四川省成都市2021届高三高中毕业班摸底测试数学理试题
2021届四川省成都市高三毕业班摸底测试数学(理)试题(解析版)
1
2
3
4y13来自46由表中数据得到的回归直线方程为 .则当x=8时, 的值为_____.
【答案】12.3
【解析】求得样本中心点( , ),代入线性回归方程,求得 ,即可得回归方程,将x=8代入回归方程可得答案.
【详解】
依题意, , ,
线性回归方程 过样本中心点( , ),
则 ,解得 ,故回归方程为 ,
(1)请补全各年龄段人数频率分布直方图,并求出各年龄段频数分布表中 , 的值;
(2)现从年龄在 段中采用分层抽样的方法选取5名代表参加垃圾分类知识交流活动.应社区要求,从被选中的这5名代表中任意选2名作交流发言,求选取的2名发言者中恰有1名年龄在 段中的概率.
【答案】(1)直方图见解析, , ;(2) .
【解析】(1)首先计算出第三组的频率,除以组距即可得到第三组直方图的高,从而可以补全频率分布直方图,再根据频率分布直方图即可得到 , 的值.
(2)首先利用分层抽样得到以 段中抽取 人, 段中抽取 人,列出从 名代表中人选 名作交流发言的所有可能情况,再利用古典概型公式即可得到答案.
【详解】
(1)∵第三组的频率为 ,
【点睛】
此题考查由几何体的三视图求几何体的表面积,解题的关键是还原几何体,属于基础题
10.在平面直角坐标系xOy中,已知直线l:y=k(x+1)与曲线 (θ为参数)在第一象限恰有两个不同的交点,则实数k的取值范围为()
A.(0,1)B.(0, )C.[ ,1)D.
【答案】D
【解析】对曲线 的参数方程消参求得普通方程,利用导数求得直线与曲线相切时直线的斜率以及临界状态对应直线的斜率,即可容易求得结果.
6.已知离心率为2的双曲线 与椭圆 有公共焦点,则双曲线的方程为()
2021届四川省成都市第七中学高三第一诊断模拟测试数学(理)试题【含解析】
2021届四川省成都市第七中学高三第一诊断模拟测试数学(理)试题【含解析】一、单选题1.已知集合()1222M x y x x⎧⎫⎪⎪==-⎨⎬⎪⎪⎩⎭,{}11N x x =-<<,则M N =( )A .[)0,1B .()0,1C .(]1,0-D .()1,0-【答案】A【分析】先求出集合M ,再根据交集定义即可求出.【详解】(){}{}122222002M x y x xx x x x x ⎧⎫⎪⎪==-=-≥=≤≤⎨⎬⎪⎪⎩⎭, {}[)010,1M N x x ∴⋂=≤<=.故选:A.【点睛】本题考查交集运算,其中涉及函数定义域的求法,一元二次不等式的解法,属于基础题.2.若复数()12()()z m m i m R =+-∈+是纯虚数,则63iz+=( ) A .3 B .5C 5D .35【答案】C【分析】先由已知,求出1m =-,进一步可得63i12i z+=-,再利用复数模的运算即可【详解】由z 是纯虚数,得10m +=且20m -≠,所以1m =-,3z i =. 因此,63631253i ii z i++==-=故选:C.【点睛】本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题. 3.函数()()33ln ||x xf x x -=+的图像大致为( )A .B .C .D .【答案】D【分析】根据函数的奇偶性以及计算()1(),22f f ,可得结果. 【详解】由题可知:函数()f x 的定义域为()(),00,x ∈-∞+∞()()()()33ln ||33ln ||x x x x f x x x f x -+--=+-=+=所以可知函数()f x 为偶函数又()()11222211()33ln 0,233ln 2022f f --⎛⎫=+<=+> ⎪⎝⎭所以选项D 正确 故选:D【点睛】本题主要考查具体函数的图像,这种类型问题,可从以下几个指标判断:(1)函数定义域;(2)函数奇偶性;(3)特殊值:(3)单调性;(4)值域,属基础题. 4.执行如图所示的程序框图,正确的是( )A .若输入,,a b c 的值依次为1,2,3,则输出的值为5B .若输入,,a b c 的值依次为1,2,3,则输出的值为7C .若输入,,a b c 的值依次为2,3,4,则输出的值为8D .若输入,,a b c 的值依次为2,3,4,则输出的值为10【答案】C【解析】此题为流程图,主要考察学生的思维能力和对循环结构及赋值语句的理解程度,属于高考数学中的常见题型,难度不大,建议采用筛选法或排除法. 请在此填写本题解析!解 设输入,,a b c 的值依次为1,2,3,由条件结合赋值语句得c a 1,== a 2,b c 1,===所以3,ac b +=故排除A ,B ,同理验证可知排除D ,因此选C . 5.函数()()2sin 0,2f x x πωϕϕϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示.若对任意x ∈R ,()()2f x f t x =-恒成立,则实数t 的最大负值为( )A .512π-B .3π-C .4π-D .6π-【答案】A【分析】根据函数图象可确定5544T π=,由此确定ω,利用1252f π⎛⎫=- ⎪⎝⎭-可求得ϕ,从而得到()f x 解析式;由()f x 的对称轴为x t =,采用整体对应的方式可确定t 的取值,进而确定t 的最大负值. 【详解】由图象可知:555546124T πππ=+=,2T ππω∴==,解得:2ω=. 5552sin 22sin 212126f πππϕϕ⎛⎫⎛⎫⎛⎫⎛⎫-=⨯-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()5262k k Z ππϕπ∴-+=-+∈,解得:()23k k Z πϕπ=+∈,又2πϕ<,3πϕ∴=,()2sin 23f x x π⎛⎫∴=+⎪⎝⎭. ()()2f x f t x =-,()f x ∴关于直线x t =对称, ()232t k k Z πππ∴+=+∈,解得:()122k t k Z ππ=+∈,则当1k =-时,t 取得最大负数,此时512t π=-. 故选:A .【点睛】本题考查根据正弦型函数的对称轴确定参数值的问题,关键是能够熟练掌握利用图象求解正弦型函数解析式的方法,进而采用整体对应的方式利用正弦函数的对称轴构造方程.6.历史上,最伟大的数学家一直都热衷于寻找质数的“分布规律”,法国数学家马林·梅森就是研究质数的数学家中成就很高的一位,正因为他的卓越贡献,现在人们将形如“21p -(p 是质数)”的质数称为梅森数,迄今为止共发现了51个梅森数,前4个梅森数分别是2213-=,3217-=,52131-=,721127-=,3,7是1位数,31是2位数,127是3位数.已知第10个梅森数为8921-,则第10个梅森数的位数为( )(参考数据:lg 20.301≈) A .25 B .29C .27D .28【答案】C【分析】计算()89lg 21-判断即可.【详解】因为()89lg 2189lg 226.789-≈≈.故8926.7892110-≈.故第10个梅森数的位数为27. 故选:C【点睛】本题主要考查了根据对数运算的应用,属于基础题型.7.在某校举行的秋季运动会中,有甲,乙,丙,丁四位同学参加了50米短跑比赛.现将四位同学安排在1,2,3,4这4个跑道上,每个跑道安排一名同学,则甲不在1道,乙不在2道的不同安排方法有( )种. A .12 B .14C .16D .18【答案】B【分析】甲不在1道,乙不在2道,则分别讨论甲在2道和甲不在2道两种情况,再求和即可.【详解】①甲在2道的安排方法有:336A =种;②甲不在2道,则甲只能在3或4号道,乙不能在2道,只能在剩下的2个道中选择一个,丙丁有2种,所以甲不在2号跑道的分配方案有22228A ⨯⨯=种,共有6814+=种方案. 故选B.【点睛】方法点睛:(1)先讨论甲在乙的位置的情况,此时乙不受限制,剩余元素全排列即可;(2)再讨论甲也不在乙的位置的情况; (3)两种情况求和.8.已知双曲线()2222:1,0x y C a b a b -=>23,O 为坐标原点,过右焦点F 的直线与C 的两条渐近线的交点分别为M 、N ,且OMN 为直角三角形,若332ONM S =△,则C 的方程为( ) A .221124x y -=B .22162x y -=C .2213x y -=D .22126x y -=【答案】C【分析】利用双曲线的离心率得出3b a =,可得3a b ,2c b =,由OMN 为直角三角形可得出直线MN 的方程,求出点N 的坐标,可得出ON 、MN ,再由33ONM S =△b 、a 的值,进而可得出双曲线C 的方程. 【详解】由于双曲线C 的离心率为2231c b e a a ⎛⎫==+= ⎪⎝⎭,3b a ∴=,可得3ab ,2c b =,设点M 、N 分别为直线3y x =、3y =上的点,且MN ON ⊥,则直线MN 的方程为)32y x b =-,联立)323y x b y x ⎧=-⎪⎨=⎪⎩,解得323x b y ⎧=⎪⎪⎨⎪=⎪⎩, 所以点33,2b b N ⎛ ⎝⎭,则2233322b b ON b ⎛⎫⎛⎫=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭, 易知3MON π∠=,tan3333MN ON b b π∴===,所以,2133332ONMSON MN =⋅==1b =,3a ∴= 因此,双曲线C 的方程为2213x y -=.故选:C.【点睛】本题考查双曲线方程的求解,要结合题意得出关于a 、b 、c 的方程组,考查计算能力,属于中等题.9.设0a >,0b >,1a b +=,则下列选项错误..的是( ) A .22a b +的最小值为12B .41a b+的取值范围是[)9,+∞ C .11a b ab++的最小值为2D .若1c >,则231121a c ab c ⎛⎫+-⋅+ ⎪-⎝⎭的最小值为8 【答案】C【分析】由222()2a b a b ++≥,可判定A 正确;由41414()5b a a b a b a b a b⎛⎫+=++=++ ⎪⎝⎭,可判定B 正确;由ab ab ab ab ==ab 的范围,可判定C 不正确;由231424a a b ab b a+-=+≥,得到2311124(1)411a c c ab c c ⎛⎫+-⋅+≥-++ ⎪--⎝⎭,进而判定D 正确. 【详解】对于A 中,由222()122b a a b +≥=+,当且仅当12a b ==时取等,可得22a b +的最小值为12,所以A 正确; 对于B 中,由41414()55249b a a b a b a b a b⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当2a b =时,即21,33a b ==时,等号成立,取得最小值9,所以B 正确; 对于C ab ab ab ab==,又由102ab <1219412222ab ab ≥+=+=,所以C 不正确; 对于D 中,由222313()4224a a a b a bab ab b a+++-=-=+≥,当且仅当2b a =时,即12,33a b ==时,等号成立, 可得2311124(1)4811a c c ab c c ⎛⎫+-⋅+≥-++≥ ⎪--⎝⎭, 当且仅当32c =时取等,所以D 正确. 故选:C.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.10.下列正确命题的序号有( ) ①若随机变量()100,XB p ,且()20E X =,则1152D X ⎛⎫⎪⎝⎭+=.②在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别为0.2,0.2,0.3,0.3,则A 与B C D 是互斥事件,也是对立事件.③一只袋内装有m 个白球,n m -个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,()2P ξ=等于()22A Amnn m -④由一组样本数据()11,x y ,()22,x y ,(),n n x y ⋅⋅⋅得到回归直线方程y bx a =+,那么直线y bx a =+至少经过()11,x y ,()22,x y ,(),n n x y ⋅⋅⋅中的一个点. A .②③ B .①②C .③④D .①④【答案】A【分析】根据二项分布的期望和方差公式即可判断①;根据互斥和对立事件的定义即可判断②;计算2ξ=概率可判断③;根据回归直线方程是由最小二乘法得到,且过样本中心点可判断④,进而可得正确答案. 【详解】对于①:因为()100,X B p ,且()20E X =,所以10020p =,解得15p =,所以()1110011655D X ⎛⎫=⨯⨯-= ⎪⎝⎭,所以()111424D X D X ⎛⎫+== ⎪⎝⎭,故①不正确;对于②:根据互斥事件的定义可得A 与BC D 是互斥事件,()()1P A P B C D +=也是对立事件,故②正确;对于③:2ξ=表示前两次取出的是白球,第三次取到的是黑球,则()2122m n mnA C A P ξ-==,故③正确; 对于④:对于回归直线方程,只能确定通过(),x y ,故④不正确, 所以②③正确. 故选:A11.已知231a e b e +=-=,1e =,则a b ⋅的最小值是( ) A .18-B .12-C .8-D .6-【答案】B【分析】根据题中条件,由向量线性运算的几何意义,求出13a ≤≤,24b ≤≤,得到a 与b 取得最大值时,a 与b 恰好反向,再由向量数量积的计算公式,即可求出结果.【详解】因为231a e b e +=-=,根据向量线性运算的几何意义,可得222a e a e a e -≤+≤+,333b e b e b e -≤-≤+,即212a a -≤≤+,313b b -≤≤+, 所以13a ≤≤,24b ≤≤,当3a =时,由21a e +=可得22441a a e e+⋅+=,即912cos ,41a e +<>+=,所以cos ,1a e <>=-,因为向量夹角大于等于0且小于等于180,所以,180a e <>=,故3a e =-;当4b =时,由31b e -=可得22691b b e e-⋅+=,即1624cos ,91a e -<>+=, 所以cos ,1a e <>=,故,0a e <>=,所以4b e =,此时a 与b 恰好反向,且模都取得最大值,所以a b ⋅的最小值是34cos18012⨯⨯=-. 故选:B.【点睛】思路点睛:求解向量数量积最值问题,一般需要建立适当的坐标系,用坐标表示出向量的数量积,将问题转化为求函数最值问题进行求解;有时也可根据向量的线性运算的几何意义,确定向量的模的最值以及向量的夹角,进行求解. 12.已知函数()21cos 2f x x x =--,()2g x x k =-,若()f x 与()g x 的图象有且只有一个公共点,则k 的值为( ) A .1- B .0C .1D .2【答案】C【分析】将问题转化为()23cos 2h x x x =+与y k =有唯一交点的问题,利用导数可求得()h x 的单调性和最值,由此得到()h x 大致图象,数形结合可求得结果. 【详解】()f x 与()g x 图象有且仅有一个公共点,()()f x g x ∴=有唯一解,即23cos 2k x x =+有唯一解, 令()23cos 2h x x x =+,则()3sin h x x x '=-,()3cos h x x ''=-, []cos 1,1x ∈-,()0h x ''∴>,()h x '∴在R 上单调递增,又()00h '=,∴当(),0x ∈-∞时,()0h x '<;当()0,x ∈+∞时,()0h x '>;()h x ∴在(),0-∞上单调递减,在()0,∞+上单调递增,()()min 01h x h ∴==,可得()h x 大致图象如下图所示:23cos 2k x x =+有唯一解等价于()y h x =与y k =有唯一交点, 由图象可知:当1k =时,()y h x =与y k =有唯一交点,即()f x 与()g x 的图象有且只有一个公共点. 故选:C.【点睛】思路点睛:本题考查根据两函数交点个数求解参数范围的问题,解题关键是能够将问题转化为平行于x 轴的直线与函数的交点个数的问题,进而利用数形结合的方法求得结果.二、填空题13.设实数x y ,满足2105x y x y y +⎧⎪-⎨⎪⎩,则4z x y =+的最小值为______.【答案】53【分析】作出可行域,观察可得,当4z x y =+过点C 时,z 有最小值,再联立方程组解得最优解C 的坐标后,代入目标函数即得.【详解】作出不等式组所表示的平面区域如图中阴影部分所示;观察可知,当4z x y =+过点C 时,z 有最小值;联立210x y x y +=⎧⎨-=⎩解得13x y == 即11,33C ⎛⎫⎪⎝⎭,故4z x y =+的最小值为53. 【点睛】本题考查了线性规划求最值,属中档题. 14.已知数列{}n a 前n 项和n S 满足()132n S n n =+,n *∈N ,则数列12202011122020a a a ++⋅⋅⋅+=______. 【答案】20202021【分析】根据()132n S n n =+,利用数列通项和前n 项和的关系11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求得1n a n =+,再由()111111n na n n n n ==-++,利用裂项相消法求解. 【详解】因为数列{}n a 前n 项和n S 满足()132n S n n =+,n *∈N , 当1n =时,112a S ==, 当2n ≥时,()()()111312122n n n a S S n n n n n -=-=+--+=+ 对1n =时,也成立, 所以1n a n =+,所以()111111n na n n n n ==-++, 所以12202011122020a a a ++⋅⋅⋅+, 11111120201 (12232020202120212021)=-+-++-=-=,故答案为:2020 2021【点睛】方法点睛:求数列的前n项和的方法(1)公式法:①等差数列的前n项和公式,()()11122nnn a a n nS na d+-==+②等比数列的前n项和公式()11,11,11nnna qS a qqq=⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n项和用错位相减法求解.(6)并项求和法:一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.15.如图,四棱锥P ABCD-的底面是边长为1的正方形,点E是棱PD上一点,3PE ED=,若PF PCλ=且满足//BF平面ACE,则λ=______.【答案】23【分析】如图,连接BD,交AC于点O,连接OE,在线段PE取一点G使得GE ED=,连接BG,可证平面//BGF平面AEC,从而可得23PF PGPC PE==.【详解】如图,连接BD,交AC于点O,连接OE,则BO OD=,在线段PE 取一点G 使得GE ED =,则23PG PE =. 连接,BG FG ,则//BG OE ,又因为OE ⊆平面AEC ,BG ⊄平面AEC , 所以//BG 平面AEC .因为//BF 平面ACE 且满足BG BF B ⋂=,故平面//BGF 平面AEC . 因为平面PCD 平面BGF GF =,平面PCD平面AEC EC =,则//GF EC .所以23PF PG PC PE ==,即23λ=为所求. 故答案为:23.【点睛】思路点睛:已知线面平行,则可以得到两类平行关系-线线平行和面面平行,前者可找过已知线的平面,该平面和已知平面的交线与已知直线平行,后面可构造过已知的直线的平面,它与已知的平面的平行.16.在平面直角坐标系xOy 中,定点()2,0F -,已知点P 是直线2y x =+上一动点,过点P 作圆()22:24C x y -+=的切线,切点分别为A ,B .直线PC 与AB 交于点R ,则线段FR 长度的最大值为______. 【答案】32【分析】根据点P 是直线2y x =+上一动点,设(),+2P a a ,求得CP ,然后利用射影定理24CA CR CP =⋅=,变形为2242+4R c R P c Px x y CR CP CP a x x y -====-,求得点R 的坐标,建立函数()2222R R FR x y =++,利用基本不等式求解. 【详解】如图所示:由射影定理得:24CA CR CP =⋅=, 因为点P 是直线2y x =+上一动点, 设(),+2P a a , 所以()()()222=2+22+4CP a a a -+=所以()242+4CR CPa ==,则2242+4R c R P c Px x y CR CP CP a x x y -====-, 则22221+424+4R R a x a a y a ⎧-⎛⎫=+ ⎪⎪⎪⎝⎭⎨+⎪=⎪⎩,所以()2222R R FR x y =++,22222242+4+4a a a a ⎡⎤-+⎛⎫⎛⎫=++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,2224822344168+4+4+4a a a a a --⎛⎫=++=+⋅ ⎪⎝⎭,令223+4a t a -=, 当230m a =->时,1125425131344+2+4242t m m m m =≤=+⋅,当且仅当 25144m m =,即4a =时取等号,所以21168184FR ≤+⨯=, 所以线段FR 长度的最大值为32故答案为:32【点睛】关键点点睛:本题关键是将线段之比转化为坐标之比,即R c RP c Px x y CR CP x x y -==-,求得点R 的坐标,从而得解.三、解答题17.在①sin sin sin A b cB C b a+=--,②3sin c a A =,③23S CA CB =⋅这三个条件中任选一个,补充在下面的横线上,并加以解答,在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,S 为ABC 的面积. (1)求角C 的大小;(2)点D 在CA 的延长线上,且A 为CD 的中点,线段BD 的长度为2,求ABC 的面积S 的最大值.(注:如果选择多个条件分别作答,按第一个解答计分.) 【答案】(1)答案见解析;(2)32. 【分析】(1)若选①,可以利用正弦定理得到关于边的关系式,再利用余弦定理得到所求的角,若选②,可利用辅助角公式求得角C 的大小,若选③,利用向量数量积的定义可得角C 的正切值,从而得到其大小.(2)利用余弦定理和基本不等式可求ab 的最大值,从而可求面积的最大值. 【详解】(1)选①:sin sin sin A b cB C b a+=--,∵由正弦定理得a b c b c b a +=--, ∴()()()a b a b c b c -=+-,即222a b c ab +-=,∴1cos 2C =, ∵(0,)C π∈,∴3C π=.选②:由正弦定理得sin sin 3sin C A A=sin 0A ≠,3sin cos 1C C =+, 12sin 1,sin 662C C ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,∵(0,)C π∈,∴5,666C πππ⎛⎫-∈- ⎪⎝⎭,∴66C ππ-=,∴3C π=. 选③:23,sin 3cos S CA CB ab C ab C =⋅=,∴tan 3C =∵(0,)C π∈,∴3C π=,(2)在BCD △中,由余弦定理知222(2)22cos 602a b a b +-⨯⨯=︒⨯,∴224242222a b ab a b ab ab +-=⋅⋅-=,∴2ab ,当且仅当2a b =. 即2,1a b ==时取等号, 此时ab 的最大值为2,面积13sin 2S ab C ==3【点睛】方法点睛:在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.18.某市有一家大型共享汽车公司,在市场上分别投放了黄、蓝两种颜色的汽车,已知黄、蓝两种颜色的汽车的投放比例为3:1.监管部门为了了解这两种颜色汽车的质量,决定从投放到市场上的汽车中随机抽取5辆汽车进行试驾体验,假设每辆汽车被抽取的时能性相同.(1)求抽取的5辆汽车中恰有2辆是蓝色汽车的概率;(2)在试驾体验过程中,发现蓝色汽车存在一定质量问题,监管部门决定从投放的汽车中随机地抽取一辆送技术部门作进一步抽样检测,并规定:若抽取的是黄色汽车.则将其放回市场,并继续随机地抽取下一辆汽车;若抽到的是蓝色汽车,则抽样结束;并规定抽样的次数不超过()*N n n ∈次,在抽样结束时,若已取到的黄色汽车数以ξ表示,求ξ的分布列和数学期望.【答案】(1)135512;(2)分布列见解析,3334n⎛⎫-⨯ ⎪⎝⎭.【分析】(1)任取1辆汽车取到蓝色汽车的概率为14,从投放到市场上的汽车中随机抽取5辆汽车进行试驾体验,取到蓝色汽车的数量1~(5,)4X B ,由此能求出抽取的5辆汽车中恰有2辆是蓝色汽车的概率.(2)ξ的可能取值为0,1,2,⋯,n ,1(0)4P ξ==,31(1)44P ξ==⨯,231(2)()44P ξ==,⋯,131(1)()44n P n ξ-=-=,3()()4n P n ξ==,由此能求出ξ的分布列和数学期望.【详解】解:(1)因为随机地抽取一辆汽车是蓝色汽车的概率为14, 用X 表示“抽取的5辆汽车中蓝颜色汽车的个数”,则X 服从二项分布,即15,4XB ⎛⎫ ⎪⎝⎭, 所以抽取的5辆汽车中有2辆是蓝颜色汽车的概率32253113544512P C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. (2)ξ的可能取值为:0,1,2,…,n .()104P ξ==,()31314416P ξ==⨯=,()231244P ξ⎛⎫==⨯ ⎪⎝⎭,……,()131144n P n ξ-⎛⎫=-=⋅ ⎪⎝⎭,()34nP n ξ⎛⎫== ⎪⎝⎭. 所以ξ的分布列为:ξ0 1 2…… 1n -nP14 3144⋅ 23144⎛⎫ ⎪⎝⎭ ……13144n -⎛⎫⋅ ⎪⎝⎭34n⎛⎫ ⎪⎝⎭ξ的数学期望为:23313131123444444E ξ⎛⎫⎛⎫=⨯⋅+⨯⋅+⨯⋅ ⎪ ⎪⎝⎭⎝⎭()13131444n nn n -⎛⎫⎛⎫++-⨯⋅+⨯ ⎪⎪⎝⎭⎝⎭, (1)()23133131311224444444n E n ξ-⎛⎫⎛⎫⎛⎫=⨯⋅+⨯⋅++-⨯⋅⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()13131444nn n n +⎛⎫⎛⎫+-⨯⋅+⨯ ⎪ ⎪⎝⎭⎝⎭. (2)(1)-(2)得:231131313131444444444n E ξ-⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++⋅⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()1333114444n n nn n n +⎡⎤⎛⎫⎛⎫⎛⎫+⨯--⨯⋅-⨯⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦2313131314444444E ξ⎛⎫⎛⎫=⋅+⋅+⋅ ⎪ ⎪⎝⎭⎝⎭131314444n n-⎛⎫⎛⎫++⋅+⋅ ⎪ ⎪⎝⎭⎝⎭, 2313333344444n n E ξ-⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭331443313414nn ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-.所以3334nE ξ⎛⎫=-⨯ ⎪⎝⎭.【点睛】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,考查二项分布等基础知识,考查运算求解能力,属于中档题.19.已知,如图四棱锥P ABCD -中,底面ABCD 为菱形,60ABC ∠=︒,2AB PA ==,PA ⊥平面ABCD ,E ,M 分别是BC ,PD 中点,点F 在棱PC 上移动.(1)证明:无论点F 在PC 上如何移动,都有平面AEF ⊥平面PAD ; (2)当直线AF 与平面PCD 所成的角最大时,确定点F 的位置. 【答案】(1)证明见解析;(2)F 为PC 的中点.【分析】(1)连接AC ,可知得出AE AD ⊥和PA AE ⊥,即可证明AE ⊥平面PAD ,从而得出平面AEF ⊥平面PAD ;(2)以AE ,AD ,AP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,利用向量法可求解.【详解】(1)证明:连接AC ,∵底面ABCD 为菱形,60ABC ∠=︒,∴ABC 为正三角形, ∵E 是BC 的中点,∴AE BC ⊥,又//AD BC ,∴AE AD ⊥, ∵PA ⊥平面ABCD ,AE ⊂平面ABCD ,∴PA AE ⊥, ∵PA AD A ⋂=,PA 、AD ⊂平面PAD ,∴AE ⊥平面PAD , ∵AE ⊂平面AEF ,∴平面AEF ⊥平面PAD .(2)由(1)知,AE ,AD ,AP 两两垂直,故以AE ,AD ,AP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则(0,0,0)A ,3,1,0)B -,3,1,0)C ,(0,2,0)D ,(0,0,2)P ,(0,1,1)M ,3,0,0)E ∴(3,1,2)=-PC ,(0,2,2)PD =-,(0,0,2)AP =.设(3,,2)PF PC λλλλ==-,则(3,,22)AF AP PF λλλ=+=-.. 设平面PCD 的法向量为()111,,m x y z =,则11111320220m PC x y z m PD y z ⎧⋅=+-=⎪⎨⋅=-=⎪⎩, 令13z =,则11x =,13y =∴(1,3,3)m =. 设直线AF 与平面PCD 所成的角为θ,222332323sin |cos ,||||(3)(22)7AF mAF m AF m λλλθλλλ⋅++-===⋅++-⨯2231172222λ=⎛⎫⨯-+⎪⎝⎭ 当12λ=时,sin θ最大,此时F 为PC 的中点. 【点睛】关键点睛:本题考查点的存在性问题,解题的关键是建立合适的空间直角坐标系,利用向量关系建立与线面角的关系,从而通过数量关系进行说明.20.已知函数()22ln f x ax x =-.(1)当2a =时,求()y f x =在点()()1,1f 处的切线方程; (2)若对[]1,3x ∀∈,都有()14f x ≤恒成立,求a 的取值范围; (3)已知0a >,若1x ∃,2x 且满足120x x <<,使得()()12f x f x =,求证:)()2121220a x x x x +-+>.【答案】(1)21y x =+;(2)14a ≤;(3)证明见解析. 【分析】(1)当2a =时,求得函数的导数,求出切线的斜率和切点坐标,由点斜式方程即可得到切线的方程;(2)转化已知条件为函数()f x 在[]1,3上的最大值()max 14f x ≤,利用单调性,①0a ≤时,②0a >时,分别求解函数的最小值,推出所求a 的范围;(3)通过()()12f x f x =)()2121220a x x x x +-+>,从而得到12x x a +>,令()212ln 4x g x x +=,求导,利用单调性可得()g x 在a ⎛ ⎝单调递减,即可()0g x g a >=在x a ⎛∈ ⎝恒成立,即可证明所求成立.【详解】(1)解:当2a =时,()222ln f x x x =-,()12f =,()24f x x x'=-,()12k f ='=,∴()f x 在()()1,1f 处的切线方程为221y x -=-. 整理得: 21y x =+(2)解:法一:由题意()max 14f x ≤,()()22122ax f x ax x x-'=-= ①当0a ≤时,()'0fx <,()f x 在[]1,3上单调递减,∴()()max 114f x f a ==≤恒成立,∴0a ≤ ②当0a >时,()'0fx >,x a>∴()f x 在a ⎛ ⎝上单减,在a ⎫+∞⎪⎭上单增,(ⅰ1a≤,1a ≥时,()f x 在[]1,3上单增, ()()max134f x f =≤,12ln 349a +≤,舍去; (ⅱ3a ≥,109a <≤时,()f x 在[]1,3上单减, ()()max 114f x f =≤,14a ≤,∴109a <≤(ⅲ)当13a <<,119a <<时,()f x 在a ⎡⎢⎣上单减,a ⎤⎢⎥⎣⎦上单增, ()()114134f f ⎧≤⎪⎪⎨⎪≤⎪⎩,14a ≤,1194a <≤, 综上,14a ≤. 法2:()22l 1n 4f x ax x =-≤恒成立,即212ln 4xa x +≤, 令()212ln 4x g x x +=,()334ln 2xg x x-'=,()0g x '>,381e x <<. ∴()g x 在381,e ⎡⎤⎢⎥⎣⎦上单增,38e ,3⎡⎤⎢⎥⎣⎦上单减,()114g =,()12ln 314394g +=>, ∴()min 14a g x ≤=.(3)证明:因为120x x +>)()2121220a x x x x +-+>, 只需证明12x x a+>, 由(2)可知120x x a <<<,要证12x x a+>, 只需证明21x x a>-,又因为2x a >1x a a ->()f x 在a ⎫+∞⎪⎭单调递增, 所以只需证明()21f x f x a ⎫>-⎪⎭, 又因为()()21f x f x =,即证()11f x f x a ⎫>⎪⎭, 令()()0g x f x f x x a a ⎫⎛=--<<⎪⎭⎝即()222ln 2ln g x ax x a x x a a ⎫⎫=--+-⎪⎪⎭⎭442ln 2ln ax x x a ⎫=--+-⎪⎭注意到0g a = 因为()221442g x a a x a x x x a a '=-=⎫-⎪⎭140a a a x a ≤=+- ⎪⎪⎝⎭则()g x 在a ⎛ ⎝单调递减, 所以()0g x g a >=在x a ⎛∈ ⎝恒成立,所以12x x a+>)()2121220a x x x x +-+>. 【点睛】(1)曲线切线方程的求法:①以曲线上的点()00()x f x ,为切点的切线方程的求解步骤:求出函数()f x 的导数()f x ';求切线的斜率()0f x ';写出切线方程()()000()y f x f x x x '-=- ,并化简.②如果已知点11()x y , 在曲线上,则设出切点00()x y ,,解方程组()()0010010y f x y y f x x x ⎧=⎪-⎨=-'⎪⎩得切点00()x y ,,进而确定切线方程.(2)恒成立问题与存在成立问题常转化为值域问题.单变量的恒成立、有解、无解的转化:①对任意的[]x mn ∈, ,()a f x >恒成立()max a f x ⇒>; 若存在[]x mn ∈,,()a f x >有解()min a f x ⇒> ; 若对任意[]x mn ∈,,()a f x >无解()min a f x ⇒≤. ②对任意的[]x mn ∈,,()a f x <恒成立()min a f x ⇒<. 若存在[]x mn ∈,,()a f x <有解()max a f x ⇒<; 若对任意[]x mn ∈,,()a f x <无解()max a f x ⇒≥. 双变量的恒成立、有解、无解的转化:①对任意的[]x a b ∈,,不等式()()f x g x >恒成立,只须()()[]0min f x g x >-; ②存在0[]x a b ∈,,不等式()()00f x g x >成立,只须()()[]0max f x g x >-; ③对任意1[]x ab ∈,,2[]xcd ∈,,不等式()()12f x g x >恒成立,只须()()min max f x g x >;④存在1[]x a b ∈,,2[]x c d ∈,,不等式()()12f x g x >成立,只须()()max min f x g x >; ⑤对任意1[]x ab ∈,,存在2[]xcd ∈,,不等式()()12f x g x >成立,只须()()min min f x g x >.21.已知椭圆2222:1(0)x y C a b a b +=>>的左顶点为A ,右焦点为F ,过点A 作斜率为3C 相交于A ,B ,且AB OB ⊥,O 坐标原点. (1)求椭圆的离心率e ;(2)若1b =,过点F 作与直线AB 平行的直线l ,l 与椭圆C 相交于P ,Q 两点. (ⅰ)求OP OQ k k ⋅的值;(ⅱ)点M 满足2OM OP =,直线MQ 与椭圆的另一个交点为N ,求NMNQ的值. 【答案】(125;(2)(ⅰ)15-;(ⅱ)38.【分析】(1)由几何关系可得B 点坐标,代入椭圆方程即得5a b =,又222,ca b c e a=+=即得; (2)(ⅰ)将直线PQ 与椭圆联立即得1212OP OQ y y k k x x ⋅=结果; (ⅱ),(01)NMNM NQ NQλλλ==<<将其坐标化,利用P ,Q ,N 在椭圆上求得结果即可.【详解】(1)已知||,||,26a OA a OB BAF π==∠=, 则3,44a a B ⎛⎫- ⎪⎝⎭,代入椭圆C 的方程:2222311616a a a b +=,∴225,5a a b b==,∴222c a b b =-=, ∴255c e a ==. (2)(ⅰ)由(1)可得1,5b a ==∴22:15x C y +=设直线l :()()()11223332,,,,,,x P x y Q x y N x y =+ ∵2OM OP =,∴11,22x y M ⎛⎫⎪⎝⎭联立直线l 与椭圆C 的方程:223255x x y ⎧=+⎪⎨+=⎪⎩ 28310,0y +-=∆>恒成立1212318y y y y +==- ∴)())121212125323232348x x y y y y =++=+++=∴121215OP OQ y y k k x x ⋅==-. (ⅱ)设,(01)NMNM NQ NQλλλ==<< ()11332323,,,22x y NM x y NQ x x y y ⎛⎫=--=-- ⎪⎝⎭()()1323132322x x x x y y y y λλ⎧-=-⎪⎪⎨⎪-=-⎪⎩ ∴12312322(1)22(1)x x x y y y λλλλ-=-⎧⎨-=-⎩()()312312122(1)122(1)x x x y y y λλλλ⎧=-⎪-⎪⎨⎪=-⎪-⎩∵P ,Q ,N 在椭圆上,∴22222211223355,55,55x y x y x y +=+=+=()()2212122222554(1)4(1)x x y y λλλλ--+=--∴()()222222112212125454520(1)x y x y x x y y λλλ+++-+=-由(ⅰ)可知121250x x y y +=,∴22144(1)λλ+=-,∴38λ=∴38NM NQ =. 22.在平面直角坐标系xOy 中,直线1l 的参数方程为3x t y kt⎧=⎪⎨=⎪⎩(t 为参数),直线2l 的参数方程为33x mmy k ⎧=⎪⎨=⎪⎩(m 为参数),设直线1l 与2l 的交点为P ,当k 变化时点P 的轨迹为曲线1C .(1)求出曲线1C 的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线2C 的极坐标方程为sin 324πρθ⎛⎫+= ⎪⎝⎭Q 为曲线1C 上的动点,求点Q 到直线2C 的距离的最大值. 【答案】(1)()22103x y y +=≠;(2)42【分析】(1)直接利用转换关系的应用,把参数方程极和直角坐标方程之间进行转换. (2)利用点到之间的距离公式的应用和三角函数关系式的变换及正弦型函数的性质的应用求出结果.【详解】解:(1)将1l ,2l 的参数方程转化为普通方程.1l :(3y k x =, 2l :)133y x k=,两式相乘消k 可得2213x y +=,因为0k ≠,所以0y ≠,所以1C 的普通方程为()22103x y y +=≠.(2)直线2C 的直角坐标方程为60x y +-=, 由(1)知曲线1C 与直线2C 无公共点.由于1C 的参数方程为3sin x y αα⎧=⎪⎨=⎪⎩(α为参数,k απ≠,k Z ∈),所以曲线1C 上的点()3,sin Qαα到直线60x y +-=的距离为2sin 63cos sin 6322d πααα⎛⎫+- ⎪+-⎝⎭==, 所以当sin 13πα⎛⎫+=- ⎪⎝⎭时,d 的最大值为2. 【点睛】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题. 23.已知函数()2725f x x x =-+- (1)求函数()f x 的最小值m ;(2)在(1)的条件下,正数a ,b 满足22a b m +=,证明2a b ab +≥. 【答案】(1)2m =;(2)证明见解析【分析】(1)由()()27252725x x x x -+-≥---,可求出()f x 的最小值; (2)利用基本不等式可得222a b ab +≥,从而可得1ab ≤1ab ,再结合2a b ab +≤12ab ≤1ab ≤,可证明结论. 【详解】(1)()()()272527252f x x x x x =-+-≥---=, ∴函数()f x 的最小值2m =. (2)证明:正数a ,b 满足222a b +=,又222a b ab +≥,当且仅当a b =时取等号,所以1ab ≤1ab ≤, 2a bab +≤,当且仅当a b =时取等号, 所以12ab a b ≤+, 1ab ≤,所以12ab a b ≤+, 故2a b ab +≥.【点睛】本题考查利用绝对值三角不等式求最值,考查不等式的证明,考查基本不等式的应用,考查学生的计算求解能力与推理论证能力,属于中档题.。
2021年四川成都高三一模理科数学试卷-学生用卷
2021年四川成都高三一模理科数学试卷-学生用卷一、选择题(本大题共12小题,每小题5分,共60分)1、【来源】 2021年四川成都高三一模理科第1题5分设集合A={x|x2−3x−4<0},B={x||x−1|<3,x∈N},则A∩B=().A. {1,2,3}B. {0,1,2,3}C. {x|−1<x<4}D. {x|−2<x<4}2、【来源】 2021年四川成都高三一模理科第2题5分2021年四川成都高三一模文科第2题5分(i为虚数单位),则z的共轭复数是().复数z=1+2iiA. −2−iB. −2+iC. 2−iD. 2+i3、【来源】 2021年四川成都高三一模理科第3题5分2021年四川成都高三一模文科第3题5分若等比数列{a n}满足a2+a3=2,a2−a4=6,则a6=().A. −32B. −8C. 8D. 644、【来源】 2021年四川成都高三一模理科第4题5分2021年四川成都高三一模文科第4题5分甲乙两台机床同时生产一种零件,10天中,两台机床每天出的次品数分别是:x1,x2分别表示甲乙两组数据的平均数,S1,S2分别表示甲乙两组数据的方差,则下列选项正确的是().A. x 1=x 2,S 1>S 2B. x 1>x 2,S 1>S 2C. x 1<x 2,S 1>S 2D. x 1>x 2,S 1<S 25、【来源】 2021年四川成都高三一模理科第5题5分若函数f (x )=x 3−3x 2+a 有且仅有一个零点,则实数a 的取值范围为( ). A. (−∞,0)∪(4,+∞) B. (−∞,−8)∪(0,+∞) C. [0,4] D. (−8,0)6、【来源】 2021年四川成都高三一模理科第6题5分若向量a →,b →满足|a →|=2,(a →+2b →)⋅a →=6,则b →在a →方向上的投影为( ). A. 1B. 12C. −12D. −17、【来源】 2021年四川成都高三一模理科第7题5分设a =log 2020√2021,b =ln√2,c =202112020,则a ,b ,c 的大小关系是( ). A. a >b >cB. a >c >bC. c >a >bD. c >b >a8、【来源】 2021年四川成都高三一模理科第8题5分 2021年四川成都高三一模文科第8题5分若α,β,γ是空间中三个不同的平面,α∩β=l ,α∩γ=m ,γ∩β=n ,则l//m 是n//m 的( ). A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9、【来源】 2021年四川成都高三一模理科第9题5分 已知平行于x 轴的一条直线与双曲线x 2a 2−y 2b 2=1(a >0,b >0)相交于P ,Q 两点,|PQ |=4a ,∠PQO =π3(O 为坐标原点),则该双曲线的离心率为( ).A. √62B. √52C. √6D. √510、【来源】 2021年四川成都高三一模理科第10题5分 2021年四川成都高三一模文科第10题5分已知锐角φ满足√3sinφ−cosφ=1.若要得到函数f (x )=12−sin 2(x +φ)的图象,则可以将函数y =12sin2x 的图象( ). A. 向左平移7π12个单位长度 B. 向左平移π12个单位长度 C. 向右平移7π12个单位长度 D. 向右平移π12个单位长度11、【来源】 2021年四川成都高三一模理科第11题5分2020~2021学年四川成都温江区成都七中实验学校高二上学期期末模拟理科第11题5分 2021年四川成都高三一模文科第11题5分已知抛物线x 2=4y 的焦点为F ,过F 的直线l 与抛物线相交于A ,B 两点,P (0,−72).若PB ⊥AB ,则|AF |=( ).A. 32B. 2 C. 52D. 312、【来源】 2021年四川成都高三一模理科第12题5分已知函数f(x)=x+ln(x−1),g(x)=xlnx.若f(x1)=1+2lnt,g(x2)=t2,则(x1x2−x2)lnt的最小值为().A. 1e2B. 2eC. −12eD. −1e二、填空题(本大题共4小题,每小题5分,共20分)13、【来源】 2021年四川成都高三一模理科第13题5分(√x−1x )7的展开式中x−1的系数是.(用数字作答)14、【来源】 2021年四川成都高三一模理科第14题5分2017~2018学年湖南郴州嘉禾县嘉禾县第一中学高二上学期期中2017~2018学年广东深圳罗湖区菁华中英文实验中学高二上学期期中2017年高考真题新课标卷I2017~2018学年湖南郴州临武县临武县第一中学高二上学期期中设x,y满足约束条件{x+2y⩽12x+y⩾−1x−y⩽0,则z=3x−2y的最小值为.15、【来源】 2021年四川成都高三一模理科第15题5分2021年四川成都高三一模文科第15题5分数列{a n}的前n项和为S n,a n+2S n=3n,数列{b n}满足3b n=12(3a n+2−a n+1)(n∈N∗),则数列{b n}的前10项和为.16、【来源】 2021年四川成都高三一模理科第16题5分在三棱锥P −ABC 中,PA ⊥平面ABC ,AB ⊥BC ,PA =AB =1,AC =√2,三棱锥P −ABC 的所有顶点都在球O 的表面上,则球O 的半径为 ;若点M ,N 分别是△ABC 与△PAC 的重心,直线MN 与球O 的表面相交于D ,E 两点,则线段DE 的长度为 .三、解答题(本大题共6小题,共70分)17、【来源】 2021年四川成都高三一模理科第17题12分 2021年四川成都高三一模文科第17题12分在△ABC 中,点M 在边AC 上,CM =3MA ,tan∠ABM =√35,tan∠BMC =−√32. (1) 求角A 的大小.(2) 若BM =√21,求△ABC 的面积.18、【来源】 2021年四川成都高三一模理科第18题12分 2021年四川成都高三一模文科第18题12分一网络公司为某贫困山区培养了100名“乡土直播员”,以帮助宣传该山区文化和销售该山区的农副产品,从而带领山区人民早日脱贫致富.该公司将这100名“乡土直播员”中每天直播时间不少于5小时的评为“网红乡土直播员”,其余的评为“乡土直播达人”.根据实际评选结果得到了下面2×2列联表:(1) 根据列联表判断是否有95%的把握认为“网红乡土直播员”与性别有关系?(2) 在“网红乡土直播员”中按分层抽样的方法抽取6人,在这6人中选2人作为“乡土直播推广大使”.设被选中的2名“乡土直播推广大使”中男性人数为ξ,求ξ的分布列和期望.附:K2=a(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.19、【来源】 2021年四川成都高三一模理科第19题12分如图,长方体ABCD−A1B1C1D1的底面是边长为2的正方形,AA1=4,点E,F,M,N分别为棱CC1,BC,BB1,AA1的中点.(1) 求证:平面B1D1E⊥平面C1MN.(2) 若平面AFM∩平面A1B1C1D1=l,求直线l与平面B1D1E所成角的正弦值.20、【来源】 2021年四川成都高三一模理科第20题12分已知函数f(x)=(x−2)e x−a2x2+ax,a∈R.(1) 讨论函数f(x)的单调性.(2) 若不等式f(x)+(x+1)e x+a2x2−2ax+a>0恒成立,求a的取值范围.21、【来源】 2021年四川成都高三一模理科第21题12分已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,且直线xa+yb=1与圆x2+y2=2相切.(1) 求椭圆C的方程.(2) 设直线l与椭圆C相交于不同的两点A,B,M为线段AB的中点,O为坐标原点,射线OM与椭圆C相交于点P,且O点在以AB为直径的圆上.记△AOM,△BOP的面积分别为S1,S2,求S1S2的取值范围.选做题(本大题共2小题,每小题10分,选做1题)选修4-4:坐标系与参数方程22、【来源】 2021年四川成都高三一模理科第22题10分在平面直角坐标系中,曲线C的参数方程为{x=1+sinα+cosαy=2+sinα−cosα(α为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ−π4)=√2.(1) 求曲线C的普通方程和直线l的直角坐标方程.(2) 设点P(0,2).若直线l与曲线C相交于A,B两点,求||PA|−|PB||的值.选修4-5:不等式选讲23、【来源】 2021年四川成都高三一模理科第23题10分已知函数f(x)=|3−x|+|x−m|(m>2)的最小值为1.(1) 求不等式f(x)+|x−m|>2的解集.(2) 若a2+2b2+3c2=32m,求ac+2bc的最大值.1 、【答案】 B;2 、【答案】 D;3 、【答案】 A;4 、【答案】 B;5 、【答案】 A;6 、【答案】 B;7 、【答案】 C; 8 、【答案】 C; 9 、【答案】 D; 10 、【答案】 A; 11 、【答案】 D; 12 、【答案】 C; 13 、【答案】 −35; 14 、【答案】 −5; 15 、【答案】 65; 16 、【答案】 √32;2√63;17 、【答案】 (1) A =2π3. ; (2) 6√3. ;18 、【答案】 (1) 有95%的把握认为“网红乡土直播员”与性别有关系. ;(2) ξ的分布列为∴ξ的数学期望E (ξ)=23. ;19 、【答案】 (1) 证明见解析. ; (2) √155.;20 、【答案】 (1) 当a ⩽0时,f(x)在(−∞,1)上单调递减,在(1,+∞)上单调递增;当0<a<e时,f(x)在(lna,1)上单调递减,在(−∞,lna)和(1,+∞)上单调递增;当a=e时,f(x)在R上单调递增;当a>e时,f(x)在(1,lna)上单调递减,在(−∞,1)和(lna,+∞)上单调递增.;(2) (1,4e32).;21 、【答案】 (1) x26+y23=1.;(2) [√33,√63].;22 、【答案】 (1) (x−1)2+(y−2)2=2;x−y+2=0.;(2) √2.;23 、【答案】 (1) (−∞,3)∪(133,+∞).;(2) 3.;。
四川省成都市2021届高三摸底(零诊)考试数学理试题 Word版含解析
四川省成都市2021届高三摸底(零诊)数学(理)试题【试卷综析】本试卷是高三摸底试卷,考查了高中全部内容.以基础学问和基本技能为载体,以力量测试为主导,在留意考查学科核心学问的同时,突出考查考纲要求的基本力量,重视同学科学素养的考查.学问考查留意基础、留意常规、留意主干学问,兼顾掩盖面.试题重点考查:数列、三角、概率、导数、圆锥曲线、立体几何综合问题、程序框图、平面对量、基本不等式、函数等;考查同学解决实际问题的综合力量。
是份格外好的试卷.第I 卷(选择题,共50分)一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量a =(5,-3),b =(-6,4),则a +b = (A )(1,1) (B )(-1,-1) (C )(1,-1) (D )(-1,1) 【学问点】向量的坐标运算【答案解析】D 解析:解:由向量的坐标运算得a +b =(5,-3)+(-6,4)=(-1,1),所以选D. 【思路点拨】本题主要考查的是向量加法的坐标运算,可直接结合向量加法的运算法则计算. 2.设全集U={1,2,3,4},集合S={l ,3},T={4},则(US )T 等于(A ){2,4} (B ){4} (C )∅(D ){1,3,4}【学问点】集合的运算 【答案解析】A 解析:解:由于US={2,4},所以(US )T={2,4},选A.【思路点拨】本题主要考查的是集合的基本运算,可先结合补集的含义求S 在U 中的补集,再结合并集的含义求S 的补集与T 的并集.3.已知命题p :x ∀∈R ,2x=5,则⌝p 为 (A )x ∀∉R,2x=5 (B )x ∀∈R,2x≠5 (C )0x ∃∈R ,20x =5(D )0x ∃∈R ,2x ≠5【学问点】全称命题及其否定【答案解析】D 解析:解:结合全称命题的含义及其否定的格式:全称变特称,结论改否定,即可得⌝p 为0x ∃∈R ,2x ≠5,所以选D.【思路点拨】全称命题与特称命题的否定有固定格式,把握其固定格式即可快速推断其否定. 4.计算21og 63 +log 64的结果是 (A )log 62 (B )2 (C )log 63 (D )3 【学问点】对数的运算【答案解析】B 解析:解:21og 63 +log 64=1og 69+log 64=1og 636=2,所以选B.【思路点拨】在进行对数运算时,结合对数的运算法则,一般先把对数化成同底的系数相同的对数的和与差再进行运算,留意熟记常用的对数的运算性质.5.已知实数x ,y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,则z=4x+y 的最大值为(A )10 (B )8 (C )2 (D )0 【学问点】简洁的线性规划 【答案解析】B 解析:解:作出不等式组表示的平面区域为如图中的三角形AOB 对应的区域,平移直线4x+y=0,经过点B 时得最大值,将点B 坐标(2,0)代入目标函数得最大值为8,选 B.【思路点拨】对于线性规划问题,通常先作出其可行域,再对目标函数进行平行移动找出访其取得最大值的点,或者把各顶点坐标代入寻求最值点.6.已知a ,b 是两条不同直线,a 是一个平面,则下列说法正确的是 (A )若a ∥b .b α⊂,则a//α (B )若a//α,b α⊂,则a ∥b (C )若a ⊥α,b ⊥α,则a ∥b (D )若a ⊥b ,b ⊥α,则a ∥α 【学问点】线面平行的判定、线面垂直的性质【答案解析】C 解析:解:A 选项中直线a 还可能在平面α内,所以错误,B 选项直线a 与b 可能平行还可能异面,所以错误,C 选项由直线与平面垂直的性质可知正确,由于正确的选项只有一个,所以选C【思路点拨】在推断直线与平面平行时要正确的理解直线与平面平行的判定定理,应特殊留意定理中的“平面外一条直线与平面内的一条直线平行”,在推断位置关系时能用定理推断的可直接用定理推断,不能直接用定理推断的可考虑用反例排解. 7.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可A 肺颗粒物,一般状况下PM2.5浓度越大,大气环境质量越差右边的茎叶图表示的是成都市区甲、乙两个监测站某10日内每天的PM2.5浓度读数(单位:μg/m 3)则下列说法正确的是(A )这l0日内甲、乙监测站读数的极差相等(B )这10日内甲、乙监测站读数的中位数中,乙的较大 (C )这10日内乙监测站读数的众数与中位数相等 (D )这10日内甲、乙监测站读数的平均数相等 【学问点】茎叶图、中位数、众数、平均数【答案解析】C 解析:解:由于甲、乙监测站读数的极差分别为55,57,所以A 选项错误,10日内甲、乙监测站读数的中位数分别为74,68,所以B 选项错误,10日内乙监测站读数的众数与中位数都是68,所以C 正确,而正确的选项只有一个,因此选C.【思路点拨】结合所给的茎叶图正确读取数据是解题的关键,同时要理解中位数、众数、平均数各自的含义及求法.8.已知函数f (x )3cos (0)x x ωωω+>的图象与直线y= -2的两个相邻公共点之间的距离等于π,则f (x )的单调递减区间是 (A )2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z (B ),36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈z (C )42,233k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z (D )52,21212k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈z 【学问点】函数y=Asin(ωx+φ)的图象与性质 【答案解析】A 解析:解:由于()2sin 6f x x πω⎛⎫=+⎪⎝⎭,则图象与直线y= -2的两个相邻公共点之间的距离等于一个周期,所以2ππω=,得ω=2,由()3222,262k x k k Z πππππ+≤+≤+∈,得()263k x k k Z ππππ+≤≤+∈,所以其单调递减区间是2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z 选A. 【思路点拨】留意该题中直线y=-2的特殊性:-2正好为函数的最小值,所以其与函数的两个相邻公共点之间的距离等于函数的最小正周期9.已知定义在R 上的偶函数f (x )满足f (4-x )=f (x ),且当x ∈(]1,3-时,f (x )=(]2,(1,1)1cos ,1,32x x x x π⎧∈-⎪⎨+∈⎪⎩则g (x )=f (x )-|1gx|的零点个数是(A )7 (B )8 (C )9 (D )10【学问点】函数的图象、偶函数、函数的周期性【答案解析】D 解析:解:由函数f (x )满足f (4-x )=f (x ),可知函数f (x )的图象关于直线x=2对称.先画出函数f (x )当x∈(-1,3]时的图象,再画出x∈[0,10]图象.画出y=|lgx|的图象.可得g (x )在x≥0时零点的个数为10, 故选D【思路点拨】由函数f (x )满足f (4-x )=f (x ),可知函数f (x )的图象关于直线x=2对称,先画出函数f (x )当x∈(-1,3]时的图象,再画出x∈[0,10]图象,可得g (x )在x≥0时零点的个数.10.如图,已知椭圆C l :211x +y 2=1,双曲线C 2:2222x y a b -=1(a>0,b>0),若以C 1的长轴为直径的圆与C 2的一条渐近线相交于A ,B 两点,且C 1与该渐近线的两交点将线段AB 三等分,则C 2的离心率为(A )5 (B 17(C 5(D )2147【学问点】椭圆、双曲线性质的应用 【答案解析】C 解析:解:由于AB 方程为by x a=,与椭圆方程联立得渐进线与椭圆在第一象限的交点横坐标22111x b a =+,由于且C 1与该渐近线的两交点将线段AB 三等分,由椭圆的对称性知该点到原点的距离为12116⨯2222112116111b ab a +=⨯+,整理得224b a =,得2222222215c a b b e a a a+===+=,得5e = C 【思路点拨】一般求离心率问题就是通过已知条件得到关于a ,b ,c 的关系式,再求ca即可,本题留意抓住AB 长为圆的直径,直线AB 与椭圆在第一象限的交点到原点的距离等于直径的16,即可建立a ,b ,c 关系.第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分答案填在答题卡上。
2021届四川省成都市普通高中高三毕业班上学期摸底测试(零诊)数学(理)试题(解析版)
绝密★启用前四川省成都市普通高中2021届高三毕业班上学期摸底测试(零诊)数学(理)试题(解析版)本试卷分选择题和非选择题两部分。
第I 卷(选择题)1至2页,第Ⅱ卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|02}A x x =<<,{|1}B x x =≥,则A B =C(A)}10|{≤<x x (B)}10|{<<x x(C)}21|{<≤x x (D)}20|{<<x x解:{|12}A B x x =≤<,故选C2.复数i i i z (22-=为虚数单位)在复平面内对应的点位于B (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 解:22(2)24242(2)(2)555i i i i z i i i i +-+====-+--+,其在复平面内对应的点的坐标为24(,)55-,故选B 3.已知函数=)(x f ⎩⎨⎧>≤-.0,ln 0|,1|x x x x ,则1(())f f e =D (A)0 (B)1 (C)1-e (D)2 解:11()ln 1f e e ==-,1(())(1)|2|2f f f e=-=-=,故选D 4.为了加强全民爱眼意识,提高民族健康素质,1996年,卫生部,教育部,团中央等12个部委联合发出通知,将爱眼日活动列为国家节日之一,并确定每年的6月6日为“全国爱眼日”.某校高=(1)班有40名学生,学号为01到40,现采用随机数表法从该班抽取5名学生参加“全国爱眼日’’宣传活动.已知随机数表中第6行至第7行的各数如下:16 22 77 94 39 49 54 43 54 8217 37 93 23 78 87 35 20 96 4384 26 34 91 64 84 42 17 53 3157 24 55 06 88 77 04 74 47 6721 76 33 50 25 83 92 12 06 76若从随机数表第6行第9列的数开始向右读则抽取的第5名学生的学号是C(A)17 (B)23 (C)35 (D)37 解:读取的前5名学生的学号依次是:39,17,37,23,35, 故选C5. ‘‘3=k ”是“直线2+=kx y 与圆122=+y x 相切”的A(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件解:直线2+=kx y 与圆122=+y x 相切时1=,解得k =.故选A6.已知离心率为2的双曲线22221(0x y a a b -=>,)0>b 与椭圆22184x y +=有公共焦点,则双曲线的方程为C。
四川省成都市龙泉驿区第一中学校2021届高三数学模拟考试试题理
成都龙泉中学2021届高考模拟考试试题(二)数学(理工类)(考试历时:120分 全卷满分:150分 )注意事项:1.答题时,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.选做题的作答:先把所做题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将答题卡上交;第Ι卷(选择题部份,共60分)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素组成空间直角坐标系上的坐标,则肯定的不同点的个数为A .6B .32C .33D .342.已知复数,则z 在复平面内对应的点在A .第一象限B .第二象限C .第三象限D .第四象限3. 若空间四条直线a 、b 、c 、d ,两个平面α、β,知足b a ⊥,d c ⊥,α⊥a ,α⊥c ,则A.α//bB.b c ⊥C.d b //D.b 与d 是异面直线4.设等差数列{}a n 的前n 项和S n ,且知足S 2 017>0,S 2 018<0,对任意正整数n ,都有||a n ≥||a k ,则k 的值为A.1 007B.1 008C.1 009D.1 010 5.执行如图所示的程序框图,则输出的S =A.4B.5151+ D.6输出Si=i+1S= 2,i=1S =S+1i+1+i i ≥15开始结束否是6.若直角坐标系内A 、B 两点知足:(1)点A 、B 都在()f x 图象上;(2)点A 、B 关于原点对称,则称点对(,)A B 是函数()f x 的一个“和谐点对”,(,)A B 与(,)B A 可看做一个“和谐点对”.已知函数22(0)()2(0)x x x x f x x e⎧+<⎪=⎨≥⎪⎩,则()f x 的“和谐点对”有A .1个B .2个C .3个D .4个7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为A.32643π-B .648π-C .16643π- D .8643π-8.已知下列命题:①命题“>3x ”的否定是“ <3x ”; ②“a >2”是“a >5”的充分没必要要条件; ③“若xy=0,则x=0且y=0”的逆否命题为真命题.④已知p 、q 为两个命题,若“”为假命题,则 “ ”为 真命题。
成都市2021届高三联考一诊模拟数学(理)试题及答案
绝密★启用前理科数学注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上第I 卷(选择题共60分)一、 选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{2,1,0,1}--B .{1,0,1,2}-C .{0,1}D .{1,0}-2.已知i 是虚数单位,设11izi,则复数2z +对应的点位于复平面 A .第一象限B .第二象限C .第三象限D .第四象限3.抛物线22y x =的焦点坐标为A .B .1(4,0)C .D .4.已知0.2log 2a =,,,则A.c a b <<B.a c b <<C.a b c <<D.b c a <<5、已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是()A .若//,//,m n αα则//m nB .若,,αγβγ⊥⊥则//αβC .若//,//,m m αβ则//αβD .若,,m n αα⊥⊥则//m n6.若πtan 34α⎛⎫+=- ⎪⎝⎭,则sin 2α= A .45B .1C .2D .35-7.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()()1,1f 处的切线方程为A .41y x =-B .24y x =-C .42y x =-D .26y x =-8.已知函数sin()y x ωϕ=+0,||2πωϕ⎛⎫><⎪⎝⎭,且此函数的图像如图所示,则此函数的解析式可以是A .1sin 24y x π⎛⎫=-⎪⎝⎭B .sin 28y x π⎛⎫=+⎪⎝⎭C .sin 24y x π⎛⎫=+⎪⎝⎭D .1sin 24y x π⎛⎫=+ ⎪⎝⎭9.下列命题中的真命题有A .已知,a b 是实数,则“1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭”是“33log log a b >”的充分而不必要条件 B .已知命题:0p x ∀>,总有(1)1xx e +>,则0:0p x ⌝∃≤,使得()011x x e +≤C .设,αβ是两个不同的平面,m 是直线且m α⊂.“//m β”是“//αβ”的充要条件D .“”的否定为“2,2xx R x ∀∈≤”10.如图为某几何体的三视图,已知正视图为一正方形和其内切圆组成,圆半径为1,则该几何体表面积为A .162π-B .16π+C .16π-D .162π+11.自古以来,人们对于崇山峻岭都心存敬畏,同时感慨大自然的鬼斧神工,一代诗圣杜甫曾赋诗《望岳》:“岱宗夫如何?齐鲁青未了.造化钟神秀,阴阳割昏晓.荡胸生层云,决毗入归鸟.会当凌绝顶,一览众山小.”然而,随着技术手段的发展,山高路远便不再人们出行的阻碍,伟大领袖毛主席曾作词:“桥飞架南北,天堑变通途”.在科技腾飞的当下,路桥建设部门仍然潜心研究如何缩短空间距离方便出行,如港珠澳跨海大桥等.如图为某工程队将A 到D 修建条隧道,测量员测得些数据如图所示(A ,B ,C ,D 在同一水平面内),则A ,D 间的距离为A .651213-kmB .65123-km C.35123-kmD .351213-km12、已知双曲线,O 为坐标原点,P,Q 为双曲线上两动点,且,则面积的最小值为()A .20B .15C .30D .25第II 卷(非选择题共90分)二、 填空题:本大题共4个小题,每小题5分,共20分。
四川省成都市2021届高三一诊考试试卷 理科数学 Word版含答案
成都市2022级高中毕业班第一次诊断性检测数学(理科)本试卷分选择题和非选择题两部分。
第1卷(选择题)1至2页,第Ⅱ卷(非选择题)2至4页,共4页,满分150分,考试时间120分钟。
第I卷(选择题,共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合U=R,A={x|x2-x-2>0).则(A)(-∞,-1) ⋃(2,+∞) (B)[-1,2](C)(-∞,-1] ⋃[2,+∞)(D)(-1,2)(2)命题“若a>b,则a+c>b+c"的否命题是(A)若a≤6,则a+c≤b+c(B)若a+c≤b+c,则a≤6(C)若a+c>b+c,则a>b(D)若a>b,则a+c≤b+c(3)执行如图所示的程序框图,假如输出的结果为0,那么输入的x为(A)19(B) -1或1 (C)l (D)一1(4)已知双曲线2222-1(0x ya ba b=>>)的左,右焦点分别为F1,F2,双曲线上一点P满足PF2⊥x轴,若|F1F2|=12,|PF2|=5,则该双曲线的离心率为(A) 1312(B)125(C)32(D)3(5)已知α为其次象限角,且sin2α=2425,则cosα-sinα的值为(A)75(B) 一75(C)15(D) 一15(6)(x+1)5(x-2)的开放式中x2的系数为(A) 25 (B)5 (C) - 15 (D) - 20(7)如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为(A) 136π (B) 34π (C) 25π (D) 18π(8)将函数f(x)=sin2x+3cos2x图象上全部点的横坐标伸长到原来的2倍(纵坐标不变),再将图象上全部点向右平移6π个单位长度,得到函数g (x)的图象,则g(x)图象的一条对称轴方程是(A)x=一6π(B)x=6π(C)x=2425π(D)x= 3π(9)在直三棱柱ABC-A1BlC1中,平面口与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面d.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α上平面BCFE.其中正确的命题有(A)①②(B)②③(C)①③(D)①②③(10)已知A,B是圆O:x2+y2=4上的两个动点,若M是线段AB的中点,则的值为(A)3 (B) 23(C)2 (D) -3(11)已知函数f(x)是定义在R上的偶函数,且f(-x-1)=f(x-1),当x∈[-1,0]时,f(x)= 一x3.则关于x的方程f(x ) =|cosπx|在[一52,12]上的全部实数解之和为(A) -7 (B) -6 (C) -3 (D) -1(12)已知曲线C1:y2 =tx (y>0,t>0)在点M(4t,2)处的切线与曲线C2:y=e x+l—1也相切,则tln24et的值为(A) 4e2 (B) 8e (C)2 (D)8第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.(13)若复数z=1aii+(其中a∈R,i为虚数单位)的虚部为-1,则a= .(14)我国南北朝时代的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势’’即是高,“幂”是面积.意思是:假如两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个外形不规章的封闭图形,图2是一个上底为l的梯形,且当实数t取[0,3]上的任意值时,直线y=t被图l和图2所截得的两线段长始终相等,则图l的面积为.(15)若实数x,y满足约束条件,则的最小值为(16)已知△ABC中,AC=2,BC=6,△ABC的面积为32,若线段BA的延长线上存在点D,使∠BDC=4π,则CD = .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)已知数列{a n }满足a l = -2,a n+1 =2a n +4. (I)证明数列{a n +4)是等比数列; (Ⅱ)求数列{|a n |}的前n 项和S n . (18)(本小题满分12分)某省2022年高中数学学业水平测试的原始成果采 用百分制,发布成果使用等级制.各等级划分标准为:85 分及以上,记为A 等;分数在[70,85)内,记为B 等;分数 在[60,70)内,记为C 等;60分以下,记为D 等.同时认 定A ,B ,C 为合格,D 为不合格,已知甲,乙两所学校同学 的原始成果均分布在[50,100]内,为了比较两校同学的 成果,分别抽取50名同学的原始成果作为样本进行统 计,依据[50,60), [60,70), [70,80), [80,90),[90 ,100]的分组作出甲校的样本频率分布直方图如图1所示,乙 校的样本中等级为C ,D 的全部数据的茎叶图如图2所示. (I)求图中x 的值,并依据样本数据比较甲乙两校的合 格率;(II)在选取的样本中,从甲,乙两校C 等级的同学中随 机抽取3名同学进行调研,用X 表示所抽取的3名同学中 甲校的同学人数,求随机变量X 的分布列和数学期望.(19)(本小题满分12分)如图1,在正方形ABCD 中,点E ,F 分别是 AB ,BC 的中点,BD 与EF 交于点H ,G 为BD 中点,点R 在线段BH 上,且BRRH =λ(λ>0).现将△AED ,△CFD ,△DEF 分别沿DE ,DF ,EF 折起,使点A ,C 重合于点B (该点记为P ),如图2所示. (I)若λ=2,求证:GR ⊥平面PEF ;(Ⅱ)是否存在正实数λ,使得直线FR 与平面DEF 所成角的正弦值为225?若存在,求出λ的值;若不存在,请说明理由.(20)(本小题满分12分)已知椭圆22:154x y E +=的右焦点为F ,设直线l :x=5与x 轴的交点为E ,过点F 且斜率为k 的直线l 1与椭圆交于A ,B 两点,M 为线段EF 的中点.(I)若直线l 1的倾斜角为4π,求△ABM 的面积S 的值;(Ⅱ)过点B 作直线BN ⊥l 于点N ,证明:A ,M ,N 三点共线 (21)(本小题满分12分)已知函数f(x)=xln(x+1)+(12一a )x+2一a ,a ∈R . (I)当x>0时,求函数g(x)=f(x)+ln(x+1)+ 12x 的单调区间;(Ⅱ)当a ∈Z 时,若存在x ≥0,使不等式f(x)<0成立,求a 的最小值. 请考生在第(22)、(23)题中任选一题作答,假如多做,则按所做的第一题计分. (22)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,倾斜角为α(α≠2π)的直线l 的参数方程为1cos ,sin ,x t y t αα=+⎧⎨=⎩(t 为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρcosx θ - 4sin θ=0.(I)写出直线l 的一般方程和曲线C 的直角坐标方程;(Ⅱ)已知点P(1,0).若点M 的极坐标为(1,2π),直线l 经过点M 且与曲线C 相交于A ,B 两点,设线段AB 的中点为Q ,求|PQ|的值.(23)(本小题满分10分)选修4-5:不等式选讲 已知函数f(x )=x +1+ |3 -x|,x ≥-1. (I)求不等式f(x )≤6的解集;(Ⅱ)若f(x )的最小值为n ,正数a ,b 满足2nab =a+2b ,求2a+b 的最小值.。
四川省成都市2021届高中毕业班第一次诊断性检测数学理试题 Word版含解析
四川省成都市2021届高中毕业班第一次诊断性检测 数学试题(理科)【试卷综述】本试卷是高三理科试卷,以基础学问和基本技能为载体,以力量测试为主导,在留意考查学科核心学问的同时,突出考查考纲要求的基本力量,重视同学科学素养的考查.学问考查留意基础、留意常规、留意主干学问,兼顾掩盖面.试题重点考查:集合、不等式、向量、三视图、导数、简洁的线性规划、直线与圆、数列、充要条件等;考查同学解决实际问题的综合力量,是份较好的试卷。
【题文】一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.设全集{|0}=≥U x x ,集合{1}=P ,则UP =(A )[0,1)(1,)+∞ (B )(,1)-∞ (C )(,1)(1,)-∞+∞ (D )(1,)+∞【学问点】集合的补集 A1【答案】【解析】A 解析:由于{|0}=≥U x x ,{1}=P ,所以U P =[0,1)(1,)+∞,故选A.【思路点拨】由补集运算直接计算可得.【题文】2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不行能是(A ) (B ) (C ) (D ) 【学问点】三视图 G2 【答案】【解析】C 解析:由题意可得,A 是正方体,B 是三棱柱,C 是半个圆柱,D 是圆柱,C 不能满足正视图和侧视图是两个全等的正方形,故选C. 【思路点拨】由三视图的基本概念即可推断.【题文】3.已知复数z 43i =--(i 是虚数单位),则下列说法正确的是(A )复数z 的虚部为3i - (B )复数z 的虚部为3 (C )复数z 的共轭复数为z 43i =+ (D )复数z 的模为5 【学问点】复数运算 L4【答案】【解析】D 解析:由复数概念可知虚部为-3,其共轭为43i -+,故选D. 【思路点拨】由复数概念直接可得.【题文】4.函数31,0()1(),03xx x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为(A ) (B ) (C ) (D ) 【学问点】函数的图像 B6 B8【答案】【解析】A 解析:当0x <时,将3y x =的图像向上平移一个单位即可;当0x ≥时,取1()3xy =的图像即可,故选A.【思路点拨】由基本函数3y x =和1()3xy =的图像即可求得分段函数的图像. 【题文】5.已知命题p :“若22≥+x a b ,则2≥x ab ”,则下列说法正确的是( ) (A )命题p 的逆命题是“若22<+x a b ,则2<x ab ” (B )命题p 的逆命题是“若2<x ab ,则22<+x a b ”(C )命题p 的否命题是“若22<+x a b ,则2<x ab ” (D )命题p 的否命题是“若22x a b ≥+,则2<x ab ”【学问点】四种命题 A2【答案】【解析】C 解析:“若p 则q ”的逆命题是“若q 则p ”,否命题是“若p ⌝则q ⌝”,故选C. 【思路点拨】将原命题的条件和结论互换位置即可得到逆命题,分别写出条件和结论的否定为否命题. 【题文】6.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是( )(A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3]【学问点】二次函数 B5【答案】【解析】B 解析:由于240+-=x ax 在区间[2,4]上有实数根,令2(x)4f x ax =+-所以(2)(4)0f f ≤ ,即()21240a x +≤,30a ∴-≤≤ ,故选B.【思路点拨】二次函数在给定区间上根的分布问题,只需找准条件即可,不能丢解.yx OxyOx y Ox yO【题文】7.已知F是椭圆22221+=x y a b (0>>a b )的左焦点,A 为右顶点,P 是椭圆上一点,⊥PF x 轴.若14=PF AF ,则该椭圆的离心率是( )(A )14 (B )34 (C )12 (D )32【学问点】椭圆的几何性质 H5【答案】【解析】B 解析:Rt PFA 中,222|PF ||FA ||PA |+=,||c FA a =+,2|PF |b a =, 又14=PF AF ,21(c)4b a a =+,得22430c ac a +-=,34c a ∴=,故选B.【思路点拨】Rt PFA 中, ||c FA a =+,2|PF |b a =,且14=PF AF,得22430c ac a +-=,可求离心率.【题文】8.已知m ,n 是两条不同直线,α,β是两个不同的平面,且//m α,n ⊂β,则下列叙述正确的是(A )若//αβ,则//m n (B )若//m n ,则//αβ (C )若n α⊥,则m β⊥ (D )若m β⊥,则αβ⊥ 【学问点】线线关系,线面关系 G4 G5【答案】【解析】D 解析:A 中m ,n 可能异面;B 中α,β可能相交;C 中可能m β⊂或//m β,故选D. 【思路点拨】生疏空间中线线,线面关系的推断,逐一排解即可.【题文】9.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是 (A )74π (B )94π (C )54π或74π (D )54π或94π【学问点】两角和与差的正弦、余弦 C7【答案】【解析】A 解析:()2αββαα+=-+,552sin =α,],4[ππα∈25cos 25α∴=-且[,]42ππα∈,又1010)sin(=-αβ,[,]42ππα∈,]23,[ππβ∈, 310cos()10βα∴-=-,因此sin()sin[()2]αββαα+=-+sin()cos 2cos()sin 2βααβαα=-+-102531052()()1051052=⨯-+-⨯=-,又5[,2]4παβπ+∈,所以74παβ+=,故选A. 【思路点拨】利用角的变换()2αββαα+=-+,得sin()sin[()2]αββαα+=-+sin()cos 2cos()sin 2βααβαα=-+-即可求解.【题文】10.如图,已知正方体1111ABCD A BC D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDDC 距离等于线段PF 的长.则当点P 运动时,2HP最小值是( )(A )21 (B )22 (C )23 (D )25 【学问点】点、线、面间的距离计算 G11 【答案】【解析】B 解析:点P 到平面11CDDC 距离就是点P 到直线1CC 的距离,所以点P 到点F 的距离等于点P 到直线1CC 的距离,因此点P 的轨迹是以F 为焦点,以1CC 为准线的抛物线,在面11A ABB 中作1HK BB ⊥于K ,连接KP ,在Rt HKP 中,222|HK ||PK ||HP |+=,而|HK |4=,要想2|HP |最小,只要|K |P 最小即可,由题意易求得min2|K |6P =,所以2|HP |最小值为22,故选B. 【思路点拨】留意到点P 到点F 的距离等于点P 到直线1CC 的距离,即点P 的轨迹是以F 为焦点,以1CC 为准线的抛物线,在Rt HKP 中,222|HK ||PK ||HP |+=,而|HK |4=,要想2|HP |最小,只要|K |P 最小即可.【题文】二、填空题:本大题共5小题,每小题5分,共25分.【题文】11.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹角的大小为__________.【学问点】向量的夹角 F3【答案】【解析】090解析:a b a b +=-22||||a b a b ∴+=-,即0a b =,所以a b ⊥,a ,b 的夹角为090,故答案为090.【思路点拨】由a b a b +=-可得0a b =,所以夹角为090.【题文】12.二项式261()x x -的开放式中含3x 的项的系数是__________.(用数字作答)【学问点】二项式定理 J3【答案】【解析】-20解析:2r 6r 6r 361661()()(1)r r r r T C x C x x ---+=-=-,求开放式中含3x 的项的系数,此时3633r r -=∴=,因此系数为6r 366(1)120r C C --=-⨯=-,故答案为-20.【思路点拨】利用通项2r 6r 6r 361661()()(1)r r r r T C x C xx ---+=-=-,可求r,即可求出系数.【题文】13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B ,则∆ABC 的面积=S __________.【学问点】余弦定理,正弦定理 C8【答案】152222cos b a c ac B =+-,得222116444a a a =+-⨯,2,4a c ∴==.面积1115sin 241522S ac B ==⨯⨯=15【思路点拨】【思路点拨】由余弦定理2222cos b a c ac B =+-可求24a =,再利用1sin 2S ac B =即可.【题文】14.已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________.【学问点】充分、必要条件 A2【答案】【解析】[2,0]-解析:由于0x ≥时,奇函数3()log (1)=+f x x ,所以函数()f x 在R 上为增函数,2[(2)](22)f x a a f ax x ++≤+,2(2)22x a a ax x ∴++≤+,即()222(2)0x a x a a -+++≤,2a x a ∴≤≤+,{|2}A x a x a =≤≤+,{|22}B x x =-≤≤,由于“x A ∈”是“x B ∈”的充分不必要条件,所以A B ⊄,即22022a a a ≥-⎧∴-≤≤⎨+≤⎩,故答案为[2,0]-.【思路点拨】由于“x A ∈”是“x B ∈”的充分不必要条件,所以A B ⊄,然后依据题意分别求出集合,A B 即可.【题文】15.已知曲线C :22y x a =+在点n P (2)n n a +(0,a n >∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且00=x y .给出以下结论:①1a =;②当*n ∈N 时,n y 的最小值为54;③当*n ∈N 时,221n k n <+;④当*n ∈N 时,记数列{}n k 的前n 项和为n S ,则2(11)<+n S n .其中,正确的结论有 (写出全部正确结论的序号)【学问点】命题的真假推断A2 【答案】【解析】①③④解于曲线C :析:由22y x a =+,所以()2'2'2y yy ==,即1'y k y ===,n k =,点nP (n (0,a n >∈N )处的切线n l为)y x n =-,,n n x n a y ∴=--=, ①00|x ||y |=,0,||1n a a ∴=-=∴= ,正确;②1122n y ===12=112≥⨯=,所以n y 的最小值为1,错误;③1012n <≤,sin ∴><亦即n k<,正确;④n k==121n n n<++=+,22(2n 1)<+,<,<=,由于n k =,所以122(21321)n n S kk k n n =+++<-+-+++- 1)=, 故正确.【思路点拨】依题意,分别求出n k =,n n x n a y =--=,依次进行推断即可.【题文】三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.【题文】16.(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球. (Ⅰ)求恰有一个黑球的概率;(Ⅱ)记取出红球的个数为随机变量X ,求X 的分布列和数学期望()E X . 【学问点】古典概型,分布列 K2 K6【答案】【解析】(Ⅰ)15 (Ⅱ)X 的分布列为:X 的数学期望1310121555=⨯+⨯+⨯=EX(Ⅰ)记“恰有一个黑球”为大事A ,则21243641()205⋅===C C P A C .……………………………………………………4分(Ⅱ)X 的可能取值为0,1,2,则343641(0)205====C P X C ………………………………………………………2分122436123(1)205⋅====C C P X C …………………………………………………2分1(2)()5===P X P A ……………………………………………………2分∴X 的分布列为∴X 的数学期望1310121555=⨯+⨯+⨯=EX .………………………………2分【思路点拨】)X 的可能取值为0,1,2,再分别求出(0)P X =,(1)P X =,(2)P X = 即可.【题文】17.(本小题满分12分)如图,ABC ∆为正三角形,EC ⊥平面ABC ,//DB EC ,F 为EA 的中点,2EC AC ==,1BD =. (Ⅰ)求证:DF //平面ABC ;(Ⅱ)求平面DEA 与平面ABC 所成的锐二面角的余弦值.DBCAFE【学问点】线面平行,空间向量解决线面位置关系 G4 G10【答案】【解析】(Ⅰ)略(Ⅱ)22(Ⅰ)证明:作AC 的中点O ,连结BO . 在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC .∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 平面ABC ,⊂OB 平面ABC . ∴//DF 平面ABC .……………………………………4分 (Ⅱ)∵//FO EC ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直. 分别以,,OA OB OF 为,,z x y 轴,建系如图.则(1,0,0)A ,(1,0,2)-E ,3,1)D . ∴(2,0,2)=-AE ,(13,1)=-AD . 设平面ADE 的一个法向量为1(,,z)=x y n ,则1100⎧⋅=⎪⎨⋅=⎪⎩AE AD n n ,即22030-+=⎧⎪⎨-+=⎪⎩x z x z ,令1=x ,则1,0==z y . ∴平面ADE 的一个法向量为1(1,0,1)=n . 又平面ABC 的一个法向量为2(0,0,1)=n .∴1212122,22⋅>===cos <n n n n n n .∴平面DEA 与平面ABC 所成的锐二面角的余弦值2.…………………………8分【思路点拨】(Ⅰ)求证线面平行,可以利用线线平行,本题很简洁找出//DF OB ; (Ⅱ)分别求平面DEA 与平面ABC 的法向量1(1,0,1)=n 2(0,0,1)=n ,∴1212122,22⋅>===cos <n n n n n n ,即可求出余弦值.【题文】18.(本小题满分12分) 已知数列{}n a 的前n 项和为nS ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n n nc a b =,*n ∈N .求数列{}n c 的前n 项和nT .【学问点】等差数列,等比数列 【答案】【解析】(Ⅰ)2n n a =,21n b n =-(Ⅱ)1(23)24+=-+n n T n(Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ).又当1≥n 时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n nn a .…………………………………4分又由题意知,11b =,12n n b b +=+,即12+-=n n b b∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .………………………2分(Ⅱ)(Ⅱ)由(Ⅰ)知,(21)2=-nn c n …………………………………………1分∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n nn T n n231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n ……………1分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n ……………………………………………1分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n …………………………………3分【思路点拨】(Ⅰ)由条件直接求解即可; (Ⅱ)数列(21)2=-nn c n ,为差比数列,利用错位相减法直接求解.【题文】19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象.(Ⅰ)依据图象,求A ,ω,ϕ,B 的值;(Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必需停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:【学问点】函数模型及其应用B10【答案】【解析】(Ⅰ)1,22A B == ,12T =,6πω=(Ⅱ)11.625时 (Ⅰ)由图知12T =,6πω=.………………………………………………1分2125.15.22min max =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分 即2)26sin(21)(++=ππt t f .(Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间.t (时)101112 11.5 11.25 11.75 11.625 11.6875 ()f t (万千瓦时) 2.25 2.433 2.5 2.48 2.462 2.496 2.490 2.493 ()g t (万千瓦时) 5 3.522.753.1252.3752.5632.469由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t . 又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分∵1.00625.0625.116875.11<=-. ……………………………………………1分∴应当在11.625时停产.……………………………………………………………1分(也可直接由0)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产).【思路点拨】(Ⅰ)由三角函数图像可直接求)1,22A B == ,12T =,6πω=,代点(0,2.5)可求2πϕ=;(Ⅱ)理解二分法定义即可求解本题.【题文】20.(本小题满分13分)已知椭圆Γ:12222=+b ya x (0>>b a )的右焦点为)0,22(,且椭圆Γ上一点M 到其两焦点12,F F 的距离之和为43.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:(l y x m m =+∈R)与椭圆Γ交于不同两点A ,B ,且32AB =.若点0(,2)P x 满足=PA PB,求x 的值.【学问点】直线与椭圆H8【答案】【解析】(Ⅰ)141222=+yx (Ⅱ)0x 的值为3-或1-(Ⅰ)由已知243=a 得23=a ,又22=c . ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分(Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴2222129312(312)21244=+-=⨯--=⨯-+AB k x x m m m .又由32AB =,得231294-+=m ,解之2m =±.……………………………3分据题意知,点P 为线段AB 的中垂线与直线2=y 的交点.设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=,当2m =时,31(,)22E - ∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--.令2=y ,得03x =-.…………………………………………………………………2分当2m =-时,31(,)22E - ∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+.令2=y ,得01x =-.………………………………………………………………2分综上所述,0x 的值为3-或1-.【思路点拨】联立直线与椭圆,可得2m =±,由于=PA PB,所以点P 为线段AB 的中垂线与直线2=y 的交点,分状况争辩即可求0x .【题文】21.(本小题满分14分)已知函数2()ln mx f x x =-,2()e mxmx g x m =-,其中m ∈R 且0m ≠.e 2.71828=为自然对数的底数.(Ⅰ)当0m <时,求函数()f x 的单调区间和微小值;(Ⅱ)当0m >时,若函数()g x 存在,,a b c 三个零点,且a b c <<,试证明:10e a b c -<<<<<;(Ⅲ)是否存在负数m ,对1(1,)x ∀∈+∞,2(,0)x ∀∈-∞,都有12()()f xg x >成立?若存在,求出m 的取值范围;若不存在,请说明理由.【学问点】函数综合B14【答案】【解析】(Ⅰ)()2f x me=-极小值(Ⅱ)略(Ⅲ)(,(21)∈-∞-+m e e解:(Ⅰ)2222)(ln )ln 21()(ln ln 2)(ln 1ln 2)(x x mx x x x x m x x x x x mx f -⋅=-=⋅--='(0>x 且1≠x ).∴由0)(>'x f ,得21e x >;由0)(<'xf ,得210e x <<,且1≠x .…………………1分∴函数)(x f的单调递减区间是(0,1),(1,单调递增区间是),(+∞e .……………2分 ∴mee f x f 2)()(-==极小值.……………………………………………………………1分(Ⅱ)222(2)(),(0)mx mx mx mxmxe mx e m mx mx g x m e e --'=-=>.∴()g x 在(,0)-∞上单调递增,2(0,)m 上单调递减,2(,)m +∞上单调递增.∵函数()g x 存在三个零点.∴20(0)02402()00>⎧>⎧⎪⎪⎪⇒⇒<<⎨⎨<⎪⎪-<⎩⎪⎩m g m e g m m m e .∴02<<me …………………………………………………………………………………3分由(1)(1)0-=-=-<m mg m me m e . ∴22()(1)0=-=-<em em me e g e m m e e .……………………………………………………1分综上可知,()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得:(1,0),(0,),(,)a b e c e ∈-∈∈+∞.即10a b e c -<<<<<,得证.…………………………………………………………1分 (III )由题意,只需min max()()>f x g x∵2(12ln )()(ln )-'=mx x f x x由0<m ,∴函数()f x 在12(1,)e 上单调递减,在12(,)e +∞上单调递增. ∴12min ()()2==-f x f e me .………………………………………………………………2分∵(2)()-'=mx mx mx g x e由0<m ,∴函数()g x 在2(,)m -∞上单调递增,2(,0)m 上单调递减.∴max 224()()==-g x g m m e m .…………………………………………………………2分 ∴242->-me m e m ,不等式两边同乘以负数m ,得22242-<-m e m e .∴224(21)e m e +>,即224(21)m e e >+. 由0<m,解得m <.综上所述,存在这样的负数(,∈-∞m 满足题意.……………………………1分【思路点拨】(Ⅰ)2(12ln )()(ln )mx x f x x ⋅-'=,由0)(>'x f 和0)(<'x f ,求得其单调区间,进而可求极值 ;(Ⅱ)(2)(),(0)mx mx mx g x m e -'=>,∴()g x 在(,0)-∞上单调递增,2(0,)m 上单调递减,2(,)m +∞上单调递增,得()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得10a b e c -<<<<<.(III )由题意,只需min max()()>f x g x ,12min()()2==-f x f e me ,max 224()()==-g x g m m e m ,求解即可.。
四川省成都市第七中学2021年高三零诊模拟数学(理)试题
12.函数/(力=5111£(485--1)的最小正周期是()
A. -B. —C.乃D.24
33
12.如图,已知AA5C,其内部有一点0满足ZOAB=ZOAC=ZOBC=ZOCA= 8,命题〃:©最大值有可能超过36度;命题“:若三边长对应分别为。*,c,则/ 二儿: 则正确的选项为()
川省成都市第七中学
学校:姓名:班级:考号:
一、单选题
1.已知集合4 ={刈工一1]<1},B = {x|x2-1<0},则AU6=()
A. (-1,1)B. (-1,2)C. (1,2)D. (0,1)
2.若二^ =1 + 2,,则及数〃=()
2 + i
A.-5-iB. -5 + /C. 5-ZD. 5 + i
过定点,如果是,请求出定点坐标,如果不是,请说明理由.
21.设函数/(x) = e*L(2x+l) — o¥,其中
(1)当4 = 0时,/(X)的零点个数;
(2)若/(x)<0的整数解有且唯一,求。的取值范胤
22.在极坐标系下,已知圆。:夕=cos,+sin。和直线
C.12.0万元D. 12.2万元
。为AO边上靠近点A的三等分点,则()
B.BO = -AB--AC62
D.BO = --AB + -AC66
6.执行如图的程序框图,则输出工的值是(
7
8.等差数列{%}中的〃?、是函数/(力=1/一4/ + 61一1的两个极值点,则
lOg?(见,^2017 ・ 〃4032 )=(
9.以下三个命题正确的个数有()个.①若标+N工5,则。W1或/?02;②定义
2021届四川省成都市高三理数零诊考试试卷及答案
高三理数零诊考试试卷一、单项选择题1.设全集,集合,那么〔〕A.B.C.D.2.函数那么〔〕3.某校为增强学生垃圾分类的意识,举行了一场垃圾分类知识问答测试,总分值为100分.如以下列图的茎叶图为某班20名同学的测试成绩(单茎位:分).那么这组数据的极差和众数分别是〔〕A.20,88B.30,88C.20,82D.30,914.假设实数,满足约束条件,那么的最大值为〔〕5.双曲线的一个焦点到其中一条渐近线的距离为,那么该双曲线的渐近线方程为〔〕A.B.C.D.6.记函数的导函数为.假设,那么〔〕7. 为圆上一动点,那么点到直线的距离的最大值是〔〕A.B.C.D.8.直线,.那么“ 〞是“ 〞的〔〕如以下列图的程序框图,那么输出的的值是〔〕A.B.C.D.10.在三棱锥中,平面,,,假设该三棱锥的顶点都在同一个球面上,那么该球的外表积为〔〕A.B.C.D.11.函数,.假设对任意,且,都有,那么实数的取值范围是〔〕A.B.C.D.12.设抛物线的焦点为,准线为,过抛物线上一点作的垂线,垂足为,设,与相交于点.假设,且的面积为,那么点到准线的距离是〔〕A.B.C.D.二、填空题13.设复数( 为虚数单位),那么________.14.一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见不是红灯亮的概率为________.15.关于,的一组数据:1 3 4 5根据表中这五组数据得到的线性回归直线方程为,那么的值为________.16. 是定义在上的奇函数,当时,有以下结论:①函数在上单调递增;②函数的图象与直线有且仅有2个不同的交点;③假设关于的方程恰有4个不相等的实数根,那么这4个实数根之和为8;④记函数在上的最大值为,那么数列的前项和为.其中所有正确结论的编号是________.三、解答题17.函数,其中.假设函数的图象在点处的切线与直线平行.〔1〕求的值;〔2〕求函数的极值.18.“2021年全国城市节约用水宣传周〞已于5月9日至15日举行.成都市围绕“贯彻新开展理念,建设节水型城市〞这一主题,开展了形式多样,内容丰富的活动,进一步增强全民保护水资源,防治水污染,节约用水的意识.为了解活动开展成效,某街道办事处工作人员赴一小区调查住户的节约用水情况,随机抽取了300名业主进行节约用水调查评分,将得到的分数分成6组:,,,,,,得到如以下列图的频率分布直方图.〔1〕求的值,并估计这300名业主评分的中位数;〔2〕假设先用分层抽样的方法从评分在和的业主中抽取5人,然后再从抽出的这5位业主中任意选取2人作进一步访谈,求这2人中至少有1人的评分在的概率.19.如图,在四棱锥中,,,为棱的中点,,.〔1〕求证:平面;〔2〕假设平面平面,是线段上的点,且,求二面角的余弦值.20.椭圆的左,右焦点分别为,,点在椭圆上,,,且椭圆的离心率为.〔1〕求椭圆的方程;〔2〕设直线与椭圆相交于,两点,为坐标原点.求面积的最大值.21.函数,其中.〔1〕讨论函数的单调性;〔2〕当时,假设满足,证明:.22.在直角坐标系中,曲线的参数方程为( 为参数),以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,〔1〕求曲线的普通方程和直线的直角坐标方程;〔2〕在曲线上任取一点,保持纵坐标不变,将横坐标伸长为原来的倍得到曲线.设直线与曲线相交于,两点,点,求的值.答案解析局部一、单项选择题1.【解析】【解答】因为,,所以.故答案为:B.【分析】根据补集的概念即可求出答案。
2021届四川省成都市新都区高三毕业班摸底测试理科数学试题
新都区2021届高三毕业班摸底测试数学试题(理)本试卷分选择题和非选择题两部分,满分150分,考试时间120分钟。
注意事项:1.答题前,务必将姓名、考场号、座位号填写在答题卡规定的位置上,并将考生条形码粘贴在规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色墨迹签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
一.选择题(本大题共12小题,每小题5分,共60分,每小题有且只有一个正确选项。
) 1.已知集合2{20}{12}P x x x Q x x =-=<≥,≤,则()R P Q =( ).A .[0,1)B .(0,2]C .(1,2)D .[1,2] 2.设复数z 满足:(1)2i z i +=-,则z 的虚部为( ).A .12iB .12C .32i -D .32-3.已知n S 是等差数列{}n a 的前n 项和,13581023()36a a a a a ++++=(),则11=S ( ).A .33B .55C .44D .66 4.若实数,a b 满足3412a b ==,则11a b+=( ). A .12 B .15C .16D .15. 已知函数2()cos (1)f x x x a x =+-是奇函数,则曲线()y f x =在点(0,(0))f 处的切线方程是( ).A. 20x y -=B. 0x y -=C. 20x y +=D. 20x y -=6.已知α是锐角,若1sin()44πα-=,则cos2=α( ).A. C.78- D.787.给出下列说法:①回归直线ˆˆˆy bx a =+恒过样本点的中心x y (,),且至少过一个样本点; ②两个变量相关性越强,则相关系数||r 就越接近1;y x O A x y O B x y O C x y OD ③某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的方差22s <;④在回归直线方程ˆ20.5yx =-中,当解释变量x 增加一个单位时,预报变量ˆy 平均减少0.5个单位.其中说法正确的是( ).A.①②④B. ②③④C.①③④D.②④8.已知奇函数()f x 是R 上的减函数,若m n ,满足不等式组()(2)0(1)0()0f m f n f m n f m +-≥⎧⎪--≥⎨⎪≤⎩,则2m n -的最小值为( ). A. 4-B. 2-C.0D. 49.已知双曲线()2222:10,0x y E a b a b-=>>的右顶点为A ,抛物线2:8C y ax =的焦点为F .若在E的渐近线上存在点P ,使得AP FP ⊥,则E 的离心率的取值范围是 ( ). A. (1,2) B. 321,4⎛⎤ ⎥ ⎥⎝⎦ C. 32,4⎡⎫+∞⎪⎢⎪⎢⎣⎭D. (2,+∞) 10.已知函数12()sin()12xxf x x α-=++x R ∈,则当[0,]απ∈时,函数()f x 的图象不可能是( ).11.在三棱锥P ABC -中,PA ⊥平面ABC ,BA BC =,90PBC ∠=︒,2PA =,若三棱锥P ABC -的体积为6,则三棱锥P ABC -外接球的表面积为( ).A .18πB .24πC .36πD .40π12.已知函数()f x 满足:当0x ≤时,2(2)()f x f x -=,且当(2,0]x ∈-时,()|1|1f x x =+-;当0x >时,()log (0a f x x a =>且1a ≠).若函数()f x 的图象上关于原点对称的点恰好有3对,则a 的取值范围是( ).A .(9,625)B .(4,64)C .(9,64)D .(625,)+∞二、填空题(本大题共4小题,每小题5分,共20分。
2021年四川省成都市十四中学高三数学理模拟试题含解析
2021年四川省成都市十四中学高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设函数若关于x的方程有四个实数解,其中,则的取值范围是()A. (0,101]B. (0,99]C. (0,100]D. (0,+∞)参考答案:B【分析】画出函数图像,根据图像知:,,,计算得到答案.【详解】,画出函数图像,如图所示:根据图像知:,,故,且.故.故选:B. 【点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.2. 设数列为等差数列,其前n项和为,,,若对任意,都有成立,则k的值为()A.22 B.21 C.20D.19参考答案:D3. 复数,则在复平面上对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:D4. 已知函数f(x)=log a x(0<a<1),则函数y=f(|x|+1)的图象大致为()A.B.C.D.参考答案:A【考点】对数函数的图象与性质.【分析】利用特殊点代入计算,排除即可得出结论.【解答】解:由题意,x=0,y=f(1)=0,排除C,D.x=1,y=f(2)<0,排除B,故选A.5. 设方程2x+2x=10的根为,则()A.(0, 1) B.(1, 2) C.(2, 3) D.(3, 4)参考答案:C6. 若cosθ=,θ为第四象限角,则cos(θ+)的值为()A.B.C.D.参考答案:B【考点】两角和与差的余弦函数.【分析】可先由同角三角函数的基本关系求出θ的正弦,然后由余弦的和角公式求出的值即可得到答案【解答】解:cosθ=,θ为第四象限角,得sinθ=﹣=﹣,∴cos(θ+)=cosθcos﹣sinθsin=×+×=.故选:B7. 设数列{}是等差数列,数列{}是等比数列,记数列{}、{}的前项和分别为、.若、,且,则=____________参考答案:略8. 已知,则()A.-3 B.C.D.3参考答案:D9. 已知,则等于()A. B. C. D.参考答案:D略10. 设函数,若时,有,则实数的取值范围是()A. B. C.D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 已知双曲线C:的右顶点为A,以点A为圆心,b为半径作圆,且圆A与双曲线C的一条渐近线交于M、N两点,若(O为坐标原点),则双曲线C的标准方程为________.参考答案:【分析】如图,不妨设圆与双曲线的一条渐近线,交于,两点,过点作垂直于该渐近线于点,连接,先求出,,,再由题得到,求出,即得双曲线的标准方程.【详解】由双曲线的方程:,知,不妨设圆与双曲线的一条渐近线,交于,两点,过点作垂直于该渐近线于点,连接,如图.点到渐近线的距离.∵,∴.∵,∴,∴,∴.在中,,,,,即,,∴,∴,∴双曲线的标准方程为.故答案为:【点睛】本题主要考查双曲线的简单几何性质的应用,考查圆的几何性质,考查平面向量的应用,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.12. 己知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q 两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为______.参考答案:【分析】可以求出原点作一条倾斜角为直线方程,与双曲线方程联立,求出两点坐标,已知线段为直径的圆过右焦点,所以有,结合,求出双曲线的离心率.【详解】过原点作一条倾斜角直线方程为,解方程组:或,设,,因为线段为直径的圆过右焦点,所以,因此有,,化简得 ,所以有,解得.【点睛】本题考查了求双曲线的离心率,解题的关键是利用已知条件构造向量式,利用求出双曲线的离心,考查了数学运算能力.其时本题也可以根据平面几何图形的性质入手,由双曲线和直线的对称性,可设在第一象限,线段为直径的圆过右焦点,显然,直线的倾斜角为,这样可以求出的坐标,代入双曲线方程中,也可以求出双曲线的离心率.13. 记,当时,观察下列等式可以推测A-B=_______________参考答案:略14. 已知高为8的圆柱内接于一个直径为10的球内,则该圆柱的体积为 .参考答案:15. 16.①②④15. 已知直线与圆相交于A ,B 两点,且△ABC 为等腰直角三角形,则实数a的值为 ※※ .参考答案:或.为等腰直角三角形,等价于圆心到直线的距离等于,即,解得或.16. 地球北纬45圈上有两点,点在东经1300 处,点在西经1400 处,若地球半径为,则两点的球面距离为 ___________参考答案:略17. 执行如图2的程序框图,如果输入的N 的值是6,那么输出的p 的的值是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.设集合 A {x | 0 x 2} , B {x | x 1} ,则 A B
(A){x | 0 x 1}
(B){x | 0 x 1}
组数 分组 频数
第一组 [25,30) 200
第二组 [30,35) 300
第三组 [35,40) m
第四组 [40,45) 150
第五组 [45,50) n
第六组 [50,55] 50
合计
1000
各年龄段频数分布表
(I)请补全各年龄段人数频率分布直方图,并求出各年龄段频数分布表中 m, n 的值;
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.把答案填在答题卡上.
13.已知呈线性相关的变量 x, y 之间的关系如下表:
2
由表中数据得到的回归直线方程为 yˆ 1.6x aˆ .则当 x 8 时, yˆ 的值为
.
14.函数 f (x) 2e2x 3 的图象在 x 0 处的切线方程为
3
(Ⅱ)现从年龄在[30,40) 段中采用分层抽样的方法选取 5 名代表参加垃圾分类知识交流活动,应社区要求,
机数表中第 6 行至第 7 行的各数如下:
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
x2 a2
y2 b2
1(a
0 ,b
0) 与椭圆
x2 8
y2 4
1有公共焦点,则
双曲线的方程为
(A) x2 y2 1(B) x2 y2 1(C) x2 y2 1(D) x2 y2 1
4 12
1Байду номын сангаас 4
3
3
7.执行如图所示的程序框图,则输出的结果 S 为
(A) 1
2
(B)
(C) 0
2
(D) 1 2 2
.
三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分 12 分) 2019 年 12 月,《生活垃圾分类标志》新标准发布并正式实施,为进一步普及生活垃圾分类知识,了解居民 生活垃圾分类情况,某社区开展了一次关于垃圾分类的问卷调查活动,并对随机抽取的 1000 人的年龄进 行了统计,得到如下的各年龄段频数分布表和各年龄段人数频率分布直方图:
xOy
中,已知直线
l
:
y
k(x
1)
与曲线 C
:
x
y
1 sin 2 sin cos
(
为参数
)
在第一象限恰有两个不同的交点,则实数 k 的取值范围为
(A) (0,1) (B) (0, 1 ) (C)[ 2 ,1) (D)[ 2 , 1)
2
3
32
11.已知函数 f (x) | x | .若 a f (ln 2) , b f ( ln 3) , c f (e) ,则 a,b,c 的大小关系为 A ln | x |
若从随机数表第 6 行第 9 列的数开始向右读则抽取的第 5 名学生的学号是
(A)17
(B)23
(C)35
(D)37
5. ‘‘ k 3 ”是“直线 y kx 2 与圆 x2 y2 1相切”的
(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件
6.已知离心率为 2 的双曲线
1
8.设函数
f
(x) 的导函数是
f
'(x) .若
f
(x)
f
'( )x2
cos x
,则
f
'(
)
6
(A) 1 2
1
(B)
2
3
(C)
2
(D) 3 2
9.如图是某几何体的三视图,若三视图中的圆的半径均为 2,则该几何体的表面积为
(A)14 (B)16 (C)18 (D) 20
10.在平面直角坐标系
(C){x |1 x 2}
(D){x | 0 x 2}
2.复数
z
2i 2
i
(i
为虚数单位
)
在复平面内对应的点位于
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
3.已知函数
f
(x)
| x 1|, x ln x, x 0.
0
,则
f
(
f
(1)) e
(A) 0 (B)1
(C) e 1
成都市 2018 级高中毕业班摸底测试 数 学(理科)
本试卷分选择题和非选择题两部分。第 I 卷(选择题)1 至 2 页,第Ⅱ卷(非选择题)3 至 4 页,共 4 页, 满分 150 分,考试时间 120 分钟。 注意事项: 1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。 2.答选择题时,必须使用 2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后, 再选涂其它答案标号。 3.答非选择题时,必须使用 0.5 毫米黑色签字笔,将答案书写在答题卡规定的位置上。 4.所有题目必须在答题卡上作答,在试题卷上答题无效。 5.考试结束后,只将答题卡交回。
.
15.已知甲,乙,丙三个人中,只有一个人会中国象棋,甲说:“我会”;乙说:“我不会”;丙说:“甲不会”.如
果这三句话只有一句是真的,那么甲,乙,丙三个人中会中国象棋的是
.
16 . 已 知 点
P
在椭圆
x2 a2
y2 b2
1(a b
0)
上,
F1
是椭圆的左焦点,线段
PF1
的中点在圆
x2 y2 a2 b2 上.记直线 PF1 的斜率为 k ,若 k 1,则椭圆离心率的最小值为
(A) b c a (B) b a c (C) a b c (D) a c b
12.设 k,b R ,若关于 x 的不等式 ln(x 1) x kx b 在 (1, ) 上恒成立,则 b 1 的最小值是 k 1
(A)
e2
(B)
1 e 1
(C)
1 e2
(D) e
1
第Ⅱ卷(非选择题,共 90 分)
(D) 2
4.为了加强全民爱眼意识,提高民族健康素质,1996 年,卫生部,教育部,团中央等 12 个部委联
合发出通知,将爱眼日活动列为国家节日之一,并确定每年的 6 月 6 日为“全国爱眼日”.某校高=(1)班有
40 名学生,学号为 01 到 40,现采用随机数表法从该班抽取 5 名学生参加“全国爱眼日’’宣传活动.已知随