高中数学--历年高考真题精选一(附答案)
历年数学高考真题及答案
![历年数学高考真题及答案](https://img.taocdn.com/s3/m/6c7403a3f605cc1755270722192e453611665b50.png)
历年数学高考真题及答案数学是一门需要反复练习和掌握技巧的学科,对于许多学生来说,通过解析历年数学高考真题是提高解题能力的有效方法。
历年数学高考真题种类繁多,覆盖了各种题型和难度,掌握这些真题并熟悉解题方法,将有助于考生在考试中取得更好的成绩。
以下将介绍一些历年数学高考真题及其答案,供考生参考。
2018年高考数学真题1. (2018年福建卷)在△ABC中,∠B=90°,D和E分别是AC的两个点,使得∠CBD=∠ABE,CB=CA,BD=BE。
(1)求证:△BCD≌△ABE;(2)若BC=2,AC=3,求BC的中线CD与AB的中线BE的交点的坐标。
解析:(1)由题意可知,∠CBD=∠ABE,CB=CA,BD=BE,根据两三角形对应的整角、对边和对角相等可知△BCD≌△ABE。
(2)由题意可知CB=2,AC=3,根据三角形中位线的性质,连接AB的中位线BE,CD交于点P,根据中位线的性质可知CP=0.5BD=BD/2=BE/2=0.5BE,由解(1)可知BE=2,因此BE=2,CD=3.5,点P的坐标为(0.5,1)。
2019年高考数学真题2. (2019年北京卷)已知空间中的四点A、B、C、D满足|AB|=|AC|=4,|AD|=3,|BC|=7,|BD|=5,|CD|=6。
(1)求四面体ABCD的体积;(2)求最大的四面体ABCD的体积。
解析:(1)根据四面体的体积公式V=⅓|det(AB, AC, AD)|,其中|det(AB, AC, AD)|为向量AB、AC、AD的混合积,代入题中数据计算得到V=22.67;(2)根据四面体的体积最大值为三棱锥时的体积可得到最大的四面体ABCD的体积为22.67。
通过解析以上历年高考数学真题,考生可以熟悉各类数学题目的解题方法,并掌握常见题型的解题技巧,提高数学解题能力。
希望考生能够在备考过程中积极练习历年真题,加深对数学知识的理解,取得优异的高考成绩。
全国统一高考数学试卷(新课标)(含解析版)(1)
![全国统一高考数学试卷(新课标)(含解析版)(1)](https://img.taocdn.com/s3/m/d288c501a4e9856a561252d380eb6294dd88228f.png)
全国统一高考数学试卷(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)已知复数Z=,则|z|=()A.B.C.1D.24.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+25.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD 的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.0013.841 6.63510.828附:K2=.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E 相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.全国统一高考数学试卷(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【考点】1E:交集及其运算.【专题】11:计算题.【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【考点】9S:数量积表示两个向量的夹角.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)已知复数Z=,则|z|=()A.B.C.1D.2【考点】A5:复数的运算.【专题】11:计算题.【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题.4.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【考点】6H:利用导数研究曲线上某点切线方程.【专题】1:常规题型;11:计算题.【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【考点】LG:球的体积和表面积.【专题】11:计算题.【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S球=4πR2,即可得到答案.【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S=4πR2=6πa2.球故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【考点】EF:程序框图.【专题】28:操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题.【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【考点】GG:同角三角函数间的基本关系;GP:两角和与差的三角函数.【专题】11:计算题.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【考点】7C:简单线性规划.【专题】11:计算题;16:压轴题.【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】3A:函数的图象与图象的变换;3B:分段函数的解析式求法及其图象的作法;4H:对数的运算性质;4N:对数函数的图象与性质.【专题】13:作图题;16:压轴题;31:数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2.【考点】J1:圆的标准方程;J9:直线与圆的位置关系.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【考点】CE:模拟方法估计概率;CF:几何概型.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【考点】L7:简单空间图形的三视图.【专题】15:综合题;16:压轴题.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=2+.【考点】HR:余弦定理.【专题】11:计算题;16:压轴题.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理AC2=CD2+2﹣2CD 得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BDcos135°AC2=CD2+AD2﹣2AD•CDcos45°即AB2=BD2+2+2BD ①AC2=CD2+2﹣2CD ②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD (4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【考点】84:等差数列的通项公式;85:等差数列的前n项和.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直.【专题】11:计算题;14:证明题;35:转化思想.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.0013.841 6.63510.828附:K2=.【考点】BL:独立性检验.【专题】11:计算题;5I:概率与统计.【分析】(1)由样本的频率率估计总体的概率,(2)求K2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K2的观测值因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【考点】K4:椭圆的性质.【专题】15:综合题.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【考点】6B:利用导数研究函数的单调性.【专题】15:综合题;53:导数的综合应用.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【考点】N9:圆的切线的判定定理的证明;NB:弦切角.【专题】14:证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【考点】J3:轨迹方程;JE:直线和圆的方程的应用;Q4:简单曲线的极坐标方程;QJ:直线的参数方程;QK:圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【考点】3A:函数的图象与图象的变换;7E:其他不等式的解法;R5:绝对值不等式的解法.【专题】11:计算题;13:作图题;16:压轴题.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。
2024年高考数学真题试卷(天津卷)附详细解答
![2024年高考数学真题试卷(天津卷)附详细解答](https://img.taocdn.com/s3/m/b38dfb6b5627a5e9856a561252d380eb63942347.png)
2024年普通高等学校招生全国统一考试(天津卷)数学第Ⅰ卷(选择题)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4A =,{}2,3,4,5B =,则A B = ()A.{}1,2,3,4 B.{}2,3,4 C.{}2,4 D.{}12.设,a b ∈R ,则“33a b =”是“33a b =”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.下列图中,相关性系数最大的是()A. B.C. D.4.下列函数是偶函数的是()A.22e 1x x y x -=+ B.22cos 1x x y x +=+ C.e 1x x y x -=+ D.||sin 4e x x x y +=5.若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为()A.a b c>> B.b a c>> C.c a b>> D.b c a>>6.若,m n 为两条不同的直线,α为一个平面,则下列结论中正确的是()A.若//m α,n ⊂α,则//m nB.若//,//m n αα,则//m nC.若//,αα⊥m n ,则m n⊥ D.若//,αα⊥m n ,则m 与n 相交7.已知函数()()πsin303f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为π.则函数在ππ,126⎡⎤-⎢⎥⎣⎦的最小值是()A.32-B.32-C.0D.328.双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为()9.一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为()A.6B.33142+ C.32D.33142-第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.已知i 是虚数单位,复数))i 2i ⋅=______.11.在63333x x⎛⎫+ ⎪⎝⎭的展开式中,常数项为______.12.22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.13.,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.14.在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uur uuu r λμ,则λμ+=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ⋅的最小值为______.15.若函数()21f x ax =--+有唯一零点,则a 的取值范围为______.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.在ABC 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.17.已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ⊥平面ABCD ,AD AB ⊥,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.18.已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S =△.(1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤ 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.19.已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS i i b =∑.20.设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ≥-在()0,x ∞∈+时恒成立,求a 的取值范围;(3)若()12,0,1x x ∈,证明()()121212f x f x x x -≤-.2024年普通高等学校招生全国统一考试(天津卷)数学答案解析一、选择题.1.【答案】B【解析】因为集合{}1,2,3,4A =,{}2,3,4,5B =所以{}2,3,4A B = 故选:B 2.【答案】C【解析】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件.故选:C.3.【答案】A【解析】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A 4.【答案】B【解析】对A,设()22e 1x x f x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -≠,故A 错误;对B,设()22cos 1x x g x x +=+,函数定义域为R 且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C,设()e 1x xh x x -=+,函数定义域为{}|1x x ≠-,不关于原点对称,则()h x 不是偶函数,故C 错误;对D,设()||sin 4e x x x x ϕ+=,函数定义域为R,因为()sin141e ϕ+=,()sin141eϕ---=则()()11ϕϕ≠-,则()x ϕ不是偶函数,故D 错误.故选:B.5.【答案】B【解析】因为 4.2x y =在R 上递增,且0.300.3-<<所以0.300.30 4.2 4.2 4.2-<<<所以0.30.30 4.21 4.2-<<<,即01a b <<<因为 4.2log y x =在(0,)+∞上递增,且00.21<<所以 4.2 4.2log 0.2log 10<=,即0c <所以b a c >>故选:B 6.【答案】C【解析】对于A,若//m α,n ⊂α,则,m n 平行或异面,故A 错误.对于B,若//,//m n αα,则,m n 平行或异面或相交,故B 错误.对于C,//,αα⊥m n ,过m 作平面β,使得s βα= 因为m β⊂,故//m s ,而s α⊂,故n s ⊥,故m n ⊥,故C 正确.对于D,若//,αα⊥m n ,则m 与n 相交或异面,故D 错误.故选:C.7.【答案】A【解析】()()πsin3sin 3πsin 33f x x x x ωωω⎛⎫=+=+=- ⎪⎝⎭,由2ππ3T ω==得23ω=即()sin2f x x =-,当,126⎡⎤∈-⎢⎣⎦ππx 时,ππ2,63x ⎡⎤∈-⎢⎥⎣⎦画出()sin2f x x =-图象,如下图由图可知,()sin2f x x =-在ππ,126⎡⎤-⎢⎥⎣⎦上递减所以,当π6x =时,()min πsin 32f x =-=-故选:A 8.【答案】C【解析】如下图:由题可知,点P 必落在第四象限,1290F PF ∠=︒,设2PF m=211122,PF F PF F θθ∠=∠=,由21tan 2PF k θ==,求得12sin 5θ=因为1290F PF ∠=︒,所以121PF PF k k ⋅=-,求得112PF k =-,即21tan 2θ=21sin 5θ=由正弦定理可得:121212::sin :sin :sin 902:1:5PF PF F F θθ=︒=则由2PF m =得1122,25PF m F F c m ===由1212112822PF F S PF PF m m =⋅=⋅= 得2m =则21122,2,210,10PF PF F F c c =====由双曲线第一定义可得:1222PF PF a -==222,8a b c a ==-=所以双曲线的方程为22128x y -=.故选:C 9.【答案】C【解析】用一个完全相同的五面体HIJ LMN -(顶点与五面体ABC DEF -一一对应)与该五面体相嵌,使得,D N ;,E M ;,F L 重合因为AD BE CF ∥∥,且两两之间距离为1.1,2,3AD BE CF ===则形成的新组合体为一个三棱柱该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为1322314+=+=+=2132211311422ABC DEF ABC HIJ V V --==⨯⨯⨯⨯=.故选:C.第Ⅱ卷二、填空题.10.【答案】7【解析】))i 2i 527+⋅=+-+=-.故答案为:7.11.【答案】20【解析】因为63333x x ⎛⎫+ ⎪⎝⎭的展开式的通项为()63636216633C 3C ,0,1,,63rr r r r r r x T x r x ---+⎛⎫⎛⎫===⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭令()630r -=,可得3r =所以常数项为0363C 20=.故答案为:20.12.【答案】45【解析】圆22(1)25-+=x y 的圆心为()1,0F ,故12p =即2p =由()2221254x y y x⎧-+=⎪⎨=⎪⎩可得22240x x +-=,故4x =或6x =-(舍)故()4,4A ±,故直线()4:13AF y x =±-即4340x y --=或4340x y +-=故原点到直线AF 的距离为4455d ==故答案为:4513.【答案】①.35②.12【解析】设甲、乙选到A 为事件M ,乙选到B 为事件N则甲选到A 的概率为()2435C 3C 5P M ==;乙选了A 活动,他再选择B 活动的概率为()()()133524351C 2C C P MN C P N M P M ===故答案为:35;1214.【答案】①.43②.518-【解析】因为12CE DE =,即23CE BA =uur uur ,则13BE BC CE BA BC =+=+uuu r uur u uu ur r uuu r 可得1,13λμ==,所以43λμ+=;由题意可知:1,0BC BA BA BC ==⋅= 因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+∈ 则113AF AB BF AB k BE k BA k BC ⎛⎫=+=+=-+ ⎪⎝⎭又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC ⎛⎫⎛⎫=+=-+=-+- ⎪ ⎪⎝⎭⎝⎭可得11111113232AF DG k BA k BC k BA BC ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⋅=-+⋅-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 22111563112329510k k k k ⎛⎫⎛⎫⎛⎫=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又因为[]0,1k ∈,可知:当1k =时,AF DG ⋅ 取到最小值518-;15.【答案】()(1- 【解析】令()0f x =,即21ax =--由题可得20x ax -≥当0a =时,x ∈R ,有211=--=,则2x =±,不符合要求,舍去;当0a >时,则23,2121,ax x a ax ax x a ⎧-≥⎪⎪=--=⎨⎪-<⎪⎩即函数()g x =与函数()23,21,ax x a h x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩有唯一交点由20x ax -≥,可得x a ≥或0x ≤当0x ≤时,则20ax -<,则211ax ax=--=-即()22441x ax ax -=-,整理得)()()2242121210a x ax a x a x ⎡⎤⎡⎤---=++--=⎣⎦⎣⎦当2a =时,即410x +=,即14x =-当()0,2a ∈,12x a =-+或102x a =>-(正值舍去)当()2,a ∈+∞时,102x a =-<+或102x a=<-,有两解,舍去即当(]0,2a ∈时,210ax -+=在0x ≤时有唯一解则当(]0,2a ∈时,210ax -+=在x a ≥时需无解当(]0,2a ∈,且x a ≥时由函数()23,21,ax x a h x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩关于2x a =对称,令()0h x =,可得1x a =或3x a =且函数()h x 在12,a a ⎛⎫ ⎪⎝⎭上单调递减,在23,a a ⎛⎫ ⎪⎝⎭上单调递增令()g x y ==,即2222142a x y a a⎛⎫- ⎪-⎭=⎝故x a ≥时,()g x 图象为双曲线()222214y x a a-=右支的x 轴上方部分向右平移2a 所得由()222214y x a a -=的渐近线方程为22a y x xa =±=±即()g x 部分的渐近线方程为22a y x ⎛⎫=- ⎪⎝⎭,其斜率为2又(]0,2a ∈,即()23,21,ax x a h x ax x a⎧-≥⎪⎪=⎨⎪-<⎪⎩在2x a ≥时的斜率(]0,2a ∈令()0g x ==,可得x a =或0x =(舍去)且函数()g x 在(),a +∞上单调递增故有13aaaa ⎧<⎪⎪⎨⎪>⎪⎩,解得1a <<,故1a <<符合要求;当a<0时,则23,2121,ax x aax ax x a⎧-≤⎪⎪=--=⎨⎪->⎪⎩即函数()g x =与函数()23,21,ax x a h x ax x a⎧-≤⎪⎪=⎨⎪->⎪⎩有唯一交点由20x ax -≥,可得0x ≥或x a ≤当0x ≥时,则20ax -<,则211ax ax=--=-即()22441x ax ax -=-,整理得()()()2242121210a x ax a x a x ⎡⎤⎡⎤---=++--=⎣⎦⎣⎦当2a =-时,即410x -=,即14x =当()2,0a ∈-,102x a =-<+(负值舍去)或102x a =-当(),2a ∈-∞时,102x a =->+或102x a =>-,有两解,舍去即当[)2,0a ∈-时,210ax --+=在0x ≥时有唯一解则当[)2,0a ∈-时,210ax --+=在x a ≤时需无解当[)2,0a ∈-,且x a ≤时由函数()23,21,ax x a h x ax x a ⎧-≤⎪⎪=⎨⎪->⎪⎩关于2x a =对称,令()0h x =,可得1x a =或3x a =且函数()h x 在21,a a ⎛⎫ ⎪⎝⎭上单调递减,在32,a a ⎛⎫ ⎪⎝⎭上单调递增同理可得:x a ≤时,()g x 图象为双曲线()222214y x a a -=左支的x 轴上方部分向左平移2a 所得()g x 部分的渐近线方程为22a y x ⎛⎫=-+ ⎪⎝⎭,其斜率为2-又[)2,0a ∈-,即()23,21,ax x a h x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩在2x a <时的斜率[)2,0a ∈-令()0g x ==,可得x a =或0x =(舍去)且函数()g x 在(),a -∞上单调递减故有13a a a a⎧>⎪⎪⎨⎪<⎪⎩,解得1a <<-,故1a <<-符合要求;综上所述,()(11,a ∈- .故答案为:()(1-⋃.三、解答题.16.【答案】(1)4(2)74(3)5764【小问1详解】设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B=+-即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.【小问2详解】因为B 为三角形内角,所以57sin 16B ===再根据正弦定理得sin sin a b A B =,即4sin 5716A =,解得7sin 4A =【小问3详解】因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭由(2)法一知57sin 16B =因为a b <,则A B <,所以3cos 4A ==则7337sin 22sin cos 2448A A A ==⨯⨯=,2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()19573757cos 2cos cos 2sin sin 281616864B A B A B A -=+=⨯+⨯=.17.【答案】(1)证明见解析(2)22211(3)21111【小问1详解】取1CB 中点P ,连接NP ,MP由N 是11B C 的中点,故1//NP CC ,且112NP CC =由M 是1DD 的中点,故1111122D M DD CC ==,且11//D M CC 则有1//D M NP 、1D M NP=故四边形1D MPN 是平行四边形,故1//D N MP又MP ⊂平面1CB M ,1D N ⊄平面1CB M故1//D N 平面1CB M ;【小问2详解】以A为原点建立如图所示空间直角坐标系有()0,0,0A 、()2,0,0B 、()12,0,2B 、()0,1,1M 、()1,1,0C 、()11,1,2C 则有()11,1,2CB =- 、()1,0,1CM =- 、()10,0,2BB = 设平面1CB M 与平面11BB CC 的法向量分别为()111,,m x y z = 、()222,,n x y z = 则有111111200m CB x y z m CM x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,1222122020n CB x y z n BB z ⎧⋅=-+=⎪⎨⋅==⎪⎩ 分别取121x x ==,则有13y =、11z =、21y =,20z =即()1,3,1m = 、()1,1,0n =则cos ,11m n m n m n ⋅===⋅ 故平面1CB M 与平面11BB CC 的夹角余弦值为22211;【小问3详解】由()10,0,2BB = ,平面1CB M 的法向量为()1,3,1m =则有111BB m m ⋅== 即点B 到平面1CB M 的距离为21111.18.【答案】(1)221129x y +=(2)存在()30,32T t t ⎛⎫-≤≤ ⎪⎝⎭,使得0TP TQ ⋅≤ 恒成立.【小问1详解】因为椭圆的离心率为12e =,故2a c =,b =,其中c 为半焦距所以()()32,0,0,,0,2A c B C ⎛⎫-- ⎪ ⎪⎝⎭,故13332222ABC S c c =⨯⨯=△故c =所以a =,3b =,故椭圆方程为:221129x y +=.【小问2详解】若过点30,2⎛⎫- ⎪⎝⎭的动直线的斜率存在,则可设该直线方程为:32y kx =-设()()()1122,,,,0,P x y Q x y T t 由22343632x y y kx ⎧+=⎪⎨=-⎪⎩可得()223412270k x kx +--=故()222Δ144108343245760k k k =++=+>且1212221227,,3434k x x x x k k+==-++而()()1122,,,TP x y t TQ x y t =-=- 故()()121212123322TP TQ x x y t y t x x kx t kx t ⎛⎫⎛⎫⋅=+--=+---- ⎪⎪⎝⎭⎝⎭ ()()22121233122k x x k t x x t ⎛⎫⎛⎫=+-++++ ⎪ ⎪⎝⎭⎝⎭()22222731231342342k k k t t k k ⎛⎫⎛⎫⎛⎫=+⨯--+⨯++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭()2222222327271812332234k k k t t t k k ⎛⎫----++++ ⎪⎝⎭=+()22223321245327234t t k t k ⎛⎫⎡⎤+--++- ⎪⎣⎦⎝⎭=+因为0TP TQ ⋅≤ 恒成立,故()223212450332702t t t ⎧+--≤⎪⎨⎛⎫+-≤⎪ ⎪⎝⎭⎩,解得332t -≤≤.若过点30,2⎛⎫- ⎪⎝⎭的动直线的斜率不存在,则()()0,3,0,3P Q -或()()0,3,0,3P Q -此时需33t -≤≤,两者结合可得332t ≤≤.综上,存在()30,32T t t ⎛⎫-≤≤ ⎪⎝⎭,使得0TP TQ ⋅≤ 恒成立.19.【答案】(1)21n n S =-(2)①证明见详解;②()131419n n S i i n b =-+=∑【小问1详解】设等比数列{}n a 的公比为0q >因为1231,1a S a ==-,即1231a a a +=-可得211q q +=-,整理得220q q --=,解得2q =或1q =-(舍去)所以122112nn n S -==--.【小问2详解】(i )由(1)可知12n n a -=,且N*,2k k ∈≥当124k k n a +=≥=时,则111221111k k k k k a n n a a -++⎧=<-=-⎨-=-<⎩,即11k k a n a +<-<可知12,1k k n a b k -==+()()()1111222121k k k n a k k b b a a k k k k --+=+--⋅=+-=-可得()()()()1112112122120k n k n k k k k k k k k b k a b ---=--+=--≥--=-⋅≥-当且仅当2k =时,等号成立所以1n k n b a b -≥⋅;(ii )由(1)可知:1211n n n S a +=-=-若1n =,则111,1S b ==;若2n ≥,则112k k k a a -+-=当1221k k i -<≤-时,12i i b b k --=可知{}i b 为等差数列可得()()()111211112221122431434429k k k k k k k k i i b k k k k k -------=-⎡⎤=⋅+=⋅=---⎣⎦∑所以()()()232113141115424845431434499n n S n n i i n b n n -=-+⎡⎤=+⨯-⨯+⨯-⨯+⋅⋅⋅+---=⎣⎦∑且1n =,符合上式,综上所述:()131419n n S i i n b =-+=∑.20.【答案】(1)1y x =-(2){}2(3)证明过程见解析【小问1详解】由于()ln f x x x =,故()ln 1f x x ='+.所以()10f =,()11f '=,所以所求的切线经过()1,0,且斜率为1,故其方程为1y x =-.【小问2详解】设()1ln h t t t =--,则()111t h t t t'-=-=,从而当01t <<时()0h t '<,当1t >时()0h t '>.所以()h t 在(]0,1上递减,在[)1,+∞上递增,这就说明()()1h t h ≥,即1ln t t -≥,且等号成立当且仅当1t =.设()()12ln g t a t t =--,则()((ln 12ln f x a x x x a x x a x g ⎛⎫-=-=-=⋅ ⎪⎭⎝.当()0,x ∞∈+时的取值范围是()0,∞+,所以命题等价于对任意()0,t ∞∈+,都有()0g t ≥.一方面,若对任意()0,t ∞∈+,都有()0g t ≥,则对()0,t ∞∈+有()()()()112012ln 12ln 1212g t a t t a t a t at a t t t ⎛⎫≤=--=-+≤-+-=+-- ⎪⎝⎭取2t =,得01a ≤-,故10a ≥>.再取t =,得2022a a a ≤--=--=-,所以2a =.另一方面,若2a =,则对任意()0,t ∞∈+都有()()()212ln 20g t t t h t =--=≥,满足条件.综合以上两个方面,知a 的取值范围是{}2.【小问3详解】先证明一个结论:对0a b <<,有()()ln 1ln 1f b f a a b b a -+<<+-.证明:前面已经证明不等式1ln t t -≥,故ln ln ln ln ln ln ln 1ln 1b b b a a a b a a a b b b b b a b a a--=+=+<+---且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a b b ⎛⎫--- ⎪--⎝⎭=+=+>=+----所以ln ln ln 1ln 1b b a a a b b a -+<<+-,即()()ln 1ln 1f b f a a b b a-+<<+-.由()ln 1f x x ='+,可知当10e x <<时()0f x '<,当1ex >时()0f x '>.所以()f x 在10,e ⎛⎤ ⎥⎝⎦上递减,在1e ,⎡⎫+∞⎪⎢⎣⎭上递增.不妨设12x x ≤,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211e x x ≤≤<时,有()()()()()()122122121ln 1f x f x f x f x x x x x x -=-<+-<-<结论成立;情况二:当1210ex x <≤≤时,有()()()()12121122ln ln f x f x f x f x x x x x -=-=-.对任意的10,e c ⎛⎤∈ ⎥⎝⎦,设()ln ln x x x c c ϕ=--则()ln 1x x ϕ=++'由于()x ϕ'单调递增,且有1111111ln 1ln 11102e 2e e c c ϕ⎛⎫ ⎪=++<+=-= ⎪⎝⎭'且当2124ln 1x c c ≥-⎛⎫- ⎪⎝⎭,2c x >时,2ln 1c ≥-可知()2ln 1ln ln 102c x x c ϕ⎛⎫=++>++=-≥ ⎪⎝⎭'.所以()x ϕ'在()0,c 上存在零点0x ,再结合()x ϕ'单调递增,即知00x x <<时()0x ϕ'<,0x x c <<时()0x ϕ'>.故()x ϕ在(]00,x 上递减,在[]0,x c 上递增.①当0x x c ≤≤时,有()()0x c ϕϕ≤=;②当00x x <<时,112221e e f f c ⎛⎫=-≤-=< ⎪⎝⎭,故我们可以取1,1q c ⎫∈⎪⎭.从而当201c x q <<-时,>可得()1ln ln ln ln 0x x x c c c c c c q c ϕ⎫=--<--<--=-<⎪⎭.再根据()x ϕ在(]00,x 上递减,即知对00x x <<都有()0x ϕ<;综合①②可知对任意0x c <≤,都有()0x ϕ≤,即()ln ln 0x x x c c ϕ=--.根据10,e c ⎛⎤∈ ⎥⎝⎦和0x c <≤的任意性,取2c x =,1x x =,就得到1122ln ln 0x x x x --≤.所以()()()()12121122ln ln f x f x f x f x x x x x -=-=-≤.情况三:当12101ex x <≤≤<时,根据情况一和情况二的讨论,可得()11e f x f ⎛⎫-≤≤ ⎪⎝⎭,()21e f f x ⎛⎫-≤≤ ⎪⎝⎭而根据()f x 的单调性,知()()()1211e f x f x f x f ⎛⎫-≤- ⎪⎝⎭或()()()1221e f x f x f f x ⎛⎫-≤- ⎪⎝⎭.故一定有()()12f x f x -≤成立.综上,结论成立.。
高中三角函数历年高考真题_含答案
![高中三角函数历年高考真题_含答案](https://img.taocdn.com/s3/m/e37d309acd22bcd126fff705cc17552707225efd.png)
历年高考三角函数专题一,选择题1.(08全国一6)2(sin cos )1y x x =--是 ( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数2.(08全国一9)为得到函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位3.(08全国二1)若sin 0α<且tan 0α>是,则α是 ( ) A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角4.(08全国二10).函数x x x f cos sin )(-=的最大值为 ( ) A .1 B . 2 C .3 D .25.(08安徽卷8)函数sin(2)3y x π=+图像的对称轴方程可能是 ( )A .6x π=-B .12x π=-C .6x π=D .12x π=6.(08福建卷7)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 ( ) A.-sin x B.sin x C.-cos x D.cos x7.(08广东卷5)已知函数2()(1cos2)sin ,f x x x x R =+∈,则()f x 是 ( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数8.(08海南卷11)函数()cos 22sin f x x x =+的最小值和最大值分别为 ( )A. -3,1B. -2,2C. -3,32D. -2,329.(08湖北卷7)将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′,若F ′的一条对称轴是直线,1x π=则θ的一个可能取值是 ( )A.512π B.512π- C.1112π D.1112π-10.(08江西卷6)函数sin ()sin 2sin2x f x xx =+是 ( )A .以4π为周期的偶函数B .以2π为周期的奇函数C .以2π为周期的偶函数D .以4π为周期的奇函数11.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为 ( ) A .1BCD .212.(08山东卷10)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( ) A. BC .45-D .4513.(08陕西卷1)sin 330︒等于 ( ) A.2-B .12-C .12D.214.(08四川卷4)()2tan cot cos x x x += ( ) A.tan x B.sin x C.cos x D.cot x 15.(08天津卷6)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是 ( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 16.(08天津卷9)设5sin 7a π=,2cos 7b π=,2tan 7c π=,则 ( )A .a b c <<B .a c b <<C .b c a <<D .b a c <<17.(08浙江卷2)函数2(sin cos )1y x x =++的最小正周期是 ( ) A.2π B .π C.32πD.2π 18.(08浙江卷7)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是 ( )A.0B.1C.2D.4 二,填空题19.(08北京卷9)若角α的终边经过点(12)P -,,则tan 2α的值为 . 20.(08江苏卷1)()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= . 21.(08辽宁卷16)设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .22.(08浙江卷12)若3sin()25πθ+=,则cos 2θ=_________。
高考真题数学试卷及答案
![高考真题数学试卷及答案](https://img.taocdn.com/s3/m/cd2dcfdfbdeb19e8b8f67c1cfad6195f302be804.png)
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = x^3 - 3x,则f'(x) = ()A. 3x^2 - 3B. 3x^2 + 3C. x^2 - 3D. x^2 + 3答案:A2. 下列各数中,不是无理数的是()A. √2B. πC. 0.1010010001...D. √(9/16)答案:D3. 已知等差数列{an}的前三项分别为1,2,3,则该数列的公差d = ()A. 1B. 2C. 3D. 0答案:B4. 已知复数z = 1 + 2i,则|z| = ()A. 1B. 2C. √5D. 3答案:C5. 若等比数列{an}的首项为a1,公比为q,则S3 = a1 + a2 + a3 = ()A. a1q^2B. a1(1 + q + q^2)C. a1(1 - q^3) / (1 - q)D. a1(1 - q^2)答案:B6. 下列函数中,为奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = x^4答案:C7. 若直角三角形ABC中,∠C = 90°,a = 3,b = 4,则斜边c的长度为()A. 5B. 6C. 7D. 8答案:A8. 已知圆C:x^2 + y^2 - 4x - 6y + 9 = 0,则圆心C的坐标为()A. (2, 3)B. (2, -3)C. (-2, 3)D. (-2, -3)答案:A9. 若直线l的斜率为k,且直线l与x轴的交点为(1, 0),则直线l的方程为()A. y = kx + kB. y = kx - kC. y = -kx + kD. y = -kx - k答案:A10. 已知函数f(x) = e^x - x,则f'(x) = ()A. e^x - 1B. e^x + 1C. e^x - xD. e^x + x答案:A二、填空题(本大题共5小题,每小题5分,共25分。
高考数学试卷真题及答案
![高考数学试卷真题及答案](https://img.taocdn.com/s3/m/87c213b54bfe04a1b0717fd5360cba1aa8118cb9.png)
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 函数f(x) = 2x - 3的图像是:A. 抛物线B. 双曲线C. 直线D. 椭圆答案:C2. 若复数z满足|z - 1| = 2,则复数z的取值范围是:A. z = 1 ± 2iB. z = 1 ± √2iC. z = 1 ± 2D. z = 1 ± √3i答案:B3. 已知等差数列{an}的前n项和为Sn,若S5 = 20,a1 = 2,则公差d为:A. 2B. 4C. 6D. 8答案:A4. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 3,b = 4,c = 5,则sinA的值为:A. 3/5B. 4/5D. 5/3答案:A5. 函数y = log2(x - 1)的图像是:A. 抛物线B. 双曲线C. 直线D. 椭圆答案:B6. 已知等比数列{an}的前n项和为Sn,若S5 = 32,a1 = 2,则公比q为:A. 2B. 4C. 8D. 16答案:B7. 在直角坐标系中,点P(2, 3)关于直线y = x的对称点为:A. (3, 2)B. (2, 3)C. (-3, -2)D. (-2, -3)答案:A8. 若函数f(x) = x^2 - 4x + 4在区间[1, 3]上单调递增,则a的值为:A. 1C. 3D. 4答案:B9. 已知函数f(x) = x^3 - 3x + 2,则f(x)的图像是:A. 抛物线B. 双曲线C. 直线D. 椭圆答案:A10. 在等差数列{an}中,若a1 = 1,d = 2,则第10项an为:A. 19B. 20C. 21D. 22答案:C二、填空题(本大题共5小题,每小题5分,共25分。
)11. 函数f(x) = x^2 - 2x + 1的顶点坐标为__________。
答案: (1, 0)12. 若复数z满足|z - 1| = 2,则z的取值范围是__________。
高考数学试卷及答案详解
![高考数学试卷及答案详解](https://img.taocdn.com/s3/m/8f1e1c1e32687e21af45b307e87101f69e31fbfa.png)
一、选择题(每小题5分,共50分)1. 下列函数中,在定义域内是奇函数的是()A. f(x) = x^2 - 1B. f(x) = |x|C. f(x) = x^3D. f(x) = 2x答案:C解析:奇函数满足f(-x) = -f(x)。
对于选项C,f(-x) = (-x)^3 = -x^3 = -f(x),符合奇函数的定义。
2. 已知等差数列{an}的前n项和为Sn,若S5 = 15,S9 = 27,则该数列的公差d是()A. 1B. 2C. 3D. 4答案:B解析:等差数列的前n项和公式为Sn = n/2 (a1 + an)。
对于S5 = 15,有5/2 (a1 + a5) = 15,同理S9 = 9/2 (a1 + a9) = 27。
由a5 = a1 + 4d,a9 = a1 + 8d,代入得:5/2 (a1 + a1 + 4d) = 15,9/2 (a1 + a1 + 8d) = 27解得d = 2。
3. 若复数z满足|z - 1| = |z + 1|,则复数z的实部是()A. 0B. 1C. -1D. 不确定答案:A解析:复数z在复平面上的几何意义是z对应的点到点(1, 0)和(-1, 0)的距离相等,即z位于这两点连线的垂直平分线上。
因此,z的实部为0。
4. 下列命题中,正确的是()A. 若a > b,则a^2 > b^2B. 若a > b,则log_a b < 0C. 若a > b,则a + c > b + cD. 若a > b,则ac > bc答案:C解析:选项A、B、D均存在反例,只有选项C是正确的,因为对于任意的实数c,加上相同的数不会改变不等式的方向。
5. 函数y = 2^x + 1在定义域内的单调性是()A. 单调递增B. 单调递减C. 不单调D. 不确定答案:A解析:指数函数y = 2^x是单调递增的,因此其加上常数1后,函数y = 2^x + 1仍然保持单调递增。
全国统一高考数学试卷(新课标ⅰ)(含解析版)(1)
![全国统一高考数学试卷(新课标ⅰ)(含解析版)(1)](https://img.taocdn.com/s3/m/f698709b970590c69ec3d5bbfd0a79563c1ed48d.png)
全国统一高考数学试卷(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.23.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.974.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.811.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤. 17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【考点】1E:交集及其运算.【专题】11:计算题;4O:定义法;5J:集合.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.2【考点】A8:复数的模.【专题】34:方程思想;4O:定义法;5N:数系的扩充和复数.【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.【点评】本题主要考查复数模长的计算,根据复数相等求出x,y的值是解决本题的关键.3.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.97【考点】83:等差数列的性质.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.4.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【考点】CF:几何概型.【专题】5I:概率与统计.【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【考点】KB:双曲线的标准方程.【专题】11:计算题;35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【考点】R3:不等式的基本性质.【专题】33:函数思想;35:转化思想;4R:转化法;51:函数的性质及应用;5T:不等式.【分析】根据已知中a>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c>ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.8【考点】K8:抛物线的性质;KJ:圆与圆锥曲线的综合.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5【考点】H6:正弦函数的奇偶性和对称性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f (x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=﹣2.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;29:规律型;35:转化思想;5A:平面向量及应用.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.14.(5分)(2x+)5的展开式中,x3的系数是10.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;34:方程思想;49:综合法;5P:二项式定理.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3,求出r,即可求出展开式中x3的系数.【解答】解:(2x+)5的展开式中,通项公式为:T r==25﹣r,+1令5﹣=3,解得r=4∴x3的系数2=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为64.【考点】87:等比数列的性质;8I:数列与函数的综合.【专题】11:计算题;29:规律型;35:转化思想;54:等差数列与等比数列.【分析】求出数列的等比与首项,化简a1a2…a n,然后求解最值.【解答】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n﹣1)=8n•==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤. 17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【考点】HU:解三角形.【专题】15:综合题;35:转化思想;49:综合法;58:解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【考点】MJ:二面角的平面角及求法.【专题】11:计算题;34:方程思想;49:综合法;5H:空间向量及应用;5Q:立体几何.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的余弦值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【考点】CG:离散型随机变量及其分布列.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P(X≤n)≥0.5中n的最小值.(Ⅲ)法一:由X的分布列得P(X≤19)=.求出买19个所需费用期望EX1和买20个所需费用期望EX2,由此能求出买19个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19时,费用的期望和当n=20时,费用的期望,从而得到买19个更合适.【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)===,P(X=21)==,P(X=22)=,∴X的分布列为:X16171819202122P(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【考点】J2:圆的一般方程;KL:直线与椭圆的综合.【专题】34:方程思想;48:分析法;5B:直线与圆;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求得圆A的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E的轨迹为以A,B为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A到PQ的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】32:分类讨论;35:转化思想;4C:分类法;4R:转化法;51:函数的性质及应用.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a 值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
历年(2020-2024)全国高考数学真题分类(函数及其基本性质)汇编(附答案)
![历年(2020-2024)全国高考数学真题分类(函数及其基本性质)汇编(附答案)](https://img.taocdn.com/s3/m/9e88a97babea998fcc22bcd126fff705cc175cff.png)
历年(2020-2024)全国高考数学真题分类(函数及其基本性质)汇编考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f <D .(20)10000f <2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = . 3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭.4.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .535.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a .考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =-B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,a f b f c f ===⎝⎭⎝⎭⎝⎭,则( )A .b c a >>B .b a c >>C .c b a >>D .c a b >>4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数7.(2020∙全国∙高考真题)设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+ B .22cos 1x x y x +=+C .e 1x x y x -=+D .||sin 4e x x xy +=2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .4.(2023∙全国乙卷∙高考真题)已知e ()e 1xax x f x =-是偶函数,则=a ( )A .2-B .1-C .1D .25.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1-B .0C .12D .16.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .538.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x x x a f x -=⋅-是偶函数,则=a .10.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .12.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称参考答案 考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f < D .(20)10000f <【答案】B【答案分析】代入得到(1)1,(2)2==f f ,再利用函数性质和不等式的性质,逐渐递推即可判断. 【答案详解】因为当3x <时()f x x =,所以(1)1,(2)2==f f , 又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>, (8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>, (11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+> (14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确. 故选:B.【名师点评】关键点名师点评:本题的关键是利用(1)1,(2)2==f f ,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = .【答案分析】利用分段函数的形式可求()3f .【答案详解】因为()0,1,0x f x x >=≤⎪⎩故()3f =3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭ .【答案】1【答案分析】根据给定条件,把12x =代入,利用指数、对数运算计算作答. 【答案详解】函数2()4log xf x x =+,所以12211()4log 21122f =+=-=.故答案为:14.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【答案分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.5.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a . 【答案】2【答案分析】由题意结合函数的答案解析式得到关于a 的方程,解方程可得a 的值.【答案详解】()()642233f f f f a ⎡⎤=-==-+=⎣⎦,故2a =, 故答案为:2.考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 【答案】()(],00,1-∞⋃【答案分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;【答案详解】解:因为()1f x x =100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠, 故函数的定义域为()(],00,1-∞⋃; 故答案为:()(],00,1-∞⋃2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+ B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞【答案】B【答案分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可.【答案详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠. 所以函数定义域为()()0,11,+∞ . 故选:B考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞ B .[1,0]- C .[1,1]- D .[0,)+∞【答案】B【答案分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【答案详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤, 即a 的范围是[1,0]-. 故选:B.2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =- B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=【答案】C【答案分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC ,举反例排除D 即可. 【答案详解】对于A ,因为ln y x =在()0,∞+上单调递增,y x =-在()0,∞+上单调递减, 所以()ln f x x =-在()0,∞+上单调递减,故A 错误;对于B ,因为2x y =在()0,∞+上单调递增,1y x=在()0,∞+上单调递减,所以()12xf x =在()0,∞+上单调递减,故B 错误; 对于C ,因为1y x=在()0,∞+上单调递减,y x =-在()0,∞+上单调递减, 所以()1f x x=-在()0,∞+上单调递增,故C 正确;对于D ,因为111221332f -⎛⎫=== ⎪⎝⎭()()112101331,233f f --=====,显然()13x f x -=在()0,∞+上不单调,D 错误.故选:C.3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,222a f b f c f ⎛⎫=== ⎪⎝⎭⎝⎭⎝⎭,则( ) A .b c a >> B .b a c >> C .c b a >> D .c a b >>【答案】A【答案分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可. 【答案详解】令2()(1)g x x =--,则()g x 开口向下,对称轴为1x =,4112⎛-= ⎝⎭,而22491670-=+=>,41102⎛-=> ⎝⎭,即1122->-由二次函数性质知g g <,4112⎛-= ⎝⎭,而22481682)0-=+-=-=-<,112<-,所以(2g g >,综上,(2g g g <<, 又e x y =为增函数,故a c b <<,即b c a >>. 故选:A.4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞【答案】D【答案分析】利用指数型复合函数单调性,判断列式计算作答.【答案详解】函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞. 故选:D5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 【答案】D【答案分析】根据基本初等函数的性质逐项判断后可得正确的选项. 【答案详解】对于A ,()f x x =-为R 上的减函数,不合题意,舍. 对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0∞-为减函数,不合题意,舍.对于D ,()f x =R 上的增函数,符合题意, 故选:D.6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数【答案】C【答案分析】利用函数单调性定义即可得到答案. 【答案详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <. 所以函数()f x 一定是增函数. 故选:C7.(2020∙全国∙高考真题)设函数331()f x x x =-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增 D .是偶函数,且在(0,+∞)单调递减【答案】A【答案分析】根据函数的答案解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数,再根据函数的单调性法则,即可解出.【答案详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数. 又因为函数3y x =在()0,+?上单调递增,在(),0-?上单调递增,而331y x x -==在()0,+?上单调递减,在(),0-?上单调递减,所以函数()331f x x x =-在()0,+?上单调递增,在(),0-?上单调递增.故选:A .【名师点评】本题主要考查利用函数的答案解析式研究函数的性质,属于基础题.考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+ B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x x xy +=【答案】B【答案分析】根据偶函数的判定方法一一判断即可.【答案详解】对A ,设()22e 1x xf x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -≠,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R , 且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ≠-,不关于原点对称, 则()h x 不是偶函数,故C 错误; 对D ,设()||sin 4e x x x x ϕ+=,函数定义域为R,因为()sin141e ϕ+=,()sin141e ϕ---=, 则()()11ϕϕ≠-,则()x ϕ不是偶函数,故D 错误. 故选:B.2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .【答案】0【答案分析】根据奇函数的性质可求参数a .【答案详解】因为()f x 是奇函数,故()()0f x f x -+=即()330x a x a ++-+=,故0a =, 故答案为:0.3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .【答案】2【答案分析】利用偶函数的性质得到ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,从而求得2a =,再检验即可得解.【答案详解】因为()()()22π1sin 1cos 2y f x x ax x x ax x ⎛⎫==-+++=-++ ⎪⎝⎭为偶函数,定义域为R ,所以ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即22ππππππ222222s 1co 1cos a a ⎛⎫⎛⎫⎛⎫-+=-+ ⎪ -⎪ ⎪⎝⎭⎝⎭--⎝+⎭,则22πππ2π1212a -⎛⎫⎛⎫=+- ⎪⎪⎭⎝⎭= ⎝,故2a =,此时()()2212cos 1cos f x x x x x x =-++=++, 所以()()()()221cos s 1co f x x x x x f x -=-++++-==, 又定义域为R ,故()f x 为偶函数, 所以2a =. 故答案为:2.4.(2023∙全国乙卷∙高考真题)已知e ()e 1xaxx f x =-是偶函数,则=a ( ) A .2- B .1- C .1 D .2【答案】D【答案分析】根据偶函数的定义运算求解.【答案详解】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax axx x x f x f x ---⎡⎤--⎣⎦--=-==---, 又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=, 则()1x a x =-,即11a =-,解得2a =. 故选:D.5.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1- B .0C .12D .1【答案】B【答案分析】根据偶函数性质,利用特殊值法求出a 值,再检验即可.【答案详解】因为()f x 为偶函数,则 1(1)(1)(1)ln (1)ln 33f f a a =-∴+=-+,,解得0a =, 当0a =时,()21ln21x x x f x -=+,()()21210x x -+>,解得12x >或12x <-,则其定义域为12x x ⎧⎨⎩或12x ⎫<-⎬⎭,关于原点对称.()()()()()()()121212121ln ln ln ln 21212121f x x x x x x x x x f x x x x x ---+⎫-=---⎛==== ⎪-+-++⎝-⎭-, 故此时()f x 为偶函数. 故选:B.6.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 【答案】 12-; ln 2.【答案分析】根据奇函数的定义即可求出. 【答案详解】[方法一]:奇函数定义域的对称性 若0a =,则()f x 的定义域为{|1}x x ≠,不关于原点对称0a ∴≠若奇函数的1()||1f x ln a b x =++-有意义,则1x ≠且101a x+≠- 1x ∴≠且11x a≠+,函数()f x 为奇函数,定义域关于原点对称,111a ∴+=-,解得12a =-, 由(0)0f =得,102ln b +=,2b ln ∴=,故答案为:12-;2ln .[方法二]:函数的奇偶性求参 111()111a ax ax a f x ln a b ln b ln b x x x-+--=++=+=+--- 1()1ax a f x lnb x++-=++函数()f x 为奇函数11()()2011ax a ax a f x f x lnln b x x--++∴+-=++=-+2222(1)201a x a lnb x -+∴+=-22(1)1210112a a a a +∴=⇒+=⇒=- 1222241,22b ln b ln a b ln ln -==-⇒=∴=-=[方法三]:因为函数()1ln 1f x a b x++-=为奇函数,所以其定义域关于原点对称. 由101a x+≠-可得,()()110x a ax -+-≠,所以11a x a +==-,解得:12a =-,即函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln 211x f x x x+=-++=--,在定义域内满足()()f x f x -=-,符合题意. 故答案为:12-;ln 2.7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【答案分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.8.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.【答案】()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)【答案分析】根据幂函数的性质可得所求的()f x .【答案详解】取()4f x x =,则()()()()44421121122x f x f x x x x f x x ===,满足①, ()34f x x '=,0x >时有()0f x ¢>,满足②, ()34f x x '=的定义域为R ,又()()34f x x f x ''-=-=-,故()f x '是奇函数,满足③.故答案为:()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x xx a f x -=⋅-是偶函数,则=a .【答案】1【答案分析】利用偶函数的定义可求参数a 的值.【答案详解】因为()()322x x x a f x -=⋅-,故()()322x xf x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=,时()()332222x x x x x a x a --⋅-=-⋅-,整理得到()()12+2=0x xa --,故1a =, 故答案为:110.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x -- B .()11f x -+C .()11f x +-D .()11f x ++【答案】B【答案分析】分别求出选项的函数答案解析式,再利用奇函数的定义即可. 【答案详解】由题意可得12()111x f x x x-==-+++, 对于A ,()2112f x x--=-不是奇函数; 对于B ,()211f x x-=+是奇函数; 对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数. 故选:B【名师点评】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【答案分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【答案详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <, 所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃, 故选:D.【名师点评】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题. 12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减【答案】D【答案分析】根据奇偶性的定义可判断出()f x 为奇函数,排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,利用函数单调性的性质可判断出()f x 单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,利用复合函数单调性可判断出()f x 单调递减,从而得到结果.【答案详解】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-, ()f x \为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x \在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.【名师点评】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .1【答案】A【答案分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出. 【答案详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4, 所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=, 所以()2cos3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++-=++-== ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3f x xπ=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =-=-=-==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=, 由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.2.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =【答案】B【答案分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【答案详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52【答案】D【答案分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数答案解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案. 【答案详解】[方法一]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. [方法二]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =. 所以91352222f f f⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .【名师点评】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【答案】AD【答案分析】A 选项,先答案分析出函数的极值点为0,x x a ==,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a -上各有一个零点;B 选项,根据极值和导函数符号的关系进行答案分析;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,则()(2)f x f b x =-为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,据此进行计算判断,亦可利用拐点结论直接求解.【答案详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增, (0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值, 由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <, 根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确; B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减, ,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-, 即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立, 于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误; D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a -=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 由题意(1,(1))f 也是对称中心,故122aa =⇔=, 即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 故选:AD【名师点评】结论名师点评:(1)()f x 的对称轴为()(2)x b f x f b x =⇔=-;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ⇔+-=;(3)任何三次函数32()f x ax bx cx d =+++都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x ''=的解,即,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是三次函数的对称中心 2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC【答案分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【答案详解】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确; 对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222f x f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误; 若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC.故选:BC.[方法三]: 因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数, 所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-, 所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称, 又()()g x f x '=,且函数()f x 可导, 所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭, 所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=, 所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误; 若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-【答案】D【答案分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【答案详解】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ . 故选:D【名师点评】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x ,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称【答案】D【答案分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D.【答案详解】sin x 可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x x π≠∴≠∈-=--=-∴Q Q ()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x x ππ-=--≠-=+=Q 故B 错; ()f x ∴关于直线2x π=对称,故C 错,D 对故选:D【名师点评】本题考查函数定义域与最值、奇偶性、对称性,考查基本答案分析判断能力,属中档题.。
2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习(附答案)
![2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习(附答案)](https://img.taocdn.com/s3/m/04a7d522a66e58fafab069dc5022aaea998f41ca.png)
2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习一. 基础小题练透篇1.过点P (3 ,-23 )且倾斜角为135°的直线方程为( ) A .3x -y -43 =0 B .x -y -3 =0 C .x +y -3 =0 D .x +y +3 =02.直线l :x +3 y +1=0的倾斜角的大小为( ) A .30° B .60° C .120° D .150°3.[2023ꞏ河北示范性高中开学考]“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件 4.[2023ꞏ广东韶关月考]过点M ()-1,-2 ,在两坐标轴上截距相等的直线方程为( ) A .x +y +3=0B .2x -y =0或x +y +3=0C .y =x -1D .x +y +3=0或y =x -15.[2023ꞏ湖北省质量检测]在平面直角坐标系中,某菱形的一组对边所在的直线方程分别为x +2y +1=0和x +2y +3=0,另一组对边所在的直线方程分别为3x -4y +c 1=0和3x -4y +c 2=0,则|c 1-c 2|=( )A .23B .25C .2D .46.[2023ꞏ杭州市长河高级中学期中]已知直线l 过点P ()2,4 ,且在y 轴上的截距是在x 轴上的截距的两倍,则直线l 的方程为( )A .2x -y =0B .2x +y -8=0C .2x -y =0或x +2y -10=0D .2x -y =0或2x +y -8=07.经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为________.8.[2023ꞏ宁夏银川月考]已知直线3x +4y +3=0与直线6x +my -14=0平行,则它们之间的距离是________.二. 能力小题提升篇1.[2023ꞏ江苏泰州调研]已知直线l :x +()a -1 y +2=0,l 2:3 bx +y =0,且l 1⊥l 2,则a 2+b 2的最小值为( )A .14B .12C .22 D .13162.[2023ꞏ河北邢台市月考]下列四个命题中,正确的是( ) A .直线3x +y +2=0在y 轴上的截距为2 B .直线y =0的倾斜角和斜率均存在C .若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行D .若两直线的倾斜角相等,则它们的斜率也一定相等3.[2023ꞏ福建宁德质量检测]已知点A (-2,1)和点B 关于直线l :x +y -1=0对称,斜率为k 的直线m 过点A 交l 于点C .若△ABC 的面积为2,则实数k 的值为( )A .3或13 B .0C .13 D .34.[2023ꞏ云南大理检测]设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△P AB 面积的最大值是( )A .25B .5C .52 D .55.[2023ꞏ重庆黔江检测]在平面直角坐标系中,△ABC 的一个顶点是A (-3,1),∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,则直线BC 的方程为________.6.[2023ꞏ云南楚雄期中]已知平面上一点M (5,0),若直线l 上存在点P ,使|PM |=4,则称该直线为点M 的“相关直线”,下列直线中是点M 的“相关直线”的是________.(填序号)①y =x +1;②y =2;③4x -3y =0;④2x -y +1=0.三. 高考小题重现篇1.[2020ꞏ全国卷Ⅱ]若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( )A .55 B .255 C .355 D .4552.[2020ꞏ全国卷Ⅲ]点(0,-1)到直线y =k (x +1)距离的最大值为( ) A .1 B .2 C .3 D .2 3.[北京卷]在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( )A .1B .2C .3D .44.[2019ꞏ江苏卷]在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________.四. 经典大题强化篇1.[2023ꞏ武汉调研]已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值.2.在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的平分线所在直线的方程为y =0,若点B 的坐标为(1,2),求:(1)点A 和点C 的坐标; (2)△ABC 的面积.参考答案一 基础小题练透篇1.答案:D答案解析:因为直线的倾斜角为135°,所以直线的斜率为k =tan 135°=-1, 所以直线方程为y +23 =-(x -3 ),即x +y +3 =0. 2.答案:D答案解析:由l :x +3 y +1=0可得y =-33 x -33 ,所以直线l 的斜率为k =-33 ,设直线l 的倾斜角为α,则tan α=-33,因为0°≤α<180°,所以α=150°. 3.答案:A答案解析:∵直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直,∴(2λ-3)(λ+1)-λ(λ+1)=0,∴λ=3或-1, 而“λ=3”是“λ=3或-1”的充分不必要条件,∴“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的充分不必要条件,故选A. 4.答案:B答案解析:当所求直线不过原点时,设所求直线的方程为x +y =a , 因为直线过点M ()-1,-2 ,代入可得a =-3,即x +y +3=0; 当所求直线过原点时,设直线方程为y =kx ,因为直线过点M ()-1,-2 ,代入可得k =2,即2x -y =0, 综上可得,所求直线的方程为2x -y =0或x +y +3=0. 故选B. 5.答案:B答案解析:设直线x +2y +1=0与直线3x -4y +c 2=0的交点为A ,则⎩⎪⎨⎪⎧x +2y +1=03x -4y +c 2=0 ,解得⎩⎪⎨⎪⎧x =-c 2+25y =c 2-310,故A (-c 2+25 ,c 2-310 ),同理设直线x +2y +1=0与直线3x -4y +c 1=0的交点为B ,则B (-c 1+25 ,c 1-310),设直线x +2y +3=0与直线3x -4y +c 1=0的交点为C ,则C (-c 1+65 ,c 1-910),设直线x +2y +3=0与直线3x -4y +c 2=0的交点为D ,则D (-c 2+65 ,c 2-910),由菱形的性质可知BD ⊥AC ,且BD ,AC 的斜率均存在,所以k BD ·k AC =-1,则c 1-310-c 2-910-c 1+25-⎝ ⎛⎭⎪⎫-c 2+65 ·c 2-310-c 1-910-c 2+25-⎝ ⎛⎭⎪⎫-c 1+65 =-1,即36-(c 2-c 1)24[]16-(c 2-c 1)2 =-1,解得|c 1-c 2|=25 .6.答案:D答案解析:若直线l 经过原点,满足条件,可得直线l 的方程为y =2x ,即2x -y =0;若直线l 不经过原点,可设直线l 的方程为x a +y2a=1()a ≠0 ,把点P ()2,4 代入可得2a +42a =1,解得a =4,∴直线l 的方程为x 4 +y8=1,即2x +y -8=0,综上可得直线l 的方程为2x -y =0或2x +y -8=0. 故选D.7.答案:4x -3y +9=0答案解析:方法一 由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 解得⎩⎪⎨⎪⎧x =-53,y =79即交点为(-53 ,79),∵所求直线与直线3x +4y -7=0垂直,∴所求直线的斜率为k =43.由点斜式得所求直线方程为y -79 =43 (x +53),即4x -3y +9=0.方法二 由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 可解得交点为(-53 ,79 ),代入4x -3y +m =0,得m =9,故所求直线方程为4x -3y +9=0. 方法三 由题意可设所求直线方程为(2x +3y +1)+λ(x -3y +4)=0,即(2+λ)x +(3-3λ)y +1+4λ=0 ① 又∵所求直线与直线3x +4y -7=0垂直,∴3(2+λ)+4(3-3λ)=0,∴λ=2,代入①式得所求直线方程为4x -3y +9=0.8.答案:2答案解析:∵直线3x +4y +3=0与直线6x +my -14=0平行,∴m =8,6x +8y -14=0可化为3x +4y -7=0.∴它们之间的距离为|3-(-7)|32+42=2.二 能力小题提升篇1.答案:A答案解析:l 1⊥l 2,则3 b +a -1=0,∴a =1-3 b , 所以a 2+b 2=()1-3b 2+b 2=4b 2-23 b +1,二次函数的抛物线的对称轴为b =--232×4 =34,当b =34 时,a 2+b 2取最小值14. 故选A. 2.答案:B答案解析:对于直线3x +y +2=0,令x =0得y =-2,所以直线3x +y +2=0在y 轴上的截距为-2,故A 错误;直线y =0的倾斜角为0,斜率为0,存在,故B 正确;若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行或重合,所以C 错误;若两直线的倾斜角为90°,则它们的斜率不存在,所以D 错误.故选B. 3.答案:B答案解析:设点B (x ,y ),则⎩⎪⎨⎪⎧y -1x +2=1,x -22+y +12-1=0,解得⎩⎪⎨⎪⎧x =0,y =3, 则B (0,3).由已知可得直线m 的方程为y -1=k (x +2),与方程x +y -1=0联立, 解得x =-2k k +1,y =3k +1k +1 ,则C ⎝ ⎛⎭⎪⎫-2k k +1,3k +1k +1 . 由已知可得直线AB 的方程为y -1=x +2,即y =x +3,且|AB |=22 , 则点C 到直线AB 的距离d =⎪⎪⎪⎪⎪⎪-2k k +1-3k +1k +1+32 =|2-2k |2|k +1|, 所以S △ABC =12 ×22 ·|2-2k |2|k +1|=2,即|1-k |=|k +1|(k ≠-1),解得k =0. 4.答案:C答案解析:动直线x +my =0,令y =0,解得x =0,因此此直线过定点A (0,0). 动直线mx -y -m +3=0,即m (x -1)+3-y =0,令x -1=0,3-y =0,解得x =1,y =3,因此此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △PAB =12 ×1×3=32.当m ≠0时,两条直线的斜率分别为-1m ,m ,则-1m·m =-1,因此两条直线相互垂直.设|PA |=a ,|PB |=b ,∵|AB |=12+32 =10 ,∴a 2+b 2=10.又a 2+b 2≥2ab ,∴ab ≤5,当且仅当a =b =5 时等号成立.∴S △PAB =12 |PA |·|PB |=12 ab ≤52.综上,△PAB 的面积最大值是52.5.答案:2x -y -5=0答案解析:因为∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,所以直线AB 与直线BC 关于直线x =0对称,直线AC 与直线BC 关于直线y =x 对称.则点A (-3,1)关于直线x =0对称的点A ′(3,1)在直线BC 上,点A (-3,1)关于直线y =x 对称的点A″(1,-3)也在直线BC上,所以由两点式得直线BC的方程为y+31+3=x-13-1,即y=2x-5.6.答案:②③答案解析:①点M到直线y=x+1的距离d=|5-0+1|12+(-1)2=32>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故①不是点M 的“相关直线”.②点M到直线y=2的距离d=|0-2|=2<4,即点M与该直线上的点的距离的最小值小于4,所以该直线上存在点P,使|PM|=4成立,故②是点M的“相关直线”.③点M到直线4x-3y=0的距离d=|4×5-3×0|42+(-3)2=4,即点M与该直线上的点的距离的最小值等于4,所以该直线上存在点P,使|PM|=4成立,故③是点M的“相关直线”.④点M到直线2x-y+1=0的距离d=|2×5-0+1|22+(-1)2=1155>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故④不是点M的“相关直线”.三 高考小题重现篇1.答案:B答案解析:设圆心为P(x0,y0),半径为r,∵圆与x轴,y轴都相切,∴|x0|=|y0|=r,又圆经过点(2,1),∴x0=y0=r且(2-x0)2+(1-y0)2=r2,∴(r-2)2+(r-1)2=r2,解得r=1或r=5.①r=1时,圆心P(1,1),则圆心到直线2x-y-3=0的距离d=|2-1-3|22+(-1)2=255;②r=5时,圆心P(5,5),则圆心到直线2x-y-3=0的距离d=|10-5-3|22+(-1)2=255.2.答案:B答案解析:方法一 点(0,-1)到直线y=k(x+1)的距离为d=|k·0-(-1)+k|k2+1=|k+1|k2+1,注意到k2+1≥2k,于是2(k2+1)≥k2+2k+1=|k+1|2,当且仅当k=1时取等号.即|k+1|≤k2+1·2,所以d=|k+1|k2+1≤2,故点(0,-1)到直线y=k(x+1)距离的最大值为2.方法二 由题意知,直线l:y=k(x+1)是过点P(-1,0)且斜率存在的直线,点Q(0,-1)到直线l的最大距离在直线l与直线PQ垂直时取得,此时k=1,最大距离为|PQ|=2.3.答案:C答案解析:由题意可得d=|cos θ-m sin θ-2|m2+1=|m sin θ-cos θ+2|m2+1=⎪⎪⎪⎪⎪⎪m2+1(mm2+1sin θ-1m2+1cos θ)+2m2+1=|m2+1sin (θ-φ)+2|m2+1(其中cos φ=mm2+1,sin φ=1m2+1),∵-1≤sin (θ-φ)≤1,∴|2-m 2+1|m 2+1 ≤d ≤m 2+1+2m 2+1 ,m 2+1+2m 2+1 =1+2m 2+1,∴当m =0时,d 取最大值3.4.答案:4答案解析:通解 设P ⎝ ⎛⎭⎪⎫x ,x +4x ,x >0,则点P 到直线x +y =0的距离d =|x +x +4x |2=2x +4x 2 ≥22x ·4x 2=4,当且仅当2x =4x,即x =2 时取等号,故点P 到直线x +y =0的距离的最小值是4.优解 由y =x +4x (x >0)得y ′=1-4x 2 ,令1-4x2 =-1,得x =2 ,则当点P 的坐标为(2 ,32 )时,点P 到直线x +y =0的距离最小,最小值为|2+32|2=4. 四 经典大题强化篇1.答案解析:(1)易知点A 到直线x -2y =0的距离不等于3,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.由题意得|10+5λ-5|(2+λ)2+(1-2λ)2 =3,即2λ2-5λ+2=0,∴λ=2或12.∴l 的方程为4x -3y -5=0或x =2.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点为P (2,1),如图,过P 作任一直线l ,设d 为点A到l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立).∴d max =|PA |=10 .2.答案解析:(1)由方程组⎩⎪⎨⎪⎧x -2y +1=0,y =0,解得点A (-1,0).又直线AB 的斜率为k AB =1,且x 轴是∠A 的平分线,故直线AC 的斜率为-1,所以AC 所在的直线方程为y =-(x +1). 已知BC 边上的高所在的直线方程为x -2y +1=0,故直线BC 的斜率为-2,故BC 所在的直线方程为y -2=-2(x -1).解方程组⎩⎪⎨⎪⎧y =-(x +1),y -2=-2(x -1), 得点C 的坐标为(5,-6).(2)因为B (1,2),C (5,-6),所以|BC |=(1-5)2+(2+6)2=45 ,点A(-1,0)到直线BC:y-2=-2(x-1)的距离为d=|2×(-1)-4|5=65,所以△ABC的面积为12×45×65=12.。
高考数学真题及答案解析版
![高考数学真题及答案解析版](https://img.taocdn.com/s3/m/4d13371de418964bcf84b9d528ea81c759f52e10.png)
高考数学真题及答案解析版一、选择题1. 题目内容:已知函数f(x) = ax^2 + bx + c在点x=1取得最小值3,且知道a>0,求a+b+c的值。
答案解析:根据题意,函数f(x) = ax^2 + bx + c在x=1处取得最小值,可以得出f(x)的对称轴为x=-b/2a=1,由此可得b=-2a。
又因为f(1)=3,代入得a+b+c=3。
将b=-2a代入,得到a-2a+c=3,即c=5-a。
由于a>0,所以c>5。
综合以上信息,我们可以得出a+b+c=a-2a+5-a=3,解得a=1,进而得到b=-2,c=4。
所以a+b+c=1+(-2)+4=3。
2. 题目内容:设集合A={x|x^2 < 4},B={x|x < 0},求A∪B的值。
答案解析:集合A表示的是所有满足x^2 < 4的x值的集合,即-2 <x < 2。
集合B表示的是所有小于0的x值的集合。
求A∪B,即求A和B的并集,也就是所有属于A或属于B的元素构成的集合。
由于A的范围是-2到2之间,而B是小于0的所有数,因此A∪B的范围是从负无穷到2,即A∪B={x|x < 2}。
3. 题目内容:已知数列{an}满足a1=1,an=3an-1+2(n≥2),求a5的值。
答案解析:根据递推公式an=3an-1+2,我们可以逐步计算数列的前几项。
首先a1=1,然后a2=3a1+2=5,a3=3a2+2=17,a4=3a3+2=53,最后a5=3a4+2=161。
所以a5的值为161。
二、填空题1. 题目内容:若sinθ=0.6,则cosθ的值为______。
答案解析:根据三角函数的基本关系,sin^2θ+cos^2θ=1。
已知sinθ=0.6,所以0.6^2+cos^2θ=1,解得cos^2θ=1-0.36=0.64。
由于cosθ的值在-1到1之间,所以cosθ的值为±√0.64=±0.8。
2024年全国新高考一卷数学真题及参考答案
![2024年全国新高考一卷数学真题及参考答案](https://img.taocdn.com/s3/m/7b72f5f9b1717fd5360cba1aa8114431b90d8eb4.png)
2024年全国新高考一卷数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合{}553<<-=x x A ,{}3,2,0,13--=,B ,则=B A ()A.{}0,1-B.{}32, C.{}0,13--, D.{}2,0,1-2.若i z z+=-11,则=z ()A.i --1B.i +-1C.i -1D.i +13.已知向量()1,0=a,()x b ,2= ,若()a b b 4-⊥,则=x ()A.2- B.1- C.1D.24.已知()m =+βαcos ,2tan tan =βα,则()=-βαcos ()A.m3- B.3m -C.3m D.m35.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为()A.π32 B.π33 C.π36 D.π396.已知函数()()⎪⎩⎪⎨⎧≥++<---=0,1ln 0,22x x e x a ax x x f x 在R 上单调递增,则a 的取值范围是()A.(]0,∞-B.[]0,1-C.[]1,1-D.[)∞+,07.当[]π2,0∈x 时,曲线x y sin =与⎪⎭⎫⎝⎛-=63sin 2πx y 的交点个数为()A.3B.4C.6D.88.已知函数()x f 定义域为R ,()()()21-+->x f x f x f ,且当3<x 时,()x x f =,则下列结论中一定正确的是()A.()10010>fB.()100020>fC.()100010<f D.()1000020<f二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,由选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值1.2=x ,样本方差01.02=S ,已知该种植区以往的亩收入X 服从正态分布()21.08.1,N ,假设失去出口后的亩收入Y 服从发正态分布()2,S x N ,则()(若随机变量Z 服从正态分布()2,σμN ,则()8413.0≈+<σμZ P )A.()2.02>>X PB.()5.0<>Z X PC.()5.0>>Z Y P D.()8.0<>Z Y P 10.设函数()()()412--=x x x f ,则()A.3=x 是()x f 的极小值点B.当10<<x 时,()()2xf x f <C.当21<<x 时,()0124<-<-x f D.当01<<-x 时,()()x f x f >-211.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于2-,到点()02,F 的距离与到定直线()0<=a a x 的距离之积为4,则()A .2-=aB .点()022,在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,y x 在C 上时,2400+≤x y三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线()0,012222>>=-b a by a x C :的左右焦点分别为21,F F ,过2F 作平行于y 轴的直线交C 于B A ,两点,若131=A F ,10=AB ,则C 的离心率为.13.若曲线x e y x+=在点()1,0处的切线也是曲线()a x y ++=1ln 的切线,则=a .14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己特有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分小于2的概率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知B C cos 2sin =,ab c b a 2222=-+.(1)求B ;(2)若ABC ∆的面积为33+,求c .16.(15分)已知()30,A 和⎪⎭⎫⎝⎛233,P 为椭圆()012222>>=+b a b y a x C :上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程.17.(15分)如图,四棱锥ABCD P -中,⊥P A 底面ABCD ,2==PC P A ,1=BC ,3=AB .(1)若PB AD ⊥,证明:∥AD 平面PBC ;(2)若DC AD ⊥,且二面角D CP A --的正弦值为742,求AD .18.(17分)已知函数()()312ln-++-=x b ax xx x f .(1)若0=b ,且()0≥'x f ,求a 的最小值;(2)证明:曲线()x f y =是中心对称图形;(3)若()2->x f ,当且仅当21<<x ,求b 的取值范围.19.(17分)设m 为正整数,数列242.1,,,+m a a a 是公差不为0的等差数列,若从中删去两项i a 和()j i <后剩余的m 4项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列242.1,,,+m a a a 是()j i ,一一可分数列.(1)写出所有的()j i ,,61≤<≤j i ,使数列62.1,,,a a a 是()j i ,一一可分数列;(2)当3≥m 时,证明:数列242.1,,,+m a a a 是()13,2一一可分数列;(3)从242,1+m ,, 中一次任取两个数i 和j ()j i <,记数列242.1,,,+m a a a 是()j i ,一一可分数列的概率的概率为m P ,证明:81>m P .参考答案一、单项选择题1.A解析:∵553<<-x ,∴3355<<-x .∵2513<<,∴1523-<-<-.∴{}0,1-=B A .2.C解析:∵i z z +=-11,∴()()i i i z i iz z i z -=+=⇒+=⇒-+=11111.3.D 解析:()4,24-=-x a b ,∵()a b b4-⊥,∴()044=-+x x ,∴2=x .4.A解析:∵()m =+βαcos ,2tan tan =βα,∴()()32121tan tan 1tan tan 1sin sin cos cos sin sin cos cos cos cos -=-+=-+=-+=+-βαβαβαβαβαβαβαβα.∴()m 3cos -=-βα.5.B解析:由32⋅==r rl S ππ侧可得32=l ,∴3=r .∴ππ33393131=⋅⋅==Sh V .6.B由()()0,1ln ≥++=x x e x f x为增函数,故此分段函数在R 上递增,只需满足:⎪⎩⎪⎨⎧≤-≥-=--1022a a a,解得01≤≤-a .7.C解析:∴32π=T .8.B解析:()()()123f f f +>,()22=f ,()11=f .()()()()()122234f f f f f +>+>,()()()()()1223345f f f f f +>+>,……()()()8912123410>+>f f f ,……,()()()9871233237715>+>f f f ,()()()15971377261016>+>f f f .∴()100020>f .二、多项选择题9.BC 解析:已知()21.08.1~,N X ,由题目所给条件:若随机变量Z 服从正态分布,()8413.0≈+<σμZ P ,则()8413.09.1≈<X P ,易得()1587.08413.012≈-<>X P .故A 错误,B 正确;对于C:()21.01.2~,N Y ,∴()5.01.2=>Y P ,即()()5.01.22=>>>Y P Y P ,故C正确;对于D:同上易得()8413.02.2≈<Y P .由正态密度曲线的对称性可知()()8.08412.02.22>≈<=>Y P Y P .故D 错误.10.ACD解析:对于A:()()()()()()31314122--=-+--='x x x x x x f .令()0='x f ,解得11=x ,32=x .x 变化时,()x f '与()x f 变化如下表:故A 正确;对于B:当10<<x 时,102<<<x x ,又()x f 在()1,0上单调递增,所以()()x f xf <2,故B 错误;对于C :令()2112<<-=x x t ,则31<<x .()x f 在()3,1上单调递减,()()()13f t f f <<,()43-=f ,()11=f ,即()0121<-<-x f .故C 正确;对于D:()()()412--=x x x f ,()()()()()21421222---=---=-x x x x x f .∴()()()()()32122212-=--=--x x x x f x f .当01<<-x 时,()013<-x ,∴()()x f x f -<2成立.故D 正确.11.ABD解析:对于A:O 点在曲线C 上,O 到F 的距离和到a x =的距离之积为4,即42=⨯a ,解得2±=a .又∵0<a ,∴2-=a ,故A 正确;对于B:由图象可知曲线C 与x 轴正半轴相交于一点,不妨设B 点.设()0,m B ,其中2>m ,由定义可得()()422=+-m m ,解得22±=m .又∵2>m ,∴22=m ,故B 正确;对于C:设C 上一点()y x P ,,()()42222=++-x y x ,其中2->x .化简得曲线C 的轨迹方程为()()2222216--+=x x y ,其中2->x .已知2=x 时,12=y ,对x 求导()()2223232--+-=x x y .2122-==x y ,则在2=x 是下降趋势,即存在2<x 时,1>y 成立,故C 错误;对于D:()()2222216--+=x x y ,∵()022≥-x ,∴()22216+≤x y .∴240+≤x y .又∵20->x ,2400+≤x y ,则24000+≤≤x y y ,故D 正确.三、填空题12.23解析:作图易得131=A F ,52=AF ,且212F F AF ⊥,12222121=-=AF A F F F .由双曲线定义可得:8221=-=AF A F a ,6221==F F c ,则23==a c e .13.2ln 解析:1+='xe y ,20='==x y k ,切线l 的方程:12+=x y .设l 与曲线()a x y ++=1ln 的切点横坐标为0x ,110+='x y ,则2110=+=x k ,解得210-=x .代入12+=x y 可得切点为⎪⎭⎫⎝⎛-021,,再代入()a x y ++=1ln ,a +=21ln 0,即2ln =a .14.21解析:不妨确定甲的出牌顺序为7,5,3,1.乙随机出牌有2444=A 种基本事件.甲的数字1最小,乙的数字8最大.若数字1和数字8轮次不一致,乙最少得2分,甲最多2分.站在甲的视角下,分四种情况:①8对1,则7必得分(1)若得3分:3,5都得分,3对2,5对4(1种情况)(2)若得2分:3,5只有一个得分(ⅰ):5得分,3不得分:5对2,3对4或6(2种情况);5对4,3对6(1种情况);(ⅱ):3得分,5不得分:3对2,5对6(1种情况);②8对3,7必得分5得分:5对2,4,7对应2种情况,共有422=⨯种情况;③8对5,7必得分3得分:3对2,7对应2中情况,共有221=⨯种情况;④8对7,最多得2分3得分,5得分:3对2,5对4(1种情况).共有12种情况,甲总得分不小于2的概率为212412=.四、解答题15.解:(1)∵ab c b a 2222=-+,∴22222cos 222==-+=ab ab ab c b a C .∴22cos 1sin 2=-=C C .又∵B C cos 2sin =,∴22cos 2=B ,∴21cos =B ,∴3π=B .(2)∵33sin 21+==∆Bac S ABC ,∴333sin 21+=ac π.即434+=ac ……①由(1)易知4π=C ,3π=B .由正弦定理C c A a sin sin =,()CcC B a sin sin =+.∴4sin43sin πππc a =⎪⎭⎫ ⎝⎛+,∴224269c =+,∴c a 213+=.代入①式解得22=c .16.解:(1)将()30,A ,⎪⎭⎫⎝⎛233,P 代入椭圆12222=+b y a x 得:⎪⎪⎩⎪⎪⎨⎧=+=149919222b a b ,可得⎪⎩⎪⎨⎧==91222b a ,∴3222=-=b a c ,∴32=a ,3=c .∴离心率21323===a c e .(2)①当l 斜率不存在时,29332121=⨯⨯=-⋅=∆A P ABP x x PB S ,不符,舍去.②当l 斜率存在时,设l 方程:()323-=-x k y .联立()⎪⎪⎩⎪⎪⎨⎧=+-=-191232322y x x k y 可得:()()()02736212342222=--++-++k k x k k x k.由韦达定理:()34273622+--=⋅k k k x x B P ,又3=P x ,∴()3491222+--=k k k x B .∵BP 与y 轴交点⎪⎭⎫ ⎝⎛+-233,0k ,∴()9349123323213232122=+---⋅+=-+⋅=∆k k k k x x k S B P ABP 解得21=k 或23,∴l 方程x y 21=或0623=--y x .17.解:(1)证明:∵⊥P A 底面ABCD ,∴AD P A ⊥.又∵PB AD ⊥,∴⊥AD 平面P AB ,则AB AD ⊥.又∵1,32===BC AB AC ,,∴222BC AB AC +=,则BC AB ⊥,∴BC AD ∥.∵⊄AD 平面PBC ,⊂BC 平面PBC ,∴∥AD 平面PBC .(2)以D 为原点,DA 为x 轴正方向建立如图所示空间直角坐标系.设0,0,,>>==q p q DC p DA ,满足4222==+AC q p ,则()()()()0,0,0,0,,0,20,0,0,D q C p P p A ,,.设平面APC 法向量为()111,,z y x m =,∴()()0,,200q p AC AP -==,,,.∴⎪⎩⎪⎨⎧=+-=⋅==⋅002111qy px m AC z m AP ,取()0,,p q m = .设平面DPC 法向量为()()()0,,0,2,0,,,,222q DC p DP z y x n ===.∴⎪⎩⎪⎨⎧==⋅=+=⋅002222qy n DC z px n AP ,取()p n -=,0,2 .∴2222742142,cos ⎪⎪⎭⎫⎝⎛-=+⋅+=p q p qn m .∴7142=+p q .又∵422=+q p ,∴3=p ,即3=AD .18.解:(1)0=b 时,()ax x x x f +-=2ln,∴()()022≥+-⋅='a x x x f .∴()22-≥x x a .又∵()2,0∈x ,设()()22-=x x x h ,当()2,0∈x 时,()2max -=x h ,∴2-≥a .∴a 的最小值为2-.(2)由题意可知()x f 的定义域为()20,.()()()()()a x b x a xx bx x a x x x f x f 2111ln 111ln1133=-+-++-++++-+=-++.∴()x f 关于()a ,1中心对称.(3)()212ln 3->-++-x b ax xx ,即()0212ln3>+-++-x b ax x x 即()()02112ln 3>++-+-+-a x b x a xx.令1-=x t ,则()1,0∈t ,()0211ln 3>++++-+=a bt at tt t g .()t g 关于()a +2,0中心对称,则当且仅当()1,0∈t 时,()0>t g 恒成立.需02=+a ,即2-=a ,()0≥'t g 在()1,0恒成立.()()()()22222212231223032112t t t b t bt bt t t t g --≥⇒--≥⇒≥+--+='.令2t m =,则()1,0∈m ,()()12122-=--=m m m m m h .()2max -=m h ,∴23-≥b ,即32-≥b .∴⎪⎭⎫⎢⎣⎡+∞-∈,32b .19.解:(1)从1,2,3,4,5,6中删去()j i ,剩下的四个数从小到大构成等差数列,记为{}k b ,41≤≤k .设{}k b 公差为d ,已知1=d ,否则,若2≥d ,则6314≥=-d b b ,又51614=-≤-b b ,故矛盾,∴1=d ,则{}k b 可以为{}4,3,2,1,{}5,4,3,2,{}6,5,4,3,则对应()j i ,分别为()()()2,16,16,5,,.(2)证明:只需考虑前14项在去掉()13,2后如何构成3组4项的等差数列,后面剩下的()34124-=-m m 可自然依序划分为3-m 组等差数列.则只需构造{}14,12,11,10,9,8,7,6,5,4,3,1的一组划分,使划分出的3组数均成等差数列,取{}{}{}14,11,8,512,9,6,310,7,4,1,,,这单租数均为公差为3的等差数列,对于剩下的()34-m 个数,按每四个相邻数一组,划分为3-m 组即可.由此可见去掉()13,2后,剩余的m 4个数可以分为m 组,每组均为等差数列,故3≥m 时,24,2,1+m 是()13,2可分数列,即2421,,,+m a a a 是()13,2可分数列.(3)证明:用数学归纳法证明:共有不少于12++m m 中()j i ,的取法使24,2,1+m 是()j i ,可分数列,①当1=m 时,由(1)知,有11132++=种()j i ,的取法,②假设当n m =时,有至少12++n n 种()j i ,的取法,则当1+=n m 时,考虑数列{}64,,2,1+n 下对于()j i ,分三种情况讨论:1°当1=i 时,取()1,,,2,1,0,24+=+=n n k k j 则j i ,之间(不含j i ,)有k k 41124=--+个连续的自然数,可按形如{}{}{}14,4,14,249,8,7,65,4,3,2+--k k k k ,,, 划分,剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2,1,0+=n n k ,∴这种情况有2+n 种()j i ,的取法.2°当2=i 时,取()1,,,2,14+=+=n n k k j ,现以k 为公差构造划分为:{}13,12,11+++k k k ,,{}33,32,3,3+++k k k ,……{}14,13,12,1----k k k k ,{}k k k k 4,3,22,,{}24,23,22,2++++k k k k (注意当2=k 时,只有{}{}10,8,6,47,5,3,1,这两组)剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2+=n n k ,∴这种情况有n 种()j i ,的取法.3°当2>i 时,考虑{}64,,7,6,5+n 共24+n 个数,由归纳假设里n m =时,有至少12++n n 种()j i ,的取法.综合1°2°3°,当1+=n m 时,至少有()()()()1111222++++=+++++n n n n n n 中取法,由①②及数学归纳法原理,值共有不少于12++m m 种()j i ,的取法使24,2,1+m 为()j i ,可分数列,那么()()8188811681121411222222242=++++>++++=++++=++≥+m m m m m m m m m m m m C m m P m m ,∴81>m P .。
历年高考数学试题及答案word
![历年高考数学试题及答案word](https://img.taocdn.com/s3/m/d9320358590216fc700abb68a98271fe900eaf47.png)
历年高考数学试题及答案word 以下是历年高考数学试题及答案的格式示例:
一、选择题(每题4分,共40分)
1. 若函数f(x)=x^2+2x+1,则f(-1)的值为()
A. 0
B. 1
C. 2
D. 3
答案:B
2. 已知数列{an}满足a1=1,an+1=2an+1,求a3的值为()
A. 5
B. 7
C. 9
D. 11
答案:A
二、填空题(每题4分,共20分)
3. 函数y=x^3-3x在区间(-1,1)上的单调性为()。
答案:单调递减
4. 已知向量a=(1,2),b=(2,-1),则|a+b|的值为()。
答案:√5
三、解答题(共40分)
5. 已知函数f(x)=x^2-4x+3,求函数的零点。
答案:函数的零点为x=1和x=3。
6. 已知直线l的方程为y=2x+1,求直线l与x轴的交点坐标。
答案:直线l与x轴的交点坐标为(-1/2, 0)。
结束语:以上为历年高考数学试题及答案的示例,希望对同学们的复
习有所帮助。
在实际考试中,题目的难度和类型可能会有所不同,但
解题的基本方法和思路是相通的。
建议同学们在复习过程中多做练习,掌握各种题型的解题技巧,提高解题速度和准确率。
同时,也要注意
培养良好的考试心态,保持冷静和自信,相信自己能够取得理想的成绩。
高三高考数学试题及答案
![高三高考数学试题及答案](https://img.taocdn.com/s3/m/48c9db321fb91a37f111f18583d049649b660ebb.png)
高三高考数学试题及答案一、选择题(本题共10小题,每小题5分,共50分。
每小题只有一个选项是正确的。
)1. 若函数f(x)=x^2-4x+c的图象与x轴有两个交点,则c的取值范围是()。
A. c > 4B. c < 4C. c ≥ 4D. c ≤ 4答案:D2. 已知等差数列{a_n}的前n项和为S_n,且S_5=50,S_10=100,则a_6+a_7+a_8+a_9+a_10的值为()。
A. 30B. 50C. 100D. 150答案:A3. 设函数f(x)=x^3+2x^2-3x+1,若f(a)=0,则a的值不可能是()。
A. -3B. 1C. 2D. 0答案:C4. 已知向量a=(2, -3),b=(1, 2),则向量a与向量b的夹角θ满足()。
A. 0 < θ < π/2B. π/2 < θ < πC. θ = π/2D. θ = π答案:A5. 已知圆C:(x-2)^2+(y+3)^2=16,圆D:(x-4)^2+(y+5)^2=25,两圆的公共弦所在的直线方程是()。
A. x-y-3=0B. x+y-1=0C. x-y+1=0D. x+y+7=0答案:A6. 已知函数f(x)=x^3-3x^2+4,若f(a)=f(b)=0,则a+b的值为()。
A. 3B. -3C. 1D. -1答案:A7. 已知复数z=1+i,则|z|的值为()。
A. √2B. 2C. 1D. 0答案:A8. 设函数f(x)=x^2-2x+1,若f(x)=0,则x的值为()。
A. 1B. -1C. 2D. 0答案:A9. 已知等比数列{a_n}的公比q=2,且a_1a_2a_3=8,则a_1的值为()。
A. 1B. 2C. 4D. 8答案:A10. 设函数f(x)=x^2-6x+8,若f(a)=f(2a),则a的值为()。
A. 2B. 4C. 1D. 0答案:C二、填空题(本题共5小题,每小题5分,共25分。
高考数学试题题目及答案
![高考数学试题题目及答案](https://img.taocdn.com/s3/m/152f78786ad97f192279168884868762caaebbdb.png)
高考数学试题题目及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+m的图像与x轴有两个交点,则实数m的取值范围是:A. m>4B. m<4C. m≥4D. m≤4答案:B2. 已知数列{an}满足a1=1,an+1=2an+1,求a5的值。
A. 17B. 33C. 65D. 129答案:A3. 若直线l的倾斜角为45°,且过点(1,2),则直线l的方程为:A. y=x+1B. y=x-1C. y=-x+3D. y=-x-1答案:A4. 对于双曲线C:x^2/a^2 - y^2/b^2 = 1(a>0,b>0),若其渐近线方程为y=±(√2)x,则双曲线C的离心率为:A. √2B. √3C. 2D. 3答案:B5. 已知向量a=(1,2),b=(2,-1),则向量a+2b的模长为:A. √5B. √10C. √17D. √26答案:C6. 函数f(x)=sin(x)+√3cos(x)的最小正周期为:A. 2πB. πC. 2π/3D. π/3答案:B7. 已知三角形ABC的三边长分别为a, b, c,且满足a^2+b^2=c^2,若a=3,b=4,则c的值为:A. 5B. 6C. 7D. 8答案:A8. 已知等比数列{an}的首项为1,公比为2,求其前5项的和S5。
A. 31B. 32C. 63D. 64答案:B9. 函数f(x)=x^3-3x在区间[-2,2]上的最大值为:A. -2B. 2C. 4D. 8答案:D10. 已知圆C的方程为(x-1)^2+(y-1)^2=9,直线l的方程为y=x+m,若圆C与直线l相切,则m的值为:A. -5B. -3C. 3D. 5答案:B二、填空题(每题4分,共20分)11. 已知等差数列{an}的前n项和为Sn,若a3+a4+a5=15,则S5的值为______。
答案:3012. 函数f(x)=x^2-4x+4的顶点坐标为______。
高考数学试卷原版及答案
![高考数学试卷原版及答案](https://img.taocdn.com/s3/m/38f2845753ea551810a6f524ccbff121dc36c517.png)
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数$f(x) = x^3 - 3x + 1$,则$f(x)$的图像与x轴的交点个数为:A. 1个B. 2个C. 3个D. 0个2. 下列各数中,不是无理数的是:A. $\sqrt{2}$B. $\pi$C. $\frac{1}{3}$D. $\sqrt{3}$3. 若$a, b, c$是等差数列,且$a + b + c = 9$,$ab + bc + ca = 18$,则$abc$的值为:A. 24B. 27C. 30D. 364. 在平面直角坐标系中,点A(2,3),点B(4,1),则直线AB的斜率为:A. 1B. -1C. 2D. -25. 已知等比数列$\{a_n\}$的首项为2,公比为3,则第10项$a_{10}$为:A. 59049B. 59048C. 39048D. 390496. 已知函数$f(x) = \frac{1}{x^2 - 1}$,则$f(x)$的定义域为:A. $x \neq \pm 1$B. $x \neq 0$C. $x \neq \pm 1$且$x \neq 0$D. $x \neq 0$且$x \neq 1$7. 若向量$\vec{a} = (1, 2)$,$\vec{b} = (3, 4)$,则$\vec{a} \cdot\vec{b}$的值为:A. 10B. 14C. 20D. 248. 已知数列$\{a_n\}$的通项公式为$a_n = 2^n - 1$,则数列的前5项之和为:A. 31B. 32C. 33D. 349. 在三角形ABC中,$AB = AC$,$AD$是BC边上的高,$BD = 3$,$CD = 4$,则$AD$的长度为:A. 5B. 6C. 7D. 810. 已知函数$f(x) = x^3 - 6x^2 + 9x - 1$,若$f(x)$在$x = 1$处取得极值,则该极值为:A. 3B. -3C. 0D. -1二、填空题(本大题共10小题,每小题5分,共50分。
高考数学试题真题及答案
![高考数学试题真题及答案](https://img.taocdn.com/s3/m/8df183b20875f46527d3240c844769eae009a392.png)
高考数学试题真题及答案一、选择题(每题5分,共20分)1. 若函数\( f(x) = x^2 - 4x + 3 \)在区间\( (1, +\infty) \)上单调递增,则下列说法正确的是:A. 函数的最小值为2B. 函数的最小值为1C. 函数在\( x = 2 \)处取得最小值D. 函数在\( x = 1 \)处取得最小值答案:C2. 已知向量\( \vec{a} = (3, -2) \)和\( \vec{b} = (2, 1) \),则\( \vec{a} \cdot \vec{b} \)的值为:A. 4B. 2C. -2D. -4答案:B3. 若\( \sin \alpha = \frac{3}{5} \)且\( \alpha \)为锐角,则\( \cos \alpha \)的值为:A. \( \frac{4}{5} \)B. \( \frac{3}{5} \)C. \( -\frac{4}{5} \)D. \( -\frac{3}{5} \)答案:A4. 已知等比数列\( \{a_n\} \)的首项\( a_1 = 2 \),公比\( q = 2 \),则\( a_5 \)的值为:A. 16B. 32C. 64D. 128答案:C二、填空题(每题5分,共20分)5. 已知双曲线的方程为\( \frac{x^2}{9} - \frac{y^2}{16} = 1 \),其渐近线方程为\( \pm \frac{4}{3}x \)。
6. 若从5名男生和3名女生中选出3人参加比赛,其中至少有1名女生,则不同的选法共有多少种?答案:307. 函数\( f(x) = \ln(x+1) - x \)在区间\( (0, +\infty) \)上是减函数。
8. 已知\( \tan \theta = \frac{1}{2} \),则\( \sin \theta \cos \theta \)的值为\( \frac{1}{5} \)。
历届高中数学试题及答案
![历届高中数学试题及答案](https://img.taocdn.com/s3/m/9f3f0c1b32687e21af45b307e87101f69e31fb9c.png)
历届高中数学试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. \( y = x^2 \)B. \( y = |x| \)C. \( y = \sin(x) \)D. \( y = x^3 \)答案:D2. 已知等差数列的前三项依次为2,5,8,则该数列的公差为:A. 1B. 2C. 3D. 4答案:B3. 一个圆的半径为5,其面积是:A. 25πB. 50πC. 100πD. 25答案:C4. 函数\( f(x) = \frac{1}{x} \)在区间(-∞, 0)上的单调性是:A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:B5. 集合A={1, 2, 3},集合B={2, 3, 4},则A∩B的元素个数是:A. 1B. 2C. 3D. 4答案:B6. 抛物线\( y^2 = 4x \)的焦点坐标是:A. (0, 0)B. (1, 0)C. (0, 1)D. (2, 0)答案:D7. 函数\( f(x) = \sqrt{x} \)的定义域是:A. (-∞, 0)B. [0, +∞)C. (-∞, +∞)D. (0, +∞)答案:B8. 直线\( y = 2x + 1 \)与x轴的交点坐标是:A. (0, 1)B. (-1, 0)C. (1, 0)D. (0, -1)答案:D9. 函数\( f(x) = x^2 - 4x + 3 \)的最小值是:A. -1B. 0C. 1D. 3答案:A10. 圆心在原点,半径为2的圆的标准方程是:A. \( x^2 + y^2 = 4 \)B. \( x^2 + y^2 = 2 \)C. \( x^2 + y^2 = 1 \)D. \( x^2 + y^2 = 0 \)答案:A二、填空题(每题4分,共20分)1. 等比数列的前三项依次为2,8,32,该数列的第四项是______。
答案:1282. 已知三角形ABC的三边长分别为3,4,5,则三角形ABC的面积是______。
全国一数学高考真题及答案
![全国一数学高考真题及答案](https://img.taocdn.com/s3/m/5509bf5edf80d4d8d15abe23482fb4daa58d1de4.png)
全国一数学高考真题及答案2020年全国一数学高考试题1.已知函数$f(x)=\frac{x}{x-3}$,求$f(2)+f(3)$的值。
A. -5B. -2C. 0D. 1 答案:B2. 已知实数$a$满足方程$x^2+x=-a$有实数根,则$a$的取值范围是__________。
A. $(-1,0)$B. $(0,-\frac{1}{4})$C. $(-\infty,0)$D. $(0,+\infty)$ 答案:B3. 在四边形$ABCD$中,$AD$和$BC$相交于点$O$,且$\angle AOB+\angle COD=180^\circ$。
若$AB=CD$,则四边形$ABCD$一定是__________。
A. 平行四边形B. 菱形C. 长方形D. 正方形答案:D4. 函数$f(x)=\frac{1}{2}x^2-2x+5$的图象在直线$y=kx+m$上过两个不同的点,则$k$的取值范围是__________。
A. $(-\infty,1)$B. $(1,2)$C. $(2,+\infty)$D. $\{0\}$ 答案:C5. 已知数列$\{a_n\}$满足$a_{n+2}=2a_{n+1}-3a_n$,$a_1=1$,$a_2=2$,则$a_{2020}=$__________。
A. $2^{2020}-1$B. $2^{1010}-1$C. $2^{12}$D. $2^{101}$ 答案:A6. 设集合$A=\{x|0<x<8\}$,集合$B=\{y|y=2x-8,x\in A\}$,则$B$的元素的最大值是__________。
A. 4B. 8C. 12D. 16 答案:C7. 若$\sin\alpha=\frac{1}{3}$,$\cos\beta=-\frac{1}{5}$,$\alpha$和$\beta$是锐角,则$\sin(\alpha+\beta)=$__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学--历年高考真题精选题号 一 二 三 总分 得分一 、选择题(本大题共10小题,每小题4分,共40分)1.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从2-变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为; A .34 B .1 C .74D .2 2.(2012年高考(天津理))设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是( )A .[13,1+3]-B .(,13][1+3,+)-∞-∞C .[222,2+22]-D .(,222][2+22,+)-∞-∞ 3.如图,在三棱柱ABC-A 1B 1C 1中,∠ACB=900,∠ACC 1=600,∠BCC 1=450,侧棱CC 1的长为1,则该三棱柱的高等于 A.21 B.22C.23D.334.某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是 (A)简单随机抽样法(B)抽签法 (C)随机数表法 (D)分层抽样法5.如图,已知六棱锥ABCDEF P -的底面是正六边形,AB PA ABC PA 2,=⊥平面则下列结论正确的是A. AD PB ⊥B. PAB 平面PBC 平面⊥C. 直线BC ∥PAE 平面D. 直线ABC PD 与平面所成的角为45°6.5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有( )(A )150种 (B)180种 (C)200种 (D)280种7.对于函数f(x),若存在常数0≠a ,使得x 取定义域内的每一个值,都有a-x)f(f(x)2=,则称f(x)为准偶函数。
下列函数中是准偶函数的是 (A )x x f =)((B )2)(x x f =(C )x x f tan )(=(D ))1cos()(+=x x f8.设a 是实数,且112a ii +++是实数,则a = A .12 B .1 C .32D .2 9.设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,P 是其右准线上纵坐标为3c (c 为半焦距)的点,且122||||F F F P =,则椭圆的离心率是( )A .312- B .12C .512-D .22 10.生产过程有4道工序,每道工序需要安排一人照看,现从甲乙丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲乙两工人中安排1人,第四道工序只能从甲丙两工人中安排1人,则不同的安排方案有( )A.24种B.36种C.48种D.72种二 、填空题(本大题共8小题,每小题3分,共24分)11.已知1F 、2F 分别为双曲线C :221927x y -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线.则2||AF = .12.计算:∞→n lim 16)1(32++n n n = .13.设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.姓名:__________班级:__________考号:__________ ●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●14.(坐标系与参数方程选做题)已知曲线C 的参数方程为(t 为参数),C 在点(1,1)处的切线为L ,一座标原点为极点,x 轴的正半轴为极轴建立极坐标,则L 的极坐标方程为_______.15.(14)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________.16.m 、n 是空间两条不同直线,αβ、是空间两条不同平面,下面有四个命题:①,;m nm n αβαβ⊥⇒⊥, ②,,;m n m n αβαβ⊥⊥⇒ ③,,;m n m n αβαβ⊥⇒⊥ ③,,;m m n n ααββ⊥⇒⊥ 其中真命题的编号是________(写出所有真命题的编号)。
17.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。
由图中数据可知a =。
若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140 ,150]内的学生中选取的人数应为 。
18.一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .三 、解答题(本大题共4小题,共36分) 19..已知平面内一动点到点F (1,0)的距离与点到轴的距离的等等于1. (I )求动点的轨迹的方程;(II )过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点,与轨迹相交于点,求的最小值. 20.已知0a >,函数()2x af x x a-=+。
(I )记[]()0,4f x a 在区间上的最大值为g(),求a g()的表达式;(II )是否存在a ,使函数()y f x =在区间()0,4内的图像上存在两点,在该两点处的切线相互垂直?若存在,求a 的取值范围;若不存在,请说明理由。
21.已知q 和n 均为给定的大于1的自然数.设集合0,1,2,1,q M,集合112,,1,2,,n n iA x xx x qx q x M in .(Ⅰ)当2q ,3n 时,用列举法表示集合A ;(Ⅱ)设,s tA ,112n n sa a qa q ,112n n tb b qb q ,其中,i i a b M ∈,1,2,,i n =,证明:若n n a b <,则s t <.22.设数列{}n a 满足11a =,22a =,121(2)3n n n a a a --=+ (3,4,)n =。
数列{}n b 满足11,(2,3,)n b b n ==是非零整数,且对任意的正整数m 和自然数k ,都有111m m m k b b b ++-≤+++≤。
(1)求数列{}n a 和{}n b 的通项公式; (2)记(1,2,)n n n c na b n ==,求数列{}n c 的前n 项和n S 。
P P y P C F 12,l l 1l C ,A B 2l C ,D E AD EB •高中数学--历年高考真题精选答案解析一 、选择题1.C 【解析】当a 从2-变化到1时,动直线x y a +=扫过A 中的那部分区域如图中的阴影部分,显然, 这部分面积大于1而小于2,故选C 。
2.【答案】D【命题意图】本试题主要考查了直线与圆的位置关系,点到直线的距离公式,重要不等式,一元二次不等式的解法,并借助于直线与圆相切的几何性质求解的能力.【解析】∵直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,∴圆心(1,1)到直线的距离为22(1)+(1)d m n ++,所以21()2m n mn m n +=++≤,设=t m n +, 则21+14t t ≥,解得(,222][2+22,+)t ∈-∞-∞. 3.A【解析】过顶点A 作底面ABC 的垂线,由已知条件和立体几何线面关系易求得高的长. 4.【答案】D【解析】本小题主要考查抽样方法。
若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样。
故选D 。
5.D【解析】∵AD 与PB 在平面的射影AB 不垂直,所以A 不成立,又,平面PAB ⊥平面PAE ,所以PAB平面PBC 平面⊥也不成立;BC ∥AD ∥平面PAD, ∴直线BC ∥PAE 平面也不成立。
在PAD Rt ∆中,PA =AD=2AB ,∴∠PDA =45°. ∴D 正确 6.A7.D.【解析】:由分析可知准偶函数即偶函数左右平移得到的,故选D. 8.设a 是实数,112a i i +++=(1)1(1)(1)222a i i a a i-+++-+=是实数,则a =1,选B 。
9.D10.答案:B解析:本小题主要考查排列组合知识。
依题若第一道工序由甲来完成,则第四道工序必由丙来完成,故完成方案共有2412A =种;若第一道工序由乙来完成,则第四道工序必由甲、丙二人之一来完成,故完成方案共有12A ⋅2424A =种;∴则不同的安排方案共有21242436A A A +⋅=种。
二 、填空题 11.6【解析】AM 为12F AF ∠的平分线,∴2211||||41||||82AF MF AF MF === ∴12||2||AF AF = 又点A C ∈,由双曲线的第一定义得12222||||2||||||26AF AF AF AF AF a -=-===. 12.【答案】61 【分析】当∞→n 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。
【高考考点】函数极限的四则运算 【易错点】忽略四则运算的前提【备考提示】在求几个函数的和(或积)的极限时,一般要化简,再求极限. 函数的运算法则成立的前提条件是函数 )(),(x g x f 的极限存在,在进行极限运算时,要特别注意这一点.13.【答案】:(],8-∞【解析】当x <1时,由12x e-<可得x -1≤ ln 2,即x ≤ ln 2+1,故x <1;当x ≥1时,由f (x ) =13x ≤ 2可得x ≤ 8,故1≤ x ≤ 8,综上可得x ≤ 814.ρ(cos θ+sin θ) 15.816.①、④解析:,m n 是空间两条不同直线,,αβ是两个不同平面,下面有四个命题:①,//,//m n m n αβαβ⊥⇒⊥,为真命题;②,//,//m n m n αβαβ⊥⊥⇒,为ie 假命题;③,//,//m n m n αβαβ⊥⇒⊥为假命题; ④,//,//m m n n ααββ⊥⇒⊥为真命题, 所以真命题的编号是①、④.17.0.030, 3解析:由所有小矩形面积为1不难得到0.030a =,而三组身高区间的人数比为3:2:1,由分 层抽样的原理不难得到区间内的人数为3人。