辽宁省沈阳市东北育才学校高一数学暑假作业:必修5 第3部分 数列 等差数列的定义与性质(2)
辽宁省沈阳市东北育才学校2017-2018学年高一数学暑假作业:必修一集合、函数、基本初等函数 三、基本函数
三、基本初等函数一.选择题(共12小题)1.若a>1,b>1,且lg(a+b)=lga+lgb,则lg(a﹣1)+lg(b﹣1)的值( )A.等于1B.等于lg2C.等于0D.不是常数2.已知函数f(x)=a x+a﹣x,且f(1)=3,则f(0)+f(1)+f(2)的值是( )A.14B.13C.12D.113.若a=log20.5,b=20.5,c=0.52,则a,b,c三个数的大小关系是( )A.a<b<c B.b<c<a C.a<c<b D.c<a<b4.二次函数y=﹣x2﹣4x(x>﹣2)与指数函数的交点个数有( )A.3个B.2个C.1个D.0个5.已知log7[log3(log2x)]=0,那么x等于( )A.B.C.D.6.已知三个函数f(x)=2x+x,g(x)=x﹣1,h(x)=log3x+x的零点依次为a,b,c,则( )A.a<b<c B.b<a<c C.c<a<b D.a<c<b7.已知函数f(x)=,设a∈R,若关于x的不等式f(x)≥|+a|在R上恒成立,则a的取值范围是( )A.[﹣,2]B.[﹣,]C.[﹣2,2]D.[﹣2,]8.函数f(x)=x2﹣bx+c满足f(1+x)=f(1﹣x)且f(0)=3,则f(b x)和f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同9.已知函数f(x)=ln,若f()+f()+…+f()=503(a+b),则a2+b2的最小值为( )A.6B.8C.9D.1210.已知函数f(x)=(e x ﹣e﹣x)x,f(log5x)+f(log x)≤2f(1),则x的取值范围是( )A.[,1]B.[1,5]C.[,5]D.(﹣∞,]∪[5,+∞)11.函数y=的图象大致是( )A.B.C.D.12.函数y=的部分图象大致为( )A.B.C.D.二.填空题(共4小题)13.已知y=|log2x|的定义域为[a,b],值域为[0,2],则区间[a,b]的长度b﹣a的最小值为 .14.已知f(x)=,则不等式[f(x)]2>f(x2)的解集为 .15.已知函数f(x)=的反函数是f﹣1(x),则f﹣1()= .16.若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a= .三.解答题(共2小题)17.已知函数(a>0,a≠1)是奇函数.(1)求实数m的值;(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明;(3)当x∈(n,a﹣2)时,函数f(x)的值域是(1,+∞),求实数a与n的值.18.已知函数F(x)=e x满足F(x)=g(x)+h(x),且g(x),h(x)分别是定义在R上的偶函数和奇函数.(1)求函数h(x)的反函数;(2)已知φ(x)=g(x﹣1),若函数φ(x)在[﹣1,3]上满足φ(2a+1>φ(﹣),求实数a 的取值范围;(3)若对于任意x∈(0,2]不等式g(2x)﹣ah(x)≥0恒成立,求实数a的取值范围. 三、基本函数选择题(共12小题)1.【解答】解:∵lg(a+b)=lga+lgb,∴lg(a+b)=lg(ab)=lga+lgb,∴a+b=ab,∴lg(a﹣1)+lg(b﹣1)=lg[(a﹣1)×(b﹣1)]=lg(ab﹣a﹣b+1)=lg[ab﹣(a+b)+1]=lg(ab﹣ab+1)=lg1=0.故选C.2.【解答】解:由题意,函数f(x)=a x+a﹣x,且f(1)=3,可得a+=3,又f(2)=a2+a﹣2=﹣2=7,f(0)=1+1=2所以f(0)+f(1)+f(2)=2+3+7=12故选C3.【解答】解:a=log20.5<0,b=20.5>1,0<c=0.52<1,则a<c<b,则选:C.4.【解答】解:因为二次函数y=﹣x2﹣4x=﹣(x+2)2+4(x>﹣2),且x=﹣1时,y=﹣x2﹣4x=3,=2,则在坐标系中画出y=﹣x2﹣4x(x>﹣2)与的图象:由图可得,两个函数图象的交点个数是1个,故选C.5.【解答】解:由条件知,log3(log2x)=1,∴log2x=3,∴x=8,∴x=故选:D.6.【解答】解:令f(x)=2x+x=0,解得x<0,令g(x)=x﹣1=0,解得x=1,由h(x)=log3x+x,令=﹣1+<0,h(1)=1>0,因此h(x)的零点x0∈.则b>c>a.故选:D.7.【解答】解:当x≤1时,关于x的不等式f(x)≥|+a|在R上恒成立,即为﹣x2+x﹣3≤+a≤x2﹣x+3,即有﹣x2+x﹣3≤a≤x2﹣x+3,由y=﹣x2+x﹣3的对称轴为x=<1,可得x=处取得最大值﹣;由y=x2﹣x+3的对称轴为x=<1,可得x=处取得最小值,则﹣≤a≤①当x>1时,关于x的不等式f(x)≥|+a|在R上恒成立,即为﹣(x+)≤+a≤x+,即有﹣(x+)≤a≤+,由y=﹣(x+)≤﹣2=﹣2(当且仅当x=>1)取得最大值﹣2;由y= x+≥2=2(当且仅当x=2>1)取得最小值2.则﹣2≤a≤2②由①②可得,﹣≤a≤2.另解:作出f(x)的图象和折线y=|+a|当x≤1时,y=x2﹣x+3的导数为y′=2x﹣1,由2x﹣1=﹣,可得x=,切点为(,)代入y=﹣﹣a,解得a=﹣;当x>1时,y=x+的导数为y′=1﹣,由1﹣=,可得x=2(﹣2舍去),切点为(2,3),代入y=+a,解得a=2.由图象平移可得,﹣≤a≤2.故选:A.8.【解答】解:∵f(1+x)=f(1﹣x),∴f(x)图象的对称轴为直线x=1,由此得b=2.又f(0)=3,∴c=3.∴f(x)在(﹣∞,1)上递减,在(1,+∞)上递增.若x≥0,则3x≥2x≥1,∴f(3x)≥f(2x).若x<0,则3x<2x<1,∴f(3x)>f(2x).∴f(3x)≥f(2x).故选A.9.【解答】解:∵f(x)+f(e﹣x)==lne2=2,∴503(a+b)=f()+f()+…+f()=++…+==2012,∴a+b=4,∴a2+b2≥==8,当且仅当a=b=2时取等号.故选:B.10.【解答】解:∵函数f(x)=(e x﹣e﹣x)x,∴f(﹣x)=﹣x(e﹣x﹣e x)=(e x﹣e﹣x)x=f(x),∴函数f(x)是偶函数.∵f′(x)=(e x﹣e﹣x)+x(e x+e﹣x)>0在[0,+∞)上成立.∴函数f(x)在[0,+∞)上单调递增.f(log5x)+f(log x)≤2f(1),∴2f(log5x)≤2f(1),即f(log5x)≤f(1),∴|log 5x|≤1,∴.故选:C. 11.【解答】解:∵f(﹣x)=﹣f(x)是奇函数,所以排除A,B当x=1时,f(x)=0排除C故选D 12.【解答】解:∵y=f(x)=,∴f(﹣x)===f(x),∴f(x)是偶函数,图象关于y轴对称,所以排除B,C.∵f(2)=>0,∴(2,f(2))在x轴上方,所以排除A,故选:D.二.填空题(共4小题)13.【解答】解:∵y=|log2x|,∴x=2y或x=2﹣y.∵0≤y≤2,∴1≤x≤4,或.即{a=1,b=4}或{a=,b=1}.于是[b﹣a]min=.故答案为:.14.【解答】解:∵f(x)=,∴由[f(x)]2>f(x2)知,∴,,或,∴,或x>1.故答案为:(0,)∪(1,+∞).15.【解答】解:由题意,x≤0,2x=,∴x=﹣1,∴f﹣1()=﹣1.故答案为﹣1.16.【解答】解:函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),即函数f(x)=log2(x+1)+a的图象经过点(1,4),∴4=log2(1+1)+a∴4=1+a,a=3.故答案为:3.三.解答题(共2小题)17.【解答】解:(1)∵函数(a>0,a≠1)是奇函数.∴f(﹣x)+f(x)=0解得m=﹣1.(2)由(1)及题设知:,设,∴当x1>x2>1时,∴t1<t2.当a>1时,log a t1<log a t2,即f(x1)<f(x2).∴当a>1时,f(x)在(1,+∞)上是减函数.同理当0<a<1时,f(x)在(1,+∞)上是增函数.(3)由题设知:函数f(x)的定义域为(1,+∞)∪(﹣∞,﹣1),∴①当n<a﹣2≤﹣1时,有0<a<1.由(1)及(2)题设知:f(x)在为增函数,由其值域为(1,+∞)知(无解);②当1≤n<a﹣2时,有a>3.由(1)及(2)题设知:f(x)在(n,a﹣2)为减函数,由其值域为(1,+∞)知得,n=1. 18.【解答】解:(1)由题意可得:e x=g(x)+h(x),e﹣x=g(﹣x)+h(﹣x)=g(x)﹣h(x),联立解得:g(x)=,h(x)=.由y=,化为:(e x)2﹣2ye x﹣1=0,e x>0,解得e x=y+.∴h﹣1(x)=ln(x∈R).(2)φ(x)=g(x﹣1),函数φ(x)在[﹣1,3]上满足φ(2a+1>φ(﹣),转化为:函数g(x)在[﹣2,2]上满足:g(2a)>g(﹣﹣1),由于函数g(x)在[0,+∞)上单调递增,且函数g(x)为偶函数,∴|2a|>|﹣﹣1|,﹣2≤2a≤2,﹣2≤﹣﹣1≤2,解得a∈∪.(3)不等式g(2x)﹣ah(x)≥0,即﹣≥0,令t=e x﹣e﹣x,由x∈(0,2],可得t∈(0,e2﹣e﹣2],不等式转化为:t2+2﹣at≥0,∴a≤t+,∵t+≥2,当且仅当t=时取等号.∴a≤2.。
辽宁省沈阳市东北育才学校2024-2025学年高三上学期第一次模拟考试暨假期质量测试数学试卷
辽宁省沈阳市东北育才学校2024-2025学年高三上学期第一次模拟考试暨假期质量测试数学试卷学校:___________姓名:___________班级:___________考号:___________三、填空题(2)当3n =时,求3号盒子里的红球的个数x 的分布列;(3)记n 号盒子中红球的个数为n X ,求n X 的期望()nE X .的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a 的范围【详解】由函数()()g x f x b =-有两个零点可得()f x b =有两个零点,即()y f x =与y b =的图象有两个交点,结合函数图象有以下几种情况,y x =与2y x =的图象如图1所示,则()y f x =在定义域内不能是单调函数,对于a 的值进行分类讨论,则:当a<0时,如图2所示;当0a =时,如图3所示;当01a <<时,如图4所示;当1a =时,如图5所示;当1a >时,如图6所示;对于图2,有可能有两个交点,因为存在y b =使得与二次函数有两个交点;对于图3,因为图象是单调的,故不可能有两个交点;对于图4,可能有两个交点,因为存在R b Î使得y b =与分段函数有两个交点;对于图5,不可能有两个交点;对于图6,不可能有两个交点;综上所述:当1a <且0a ¹成立;故选:B.ACD【分析】根据正态分布的对称性、线性相关性的性质,结合独立事件的定义、残差的公式逐一判断即可.【详解】因为()2~2,X N s ,且(6)0.4P X >=,所以有因此1(22)(2)0.12P X P X -<<=-<-=,所以选项根据线性相关有正相关和负相关,因此两个具有线性相关关系的变量的相关性越强,则线性相关系数r 的绝对值越接近于1,所以选项由()512()()()623P A B P A P B P AB È=+-Þ=+-。
高一数学暑假作业(数列)答案
高一数学暑假作业(数列)答案1、20×2n-32、3353、374、12 56、0(1)21(2)n n a n n =⎧=⎨-≥⎩7、48、3939、1650 10、32(1-13n ) 11、180 12、②③④ 13、2S ;3214、设停在第k 层,不满意度为S=1+2+…+(k -2)+2(1+2+3+..+20-k) =()213858422k k -+,k=14时S 最小。
15、解(1)若3,9,…,2187,能成等差数列,则123,9a a ==,即6d =.则36(1)n a n =+-,令3+6(n -1)=2187,解得n=365.可知该数列可构成等差数列,7S =7×3+762⨯×6=147. (2)若3,9,…,2187能成等比数列,则13a =,3q =,则1333n n n a -=⋅=,令3n =2187,得n=7∈N ,可知该数列可构成等比数列,7S =73(13)13--=3279.16、解:设原来三个数为2,,a aq aq 则必有 22(32)aq a aq =+-①,22(4)(32)aq a aq -=-② 由①: 42a q a +=代入②得:2a =或29a =. 当2a =时,5q =;当29a =时,q =13.∴原来三个数为2,10,50或226338,,99917、证明:因为{n a }是等差数列,所以Sn =n 1a (1)2n n d -+, 从而nS n =1a +(n -1)·d ,即数列{nS n }是等差数列,且其公差d 1=2d.(2)设公差是d ,由20072005220072005S S -=,得()()11100310022a d a d +-+=,2d ∴=,20081200810042007S a d ∴=+⨯()1200820072008a =⨯+=-18、解(1)设{a n }公差为d ,有118109101852a d a d +=⎧⎪⎨⨯+=⎪⎩解得a 1=5,d =3∴a n =a 1+(n -1)d =3n +2(2)∵b n =a 2n =3×2n+2∴T n =b 1+b 2+…+b n =(3×21+2)+(3×22+2)+…+(3×2n +2)=3(21+22+…+2n )+2n =6×2n +2n -6.19、解:(1) 11(1)(1)(2)2nn n n n n n nb b b a a b b b +===---+ ∵1113,44a b == ∴234456,,567b b b ===(2)∵11112n n b b +-=-- ∴12111111nn n n b b b b +-==-+---∴数列{11nb -}是以-4为首项,-1为公差的等差数列 ∴14(1)31n n n b =---=---∴12133n n b n n +=-=++(3)113n n a b n =-=+∴12231111114556(3)(4)444(4)n n n n S a a a a a a n n n n +=++⋅⋅⋅+=++⋅⋅⋅=-=⨯⨯++++ 20、解:(1)由a n +2=2a n +1-a n ⇒a n +2-a n +1=a n +1-a n ,可知{a n }成等差数列,d =41241a a -=-- ∴a n =10-2n(2)由a n =10-2n≥0得n≤5∴当n≤5时,S n =-n 2+9n当n>5时,S n =n 2-9n +40故229, 15940, 5n n n n S n n n ⎧-+≤≤⎪=⎨-+>⎪⎩ (n ∈N ) (3)n b =1(12)n n a -=1(22)n n +=12(111n n -+) ∴T n = b 1+b 2+…+b n=12[(1-12)+(12-13)+(13-14)+……+(11n --1n )]=12(1-11n +)=2(1)n n + >12n n->T n -1>T n -2>……>T 1. ∴要使T n >32m 总成立,需32m <T 1=14恒成立,即m<8,(m ∈Z )。
辽宁省沈阳二中高三数学必修5课件:等差数列的概念及通项公式(新人教B版)
a 1 = 33 , a 12 = 110 , n = 12 , a 12 = a 1 + (12 1) d ,
即 110=33+11d, 解得 d=7 因此, 因此 a2 = 33 + 7
an = a1 + (n 1)d
7 a = 96 + = 103
11
a3 = 40 + 7 = 47
= 40
因为x的正负性不确 等差数列的有关概念
公差 d=0 非零常数列 非零常数列 公差 d=0 零常数列
定义:如果一个数列从第 项起 项起, 定义:如果一个数列从第2项起,每一项与它的前一项的差等 常数( 无关的数),这个数列就叫做等差数列 于同一个常数 指与n无关的数),这个数列就叫做等差数列, 于同一个常数(指与 无关的数),这个数列就叫做等差数列, 这个常数叫做等差数列 公差,公差通常用字母 表示。 常数叫做等差数列的 通常用字母d表示 这个常数叫做等差数列的公差,公差通常用字母 表示。
由此可知, 由此可知,等差数列
{a }
n
的通项公式为
an = a1 + (n 1)d
当d≠0时,这是 关于n的一个一 次函数。
等差数列的图象1 10
9 8 7 6 5 4 3 2 1 0 1
● ● ● ● ●
●
(1)数列:-2,0,2,4,6,8,10,… , , , , , , ,
●
2
3
4
答:梯子中间各级的宽从上到下依次是 40cm, 47cm, 61cm, 68cm, 75cm, 82cm, 89cm, 96cm, 103cm.
54cm,
等差数列的练习1
1. 求等差数列 ,7,11,…的第 ,7,10项; 求等差数列3, , , 的第 的第4, , 项
2019-2020学年辽宁省沈阳东北育才学校高部高一上学期第一次月考数学试题(解析版)
高中数学资料大全尊敬的读者朋友们:本文档内容是我们精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为资料分析笔记整理的全部内容。
注:资料封面,下载即可删除2019-2020学年辽宁省沈阳东北育才学校高部高一上学期第一次月考数学试题一、单选题1.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B =( ) A .{}1,3- B .{}1,0C .{}1,3D .{}1,5【答案】C【解析】∵ 集合{}124A =,,,{}2|40B x x x m =-+=,{}1A B =∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C2.如果集合{}2|410A x ax x =++=中只有一个元素,则a 的值是( ) A .0 B .4 C .0或4 D .不能确定【答案】C【解析】利用0a =与0a ≠,结合集合元素个数,求解即可. 【详解】解:当0a =时,集合21{|410}{}4A x ax x =++==-,只有一个元素,满足题意;当0a ≠时,集合2{|410}A x ax x =++=中只有一个元素,可得2440a ∆=-=,解得4a =. 则a 的值是0或4. 故选:C . 【点睛】本题考查了集合中元素的个数问题及方程的解集有且仅有一个元素的判断,属于基础题.3.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若AB B =,则实数m 的取值范围是( )【解析】由A B B =可得B A ⊆,再对集合B 分类讨论,即可得答案;【详解】A B B B A ⋂=⇒⊂①若B =∅,则121m m +>-,解得2m <;②若B ≠∅,则m 应满足:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,解得23m ≤≤;综上得3m ≤. 故选:B . 【点睛】本题考查根据集合间的基本关系求参数的取值,考查运算求解能力,求解时注意等号能否取到.4.设U 为全集,A ,B 是集合,则“存在集合C 使得A C ⊆,UB C ⊆”是“A B =∅”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【解析】通过集合的包含关系,以及充分条件和必要条件的判断,推出结果. 【详解】由题意A C ⊆,则U UC A ⊆,当UB C ⊆,可得“A B =∅”;若“AB =∅”能推出存在集合C 使得A C ⊆,UB C ⊆,U ∴为全集,A ,B 是集合,则“存在集合C 使得A C ⊆,U B C ⊆”是“A B =∅”的充分必要的条件. 故选C . 【点睛】本题考查集合与集合的关系,充分条件与必要条件的判断,是基础题. 5.下列说法中,正确的是( ) A .若a b >,c d >,则ac bd > B .若22a bc c <,则a b <【解析】利用不等式的性质以及举反例逐一判断即可. 【详解】对于A ,若a b >,c d >,当2,1a b ==,2,3c d =-=-时,则ac bd <,故A 不正确; 对于B ,若22a bc c<,则20c >,两边同时乘以2c ,可得a b <,故B 正确; 对于C ,若ac bc >,当0c <时,则a b <,故C 错误;对于D ,a b >,c d >,当0,2a b ==-,4,1c d ==,则a c b d -<-,故D 错误. 故选:B 【点睛】本题考查了不等式的性质,掌握性质是解题的关键,属于基础题. 6.设a ,b ,c 为正数,则“a b c +>”是“222a b c +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不修要条件【答案】B【解析】根据不等式的性质,结合充分条件和必要条件的定义进行判断即可. 【详解】 解:a ,b ,c 为正数,∴当2a =,2b =,3c =时,满足a b c +>,但222a b c +>不成立,即充分性不成立,若222a b c +>,则22()2a b ab c +->,即222()2a b c ab c +>+>,a b c +>,成立,即必要性成立, 则“a b c +>”是“222a b c +>”的必要不充分条件, 故选:B . 【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的性质是解决本题的关键. 7.“|x+1|+|x﹣2|≤5”是“﹣2≤x ≤3”的( ) A .充分不必要条件 B .必要不充分条件【解析】【详解】 由|x +1|+|x −2|≤5,x ≥2时,化为2x −1≤5,解得2≤x ≤3:−1≤x <2时,化为x +1−(x −2)≤5,化为:3≤5,因此−1≤x <2;x <−1时,化为−x −1−x +2≤5,解得−2≤x <−1. 综上可得:−2≤x ≤3.∴“|x +1|+|x −2|≤5”是“−2≤x ≤3”的充要条件. 本题选择C 选项.点睛:绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.8.已知集合21M x x ⎧⎫=<⎨⎬⎩⎭,{N y y ==,则()M N =R ( ) A .(]0,2 B .[]0,2C .∅D .[]1,2【答案】B【解析】解出集合M 、N ,利用补集和交集的定义可求得集合()M N R .【详解】21x<,即210x -<,即20xx -<,等价于()20x x ->,解得2x >或0x <, 则()(),02,M =-∞+∞,[]0,2M ∴=R ,{[)0,N y y ===+∞,()[]0,2N M =R ,故选:B . 【点睛】本题考查补集和交集的混合运算,同时也考查了分式不等式和函数值域的求解,考查计算能力,属于基础题. 9.已知1:1p m>,q :对于任意的2R,210x mx mx ∈++>恒成立,p 成立是q 成立的( ) A .充分不必要条件 B .必要不充分条件【解析】对于p ,111001mm m m--=>⇔<<;对于q ,当0m =时,成立.当0m ≠时,2440m m m >⎧⎨∆=-<⎩,解得01m <<.故01m ≤<.所以p 是q 的充分不必要条件. 10.若“122x ⎡⎤∃∈⎢⎥⎣⎦,使得2210x x λ-+<成立”是假命题,则实数λ的取值范围为( )A .(-∞ B .⎡⎤⎣⎦C .⎡⎤-⎣⎦D .3λ=【答案】A【解析】因为命题“1[,2]2x ∃∈,使得2210x x λ-+<成立”为假命题,所以该命题的否定“1[,2]2x ∀∈,使得2210x x λ-+≥恒成立成立”,即221x x λ+≤对于1[,2]2x ∀∈恒成立,而22112x x x x +=+≥=12x x =,即x =时取等号),即λ≤ A. 11.已知不等式222xy ax y ≤+,若对任意[]1,2x ∈及[]2,3y ∈,该不等式恒成立,则实数a 的范围是( ) A .3519a -≤≤- B .31a -≤≤- C .1a ≥- D .3a ≥-【答案】C【解析】利用换元法令yt x=,将不等式问题转化为一元二次函数的恒成立问题,即可得答案; 【详解】由题意可知:不等式222xy ax y ≤+对于[]1,2x ∈,[]2,3y ∈恒成立, 即:22y y a x x ⎛⎫≥- ⎪⎝⎭,对于[]1,2x ∈,[]2,3y ∈恒成立,y∵22112248y t t t ⎛⎫=-+=--+ ⎪⎝⎭,∴max 1y =-, ∴1a ≥-. 故选:C . 【点睛】本题考查换元法及一元二次函数恒成立问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意新元的取值范围的确定. 12.若正数a 、b 满足:121a b +=则2112a b +--的最小值为( ) A .2 BC.D .1【答案】A【解析】由已知条件得出21a b a =-,由0b >可得出1a >,将21ab a =-代入所求代数式并化简得出21211212a ab a -+=+---,利用基本不等式可求得所求代数式的最小值. 【详解】 正数a 、b 满足121a b +=,则2111a b a a -=-=,21a b a ∴=-, 0a >,201ab a =>-,可得1a >,所以,21212121222121112211a a a b a a a a a -+=+=+=+≥=--------, 当且仅当2112a a -=-时,即当3a b ==时取等号. 因此,2112a b +--的最小值为2. 故选:A . 【点睛】本题考查利用基本不等式求代数式的最小值,考查计算能力,属于中等题.二、填空题13.若集合{}260M x x x =+-=,{}20,N x ax a =+=∈R ,且N M ⊆,则a 的取值的集合为______.【答案】21,0,3⎧⎫-⎨⎬⎩⎭【解析】求出集合M ,由N M ⊆可分N =∅、{}3N =-、{}2N =三种情况讨论,可求得实数a 的值. 【详解】依题意得{}{}2603,2M x x x =+-==-,{}20,N x ax a =+=∈R .N M ⊆所以集合N 可为{}3-、{}2或∅.①当N =∅时,即方程20ax +=无实根,所以0a =,符合题意; ②当{}3N =-时,则3-是方程20ax +=的根,所以23a =,符合题意; ③当{}2N =时,则2是方程20ax +=的根,所以1a =-,符合题意; 综上所得,0a =或23a =或1a =-,所以a 的取值的集合为21,0,3⎧⎫-⎨⎬⎩⎭.故答案为:21,0,3⎧⎫-⎨⎬⎩⎭.【点睛】本题考查利用集合的包含关系求参数值,解题时不要忽略对空集的讨论,考查计算能力,属于基础题.14.若关于x 的不等式220ax x a -+<的解集为∅,则实数a 的取值范围为______.【答案】4⎫+∞⎪⎪⎣⎭【解析】分0a =和0a ≠两种情况讨论,在0a =时检验即可,在0a ≠时,结合题意可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】由题意可知,关于x 的不等式220ax x a -+≥的解集为R . 当0a =时,可得0x -≥,解得0x ≤,不合乎题意;当0a ≠时,则20180a a >⎧⎨∆=-≤⎩,解得a ≥.综上所述,实数a 的取值范围是4⎫+∞⎪⎪.故答案为:4⎫+∞⎪⎪⎣⎭. 【点睛】本题考查利用二次不等式在实数集上恒成立求参数,考查分类讨论思想的应用以及运算求解能力,属于中等题. 15.给出下列四个命题:(1)若,a b c d >>,则a d b c ->-;(2)若22a x a y >,则x y >;(3)a b >,则11a b a>-; (4)若110a b<<,则2ab b <. 其中正确命题的是 .(填所有正确命题的序号) 【答案】(1)(2)(4) 【解析】【详解】(1)若,a b c d >>,d c ->-,则a d b c ->-,正确;(2)若22a x a y >,可得210a>,则x y >,正确; (3)中0a =时不等式不成立; (4)若110a b<<,a b >,则2ab b <,正确. 故正确的只有(1)(2)(4).16.设集合X 是实数集R 的子集,如果点0x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,称0x 为集合X 的聚点,则在下列集合中: ①{}0x x ∈≠Z ;②{},0x x x ∈≠R ;③1,x x n n *⎧⎫=∈⎨⎬⎩⎭N ;④,1nx x n n *⎧⎫=∈⎨⎬+⎩⎭N 以0为聚点的集合有______. 【答案】②③【解析】根据集合聚点的新定义,结合集合的表示及集合中元素的性质,逐项判定,即可求解. 【详解】由题意,集合X 是实数集R 的子集,如果点x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,称0x 为集合X 的聚点, ①对于某个0a >,比如0.5a =,此时对任意的{}0x x x ∈∈≠Z ,都有00x x -=或者01x x -≥, 也就是说不可能000.5x x <-<,从而0不是{}0x x ∈≠Z 的聚点; ②集合{}0x x ∈≠R ,对任意的a ,都存在2ax =(实际上任意比a 小得数都可以), 使得02ax a <=<,∴0是集合{}0x x ∈≠R 的聚点; ③集合1,x x n n *⎧⎫=∈⎨⎬⎩⎭N 中的元素是极限为0的数列, 对于任意的0a >,存在1n a >,使10x a n<=<, ∴0是集合1,x x n n *⎧⎫=∈⎨⎬⎩⎭N 的聚点; ④中,集合,1nx x n n *⎧⎫=∈⎨⎬+⎩⎭N 中的元素是极限为1的数列,除了第一项0之外,其余的都至少比0大12,∴在12a <的时候,不存在满足得0x a <<的x , ∴0不是集合,1nx x n n *⎧⎫=∈⎨⎬+⎩⎭N 的聚点. 故答案为:②③. 【点睛】本题主要考查了集合新定义的应用,其中解答中认真审题,正确理解集合的新定义——集合中聚点的含义,结合集合的表示及集合中元素的性质,逐项判定是解答的关键,着重考查推理与论证能力,属于难题.三、解答题17.设全集U=R ,集合A={x|1≤x <4},B={x|2a≤x <3-a}.(1)若a=-2,求B∩A ,B∩(∁U A);(2)若A∪B=A ,求实数a 的取值范围. 【答案】(1)B ∩A =[1,4),B ∩(∁U A )= [-4,1)∪[4,5);(2)1[,)2+∞ .【解析】(1)利用补集的定义求出A 的补集,然后根据交集的定义求解即可直接求解即可;(2 )分类讨论B 是否是空集,列出不等式组求解即可. 【详解】∵B ={x |2a ≤x <3-a },∴a =-2时,B ={-4≤x <5},所以B ∩A =[1,4),B ∩(∁U A )={x |-4≤x <1或4≤x <5}=[-4,1)∪[4,5).(2)A ∪B =A ⇔B ⊆A ,①B =∅时,则有2a ≥3-a ,∴a ≥1,②B ≠∅时,则有,∴,综上所述,所求a 的取值范围为.【点睛】 本题主要考查集合的交集、集合的补集以及空集的应用,属于简答题.要解答本题,首先必须熟练应用数学的转化与划归思想及分类讨论思想,将并集问题转化为子集问题,其次分类讨论进行解答,解答集合子集过程中,一定要注意空集的讨论,这是同学们在解题过程中容易疏忽的地方,一定不等掉以轻心.18.已知集合{}232A x y x x==--,{}22210B x x x m =-+-≤. (1)若3m =,求A B ;(2)若0m >,A B ⊆,求m 的取值范围.【答案】(1){}21x x -≤≤;(2)4m ≥.【解析】(1)由集合描述分别求得{}31A x x =-≤≤,{}24B x x =-≤≤,利用集合的交运算求A B 即可;(2)根据A B ⊆有1311m m -≤-⎧⎨+≥⎩解集为m 的取值范围. 【详解】 (1)由2320x x --≥,解得31x -≤≤,即{}31A x x =-≤≤;当3m =时,22210x x m -+-≤可化为2280x x --≤,即()()420x x -+≤,解得24x -≤≤,即{}24B x x =-≤≤, ∴{}21A B x x ⋂=-≤≤;(2)0m >,{}{}22210|11B x x x m x m x m =-+-≤=-≤≤+. ∵A B ⊆,∴1311m m -≤-⎧⎨+≥⎩,解得4m ≥, 所以m 的取值范围是4m ≥.【点睛】本题考查了集合,由集合描述求出集合,利用集合的基本运算求交集,根据包含关系求参数范围.19.设命题p :2101x x -<-,命题q :()()22110x a x a a -+++≤, (1)若1a =,求不等式()22110x a x a -+++≤的解集;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.【答案】(1)[]1,2;2)1[0,]2.【解析】(1)当1a =时,不等式转化为232(1)(2)0x x x x -+=--≤,结合一元二次不等式的解法,即可求解.(2)分别求得命题,p q 的解集,结合p 是q 的充分不必要条件,得到p 是q 的真子集,列出不等式组,即可求解.【详解】(1)由题意,当1a =时,不等式()()22110x a x a a -+++≤, 即不等式232(1)(2)0x x x x -+=--≤,解得12x ≤≤,不等式的解集[]1,2.(2)由命题21:01x p x -<-,即()()2110x x --<,解得112x <<, 即不等式2101x x -<-解集为1,12⎛⎫ ⎪⎝⎭, 命题2:2110q x a x a a ,即()()10x a x a --+≤⎡⎤⎣⎦,解得1a x a ≤≤+, 所以不等式()22110x a x a -+++≤的解集为[],1a a +, 因为p 是q 的充分不必要条件,即p 是q 的真子集,所以1211a a ⎧≤⎪⎨⎪≤+⎩,解得102a ≤≤, 所以实数a 的取值范围是1[0,]2.【点睛】本题主要考查了一元二次不等式的求解,以及利用充分条件、必要条件求解参数问题,其中解答中熟记一元二次不等式的解法,以及充分、必要的条件的转化是解答的关键,着重考查推理与运算能力.20.已知集合{}220A x x x =-->,(){}222550B x x k x k =+++<.(1)若k 0<,求B ;(2)若A B 中有且仅有一个整数2-,求实数k 的取值范围.【答案】(1)52B x x k ⎧⎫=-<<-⎨⎬⎩⎭;(2)[)3,2-. 【解析】(1)当k 0<时,通过解不等式()222550x k x k +++<可求得集合B ;(2)解出集合A ,对k 与52的大小进行分类讨论,结合题意可得出关于实数a 的不等式,进而可求得实数a 的取值范围.【详解】(1)0k <,由()222550x k x k +++<得()()250x x k ++<,解得52x k -<<-, 因此,52B x x k ⎧⎫=-<<-⎨⎬⎩⎭; (2){}{2201A x x x x x =-->=<-或}2x >, (){}()(){}222550250B x x k x k x x x k =+++<=++<.当52k ->-时,即当52k >时,52B x k x ⎧⎫=-<<-⎨⎬⎩⎭, 此时A B 中没有整数2-,不满足条件; 当52k =时,B =∅,不满足条件; 当52k <时,52k -<-,52B x x k ⎧⎫=-<<-⎨⎬⎩⎭, 要使得AB 中有且仅有一个整数2-,则23k -<-≤,解得32k -≤<. 因此,实数k 的取值范围是[)3,2-.【点睛】本题考查集合的求解,同时也考查了利用交集中的元素求参数的取值范围,考查计算能力,属于中等题.21.已知函数()222f x x ax a =+-+.(1)若对于任意x ∈R ,()0f x ≥恒成立,求实数a 的取值范围;(2)若对于任意[]1,1x ∈-,()0f x ≥恒成立,求实数a 的取值范围;(3)若对于任意[]1,1a ∈-,2220x ax a +-+>恒成立,求实数x 的取值范围.【答案】(1)21a -≤≤;(2)[]31-,;(3){}1x x ≠-.【解析】(1)由题意利用二次函数的性质可得0∆,由此求得求得a 的范围. (2)由于对于任意[1x ∈-,1],()0f x 恒成立,故()0min f x .利用二次函数的性质,分类讨论求得a 的范围.(3)问题等价于()2(21)20g a x a x =-++>,再由(1)g -、g (1)都大于零,求得x 的范围.【详解】(1)若对于任意x ∈R ,()2220f x x ax a =+-+≥恒成立,则有()24420a a ∆=--+≤,解得21a -≤≤.(2)由于对于任意[]1,1x ∈-,()0f x ≥恒成立,故()min 0f x ≥.又函数()f x 的图象的对称轴方程为x a =-,当1a -<-时,()()min 1330f x f a =-=-≥,求得a 无解;当1a ->时,()()min 130f x f a ==+≥,求得31a -≤<-;当[]1,1a -∈-时,()()2min 2f x f a a a =-=--+,求得11a -≤≤.综上可得,a 的范围为[]3,1-.(3)若对于任意[]1,1a ∈-,2220x ax a +-+>恒成立,等价于()()22120g a x a x =-++>,∴()()2212301210g x x g x x ⎧-=-+>⎪⎨=++>⎪⎩,求得1x ≠-,即x 的范围为{}1x x ≠-. 【点睛】本题主要考查求二次函数在闭区间上的最值,函数的恒成立问题,二次函数的性质的应用,体现了分类讨论、转化的数学思想,属于中档题.22.已知函数()2f x x a a =--++,()124g x x x =-++.(1)解不等式()6g x <;(2)若存在12,x x R ∈,使得()()12f x g x =成立,求实数a 的取值范围.【答案】(1)()3,1-;(2)[)1,+∞.【解析】(1)分三种情况讨论即可(2)条件“存在12,x x R ∈,使得()()12f x g x =成立”等价于()f x 与()g x 的值域有交集,然后分别求出它们的值域即可.【详解】(1)因为()33,11245,2133,2x x g x x x x x x x +≥⎧⎪=-++=+-≤<⎨⎪--<-⎩,故由()6g x <得:3361x x +<⎧⎨≥⎩或5621x x +<⎧⎨-≤<⎩或3362x x --<⎧⎨<-⎩, 解得原不等式解集为:()3,1-.(2)由(1)可知()g x 的值域为[)3,+∞,显然()f x 的值域为(],2a -∞+. 依题意得:[)(]3,,2a +∞-∞+≠∅,所以实数a 的取值范围为[)1,+∞.【点睛】1.解含有绝对值的不等式时一般要分类讨论.2. “存在12,x x R ∈,使得()()12f x g x =成立”等价于()f x 与()g x 的值域有交集.。
辽宁省沈阳市东北育才中学2024-2025学年高一上学期第一次月考(10月)数学试题(含解析)
东北育才高中2024-2025学年度上学期高一年级数学科第一次月考试卷时间:120分钟 满分:150分一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是正确的.1.已知集合,则中元素个数为( )A.2B.3C.4D.62.设集合,则集合的真子集的个数为( )A.3B.4C.15D.163.命题“,不等式”为假命题的一个必要不充分条件是( )A.B.C. D.4.设,则下列命题正确的是( )A.若,则B.若,则C.若则D.若,则5.若集合,若,则实数的取值范围是( )A.B.C.D.6.对于实数,当且仅当时,规定,则不等式的解集是()A. B.C. D.7.已知,则的最小值为( )(){}(){}*,,,,,8A x y x y y x B x y x y =∈≥=+=N ∣∣A B ⋂{}{}{}1,2,3,4,5,,,A B M xx a b a A b B ====+∈∈∣M x ∃∈R 2210ax x -+≤0a >1a >102a <<2a >,a b ∈R ,x y a b >>a x b y ->-a b >11a b<,x y a b >>ax by >a b >22a b >{}30,101x A xB x ax x ⎧⎫-===+=⎨⎬+⎩⎭∣B A ⊆a 13⎧⎫-⎨⎬⎩⎭1,13⎧⎫-⎨⎬⎩⎭10,3⎧⎫-⎨⎬⎩⎭10,,13⎧⎫-⎨⎬⎩⎭x ()1n x n n ≤<+∈N []x n =[]24[]36450x x -+<{28}xx ≤<∣31522xx ⎧⎫<<⎨⎬⎩⎭{}27xx ≤≤∣{27}x x <≤∣0,0,23x y x y >>+=23x yxy+A. B.8.方程至少有一个负实根的充要条件是( )A. B.C.D.或二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分,9.设均为非空集合,且满足,则下列各式中正确的是( )A. B.C.D.10.下列四个命题中正确的是( )A.由所确定的实数集合为B.同时满足的整数解的集合为C.集合可以化简为D.中含有三个元素11.已知关于的不等式的解集为,则下列结论正确的是()A. B.的最大值为C.的最小值为8 D.的最小值为三、填空题:本大题共3小题,每小题5分,共15分.12.的解集是__________.13.某班举行数学、物理、化学三科竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中同时只参加数学、物理两科的有10人,同时只参加物理、化学两科的有7人,同时只参加数学、化学两科的有11人,而参加数学、物理、化学三科的有4人,则全班共有__________人.3-11-1+2210ax x ++=01a <≤1a <1a ≤01a <≤0a <A B U 、、A B U ⊆⊆()U A B U ⋃=ð()()U U U A B B ⋂=ððð()U A B ⋂=∅ð()()U U A B U⋃=ðð(),a b a b ab+∈R {}2,0,2-240,121x x x +>⎧⎨+≥-⎩{}1,0,1,2-(){},3216,,x y x y x y +=∈∈N N ∣()()(){}0,8,2,5,4,26,3A aa a ⎧⎫=∈∈⎨⎬-⎩⎭N Z x ()()()2323100,0a m x b m x a b +---<>>11,2⎛⎫- ⎪⎝⎭21a b +=ab 1812a b +224a b +1222150x x -->14.已知关于的不等式(其中)的解集为,若满足(其中为整数集),则使得集合中元素个数最少时的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题13分)已知集合为全体实数集,或.(1)若,求;(2)若,求实数的取值范围.16.(本小题15分)已知全集,集合,集合.(1)若,求实数的取值集合;(2)若集合,且集合满足条件__________(从下列三个条件中任选一个作答),求实数的取值集合.条件①是的充分不必要条件:②是的必要不充分条件:③,使得.17.(本小题15分)设,且.(1介于之间;(2)求;(3)你能设计一个比的吗?并说明理由.18.(本小题17分)对于二次函数,若,使得成立,则称为二次函数的不动点.(1)求二次函数的不动点:(2)若二次函数有两个不相等的不动点,且,求的最小值.x ()()2640mx m x --+<m ∈R A A B ⋂=Z Z B m U {2M xx =<-∣{}5},121x N x a x a >=+≤≤-∣3a =()U M N ⋃ðU N M ⊆ða U =R A x y ⎧⎪==⎨⎪⎩()(){}2440B x x m x m =---<∣B =∅m B ≠∅,A B m x A ∈x B ∈x A ∈x B ∈12,x A x B ∀∈∃∈12x x =10a >1a ≈21111a a =++12,a a 12,a a 2a 3a ()20y ax bx c a =++≠0x ∃∈R 2000ax bx c x ++=0x ()20y ax bx c a =++≠222y x x =+-()2221y x a x a =-++-12,x x 12,0x x >2112x x x x +19.(本小题17分)已知是非空数集,如果对任意,都有,则称是封闭集.(1)判断集合是否为封闭集,并说明理由:(2)判断以下两个命题的真假,并说明理由:命题:若非空集合是封闭集,则也是封闭集;命题:若非空集合是封闭集,且,则也是封闭集:(3)若非空集合是封闭集合,且为实数集,求证:不是封闭集.A ,x y A ∈,x y A xy A +∈∈A {}{}0,1,0,1BC ==-p 12,A A 12A A ⋃q 12,A A 12A A ⋂≠∅12A A ⋂A ,A ≠R R A R ð东北育才高中2024-2025学年度上学期高一年级数学科第一次月考答案【解析】1.解:在集合中,观察集合的条件,当是正整数且时,有等4个元素,则中元素个数为4个.故选C.2.解:由题意可知,集合,集合中有4个元素,则集合的真子集有个,故选C.3.解:命题“,不等式”为假命题,则命题“,不等式”为真命题,所以,解得,所以使得命题“,不等式”为假命题,则实数的取值范围为1,则命题“,不等式”为假命题的一个必要不充分条件是,故选:A.4.解:A :令,则,故错误;B :令,则,故错误;C :令,则,故错误;D :因为,所以即,故正确;故选D.5.解:由题可知:.当时,显然不成立即,则满足;B 8x y +=A ,x y y x ≥()()()()1,7,2,6,3,5,4,4A B ⋂{}5,6,7,8M =M 42115-=x ∃∈R 2210ax x -+≤x ∀∈R 2210ax x -+>0Δ440a a >⎧⎨=-<⎩1a >x ∃∈R 2210ax x -+≤a a >x ∃∈R 2210ax x -+≤0a >1,3,2,0x y a b ==-==13a x b y -=<-=0,0a b ><11a b>0,1,1,0x y a b ==-==0ax by ==a a b >…22||a b >22a b >{}3031x A xx ⎧⎫-===⎨⎬+⎩⎭0a =10…B =∅B A ⊆当时,,由可得:;综上所述实数的取值范围为.故选C.6.解:由,根据的定义可知:不等式的解集是.故选A.7.解:因为,则,当且仅当时,即当,且,等号成立,故的最小值为故选B.8.当时,方程为有一个负实根,反之,时,则于是得;当时,,若,则,方程有两个不等实根,,即与一正一负,反之,方程有一正一负的两根时,则这两根之积小于,于是得,若,由,即知,方程有两个实根,0a ≠1B x x a ⎧⎫==-⎨⎬⎩⎭B A ⊆1133a a -=⇒=-a 10,3⎧⎫-⎨⎬⎩⎭[]24[]36450x x -+<[]()[]()232150x x ⇒--<[]31522x ⇒<<[]x []24[]36450x x -+<{28}xx <∣…0,0,23x y x y >>+=()22222322111x x y y x y x xy y x y xy xy xy y x +++++===+++=+…222x y =3x =-y =23x y xy+1+0a =210x +=12x =-12x =-0,a =0a =0a ≠Δ44a =-0a <Δ0>12,x x 1210x x a=<1x 2x 1a0,0a <0a <0a >Δ0≥01a <≤12,x x必有,此时与都是负数,反之,方程两根都为负,则,解得,于是得,综上,当时,方程至少有一个负实根,反之,方程至少有一个负实根,必有.所以方程至少有一个负实根的充要条件是.故选:9.解:因为,如下图所示,则,选项A 正确:,选项B 正确:,选项正确:,选项D 错误.故选ABC.10.解:分别取同正、同负和一正一负时,可以得到的值分别为,故A 正确;由得,12122010x x a x x a ⎧+=-<⎪⎪⎨⎪=>⎪⎩1x 2x 2210ax x ++=12,x x 1212Δ4402010a x x a x x a ⎧⎪=-≥⎪⎪+=-<⎨⎪⎪=>⎪⎩01a <≤01a <≤1a ≤2210ax x ++=2210ax x ++=1a ≤2210ax x ++=1a ≤CA B U ⊆⊆()U U U ,B A A B U ⊆⋃=ððð()()UUUA B B ⋂=ððð()U A B ⋂=∅ðð()()UUUA B A U ⋃=≠ððð,a b (),a b a b ab+∈R 2,2,0-240,121,x x x +>⎧⎨+≥-⎩22x -<≤所以符合条件的整数解的集合为,故B 正确;由,可以得到符合条件的数对有,故C 正确;当时,;当时,,当时,;当时,;当时,;当时,,所以集合含有四个元素,故D 错误,故选ABC.11.解:由题意,,且方程的两根为和,所以,所以,所以A 正确;因为,所以,可得,当且仅当时取等号,所以的最大值为B 正确;,当且仅当,即时取等号,所以的最小值为C 错误;,当且仅当时取等号,所以的最小值为,所以D 正确.故选ABD.12.解:由,,{}1,0,1,2-3216,,x y x y +=∈∈N N ()()()0,8,2,5,4,22a =666332a ==∈--N 1a =663331a ==∈--N 0a =662330a ==∈--N 1a =-66331a =∉-+N 2a =-6635a =∉-N 3a =-66136a ==∈-N A 2,1,0,3-30a m +>()()232310a m x b m x +---=1-12123111,12323b m a m a m--+=-⨯=-++32,231a m b m +=-=-21,a b +=0,0a b >>21a b +=≥18ab ≤122a b ==ab 1,8()121222255549b a a b a b a b a b ⎛⎫+=++=++≥+=+= ⎪⎝⎭22b a a b =13a b ==12a b+9,22222114(2)(2)22a b a b a b +=+≥+=122a b ==224a b +1222150x x -->2||2150x x ∴-->()()530x x ∴-+>解得:或(舍去),或,即所求的解集为,故答案为.13.解:设参加数学、物理、化学三科竞赛的人分别组成集合,各集合中元素的个数如图所示,则全班人数为.故答案为43.14.解:分情况讨论:当时,,解得;当时,,当且仅当解得或;当时,,当且仅当由,解得.因为,集合中元素个数最少,所以不符合题意;所以要使集合中元素个数最少,需要,解得.故答案为:.15.(本小题13分)5x >3x <-5x ∴<-5x >()(),55,∞∞--⋃+()(),55,∞∞--⋃+,,A B C 24510711443++++++=0m =()640x -+<{}4A xx =>-∣0m <()2266640,4m m x x m m m m ⎛⎫++-+>=+-<- ⎪⎝⎭…m =26{|m A x x m +=<4}x >-0m >2664m m m m+=+≥>m =()2640m x x m ⎛⎫+-+< ⎪⎝⎭264m A x x m ⎧⎫+⎪⎪=-<<⎨⎬⎪⎪⎩⎭A B ⋂=Z B 0m ≤B 265m m +≤23m ≤≤{}23mm ∣……【答案】解:(1)当时,,所以或,又或,所以或;(2)由题可得,①当时,则,即时,此时满足;②当时,则,所以,综上,实数的取值范围为.16.(本小题15分)【答案】解:(1)若,则,解得,所以实数的取值集合为(2)集合,集合,则此时,则集合,当选择条件①时,是的充分不必要条件,有 ,则,且不能同时取等,解得,所以实数的取值集合为当选择条件②时,是的必要不充分条件,有 ,则,且不能同时取等,解得,所以实数的取值集合为当选择条件③时,,使得,有,则,解得,所以实数的取值集合为3a ={}45N xx =≤≤∣U {4N x x =<∣ð5}x >{2M xx =<-∣5}x >()U {4M N x x ⋃=<∣ð5}x >{}U 25M xx =-≤≤∣ðN =∅121a a +>-2a <U N C M ⊆N ≠∅12112215a a a a +≤-⎧⎪+≥-⎨⎪-≤⎩23a ≤≤a {}3aa ∣…B =∅244m m =+2m =m {}2{}2200{45}A xx x x x =-++>=-<<∣∣B ≠∅2,m ≠2244(2)0m m m +-=->{}244B xm x m =<<+∣x A ∈x B ∈A B 24445m m ≤-⎧⎨+≥⎩1m <-m (),1∞--x A ∈x B ∈B A 24445m m ≥-⎧⎨+≤⎩11m -<≤m (]1,1-12,x A x B ∀∈∃∈12x x =A B ⊆24445m m ≤-⎧⎨+≥⎩1m ≤-m (],1∞--17.(本小题15分)【答案】解:(1)证明:.之间.(2比.(3)令,则比.证明如下:由(2.故比18.(本小题17分)【答案】解:(1)由题意知:,,解得,所以,二次函数的不动点为和1.(2)依题意,有两个不相等的正实数根,即方程有两个不相等的正实数根,所以,解得,所以,所以))12111101a a a a ⎫=-⋅--=<⎪+⎭12a a 、11a --1a -2a ∴1a 32111a a =++3a 2a 32a a -=--3a 2a 222x x x +-=()()120x x ∴-+=122,1x x =-=222y x x =+-2-()2221x a x a x -++-=()22310x a x a -++-=()2Δ(3)810a a =+-->12302a x x ++=>1a >12102a x x -⎛⎫=> ⎪⎝⎭121231,22a a x x x x +-+==()222121221121212122x x x x x x x x x x x x x x +-++==,当且仅当,即时等号成立,所以的最小值为6.19.(本小题17分)【答案】(1)解:对于集合,因为,所以是封闭集;对于集合,因为,所以集合不是封闭集;(2)解:对命题:令,则集合是封闭集,但不是封闭集,故错误;对于命题:设,则有,又因为集合是封闭集,所以,同理可得,所以,所以是封闭集,故正确;(3)证明:假设结论成立,设,若,矛盾,所以,所以有,设且,否则,所以有,矛盾,故假设不成立,原结论成立,证毕.()()()22231(1)41162132121212a a a a a a a a a +⎛⎫-+ ⎪-+-+++⎝⎭===---1822621a a -=++≥=-1821a a -=-5a =1221x x x x +{}0B =000,000B B +=∈⨯=∈{}0B ={}1,0,1C =-()112,112,C C -+-=-∉+=∉{}1,0,1C =-p {}{}122,,3,A xx k k A x x k k ==∈==∈Z Z ∣∣12,A A 12A A ⋃q ()12,a b A A ∈⋂1,a b A ∈1A 11,a b A ab A +∈∈22,a b A ab A +∈∈()()1212,a b A A ab A A +∈⋂∈⋂12A A ⋂2a A a A ∈⇒∈2R ()a A a A -∈⇒-∈R ðða A -∈0a a A -+=∈2R R b A b A ∈⇒∈ððR b A -∈ð2()b A b A -∈⇒-∈R 0b b A -+=∈ð。
辽宁省沈阳市东北育才学校2017-2018学年高一数学暑假作业:立体几何 3.圆柱、圆锥、圆台和球
3.圆柱、圆锥、圆台和球A 组1、 左图是由右面哪个平面图形旋转得到的A B C D2、 圆锥的中截面(过高的中点且平行于底面的截面)面积是底面积的A .倍B .倍C .倍D .倍222141813、 设是球心的半径上的两点,且,分别过作垂,M N O OP NP MN OM ==,,N M O 线于的面截球得三个圆,则这三个圆的面积之比为OP (A) (B) (C) (D)3,5,63,6,85,7,95,8,94、 棱长为1的正方体的8个顶点都在球的表面上,分别是1111ABCD A B C D -O E F ,棱,的中点,则直线被球截得的线段长为1AA 1DD EF OA B . C . D . 115、将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为2∶4. 再将它们卷成两个圆锥侧 面,则两圆锥底面半径之比为()A .1∶2B .1∶4C .1∶8D .都不对6、 圆锥的侧面展开图是直径为a 的半圆面,那么此圆锥的轴截面是A .等边三角形 B .等腰直角三角形C .顶角为30°的等腰三角形D .其他等腰三角形7、 如果把地球看成一个球体,则地球上的北纬060纬线长和赤道长的比值为A 、0.8B 、0.75C 、0.5D 、 0.258、 球面上有三个点A, B , C, 且AB= 3 , BC= 4 , AC= 5 ,球心到平面ABC 的距离为球的半径的,那么这球的半径是12AB C D 531039、 如图,在半径为3的球面上有C B A 、、三点,ABC ∠=90°,BC BA =, 球心O 到平面ABC 的距离是223,则C B 、两点的球面距离是A.3π B. π C. π34 D.2π10、 长方体ABCD -A 1B 1C 1D 1的8个顶点在同一球面上,且AB =2,AD ,AA 1=1,则顶点3A 、B 间的球面距离是2π2π2π2π11、 已知,ABCD 为等腰梯形,两底边为AB,CD 且AB>CD ,绕AB 所在的直线旋转一周所得的几何体中是由、 、 的几何体构成的组合体.12、 把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,圆台的母线长10cm.则圆锥的母线长为 .13、在半径为13的球面上有A , B, C 三点,AB=6,BC=8,CA=10,则球心到平面ABC 的距离为14、 已知正方体外接球的半径是2,那么正方体的棱长等于15.直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的半径等于 。
辽宁省沈阳市东北育才学校高中部2024届高三下学期第六次模拟考试数学含答案
2023-2024学年度东北育才学校高中部高三年级第六次模拟考试暨假期质量测试数学科试卷答题时间:120分钟满分:150分命题人:高三备课组一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中项是符合题目要求的.1.若集合{}2560A x x x =--≤,(){}ln 214B x y x ==-,则()RA B ⋂=ð()A.()7,+∞ B.()6,+∞ C.(]1,7- D.(]1,6-2.已知R x ∈,则“|1||1|2x x ++-≤”是“11x>”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.在()1nx -的二项展开式中,仅有第4项的二项式系数最大,则n =()A.5B.6C.7D.84.若()f x 是R 上周期为3的偶函数,且当302x <≤时,()4log f x x =,则132f ⎛⎫-= ⎪⎝⎭()A.12-B.12C.2- D.25.若ππ,42α⎛⎫∈ ⎪⎝⎭,且2π1cos cos 222αα⎛⎫++=- ⎪⎝⎭.则tan α=()A.B.2C.3D.6.函数()()12cos 2023π1f x x x ⎡⎤=++⎣⎦-在区间[3,5]-上所有零点的和等于()A.2B.4C.6D.87.12,F F 是双曲线()2222:1,0x y E a b a b-=>的左、右焦点,点M 为双曲线E 右支上一点,点N 在x 轴上,满足1260F MN F MN ∠∠==,若()1235MF MF MN λλ+=∈R,则双曲线E 的离心率为()A.87 B.65C.53D.728.设n S 是一个无穷数列{}n a 的前n 项和,若一个数列满足对任意的正整数n ,不等式11+<+n n S S n n 恒成立,则称数列{}n a 为和谐数列,有下列3个命题:①若对任意的正整数n 均有1+<n n a a ,则{}n a 为和谐数列;②若等差数列{}n a 是和谐数列,则n S 一定存在最小值;③若{}n a 的首项小于零,则一定存在公比为负数的一个等比数列是和谐数列.以上3个命题中真命题的个数有()个A .3B .2C .1D .0二、选择题:本题共3小题,每小题6分,共18分。
辽宁省沈阳市东北育才学校高中部2016-2017学年高一数学数列周练2016.9.21含答案
东北育才学校高中部高二年级第二次统一作业时间:6 0分钟 总分:100分一.选择题(每小题5分)1.等差数列{}na 的前n 项和为nS ,且53655,SS -=则4a =(B )A.21B 。
31C 。
41D.512.命题甲:22,2,)21(1xx x -成等比数列,命题乙:)3lg(),1lg(,lg ++x x x 成等差数列,则甲是乙成立的 ( B ) A.充分非必要条件 B 。
必要非充分条件 C.充要条件 D 。
既不充分也不必要条件3。
设,R x ∈记不超过x 的最大整数为,令{x }=x -,则{215+},,215+( B )A 。
是等差数列但不是等比数列B 。
是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列4。
已知数列)tan(,4}{1221371a a a a aa n+=++则为等差数列且π的值为 (D )A .3B .3±C .33-D .-35. 数列}{na 是正项等比数列,}{nb 是等差数列,且76b a =,则有(B )A .10493b b a a +≤+ B. 10493b b a a +≥+C 。
10493b b a a +≠+ D 93a a +与104b b +大小不确定6。
等差数列{}n a 中,a10<0,a 11>0且a 11>|a 10|,S n 为其前n 项和,则( B )A.S 1,S 2,…,S 10都小于0,S 11,S 12,…都大于0B.S 1,S 2,…, S 19都小于0,S 20,S 21,…都大于0 C 。
S 1,S 2,…,S 5都小于0,S 6,S 7,…都大于0 D.S 1,S 2,…,S 20都小于0,S 21,S 22,…都大于07。
设数列{}na 是首项为50,公差为2的等差数列;{}nb 是首项为10,公差为4的等差数列,以a k 、b k 为相邻两边的矩形内最大圆面积记为S k ,若k ≤21,那么S k 等于( B ) A .(2k +1)2π B .(2k +3)2π C .(2k +12)2πD .(k +24)2π8.若正项等比数列n {a }满足765a a 2a =+,若存在两项m n a ,a 14a =,则14m n +的最小值为 ( A ) A .32B. 53C 。
辽宁省沈阳市东北育才学校2017-2018学年高一数学暑假作业:必修五第二部分不等式 不等式 Word版含答案
必修五第二部分不等式不等式(1)1. 实数的性质:;;.2. 不等式的性质:,.且.;且.;,且.;..3.常用基本不等,,练习1. 若,下列不等式恒成立的是()A.B.C.D.2. 若且,则下列四个数中最大的是()A.B.C.2abD.a3. 设x>0,则的最大值为()A.3B.C.D.-14.设的最小值是( )A. 10B.C.D.5. 若x, y是正数,且,则xy有()A.最大值16B.最小值C.最小值16D.最大值6. 若a,b,c∈R,且ab+bc+ca=1,则下列不等式成立的是()A.B.C.D.7.若x>0,y>0,且x+y4,则下列不等式中恒成立的是()A.B.C.D.8.a,b是正数,则三个数的大小顺序是()A.B.C.D.9. 某产品的产量第一年的增长率为p,第二年的增长率为q,设这两年平均增长率为x,则有()A.B.C.D.10. 下列函数中,最小值为4的是()A.B.C.D.11. 函数的最大值为.12. 建造一个容积为18m3, 深为2m的长方形无盖水池,如果池底和池壁每m2的造价为200元和150元,那么池的最低造价为元.13. 若直角三角形斜边长是1,则其内切圆半径的最大值是.14. 若x,y为非零实数,代数式的值恒为正,对吗?答.15.已知:,求mx+ny的最大值.16. 设a, b, c且a+b+c=1,求证:必修五第二部分不等式不等式111.12.3600 13. 14.对15.16.略。
辽宁省2019高一数学暑假作业:必修五第三部分数列 等差数列的定义与性质_含答案
必修五第三部分数列等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+-等差中项:x A y ,,成等差数列2A x y ⇔=+前n 项和()()11122n n a a n n n S na d +-==+ 性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为a d a a d -+,,(4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --= (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值. 当100a d <>,,由100n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶,1+=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有 )()12(12为中间项n n n a a n S -=-,n a S S =-偶奇,1-=n n S S 偶奇.练习 1.已知等差数列{a n }的通项公式,4,554==a a ,则a 9等于( ).A. 1B. 2C. 0D. 32.已知等差数列{}n a 满足56a a +=28,则其前10项之和为 ( )A 140B 280C 168D 563.若实数a 、b 、c 成等比数列,则函数2y ax bx c =++与x 轴的交点的个数为( ) .A 1 .B 0 .C 2 .D 无法确定4.已知数列{a n }的通项公式为11++=n n a n (n ∈N *),若前n 项和为9,则项数n 为( )A.99B.100C.101D.1025.已知等差数列前项和为n S .且0,01213><S S 则此数列中绝对值最小的项为( )A. 第5项B. 第6项 C 第7项. D. 第8项6. 公差不为0的等差数列{a n }中,a 2、a 3、a 6依次成等比数列,则公比等于( )A. 21B. 31C.2D.37.在各项均不为零的等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --=( )A.2- B.0 C.1 D.28. 等差数列{a n }和{b n }的前n 项和分别为S n 与Tn ,对一切自然数n ,都有n n T S =132+n n ,则55b a 等于( ) A.32 B. 149 C. 3120 D. 1711必修五第三部分数列数列11.( C ).2. ( A )3.(B )4.( A )5.( C )6.( D )7.(A)8. ( B )。
辽宁东北育才学校等差数列试题及答案doc
一、等差数列选择题1.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .53B .2C .8D .132.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4B .a 6=4C .a 5=2D .a 6=23.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( ) A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列D .S 2,S 4+S 2,S 6+S 4必成等差数列4.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160B .180C .200D .2205.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1626.设等差数列{}n a 的前n 项和为n S ,10a <且11101921a a =,则当n S 取最小值时,n 的值为( ) A .21B .20C .19D .19或207.已知等差数列{}n a 中,前n 项和215n S n n =-,则使n S 有最小值的n 是( )A .7B .8C .7或8D .98.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .859.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200B .100C .90D .8010.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( ) A .12尺布 B .518尺布 C .1631尺布 D .1629尺布 11.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1B .2C .3D .412.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12B .20C .40D .10013.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103B .107C .109D .10514.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13B .26C .52D .5615.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36B .48C .56D .7216.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51B .57C .54D .7217.在1与25之间插入五个数,使其组成等差数列,则这五个数为( )A .3、8、13、18、23B .4、8、12、16、20C .5、9、13、17、21D .6、10、14、18、2218.已知数列{}n a 的前n 项和为n S ,且()11213n n n n S S a n +++=+-+,现有如下说法:①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为( ) A .0B .1C .2D .319.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333122n n n a a a ++=+,则10a 等于( ) A .10BC .64D .420.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10B .9C .8D .7二、多选题21.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n nF n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()n nF n ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦ D .()1122n n F n ⎡⎤⎛⎛⎥=+ ⎥⎝⎭⎝⎭⎦22.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n= B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1{}nS 为递增数列23.题目文件丢失!24.题目文件丢失!25.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >26.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S >D .110S >27.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( ) A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥ 28.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <B .70a =C .95S S >D .170S <29.下面是关于公差0d >的等差数列{}n a 的四个命题,其中的真命题为( ).A .数列{}n a 是递增数列B .数列{}n na 是递增数列C .数列{}na n是递增数列 D .数列{}3n a nd +是递增数列30.已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( )A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.B 【分析】设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2, 故选:B 2.C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C 3.D 【分析】根据等差数列的性质,可判定A 、B 正确;当首项与公差均为0时,可判定C 正确;当首项为1与公差1时,可判定D 错误. 【详解】由题意,数列{}n a 为等差数列,n S 为前n 项和,根据等差数列的性质,可得而51051510,,S S S S S --,和24264,,S S S S S --构成等差数列,所以,所以A ,B 正确;当首项与公差均为0时,5101510,,S S S S +是等差数列,所以C 正确;当首项为1与公差1时,此时2426102,31,86S S S S S =+=+=,此时24264,,S S S S S ++不构成等差数列,所以D 错误. 故选:D. 4.B 【分析】把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020()10181802S a a =+=⨯=. 故选:B 5.B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.6.B 【分析】 由题得出1392a d =-,则2202n dS n dn =-,利用二次函数的性质即可求解.【详解】设等差数列{}n a 的公差为d ,由11101921a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392a d =-,10a <,0d ∴>,()211+2022n n n dS na d n dn -∴==-,对称轴为20n =,开口向上, ∴当20n =时,n S 最小.故选:B. 【点睛】方法点睛:求等差数列前n 项和最值,由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 7.C 【分析】215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.【详解】22152251524n S n n n ⎛⎫=-=--⎪⎝⎭,∴数列{}n S 的图象是分布在抛物线21522524y x ⎛⎫=--⎪⎝⎭上的横坐标为正整数的离散的点.又抛物线开口向上,以152x =为对称轴,且1515|7822-=-|, 所以当7,8n =时,n S 有最小值. 故选:C 8.C 【分析】可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】因为{}n a ,{}n b 是等差数列,且3221n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-, ∴1215(6121)71(4151)59a kb k ⨯-==⨯-,故选:C . 9.C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C 10.D 【分析】设该女子第()N n n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,根据15a =,30390S =可求得d 的值. 【详解】设该女子第()N n n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,由题意可得30130293015015293902S a d d ⨯=+=+⨯=,解得1629d =.故选:D. 11.B 【分析】 由题意可得221114n na a +-=,运用等差数列的通项公式可得2143n n a =-,求得14n b =,然后利用裂项相消求和法可求得结果【详解】解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭,得221114n n a a +-=, 所以数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,所以2114(1)43nn n a =+-=-,因为0n a >,所以n a =,所以1111n n nb a a +=+=所以14n b ==,所以201220T b b b =++⋅⋅⋅+111339(91)244=++⋅⋅⋅+=⨯-=, 故选:B 【点睛】关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得221114n n a a +-=,从而数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,进而可求n a =,14n b ==,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题 12.B 【分析】由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:1011045100S a d =+=,12920a d ∴+=, 4712920a a a d ∴+=+=.故选:B. 13.B 【分析】根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】根据题意可知正整数能被21整除余2,21+2n a n ∴=, 5215+2107a ∴=⨯=.故选:B. 14.B 【分析】利用等差数列的下标性质,结合等差数列的求和公式即可得结果. 【详解】由等差数列的性质,可得3542a a a +=,891371013103a a a a a a a ++=++=, 因为()()3589133224a a a a a ++++=, 可得410322324a a ⨯+⨯=,即4104a a +=,故数列的前13项之和()()11341013131313426222a a a a S ++⨯====. 故选:B. 15.A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键. 16.B 【分析】根据等差数列的性质求出103a =,再由求和公式得出答案. 【详解】317102a a a += 1039a ∴=,即103a =()1191019191921935722a a a S +⨯∴===⨯= 故选:B 17.C 【分析】根据首末两项求等差数列的公差,再求这5个数字. 【详解】在1与25之间插入五个数,使其组成等差数列, 则171,25a a ==,则712514716a a d --===-, 则这5个数依次是5,9,13,17,21. 故选:C 18.D 【分析】由()11213n n n n S S a n +++=+-+得到()11132n n n a a n ++=-+-,再分n 为奇数和偶数得到21262k k a a k +=-+-,22165k k a a k -=+-,然后再联立递推逐项判断.【详解】因为()11213n n n n S S a n +++=+-+,所以()11132n n n a a n ++=-+-,所以()212621k k a a k +=-+-,()221652k k a a k -=+-, 联立得:()212133k k a a +-+=, 所以()232134k k a a +++=, 故2321k k a a +-=,从而15941a a a a ===⋅⋅⋅=,22162k k a a k ++=-,222161k k a a k ++=++,则222121k k a a k ++=-,故()()()4012345383940...S a a a a a a a a =++++++++,()()()()234538394041...a a a a a a a a =++++++++,()()201411820622k k =+⨯=-==∑1220,故①②③正确. 故选:D 19.D 【分析】利用等差中项法可知,数列{}3n a 为等差数列,根据11a =,22a =可求得数列{}3n a 的公差,可求得310a 的值,进而可求得10a 的值. 【详解】对*n N ∀∈都有333122n n n a a a ++=+,由等差中项法可知,数列{}3n a 为等差数列,由于11a =,22a =,则数列{}3n a 的公差为33217d a a =-=,所以,33101919764a a d =+=+⨯=,因此,104a .故选:D. 20.A 【分析】利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】在等差数列{}n a 中,设公差为d ,由467811a a a =⎧⇒⎨+=⎩444812311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A二、多选题21.BC【分析】根据数列的前几项归纳出数列的通项公式,再验证即可;【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥,所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭是以12+为首项,12+为公比的等比数列, 所以()()1nF n n +-=⎝⎭11515()n F F n n -+=++, 令1nn n F b-=⎝⎭,则11n n b +=+,所以1n n b b +=-, 所以nb ⎧⎪⎨⎪⎪⎩⎭的等比数列,所以1n n b -+, 所以()1115n n n n F n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件;故选:BC【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.22.AD【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a .【详解】11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+=11104n n n S S S -≠∴-= 因此数列1{}n S 为以114S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n=+-=∴=,即A 正确; 当2n ≥时111144(1)4(1)n n n a S S n n n n -=-=-=--- 所以1,141,24(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,即B ,C 不正确; 故选:AD【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.23.无24.无25.BC【分析】 根据递推公式,得到11n n n n n a a a +-=-,令1n =,得到121a a =,可判断A 错,B 正确;根据求和公式,得到1n n n S a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】 由121n n n a n a a n +=+-可知2111n n n n na n n n a a a a ++--==+,即11n n n n n a a a +-=-,当1n =时,则121a a =,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321111102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=+++=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误.故选:BC.【点睛】方法点睛:由递推公式求通项公式的常用方法:(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解;(2)累乘法,形如()1n na f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通项时,常需要构造成等比数列求解;(4)已知n a 与n S 的关系求通项时,一般可根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解. 26.ABD【分析】转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解.【详解】因为57S S =,所以750S S -=,即670a a +=,因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确;所以6S 最大,故B 正确; 所以()113137131302a a S a +⨯==<,故C 错误; 所以()111116111102a a S a +⨯==>,故D 正确. 故选:ABD.27.BC【分析】设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断. 【详解】设公差d 不为零,因为38a a =, 所以1127a d a d +=+,即1127a d a d +=--, 解得192a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误; ()()()()()()221101110910,10102222n n n n n n d d na d n n n a n n S S d ----=+=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误; 故选:BC28.ABD【分析】结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案. 【详解】由67S S =,可得7670S S a -==,故B 正确;由56S S <,可得6560S S a -=>,由78S S >,可得8780S S a -=<,所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确;又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确; 又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <,所以()117179171702a a S a +==<,故D 正确.故选:ABD.【点睛】关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及()12n n n a a S +=,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题.29.AD【分析】根据等差数列的性质,对四个选项逐一判断,即可得正确选项.【详解】0d >,10n n a a d +-=> ,所以{}n a 是递增数列,故①正确,()()2111n na n a n d dn a d n =+-=+-⎡⎤⎣⎦,当12d a n d-<时,数列{}n na 不是递增数列,故②不正确,1n a a d d n n -=+,当10a d -<时,{}n a n不是递增数列,故③不正确, 134n a nd nd a d +=+-,因为0d >,所以{}3n a nd +是递增数列,故④正确, 故选:AD【点睛】本题主要考查了等差数列的性质,属于基础题.30.ABD【分析】由已知递推式可得数列2=,公差为1的等差数列,结合选项可得结果.【详解】 )211n a =-得)211n a +=,1=,即数列2=,公差为1的等差数列,2(1)11n n =+-⨯=+,∴22n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,所以易知ABD 正确,故选:ABD.【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.。
高中一年级数学暑假作业数列---学生版
高一第二学期暑假作业数列一.填空题1.在数列{}n a 中,12a =,11ln(1)n n a a n+=++,则n a =___________。
2. 数列{}n a 中,111,32,n n a a a +==+则通项n a =___________。
3.一个等差数列的前4项的和为40,最后4项的和为80,所有项的和是210,则项数n 是 ____________。
4.已知1,,,921--a a 四个实数成等差数列,1,b ,b ,b ,9321--五个实数成等比数列,则)(b 122a a -的值等于 _______。
5.正项等比数列{a n }中,S 2=7,S 6=91,则S 4=________。
6.设函数f (x )满足(1)f n + =2()2f n n+(n ∈N *)且(1)2f =,则(20)f = .7.已知a n =nn n 10)1(9+(n ∈N *),则数列{a n }的最大项为____________。
8.等差数列}{n a 共有21n +项,其中奇数项之和为319,偶数项之和为290,则其中间项为_____。
9. 已知正项数列{}n a 中, ()()221110n n n n na a a n a n N +++--+=∈,11a =,则通项n a =____. 10.设()442x x f x =+,则 12320012002200220022002f f f f ++++=⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭11.某工厂生产总值的月平均增长率是p ,则年增长率是 __ .12.已知数列}a {n 的前n 项和54n n S 2n +-=,则通项公式=n a _____13.某煤矿从开始建设到出煤共需5年,每年国家投资100万元,如果按年利率为10﹪来考虑,那么到出煤的时国家实际投资总额是(其中77.11.1,61.11.1,46.11.1654===)________14.数列}a {n ,11=a ,)2(311≥⋅=--n a a n n n ,则n a = _ .15.已知数列}{n a 的通项公式为n a =12n +,设13242111n n n T a a a a a a +=+++⋅⋅⋅,则n T =____________.16.函数()f x 由下表定义:x25314若05a =,1()n n a f a +=,0,1,2,n =,则2007a = .二.解答题17.等差数列{}n a 的各项均为正数,13a =,前n 项和为n S ,{}n b 为等比数列, 11b =,且2264,b S = 33960b S =.(1)求n a 与n b ; (2)求和:12111nS S S +++.18.已知直线:ny x =22:22()n n C x y a n n N ++=++∈交于不同点A n 、B n ,其中数列{}n a 满足:21111,4n n n a a A B +==. (1)求数列{}n a 的通项公式; (2)设(2),3n n nb a =+求数列{}n b 的前n 项和n S .()f x1234519.在数列{}n a 中,14n n a n -=+,*n N ∈.(1)求数列{}n a 的前n 项和n S ;(2)证明不等式14n n S S +≤,对任意*n N ∈皆成立。
高一数学暑假作业等差数列
等差数列【知识回忆】1.数列:按照一定顺序排列着一列数.2.数列分类:递增数列、递减数列、常数列、摆动数列3.数列递推公式:表示任一项n a 与它前一项1n a -〔或前几项〕间关系公式.4.对任意数列{n a }前n 项与n S 与通项n a 关系:5.等差数列定义:如果一个数列从第2项起,每一项与它前一项差等于同一个常数,那么这个数列称为等差数列,这个常数称为等差数列公差.符号表示:1n n a a d +-=。
6.等差中项:由三个数a ,A ,b 组成等差数列可以看成最简单等差数列,那么A 称为a 与b 等差中项.假设,那么称b 为a 与c 等差中项. 7.等差数列通项公式:假设等差数列{}n a 首项是1a ,公差是d ,那么()11n a a n d =+-.8.等差数列性质:假设{}n a 是等差数列,且m n p q +=+〔m 、n 、p 、*q ∈N 〕,那么m n p q a a a a +=+;假设{}n a 是等差数列,且2n p q =+〔n 、p 、*q ∈N 〕,那么2np q a a a =+.9.等差数列前n 项与公式:①; ②.如何判定数列是不是等差数列?练一练1.在等差数列{}n a 中,23a a 5+=,1a 4=,那么公差d 等于〔 〕 A .B .0C .D .2.在等差数列{}n a 中,()()35710133224,a a a a a ++++=那么该数列前13项与是〔 〕A .13B .26C .52D .156 3.S n 是等差数列{a n }前n 项与,假设319a a =,那么35S S =〔 〕A .3B .5C .D .4.等差数列{}n a 前n 项与为n S ,且满足123223=-S S ,那么数列{}n a 公差是〔 〕A .1B .2C .3D .45.数列{}n a 中,23=a ,15=a ,假设是等差数列,那么11a 等于〔 〕 A .0 B .61 C .31 D .21 6.等差数列{}n a 前n 项与为n S ,且满足19a =,535S =,那么使n S 取最大值时n 值为A .8B .10C .9或10D .8或9 7.如果在等差数列{}n a 中,34512a a a ++=,那么127a a a +++= .8.在等差数列{}n a 中,33152,,22n n a a S =-==-,那么1a = . 9.等差数列{}n a 前n 项与为n S ,假设36a =,312S =,那么公差d 等于 .10.等差数列}{n a 前n 项与为n S ,且113=a ,243=S . 〔1〕求数列}{n a 通项公式; 〔2〕设,求数列}{n b 中最小项.11.设n S 为等差数列{}()n a n N *∈前n 项与,且131,6a S ==. 〔1〕求公差d 值;〔2〕3n n S a <,求所有满足条件n 值. 12.等差数列{}n a 中, 389,29a a ==.〔1〕求数列{}n a 通项公式及前n 项与n S 表达式; 〔2〕记数列前n 项与为n T ,求100T 值. 【等差数列】等差数列① a n a n 1 d (n 2, d 为常数) ②2 a n a n 1 a n 1 ( n 2 ) ③ a n kn b ( n , k 为常数1.A【解析】2a 1 3d 5 ,因为 a 14 ,代入 d1a n ,应选 试题分析: a 2 a 3A.考点:等差数列2.B【解析】试题分析:由 3 a 3 a 5 2 a 7a 10 a 13 24, 有6a 4 6a 10a 4 a 10 4 ,所以该数列前13 项与13( a 4 a 10 ) 13 426 ,应选 B.2 2考点:1.等差数列性质;2.等差数列前 n 项与公式.3.A【解析】试题分析:由题意得,设等差数列a n 公差为 d ,由 a 3 9a 1 ,那么a 1 2 d 9a 1d 4a 1,所以 S55a 1 10 d45a 13 ,应选A .S3 3a 13d 15a 1考点:等差数列通项及前 n 项与公式应用. 4.D【解析】a n ) a nn (a 1 S n a13S 212 ,试题分析:因为 S n ,所以,由 2S 3a1 a32n2S 3S2a1a2a3a2得2 ,得2 ,即aa4 ,所以数32222232列a n 公差为4.考点:1、等差数列定义与性质;2、等差数列前n 项与公式.5.A【解析】1,那么b 1, b 1,数列b 公差为试题分析:记bn1a n 3352n11111n12(23) 12,b16,∴ b n12,1n111n即,∴ a n,故a110 .应选A.1a n12n 1考点:等差数列通项与性质.6.C。
辽宁省沈阳市东北育才学校等差数列经典例题 百度文库
一、等差数列选择题1.已知数列{}n a 的前项和221n S n =+,n *∈N ,则5a =( )A .20B .17C .18D .192.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S =( ) A .16 B .-16 C .4D .-43.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米4.已知数列{}n a 的前n 项和221n S n n =+-,则13525a a a a ++++=( )A .350B .351C .674D .6755.已知数列{}n a 的前n 项和n S 满足()12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项的和为( ) A .89B .910C .1011D .11126.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29B .38C .40D .587.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC . 6SD . 7S8.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且713n n S n T n -=,则55a b =( ) A .3415B .2310C .317D .62279.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11B .10C .6D .310.已知等差数列{}n a 的公差d 为正数,()()111,211,n n n a a a tn a t +=+=+为常数,则n a =( )A .21n -B .43n -C .54n -D .n11.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项B .133项C .134项D .135项12.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列{}n a ,已知11a =,22a=,且满足()211+-=+-nn n a a (n *∈N ),则该医院30天入院治疗流感的共有( )人A .225B .255C .365D .46513.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103B .107C .109D .10514.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21B .15C .10D .615.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13B .26C .52D .5616.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<17.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15B .30C .3D .6418.已知数列{x n }满足x 1=1,x 2=23,且11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(23)n -1B .(23)n C .21n + D .12n + 19.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为( ) A .54钱 B .43钱 C .23钱 D .53钱 20.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121B .161C .141D .151二、多选题21.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =22.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >23.题目文件丢失!24.题目文件丢失! 25.题目文件丢失! 26.题目文件丢失!27.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列 C .2020312a <<D .2020314a << 28.已知数列{}n a 满足()*111n na n N a +=-∈,且12a =,则( ) A .31a =- B .201912a =C .332S =D . 2 01920192S =29.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n =30.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .0nS <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.C 【分析】根据题中条件,由554a S S =-,即可得出结果. 【详解】因为数列{}n a 的前项和2*21,n S n n N =+∈, 所以22554(251)(241)18a S S =-=⨯+-⨯+=. 故选:C . 2.A 【详解】 由()()18458884816222a a a a S +⨯+⨯⨯====.故选A.3.B 【分析】利用等差数列性质得到21200a =,143600a =,再利用等差数列求和公式得到答案. 【详解】根据题意:小李同学每天跑步距离为等差数列,设为n a ,则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故143600a =,则()()11521411151********n S a a a a =+⨯=+⨯=. 故选:B. 4.A 【分析】先利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,再利用通项公式求出13525a a a a ++++的值.【详解】当1n =时,21112112a S ==+⨯-=;当2n ≥时,()()()22121121121n n n a S S n n n n n -⎡⎤=-=+---+--=+⎣⎦.12a =不适合上式,2,121,2n n a n n =⎧∴=⎨+≥⎩.因此,()()3251352512127512235022a a a a a a ⨯+⨯+++++=+=+=;故选:A. 【点睛】易错点睛:利用前n 项和n S 求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,但需要验证1a 是否满足()2n a n ≥.5.C 【分析】 首先根据()12n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得到答案. 【详解】当1n =时,111a S ==, 当2n ≥时,()()11122n n n n n n n a S S n -+-=-=-=. 检验111a S ==,所以n a n =. 设()1111111n n n b a a n n n n +===-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…. 故选:C 6.A 【分析】根据等差中项的性质,求出414a =,再求10a ; 【详解】因为{}n a 为等差数列,所以264228a a a +==, ∴414a =.由59410a a a a +=+43=,得1029a =, 故选:A. 7.B 【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S . 8.D 【分析】利用等差数列的性质以及前n 项和公式即可求解. 【详解】由713n n S n T n-=, ()()19551991955199927916229239272a a a a a a Sb b b b b b T ++⨯-======++⨯. 故选:D 9.A 【分析】利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】由3914a a +=,23a =, 又{}n a 为等差数列, 得39121014a a a d +=+=,213a a d =+=,解得12,1a d ==, 则101+92911a a d ==+=; 故选:A. 10.A 【分析】由已知等式分别求出数列的前三项,由2132a a a =+列出方程,求出公差,利用等差数列的通项公式求解可得答案. 【详解】11a =,()()1211n n n a a tn a ++=+,令1n =,则()()121211a a t a +=+,解得21a t =-令2n =,则()()2322121a a t a +=+,即()2311t a t -=-,若1t =,则20,1a d ==,与已知矛盾,故解得31a t =+{}n a 等差数列,2132a a a ∴=+,即()2111t t -=++,解得4t =则公差212d a a =-=,所以()1121n a a n d n =+-=-. 故选:A 11.D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列. 12.B 【分析】直接利用分类讨论思想的应用求出数列的通项公式,进一步利用分组法求出数列的和 【详解】解:当n 为奇数时,2n n a a +=, 当n 为偶数时,22n n a a +-=, 所以13291a a a ==⋅⋅⋅==,2430,,,a a a ⋅⋅⋅是以2为首项,2为公差的等差数列,所以30132924301514()()1515222552S a a a a a a ⨯=++⋅⋅⋅++++⋅⋅⋅+=+⨯+⨯=, 故选:B 13.B 【分析】根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】根据题意可知正整数能被21整除余2,21+2n a n ∴=, 5215+2107a ∴=⨯=.故选:B.14.C 【分析】根据已知条件得到关于首项1a 和公差d 的方程组,求解出1,a d 的值,再根据等差数列前n 项和的计算公式求解出5S 的值. 【详解】因为134222a a a a +=⎧⎨-=⎩,所以122222a d d +=⎧⎨=⎩,所以101a d =⎧⎨=⎩,所以5154550101102S a d ⨯=+=⨯+⨯=, 故选:C. 15.B 【分析】利用等差数列的下标性质,结合等差数列的求和公式即可得结果. 【详解】由等差数列的性质,可得3542a a a +=,891371013103a a a a a a a ++=++=, 因为()()3589133224a a a a a ++++=, 可得410322324a a ⨯+⨯=,即4104a a +=, 故数列的前13项之和()()11341013131313426222a a a a S ++⨯====. 故选:B. 16.D 【分析】由等差数列前n 项和公式即可得解. 【详解】由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()02m m m a a S ++++=<. 故选:D. 17.A 【分析】设等差数列{}n a 的公差为d ,根据等差数列的通项公式列方程组,求出1a 和d 的值,12111a a d =+,即可求解.【详解】设等差数列{}n a 的公差为d ,则111681631a d a d a d +++=⎧⎨+=⎩,即117831a d a d +=⎧⎨+=⎩ 解得:174174d a ⎧=⎪⎪⎨⎪=-⎪⎩,所以12117760111115444a a d =+=-+⨯==, 所以12a 的值是15, 故选:A 18.C 【分析】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫⎨⎬⎩⎭的通项公式,进而得出答案.【详解】 由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,且121131,2x x ==,故公差12d = 则()1111122n n n x +=+-⨯=,故21n x n =+故选:C 19.C 【分析】根据甲、乙、丙、丁、戊所得依次成等差数列,设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +,然后再由五人钱之和为5,甲、乙的钱与与丙、丁、戊的钱相同求解. 【详解】设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +,则根据题意有(2)()()(2)5(2)()()(2)a d a d a a d a d a d a d a a d a d -+-+++++=⎧⎨-+-=++++⎩,解得116a d =⎧⎪⎨=-⎪⎩,所以戊所得为223a d +=, 故选:C . 20.B 【分析】由条件可得127a =,然后231223S a =,算出即可. 【详解】因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =所以231223161S a == 故选:B二、多选题21.BCD 【分析】由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列{}n a 的公差为d .由13522,a a S +=有()1112542252a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176773212S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113137131302a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,属于中档题. 22.ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确;对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <, 所以614a a <,故选项D 不正确,故选:ABC【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.23.无24.无25.无26.无27.ABD【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解.【详解】由()1ln 2n n n a a a +=+-,1102a <<设()()ln 2f x x x =+-,则()11122x f x x x-'=-=--, 所以当01x <<时,0f x ,即()f x 在0,1上为单调递增函数, 所以函数在10,2⎛⎫ ⎪⎝⎭为单调递增函数,即()()102f f x f ⎛⎫<< ⎪⎝⎭,即()131ln 2ln ln 1222f x <<<+<+=,所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD【点睛】 本题考查了数列性质的综合应用,属于难题.28.ACD【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD .【详解】由题意211122a =-=,311112a =-=-,A 正确,3132122S =+-=,C 正确; 41121a =-=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错;20193201967322S =⨯=,D 正确. 故选:ACD .【点睛】本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解.29.BCD【分析】设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1215d a =-⎧⎨=⎩,再逐项判断即可得解.【详解】设等差数列{}n a 的公差为d ,由题意,1115411105112215a d a d a ⨯⨯⎧+=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确; 因为()()2211168642n n n a n d n n n S -=+=-+=--+, 所以当且仅当8n =时,n S 取最大值,故C 正确; 要使()28640n S n =--+>,则16n <且n N +∈,所以使得0n S >的最大整数15n =,故D 正确. 故选:BCD.30.ACD【分析】由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N 上单调递增,1n a 在7n n N ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ;【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1n a 在1,6n n N 上单调递增,1n a 在7n n N ,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确; 由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,0n nS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确; 【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.。
辽宁东北育才学校高中部等差数列测试题doc
一、等差数列选择题1.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60B .11C .50D .552.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200 B .100 C .90 D .80 3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8B .10C .12D .144.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10-B .8C .12D .145.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )A .6-B .2-C .1-D .06.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( ) A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列D .S 2,S 4+S 2,S 6+S 4必成等差数列7.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160B .180C .200D .2208.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11 B .12C .23D .249.题目文件丢失!10.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121B .161C .141D .15111.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项B .133项C .134项D .135项12.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21B .15C .10D .613.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )A .7B .9C .21D .4214.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S < B .70S <,且80S > C .70S >,且80S > D .70S <,且80S <15.若数列{}n a 满足121()2n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020D .202116.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若p m n q <<<且()*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )A .22p p S p a =⋅B .p q m n a a a a >C .1111p q m n a a a a +<+ D .1111p q m nS S S S +>+ 17.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩18.已知数列{x n }满足x 1=1,x 2=23,且11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(23)n -1B .(23)n C .21n + D .12n + 19.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333122n n n a a a ++=+,则10a 等于( ) A .10BC .64D .420.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10B .9C .8D .7二、多选题21.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( ) A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2n S n n a =-+,则0a =22.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列23.题目文件丢失!24.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+25.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2B .5C .3D .426.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列27.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <28.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k Nk ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 29.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为2230.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( )A .60a >B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列 C .0n S <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.D 【分析】根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()1111161111552a a S a +===.故选:D. 2.C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C 3.C 【分析】利用等差数列的通项公式即可求解. 【详解】 {a n }为等差数列,S 3=12,即1232312a a a a ++==,解得24a =. 由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=. 故选:C 4.D 【分析】利用等差数列下标性质求得4a ,再利用求和公式求解即可 【详解】147446=32a a a a a ++=∴=,则()177477142a a S a +=== 故选:D 5.A 【分析】 转化条件为122527n n a an n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.【详解】 因为122527n n a a n n +-=--,所以122527n na a n n +-=--, 又1127a =--,所以数列27n a n ⎧⎫⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以()1212327na n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得3722n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()()()3123min13316p q S S a a S S =-=+=⨯-+--⨯=-.故选:A. 【点睛】解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 6.D 【分析】根据等差数列的性质,可判定A 、B 正确;当首项与公差均为0时,可判定C 正确;当首项为1与公差1时,可判定D 错误. 【详解】由题意,数列{}n a 为等差数列,n S 为前n 项和,根据等差数列的性质,可得而51051510,,S S S S S --,和24264,,S S S S S --构成等差数列,所以,所以A ,B 正确;当首项与公差均为0时,5101510,,S S S S +是等差数列,所以C 正确;当首项为1与公差1时,此时2426102,31,86S S S S S =+=+=,此时24264,,S S S S S ++不构成等差数列,所以D 错误.7.B 【分析】把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020()10181802S a a =+=⨯=. 故选:B 8.C 【分析】由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,故选:C.9.无10.B 【分析】由条件可得127a =,然后231223S a =,算出即可. 【详解】因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =所以231223161S a == 故选:B 11.D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤, 所以该数列的项数共有135项.【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列. 12.C 【分析】根据已知条件得到关于首项1a 和公差d 的方程组,求解出1,a d 的值,再根据等差数列前n 项和的计算公式求解出5S 的值. 【详解】 因为134222a a a a +=⎧⎨-=⎩,所以122222a d d +=⎧⎨=⎩,所以101a d =⎧⎨=⎩,所以5154550101102S a d ⨯=+=⨯+⨯=, 故选:C. 13.C 【分析】利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解. 【详解】设等差数列{}n a 的公差为d ,则()1212121632a a S +==, 所以1216a a +=,即1126a =,所以113a =, 所以()()()2582022051781411a a a a a a a a a a a ++++=++++++111111111122277321a a a a a =+++==⨯=,故选:C 【点睛】关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,()()()2582022051781411117a a a a a a a a a a a a ++++=++++++=即可求解.14.A 【分析】根据已知条件,结合等差数列前n 项和公式,即可容易判断. 【详解】依题意,有170a a +>,180a a +< 则()177702a a S +⋅=>()()188188402a a S a a +⋅==+<故选:A . 15.B 【分析】根据递推关系式求出数列的通项公式即可求解. 【详解】 由121()2n n a a n N *++=∈,则11()2n n a a n N *+=+∈, 即112n n a a +-=, 所以数列{}n a 是以1为首项,12为公差的等差数列, 所以()()11111122n n a a n d n +=+-=+-⨯=, 所以2021a =2021110112+=. 故选:B 16.D 【分析】利用等差数列的求和公式可判断A 选项的正误;利用作差法结合等差数列的通项公式可判断B 选项的正误;利用p q m n a a a a <结合不等式的基本性质可判断C 选项的正误;利用等差数列的求和公式结合不等式的基本性质可判断D 选项的正误. 【详解】对于A 选项,由于()()1221222p pp p p p a a Sp a a pa ++==+≠,故选项A 错误;对于B 选项,由于m p q n -=-,则()()p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅⎡⎤⎡⎤⎣⎦⎣⎦()()()()()22m n m n m n a q n d a q n d a a q n a a d q n d =--⋅+--=----⎡⎤⎡⎤⎣⎦⎣⎦()()()2220q n n m d q n d =-----<,故选项B 错误;对于C 选项,由于1111p q m n m n p q p q p q m n m na a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误; 对于D 选项,设0x q n m p =-=->,则()()()20pq mn m x n x mn x n m x -=-+-=---<,从而pq mn <,由于222222p q m n p q pq m n mn +=+⇔++=++,故2222p q m n +>+.()()()()()()111111p q pq p q mn m n m n --=-++<-++=--,故()()22221122p q m n p q p q m n m nS S p q a d m n a d S S +--+--+=++>++=+.()()()()()221111112112224p q p p q q pq p q pq p q S S pa d qa d pqa a d d--+---⎡⎤⎡⎤⋅=+⋅+=++⎢⎥⎢⎥⎣⎦⎣⎦()()()221121124mn m n mn p q mna a d d+---<++()()()221121124m n mn m n mn m n mna a d d S S +---<++=,由此1111p q m n p q p q m n m nS S S S S S S S S S S S +++=>=+,故选项D 正确. 故选:D. 【点睛】关键点点睛:本题考查等差数列中不等式关系的判断,在解题过程中充分利用基本量来表示n a 、n S ,并结合作差法、不等式的基本性质来进行判断. 17.B 【分析】利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==,上式也成立,()*21n a n n N ∴=-∈,故选:B. 【点睛】易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结果,考查学生的分类思想与运算求解能力,属于基础题. 18.C 【分析】 由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫⎨⎬⎩⎭的通项公式,进而得出答案. 【详解】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,且121131,2x x ==,故公差12d =则()1111122n n n x +=+-⨯=,故21n x n =+ 故选:C 19.D 【分析】利用等差中项法可知,数列{}3n a 为等差数列,根据11a =,22a =可求得数列{}3n a 的公差,可求得310a 的值,进而可求得10a 的值. 【详解】对*n N ∀∈都有333122n n n a a a ++=+,由等差中项法可知,数列{}3n a 为等差数列,由于11a =,22a =,则数列{}3n a 的公差为33217d a a =-=,所以,33101919764a a d =+=+⨯=,因此,104a .故选:D. 20.A 【分析】利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】在等差数列{}n a 中,设公差为d ,由467811a a a =⎧⇒⎨+=⎩444812311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A二、多选题21.AD 【分析】对于A ,作差后利用等差数列的通项公式运算可得答案;对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案; 对于D ,由n S 求出n a 及1a ,根据数列{}n a 为等差数列可求得0a =. 【详解】对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,所以24619150a a a a d -=>,所以4619a a a a >,故A 正确;对于B ,因为130S >,140S <,所以77713()1302a a a +=>,即70a >,787814()7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以7878||||0a a a a -=+<,即78||||a a <,故B 不正确;对于C ,因为915S S =,所以101114150a a a a ++++=,所以12133()0a a +=,即12130a a +=,当0d >时,等差数列{}n a 递增,则12130,0a a <>,所以n S 中的最小值是12S ,无最大值;当0d <时,等差数列{}n a 递减,则12130,0a a ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;对于D ,若2n S n n a =-+,则11a S a ==,2n ≥时,221(1)(1)n n n a S S n n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,所以12120a a =⨯-==,故D 正确. 故选:AD 【点睛】关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键. 22.BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.23.无24.BD 【分析】根据选项求出数列的前4项,逐一判断即可. 【详解】解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin22a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD. 【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题. 25.BD 【分析】 利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减, 可得:2n =时,21n -取得最大值2. ∴1nn a a -的最大值为3. 故选:BD . 【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题. 26.ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为1112a =+,1(1)2n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-. 故选ACD 27.AD 【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确. 【详解】因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题. 28.BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n aa ---=---=是常数, {(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k aa a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k kk k k k k k aa a a a a a a kp +++++--+-+-++-=,222k k a a kp ∴-=,()221kn kn a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确;对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD. 【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题. 29.AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-,由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22.故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题. 30.ACD 【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N上单调递增,1na 在7n n N ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6nn N上单调递增,1na 在7nn N ,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确; 由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0nS <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确;【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.。
高一数学暑假作业 等差数列
等差数列【知识回顾】1.数列:按照一定顺序排列着的一列数.2.数列的分类:递增数列、递减数列、常数列、摆动数列3.数列的递推公式:表示任一项错误!未找到引用源。
与它的前一项错误!未找到引用源。
(或前几项)间的关系的公式.4.对任意的数列{n a }的前n 项和n S 与通项n a 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n n n5.等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.符号表示:错误!未找到引用源。
6.等差中项:由三个数错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
组成的等差数列可以看成最简单的等差数列,则错误!未找到引用源。
称为错误!未找到引用源。
与错误!未找到引用源。
的等差中项.若错误!未找到引用源。
,则称错误!未找到引用源。
为错误!未找到引用源。
与错误!未找到引用源。
的等差中项.7.等差数列的通项公式:若等差数列错误!未找到引用源。
的首项是错误!未找到引用源。
,公差是错误!未找到引用源。
,则错误!未找到引用源。
.8.等差数列的性质:若错误!未找到引用源。
是等差数列,且错误!未找到引用源。
(错误!未找到引用源。
、错误!未找到引用源。
、错误!未找到引用源。
、错误!未找到引用源。
),则错误!未找到引用源。
;若错误!未找到引用源。
是等差数列,且错误!未找到引用源。
(错误!未找到引用源。
、错误!未找到引用源。
、错误!未找到引用源。
),则错误!未找到引用源。
. 9.等差数列的前错误!未找到引用源。
项和的公式:①错误!未找到引用源。
; ②错误!未找到引用源。
.如何判定数列是不是等差数列?1.在等差数列错误!未找到引用源。
中,错误!未找到引用源。
,错误!未找到引用源。
,则公差错误!未找到引用源。
等于( )A .B .0C .D .2.在等差数列错误!未找到引用源。
辽宁省沈阳市东北育才学校等差数列经典例题 百度文库
一、等差数列选择题1.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( ) A .9B .12C .15D .182.定义12nnp p p +++为n 个正数12,,,n p p p 的“均倒数”,若已知数列{}n a 的前n 项的“均倒数”为12n,又2n n a b =,则1223910111b b b b b b +++=( ) A .817 B .1021C .1123 D .9193.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A .825两 B .845两 C .865两 D .885两 4.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个B .3个C .2个D .1个5.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC . 6SD . 7S6.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且713n n S n T n -=,则55a b =( ) A .3415B .2310C .317D .62277.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( ) A .7B .10C .13D .168.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60B .120C .160D .2409.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7B .12C .14D .2110.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60B .11C .50D .5511.已知等差数列{}n a ,且()()35710133248a a a a a ++++=,则数列{}n a 的前13项之和为( ) A .24B .39C .104D .5212.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列{}n a ,已知11a =,22a=,且满足()211+-=+-nn n a a (n *∈N ),则该医院30天入院治疗流感的共有( )人A .225B .255C .365D .46513.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103B .107C .109D .10514.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则99S a =( ) A .9 B .5 C .1 D .5915.已知递减的等差数列{}n a 满足2219a a =,则数列{}n a 的前n 项和取最大值时n =( )A .4或5B .5或6C .4D .516.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩17.已知数列{}n a 的前n 项和为n S ,且()11213n n n n S S a n +++=+-+,现有如下说法:①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为( ) A .0B .1C .2D .318.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333122n n n a a a ++=+,则10a 等于( ) A .10BC .64D .419.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项B .133项C .134项D .135项20.设等差数列{}n a 的前n 项和为n S ,且71124a a -=,则5S =( ) A .15B .20C .25D .30二、多选题21.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =22.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 23.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2B .5C .3D .424.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( )A .2-B .23 C .32D .325.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( ) A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥26.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a < 27.定义11222n nn a a a H n-+++=为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .2020202320202S = D .2S ,4S ,6S 成等差数列28.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为2129.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( )A .a 6>0B .2437d -<<- C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 30.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( ) A .17aB .35SC .1719a a -D .1916S S -【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.A 【分析】在等差数列{a n }中,利用等差中项由95132a a a =+求解. 【详解】在等差数列{a n }中,a 5=3,a 9=6, 所以95132a a a =+,所以139522639a a a =-=⨯-=, 故选:A 2.D 【分析】由题意结合新定义的概念求得数列的前n 项和,然后利用前n 项和求解通项公式,最后裂项求和即可求得最终结果. 【详解】设数列{}n a 的前n 项和为n S ,由题意可得:12n n S n=,则:22n S n =, 当1n =时,112a S ==,当2n ≥时,142n n n a S S n -=-=-,且14122a =⨯-=,据此可得 42n a n =-, 故212nn a b n ==-,()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭, 据此有:12239101111111111233517191.21891919b b b b b b +++⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=⨯= 故选:D 3.C 【分析】设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,数列{}n a 是等差数列,8106100a S =⎧⎨=⎩利用等差数列的通项公式和前n 项和公式转化为关于1a 和d 的方程,即可求得长兄可分得银子的数目1a . 【详解】设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,由题意可得 设数列{}n a 的公差为d ,其前n 项和为n S ,则由题意得8106100a S =⎧⎨=⎩,即1176109101002a d a d +=⎧⎪⎨⨯+=⎪⎩,解得186585a d ⎧=⎪⎪⎨⎪=-⎪⎩. 所以长兄分得865两银子. 故选:C. 【点睛】关键点点睛:本题的关键点是能够读懂题意10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子构成公差0d <的等差数列,要熟练掌握等差数列的通项公式和前n 项和公式. 4.B 【分析】设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断D .【详解】设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;所以7710217022128S d =⨯+≤-⨯=,B 错误;1(1)10(1)0n a a n d n d =+-=+-≥,解得101n d≤-+,11100n a a nd nd +=+=+≤,解得10n d≥-, 所以10101n d d-≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=,当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由10n n a a +≥⎧⎨≤⎩求得.5.B 【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S . 6.D 【分析】利用等差数列的性质以及前n 项和公式即可求解. 【详解】由713n n S n T n-=, ()()19551991955199927916229239272a a a a a a Sb b b b b b T ++⨯-======++⨯. 故选:D【分析】由题建立关系求出公差,即可求解. 【详解】设等差数列{}n a 的公差为d ,141,16a S ==,41464616S a d d ∴=+=+=,2d ∴=, 71613a a d ∴=+=.故选:C 8.B 【分析】根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()11515815152a a S a +==,从而可得出结果.【详解】解:由题可知,2938a a a +=+,由等差数列的性质可知2938a a a a +=+,则88a =,故()1158158151521515812022a a a S a +⨯====⨯=. 故选:B. 9.C 【分析】判断出{}n a 是等差数列,然后结合等差数列的性质求得7S . 【详解】∵212n n n a a a ++=-,∴211n n n n a a a a +++-=-,∴数列{}n a 为等差数列. ∵534a a =-,∴354a a +=,∴173577()7()1422a a a a S ++===. 故选:C 10.D 【分析】根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()1111161111552a a S a +===.故选:D.【分析】根据等差数列的性质计算求解. 【详解】由题意()()357101341041073232236()1248a a a a a a a a a a ++++=⨯+⨯=+==,74a =,∴11313713()13134522a a S a +===⨯=. 故选:D . 12.B 【分析】直接利用分类讨论思想的应用求出数列的通项公式,进一步利用分组法求出数列的和 【详解】解:当n 为奇数时,2n n a a +=, 当n 为偶数时,22n n a a +-=, 所以13291a a a ==⋅⋅⋅==,2430,,,a a a ⋅⋅⋅是以2为首项,2为公差的等差数列,所以30132924301514()()1515222552S a a a a a a ⨯=++⋅⋅⋅++++⋅⋅⋅+=+⨯+⨯=, 故选:B 13.B 【分析】根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】根据题意可知正整数能被21整除余2,21+2n a n ∴=, 5215+2107a ∴=⨯=.故选:B. 14.B 【分析】由已知条件,结合等差数列通项公式得1a d =,即可求99S a . 【详解】4123425S a a a a a =+++=,即有13424a a a a ++=,得1a d =,∴1999()452a a S d ⨯+==,99a d =,且0d ≠, ∴995S a =.15.A 【分析】由2219a a =,可得14a d =-,从而得2922n d d S n n =-,然后利用二次函数的性质求其最值即可 【详解】解:设递减的等差数列{}n a 的公差为d (0d <),因为2219a a =,所以2211(8)a a d =+,化简得14a d =-,所以221(1)9422222n n n d d d dS na d dn n n n n -=+=-+-=-, 对称轴为92n =, 因为n ∈+N ,02d<, 所以当4n =或5n =时,n S 取最大值, 故选:A 16.B 【分析】利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==,上式也成立,()*21n a n n N ∴=-∈,故选:B. 【点睛】易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结果,考查学生的分类思想与运算求解能力,属于基础题. 17.D 【分析】由()11213n n n n S S a n +++=+-+得到()11132n n n a a n ++=-+-,再分n 为奇数和偶数得到21262k k a a k +=-+-,22165k k a a k -=+-,然后再联立递推逐项判断. 【详解】因为()11213n n n n S S a n +++=+-+,所以()11132n n n a a n ++=-+-,所以()212621k k a a k +=-+-,()221652k k a a k -=+-, 联立得:()212133k k a a +-+=, 所以()232134k k a a +++=, 故2321k k a a +-=,从而15941a a a a ===⋅⋅⋅=,22162k k a a k ++=-,222161k k a a k ++=++,则222121k k a a k ++=-,故()()()4012345383940...S a a a a a a a a =++++++++,()()()()234538394041...a a a a a a a a =++++++++,()()201411820622k k =+⨯=-==∑1220,故①②③正确. 故选:D 18.D 【分析】利用等差中项法可知,数列{}3n a 为等差数列,根据11a =,22a =可求得数列{}3n a 的公差,可求得310a 的值,进而可求得10a 的值. 【详解】对*n N ∀∈都有333122n n n a a a ++=+,由等差中项法可知,数列{}3n a 为等差数列,由于11a =,22a =,则数列{}3n a 的公差为33217d a a =-=,所以,33101919764a a d =+=+⨯=,因此,104a .故选:D. 19.D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列.20.B【分析】设出数列{}n a 的公差,利用等差数列的通项公式及已知条件,得到124a d +=,然后代入求和公式即可求解【详解】设等差数列{}n a 的公差为d ,则由已知可得()()111261024a d a d a d +-+=+=, 所以()5115455254202S a d a d ⨯=+=+=⨯= 故选:B 二、多选题21.BCD【分析】由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断.【详解】设等差数列数列{}n a 的公差为d .由13522,a a S +=有()1112542252a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确.选项A. ()71176773212S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113137131302a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确.故选:BCD【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,属于中档题.22.ABD【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确.【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确;7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确; 2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-, 所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+-20192020a a =, 所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.23.BD【分析】利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--,由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减, 可得:2n =时,21n -取得最大值2. ∴1n n a a -的最大值为3. 故选:BD .【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题. 24.BD【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论.【详解】因为数列{}n a 满足112a =-,111n n a a +=-, 212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD .【点睛】 本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.25.BC【分析】设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断. 【详解】设公差d 不为零, 因为38a a =, 所以1127a d a d +=+,即1127a d a d +=--,解得192a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误; ()()()()()()221101110910,10102222n n n n n n d d na d n n n a n n S S d ----=+=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误; 故选:BC26.AD【分析】 利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确.【详解】因为67S S <,所以7670S S a -=> ,因为78S S >,所以8780S S a -=<,所以等差数列{}n a 公差870d a a =-<,所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确;故选:AD【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题.27.AC【分析】 由题意可知112222n n n n a a a H n -+++==,即112222n n n a a a n -+++=⋅,则2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,可求解出1n a n =+,易知{}n a 是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出n S ,判断C ,D 的正误.【详解】解:由112222n n n n a a a H n -+++==, 得112222n n n a a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,② 得2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,即2n ≥时,1n a n =+,当1n =时,由①知12a =,满足1n a n =+.所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 错,所以()32n n n S +=,所以2020202320202S =,故C 正确. 25S =,414S =,627S =,故D 错,故选:AC .【点睛】本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般. 28.BC【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D .【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对;由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭ *n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错;故选:BC【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.29.ABCD【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确.【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0,又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0. 对于:7≤n ≤12时,n nS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:n nS a <0,但是随着n 的增大而增大. ∴n =7时,n nS a 取得最小值. 综上可得:ABCD 都正确.故选:ABCD .【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.30.BD【分析】由1718S S =得180a =,利用17180a a d d =-=-≠可知A 不正确;;根据351835S a =可知 B 正确;根据171920a a d -=-≠可知C 不正确;根据19161830S S a -==可知D 正确.【详解】因为1718S S =,所以18170S S -=,所以180a =,因为公差0d ≠,所以17180a a d d =-=-≠,故A 不正确;135********()35235022a a a S a +⨯====,故B 正确;171920a a d -=-≠,故C 不正确; 19161718191830S S a a a a -=++==,故D 正确. 故选:BD.【点睛】本题考查了等差数列的求和公式,考查了等差数列的下标性质,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修五第三部分数列
等差数列的定义与性质
定义:1n n a a d +-=(d 为常数),()11n a a n d =+-
等差中项:x A y ,,成等差数列2A x y ⇔=+
前n 项和()()11122
n n a a n n n S na d +-==+ 性质:{}n a 是等差数列
(1)若m n p q +=+,则m n p q a a a a +=+;
(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2;
(3)若三个成等差数列,可设为a d a a d -+,,
(4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121
m m m m a S b T --= (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)
n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组100
n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值. 当100a d <>,,由1
00n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有
),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S
nd S S =-奇偶,1
+=n n a a S S 偶奇
. (7)项数为奇数12-n 的等差数列{}
n a ,有 )()12(12为中间项n n n a a n S -=-,
n a S S =-偶奇,
1
-=n n S S 偶奇.
练习 1.已知等差数列{a n }的通项公式,4,554==a a ,则a 9等于( ).
A. 1
B. 2
C. 0
D. 3
2.已知等差数列{}n a 满足56a a +=28,则其前10项之和为 ( )
A 140
B 280
C 168
D 56
3.若实数a 、b 、c 成等比数列,则函数2
y ax bx c =++与x 轴的交点的个数为( ) .A 1 .B 0 .C 2 .D 无法确定
4.已知数列{a n }的通项公式为11
++=n n a n (n ∈N *),若前n 项和为9,则项数n 为( )
A.99
B.100
C.101
D.102
5.已知等差数列前项和为n S .且0,01213><S S 则此数列中绝对值最小的项为( )
A. 第5项
B. 第6项 C 第7项. D. 第8项
6. 公差不为0的等差数列{a n }中,a 2、a 3、a 6依次成等比数列,则公比等于( )
A. 21
B. 31
C.2
D.3
7.在各项均不为零的等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --=( )
A.2- B.0 C.1 D.2
8. 等差数列{a n }和{b n }的前n 项和分别为S n 与Tn ,对一切自然数n ,都有n n T S =132+n n ,则5
5b a 等于( ) A.
32 B. 149 C. 3120 D. 17
11 必修五第三部分数列
数列1
1.( C ).
2. ( A )
3.(B )
4.( A )
5.( C )
6.( D )
7.(A)
8. ( B )。