(0,+∞)上为增函数, 又0<a <b <1,所以1a >1b >1,即a <b <1b <1a,所以f (a )<f (b )<f (1b )<f (1a ).3.分类讨论思想在二次函数最值中的应用典例 (14分)已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 思想方法指导 已知函数f (x )的最值,而f (x )图象的对称轴确定,要讨论a 的符号. 规范解答解 f (x )=a (x +1)2+1-a .[2分] (1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;[4分](2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;[9分](3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.[12分]综上可知,a 的值为38或-3.[14分]1.(教材改编)幂函数f (x )=x α的图象过点(2,4),那么函数f (x )的单调递增区间是__________. 答案 [0,+∞)解析 把点(2,4)代入函数解析式得4=2α,所以α=2,故f (x )=x 2,所以函数的单调递增区间为[0,+∞).2.(教材改编)如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f (1+x )=f (-x ),那么f (-2),f (0),f (2)大小关系为____________. 答案 f (0)<f (2)<f (-2)解析 函数f (x )=x 2+bx +c 对任意的实数x 都有f (1+x )=f (-x ).可知函数f (x )图象的对称轴为x =12,又函数图象开口向上,自变量离对称轴越远函数值越大. 3.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是____________. 答案 [0,4]解析 由题意可知函数f (x )的图象开口向下,对称轴为x =2(如图), 若f (a )≥f (0),从图象观察可知0≤a ≤4.4.若函数y =x 2-3x -4的定义域为[0,m ],值域为[-254,-4],则m 的取值范围是____________.答案 [32,3]解析 二次函数图象的对称轴为x =32且f (32)=-254,f (3)=f (0)=-4,由图得m ∈[32,3].5.若a <0,(12)a 、(0.2)a 、2a 大小关系为__________.答案 (0.2)a >(12)a >2a解析 若a <0,则幂函数y =x a 在(0,+∞)上是单调减函数,又∵0.2<12<2,∴(0.2)a >(12)a >2a .6.已知函数y =x 2-2x +a 的定义域为R ,值域为[0,+∞),则实数a 的取值集合为________. 答案 {1}解析 由定义域为R ,则x 2-2x +a ≥0恒成立.又值域为[0,+∞),则函数y =x 2-2x +a 的图象只能与x 轴有1个交点,所以Δ=4-4a =0,则a =1,所以实数a 的取值集合为{1}. 7.(2016·连云港模拟)已知幂函数f (x )=12x -,若f (a +1)<f (10-2a ),则a 的取值范围为________.答案 (3,5)解析 ∵幂函数f (x )=12x -单调递减,定义域为(0,+∞),∴由f (a +1)<f (10-2a ),得⎩⎪⎨⎪⎧ a +1>0,10-2a >0,a +1>10-2a ,解得3<a <5. 8.(2016·无锡模拟)已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为________________.答案 [1,2]解析 作出已知函数的图象如图所示,当x =1时,y 最小,最小值为2;当x =2时,y =3;当x =0时,y =3.由图象知m 的取值范围是[1,2].*9.若函数f (x )=x 2-a |x -1|在[0,+∞)上单调递增,则实数a 的取值范围是________. 答案 [0,2]解析 f (x )=⎩⎪⎨⎪⎧x 2-ax +a ,x ∈[1,+∞),x 2+ax -a ,x ∈(-∞,1), x ∈[1,+∞)时,f (x )=x 2-ax +a =(x -a 2)2+a -a 24, x ∈(-∞,1)时,f (x )=x 2+ax -a =(x +a 2)2-a -a 24. ①当a 2>1,即a >2时,f (x )在[1,a 2)上单调递减, 在(a 2,+∞)上单调递增,不合题意; ②当0≤a 2≤1,即0≤a ≤2时,符合题意; ③当a 2<0,即a <0时,不符合题意. 综上,a 的取值范围是[0,2].10.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ] (b >1),则a +b =________. 答案 92解析 ∵f (x )=12(x -1)2+a -12,∴其对称轴为x =1,即函数f (x )在[1,b ]上单调递增.∴f (x )min =f (1)=a -12=1,① f (x )max =f (b )=12b 2-b +a =b , ② 又b >1,由①②解得⎩⎪⎨⎪⎧a =32,b =3,∴a ,b 的值分别为32,3. ∴a +b =92. 11.(2016·江苏赣榆高级中学质检)设函数f (x )=x 2-3x +a .若函数f (x )在区间(1,3)内有零点,则实数a 的取值范围为________.答案 (0,94] 解析 方法一 由f (x )=0,得a =-x 2+3x =-(x -32)2+94. 因为x ∈(1,3),所以-(x -32)2+94∈(0,94], 所以a ∈(0,94]. 方法二 因为f (x )=x 2-3x +a =(x -32)2-94+a , 所以要使函数f (x )在区间(1,3)内有零点,则需f (32)≤0且f (3)>0,解得0<a ≤94. 12.(2016·江苏淮阴中学期中)已知关于x 的一元二次方程x 2-2ax +a +2=0的两个实数根是α,β,且有1<α<2<β<3,则实数a 的取值范围是__________.答案 (2,115) 解析 设f (x )=x 2-2ax +a +2,结合二次函数的图象及一元二次方程根的分布情况可得 ⎩⎪⎨⎪⎧ f (1)>0,f (2)<0,f (3)>0,即⎩⎪⎨⎪⎧ 1-2a +a +2>0,4-4a +a +2<0,9-6a +a +2>0,解得2<a <115, 所以实数a 的取值范围为(2,115). 13.(2016·江苏泰州中学质检)已知a ,t 为正实数,函数f (x )=x 2-2x +a ,且对任意的x ∈[0,t ],都有f (x )∈[-a ,a ].若对每一个正实数a ,记t 的最大值为g (a ),则函数g (a )的值域为__________.答案 (0,1)∪{2}解析 因为f (x )=(x -1)2+a -1,且f (0)=f (2)=a ,当a -1≥-a ,即a ≥12时,此时恒有[a -1,a ]⊆[-a ,a ],故t ∈(0,2],从而它的最大值为2;当a -1<-a ,即0<a <12,此时t ∈(0,1)且t 2-2t +a ≥-a 在0<a <12上恒成立,即t ≥1+1-2a (不成立,舍去)或t ≤1-1-2a ,由于0<a <12,故t ∈(0,1). 综上,g (a )的值域为(0,1)∪{2}.14.已知幂函数f (x )=223mm x --(m ∈Z )为偶函数,且在区间(0,+∞)上是单调减函数.(1)求函数f (x );(2)讨论F (x )=a f (x )-b xf (x )的奇偶性. 解 (1)∵f (x )是偶函数,∴m 2-2m -3应为偶数.又∵f (x )在(0,+∞)上是单调减函数,∴m 2-2m -3<0,-1<m <3.又m ∈Z ,∴m =0,1,2.当m =0或2时,m 2-2m -3=-3不是偶数,舍去;当m =1时,m 2-2m -3=-4,∴m =1,即f (x )=x -4. (2)F (x )=a x 2-bx 3,∴F (-x )=a x 2+bx 3. ①当a ≠0且b ≠0时,函数F (x )为非奇非偶函数;②当a ≠0且b =0时,函数F (x )为偶函数;③当a =0且b ≠0时,函数F (x )为奇函数;④当a =0且b =0时,函数F (x )既是奇函数,又是偶函数.。

高考数学一轮复习考点与题型总结:第二章 函数的概念与基本初等函数

高考数学一轮复习考点与题型总结:第二章 函数的概念与基本初等函数

精品基础教育教学资料,仅供参考,需要可下载使用!第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一函数的定义域[典例] (1)(2019·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则 (1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.[题组训练]1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f (x -1),x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2,∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f (2x +1)log 2(x +1)有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1.所以该函数的定义域为(0,1]. 答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f (f (-9))=________.解析:∵函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2.答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3. 答案:-312.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2, 故所求x 的取值范围是[-4,2]. 答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)函数f (x )的图象如图所示.第二节函数的单调性与最值一、基础知识1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.有关单调区间的两个防范(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论在公共定义域内:(1)函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;(2)函数f (x )单调递减,g (x )单调递减,则f (x )+g (x )是减函数; (3)函数f (x )单调递增,g (x )单调递减,则f (x )-g (x )是增函数; (4)函数f (x )单调递减,g (x )单调递增,则f (x )-g (x )是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反;(7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.考点一 确定函数的单调性(区间))[典例] (1)求函数f (x )=-x 2+2|x |+1的单调区间. (2)试讨论函数f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.[解] (1)易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)法一:定义法 设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1).由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2. 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.[题组训练]1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x 与y=-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选D 令t =x 2-4,则y =log 12t .因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).3.判断函数f (x )=x +ax (a >0)在(0,+∞)上的单调性.解:设x 1,x 2是任意两个正数,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ). 当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax (a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数.考点二 求函数的值域(最值))[典例] (1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-ax+b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.[解析] (1)图象法函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上是增函数, ∴f (x )min =f ⎝⎛⎭⎫12=12,f (x )max =f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.[答案] (1)[3,+∞) (2)1 52 (3)4[提醒] (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.[题组训练]1.函数f (x )=x 2+4x 的值域为________.解析:当x >0时,f (x )=x +4x ≥4,当且仅当x =2时取等号; 当x <0时,-x +⎝⎛⎭⎫-4x ≥4, 即f (x )=x +4x ≤-4,当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞). 答案:(-∞,-4]∪[4,+∞)2.若x ∈⎣⎡⎦⎤-π6,2π3,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________.解析:令t =sin x ,因为x ∈⎣⎡⎦⎤-π6,2π3, 所以t ∈⎣⎡⎦⎤-12,1,y =f (t )=4t 2-12t -1, 因为该二次函数的图象开口向上,且对称轴为t =32,所以当t ∈⎣⎡⎦⎤-12,1时,函数f (t )单调递减,所以当t =-12时,y max =6;当t =1时,y min =-9. 答案:6 -93.已知f (x )=x 2+2x +ax ,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.解析:对任意x ∈[1,+∞),f (x )>0恒成立等价于x 2+2x +a >0在x ∈[1,+∞)上恒成立,即a >-x 2-2x 在x ∈[1,+∞)上恒成立.又函数y =-x 2-2x 在[1,+∞)上单调递减, ∴(-x 2-2x )max =-3,故a >-3,又∵a ≤1,∴-3<a ≤1. 答案:(-3,1]考点三 函数单调性的应用考法(一) 比较函数值的大小[典例] 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解析] 因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数. 所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). [答案] A[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式[典例] 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)[解析] 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2]. [答案] B[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)[典例] (2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.[解析] 设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数, ∴f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). [答案] [-1,+∞)[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.[题组训练]1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12 B.⎣⎡⎦⎤14,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎭⎫12,1解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎡⎦⎤14,12.[课时跟踪检测]A 级1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( )A .(2,+∞)B .(-∞,2)C .(4,+∞)D .(-∞,4)解析:选B 因为f (x )=ax +1在R 上单调递减,所以a <0. 而g (x )=a (x 2-4x +3)=a (x -2)2-a .因为a <0,所以g (x )在(-∞,2)上单调递增.3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13. 所以0≤2x -1<13,解得12≤x <23.4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).6.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5,x ≤1,a x ,x >1是R 上的增函数,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)解析:选C 若f (x )是R 上的增函数,则应满足⎩⎪⎨⎪⎧-a2≥1,a <0,-12-a ×1-5≤a 1,解得-3≤a ≤-2.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.解析:设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t =x 2-2x -3在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).答案:[3,+∞)8.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:29.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数,∴f (x )max =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:410.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________.解析:f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.答案:(-∞,3)11.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上是增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25.12.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1].B 级1.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]解析:选D 函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 解析:因为f (x )=ln x +x 在(0,+∞)上是增函数,所以⎩⎪⎨⎪⎧a 2-a >a +3,a 2-a >0,a +3>0,解得-3<a <-1或a >3.又a >0,所以a >3. 答案:(3,+∞)3.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1. (1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1. 又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以函数f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.第三节 函数的奇偶性与周期性一、基础知1.函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的前提条件.若f (x )≠0,则奇(偶)函数定义的等价形式如下:(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数.2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.周期函数定义的实质存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.考点一 函数奇偶性的判断[典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.[解] (1)由f (x )=36-x 2|x +3|-3,可知⎩⎪⎨⎪⎧ 36-x 2≥0,|x +3|-3≠0⇒⎩⎪⎨⎪⎧-6≤x ≤6,x ≠0且x ≠-6,故函数f (x )的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0⇒x 2=1⇒x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (-x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0⇒-1<x <0或0<x <1,定义域关于原点对称.此时f (x )=log 2(1-x 2)|x -2|-2=log 2(1-x 2)2-x -2=-log 2(1-x 2)x ,故有f (-x )=-log 2[1-(-x )2]-x =log 2(1-x 2)x =-f (x ),所以函数f (x )为奇函数. (4)法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数.法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数.[题组训练]1.(2018·福建期末)下列函数为偶函数的是( ) A .y =tan ⎝⎛⎭⎫x +π4 B .y =x 2+e |x | C .y =x cos xD .y =ln|x |-sin x解析:选B 对于选项A ,易知y =tan ⎝⎛⎭⎫x +π4为非奇非偶函数;对于选项B ,设f (x )=x 2+e |x |,则f (-x )=(-x )2+e |-x |=x 2+e |x |=f (x ),所以y =x 2+e |x |为偶函数;对于选项C ,设f (x )=x cos x ,则f (-x )=-x cos(-x )=-x cos x =-f (x ),所以y =x cos x 为奇函数;对于选项D ,设f (x )=ln|x |-sin x ,则f (2)=ln 2-sin 2,f (-2)=ln 2-sin(-2)=ln 2+sin 2≠f (2),所以y =ln|x |-sin x 为非奇非偶函数,故选B.2.设函数f (x )=e x -e -x2,则下列结论错误的是( )A .|f (x )|是偶函数B .-f (x )是奇函数C .f (x )|f (x )|是奇函数D .f (|x |)f (x )是偶函数解析:选D ∵f (x )=e x -e -x2,则f (-x )=e -x -e x2=-f (x ).∴f (x )是奇函数. ∵f (|-x |)=f (|x |),∴f (|x |)是偶函数,∴f (|x |)f (x )是奇函数.考点二 函数奇偶性的应用[典例] (1)(2019·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-x C .-2-xD .2x(2)(2018·贵阳摸底考试)已知函数f (x )=a -2e x +1(a ∈R)是奇函数,则函数f (x )的值域为( )A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)[解析] (1)当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .(2)法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x+1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).[答案] (1)C (2)A[解题技法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.[题组训练]1.(2019·贵阳检测)若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=( )A .2B .4C .-2D .-4解析:选C 根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.2.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.解析:法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎫x +122+14,所以当x <0时,函数f (x )的最大值为14. 法二:当x >0时,f (x )=x 2-x =⎝⎛⎭⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.答案:143.(2018·合肥八中模拟)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )=x ln(x +a +x 2)为偶函数,∴f (-x )=f (x ),即-x ln(a +x 2-x )=x ln(x +a +x 2),从而ln[(a +x 2)2-x 2]=0,即ln a =0,故a =1.答案:1考点三 函数的周期性[典例] (1)(2018·开封期末)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12C .2D .-2(2)(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.[解析] (1)由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.(2)由函数f (x )满足f (x +4)=f (x )(x ∈R), 可知函数f (x )的周期是4, 所以f (15)=f (-1)=⎪⎪⎪⎪-1+12=12, 所以f (f (15))=f ⎝⎛⎭⎫12=cos π4=22. [答案] (1)D (2)22[题组训练]1.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________. 解析:∵f (x +2)=-1f (x ),∴f (x +4)=f (x ), ∴f ⎝⎛⎭⎫-112=f ⎝⎛⎭⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝⎛⎭⎫52=52,∴f ⎝⎛⎭⎫-112=52. 答案:522.(2019·哈尔滨六中期中)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫214=________. 解析:由题意可得f ⎝⎛⎭⎫214=f ⎝⎛⎭⎫6-34=f ⎝⎛⎭⎫-34=4×⎝⎛⎭⎫-342-2=14,f ⎝⎛⎭⎫14=14.答案:14[课时跟踪检测]A 级1.下列函数为奇函数的是( ) A .f (x )=x 3+1 B .f (x )=ln 1-x1+xC .f (x )=e xD .f (x )=x sin x解析:选B 对于A ,f (-x )=-x 3+1≠-f (x ),所以其不是奇函数;对于B ,f (-x )=ln 1+x 1-x=-ln1-x 1+x=-f (x ),所以其是奇函数;对于C ,f (-x )=e -x ≠-f (x ),所以其不是奇函数;对于D ,f (-x )=-x sin(-x )=x sin x =f (x ),所以其不是奇函数.故选B.2.(2019·南昌联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称解析:选B 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y轴对称.3.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,则f (-7)=( )A .3B .-3C .2D .-2解析:选B 因为函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,所以f (-7)=-f (7)=-log 2(7+1)=-3.4.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( ) A .e x -e -x B.12(e x +e -x )C.12(e -x -e x ) D.12(e x -e -x )解析:选D 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x , 所以g (x )=12(e x -e -x ).。

2018版高考数学文江苏专用大一轮复习讲义文档 第二章

2018版高考数学文江苏专用大一轮复习讲义文档 第二章

1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使函数y=f(x)的值为0的实数x叫做函数y=f(x)(x∈D)的零点. (2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且有f(a)·f(b)<0,那么,函数y =f(x)在区间(a,b)上有零点,即存在c∈(a,b),使得f(c)=0,这个__c__也就是方程f(x)=0的根.2.二分法对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.3.二次函数y=ax2+bx+c(a>0)的图象与零点的关系【知识拓展】有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x 轴的交点.( × )(2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0.( × ) (3)只要函数有零点,我们就可以用二分法求出零点的近似值.( × ) (4)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( √ )(5)若函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( √ )1.(教材改编)函数f (x )=12x -(12)x 的零点个数为____________.答案 1解析 f (x )是增函数,又f (0)=-1,f (1)=12,∴f (0)f (1)<0,∴f (x )有且只有一个零点.2.(教材改编)已知f (x )=ax 2+bx +c 的零点为1,3,则函数y =ax 2+bx +c 的对称轴是________. 答案 x =2解析 ∵y =a (x -1)(x -3)=a (x -2)2-a , ∴对称轴为x =2.3.(2016·长春检测)函数f (x )=12ln x +x -1x -2的零点所在的区间是________.①(1e ,1); ②(1,2); ③(2,e); ④(e,3).答案 ③解析 因为f (1e )=-12+1e -e -2<0,f (1)=-2<0,f (2)=12ln 2-12<0,f (e)=12+e -1e -2>0,所以f (2)f (e)<0,所以函数f (x )=12ln x +x -1x-2的零点所在区间是(2,e).4.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________. 答案 ⎝⎛⎭⎫13,1解析 ∵函数f (x )的图象为直线,由题意可得 f (-1)f (1)<0,∴(-3a +1)·(1-a )<0,解得13<a <1,∴实数a 的取值范围是⎝⎛⎭⎫13,1.5.(教材改编)已知函数f (x )=x 2+x +a 在区间(0,1)上有零点,则实数a 的取值范围是__________.答案 (-2,0)解析 结合二次函数f (x )=x 2+x +a 的图象知⎩⎪⎨⎪⎧ f (0)<0f (1)>0,故⎩⎪⎨⎪⎧a <01+1+a >0,所以-2<a <0.题型一 函数零点的确定 命题点1 确定函数零点所在区间例1 (1)(2016·盐城调研)已知函数f (x )=ln x -⎝⎛⎭⎫12x -2的零点为x 0,则x 0所在的区间是________.(填序号) ①(0,1); ②(1,2); ③(2,3);④(3,4).(2)设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),若x 0∈(n ,n +1),n ∈N ,则x 0所在的区间是______. 答案 (1)③ (2)(1,2)解析 (1)∵f (x )=ln x -⎝⎛⎭⎫12x -2在(0,+∞)为增函数, 又f (1)=ln 1-⎝⎛⎭⎫12-1=ln 1-2<0, f (2)=ln 2-⎝⎛⎭⎫120<0, f (3)=ln 3-⎝⎛⎭⎫121>0, ∴x 0∈(2,3).(2)令f (x )=x 3-(12)x -2,则f (x 0)=0,易知f (x )为增函数,且f (1)<0,f (2)>0,∴x 0所在的区间是(1,2).命题点2 函数零点个数的判断例2 (1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.(2)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是________. 答案 (1)2 (2)4解析 (1)当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上有一个零点;当x >0时,f ′(x )=2+1x >0恒成立,所以f (x )在(0,+∞)上是增函数.又因为f (2)=-2+ln 2<0,f (3)=ln 3>0,所以f (x )在(0,+∞)上有一个零点,综上,函数f (x )的零点个数为2. (2)由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如图,观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点.思维升华 (1)确定函数零点所在区间,可利用零点存在性定理或数形结合法.(2)判断函数零点个数的方法:①解方程法;②零点存在性定理、结合函数的性质;③数形结合法:转化为两个函数图象的交点个数.(1)已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是________.(填序号) ①(0,1); ②(1,2); ③(2,4);④(4,+∞).(2)(教材改编)已知函数f (x )=2x -3x ,则函数f (x )的零点个数为________. 答案 (1)③ (2)2解析 (1)因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).(2)令f (x )=0,则2x =3x ,在同一平面直角坐标系中分别作出y =2x 和y =3x 的图象,如图所示,由图知函数y =2x 和y =3x 的图象有2个交点,所以函数f (x )的零点个数为2.题型二 函数零点的应用例3 (1)函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是__________.(2)已知函数f (x )=|x 2+3x |,x ∈R ,若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围是________________. 答案 (1)(0,3) (2)(0,1)∪(9,+∞)解析 (1)因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0.所以0<a <3. (2)设y 1=f (x )=|x 2+3x |,y 2=a |x -1|,在同一直角坐标系中作出y 1=|x 2+3x |,y 2=a |x -1|的图象如图所示.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图象有4个不同的交点且4个交点的横坐标都小于1,所以⎩⎪⎨⎪⎧y =-x 2-3x ,y =a (1-x )有两组不同解,消去y 得x 2+(3-a )x +a =0有两个不等实根, 所以Δ=(3-a )2-4a >0,即a 2-10a +9>0, 解得a <1或a >9.又由图象得a >0,∴0<a <1或a >9. 引申探究本例(2)中,若f (x )=a 恰有四个互异的实数根,则a 的取值范围是________________. 答案 (0,94)解析 作出y 1=|x 2+3x |,y 2=a 的图象如下:当x =-32时,y 1=94;当x =0或x =-3时,y 1=0,由图象易知,当y 1=|x 2+3x |和y 2=a 的图象有四个交点时,0<a <94.思维升华 已知函数零点情况求参数的步骤及方法(1)步骤:①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式(组);③解不等式(组),即得参数的取值范围. (2)方法:常利用数形结合法.(1)已知函数f (x )=x 2+x +a (a <0)在区间(0,1)上有零点,则a 的取值范围为________.(2)(2016·江苏前黄中学调研)若函数f (x )=|x |x -1-kx 2有4个零点,则实数k 的取值范围是______________.答案 (1)(-2,0) (2)(-∞,-4) 解析 (1)∵-a =x 2+x 在(0,1)上有解, 又y =x 2+x =(x +12)2-14,∴函数y =x 2+x ,x ∈(0,1)的值域为(0,2), ∴0<-a <2,∴-2<a <0.(2)令f (x )=0,则方程|x |x -1=kx 2有4个不同的实数根,显然,x =0是方程的一个实数根.当x ≠0时,方程可化为1k =|x |(x -1),设h (x )=1k,g (x )=|x |(x -1),由题意知h (x )与g (x )图象(如图所示)有三个不同的交点,由g (x )=⎩⎪⎨⎪⎧x (x -1),x >0,-x (x -1),x <0,结合图象知-14<1k<0,所以k <-4.题型三 二次函数的零点问题例4 已知f (x )=x 2+(a 2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围.解 方法一 设方程x 2+(a 2-1)x +(a -2)=0的两根分别为x 1,x 2(x 1<x 2),则(x 1-1)(x 2-1)<0, ∴x 1x 2-(x 1+x 2)+1<0,由根与系数的关系,得(a -2)+(a 2-1)+1<0, 即a 2+a -2<0,∴-2<a <1.方法二 函数图象大致如图,则有f (1)<0,即1+(a 2-1)+a -2<0,∴-2<a <1. 故实数a 的取值范围是(-2,1).思维升华 解决与二次函数有关的零点问题 (1)利用一元二次方程的求根公式.(2)利用一元二次方程的判别式及根与系数之间的关系. (3)利用二次函数的图象列不等式组.(2016·江苏泰州中学质检)关于x 的一元二次方程x 2+2(m +3)x +2m +14=0有两个不同的实根,且一根大于3,一根小于1,则m 的取值范围是______. 答案 (-∞,-214)解析 设f (x )=x 2+2(m +3)x +2m +14,由题设可得⎩⎪⎨⎪⎧f (3)<0,f (1)<0,所以m <-214.4.利用转化思想求解函数零点问题典例 (1)若函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是________. (2)若关于x 的方程22x +2x a +a +1=0有实根,则实数a 的取值范围为________.思想方法指导 (1)函数零点个数可转化为两个函数图象的交点个数,利用数形结合求解参数范围.(2)“a =f (x )有解”型问题,可以通过求函数y =f (x )的值域解决.解析 (1)函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,即方程a x -x -a =0有两个根,即函数y =a x 与函数y =x +a 的图象有两个交点.当0<a <1时,图象如图(1)所示,此时只有一个交点. 当a >1时,图象如图(2)所示,此时有两个交点. ∴实数a 的取值范围为(1,+∞).(2)由方程,解得a =-22x +12x +1,设t =2x (t >0),则a =-t 2+1t +1=-(t +2t +1-1)=2-[(t +1)+2t +1],其中t +1>1,由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2.答案 (1)(1,+∞) (2)(-∞,2-22]1.(2016·江苏东海中学期中)若函数f (x )=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1,-1<x <2,则函数g (x )=f (x )-x 的零点为______________. 答案 1+2或1解析 题目转化为求方程f (x )=x 的根,所以⎩⎪⎨⎪⎧ x ≥2或x ≤-1,x 2-x -1=x 或⎩⎪⎨⎪⎧-1<x <2,1=x ,解得x =1+2或x =1,所以g (x )的零点为1+2或1.2.若函数f (x )=log 3x +x -3的零点所在的区间是(n ,n +1)(n ∈Z ),则n =________. 答案 2解析 由f (2)=log 32-1<0,f (3)=1>0,知f (x )=0的根在区间(2,3)内,即n =2.3.已知三个函数f (x )=2x +x ,g (x )=x -2,h (x )=log 2x +x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为________. 答案 a <c <b解析 方法一 由于f (-1)=12-1=-12<0,f (0)=1>0且f (x )为R 上的递增函数.故f (x )=2x +x 的零点a ∈(-1,0). ∵g (2)=0,∴g (x )的零点b =2;∵h ⎝⎛⎭⎫12=-1+12=-12<0,h (1)=1>0, 且h (x )为(0,+∞)上的增函数, ∴h (x )的零点c ∈⎝⎛⎭⎫12,1,因此a <c <b . 方法二 由f (x )=0得2x =-x ;由h (x )=0得log 2x =-x ,作出函数y =2x , y =log 2x 和y =-x 的图象(如图).由图象易知a <0,0<c <1,而b =2, 故a <c <b .4.方程|x 2-2x |=a 2+1(a >0)的解的个数是________. 答案 2解析 (数形结合法) ∵a >0,∴a 2+1>1. 而y =|x 2-2x |的图象如图,∴y =|x 2-2x |的图象与y =a 2+1的图象总有两个交点.5.函数f (x )=⎩⎪⎨⎪⎧x 2-1(x ≤0),x -2+ln x (x >0)的零点个数为______.答案 2解析 当x ≤0时,令f (x )=0,得x 2-1=0,∴x =-1,此时f (x )有一个零点;当x >0时,令f (x )=0,得x -2+ln x =0,在同一个坐标系中画出y =2-x 和y =ln x 的图象(图略),观察其图象可知函数y =2-x 和y =ln x 的图象在(0,+∞)上的交点个数是1,所以此时函数f (x )有一个零点,所以f (x )的零点个数为2.6.已知x ∈R ,符号[x ]表示不超过x 的最大整数,若函数f (x )=[x ]x -a (x ≠0)有且仅有3个零点,则实数a 的取值范围是________________. 答案 ⎝⎛⎦⎤34,45∪[43,32)解析 当0<x <1时,f (x )=[x ]x -a =-a ;当1≤x <2时,f (x )=[x ]x -a =1x -a ;当2≤x <3时,f (x )=[x ]x -a =2x-a ;…f (x )=[x ]x -a 的图象是把y =[x ]x 的图象进行纵向平移而得到的,画出y =[x ]x 的图象,如图所示,通过数形结合可知a ∈(34,45]∪[43,32).7.(2016·徐州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为________.答案 x =0解析 当x ≤1时,由f (x )=2x -1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解. 综上,函数f (x )的零点只有0.8.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________. 答案 (0,1)解析 画出函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0的图象,如图.由于函数g (x )=f (x )-m 有3个零点, 结合图象得0<m <1,即m ∈(0,1).9.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2 015x +log 2 015x ,则在R 上,函数f (x )零点的个数为________. 答案 3解析 函数f (x )为R 上的奇函数,因此f (0)=0,当x >0时,f (x )=2 015x +log 2 015x 在区间(0,12 015)内存在一个零点, 又f (x )为增函数,因此在(0,+∞)内有且仅有一个零点.根据对称性可知函数在(-∞,0)内有且仅有一解,从而函数f (x )在R 上的零点的个数为3.10.若a >1,设函数f (x )=a x +x -4的零点为m ,函数g (x )=loga x +x -4的零点为n ,则1m +1n的最小值为________.答案 1解析 设F (x )=a x ,G (x )=log a x ,h (x )=4-x ,则h (x )与F (x ),G (x )的交点A ,B 横坐标分别为m ,n (m >0,n >0).因为F (x )与G (x )关于直线y =x 对称,所以A ,B 两点关于直线y =x 对称.又因为y =x 和h (x )=4-x 交点的横坐标为2,所以m +n =4.又m >0,n >0,所以1m +1n =(1m +1n )·m +n 4=14(2+n m +m n )≥14(2+2 n m ×m n )=1. 当且仅当n m =m n,即m =n =2时等号成立. 所以1m +1n的最小值为1. 11.(2016·江苏淮阴中学期中)已知关于x 的一元二次方程x 2-2ax +a +2=0的两个实根是α,β,且有1<α<2<β<3,则实数a 的取值范围是________. 答案 (2,115) 解析 设f (x )=x 2-2ax +a +2,结合二次函数的图象及一元二次方程根的分布情况可得 ⎩⎪⎨⎪⎧ f (1)>0,f (2)<0,f (3)>0,即⎩⎪⎨⎪⎧ 1-2a +a +2>0,4-4a +a +2<0,9-6a +a +2>0, 解得2<a <115,所以实数a 的取值范围为(2,115). 12.关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围.解 显然x =0不是方程x 2+(m -1)x +1=0的解,0<x ≤2时,方程可变形为1-m =x +1x,又∵y =x +1x在(0,1]上单调递减,[1,2]上单调递增, ∴y =x +1x在(0,2]上的取值范围是[2,+∞), ∴1-m ≥2,∴m ≤-1,故m 的取值范围是(-∞,-1].13.已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x .(1)写出函数y =f (x )的解析式;(2)若方程f (x )=a 恰有3个不同的解,求a 的取值范围.解 (1)设x <0,则-x >0,∴f (-x )=x 2+2x .又∵f (x )是奇函数,∴f (x )=-f (-x )=-x 2-2x .∴f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0. (2)方程f (x )=a 恰有3个不同的解.即y =f (x )与y =a 的图象有3个不同的交点,作出y =f (x )与y =a 的图象如图所示,故若方程f (x )=a 恰有3个不同的解只需-1<a <1,故a 的取值范围为(-1,1).。

(江苏专用)高考数学一轮复习 第二章 函数概念与基本初等函数(Ⅰ)第4课 函数的概念及其表示教师用书

(江苏专用)高考数学一轮复习 第二章 函数概念与基本初等函数(Ⅰ)第4课 函数的概念及其表示教师用书

第二章函数概念与基本初等函数(Ⅰ)第4课函数的概念及其表示[最新考纲]内容要求A B C函数的概念√1.函数与映射函数映射两集合A、B 设A,B是两个非空的数集设A,B是两个非空的集合对应法则f:A→B 如果按某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应如果按某种对应法则f,对于A中的每一个元素,在B中都有唯一的元素与之对应名称这样的对应叫作从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的映射记法y=f(x),x∈A f:A→B(1)函数的定义域、值域:在函数y=f(x),x∈A中,其中所有x组成的集合A称为函数y=f(x)的定义域;将所有y组成的集合叫作函数y=f(x)的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法:表示函数的常用方法有列表法、解析法和图象法.3.分段函数在定义域内不同部分上,有不同的解析表达式,这样的函数,通常叫作分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图象至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)× 2.(教材改编)函数y =2x -3+1x -3的定义域为________. ⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.已知函数f (x )=⎩⎨⎧x ,x >0,2-x ,x ≤0,则f (f (-4))=________.4 [∵f (-4)=24=16,∴f (f (-4))=f (16)=16=4.]4.(2017·某某模拟)已知实数m ≠0,函数f (x )=⎩⎪⎨⎪⎧3x -m ,x ≤2,-x -2m ,x >2.若f (2-m )=f (2+m ),则实数m 的值为________.8或-83 [当m >0时,2-m <2<2+m ,由f (2-m )=f (2+m )得 3(2-m )-m =-(2+m )-2m , 解得m =8.当m <0时,2+m <2<2-m , 由f (2+m )=f (2-m )得 -(2-m )-2m =3(2+m )-m , 解得m =-83.综上所述m =8或-83.]5.给出下列四个命题:①函数是其定义域到值域的映射; ②f (x )=x -3+2-x 是一个函数;③函数y =2x (x ∈N )的图象是一条直线; ④f (x )=lg x 2与g (x )=2lg x 是同一个函数. 其中正确命题的序号是________. ① [由函数的定义知①正确.∵满足⎩⎪⎨⎪⎧x -3≥0,2-x ≥0的x 不存在,∴②不正确.又∵y =2x (x ∈N )的图象是位于直线y =2x 上的一群孤立的点,∴③不正确. 又∵f (x )与g (x )的定义域不同,∴④也不正确.]求函数的定义域(1)(2016·某某高考)函数y =3-2x -x 2的定义域是________. (2)(2017·某某模拟)若函数y =f (x )的定义域为[0,2],则函数g (x )=f 2xx -1的定义域是________.(1)[-3,1] (2)[0,1) [(1)要使函数有意义,需3-2x -x 2≥0,即x 2+2x -3≤0,得(x -1)(x +3)≤0,即-3≤x ≤1,故所求函数的定义域为[-3,1].(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1, 所以0≤x <1,即g (x )的定义域为[0,1).][规律方法] 1.求给出解析式的函数的定义域,可构造使解析式有意义的不等式(组)求解.2.(1)若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出; (2)若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. [变式训练1] (1)(2017·苏锡常镇调研(二))函数f (x )=ln2x -x 2x -1的定义域为________.(2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.【导学号:62172018】(1)(0,1)∪(1,2) (2)⎣⎢⎡⎦⎥⎤12,2 [(1)要使函数有意义,只需⎩⎪⎨⎪⎧2x -x 2>0,x -1≠0,解得0<x<1或1<x <2,即原函数的定义域为(0,1)∪(1,2). (2)∵f (2x)的定义域为[-1,1],∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.]求函数的解析式(1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式.(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式.(3)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x=x (x ≠0),求f (x )的解析式. [解] (1)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(3)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x+2f (x )=1x.联立方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).[规律方法] 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值X 围;(3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x );(4)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),即得f (x )的表达式.[变式训练2] (1)已知f (x +1)=x +2x ,则f (x )=________.【导学号:62172019】(2)已知函数f (x )的定义域为(0,+∞),且f (x )=2·f ⎝ ⎛⎭⎪⎫1x·x -1,则f (x )=________.(1)x 2-1(x ≥1) (2)23x +13(x >0) [(1)(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1), 所以f (x )=x 2-1(x ≥1).(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,∴f (x )=x 2-1(x ≥1). (2)在f (x )=2f ⎝ ⎛⎭⎪⎫1x·x -1中,用1x代替x , 得f ⎝ ⎛⎭⎪⎫1x=2f (x )·1x-1,由⎩⎪⎨⎪⎧f x =2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f x ·1x-1,得f (x )=23x +13(x >0).]分段函数及其应用☞角度1 求分段函数的函数值(1)设函数f (x )=⎩⎪⎨⎪⎧1+log 22-x ,x <1,2x -1, x ≥1,则f (-2)+f (log 212)=________.(2)(2017·某某期中)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 23-x ,x ≤0,f x -1-f x -2,x >0,则f (11)=________.(1)9 (2)2 [(1)∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log212-1=122=6. ∴f (-2)+f (log 212)=3+6=9.(2)f (11)=f (10)-f (9)=f (9)-f (8)-f (9)=-f (8),f (8)=f (7)-f (6)=f (6)-f (5)-f (6)=-f (5), f (5)=f (4)-f (3)=f (3)-f (2)-f (3)=-f (2), f (2)=f (1)-f (0)=f (0)-f (-1)-f (0)=-f (-1),∴f (11)=f (-1)=log 2(3+1)=log 24=2.] ☞角度2 已知分段函数的函数值求参数(1)(2017·某某二诊)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x 2+m 2,x <1,若f (f (-1))=2,则实数m 的值为________.(2)设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =________.(1)3或- 3 (2)12 [(1)f (f (-1))=f (1+m 2)=log 2(1+m 2)=2,m 2=3,解得m =± 3.(2)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝ ⎛⎭⎪⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则2-b =4,解得b =12.]☞角度3 解与分段函数有关的方程或不等式(1)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值X 围是________.(2)(2015·某某高考改编)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x, x ≥1,则满足f (f (a ))=2f (a )的a的取值X 围是________.(1)(-∞,8] (2)⎣⎢⎡⎭⎪⎫23,+∞ [(1)当x <1时,x -1<0,e x -1<e 0=1≤2,∴当x <1时满足f (x )≤2.当x ≥1时,x ≤2,x ≤23=8,∴1≤x ≤8.综上可知x ∈(-∞,8]. (2)由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1.综上,a ≥23.[规律方法] 1.求分段函数的函数值,要先确定要求值的自变量属于定义域的哪一个子集,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.2.已知函数值或函数值X 围求自变量的值或X 围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或X 围是否符合相应段的自变量的取值X 围.易错警示:当分段函数自变量的X 围不确定时,应分类讨论.[思想与方法]1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.定义域优先原则:函数定义域是研究函数的基础,对函数性质的讨论,必须在定义域内进行.3.求函数解析式的几种常用方法:待定系数法、换元法、配凑法、构造法. 4.分段函数问题要分段求解. [易错与防X]1.求函数定义域时,不要对解析式进行化简变形,以免定义域发生变化.2.用换元法求函数解析式时,应注意元的X 围,既不能扩大,又不能缩小,以免求错函数的定义域.3.在求分段函数的值f (x 0)时,首先要判断x 0属于定义域的哪个子集,然后再代入相应的关系式;如果x 0的X 围不确定,要分类讨论.课时分层训练(四)A 组 基础达标 (建议用时:30分钟)一、填空题1.(2017·某某第一次学情检测)函数f (x )=11-x+lg(x +1)的定义域是________.(-1,1)∪(1,+∞) [由题意可知,⎩⎪⎨⎪⎧x +1>0,1-x ≠0,即x >-1且x ≠1.]2.下列各组函数中,表示同一函数的是________.(填序号) ①f (x )=x ,g (x )=(x )2; ②f (x )=x 2,g (x )=(x +1)2; ③f (x )=x 2,g (x )=|x |; ④f (x )=0,g (x )=x -1+1-x .③ [在①中,定义域不同,在②中,解析式不同,在④中,定义域不同.] 3.设M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是________.(填序号)① ② ③ ④图4­1② [①中,定义域为[-2,0],④中,值域不是[0,2],③中,当x =0时有两个y 值与之对应.]4.(2017·某某质检)已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=________.x +1 [设f (x )=kx +b ,则由f [f (x )]=x +2,可得k (kx +b )+b =x +2,即k 2x +kb+b =x +2,∴k 2=1,kb +b =2,解得k =1,b =1,则f (x )=x +1.]5.(2017·如皋中学高三第一次月考)函数y =-x 2-2x +8的定义域为A ,值域为B ,则A ∩B =________. 【导学号:62172020】[0,2] [由-x 2-2x +8≥0得-4≤x ≤2.即A ={x |-4≤x ≤2}. 由y =-x 2-2x +8=-x +12+9可知0≤y ≤3,即B ={x |0≤x ≤3}. ∴A ∩B ={x |0≤x ≤2}.]6.(2016·全国卷Ⅱ改编)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是________.(填序号)①y =x ;②y =lg x ;③y =2x;④y =1x.④ [函数y =10lg x的定义域与值域均为(0,+∞).函数y =x 的定义域与值域均为(-∞,+∞).函数y =lg x 的定义域为(0,+∞),值域为(-∞,+∞). 函数y =2x的定义域为(-∞,+∞),值域为(0,+∞). 函数y =1x的定义域与值域均为(0,+∞).]7.已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=________.【导学号:62172021】-74 [由于f (a )=-3, ①若a ≤1,则2a -1-2=-3,整理得2a -1=-1.由于2x>0,所以2a -1=-1无解;②若a >1,则-log 2(a +1)=-3, 解得a +1=8,a =7, 所以f (6-a )=f (-1)=2-1-1-2=-74.综上所述,f (6-a )=-74.]8.(2017·某某质检)若函数f (x )=⎩⎪⎨⎪⎧f x -2,x ≥2,|x 2-2|,x <2,则f (5)=________. 【导学号:62172022】1 [由题意得f (5)=f (3)=f (1)=|12-2|=1.]9.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. [-1,2] [∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3,3],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2].]10.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值X 围是________.a ≤ 2 [f (x )的图象如图,由图象知,满足f (f (a ))≤2时,得f (a )≥-2,而满足f (a )≥-2时,得a ≤ 2.]二、解答题11.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式. 【导学号:62172023】[解] 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立, ∴⎩⎪⎨⎪⎧a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.12.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))的解析式.[解] (1)由已知,g (2)=1,f (2)=3, ∴f (g (2))=f (1)=0,g (f (2))=g (3)=2. (2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3.∴f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.B 组 能力提升(建议用时:15分钟)1.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧ x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.(填序号) ①③ [对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足. 综上可知,满足“倒负”变换的函数是①③.]2.定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.-x x +12 [设-1≤x ≤0,则0≤x +1≤1,所以f (x +1)=(x +1)[1-(x +1)]=-x (x +1).又因为f (x +1)=2f (x ),所以f (x )=f x +12=-x x +12.] 3.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x ); (2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值X 围.[解] (1)∵x =716时,4x =74, ∴f 1(x )=⎣⎢⎡⎦⎥⎤74=1. ∵g (x )=74-⎣⎢⎡⎦⎥⎤74=34.∴f 2(x )=f 1[g (x )]=f 1⎝ ⎛⎭⎪⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1,∴f 2(x )=f 1(4x -1)=[16x -4]=3. ∴⎩⎪⎨⎪⎧ 1≤4x <2,3≤16x -4<4,∴716≤x <12. 故x 的取值X 围为⎣⎢⎡⎭⎪⎫716,12. 4.如图4­2所示,在梯形ABCD 中,AB =10,CD =6,AD =BC =4,动点P 从B 点开始沿着折线BC ,CD ,DA 前进至A ,若P 点运动的路程为x ,△PAB 的面积为y .图4­2(1)写出y =f (x )的解析式,指出函数的定义域;(2)画出函数的图象并写出函数的值域.[解] 如图所示,(1)①当P 在BC 上运动时,如图①所示,易知∠B =60°,y =12×10×(x sin 60°)=532x,0≤x ≤4. ②当P 在CD 上运动时,如图②所示,y =12×10×23=103,4<x ≤10.③当P 在DA 上运动时,如图③所示, y =12×10×(14-x )sin 60°=-532x +353,10<x ≤14. 综上所得,函数的解析式为y =⎩⎪⎨⎪⎧ 532x ,0≤x ≤4,103,4<x ≤10,-532x +353,10<x ≤14.(2)函数y =f (x )的图象如图所示.由图可知,函数y =f (x )的值域为[0,103].。

江苏专用2018版高考数学一轮复习第二章函数概念与基本初等函数I2.2函数的单调性与最值课件文

江苏专用2018版高考数学一轮复习第二章函数概念与基本初等函数I2.2函数的单调性与最值课件文
第2讲 函数的单调性与最值
考试要求 1.函数的单调性、最大值、最小值及其几何意义, B级要求;2.运用函数图象研究函数的单调性,B级要求.
1.函数的单调性 (1)单调函数的定义
知识梳理
增函数
减函数
一般地,设函数f(x)的定义域为I:如果对于定义域I内
某个区间D上的任意两个自变量的值x1,x2
定 义
t 在(0,+∞)上是
减函数,∴函数 f(x)在(-∞,-2)上是增函数,即 f(x)单调递增区间
为(-∞,-2).
答案 (-∞,-2)
(2)解 法一 设-1<x1<x2<1, f(x)=ax-x-1+1 1=a1+x-1 1, f(x1)-f(x2)=a1+x1-1 1-a1+x2-1 1= x1a-x12-xx2-1 1,由于-1<x1<x2<1, 所以 x2-x1>0,x1-1<0,x2-1<0, 故当 a>0 时,f(x1)-f(x2)>0,即 f(x1)>f(x2),函数 f(x)在(-1,1)上递减; 当 a<0 时,f(x1)-f(x2)<0, 即 f(x1)<f(x2),函数 f(x)在(-1,1)上递增.
(1)对于函数 f(x),x∈D,若对任意 x1,x2∈D,且 x1≠x2 有(x1- x2)[f(x1)-f(x2)]>0,则函数 f(x)在区间 D 上是增函数. ( ) (2)函数 y=1x的单调递减区间是(-∞,0)∪(0,+∞). ( )
(3)对于函数 y=f(x),若 f(1)<f(3),则 f(x)为增函数.
2.(必修 1P44 习题 2 改编)如果二次函数 f(x)=3x2+2(a-1)x+b 在 区间(-∞,1)上是减函数,则实数 a 的取值范围为________. 解析 二次函数的对称轴方程为 x=-a-3 1, 由题意知-a-3 1≥1,即 a≤-2. 答案 (-∞,-2]

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

1.函数的奇偶性2.(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【知识拓展】1.函数奇偶性常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇. 2.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f(x),则T=2a(a>0).(3)若f(x+a)=-1f(x),则T=2a(a>0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.(×)(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√)(5)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)1.(教材改编)对于定义域是R的任意奇函数f(x),下列结论正确的有________.(填序号)①f(x)-f(-x)>0;②f(x)-f(-x)≤0;③f(x)·f(-x)≤0; ④f(x)·f(-x)>0.答案③解析①②显然不正确.对任意奇函数f(x),有f(-x)=-f(x),∴f(x)·f(-x)=-[f(x)]2≤0,故③正确,④不正确.2.(教材改编)函数y=f(x)为(-∞,+∞)上的偶函数,且f(|a|)=3,则f(-a)=________.答案 3解析若a≥0,则f(-a)=f(a)=f(|a|)=3;若a<0,则f(-a)=f(|a|)=3.故对a∈R,总有f(-a)=3.3.(教材改编)若函数f(x)=(x+1)(x-a)为偶函数,则a=________.答案 1解析∵f(x)=(x+1)(x-a)=x2+(1-a)x-a为偶函数,∴f(-x)=f(x)对任意x∈R恒成立,∴(1-a)x=(a-1)x恒成立,∴1-a=0,∴a=1.4.(教材改编)设函数y=f(x)是偶函数,它在[0,1]上的图象如图所示,则它在[-1,0]上的解析式为________.答案f(x)=x+2解析由题意知f(x)在[-1,0]上为一条线段,且过(-1,1)、(0,2),设f (x )=kx +b , 代入解得k =1,b =2.所以f (x )=x +2.5.(2016·四川)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (2)=________. 答案 -2解析 ∵f (x )为定义在R 上的奇函数,∴f (0)=0, 又0<x <1时,f (x )=4x , ∴f (12)=124=2,∴f ⎝⎛⎭⎫-52+f (2) =-f ⎝⎛⎭⎫52+f (2) =-f ⎝⎛⎭⎫12+f (0) =-2+0=-2.题型一 判断函数的奇偶性例1 (1)下列函数为奇函数的是________. ①f (x )=2x -12x ;②f (x )=x 3sin x ; ③f (x )=2cos x +1; ④f (x )=x 2+2x . 答案 ①解析 ①中,函数f (x )的定义域为R , 又f (-x )=2-x -12-x =12x -2x =-f (x ),∴f (x )为奇函数.(2)判断函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0的奇偶性.解 当x >0时,-x <0,f (x )=-x 2+x , ∴f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x );当x <0时,-x >0,f (x )=x 2+x , ∴f (-x )=-(-x )2-x =-x 2-x =-(x 2+x )=-f (x ).∴对于x ∈(-∞,0)∪(0,+∞),均有f (-x )=-f (x ). ∴函数f (x )为奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤(2)分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围取相应的解析式化简,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.(1)(2016·北京海淀区模拟)下列函数中为偶函数的是________.①y =1x ;②y =lg|x |;③y =(x -1)2;④y =2x .(2)函数f (x )=log a (2+x ),g (x )=log a (2-x )(a >0且a ≠1),则下列关于函数F (x )=f (x )+g (x ),G (x )=f (x )-g (x )的奇偶性的说法正确的是________. ①F (x )是奇函数,G (x )是奇函数; ②F (x )是偶函数,G (x )是奇函数; ③F (x )是偶函数,G (x )是偶函数; ④F (x )是奇函数,G (x )是偶函数. 答案 (1)② (2)②解析 (1)②中,函数y =lg|x |的定义域为{x |x ≠0}且lg|-x |=lg|x |, ∴函数y =lg|x |是偶函数.(2)F (x ),G (x )的定义域均为(-2,2), 由已知F (-x )=f (-x )+g (-x ) =log a (2-x )+log a (2+x )=F (x ), G (-x )=f (-x )-g (-x )=log a (2-x )-log a (2+x )=-G (x ), ∴F (x )是偶函数,G (x )是奇函数. 题型二 函数的周期性例2 (1)(2016·淮安模拟)已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且g (x )=f (x -1),则f (2 017)+f (2 019)=________. (2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______. 答案 (1)0 (2)2.5解析 (1)由题意,得g (-x )=f (-x -1),又∵f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数, ∴g (-x )=-g (x ),f (-x )=f (x ), ∴f (x -1)=-f (x +1),∴f (x )=-f (x +2),∴f (x )=f (x +4), ∴f (x )的周期为4,∴f (2 017)=f (1),f (2 019)=f (3)=f (-1), 又∵f (1)=f (-1)=g (0)=0, ∴f (2 017)+f (2 019)=0.(2)由已知,可得f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5. 引申探究例2(2)中,若将f (x +2)=-1f (x )改为f (x +2)=-f (x ),其他条件不变,则f (105.5)的值为________. 答案 2.5解析 f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), ∴函数的周期为4(下同例题).思维升华 函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 018)=________. 答案 339解析 ∵f (x +6)=f (x ),∴T =6. ∵当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1, f (4)=f (-2)=0,f (5)=f (-1)=-1, f (6)=f (0)=0,∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+f (3)+…+f (2 015)+f (2 016) =1×2 0166=336.又f (2 017)=f (1)=1,f (2 018)=f (2)=2, ∴f (1)+f (2)+f (3)+…+f (2 018)=339. 题型三 函数性质的综合应用 命题点1 解不等式问题例3 (1)(2016·南通模拟)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是____________.(2)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为______.答案 (1)(13,23) (2)(-1,4)解析 (1)因为f (x )是偶函数,所以其图象关于y 轴对称,又f (x )在[0,+∞)上单调递增, f (2x -1)<f (13),所以|2x -1|<13,所以13<x <23.(2)∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4. 命题点2 求参数问题例4 (1)函数f (x )=lg(a +21+x)为奇函数,则实数a =________.(2)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 (1)-1 (2)-10解析 (1)根据题意得,使得函数有意义的条件为a +21+x>0且1+x ≠0,由奇函数的性质可得f (0)=0.所以lg(a +2)=0,即a =-1,经检验a =-1满足函数的定义域. (2)因为f (x )是定义在R 上且周期为2的函数, 所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12且f (-1)=f (1), 故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12, 从而12b +212+1=-12a +1,即3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22,即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.思维升华 (1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题. (2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.(1)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25),f (11),f (80)的大小关系为________________. 答案 (1)-32(2)f (-25)<f (80)<f (11)解析 (1)函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln 1+e 3x e 3x +e 6x =2ax =ln e 2ax,即1+e 3x e 3x +e 6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0,解得a =-32.(2)因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数且满足f (x -4)=-f (x ), 得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数, 所以f (-1)<f (0)<f (1). 所以f (-25)<f (80)<f (11).2.抽象函数问题考点分析 抽象函数问题在高考中也时常遇到,常常涉及求函数的定义域,由函数的周期性求函数值或判断函数的奇偶性等.一般以填空题来呈现,有时在解答题中也有所体现.此类题目较为抽象,易失分,应引起足够重视. 一、抽象函数的定义域典例1 已知函数y =f (x )的定义域是[0,8],则函数g (x )=f (x 2-1)2-log 2(x +1)的定义域为________.解析 要使函数有意义, 需使⎩⎪⎨⎪⎧0≤x 2-1≤8,x +1>0,2-log 2(x +1)≠0,即⎩⎪⎨⎪⎧1≤x 2≤9,x >-1,x ≠3,解得1≤x <3,所以函数g (x )的定义域为[1,3). 答案 [1,3)二、抽象函数的函数值典例2 若定义在实数集R 上的偶函数f (x )满足f (x )>0,f (x +2)=1f (x ),对任意x ∈R 恒成立,则f (2 019)=________. 解析 因为f (x )>0,f (x +2)=1f (x ), 所以f (x +4)=f [(x +2)+2]=1f (x +2)=11f (x )=f (x ), 即函数f (x )的周期是4,所以f (2 019)=f (505×4-1)=f (-1). 因为函数f (x )为偶函数, 所以f (2 019)=f (-1)=f (1).当x =-1时,f (-1+2)=1f (-1),得f (1)=1f (1).即f (1)=1,所以f (2 019)=f (1)=1.三、抽象函数的单调性与不等式典例3 设函数f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ).若f (3)=1,且f (a )>f (a -1)+2,求实数a 的取值范围. 规范解答解 因为f (xy )=f (x )+f (y )且f (3)=1, 所以2=2f (3)=f (3)+f (3)=f (9).又f (a )>f (a -1)+2,所以f (a )>f (a -1)+f (9). 再由f (xy )=f (x )+f (y ),可知f (a )>f [9(a -1)], 因为f (x )是定义在(0,+∞)上的增函数, 从而有⎩⎪⎨⎪⎧a >0,9(a -1)>0,a >9(a -1),解得1<a <98.故所求实数a 的取值范围是(1,98).1.(教材改编)已知f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=x 2+x -2,则f (x )=____________. 答案 x 2-2解析 f (-x )+g (-x )=x 2-x -2, 由f (x )是偶函数,g (x )是奇函数, 得f (x )-g (x )=x 2-x -2, 又f (x )+g (x )=x 2+x -2, 两式联立得f (x )=x 2-2.*2.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是__________. 答案 ⎝⎛⎭⎫12,32解析 因为f (x )是定义在R 上的偶函数且在区间(-∞,0)上单调递增,所以f (-x )=f (x )且f (x )在(0,+∞)上单调递减.由f (2|a -1|)>f (-2),f (-2)=f (2)可得2|a -1|<2,即|a -1|<12,所以12<a <32. 3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(-2,0)时,f (x )=2x 2,则f (2 019)=________.解析 由f (x +4)=f (x )知,f (x )是周期为4的周期函数,f (2 019)=f (504×4+3)=f (3), 又f (x +4)=f (x ),∴f (3)=f (-1), 由-1∈(-2,0)得f (-1)=2, ∴f (2 019)=2. 4.已知f (x )=lg(21-x+a )为奇函数,则使f (x )<0的x 的取值范围是________________. 答案 (-1,0)解析 由f (x )+f (-x )=0,即lg(21-x +a )+lg(21+x +a )=lg (2+a )2-a 2x 21-x 2=lg 1=0可得a =-1,所以f (x )=lg1+x 1-x ,解得0<1+x1-x<1,可得-1<x <0. 5.已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=⎩⎪⎨⎪⎧cos π6x (0<x ≤8),log 2x (x >8),则f (f (-16))=________. 答案 12解析 由题意f (-16)=-f (16)=-log 216=-4, 故f (f (-16))=f (-4)=-f (4)=-cos4π6=12. 6.(2016·盐城模拟)已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 答案 13解析 依题意得f (-x )=f (x ), ∴b =0,又a -1=-2a , ∴a =13,∴a +b =13.7.(2017·苏北四市联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,g (x ),x <0,若f (x )为奇函数,则g (-14)=________.答案 2解析 g (-14)=f (-14)=-f (14)=-log 214=-log 22-2=2.8.(2016·常州模拟)已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,则f (1)+f (2)+f (3)+f (4)=________.答案0解析由f(x+1)是偶函数得f(-x+1)=f(x+1),又f(x)是定义在R上的奇函数,所以f(-x +1)=-f(x-1),即-f(x-1)=f(x+1),所以f(x+2)=-f(x),即f(x)+f(x+2)=0,所以f(1)+f(3)=0,f(2)+f(4)=0,因此f(1)+f(2)+f(3)+f(4)=0.9.函数f(x)在R上为奇函数,且当x>0时,f(x)=x+1,则当x<0时,f(x)=________.答案--x-1解析∵f(x)为奇函数,当x>0时,f(x)=x+1,∴当x<0时,-x>0,f(-x)=-x+1=-f(x),即x<0时,f(x)=-(-x+1)=--x-1.10.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有①2是函数f(x)的周期;②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;③函数f(x)的最大值是1,最小值是0.其中所有正确命题的序号是________.答案①②解析在f(x+1)=f(x-1)中,令x-1=t,则有f(t+2)=f(t),因此2是函数f(x)的周期,故①正确;当x∈[0,1]时,f(x)=2x是增函数,根据函数的奇偶性知,f(x)在[-1,0]上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知,f(x)在[0,2]上的最大值f(x)max=f(1)=2,f(x)的最小值f(x)min=f(0)=f(2)=20=1且f(x)是周期为2的周期函数,∴f(x)的最大值是2,最小值是1,故③错误.11.(2016·江苏苏北四市二调)定义在R上的奇函数f(x)满足当x≥0时,f(x)=log2(x+2)+(a-1)x+b(a,b为常数),若f(2)=-1,则f(-6)的值为________.答案 4解析由已知得f(0)=0=1+b,∴b=-1,又f(2)=2+2(a-1)-1=-1,∴a=0,∴f(x)=log2(x+2)-x-1(x≥0),∴f(-6)=-f(6)=-3+6+1=4.12.(2016·江苏扬州中学开学考试)已知f(x)是定义在[-2,2]上的奇函数,且当x∈(0,2]时,f(x)=2x-1,函数g(x)=x2-2x+m,如果∀x1∈[-2,2],∃x2∈[-2,2],使得g(x2)=f(x1),则实数m的取值范围是____________.答案[-5,-2]解析∵f(x)是定义在[-2,2]上的奇函数,∴f(0)=0,当x∈(0,2]时,f(x)=2x-1的值域为(0,3],∴当x∈[-2,2]时,f(x)的值域为[-3,3],若∀x1∈[-2,2],∃x2∈[-2,2],使得g(x2)=f(x1),则g(x)max≥3且g(x)min≤-3,∵g(x)=x2-2x+m=(x-1)2+m-1,∴当x∈[-2,2]时,g(x)max=g(-2)=8+m,g(x)min=g(1)=m-1,故8+m≥3且m-1≤-3,解得m≥-5且m≤-2,故-5≤m≤-2.13.设f(x)是定义在R上的奇函数,且对任意实数x恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2 018).(1)证明∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x),∴f(x)是周期为4的周期函数.(2)解∵x∈[2,4],∴-x∈[-4,-2],∴4-x∈[0,2],∴f(4-x)=2(4-x)-(4-x)2=-x2+6x-8,又f(4-x)=f(-x)=-f(x),∴-f(x)=-x2+6x-8,即f(x)=x2-6x+8,x∈[2,4].(3)解∵f(0)=0,f(1)=1,f(2)=0,f(3)=-1.又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 012)+f(2 013)+f(2 014)+f(2 015)=0.∴f(0)+f(1)+f(2)+…+f(2 018)=f(2 016)+f(2 017)+f(2 018)=f(0)+f(1)+f(2)=1.。

高考数学一轮复习第二章函数概念与基本初等函数第4课时二次函数与幂函数教案(1)

高考数学一轮复习第二章函数概念与基本初等函数第4课时二次函数与幂函数教案(1)

二次函数与幂函数1.二次函数(1)二次函数解析式的三种形式①一般式:f(x )=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0)。

③零点式:f(x)=a(x-x1)(x-x2)(a≠0)。

(2)二次函数的图像和性质解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a<0)图像定义域(-∞,+∞)(-∞,+∞)值域错误!错误!单调性在x∈错误!上单调递减;在x∈错误!上单调递增在x∈错误!上单调递增;在x∈错误!上单调递减对称性函数的图像关于x=-错误!对称2.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.(2)幂函数的图像比较(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②幂函数的图像过定点(1,1);③当α>0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调递增;④当α〈0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调递减。

【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是错误!。

(×)(2)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.( ×)(3)在y=ax2+bx+c(a≠0)中,a决定了图像的开口方向和在同一直角坐标系中的开口大小.(√)(4)函数y=2x 12是幂函数。

( ×)(5)如果幂函数的图像与坐标轴相交,则交点一定是原点。

( √)(6)当n〈0时,幂函数y=x n是定义域上的减函数。

(×)1.已知a,b,c∈R,函数f(x)=ax2+bx+c。

若f(0)=f(4)〉f(1),则()A.a>0,4a+b=0B.a〈0,4a+b=0C.a>0,2a+b=0 D。

a〈0,2a+b=0答案A解析因为f(0)=f(4)〉f(1),所以函数图像应开口向上,即a>0,且其对称轴为x=2,即-错误!=2,所以4a+b=0,故选A.2.已知函数f(x)=ax2+x+5的图像在x轴上方,则a的取值范围是()A.错误!B.错误!C。

2018版高考数学文江苏专用大一轮复习讲义课件 第二章 函数概念与基本初等函数I 2.9 精品

2018版高考数学文江苏专用大一轮复习讲义课件 第二章 函数概念与基本初等函数I 2.9 精品
§2.9 函数模型及其应用
内容索引
基础知识
自主学习
题型分类
课时作业
深度剖析
基础知识
自主学习
知识梳理
1.几类函数模型 函数模型 一次函数模型 反比例函数模型 二次函数模型 函数解析式 f(x)=ax+b(a,b为常数且a≠0) f(x)= k +b(k,b为常数且k≠0) x f(x)=ax2+bx+c(a,b,c为常数,a≠0)
指数函数模型
f(x)=bax+c(a,b,c为常数,b≠0,a>0且a≠1)
对数函数模型
f(x)=blogax+c(a,b,c为常数,b≠0,a>0且a≠1)
幂函数模型
f(x)=axn+b(a,b为常数,a≠0)
2.三种函数模型的性质 函数 y=ax(a>1) y=logax(a>1) y=xn(n>0) 单调递增 相对平稳
解答
题型二 已知函数模型的实际问题 例2 我们知道:人们对声音有不同的感觉,这与它的强度有关系.声音的
强度用瓦 / 米 2(W/m2) 表示,但在实际测量时,声音的强度水平常用 L1 表 I 示,它们满足以下公式: L1 = 10 lg ( 单位为分贝, L1≥0 ,其中 I0 = I0 1×10-12,是人们平均能听到的最小强度,是听觉的开端).回答下列问题:
∴当x=3时,y最大.
5.(教材改编)有两个相同的桶,由甲桶向乙桶输水,开始时,甲桶有a L水,
t min后,剩余水y L满足函数关系y=ae-nt,那么乙桶的水就是y=a-ae-nt,
10 假设经过5 min,甲桶和乙桶的水相等,则再过________ min,甲桶中的水 a 只有 L. 8
答案 解析
a 形如 f(x)=x+x (a>0)的函数模型称为“对勾”函数模型: (1)该函数在(-∞,- a]和[ a,+∞)上单调递增, 在[- a,0)和(0, a]上单调递减. (2)当 x>0 时,x= a时取最小值 2 a, 当 x<0 时,x=- a时取最大值-2 a.

江苏专用2018版高考数学一轮复习第二章函数概念与基本初等函数I2.4幂函数与二次函数课件文

江苏专用2018版高考数学一轮复习第二章函数概念与基本初等函数I2.4幂函数与二次函数课件文

)
解析 (1)由于幂函数的解析式为 f(x)=xα,故 y=2 不是幂函数, (1)错. (3)由于当 b=0 时,y=ax2+bx+c=ax2+c 为偶函数,故(3)错. (4)对称轴 x=-2ba,当-2ba小于 a 或大于 b 时,最值不是4ac4-a b2, 故(4)错. 答案 (1)× (2)√ (3)× (4)×
4.(2016·全国Ⅲ卷改编)已知 关系为________.
解析 因为 函数,所以 c>a>b. 答案 c>a>b
则 a,b,c 的大小 在(0,+∞)上是增
5.若函数f(x)=x2+2(a-1)x+2在区间(-∞,3]上是减函数, 则实数a的取值范围是________. 解析 二次函数f(x)图象的对称轴是x=1-a,由题意知1 -a≥3,∴a≤-2. 答案 (-∞,-2]
(2)由于函数 f(x)的图象开口向上,对称轴是 x=-a,所以要使 f(x) 在[-4,6]上是单调函数,应有-a≤-4 或-a≥6,即 a≤-6 或 a≥4, 故 a 的取值范围是(-∞,-6]∪[4,+∞). (3)当 a=-1 时,f(|x|)=x2-2|x|+3= x2+2x+3=x+12+2,x≤0, x2-2x+3=x-12+2,x>0, 其图象如图所示, 又∵x∈[-4,6],∴f(|x|)在区间[-4,-1)和[0,1)上为减函数,在区 间[-1,0)和[1,6]上为增函数.
(2)二次函数的图象和性质 解析式 f(x)=ax2+bx+c(a>0)
f(x)=ax2+bx+c(a<0)
图象
定义域
(-∞,+∞)
(-∞,+∞)
值域
4ac4-a b2,+∞
-∞,4ac4-a b2

精选江苏专用2018版高考数学大一轮复习第二章函数概念与基本初等函数I2.1函数及其表示教师用书理苏教版

精选江苏专用2018版高考数学大一轮复习第二章函数概念与基本初等函数I2.1函数及其表示教师用书理苏教版

第二章函数概念与基本初等函数I 2.1 函数及其表示教师用书理苏教版1.函数与映射2.函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,其中所有x组成的集合A称为函数y=f(x)的定义域;将所有y 组成的集合叫做函数y=f(x)的值域.(2)函数的三要素:定义域、对应法则和值域.(3)函数的表示法表示函数的常用方法有列表法、解析法和图象法.3.分段函数在定义域内不同部分上,有不同的解析表达式,这样的函数,通常叫做分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【知识拓展】求函数定义域常见结论(1)分式的分母不为零;(2)偶次根式的被开方数不小于零;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数大于零且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z );(6)零次幂的底数不能为零;(7)实际问题中除要考虑函数解析式有意义外,还应考虑实际问题本身的要求. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)对于函数f :A →B ,其值域是集合B .( × )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( × ) (3)映射是特殊的函数.( × )(4)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.( × ) (5)分段函数是由两个或几个函数组成的.( × )1.设f (x )=⎩⎪⎨⎪⎧x ,x -∞,a ,x 2,x ∈[a ,+若f (2)=4,则a 的取值范围为________.答案 (-∞,2]解析 因为f (2)=4,所以2∈[a ,+∞),所以a ≤2,则a 的取值范围为(-∞,2]. 2.(2016·江苏)函数y =3-2x -x 2的定义域是________. 答案 [-3,1]解析 要使原函数有意义,需满足3-2x -x 2≥0, 解得-3≤x ≤1,故函数的定义域为[-3,1]. 3.(教材改编)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数, 则f (g (π))的值为________. 答案 0解析 由题意得,g (π)=0, ∴f (g (π))=f (0)=0.4.(教材改编)如果f (1x )=x1-x ,则当x ≠0,1时,f (x )=________.答案1x -1解析 令1x =t ,则x =1t ,代入f (1x )=x1-x,则有f (t )=1t 1-1t=1t -1,∴f (x )=1x -1.5.已知f (x )=1x +1,则f (f (x ))的定义域为________. 答案 {x |x ≠-2且x ≠-1} 解析 因为f (x )=1x +1, 所以f (x )的定义域为{x |x ≠-1}, 则在f (f (x ))中,f (x )≠-1,即1x +1≠-1, 解得x ≠-2,所以f (f (x ))的定义域为{x |x ≠-2且x ≠-1}.题型一 函数的概念 例1 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1x -x表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________. 答案 ②③解析 对于①,由于函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧x ,-x的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应法则均相同,所以f (x )和g (t )表示同一函数;对于④,由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1. 综上可知,正确的判断是②③.思维升华 函数的值域可由定义域和对应法则唯一确定,当且仅当定义域和对应法则都相同的函数才是同一函数.值得注意的是,函数的对应法则是就结果而言的(判断两个函数的对应法则是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应法则算出的函数值是否相同).(1)(2016·南京模拟)下列所给图象中函数图象的个数为________.(2)下列各组函数中,表示同一个函数的是________.①y =x -1和y =x 2-1x +1;②y =x 0和y =1;③f (x )=x 2和g (x )=(x +1)2; ④f (x )=x 2x和g (x )=x x2.答案 (1)2 (2)④解析 (1)①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象.(2)①中两个函数的定义域不同;②中y =x 0的x 不能取0;③中两函数的对应法则不同. 题型二 函数的定义域问题 命题点1 求函数的定义域 例2 (1)(教材改编)函数f (x )=x -4-2x的定义域用区间表示为____________.(2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.答案 (1)[0,1)∪(1,2) (2)[0,1)解析 (1)要使函数有意义,需满足⎩⎨⎧x -1≠0,x ≥0,4-2x >0,即⎩⎪⎨⎪⎧x ≠1,x ≥0,x <2.∴函数f (x )的定义域为[0,1)∪(1,2). (2)由0≤2x ≤2,得0≤x ≤1, 又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1). 引申探究例2(2)中,若将“函数y =f (x )的定义域为[0,2]”改为“函数y =f (x +1)的定义域为[0,2]”,则函数g (x )=f x x -1的定义域为________________.答案 [12,1)∪(1,32]解析 由函数y =f (x +1)的定义域为[0,2], 得函数y =f (x )的定义域为[1,3],令⎩⎪⎨⎪⎧1≤2x ≤3,x -1≠0,得12≤x ≤32且x ≠1, ∴g (x )的定义域为[12,1)∪(1,32].命题点2 已知函数的定义域求参数范围例3 (1)若函数f (x )R ,则a 的取值范围为________.(2)若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________.答案 (1)[-1,0] (2)[0,3) 解析 (1)因为函数f (x )的定义域为R , 所以222x ax a+--1≥0对x ∈R 恒成立,即222x ax a+-≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. (2)因为函数y =ax +1ax 2+2ax +3的定义域为R ,所以ax 2+2ax +3=0无实数解,即函数t =ax 2+2ax +3的图象与x 轴无交点. 当a =0时,函数y =3的图象与x 轴无交点; 当a ≠0时,则Δ=(2a )2-4·3a <0,解得0<a <3. 综上所述,a 的取值范围是[0,3).思维升华 (1)求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴,要特别注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得f (x )的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式,然后求解.(1)已知函数f (x )的定义域为[3,6],则函数y=______________. (2)若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是______________.答案 (1)[32,2) (2)[0,34)解析 (1)要使函数y需满足⎩⎪⎨⎪⎧3≤2x ≤6,12log -x ⇒⎩⎪⎨⎪⎧32≤x ≤3,0<2-x <1⇒32≤x <2. (2)要使函数的定义域为R ,则mx 2+4mx +3≠0恒成立. ①当m =0时,得到不等式3≠0,恒成立; ②当m ≠0时,要使不等式恒成立,需满足⎩⎪⎨⎪⎧m >0,Δ=m2-4×m ×3<0,即⎩⎪⎨⎪⎧ m >0,m m-或⎩⎪⎨⎪⎧m <0,Δ<0,即⎩⎪⎨⎪⎧m <0,m m-解得0<m <34.由①②得0≤m <34.题型三 求函数解析式例4 (1)已知f (2x+1)=lg x ,则f (x )=________.(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x)x -1,则f (x )=________.答案 (1)lg2x -1(x >1) (2)2x +7 (3)23x +13解析 (1)(换元法)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)(待定系数法) 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17,不论x 为何值都成立,∴⎩⎪⎨⎪⎧a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. (3)(消去法)在f (x )=2f (1x )x -1中,用1x代替x ,得f (1x )=2f (x )1x-1,将f (1x)=2f x x-1代入f (x )=2f (1x )x -1中,可求得f (x )=23x +13.思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(4)消去法:已知f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(1)已知f (x -1x )=x 2+1x2,求f (x );(2)已知一次函数f (x )满足f (f (x ))=4x -1,求f (x ); (3)已知f (x )+3f (-x )=2x +1,求f (x ). 解 (1)设x -1x =t ,则x 2+1x 2=(x -1x)2+2,∴f (t )=t 2+2,∴f (x )=x 2+2.(2)设f (x )=kx +b (k ≠0),则f (f (x ))=k 2x +kb +b , 即k 2x +kb +b =4x -1,∴⎩⎪⎨⎪⎧k 2=4,kb +b =-1,∴⎩⎪⎨⎪⎧k =2,b =-13或⎩⎪⎨⎪⎧k =-2,b =1.故f (x )=2x -13或f (x )=-2x +1.(3)以-x 代替x 得f (-x )+3f (x )=-2x +1,∴f (-x )=-3f (x )-2x +1,代入f (x )+3f (-x )=2x +1可得f (x )=-x +14.2.分类讨论思想在函数中的应用典例 (1)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为______________.(2)(2015·山东改编)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是____________.思想方法指导 (1)求分段函数的函数值,首先要确定自变量的范围,通过分类讨论求解; (2)当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.解析 (1)当a >0时,1-a <1,1+a >1,由f (1-a )=f (1+a ),可得2(1-a )+a =-(1+a )-2a ,解得a =-32,不合题意.当a <0时,1-a >1,1+a <1, 由f (1-a )=f (1+a ),可得-(1-a )-2a =2(1+a )+a ,解得a =-34,符合题意.(2)由f (f (a ))=2f (a ),得f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a≥1,∴a ≥0,∴a ≥1.综上,a ≥23.答案 (1)-34 (2)⎣⎢⎡⎭⎪⎫23,+∞1.下列各组函数中,表示同一函数的是________.①y =x 2-9x -3与y =x +3;②y =x 2-1与y =x -1; ③y =x 0(x ≠0)与y =1(x ≠0); ④y =2x +1,x ∈Z 与y =2x -1,x ∈Z . 答案 ③解析 ①中两函数的定义域不同;②,④中两函数的对应法则不同. 2.(2016·江苏苏锡常镇调研)函数f (x )=x -x 2x -1的定义域为__________.答案 (0,1)∪(1,2)解析 由题意可得⎩⎪⎨⎪⎧2x -x 2>0,x -1≠0,解得0<x <1或1<x <2,故所求函数的定义域为(0,1)∪(1,2). 3.给出下列函数:①f (x )=|x |;②f (x )=x -|x |;③f (x )=x +1;④f (x )=-x .其中满足f (2x )=2f (x )的是________.(填序号) 答案 ①②④解析 将f (2x )表示出来,看与2f (x )是否相等. 对于①,f (2x )=|2x |=2|x |=2f (x );对于②,f (2x )=2x -|2x |=2(x -|x |)=2f (x ); 对于③,f (2x )=2x +1≠2f (x ); 对于④,f (2x )=-2x =2f (x ). 故只有③不满足f (2x )=2f (x ).4.(2016·南通模拟)函数f (x )=⎩⎪⎨⎪⎧πx 2,-1<x <0,e x -1,x ≥0满足f (1)+f (a )=2,则a 所有可能的值为________.答案 1或-22解析 ∵f (1)=e 1-1=1且f (1)+f (a )=2,∴f (a )=1,当-1<a <0时,f (a )=sin(πa 2)=1, ∵0<a 2<1,∴0<πa 2<π, ∴πa 2=π2⇒a =-22;当a ≥0时,f (a )=ea -1=1⇒a =1.5.设f (x )=lg 2+x 2-x ,则f (x 2)+f (2x )的定义域为____________.答案 (-4,-1)∪(1,4)解析 ∵2+x 2-x >0,∴-2<x <2,∴-2<x 2<2且-2<2x <2,解得-4<x <-1或1<x <4,∴所求的定义域为(-4,-1)∪(1,4).6.(2016·江苏淮阴中学期中)从集合A 到集合B 的映射f :x →x 2+1,若A ={-2,-1,0,1,2},则B 中至少有________个元素. 答案 3解析 根据映射的定义可得x =±2→y =5,x =±1→y =2,x =0→y =1,所以集合B 为{1,2,5},故集合B 中至少有3个元素.7.设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2, x ≤0,-x 2, x >0.若f (f (a ))=2,则a =________.答案 2解析 当a >0时,f (a )=-a 2<0,f (f (a ))=a 4-2a 2+2=2,解得a =2(a =0与a =-2舍去);当a ≤0时,f (a )=a 2+2a +2=(a +1)2+1>0,f (f (a ))=-(a 2+2a +2)2=2,此方程无解.8.(2016·苏州暑假测试)已知实数m ≠0,函数f (x )=⎩⎪⎨⎪⎧3x -m ,x ≤2,-x -2m ,x >2,若f (2-m )=f (2+m ),则m 的值为____________. 答案 8或-83解析 当m >0时,2-m <2,2+m >2,所以3(2-m )-m =-(2+m )-2m ,所以m =8;当m <0时,2-m >2,2+m <2,所以3(2+m )-m =-(2-m )-2m ,所以m =-83.9.(2015·浙江)已知函数f (x )=⎩⎪⎨⎪⎧ x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.答案 0 22-3解析 ∵f (-3)=lg[(-3)2+1]=lg 10=1,∴f (f (-3))=f (1)=0, 当x ≥1时,f (x )=x +2x -3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0; 当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3. *10.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧ x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.答案 ①③解析 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足; 对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足; 对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1, 故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足. 综上可知,满足“倒负”变换的函数是①③.11.已知f (x )=⎩⎪⎨⎪⎧ f x +,-2<x <0,2x +1,0≤x <2,x 2-1,x ≥2.(1)求f (-32)的值; (2)若f (a )=4且a >0,求实数a 的值. 解 (1)由题意,得f (-32)=f (-32+1)=f (-12) =f (-12+1)=f (12)=2×12+1=2. (2)当0<a <2时,由f (a )=2a +1=4,得a =32, 当a ≥2时,由f (a )=a 2-1=4,得a =5或a =-5(舍去),综上所述,a =32或a = 5.。

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

1.函数的单调性 (1)单调函数的定义(2)单调区间的定义如果函数y =f (x )在区间I 上是单调增函数或单调减函数,那么就说函数y =f (x )在区间I 上具有单调性,区间I 叫做y =f (x )的单调区间. 2.函数的最值【知识拓展】 函数单调性的常用结论(1)对∀x 1,x 2∈D (x 1≠x 2),f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数,f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在D 上是减函数.(2)对勾函数y =x +ax (a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ].(3)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数. (4)函数f (g (x ))的单调性与函数y =f (u )和u =g (x )的单调性的关系是“同增异减”. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( × ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (3)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( × )(4)所有的单调函数都有最值.( × )(5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( × )(6)闭区间上的单调函数,其最值一定在区间端点取到.( √ )1.(教材改编)下列函数中,在区间(0,2)上为增函数的是________.(填序号) ①y =1x;②y =2x -1; ③y =1-x ;④y =(2x -1)2.答案 ②解析 ①y =1x 在(0,2)上为减函数;②y =2x -1在(0,2)上为增函数; ③y =1-x 在(0,2)上为减函数;④y =(2x -1)2在(-∞,12)上为减函数,在(12,+∞)上为增函数.2.(教材改编)函数y =⎩⎪⎨⎪⎧x ,x ≥0,x 2,x <0的单调增区间为__________;单调减区间为__________.答案 [0,+∞) (-∞,0)解析 当x ≥0时,y =x 为增函数;当x <0时,y =x 2为减函数.3.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上是增函数,则实数a 的取值范围为________________________________________________________________________. 答案 (-∞,1]解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数f (x )的单调递增区间是[a ,+∞), 由[1,2]⊆[a ,+∞),可得a ≤1.4.(2016·盐城模拟)函数y =x 2+2x -3(x >0)的单调增区间为________. 答案 (0,+∞)解析 函数的对称轴为x =-1,又x >0, 所以函数f (x )的单调增区间为(0,+∞). 5.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 答案 2 25解析 可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.题型一 确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性例1 (1)(2016·连云港模拟)函数f (x )=12log (x 2-4)的单调递增区间是______________.(2)y =-x 2+2|x |+3的单调增区间为____________. 答案 (1)(-∞,-2) (2)(-∞,-1],[0,1]解析 (1)因为y =12log t ,t >0在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).(2)由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数. 命题点2 解析式含参数的函数的单调性例2 已知函数f (x )=axx 2-1(a >0),用定义法判断函数f (x )在(-1,1)上的单调性.解 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1)∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数f (x )在(-1,1)上为减函数. 引申探究如何用导数法求解例2?解 f ′(x )=a ·(x 2-1)-ax ·2x (x 2-1)2=-a (x 2+1)(x 2-1)2,∵a >0,∴f ′(x )<0在(-1,1)上恒成立, 故函数f (x )在(-1,1)上为减函数. 思维升华 确定函数单调性的方法(1)定义法和导数法,证明函数单调性只能用定义法和导数法; (2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.(1)已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为__________.答案 [3,+∞)解析 设t =x 2-2x -3,则t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞). 因为函数t =x 2-2x -3的图象的对称轴为x =1, 所以函数t 在(-∞,-1]上单调递减, 在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞).(2)已知函数f (x )=ln x +mx 2(m ∈R ),求函数f (x )的单调区间. 解 (导数法)依题意知f (x )的定义域为(0,+∞). 对f (x )求导,得f ′(x )=1x +2mx =1+2mx 2x .当m ≥0时,f ′(x )>0,f (x )在(0,+∞)上单调递增. 当m <0时,令f ′(x )=0,得x = -12m. 当x ∈(0,-12m)时,f ′(x )>0, 所以f (x )在(0, -12m)上单调递增; 当x ∈(-12m,+∞)时,f ′(x )<0, 所以f (x )在(-12m,+∞)上单调递减. 题型二 函数的最值例3 (1)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.答案 2解析 当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.(2)已知f (x )=x 2+2x +ax,x ∈[1,+∞),且a ≤1.①当a =12时,求函数f (x )的最小值;②若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解 ①当a =12时,f (x )=x +12x+2,又x ∈[1,+∞),所以f ′(x )=1-12x 2>0,即f (x )在[1,+∞)上是增函数,所以f (x )min =f (1)=1+12×1+2=72.②f (x )=x +ax+2,x ∈[1,+∞).(ⅰ)当a ≤0时,f (x )在[1,+∞)内为增函数. 最小值为f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0, 所以-3<a ≤0.(ⅱ)当0<a ≤1时,f ′(x )=1-ax2,因为x ∈[1,+∞),所以f ′(x )≥0,即f (x )在[1,+∞)上为增函数, 所以f (x )min =f (1)=a +3, 即a +3>0,a >-3,所以0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时, a 的取值范围是(-3,1].思维升华 求函数最值的五种常用方法及其思路 (1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. (5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数y =x +x -1的最小值为________.(2)函数f (x )=x 2+8x -1(x >1)的最小值为________.答案 (1)1 (2)8解析 (1)易知函数y =x +x -1在[1,+∞)上为增函数,∴x =1时,y min =1.(本题也可用换元法求解)(2)方法一 (基本不等式法) f (x )=x 2+8x -1=(x -1)2+2(x -1)+9x -1=(x -1)+9x -1+2≥2(x -1)·9x -1+2=8,当且仅当x -1=9x -1,即x =4时,f (x )min =8.方法二 (导数法)f ′(x )=(x -4)(x +2)(x -1)2,令f ′(x )=0,得x =4或x =-2(舍去). 当1<x <4时,f ′(x )<0, f (x )在(1,4)上是递减的; 当x >4时,f ′(x )>0, f (x )在(4,+∞)上是递增的,所以f (x )在x =4处取到极小值也是最小值, 即f (x )min =f (4)=8.题型三 函数单调性的应用 命题点1 比较大小例4 已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为____________.答案 b >a >c解析 根据已知可得函数f (x )的图象关于直线x =1对称,且在(1,+∞)上是减函数,因为a =f (-12)=f (52),且2<52<3,所以b >a >c .命题点2 解函数不等式例5 (2017·苏州月考)定义在R 上的奇函数y =f (x )在(0,+∞)上递增,且f (12)=0,则满足19(log )f x >0的x 的集合为________________.答案 {x |0<x <13或1<x <3}解析 由题意知f (12)=0,f (-12)=0,由19(log )f x >0,得19log >12,或-12<19log x <0,解得0<x <13或1<x <3.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是____________.(2)已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.答案 (1)[-14,0] (2)[32,2)解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增; 当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综上所述,得-14≤a ≤0.(2)由已知条件得f (x )为增函数, 所以⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,所以a 的取值范围是[32,2).思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)(2016·徐州模拟)已知函数f (x )=x (e x -1ex ),若f (x 1)<f (x 2),则下面正确的式子为________. ①x 1>x 2; ②x 1+x 2=0;③x 1<x 2;④x 21<x 22.(2)(2016·宿迁模拟)要使函数y =2x +kx -2与y =log 3(x -2)在(3,+∞)上具有相同的单调性,则实数k 的取值范围是________. 答案 (1)④ (2)(-∞,-4) 解析 (1)f (-x )=-x (1e x -e x )=f (x ),∴f (x )在R 上为偶函数, f ′(x )=e x -1e x +x (e x +1ex ),∴当x >0时,f ′(x )>0,∴f (x )在[0,+∞)上为增函数, 由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,∴x 21<x 22.(2)由于y =log 3(x -2)的定义域为(2,+∞),且为增函数,故函数y =log 3(x -2)在(3,+∞)上是增函数.又函数y =2x +k x -2=2(x -2)+4+k x -2=2+4+k x -2,因其在(3,+∞)上是增函数,故4+k <0,得k <-4.1.解抽象函数不等式典例 (14分)函数f (x )对任意的m ,n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.思维点拨 (1)对于抽象函数的单调性的证明,只能用定义.应该构造出f (x 2)-f (x 1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f ”运用单调性“去掉”是本题的切入点.要构造出f (M )<f (N )的形式. 规范解答(1)证明 设x 1,x 2∈R 且x 1<x 2,则x 2-x 1>0, ∵当x >0时,f (x )>1,∴f (x 2-x 1)>1.[3分] f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1)-1,[5分]∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2), ∴f (x )在R 上为增函数.[7分](2)解 ∵m ,n ∈R ,不妨设m =n =1, ∴f (1+1)=f (1)+f (1)-1⇒f (2)=2f (1)-1,[9分]f (3)=4⇒f (2+1)=4⇒f (2)+f (1)-1=4⇒3f (1)-2=4, ∴f (1)=2,∴f (a 2+a -5)<2=f (1),[11分]∵f (x )在R 上为增函数, ∴a 2+a -5<1⇒-3<a <2, 即a ∈(-3,2).[14分]解函数不等式问题的一般步骤第一步:(定性)确定函数f (x )在给定区间上的单调性; 第二步:(转化)将函数不等式转化为f (M )<f (N )的形式;第三步:(去f )运用函数的单调性“去掉”函数的抽象符号“f ”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.1.(2016·南京模拟)下列函数中,在区间(1,+∞)上是增函数的是________. ①y =-x +1;②y =11-x ;③y =-(x -1)2;④y =31-x .答案 ②解析 ①中,函数在(1,+∞)上为减函数,③中,函数在(1,+∞)上为减函数,④中,函数在(1,+∞)上为减函数.2.函数f (x )=|x -2|x 的单调减区间是__________. 答案 [1,2]解析 f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2,当x ≥2时,f (x )为增函数,当x <2时,(-∞,1]是函数f (x )的增区间; [1,2]是函数f (x )的减区间. 3.定义新运算:当a ≥b 时,ab =a ;当a <b 时,ab =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于________. 答案 6解析 由已知得,当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数, ∴f (x )的最大值为f (2)=23-2=6.4.已知f (x )=⎩⎪⎨⎪⎧a x,x >1,(4-a2)x +2,x ≤1是R 上的单调递增函数,则实数a 的取值范围是________. 答案 [4,8)解析 由已知可得⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥(4-a 2)+2,解得4≤a <8.*5.函数f (x )的定义域为D ,若对于任意x 1,x 2∈D ,当x 1<x 2时,都有f (x 1)≤f (x 2),则称函数f (x )在D 上为非减函数,设函数f (x )在[0,1]上为非减函数,且满足以下三个条件: ①f (0)=0;②f (x 3)=12f (x );③f (1-x )=1-f (x ).则f (13)+f (18)=________.答案 34解析 由①③,令x =0,可得f (1)=1.由②,令x =1,可得f (13)=12f (1)=12.令x =13,可得f (19)=12f (13)=14.由③结合f (13)=12,可知f (23)=12,令x =23,可得f (29)=12f (23)=14,因为19<18<29且函数f (x )在[0,1]上为非减函数,所以f (18)=14,所以f (13)+f (18)=34.6.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是____________. 答案 [1,+∞)解析 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1. 7.函数f (x )=⎝⎛⎭⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________. 答案 3解析 由于y =⎝⎛⎭⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.8.(2017·江苏天一中学月考)对a ,b ∈R ,记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,函数f (x )=max{|x +1|,|x -2|}(x ∈R )的最小值是________. 答案 32解析 方法一 f (x )=⎩⎨⎧2-x ,x <12,x +1,x ≥12,f (x )在(-∞,12)和[12,+∞)上分别为减函数和增函数,∴[f (x )]min =f (12)=32.方法二 作函数f (x )的图象如图所示,由图知当x =12时,[f (x )]min =f (12)=32.9.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________. 答案 -6解析 f (x )=|2x +a |=⎩⎨⎧2x +a ,x ≥-a2,-2x -a ,x <-a2.函数的单调递增区间为[-a2,+∞),∴-a2=3,∴a =-6.*10.已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a的取值范围是________. 答案 (-∞,-2)解析 二次函数y 1=x 2-4x +3的对称轴是x =2, ∴该函数在(-∞,0]上单调递减,∴x 2-4x +3≥3, 同样可知函数y 2=-x 2-2x +3在(0,+∞)上单调递减, ∴-x 2-2x +3<3,∴f (x )在R 上单调递减, ∴由f (x +a )>f (2a -x )得到x +a <2a -x , 即2x <a ,∴2x <a 在[a ,a +1]上恒成立, ∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).11.(2016·江苏新海中学期中)已知函数f (x )=-4x 2+4ax -4a -a 2(a >0)在区间[0,1]内有一个最大值-5,则a 的值为________. 答案 54解析 f (x )=-4(x -a 2)2-4a ,对称轴为x =a 2,顶点为(a2,-4a ).①当a2≥1,即a ≥2时,f (x )在区间[0,1]上递增.∴y max =f (1)=-4-a 2.令-4-a 2=-5,∴a =±1<2(舍去).②当0<a 2<1,即0<a <2时,y max =f (a2)=-4a ,令-4a =-5,∴a =54∈(0,2).12.(2016·江苏泰州中学月考)已知t 为常数,函数y =|x 2-2x -t |在区间[0,3]上的最大值为2,则t =________.答案 1解析 二次函数y =x 2-2x -t 图象的对称轴为x =1,函数y =|x 2-2x -t |的图象是将二次函数y =x 2-2x -t 的图象在x 轴下方的部分翻到x 轴上方(x 轴上方部分不变)得到的.由区间[0,3]上的最大值为2,知y max =f (3)=|3-t |=2,解得t =1或5;检验t =5时,f (0)=5>2不符,而t =1时满足题意.13.函数f (x )=4x 2-4ax +a 2-2a +2在区间[0,2]上有最小值3,求a 的值. 解 f (x )=4(x -a2)2-2a +2,①当a2≤0,即a ≤0时,函数f (x )在[0,2]上是增函数.∴f (x )min =f (0)=a 2-2a +2. 由a 2-2a +2=3,得a =1±2. ∵a ≤0,∴a =1- 2. ②当0<a2<2,即0<a <4时,f (x )min =f (a2)=-2a +2.由-2a +2=3,得a =-12∉(0,4),舍去.③当a2≥2,即a ≥4时,函数f (x )在[0,2]上是减函数,f (x )min =f (2)=a 2-10a +18. 由a 2-10a +18=3,得a =5±10. ∵a ≥4,∴a =5+10.综上所述,a =1-2或a =5+10.14.(2016·江苏南通中学质检)已知函数f (x )=-(x +1)2+2|x +1|+3. (1)试求函数f (x )的单调区间,并指出相应的单调性;(2)若f (2a 2+a +1)<f (3a 2-2a +1)恒成立,试求实数a 的取值范围. 解 (1)当x ≥-1时,f (x )=-[(x +1)2-2(x +1)+1]+4 =-[(x +1)-1]2+4=-x 2+4,当x <-1时,f (x )=-[(x +1)2+2(x +1)+1]+4 =-[(x +1)+1]2+4=-(x +2)2+4,即f (x )=⎩⎪⎨⎪⎧-x 2+4(x ≥-1),-(x +2)2+4(x <-1), 其大致图象如图所示.由图易知函数f (x )在区间(-∞,-2],(-1,0]上单调递增,在区间(-2,-1],(0,+∞)上单调递减.(2)易知2a 2+a +1>0且3a 2+2a +1>0恒成立,由(1)知函数f (x )在(0,+∞)上单调递减, 故由f (2a 2+a +1)<f (3a 2-2a +1), 得2a 2+a +1>3a 2-2a +1, 即a 2-3a <0,解得0<a <3, ∴a 的取值范围为{a |0<a <3}.。

(江苏专用)2018版高考数学一轮温习 第二章节 函数概念与基本初等函数I 2.4 幂函数与二次函数讲义 文

(江苏专用)2018版高考数学一轮温习 第二章节 函数概念与基本初等函数I 2.4 幂函数与二次函数讲义 文

【训练4】 (2017·苏北四市摸底)已知函数f(x)是定义在R上的 偶 函 数 , 当 x≥0 时 , f(x) = x2 - 2x , 如 果 函 数 g(x) = f(x) - m(m∈R)恰有4个零点,则m的取值范围是________. 解析 函数g(x)=f(x)-m(m∈R) 恰有4个零点可化为函数y=f(x)的 图象与直线y=m恰有4个交点,作 函数y=f(x)与y=m的图象如图所 示,故m的取值范围是(-1,0). 答案 (-1,0)
第4讲 幂函数与二次函数
考试要求 1.幂函数的概念,函数 y=x,y=x2,y=x3,y=1x,y= 的图象与性质,A 级要求;2.二次函数的图象与性质及应用,B 级 要求.
知识梳理 1.幂函数
(1)幂函数的定义 一般地,形如 yቤተ መጻሕፍቲ ባይዱx的α 函数称为幂函数,其中x是自变量,
α为常数. (2)常见的5种幂函数的图象
2.若幂函数 y=(m2-3m+3)xm2-m-2 的图象不经过原点,则实数 m 的值为________. 解析 由mm22- -3mm-+23≤=01,, 解得 m=1 或 2. 经检验 m=1 或 2 都适合. 答案 1 或 2
3.(必修1P47习题9改编)已知f(x)=x2+px+q满足f(1)=f(2)= 0,则f(-1)的值是________. 解析 由f(1)=f(2)=0知方程x2+px+q=0的两根分别为 1,2,则p=-3,q=2,∴f(x)=x2-3x+2,∴f(-1)=6. 答案 6
考点三 二次函数的应用(多维探究) 命题角度一 二次函数的恒成立问题 【例3-1】 已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R.
(1)若函数f(x)的最小值为f(-1)=0,求f(x)的解析式,并写 出单调区间; (2)在(1)的条件下,f(x)>x+k在区间[-3,-1]上恒成立, 试求k的取值范围.

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换(2)对称变换①y =f (x )―――――→关于x 轴对称y =-f (x ); ②y =f (x )―――――→关于y 轴对称y =f (-x ); ③y =f (x )――――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)―――――→关于y =x 对称y =log a x (a >0且a ≠1). (3)伸缩变换①y =f (x )―――――――――――――――――――→a >1,横坐标缩短为原来的1a倍,纵坐标不变0<a <1,横坐标伸长为原来的1a倍,纵坐标不变y =f (ax ). ②y =f (x )―――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x ). (4)翻折变换①y =f (x )―――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|.②y =f (x )――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). 【知识拓展】 1.函数对称的重要结论(1)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称. (2)函数y =f (x )与y =2b -f (2a -x )的图象关于点(a ,b )中心对称.(3)若函数y =f (x )对定义域内任意自变量x 满足:f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称.2.函数图象平移变换八字方针(1)“左加右减”,要注意加减指的是自变量. (2)“上加下减”,要注意加减指的是函数值. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.( × ) (2)函数y =af (x )与y =f (ax )(a >0且a ≠1)的图象相同.( × ) (3)函数y =f (x )与y =-f (x )的图象关于原点对称.( × )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( √ ) (5)将函数y =f (-x )的图象向右平移1个单位得到函数y =f (-x -1)的图象.( × )1.(教材改编)设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出如图四个图形:其中,能表示从集合M 到集合N 的函数关系的有______.(填序号) 答案 ②解析 ①中,因为在集合M 中,当1<x ≤2时,在N 中无元素与之对应,所以①不是函数;②符合函数的定义,所以②是函数;③中,x =2对应的元素y =3∉N ,所以③不是函数;④中,当x =1时,在N 中有两个元素与之对应,所以④不是函数.因此只有②是从集合M 到集合N 的函数.2.(2016·全国乙卷改编)函数y =2x 2-e |x |在[-2,2]上的图象大致为________.答案 ④解析 f (2)=8-e 2>8-2.82>0,排除①;f (2)=8-e 2<8-2.72<1,排除②;在x >0时,f (x )=2x 2-e x ,f ′(x )=4x -e x ,当x ∈⎝⎛⎭⎫0,14时,f ′(x )<14×4-e 0=0,因此f (x )在⎝⎛⎭⎫0,14上单调递减,排除③.3.(教材改编)若函数y =f (x )的图象经过点(1,1),则函数y =f (4-x )的图象经过点的坐标为________. 答案 (3,1)解析 令4-x =1,得x =3, 则函数y =f (4-x )的图象过点(3,1).4.(2016·苏州中学月考)使log 2(-x )<x +1成立的x 的取值范围是__________. 答案 (-1,0)解析 在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).5.已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0),2x (x ≤0),且关于x 的方程f (x )-a =0有两个实根,则实数a 的取值范围是________. 答案 (0,1]解析 当x ≤0时,0<2x ≤1,要使方程f (x )-a =0有两个实根,即函数y =f (x )与y =a 的图象有两个交点,由图象可知0<a ≤1.题型一 作函数的图象 例1 作出下列函数的图象. (1)y =(12)|x |;(2)y =|log 2(x +1)|; (3)y =2x -1x -1;(4)y =x 2-2|x |-1.解 (1)作出y =(12)x 的图象,保留y =(12)x 的图象中x ≥0的部分,加上y =(12)x 的图象中x >0部分关于y 轴的对称部分,即得y =(12)|x |的图象,如图①实线部分.(2)将函数y =log 2x 的图象向左平移1个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图②.(3)∵y =2x -1x -1=2+1x -1,故函数图象可由y =1x 的图象向右平移1个单位,再向上平移2个单位而得,如图③.(4)∵y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0,且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,如图④. 思维升华 图象变换法作函数的图象(1)熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +1x的函数.(2)若函数图象可由某个基本函数的图象经过平移、翻折、对称和伸缩得到,可利用图象变换作出,但要注意变换顺序.作出下列函数的图象.(1)y =|x -2|·(x +1); (2)y =x +2x +3.解 (1)当x ≥2,即x -2≥0时, y =(x -2)(x +1)=x 2-x -2=(x -12)2-94;当x <2,即x -2<0时, y =-(x -2)(x +1)=-x 2+x +2 =-(x -12)2+94.∴y =⎩⎨⎧(x -12)2-94,x ≥2,-(x -12)2+94,x <2.这是分段函数,每段函数的图象可根据二次函数图象作出(如图).(2)y =x +2x +3=1-1x +3,该函数图象可由函数y =-1x 向左平移3个单位,再向上平移1个单位得到,如图所示.题型二 识图与辨图例2 (1)下面所给出的四个图象和三个事件:①我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; ②我骑着车一路以匀速行驶离开家,只是在途中遇到一次交通堵塞,耽搁了一些时间; ③我从家里出发后,心情轻松,缓缓行进,后来为了赶时间开始加速. 图象与这三个事件发生的顺序相吻合的分别为______.(2)已知定义在区间[0,2]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为________.答案 (1)①d ,②a ,③b (2)②解析 (1)离家不久发现自己作业本忘在家里,回到家里,这时离家的距离为0,故①与图象d 相吻合;途中有一段时间交通堵塞,则这段时间与家的距离必为一定值,故②与图象a 相吻合;加速赶向学校,图象上升地就越来越快,故③与图象b 相吻合. (2)方法一 由y =f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x (0≤x ≤1),1(1<x ≤2).当x ∈[0,2]时,2-x ∈[0,2],所以f (2-x )=⎩⎪⎨⎪⎧1(0≤x <1),2-x (1≤x ≤2),故y =-f (2-x )=⎩⎪⎨⎪⎧-1(0≤x <1),x -2(1≤x ≤2).图象应为②.方法二 当x =0时,-f (2-x )=-f (2)=-1; 当x =1时,-f (2-x )=-f (1)=-1. 观察各图象,可知应填②.思维升华 函数图象的识辨可从以下方面入手(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.(1)如图,函数f (x )的图象是折线段ABC ,其中点A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f {f [f (2)]}=____________.(2)(2015·课标全国Ⅱ改编)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为________.答案 (1)2 (2)②解析 (1)由题意可知f (2)=0,f (0)=4,f (4)=2. 因此,有f {f [f (2)]}=f [f (0)]=f (4)=2. (2)当点P 沿着边BC 运动,即0≤x ≤π4时,在Rt △POB 中,PB =OB tan ∠POB =tan x , 在Rt △P AB 中,P A =AB 2+PB 2=4+tan 2x ,则f (x )=P A +PB =4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除①和③;当点P 与点C 重合,即x =π4时,由上得f ⎝⎛⎭⎫π4=4+tan 2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△P AO与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝⎛⎭⎫π2=P A +PB =2+2=22,知f ⎝⎛⎭⎫π2<f ⎝⎛⎭⎫π4,所以排除④. 题型三 函数图象的应用 命题点1 研究函数的性质例3 (1)已知函数f (x )=x |x |-2x ,则下列结论正确的是________. ①f (x )是偶函数,递增区间是(0,+∞); ②f (x )是偶函数,递减区间是(-∞,1); ③f (x )是奇函数,递减区间是(-1,1); ④f (x )是奇函数,递增区间是(-∞,0).(2)若函数y =f (2x +1)是偶函数,则函数y =f (x )图象的对称轴方程是________. 答案 (1)③ (2)x =1 解析 (1)将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.(2)因为f (2x +1)是偶函数,所以f (2x +1)=f (-2x +1)⇒f (x )=f (2-x ), 所以f (x )图象的对称轴为直线x =1. 命题点2 解不等式例4 函数f (x )是定义域为(-∞,0)∪(0,+∞)的奇函数,在(0,+∞)上单调递增,图象如图所示,若x ·[f (x )-f (-x )]<0,则x 的取值范围为________.答案 (-3,0)∪(0,3) 解析 ∵f (x )为奇函数,∴x ·[f (x )-f (-x )]=2x ·f (x )<0,结合图象知x 的范围为(-3,0)∪(0,3). 命题点3 求解函数零点问题例5 (2016·山东)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m , 其中m >0,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________. 答案 (3,+∞)解析 如图,当x ≤m 时,f (x )=|x |;当x >m 时,f (x )=x 2-2mx +4m ,在(m ,+∞)为增函数,若存在实数b ,使方程f (x )=b 有三个不同的根,则m 2-2m ·m +4m <|m |.∵m >0,∴m 2-3m >0,解得m >3.思维升华 (1)利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应法则.(2)利用函数的图象可解决某些方程和不等式的求解问题,方程f (x )=g (x )的根就是函数f (x )与g (x )图象交点的横坐标;不等式f (x )<g (x )的解集是函数f (x )的图象位于g (x )图象下方的点的横坐标的集合,体现了数形结合思想.(1)(2015·课标全国Ⅰ改编)设函数y =f (x )的图象与y =2x+a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a =________.(2)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是__________. 答案 (1)2 (2)(12,1)解析 (1)设f (x )上任意一点为(x ,y ),关于y =-x 的对称点为(-y ,-x ),将(-y ,-x )代入y =2x +a ,所以y =a -log 2(-x ),由f (-2)+f (-4)=1,得a -1+a -2=1,解得a =2.(2)先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的取值范围为(12,1).4.高考中的函数图象及应用问题考点分析 高考中考查函数图象问题主要有以下几个方面:函数图象的识别,函数图象的变换及函数图象的应用等,多以小题形式考查、难度不大,常利用特殊点法、排除法、数形结合法等解决,熟练掌握高中涉及的几种基本初等函数是解决前提. 一、已知函数解析式确定函数图象典例 (2015·浙江改编)函数f (x )=⎝⎛⎭⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为________.解析 ∵f (x )=(x -1x )cos x (-π≤x ≤π且x ≠0),∴f (-x )=-f (x ),∴f (x )为奇函数,排除①,②;当x =π时,f (x )<0,排除③. 答案 ④二、函数图象的变换问题典例 若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为________.解析 由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后再向左平移一个单位得到y =-f (x +1)的图象,根据上述步骤可知③正确. 答案 ③三、函数图象的应用典例 (1)已知f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,2|x |,x ≤0,则函数y =2[f (x )]2-3f (x )+1的零点个数是________.(2)(2015·北京改编)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是________.(3)(2016·吉林三校联考)若函数f (x )=(2-m )xx 2+m的图象如图所示,则m 的取值范围为________.解析 (1)由y =2[f (x )]2-3f (x )+1=0, 得f (x )=1或f (x )=12,①若f (x )=1,则⎩⎪⎨⎪⎧ x >0,|lg x |=1或⎩⎪⎨⎪⎧x ≤0,2|x |=1,解得x =10或x =110或x =0.②若f (x )=12,则⎩⎪⎨⎪⎧x >0,|lg x |=12或⎩⎪⎨⎪⎧x ≤0,2|x |=12,解得x =10或x =110, 综上,共有5个零点.(2)令g (x )=y =log 2(x +1),作出函数g (x )图象如图.由⎩⎪⎨⎪⎧ x +y =2,y =log 2(x +1),得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}. (3)根据图象可知,函数图象过原点, 即f (0)=0,∴m ≠0.当x >0时,f (x )>0,∴2-m >0,即m <2,函数f (x )在[-1,1]上是单调递增的, ∴f ′(x )>0在[-1,1]上恒成立, f ′(x )=(2-m )(x 2+m )-2x (2-m )x (x 2+m )2=(m -2)(x 2-m )(x 2+m )2>0,∵m -2<0,∴只需要x 2-m <0在[-1,1]上恒成立, ∴(x 2-m )max <0,∴m >1, 综上所述,1<m <2.答案 (1)5 (2){x |-1<x ≤1} (3)(1,2)1.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (1f (3))=______.答案 2解析 由题意,f (3)=1,∴f (1f (3))=f (1)=2. 2.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )的解析式为______________. 答案 f (x )=e-x -1解析 与y =e x 的图象关于y 轴对称的函数为y =e -x .依题意,f (x )的图象向右平移一个单位,得y =e -x 的图象.∴f (x )的图象由y =e -x 的图象向左平移一个单位得到.∴f (x )=e-(x +1)=e-x -1.3.(2016·淮安调研)已知函数f (x )=log a (x +b )(a >0且a ≠1,b ∈R )的图象如图所示,则a +b =________.答案 92解析 由图象可知,函数过点(-3,0),(0,-2),所以得⎩⎪⎨⎪⎧0=log a (-3+b ),-2=log a b , 解得⎩⎪⎨⎪⎧a =12,b =4,故a +b =92.4.函数y =11-x的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于________. 答案 8解析 如图,两个函数图象都关于点(1,0)成中心对称,两个图象在[-2,4]上共8个公共点,每两个对应交点横坐标之和为2,故所有交点的横坐标之和为8.5.已知函数f (x )=e |ln x |,则函数y =f (x +1)的大致图象为________.答案 ④解析 当x ≥1时,f (x )=e ln x =x ,其图象为一条直线;当0<x <1时,f (x )=e -ln x=1x.函数y =f (x +1)的图象为函数y =f (x )的图象向左平移1个单位长度后得到的. 6.对于函数f (x )=lg(|x -2|+1),给出如下三个命题:①f (x +2)是偶函数;②f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;③f (x )没有最小值.其中正确的个数为________. 答案 2解析 因为函数f (x )=lg(|x -2|+1), 所以函数f (x +2)=lg(|x |+1)是偶函数; 因为y =lg x ―――――――――――→图象向左平移1个单位长度y =lg(x +1) ―――――――――――――――――――――――――→去掉y 轴左侧的图象,以y 轴为对称轴,作y 轴右侧的对称图象y =lg(|x |+1)―――――――――――→图象向右平移2个单位长度y =lg(|x -2|+1),如图,可知f (x )在(-∞,2)上是减函数,在(2,+∞)上是增函数;由图象可知函数存在最小值0.所以①②正确.7.设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为___________________________. 答案 {x |x ≤0或1<x ≤2}解析 y =f (x +1)向右平移1个单位得到y =f (x )的图象,由已知可得f (x )的图象的对称轴为x =1,过定点(2,0),且函数在(-∞,1)上递减,在(1,+∞)上递增,则f (x )的大致图象如图所示.不等式(x -1)f (x )≤0可化为⎩⎪⎨⎪⎧ x >1,f (x )≤0或⎩⎪⎨⎪⎧x <1,f (x )≥0.由图可知符合条件的解集为{x |x ≤0或1<x ≤2}.8.设f (x )=|lg(x -1)|,若0<a <b 且f (a )=f (b ),则ab 的取值范围是________. 答案 (4,+∞)解析 画出函数f (x )=|lg(x -1)|的图象如图所示.由f (a )=f (b )可得-lg(a -1)=lg(b -1),解得ab =a +b >2ab (由于a <b ),所以ab >4. 9.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________________.答案 f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0 解析 当-1≤x ≤0时,设函数f (x )的解析式为y =kx +b ,则⎩⎪⎨⎪⎧ -k +b =0,b =1,得⎩⎪⎨⎪⎧k =1,b =1. ∴y =x +1.当x >0时,设函数f (x )的解析式为y =a (x -2)2-1, ∵图象过点(4,0),∴0=a (4-2)2-1,解得a =14.∴y =14(x -2)2-1.综上,f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0. *10.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x , x ≤1,13log x ,x >1,g (x )=|x -k |+|x -1|,若对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,则实数k 的取值范围为________________. 答案 (-∞,34]∪[54,+∞)解析 对任意的x 1,x 2∈R , 都有f (x 1)≤g (x 2)成立, 即f (x )max ≤g (x )min ,观察f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,13log x ,x >1的图象可知,当x =12时,函数f (x )max =14;因为g (x )=|x -k |+(x -1)≥|x -k -|x -1||=|k -1|, 所以g (x )min =|k -1|,所以|k -1|≥14,解得k ≤34或k ≥54.故实数k 的取值范围是(-∞,34]∪[54,+∞).11.(2016·徐州模拟)设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________. 答案 [-1,+∞)解析 如图,要使f (x )≥g (x )恒成立,则-a ≤1,∴a ≥-1.12.(2016·泰州调研)已知f (x )是定义在R 上的偶函数,且对于任意的x ∈[0,+∞),满足f (x +2)=f (x ).若当x ∈[0,2)时,f (x )=|x 2-x -1|,则函数y =f (x )-1在区间[-2,4]上的零点个数为________. 答案 7解析 作出函数f (x )的图象(如图),则它与直线y =1在[-2,4]上的交点的个数,即为函数y =f (x )-1在[-2,4]的零点的个数,由图象观察知共有7个交点,从而函数y =f (x )-1在[-2,4]上的零点有7个.。

2018届江苏高考数学一轮复习课件 函数的图象与性质

2018届江苏高考数学一轮复习课件 函数的图象与性质
利用函数图象研究方程的解、不等式的解集等是高考的热点,多以填空题 的形式出现,属中档题目,主要考查学生的数形结合意识以及用图象解答问题 的能力.
1 0,2, cos πx,x∈ 已知 f(x)为偶函数,当 x≥0 时,f(x)= 则 1 2x-1,x∈ ,+∞, 2
象恰有两个交点,借助函数图象(图略)可知 k≥2 或 k=0,即实数 k 的取值范围 为 k=0 或 k≥2.
[ 规律方法] 1.利用函数的图象研究函数的性质,一定要注意其对应关系, 如:图象的左右范围对应定义域,上下范围对应值域,上升、下降趋势对应单 调性,对称性对应奇偶性. 2.有关方程解的个数问题常常转化为两个熟悉的函数图象的交点个数;利 用此法也可由解的个数求参数值或范围. 3.有关不等式的问题常常转化为两个函数图象的上、下关系来解.
|a-1|
1 1 3 < 2,即|a-1|<2,所以2<a<2.]
☞角度 2
奇偶性与周期性结合
(2017· 南通二模)已知 f(x)是定义在 R 上的偶函数,且对于任意的 x ∈[0,+∞),满足 f(x+2)=f(x),若当 x∈[0,2)时,f(x)=|x2-x-1|,则函数 y =f(x)-1 在区间[ -2,4] 上的零点个数为________.
7 [由 f(x+2)=f(x)可知,f(x)在[0,+∞)上是周期为 2 的 函数,又 x∈[0,2)时,f(x)=|x2-x-1|, 且 f(x)为偶函数,故 f(x)在[ -2,4] 上的图象如图所示.由图 可知 y=f(x)与 y=1 有 7 个交点, 故函数 y=f(x)-1 在区间[ -2,4] 上有 7 个零点. ]
- ∞,0)上单调递增.若实数 a 满足 f(2|a 1|)>f(- 2),则 a 的取值范围是________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章函数概念与基本初等函数(Ⅰ)第4课函数的概念及其表示[最新考纲]1.函数与映射(1)函数的定义域、值域:在函数y=f(x),x∈A中,其中所有x组成的集合A称为函数y=f(x)的定义域;将所有y组成的集合叫作函数y=f(x)的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法:表示函数的常用方法有列表法、解析法和图象法.3.分段函数在定义域内不同部分上,有不同的解析表达式,这样的函数,通常叫作分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“³”) (1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图象至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)³ (3)√ (4)³ 2.(教材改编)函数y =2x -3+1x -3的定义域为________. ⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.已知函数f (x )=⎩⎨⎧x ,x >0,2-x ,x ≤0,则f (f (-4))=________.4 [∵f (-4)=24=16,∴f (f (-4))=f (16)=16=4.]4.(2017²苏州模拟)已知实数m ≠0,函数f (x )=⎩⎪⎨⎪⎧3x -m , x ≤2 ,-x -2m , x >2 .若f (2-m )=f (2+m ),则实数m 的值为________.8或-83 [当m >0时,2-m <2<2+m ,由f (2-m )=f (2+m )得 3(2-m )-m =-(2+m )-2m , 解得m =8.当m <0时,2+m <2<2-m , 由f (2+m )=f (2-m )得 -(2-m )-2m =3(2+m )-m , 解得m =-83.综上所述m =8或-83.]5.给出下列四个命题:①函数是其定义域到值域的映射; ②f (x )=x -3+2-x 是一个函数;③函数y =2x (x ∈N )的图象是一条直线; ④f (x )=lg x 2与g (x )=2lg x 是同一个函数. 其中正确命题的序号是________. ① [由函数的定义知①正确. ∵满足⎩⎪⎨⎪⎧x -3≥0,2-x ≥0的x 不存在,∴②不正确.又∵y =2x (x ∈N )的图象是位于直线y =2x 上的一群孤立的点,∴③不正确. 又∵f (x )与g (x )的定义域不同,∴④也不正确.]. (2)(2017²徐州模拟)若函数y =f (x )的定义域为[0,2],则函数g (x )=f 2xx -1的定义域是________.(1)[-3,1] (2)[0,1) [(1)要使函数有意义,需3-2x -x 2≥0,即x 2+2x -3≤0,得(x -1)(x +3)≤0,即-3≤x ≤1,故所求函数的定义域为[-3,1].(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1, 所以0≤x <1,即g (x )的定义域为[0,1).][规律方法] 1.求给出解析式的函数的定义域,可构造使解析式有意义的不等式(组)求解.2.(1)若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出; (2)若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. [变式训练1] (1)(2017²苏锡常镇调研(二))函数f (x )=ln 2x -x 2x -1的定义域为________.(2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.【导学号:62172018】(1)(0,1)∪(1,2) (2)⎣⎢⎡⎦⎥⎤12,2 [(1)要使函数有意义,只需⎩⎪⎨⎪⎧2x -x 2>0,x -1≠0,解得0<x<1或1<x <2,即原函数的定义域为(0,1)∪(1,2). (2)∵f (2x)的定义域为[-1,1],∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式.(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式.(3)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x=x (x ≠0),求f (x )的解析式. [解] (1)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(3)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x+2f (x )=1x.联立方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).[规律方法] 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x );(4)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),即得f (x )的表达式.[变式训练2] (1)已知f (x +1)=x +2x ,则f (x )=________.【导学号:62172019】(2)已知函数f (x )的定义域为(0,+∞),且f (x )=2²f ⎝ ⎛⎭⎪⎫1x²x -1,则f (x )=________.(1)x 2-1(x ≥1) (2)23 x +13(x >0) [(1)(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1), 所以f (x )=x 2-1(x ≥1).(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,∴f (x )=x 2-1(x ≥1). (2)在f (x )=2f ⎝ ⎛⎭⎪⎫1x²x -1中,用1x代替x , 得f ⎝ ⎛⎭⎪⎫1x=2f (x )²1x-1,由⎩⎪⎨⎪⎧f x =2f ⎝ ⎛⎭⎪⎫1x ²x -1,f ⎝ ⎛⎭⎪⎫1x =2f x ²1x-1,得f (x )=23 x +13(x >0).]☞角度1(1)设函数f (x )=⎩⎪⎨⎪⎧1+log 2 2-x ,x <1,2x -1, x ≥1,则f (-2)+f (log 212)=________.(2)(2017²无锡期中)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2 3-x ,x ≤0,f x -1 -f x -2 ,x >0,则f (11)=________.(1)9 (2)2 [(1)∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log212-1=122=6. ∴f (-2)+f (log 212)=3+6=9.(2)f (11)=f (10)-f (9)=f (9)-f (8)-f (9)=-f (8),f (8)=f (7)-f (6)=f (6)-f (5)-f (6)=-f (5), f (5)=f (4)-f (3)=f (3)-f (2)-f (3)=-f (2), f (2)=f (1)-f (0)=f (0)-f (-1)-f (0)=-f (-1),∴f (11)=f (-1)=log 2(3+1)=log 24=2.] ☞角度2 已知分段函数的函数值求参数(1)(2017²南京二诊)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x 2+m 2,x <1,若f (f (-1))=2,则实数m 的值为________.(2)设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =________.(1)3或- 3 (2)12 [(1)f (f (-1))=f (1+m 2)=log 2(1+m 2)=2,m 2=3,解得m =± 3.(2)f ⎝ ⎛⎭⎪⎫56=3³56-b =52-b ,若52-b <1,即b >32,则3³⎝ ⎛⎭⎪⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则2-b =4,解得b =12.]☞角度3 解与分段函数有关的方程或不等式(1)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.(2)(2015²山东高考改编)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x, x ≥1,则满足f (f (a ))=2f (a )的a的取值范围是________.(1)(-∞,8] (2)⎣⎢⎡⎭⎪⎫23,+∞ [(1)当x <1时,x -1<0,e x -1<e 0=1≤2,∴当x <1时满足f (x )≤2.当x ≥1时,x ≤2,x ≤23=8,∴1≤x ≤8.综上可知x ∈(-∞,8]. (2)由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1.综上,a ≥23.[规律方法] 1.求分段函数的函数值,要先确定要求值的自变量属于定义域的哪一个子集,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.2.已知函数值或函数值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.易错警示:当分段函数自变量的范围不确定时,应分类讨论.[思想与方法]1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.定义域优先原则:函数定义域是研究函数的基础,对函数性质的讨论,必须在定义域内进行.3.求函数解析式的几种常用方法:待定系数法、换元法、配凑法、构造法. 4.分段函数问题要分段求解. [易错与防范]1.求函数定义域时,不要对解析式进行化简变形,以免定义域发生变化.2.用换元法求函数解析式时,应注意元的范围,既不能扩大,又不能缩小,以免求错函数的定义域.3.在求分段函数的值f (x 0)时,首先要判断x 0属于定义域的哪个子集,然后再代入相应的关系式;如果x 0的范围不确定,要分类讨论.课时分层训练(四)A 组 基础达标 (建议用时:30分钟)一、填空题1.(2017²南通第一次学情检测)函数f (x )=11-x+lg(x +1)的定义域是________.(-1,1)∪(1,+∞) [由题意可知,⎩⎪⎨⎪⎧x +1>0,1-x ≠0,即x >-1且x ≠1.]2.下列各组函数中,表示同一函数的是________.(填序号) ①f (x )=x ,g (x )=(x )2; ②f (x )=x 2,g (x )=(x +1)2; ③f (x )=x 2,g (x )=|x |; ④f (x )=0,g (x )=x -1+1-x .③ [在①中,定义域不同,在②中,解析式不同,在④中,定义域不同.] 3.设M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是________.(填序号)① ② ③ ④图4­1② [①中,定义域为[-2,0],④中,值域不是[0,2],③中,当x =0时有两个y 值与之对应.]4.(2017²徐州质检)已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=________.x +1 [设f (x )=kx +b ,则由f [f (x )]=x +2,可得k (kx +b )+b =x +2,即k 2x +kb+b =x +2,∴k 2=1,kb +b =2,解得k =1,b =1,则f (x )=x +1.]5.(2017²如皋中学高三第一次月考)函数y =-x 2-2x +8的定义域为A ,值域为B ,则A ∩B =________. 【导学号:62172020】[0,2] [由-x 2-2x +8≥0得-4≤x ≤2.即A ={x |-4≤x ≤2}. 由y =-x 2-2x +8=- x +1 2+9可知0≤y ≤3, 即B ={x |0≤x ≤3}. ∴A ∩B ={x |0≤x ≤2}.]6.(2016²全国卷Ⅱ改编)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是________.(填序号)①y =x ;②y =lg x ;③y =2x;④y =1x.④ [函数y =10lg x的定义域与值域均为(0,+∞).函数y =x 的定义域与值域均为(-∞,+∞).函数y =lg x 的定义域为(0,+∞),值域为(-∞,+∞). 函数y =2x的定义域为(-∞,+∞),值域为(0,+∞). 函数y =1x的定义域与值域均为(0,+∞).]7.已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2 x +1 ,x >1,且f (a )=-3,则f (6-a )=________.【导学号:62172021】-74 [由于f (a )=-3, ①若a ≤1,则2a -1-2=-3,整理得2a -1=-1.由于2x>0,所以2a -1=-1无解;②若a >1,则-log 2(a +1)=-3, 解得a +1=8,a =7, 所以f (6-a )=f (-1)=2-1-1-2=-74.综上所述,f (6-a )=-74.]8.(2017²南京质检)若函数f (x )=⎩⎪⎨⎪⎧f x -2 ,x ≥2,|x 2-2|,x <2,则f (5)=________. 【导学号:62172022】1 [由题意得f (5)=f (3)=f (1)=|12-2|=1.]9.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. [-1,2] [∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3,3],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2].]10.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________.a ≤ 2 [f (x )的图象如图,由图象知,满足f (f (a ))≤2时,得f (a )≥-2,而满足f (a )≥-2时,得a ≤ 2.]二、解答题11.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式. 【导学号:62172023】[解] 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立, ∴⎩⎪⎨⎪⎧a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.12.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))的解析式.[解] (1)由已知,g (2)=1,f (2)=3, ∴f (g (2))=f (1)=0,g (f (2))=g (3)=2. (2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3.∴f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.B 组 能力提升(建议用时:15分钟)1.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧ x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.(填序号) ①③ [对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足. 综上可知,满足“倒负”变换的函数是①③.]2.定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.-x x +1 2 [设-1≤x ≤0,则0≤x +1≤1,所以f (x +1)=(x +1)[1-(x +1)]=-x (x +1).又因为f (x +1)=2f (x ),所以f (x )=f x +1 2=-x x +1 2.] 3.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x ); (2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围.[解] (1)∵x =716时,4x =74, ∴f 1(x )=⎣⎢⎡⎦⎥⎤74=1. ∵g (x )=74-⎣⎢⎡⎦⎥⎤74=34.∴f 2(x )=f 1[g (x )]=f 1⎝ ⎛⎭⎪⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1,∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧ 1≤4x <2,3≤16x -4<4,∴716≤x <12. 故x 的取值范围为⎣⎢⎡⎭⎪⎫716,12. 4.如图4­2所示,在梯形ABCD 中,AB =10,CD =6,AD =BC =4,动点P 从B 点开始沿着折线BC ,CD ,DA 前进至A ,若P 点运动的路程为x ,△PAB 的面积为y .图4­2(1)写出y =f (x )的解析式,指出函数的定义域;(2)画出函数的图象并写出函数的值域.[解] 如图所示,(1)①当P 在BC 上运动时,如图①所示,易知∠B =60°,y =12³10³(x sin 60°)=532x,0≤x ≤4. ②当P 在CD 上运动时,如图②所示,y =12³10³23=103,4<x ≤10.③当P 在DA 上运动时,如图③所示, y =12³10³(14-x )sin 60° =-532x +353,10<x ≤14. 综上所得,函数的解析式为y =⎩⎪⎨⎪⎧ 532x ,0≤x ≤4,103,4<x ≤10,-532x +353,10<x ≤14.(2)函数y =f (x )的图象如图所示.由图可知,函数y =f (x )的值域为[0,103].。

相关文档
最新文档