七年级数学上册第三章一元一次方程习题2

合集下载

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案) (96)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案) (96)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案)为了鼓励市民节约用水,我市居民使用自来水计费方式实施阶梯水价,具体标准见表1,表2分别是小明、小丽、小斌、小宇四家2017年的年用水量和缴纳水费情况.表1:大连市居民自来水实施阶梯水价标准情况:表2:四个家庭2017年的年用水量和缴纳水费情况:请你根据表1、表2提供的数据回答下列问题:(1)表1中的a=__________,m=_____________;(2)小颖家2017年使用自来水共缴纳水费827元,则她家2017年的年用水量是多少立方米?【答案】(1)3.25,180;(2)235立方米.【解析】【分析】(1)根据小明、小丽、小斌家的年用水量和缴纳水费情况可知100<m<200,从而求出a及m的值;(2)由年用水量为240立方米时,共缴纳水费849元,而673<827<849,可得她家2017年的年用水量在第二阶梯.设她家2017年的年用水量是x立方米,根据共缴纳水费827元列出方程,求解即可.【详解】(1)由题意,可得:a325==3.25,根据小斌家用水200立方米(在第二100阶梯),缴纳水费673元,列出方程:3.25m+4.4(200﹣m)=673,解得:m=180.故答案为3.25,180;(2)由年用水量为240立方米时,共缴纳水费:3.25×180+4.4(240﹣180)=849(元).∵673<827<849,∴她家2017年的年用水量在第二阶梯.设她家2017年的年用水量是x立方米,根据题意,得:3.25×180+4.4(x﹣180)=827解得:x=235.答:她家2017年的年用水量是235立方米.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,理解阶梯水价收费标准,正确求出a及m的值.52.七年级三个兴趣小组的同学为清远山区小朋友搬书,舞蹈小组的同学共捐书x本,美术小组的同学捐的书比舞蹈小组捐的书的2倍还多8本,科技小组的同学捐的书比美术小组捐书的一半少6本.(1)这三个小组的同学一共捐书多少本?(用x的式子表示,并化简)(2)当x=10时,这三个小组的同学一共捐书多少本?【答案】(1)4x+6;(2)46.【解析】【分析】(1)由舞蹈小组的同学共捐书x本,美术小组的同学捐的款比舞蹈小组捐的款的2倍还多8元,即是2x+8,科技小组的同学捐的款比美术小组捐款的一(2x+8)-6,三者相加,即可求出三个小组一共捐款数额; 半少6元,即是12(2)把x=10代入上式求值即可.【详解】解:(1)由舞蹈小组的同学共捐书x本,由题意可得:(2x+8)-6=x-2;舞蹈小组捐书2x+8;科技小组捐书12则三个小组共捐书:x+2x+8+x-2=4x+6答:三个小组的同学一共捐书4x+6本;(2)当x=10时,有:4×10+6=46本.答:当x=10时,这三个小组的同学一共捐书46本【点睛】本题考查了列代数式及其求值,解题的关键是弄懂题意,列出代数式.53.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润张至7500元。

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案) (90)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案) (90)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案)某商场推出新年大促销活动,其中标价为1800元的某种商品打9折销售,该种商品的利润率为8%.(1)求该商品的成本价的多少?(2)该商品在降价前一周的销售额达到了97200元,要使该商品降价后一周内的销售额也达到97200元,降价后一周内的销售数量应该比降价前一周内的销售数量增加多少?【答案】(1)该商品的成本价为1500元;(2)降价后一周内的销售数量应该比降价前一周内的销售数量增加6件.【解析】【分析】(1)设该商品的成本价为x元,根据该种商品的利润率为8%列出方程并解答;(2)设降价后一周内的销售数量应该比降价前一周内的销售数量增加m 件,根据销售额不变列出方程并解答.【详解】解:(1)设该商品的成本价为x元,依题意得:(1+8%)x=1800×0.9解得x=1500答:该商品的成本价为1500元;(2)设降价后一周内的销售数量应该比降价前一周内的销售数量增加m件,依题意得:(97200÷1800+m )×1800×0.9=97200解得m =6答:降价后一周内的销售数量应该比降价前一周内的销售数量增加6件.【点睛】此题考查了一元一次方程的应用,解决问题的关键是读懂题意,找到所求的量的等量关系,列出方程并解答.92.已知:b 是最小的正整数,且a 、b 满足2(c 5)a b 0-++=,请回答问题()1请直接写出a 、b 、c 的值:a =______,b =______,c =______;()2a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一个动点,其对应的数为x ,点P 在0到2之间时(即0x 2≤≤时),请化简x 1x 22x 5(+--++请写出化简过程);()3在()()12的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动同时,点B 和点C 分别以每秒6个单位长度和2个单位长度的速度向右运动,设运动时间为t ,是否存在t ,使A 、B 、C 中一点为其它两点组成的线段的中点?如果存在,请求出t ;如果不存在,请说明理由.【答案】(1)1-,1,5(2)2x 13+(3)存在t 为211秒时,点B 是线段AC 的中点;t 为10秒时,点C 是线段AB 的中点【解析】【分析】()1利用非负数的性质即可求得;()2由绝对值的意义即可进行化简;()3用变量t 分别表示A 、B 、C 所表示的数,分情况讨论即可求得.【详解】()1由2(c 5)a b 0-++=得,c 50-=,a b 0+=,又b 是最小的正整数,即b 1=,解得a 1=-,c 5=.故答案为1-,1,5.()2由0x 2≤≤,得x 10+>,x 20-≥,x 50+>,x 1x 22x 5∴+--++,x 1x 22x 10=+-+++,2x 13=+,故答案为2x 13+()3设经过t 秒后,A 为1t --,B 为16t +,C 为52t +,分以下两种情况:①当点B 是线段AC 的中点时,则有:()216t 1t 52t +=--++,解得2t 11=; ②当点C 是线段AB 的中点时,则有:()252t 1t 16t +=--++,解得t 10=.故存在t 为211秒时,点B 是线段AC 的中点;t 为10秒时,点C 是线段AB 的中点.【点睛】本题考查了非负数的性质、绝对值的化简及动点问题,对于实数的基础运算要掌握好,另外要善于在动点运动中找规律.93.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠.例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.【答案】(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦ 故购买一件标价为500元的商品,顾客的实际付款是230元. ()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.94.如图,面积为30的长方形OABC 的边OA 在数轴上,O 为原点,OC=5.将长方形OABC 沿数轴水平移动,O ,A ,B ,C 移动后的对应点分别记为O 1, A 1, B 1, C 1,移动后的长方形O 1A 1B 1C 1与原长方形OABC 重叠部分的面积记为S(1)当S恰好等于原长方形面积的一半时,数轴上点A1表示的数是多少? (2)设点A的移动距离AA1=x①当S=10时,求x的值;②D为线段AA1的中点,点E在线段OO1上,且OE=13OO1,当点D,E所表示的数互为相反数时,求x的值.【答案】(1)A1表示的数是3或9;(2)①x=4,②x=365.【解析】【分析】(1)根据长方形的面积可得OA长即点A表示的数,在由已知条件得S=15,根据题意分情况讨论:①当向左移动时,②当向右移动时,根据长方形面积公式分别计算、分析即可得出答案.(2)①由(1)知:OA=O1A1=6,OC=O1C1=5,由AA1=x得OA1=6-x,由长方形面积公式列出方程,解之即可.②当向左移动时,由AA1=x得OA1=6-x,OO1=x,根据题意分别得出点E、点D表示的数,由点E和点D表示的数互为相反数列出方程,解之即可;当向右移动时,点D、E表示的数都是正数,不符合题意.【详解】(1)解:∵S长方形OABC=OA·OC=30,OC=5,∴OA=6,∴点A表示的数是6,∵S=12S长方形OABC=12×30=15,当向左移动时,OA1·OC=15,∴OA1=3,∴A1表示的数是3;②当向右移动时,∴O1A·AB=15,∴O1A=3,∵OA=O1A1=6,∴OA1=6+6-3=9,∴A1表示的数是9;综上所述:A1表示的数是3或9.(2)解:①由(1)知:OA=O1A1=6,OC=O1C1=5,∵AA1=x,∴OA1=6-x,∴S=5×(6-x)=10,解得:x=4.②当长方形OABC沿数轴正方向运动时,点D,E表示的数均为正数,不符合题意;当点D,E所表示的数互为相反数时,长方形OABC沿数轴负方向运动,画图如下:∵AA1=x,∴OA1=6-x,OO1=x,∴OE=13OO1=13x,∴点E表示的数为-13 x,又∵点D为AA1中点,∴A1D=12AA1=12x,∴OD=OA1+A1D=6-x+12x=6-12x,∴点D表示的数为6-12 x,又∵点E和点D表示的数互为相反数,∴6-12x-13x=0,解得:x=365.故答案为(1)A1表示的数是3或9;(2)①x=4,②x=365.【点睛】本题考查数轴的相关知识,一元一次方程的应用.理解图形运动轨迹,表示点对应数字是解题关键.95.某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件?(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗?说明理由(3)若把n块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出n所满足的条件.【答案】(1)24 (2)加工的螺栓和螺帽不能恰好配套.理由见解析(3)n是5的整数倍,且n为正整数.【解析】【分析】(1)设用x块金属原料加工螺栓,则用(20-x)块金属原料加工螺帽.根据2×螺栓的个数=螺帽的个数,列出方程求解即可;(2)设用y块金属原料加工螺栓,则用(26-y)块金属原料加工螺帽.根据2×螺栓的个数=螺帽的个数列出方程,求出的方程的解,如果解是正整数,那么加工的螺栓和螺帽恰好配套;否则不能配套;(3)设用a块金属原料加工螺栓,则用(n-a)块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.根据2×螺栓的个数=螺帽的个数列出方程,得出n与a的关系,进而求解即可.【详解】解:(1)设用x块金属原料加工螺栓,则用(20-x)块金属原料加工螺帽.由题意,可得2×3x=4(20-x),解得x=8,则3×8=24.答:最多能加工24个这样的零件;(2)若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套.理由如下:设用y块金属原料加工螺栓,则用(26-y)块金属原料加工螺帽.由题意,可得2×3y=4(26-y),解得y=10.4.由于10.4不是整数,不合题意舍去,所以若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套;(3)设用a块金属原料加工螺栓,则用(n-a)块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.由题意,可得2×3a=4(n-a),解得a=25n,则n-a=35n,即n所满足的条件是:n是5的整数倍,且n为正整数.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出等量关系:2×螺栓的个数=螺帽的个数是解题的关键.96.甲乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.()1求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答) ()2若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min两人再次相遇,则乙的速度至少要提高每分钟多少米?【答案】()1甲的速度是每分钟350米,乙的速度是每分钟150米;()250米.【解析】【分析】(1) 设乙的速度为每分钟x米,则甲的速度为每分钟(200)x+米,两人同向而行相遇属于追及问题,等量关系:甲的路程与乙的路程之差等于环形场地的路程,即可列出方程。

人教版七年级上册数学 第三章 一元一次方程 单元训练题 (2)(有解析)

人教版七年级上册数学 第三章 一元一次方程 单元训练题 (2)(有解析)

第三章 一元一次方程 单元训练题 (2)一、单选题1.关于x 的方程1514()2323mx x -=-有负整数解,则所有符合条件的整数m 的和为( ) A .5B .4C .1D .-12.某商品打七折后价格为a 元,则原价为( ) A .a 元B .107a 元 C .30%a 元 D .710a 元 3.下列等式中是一元一次方程的是()A .26x x +=B .0x y -=C .0x =D .1123x =+ 4.某项工程,甲单独完成要45天,乙单独完成要30天.开始时由甲先单独做,从第10日起,乙加入同甲合做,求甲、乙两人合做多少天能完成全部工程.设甲、乙合做x 天完成全部工程,则符合题意的方程是( ) A .914530x x++= B .1014530x x++= C .1014530x += D .14530x x += 5.下列所给条件,不能列出方程的是( ) A .某数比它的平方小6 B .某数加上3,再乘以2等于14 C .某数与它的12的差 D .某数的3倍与7的和等于296.下列等式变形不正确的是( ) A .若33x y =,则x y = B .若33x y -=-,则ax ay = C .若x y =,则2211x ya a =++ D .若ax ay =,则x y =7.某电视台组织知识竞赛,共设有20道选择题,各题分值相同,每题必答.下表记录了3个参赛者的得分情况,如果参赛者F 得76分,则他答对的题数为( )A .16题B .17题C .18题D .19题8.已知等式ax +c =ay +c ,则下列等式不一定成立的是( )A .ax =ayB .x =yC .m -ax =m -ayD .2ax =2ay9.下列各题中的变形,属于移项的是( ) A .由221x y --,得122y x --+ B .由615x x -=+,得615x x -=+ C .由432x x -=-,得324x x -=- D .由22x x -=-,得22x x +=+ 10.下列解方程的过程中,移项正确的是( ) A .由,得 B .由,得 C .由,得 D .由,得11.如图,某商品实施促销“第二件半价”,若购买2件该商品,则相当于这2件商品共打了( )A .5折B .5.5折C .7折D .7.5折12.互联网“微商”经营已成为大众创业新途径,某微商将一件商品按进价上调50%标价,再以标价的八折售出,仍可获利30元,则这件商品的进价为( ) A .80元B .100元C .150元D .180元二、填空题13.现有一段河道整治任务由A 、B 两工程队完成.A 工程队单独整治该河道要16天才能完成;B 工程队单独整治该河道要24天才能完成.现在A 工程队单独做6天后,B 工程队加入合做完成剩下的工程,问A 工程队一共做了多少天?如果设A 工程队一共做了x 天,可列方程为____________14.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.15.根据图中给出的信息,可列方程是______. 小乌鸦:老乌鸦,我喝不到大量筒中的水.老乌鸦:小乌鸦,你飞到装有相同水量的小量筒,就可以喝到水了!16.润洋超市对某种商品实行9折优惠后的价格为90元,则这件商品的原价是_____________元.17.若(n ﹣2)x |n|﹣1+5=0是关于x 的一元一次方程,则n =_____.18.已知关于x 的方程23mx m x +=-的解满足方程11x -=,则m =___________.三、解答题19.某丝巾厂家70名工人义务承接了第十六届亚运会上中国志愿者手上、脖子上的丝巾的制作任务.已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,1条脖子上的丝巾要配2条手上的丝巾.(1)为了使每天生产的丝巾刚好配套,应分配多少名工人生产手上的丝巾,多少名工人生产脖子上的丝巾?(2)在(1)的方案中,能配成______套.20.2019年12月14日,中国教育学会第32次学术年会在山东济南召开,某校选派16名教师前往参会,准备用一辆七座汽车(除司机外限载6人,从学校出发),送16位教师去高铁站与机场,其中11位教师准备一起到学校正东方向25千米处的机场,另外5位教师准备一起到学校正东方向15千米处的高铁站,其中去机场的老师中有6人因工作需要需先赶去机场,已知这辆汽车的平均速度为45千米/小时,教师步行的平均速度为5千米/小时.(注:不计教师上、下车时间,教师上车后,中途不下车,汽车到达目的地后立即沿原路返回)(1)求汽车送第一批教师到达机场所用的时间.(2)若只有这辆汽车送这16位教师去目的地后返回学校,请设计一种方案使该车所用总时间最短,并求出这个最短时间. 21.下面为某年11月的日历: 日一二 三 四 五 六1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24252627282930(1)在日历上任意圈出一个竖列上相邻的3个数;①设中间的一个数为a,则另外的两个数为、;②若已知这三个数的和为42,则这三天都在星期;(2)在日历上用一个小正方形任意圈出其中的9个数,设圈出的9个数的中心的数为b,若这9个数的和为153,求21b-的值.22.某园林的门票每张10元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A、B、C三类,A类年票每张120元,持票者进人园林时,无需再购买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式.最多几次?(2)求一年中进入该园林超过多少次时,购买A类年票比较合算.23.为保持水土,美化环境,W中学准备在从校门口到柏油公路的这一段土路的两侧栽一些树,并要求土路两侧树的棵数相等间距也相等,且首、尾两端均栽上树,现在学校已备好一批树苗,若间隔30米栽一棵,则缺少22棵;若间隔35米栽一棵,则缺少14棵(1)求学校备好的树苗棵数.(2)某苗圃负责人听说W中学想在校外土路两旁栽树的上述情况后,觉得两树间距太大,既不美观,又影响防风固沙的效果,决定无偿支援W中学300棵树苗.请问,这些树苗加上学校自己备好的树苗,间隔5米栽一棵,是否够用?24.一书店按定价的五折购进某种图书800本,在实际销售中,500本按定价的七折批发售出,300本按八五折零售,若这种图书最终获利8200元,问该图书批发与零售价分别是多少元?25.解方程:(1)4x﹣2=3﹣x;(2)243x+﹣312x-=126.如图①,已知OC是∠AOB内部的一条射线,M、N分别为OA、OB上的点,线段OM、ON同时开始旋转,线段OM以30度/秒绕点O逆时针旋转,线段ON以10度/秒的速度绕点O顺时针旋转,当OM旋转到与OB重合时,线段OM、ON都停止旋转.设OM 的旋转时间为t秒.(1)若∠AOB=140°,当t=2秒时,∠MON=,当t=4秒时,∠MON=;(2)如图②,若∠AOB=140°,OC是∠AOB的平分线,求t为何值时,两个角∠NOB与∠COM中的其中一个角是另一个角的2倍.(3)如图③,若OM、ON分别在∠AOC、∠COB内部旋转时,总有∠COM=3∠CON,请直接写出BOCAOB∠∠的值.【答案与解析】一、单选题1.D解析:D先解方程,再利用关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,求整数m即可.解方程1514 2323 mx x⎛⎫-=-⎪⎝⎭去括号得,1512 2323 mx x-=-移项得,1152 2233 mx x-=-,合并同类项得111 22m x⎛⎫-=⎪⎝⎭,系数化为1,2(1)1x mm=≠-,∵关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,∴整数m为0,-1.∴它们的和为:0+(-1)=-1.故选:D.【点睛】本题主要考查了一元一次方程的解,解题的关键是用m表示出x的值.2.B解析:B直接利用打折的意义表示出价格即可得出答案.设该商品原价为x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=107a(元),故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 3.C试题解析:A. 是一元二次方程,故错误; B. 是二元一次方程,故错误; C. 是一元一次方程,故正确; D. 是分式方程,故错误; 故选C.点睛:一元一次方程:含有一个未知数,未知数的最高次数是1的整式方程.4.A解析:A设甲、乙合做x 天完成全部工程,根据甲完成的部分+乙完成的部分=整项工程(单位1),即可得出关于x 的一元一次方程,求解即可. 设甲、乙合做x 天完成全部工程, 依题意,得:914530x x++=. 故选:A . 【点睛】本题考查一元一次方程的应用.找准等量关系,正确列出一元一次方程是解题的关键.此问题中,若总工程量未知,一般设总工程量为单位1.5.C解析:C根据题意列出各选项中的算式,再根据方程的定义对各选项分析判断后利用排除法求解. 设某数为x ,A 、26x x -=,是方程,故本选项错误;B 、2314x +=(),是方程,故本选项错误;C 、12x x -,不是方程,故本选项正确; D 、3729x +=,是方程,故本选项错误. 故选C . 【点睛】本题考查的知识点是方程的定义,解题关键是依据方程的定义.含有未知数的等式叫做方程.6.D解析:D根据等式的性质进行判断.A. 等式3x=3y 的两边同时除以3,等式仍成立,即x=y ;B.等式33x y -=-的两边同时加上3,等式仍成立,即x=y ,两边都乘a.则ax ay =;C.因为a 2+1≠0,所以当x y =时,两边同时除以a 2+1,则可以得到2211x ya a =++. D.当a=0时,等式x=y 不成立,故选:D .考查了等式的性质.性质1:等式两边加同一个数(或式子)结果仍得等式;性质2:等式两边乘同一个数或除以一个不为零的数,结果仍得等式.7.A解析:A观察表中信息,求得:答对一题得5(分),答错一题扣1(分)根据相等关系“答对得分-答错扣分=总得分”可列方程求解.答对一题得100÷20=5(分),答错一题得94﹣5×19=﹣1(分).设参赛者F答对了x道题目,则答错了(20﹣x)道题目,依题意,得:5x﹣(20﹣x)=76,解得:x=16.故选:A.【点睛】本题考查了一元一次方程的实际应用-和差倍分问题. 关键是理清题意,找准等量关系. 8.B解析:B等式两边同时减c,得ax=ay,故A成立;ax=ay两边同时乘-1,得-ax=-ay,两边再同时加m,得m-ax=m-ay,故C成立;ax=ay两边同时乘2,得,2ax=3ay,故D成立;在ax=ay中,当a=0时,x≠y,故B不一定成立,故选B.【点睛】本题主要考查等式的基本性质,熟记等式的基本性质是解题的关键.9.D解析:D根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立,可得答案.解:A、是加法交换律,故A错误;B、是加法交换律,故B错误;C、等式的对称性,故C错误;D、两边都加(x+2),是移项,故D正确;故选:D.【点睛】本题考查了等式的性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.10.D解析:D把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

人教版七年级数学上册第3章2 第2课时 用移项的方法解一元一次方程 同步练习题及答案

人教版七年级数学上册第3章2 第2课时 用移项的方法解一元一次方程 同步练习题及答案

第2课时 用移项的方法解一元一次方程 教材知能精练知识点:移项1. 方程3x+6=2x -8移项后,正确的是( )A .3x+2x=6-8B .3x -2x=-8+6C .3x -2x=-6-8D .3x -2x=8-62. 下列解方程中,移项正确的是( )A .由5+x =18得x =18+5B .由5x +31=3x 得5x -3x =31 C .由21x +3=-23x -4得21x +23x =-4-3 D .由3x -4=6x 得3x +6x =43. 在解方程2314-=+x x 时,下列移项正确的是( )A .2134-=+x xB .1234--=-x xC .1234-=-x xD .1234--=+x x4. 已知当b =1,c =-2时,代数式ab +bc =10-ca ,则a 的值是( )A .12B .6C .-6D .-125.某人有连续4天的休假,这4天各天的日期之和是86,则休假第一天的日期是( ).A.20日B.21日C.22日D.23日6. 4-23x =25x +2变形为-23x -25x =2-4,这种变形叫__________,其根据是__________. 7. 方程2x-0.3=1.2+3x 移项得 .8.当=x _____时,代数式24+x 与93-x 的值互为相反数.9.已知y 1=2x+3,y 2=215-x ,如果y 1=2y 2,则x=_______.10.若2(1)0x y y -++=,则22x y +=___.11. 解方程:4227-=+-x x12. 张老师给学生分练习本,若每人分4本,则余8本,若每人分5本,则缺2本, 求有多少名学生和多少本练习本.学科能力迁移13.【易错题】解下面的方程时,既要移含未知数的项,又要移常数项的是( ).A.372x x =-B.3521x x -=+C.3321x x --=D.1511x +=14.【新情境题】小明在做解方程作业时,不小心将方程中一个常数污染了看不清楚,被污染的方程是:11222y y -=+■.怎么办呢?小明想了想,便翻看了书后的答案,此方程的解是53y =,于是很快补上了这个常数,并迅速完成了作业.同学们,你能补出这个常数吗?它应是( ).A1 B.2 C.3 D.415.【变式题】若132x y =-,224x y =+,当y =_______时,12x x =.16.【多解法题】若32x -=,则x 的值为_____.课标能力提升17. 【探究题】设“●■▲”分别表示三种不同的物体(如图3-2-5),前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■”的个数为( )A.5B.4C.3D.218. 【开放题】已知2)53(1--m 有最大值,则方程2345+=-x m 的解是( )A.79B.97C.79-D.97- 19.【综合题】若2x n+1与3x 2n-1是同类项,则n=______.20.【解决问题型题目】2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提高了44千米/时,提速前的列车时刻表如下表所示:请你根据题目提供的信息填写提速后的列车时刻表,并写出计算过程.品味中考典题21.有一个两位数,它的十位数字比个位数字大2,并且这个两位数大于40且小于52,则这个两位数是( )A .41B .42C .43D .44 B22.某商店一套西服的进价为300元,按标价的80%销售可获利100元,若设该服装的标价为x 元,则可列出的方程为 .迷途知返___________________________________________________________________________________________________________________________________________________________________________课外精彩空间数学冤案人类很早就掌握了一元二次方程的解法,但是对一元三次方程的研究,则是进展缓慢.古代中国、希腊和印度等地的数学家,都曾努力研究过一元三次方程,但是他们所发明的几种解法,都仅仅能够解决特殊形式的三次方程,对一般形式的三次方程就不适用了.在十六世纪的欧洲,随着数学的发展,一元三次方程也有了固定的求解方法.在很多数学文献上,把三次方程的求根公式称为“卡尔丹诺公式”,这显然是为了纪念世界上第一位发表一元三次方程求根公式的意大利数学家卡尔丹诺.那么,一元三次方程的通式解,是不是卡尔丹诺首先发现的呢?历史事实并不是这样.数学史上最早发现一元三次方程通式解的人,是十六世纪意大利的另一位数学家尼柯洛·冯塔纳(Niccolo Fontana). 冯塔纳出身贫寒,少年丧父,家中也没有条件供他念书,但是他通过艰苦的努力,终于自学成才,成为十六世纪意大利最有成就的学者之一.由于冯塔纳患有“口吃”症,所以当时的人们昵称他为“塔尔塔里亚”(Tartaglia),也就是意大利语中“结巴”的意思.后来的很多数学书中,都直接用“塔尔塔里亚”来称呼冯塔纳.经过多年的探索和研究,冯塔纳利用十分巧妙的方法,找到了一元三次方程一般形式的求根方法.这个成就,使他在几次公开的数学较量中大获全胜,从此名扬欧洲.但是冯塔纳不愿意将他的这个重要发现公之于世.当时的另一位意大利数学家兼医生卡尔丹诺,对冯塔纳的发现非常感兴趣.他几次诚恳地登门请教,希望获得冯塔纳的求根公式.可是冯塔纳始终守口如瓶,滴水不漏.虽然卡尔丹诺屡次受挫,但他极为执着,软磨硬泡地向冯塔纳“挖秘诀”.后来,冯塔纳终于用一种隐晦得如同咒语般的语言,把三次方程的解法“透露”给了卡尔丹诺.冯塔纳认为卡尔丹诺很难破解他的“咒语”,可是卡尔丹诺的悟性太棒了,他通过解三次方程的对比实践,很快就彻底破译了冯塔纳的秘密.卡尔丹诺把冯塔纳的三次方程求根公式,写进了自己的学术著作《大法》中,但并未提到冯塔纳的名字.随着《大法》在欧洲的出版发行,人们才了解到三次方程的一般求解方法.由于第一个发表三次方程求根公式的人确实是卡尔丹诺,因此后人就把这种求解方法称为“卡尔丹诺公式”.卡尔丹诺剽窃他人的学术成果,并且据为已有,这一行为在人类数学史上留下了不甚光彩的一页.这个结果,对于付出艰辛劳动的冯塔纳当然是不公平的.但是,冯塔纳坚持不公开他的研究成果,也不能算是正确的做法,起码对于人类科学发展而言,是一种不负责任的态度.3.2解一元一次方程(二)1. C ;2. C ;3. B ;4. A ;5. A ;6. 移项,等式基本性质(1);7. 2x-3x=1.2+0.3;8. 1;9. 21;10. 2;11. 32=x ; 12.有学生10人,有练习本48本.13. B ;14. B ;15. 6;16. 5或1;17. A ;18. A ;19. 2;20. 解:设列车提速后行驶时间为x 小时,根据题意,得264442644x x +=,解得 2.4x =.故到站时刻为4︰24,历时2.4小时.21. B ;22. 80%300100x -=.。

(常考题)人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(包含答案解析)(2)

(常考题)人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(包含答案解析)(2)

一、选择题1.(0分)[ID :68204]某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( ) A .()182812x x -= B .()1828212x x -=⨯ C .()181412x x -= D .()2182812x x ⨯-=2.(0分)[ID :68196]把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+3.(0分)[ID :68195]定义运算“*”,其规则为2*3a ba b +=,则方程4*4x =的解为( ) A .3x =-B .3x =C .2x =D .4x =4.(0分)[ID :68161]某种商品每件的标价是330元,按标价的8折销售时,仍可获利10%,则这种商品每件的进价为( )A .300元B .250元C .240元D .200元5.(0分)[ID :68159]古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( ) A .5袋 B .6袋 C .7袋 D .8袋 6.(0分)[ID :68251]解方程-3x=2时,应在方程两边( ) A .同乘以-3 B .同除以-3 C .同乘以3 D .同除以3 7.(0分)[ID :68249]方程6x+12x-9x=10-12-16的解为( )A .x=2B .x=1C .x=3D .x=-28.(0分)[ID :68245]互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元9.(0分)[ID :68243]一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是( ) A .54 B .72 C .45 D .62 10.(0分)[ID :68241]若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6-11.(0分)[ID :68238]某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( )A .6折B .7折C .8折D .9折12.(0分)[ID :68231]解方程32282323x x x----=的步骤如下,错误的是( ) ①2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x ); ②6x ﹣4﹣3x ﹣6=16﹣4x ; ③3x +4x =16+10;④x =267.A .①B .②C .③D .④13.(0分)[ID :68212]把方程112x =变形为2x =,其依据是( ) A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律14.(0分)[ID :68173]若代数式的值为,则的值为( )A .B .C .D .15.(0分)[ID :68171]下列判断错误的是 ( ) A .若,则 B .若,则C .若,则D .若,则二、填空题16.(0分)[ID :68342]请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵.17.(0分)[ID :68335]如图,折线AC -CB 是一条公路的示意图,8km AC =,甲骑摩托车从A 地沿这条公路到B 地,速度为40km/h ,乙骑自行车从C 地沿这条公路到B 地,速度为10km/h ,两人同时出发,结果甲比乙早到6分钟.则这条公路的长为________.18.(0分)[ID :68328]如图所示,天平中放有苹果、香蕉、砝码,且两架天平都平衡,则一个苹果的质量是一个香蕉的质量的________.(填分数)19.(0分)[ID :68322]若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则m n +的值是_________.20.(0分)[ID :68317]若2a +1与212a +互为相反数,则a =_____.21.(0分)[ID :68301]开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券,也不得找零. 小明只购物买了单价别为60元,80元和120元的物品各一件,使用购物券后,他的实际花费为_________元.22.(0分)[ID :68292]若方程()||110a a x --=是关于x 的一元一次方程,则a =____________.23.(0分)[ID :68282]一个圆柱形铁块,底面半径是20cm ,高16cm .若将其锻造成为长、宽分别是20cm 、8cm 的长方体,如果设长方体的高为cm x .根据题意,列出方程为___________.24.(0分)[ID :68281]完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元; 每件服装的利润为____________元. 由此,列出方程_________________. 解这个方程,得x =______________. 因此每件服装的成本价是___________元.25.(0分)[ID :68280]某商店有两种进价不同的计算器都卖了64元,其中一种盈利60%,另一种亏本20%,在这次买卖中,这家商店的盈亏情况为____________.26.(0分)[ID :68271]用5个同样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是_______,宽是________.27.(0分)[ID :68279]甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了______场,平了______场,负了______场.三、解答题28.(0分)[ID :68422]大明共有4800元,他将一部分钱按活期存了一年,剩下的钱买了企业债券,一年后共获利24.8元,知活期储蓄的年利率是0.35%,企业债券的年利率是0.6%,则大明存活期和买债券各用了多少元?29.(0分)[ID :68375]某市百货商店元月1日搞促销活动,购物不超200元不予优惠;购物超过200元而不足500元的按全价的90%优惠;超过500元,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元. 问:(1)列方程求出此人两次购物若其物品不打折共值多少钱?(2)若此人将这两次购物合为一次购买是否更节省?为什么?30.(0分)[ID:68370]学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.D3.D4.C5.A6.B7.D8.C9.B10.B11.C12.B13.B14.A15.D二、填空题16.10【分析】本题涉及两种分配方法关键是不管怎么分配鸦的总数是不变的可设树有x 棵即可列方程:4x+5=5(x﹣1)求解【详解】解:设树有x棵依题意列方程:4x+5=5(x﹣1)解得:x=10所以树有117.12km【分析】首先设这条公路的长为xkm由题意得等量关系:乙骑自行车行驶(x-8)千米的时间-6分钟=甲骑摩托车从A地沿这条公路到B地的时间根据等量关系列出方程即可【详解】解:设这条公路的长为xk18.【分析】设一个苹果的重量为x一个香蕉的重量为y一个砝码的重量为z分别用含z 的代数式表示xy再求即可【详解】设一个苹果的质量为x一个香蕉的质量为y一个砝码的质量为z由题意得则即则故故答案为:【点睛】此19.45【分析】取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0分别求出mn的值即可【详解】解:取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0移项得:合并同类项得:∴∴m=20.﹣1【分析】利用相反数的性质列出方程求出方程的解即可得到a的值【详解】根据题意得:去分母得:a+2+2a+1=0移项合并得:3a=﹣3解得:a=﹣1故答案为:﹣1【点睛】本题考查了解一元一次方程的应21.200元或210元【分析】根据购物顺序不同分类讨论即可【详解】①若先买单价为120元的物品赠送一张50元购物券再去买单价为60元和80元的物品实际花费为:120+60+80-50=210元;②若先买22.【解析】【分析】先根据一元一次方程的定义列出关于a的不等式组求出a的值即可【详解】∵是关于x的一元一次方程∴且解得a=-1故答案为:-1【点睛】本题考查的是一元一次方程的定义熟知只含有一个未知数(元23.【解析】【分析】等量关系为:圆柱体的体积=长方体的体积把相关数值代入即可求解【详解】设长方体的高为xcm故答案为:【点睛】此题考查一元一次方程的应用解题关键在于找到等量关系24.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x每件服装的实际售价为:(1+40)x×80每件服装的利润为25.赚了8元【解析】【分析】根据题意设一个价钱为x元另一个价钱为y元列出方程求出未知数的值再计算即可【详解】解:设两种计算器进价分别为x元y元则x解得(元)所以赚了8元【点睛】本题主要考查列一元一次方程26.1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x则长=(14-10x)=2x解得x=1即小长方形的宽为1长为2;故答27.632【解析】【分析】设甲队胜了x场则平了场负了场根据一场得3分平一场得1分负一场得0分共得了21分可列方程求解【详解】设甲队胜了x场则平了场负了场根据题意可得:解得:x=6所以故答案为:632【点三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【分析】若设需要x张硬纸板制作盒身,则(28-x)张硬纸板制作盒底,然后根据1个盒身与2个盒底配成一套列出方程即可.【详解】解:若设需要x张硬纸板制作盒身,则(28-x)张硬纸板制作盒底,由题意可得,18(28-x)=2×12x,故选:B.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.2.D【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解. 【详解】等式两边同乘4得:2(1)4(3)x x -=-+, 故选:D. 【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.3.D解析:D 【分析】根据新定义列出关于x 的方程,解之可得. 【详解】 ∵4*x=4,∴234x⨯+=4, 解得x=4, 故选:D . 【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.4.C解析:C 【分析】设这种商品每件的进价为x 元,根据题意列出关于x 的方程,求出方程的解即可得到结果. 【详解】设这种商品每件的进价为x 元, 根据题意得:330×80%−x=10%x , 解得:x=240,则这种商品每件的进价为240元. 故选C. 【点睛】此题考查一元一次方程的应用,找准题目中的等量关系是解题的关键.5.A解析:A【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得到方程:2(x-1)-1-1=x+1,解得:x=5, 答:驴子原来所托货物的袋数是5, 故选A.【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.B解析:B【分析】利用等式的性质判断即可.【详解】解:利用等式的性质解方程-3x=2时,应在方程的两边同除以-3,故选:B.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.D解析:D【分析】根据合并同类项,系数化为1可得方程的解.【详解】合并同类项,得9x=-18,系数化为1,得x=-2,故选D.【点睛】此题主要考查了解一元一次方程,熟练掌握运算法则解答此题的关键.8.C解析:C【详解】解:设该商品的进价为x元/件,依题意得:(x+20)÷510=200,解得:x=80.∴该商品的进价为80元/件.故选C.9.B解析:B 【分析】首先设个位上的数为x ,则十位数字为()31x +,根据题意可得等量关系:十位上的数与个位上的数的和=9,列出方程,再解方程即可. 【详解】设个位上的数为x ,则十位数字为()31x +,由题意得: x +(3x +1)=9, 解得:x =2, 十位数字为:6+1=7, 这个两位数是:72. 故选:B. 【点睛】考查一元一次方程的应用,读懂题目,找出题目中的等量关系是解题的关键.10.B解析:B 【分析】由已知可得4x +=2,解方程可得. 【详解】由已知可得4x +=2,解得x=-2. 故选B. 【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.11.C解析:C 【分析】设打折x 折,利用利润率=100%⨯-⨯标价折扣进价进价的数量关系, 根据利润率不低于20%可得:12000.1x 80020%800⨯-≥,解不等式可得:8x ≥.【详解】设打折x 折,由题意可得: 12000.1x 80020%800⨯-≥,解得:8x ≥. 故选C. 【点睛】本题主要考查不等式解决商品利润率问题,解决本题的关键是要熟练掌握利润率的数量关系,列不等式进行求解.12.B解析:B【分析】根据解一元一次方程的基本步骤依次计算可得.【详解】①去分母,得:2(3x﹣2)﹣3(x﹣2)=2(8﹣2x);②6x﹣4﹣3x+6=16﹣4x,③6x﹣3x+4x=16+4﹣6,④x=2,错误的步骤是第②步,故选:B.【点睛】本题主要考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.13.B解析:B【分析】根据等式的基本性质,对原式进行分析即可.【详解】x ,这是依据等式的性质2.将原方程两边都乘2,得2故选B.【点睛】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.14.A解析:A【解析】【分析】根据题意列出方程,求出方程的解即可得到x的值.【详解】根据题意得:2x+3=6,移项合并得:2x=3,解得:x=,故选:A.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.15.D解析:D【解析】【分析】根据等式的基本性质分别对每一项进行分析,即可得出答案.【详解】A. 若a=b,则a−3=b−3,正确;B. 若a=b,则7a−1=7b−1,正确;C. 若a=b,则,正确;D. 当c=0时,若,a就不一定等于b,故本选项错误;故选D.【点睛】此题考查等式的性质,解题关键在于掌握其性质定义.二、填空题16.10【分析】本题涉及两种分配方法关键是不管怎么分配鸦的总数是不变的可设树有x 棵即可列方程:4x+5=5(x﹣1)求解【详解】解:设树有x棵依题意列方程:4x+5=5(x﹣1)解得:x=10所以树有1解析:10【分析】本题涉及两种分配方法,关键是不管怎么分配鸦的总数是不变的,可设树有x棵,即可列方程:4x+5=5(x﹣1)求解.【详解】解:设树有x棵依题意列方程:4x+5=5(x﹣1)解得:x=10所以树有10棵,鸦的个数为:10×4+5=45故答案为45,10【点睛】本题是典型的分配问题.不管怎么分配鸦的个数是不变的是解题关键.17.12km【分析】首先设这条公路的长为xkm由题意得等量关系:乙骑自行车行驶(x-8)千米的时间-6分钟=甲骑摩托车从A地沿这条公路到B地的时间根据等量关系列出方程即可【详解】解:设这条公路的长为xk解析:12km【分析】首先设这条公路的长为xkm,由题意得等量关系:乙骑自行车行驶(x-8)千米的时间-6分钟=甲骑摩托车从A地沿这条公路到B地的时间,根据等量关系列出方程即可.【详解】解:设这条公路的长为xkm .由题意,得86401060x x -=-. 解得:12x =.故答案为:12km .【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.18.【分析】设一个苹果的重量为x 一个香蕉的重量为y 一个砝码的重量为z 分别用含z 的代数式表示xy 再求即可【详解】设一个苹果的质量为x 一个香蕉的质量为y 一个砝码的质量为z 由题意得则即则故故答案为:【点睛】此 解析:32【分析】设一个苹果的重量为x 、一个香蕉的重量为y 、一个砝码的重量为z ,分别用含z 的代数式表示x ,y ,再求x y 即可. 【详解】设一个苹果的质量为x ,一个香蕉的质量为y ,一个砝码的质量为z .由题意得24x z =,则2x z =,32y z x =+,即3224y z z z =+=,则43y z =, 故23423x z y z ==. 故答案为:32 【点睛】此题主要考查了等式的性质,本题先通过用z 表示x ,y ,后通过求比值而求解. 19.45【分析】取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0分别求出mn 的值即可【详解】解:取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0移项得:合并同类项得:∴∴m= 解析:45【分析】x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,分别求出m ,n 的值即可.【详解】解:x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,移项得:(23)251(3)+-=+-m x x m n ,合并同类项得:(222)13-=+-m x m n ,∴222=0-m ,13=0+-m n ,∴m=11,n=34,∴m+n=45,故答案为:45.【点睛】本题考查了解一元一次方程,理解若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立的条件是解决本题的关键.20.﹣1【分析】利用相反数的性质列出方程求出方程的解即可得到a 的值【详解】根据题意得:去分母得:a+2+2a+1=0移项合并得:3a=﹣3解得:a=﹣1故答案为:﹣1【点睛】本题考查了解一元一次方程的应解析:﹣1【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得:a 2a 11022+++= 去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】 本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.21.200元或210元【分析】根据购物顺序不同分类讨论即可【详解】①若先买单价为120元的物品赠送一张50元购物券再去买单价为60元和80元的物品实际花费为:120+60+80-50=210元;②若先买解析:200元或210元【分析】根据购物顺序不同分类讨论即可.【详解】①若先买单价为120元的物品,赠送一张50元购物券,再去买单价为60元和80元的物品,实际花费为:120+60+80-50=210元;②若先买60元和80元的物品,赠送一张50元购物券,再去买120元的物品,实际花费为:60+80+120-50=210元;③若先买60元和120元的物品,赠送一张50元购物券,再去买80元的物品,实际花费为:60+120+80-50=210元;④若先买80元和120元的物品,赠送两张50元购物券,再去买60元的物品,此时购物券可抵扣60元,实际花费为:120+80=200元;故答案为200元或210元.【点睛】此题考查的是分类讨论的数学思想.22.【解析】【分析】先根据一元一次方程的定义列出关于a 的不等式组求出a 的值即可【详解】∵是关于x 的一元一次方程∴且解得a=-1故答案为:-1【点睛】本题考查的是一元一次方程的定义熟知只含有一个未知数(元 解析:1-【解析】【分析】先根据一元一次方程的定义列出关于a 的不等式组,求出a 的值即可.【详解】∵()||110a a x --=是关于x 的一元一次方程, ∴1=a 且10a -≠,解得a=-1.故答案为:-1【点睛】本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.23.【解析】【分析】等量关系为:圆柱体的体积=长方体的体积把相关数值代入即可求解【详解】设长方体的高为xcm 故答案为:【点睛】此题考查一元一次方程的应用解题关键在于找到等量关系解析:2π2016208x ⨯⨯=⨯【解析】【分析】等量关系为:圆柱体的体积=长方体的体积,把相关数值代入即可求解.【详解】设长方体的高为xcm ,2π2016208x ⨯⨯=⨯,故答案为:2π2016208x ⨯⨯=⨯.【点睛】此题考查一元一次方程的应用,解题关键在于找到等量关系.24.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x 的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x 每件服装的实际售价为:(1+40)x×80每件服装的利润为解析:(140%)x + (140%)80%x +⋅ (140%)80%x x +⋅-(140%)80%15x x +⋅-= 125 125【解析】【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价-标价=利润列出方程求解即可.【详解】每件服装的标价为:(1+40%)x ,每件服装的实际售价为:(1+40%)x×80%,每件服装的利润为:(1+40%)x×80%−x ,列出方程:(1+40%)x×80%−x=15,解方程得:x=125,因此每件服装的成本价是125元.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找出等量关系.25.赚了8元【解析】【分析】根据题意设一个价钱为x 元另一个价钱为y 元列出方程求出未知数的值再计算即可【详解】解:设两种计算器进价分别为x 元y 元则x 解得(元)所以赚了8元【点睛】本题主要考查列一元一次方程 解析:赚了8元【解析】【分析】根据题意设一个价钱为x 元,另一个价钱为y 元,列出方程,求出未知数的值,再计算即可.【详解】解:设两种计算器进价分别为x 元,y 元,则x (160%)=64+,(120%)64y -=.解得40x =,80y =.4080120x y +=+=. 6421201281208⨯-=-=(元), 所以赚了8元.【点睛】本题主要考查列一元一次方程解决实际问题,解决本题的关键是要熟练掌握根据进价、售价与利润率之间的关系分别求出两种计算机的进价.26.1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x 列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x 则长=(14-10x )=2x 解得x=1即小长方形的宽为1长为2;故答解析:1【解析】【分析】观察图形找出大长方形与小长方形的关系,设小长方形的宽为x ,列出方程即可求出其长和宽的值.【详解】解:设小长方形的宽为x,则长=12(14-10x)=2x,解得x=1,即小长方形的宽为1,长为2;故答案为:2;1.【点睛】本题考查了一元一次方程的应用,准确识图并列出方程是解题的关键.27.632【解析】【分析】设甲队胜了x场则平了场负了场根据一场得3分平一场得1分负一场得0分共得了21分可列方程求解【详解】设甲队胜了x场则平了场负了场根据题意可得:解得:x=6所以故答案为:632【点解析:6, 3, 2【解析】【分析】设甲队胜了x场,则平了12x场,负了112x-场,根据一场得3分,平一场得1分,负一场得0分,共得了21分,可列方程求解.【详解】设甲队胜了x场,则平了12x场,负了112x-场,根据题意可得:11311021 22x x x⎛⎫+⨯+-⨯=⎪⎝⎭,解得:x=6,所以132x=,1122x-=,故答案为:6,3,2.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系.三、解答题28.存活期用了1600元,买债券用了3200元【分析】设存活期用了x元,则买债券用了(4800)x-元,由题意列式求解即可.【详解】解:设存活期用了x 元,则买债券用了(4800)x -元由题意,得0.35%0.6%(4800)24.8x x +-=.解得1600x =.48003200x -=.答:大明存活期用了1600元,买债券用了3200元.【点睛】本题主要考查了实际问题与一元一次方程,根据题意找出未知量,列方程是解题的关键. 29.(1)654元钱;(2)将这两次购物合为一次购买更节省,理由见解析.【分析】(1)根据“超过200元而不足500元的按9折优惠”可得:200×90%=180元,由于第一次购物134元<180元,故不享受任何优惠;由“超过500元,其中500元按9折优惠,超过部分8折优惠”可知500×90%=450元,466>450元,故此人购物享受“超过500元,其中500元按9折优惠,超过部分8折优惠”,设他所购价值x 元的货物,首先享受500元钱时的9折优惠,再享受超过500元的8折优惠,把两次的花费加起来即可得出此人第二次购物不打折的花费,最后将两次购物不打折的花费相加即可;(2)计算出两次购物合为一次购买实际应付的费用,再与他两次购物所花的费用进行比较即可.【详解】解:(1)①因为134元<200×90%=180元,所以该人此次购物不享受优惠; ②因为第二次付了466元>500×90%=450元,所以该人享受超过500元,其中500元按9折优惠,超过部分8折优惠.设他所购货物价值x 元,则90%×500+(x ﹣500)×80%=466,解得x =520,520+134=654(元).答:此人两次购物若其物品不打折共值654元钱;(2)500×90%+(654﹣500)×80%=573.2(元),134+466=600(元),∵573.2<600,∴此人将这两次购物合为一次购买更节省.【点睛】此题主要考查了一元一次方程的应用,关键是分析清楚付款打折的情况,找出合适的等量关系列出方程.30.(1)购买A 种记录本120本,B 种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B 种记录本x 本,则购买A 种记录表(2x +20)本,依题意,得:3(2x +20)+2x =460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键。

第三章一元一次方程练习卷2- 2021—2022学年人教版数学七年级上册

第三章一元一次方程练习卷2- 2021—2022学年人教版数学七年级上册

人教版七年级上册第三章一元一次方程练习卷2一、选择题(本大题共10道小题)1. 下列方程变形中,正确的是( )A .方程4554x =-,未知数系数化为1,得1x =- B .方程3541x x +=+,移项,得3415x x -=-+C .方程37(1)32(3)x x x --=-+,去括号,得377323x x x -+=--D .方程1231337x x -+=-,去分母,得7(12)3(31)63x x -=+- 2. 方程2395123x x x +--=+去分母得( ) A .3(23)2(95)1x x x +-=-+B .3(23)62(95)6x x x +-=-+C .3(23)2(95)6x x x +-=-+D .3(23)62(95)1x x x +-=-+ 3. 已知一元一次方程3(2)3212x x --=-,则下列解方程的过程正确的是( ) A .去分母,得3(2)32(21)x x --=-B .去分母,得3(2)621x x --=-C .去分母,去括号,得63642x x --=-D .去分母,去括号,得63621x x +-=+4. 解方程2(31)(4)1x x ---=时,去括号正确的是( )A .6141x x ---=B .6141x x --+=C .6241x x ---=D .6241x x --+=5. 某书中一道方程题:()231x x --∆=+,∆处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是9x =,那么∆处应该是数字( )A .1B .2C .3D .46. 从4-,2-,1-,1,2,4中选一个数作为k 的值,使得关于x 的方程22143x k x k x -+-=-的解为整数,则所有满足条件的k 的值的积为( )A .32-B .16-C .32D .64 7. 如果1x =是方程250x m +-=的解,那么m 的值是( )A .-4B .2C .-2D .48. 已知方程384x x a +=-的解满足20x -=,则a 的值为( ) A .272-B .128-C .114- D .4 9. 一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,那么老板在销售这件商品的过程中的盈亏情况为( )A.盈利16元B.亏损24元C.亏损8元D.不盈不亏10. 2(38)570a b x bx a ++-=是关于x 的一元一次方程,且该方程有惟一解,则x =( )A .2140-B .2140C .5615-D .5615二、填空题(本大题共5道小题)11. 为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的14还少5台,则购置的笔记本电脑有________台.12. 根据等式的性质填空.(1)4a b =-,则 a b =+; (2)359x -=,则39x =+ ;(3)683x y =+,则x = ; (4)122x y =+,则x = . 13. 若x =2是关于x 的方程22x a x -=+的解,则21a -的值是____. 14. 若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k = .若关于x 的方程2(2)450k x kx k ++-=是一元一次方程,则方程的解x = .15. 如图,按下列程序进行计算,经过三次输入,最后输出的数是12,则最初输入的数是 ________.三、计算题(本大题共2道小题)16. 解下列方程:(1)312x x -=-;(2)12(1)3x x --=-;(3)211136x x +--=;(4)312[2()]5 223x x-+=.17. (1)512(69)8128323xx x-⎛⎫--=-⎪⎝⎭(2)4353146x xx-+-=-四、解答题(本大题共6道小题)18. 某服装店两件衣服都以900元卖出,其中一件赚了15,而另一件亏了15,这两件衣服合在一起是赚了还是亏了?赚或亏了多少?19.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?20. 某超市计划购进甲、乙两种商品共1200件,这两种商品的进价、售价如下表:⑴超市如何进货,进货款恰好为46000元.⑵为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?21. 我们已经学过有理数的加减乘除以及乘方运算,下面再给出有理数的一种新运算- “*运算”,定义是*()a b ab a b =-+.根据定义,解决下面的问题:(1)计算:3*4;(2)我们知道,加法具有交换律,请猜想“*运算”是否具有交换律,并说明你的猜想是否正确; (3)类比数的运算,整式也有“*运算”.若*34(2)*12x -的值为2,求x .22.渔夫在静水划船总是每小时5里,现在逆水行舟,水流速度是每小时3里;一阵风把他帽子吹落在水中,假如他没有发现,继续向前划行;等他发觉时人与帽子相距2.5里;于是他立即原地调头追赶帽子,原地调转船头用了10分钟.计算:(1)求顺水速度,逆水速度是多少?(2)从帽子丢失到发觉经过了多少时间?(3)从发觉帽子丢失到捡回帽子经过了多少时间?23. 解方程:0.20.450.0150.010.5 2.50.250.015x x x ++-=-人教版七年级上册第三章一元一次方程练习卷2-讲评卷一、选择题(本大题共10道小题)1. 下列方程变形中,正确的是( )A .方程4554x =-,未知数系数化为1,得1x =- B .方程3541x x +=+,移项,得3415x x -=-+C .方程37(1)32(3)x x x --=-+,去括号,得377323x x x -+=--D .方程1231337x x -+=-,去分母,得7(12)3(31)63x x -=+- 【答案】D【分析】A 、根据等式的性质1即可得到答案;B 、根据等式的性质1即可得到答案;C 、根据去括号法则即可得到答案;D 、根据等式的性质,两边同时乘21,可得答案.【详解】解:A. 方程4554x =-,未知数系数化为1,两边同时乘以54得2516x =-,原选项计算错误,不符合题意; B. 方程3541x x +=+,移项得3415x x -=-,原选项计算错误,不符合题意;C. 方程37(1)32(3)x x x --=-+,去括号,得377326x x x -+=--,原选项计算错误,不符合题意;D. 方程1231337x x -+=-,去分母,得7(12)3(31)63x x -=+-,正确,符合题意; 故选:D .【点拨】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.2. 方程2395123x x x +--=+去分母得( )A .3(23)2(95)1x x x +-=-+B .3(23)62(95)6x x x +-=-+C .3(23)2(95)6x x x +-=-+D .3(23)62(95)1x x x +-=-+【答案】方程的两边都乘以6,得3(23)62(95)6x x x +-=-+.故选:B .3. 已知一元一次方程3(2)3212x x --=-,则下列解方程的过程正确的是( )A .去分母,得3(2)32(21)x x --=-B .去分母,得3(2)621x x --=-C .去分母,去括号,得63642x x --=-D .去分母,去括号,得63621x x +-=+【答案】去分母得3(2)62(21)x x --=-去括号得,63642x x --=-,移项得,34266x x --=--+合并同类项得,72x -=-,系数化为1得27x =,故选:C .4. 解方程2(31)(4)1x x ---=时,去括号正确的是( )A .6141x x ---=B .6141x x --+=C .6241x x ---=D .6241x x --+=【答案】去括号得:6241x x --+=,故选:D .5. 某书中一道方程题:()231x x --∆=+,∆处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是9x =,那么∆处应该是数字( )A .1B .2C .3D .4【答案】B【分析】设∆处数字为a ,把9x =代入方程计算即可求出a 的值.【详解】解:设∆处数字为a ,把9x =代入方程,得:()29391a ⨯--=+,解得:2a =故选:B【点拨】此题考查了一元一次方程的解及解一元一次方程,方程的解即为能使方程左右两边相等的未知数的值.易组卷:103656 难度:3 使用次数:1 入库日期:2021/8/1考点:3.2 解一元一次方程(一)-合并同类项与移项6. 从4-,2-,1-,1,2,4中选一个数作为k 的值,使得关于x 的方程22143x k x k x -+-=-的解为整数,则所有满足条件的k 的值的积为( )A .32-B .16-C .32D .64 【答案】D【分析】通过去分母,移项,合并同类项,未知数系数化为1,用含k 的式子表示x ,再根据条件,得到满足条件的k 值,进而即可求解.【详解】 由22143x k x k x -+-=-,解得:122k x -=, ∵关于x 的方程22143x k x k x -+-=-的解为整数, ∴满足条件的k 的值可以为:4-,2-,2,4,∴(4-)×(2-)×2×4=64,故选D .【点拨】本题主要考查一元一次方程的解法,把k 看作常数,掌握解一元一次方程的步骤,是解题的关键.易组卷:103661 难度:3 使用次数:1 入库日期:2021/8/1考点:3.2 解一元一次方程(一)-合并同类项与移项7. 如果1x =是方程250x m +-=的解,那么m 的值是( )A .-4B .2C .-2D .4【答案】B【分析】把x=1代入方程x+2m ﹣5=0,可求出m.【详解】当x=1时,1+2m-5=0,解得:m=2.故选B .【点拨】解一元一次方程8. 已知方程384x x a +=-的解满足20x -=,则a 的值为( ) A .272- B .128- C .114- D .4【答案】A【解析】试题分析:有题意可知,带入方程得求出考点:绝对值,方程9.一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,那么老板在销售这件商品的过程中的盈亏情况为( )A.盈利16元B.亏损24元C.亏损8元D.不盈不亏【答案】C【解析】【分析】设进价为x,根据按进价加20%作为定价,可得:定价=1.2x,后来老板按定价8折出售,可得售价=1.2x×0.8=0.96x,根据售价是192元,可得0.96x=192,算出进价,从而得到盈亏情况.【详解】设进价为x 元,由题意可得: ()120%0.8192x +⨯=, 0.96x=192,解得: x=200,200-192=8(元)故选C.【点睛】本题主要考查一元一次方程解决商品销售问题,解决本题的关键是要熟练掌握商品销售问题中进价,标价,售价,利润之间的关系.10. 2(38)570a b x bx a ++-=是关于x 的一元一次方程,且该方程有惟一解,则x =( )A .2140-B .2140C .5615-D .5615【答案】C二、填空题(本大题共5道小题)11.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的14还少5台,则购置的笔记本电脑有________台.【答案】16【解析】设购置的笔记本电脑有x 台,则购置的台式电脑为4(x +5)台,根据两种电脑的台数共100台,列方程得4(x +5)+x =100,解得x =16台.12. 根据等式的性质填空.(1)4a b =-,则 a b =+; (2)359x -=,则39x =+ ; (3)683x y =+,则x = ; (4)122x y =+,则x = . 【答案】(1)4;(2)5;(3)836y +;(4)24y +. 【解析】(1)4a b =+,在等式两端同时加上b ;(2)395x =+,在等式两端同时加上5;(3)836y +,在等式的两端同时乘以16;(4)24y +,在等式的两端同时乘以2.13. 若x=2是关于x 的方程22x a x -=+的解,则21a -的值是____. 【答案】8【分析】根据方程的解的定义,代入求得a 的值,后转化为代数式的值问题解决即可.【详解】解:∵x=2是关于x 的方程22x a x -=+的解, ∴2222a -=+, 解得:a=﹣3,则21a -=2(-3)1-=9﹣1=8.故答案为:8.【点拨】本题考查了一元一次方程的解,一元一次方程的解法,代数式的值,准确将方程的解转化关于a的一元一次方程求得a的值是解题的关键.14. 若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k = .若关于x 的方程2(2)450k x kx k ++-=是一元一次方程,则方程的解x = .【答案】0k =,54x =15. 如图,按下列程序进行计算,经过三次输入,最后输出的数是12,则最初输入的数是 ________.【答案】6932 【解析】【分析】先根据所给的程序图列出一元一次方程,再根据等式的性质求出x 的值即可.【详解】由程序图可知:4[4(4x ﹣6)﹣6]﹣6=12移项、合并同类项得:64x =138化系数为1得:x 6932=. 故答案为6932. 【点拨】本题考查了解一元一次方程,根据题意列出方程式是解答此题的关键.三、计算题(本大题共2道小题)16. 解下列方程:(1)312x x -=-;(2)12(1)3x x --=-;【答案】(1)移项合并得:43x =, 解得:34x =;(2)去括号得:1223x x -+=-,移项合并得:3x =-;17. (1)512(69)8128323x x x -⎛⎫--=- ⎪⎝⎭ (2)4353146x x x -+-=- 【答案】(1)1x =-;(2)611x =; 【分析】(1)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;【详解】解:(1)512(69)8128323x x x -⎛⎫--=- ⎪⎝⎭, 去分母,得:()4812103484(69)x x x --=--,去括号,得:4812036482436x x x -+=-+,移项合并,得:4848x -=,系数化为1,得:1x =-;(2)4353146x x x -+-=-, 去分母,得:()()1234325312x x x --=+-,去括号,得:1212910612x x x -+=+-,移项合并,得:116x =,系数化为1,得:611x =;四、解答题(本大题共6道小题)18. 某服装店两件衣服都以900元卖出,其中一件赚了15,而另一件亏了15,这两件衣服合在一起是赚了还是亏了?赚或亏了多少? 【答案】亏了,亏了75元 【解析】一件赚了15,设该件衣服成本为x 元 ∴19005x x -= ∴750x =∴赚的利润为150元 一件亏了15,设该件衣服成本为y 元 ∴19005y y -=-y=∴1125∴亏得钱为225元∴总共的利润为15022575-=-元∴这两件衣服合在一起是亏了,亏了75元.19.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?【答案】(1)购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱.【解析】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,则30×5+5(x−5)=(30×5+5x)×90%5x+125=135+4.5x5x+125−4.5x=135+4.5x−4.5x0.5x+125=1350.5x+125−125=135−1250.5x=100.5x×2=10×2x=20答:当购买乒乓球20盒时,两种优惠办法付款一样.(2)①在甲商店购买球拍5副、15盒乒乓球需要:30×5+5×(15−5)=150+50=200(元)在乙商店购买球拍5副、15盒乒乓球需要:(30×5+5×15)×90%=225×90%=202.5(元)因为200<202.5,所以我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算.答:我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算.②在甲商店购买球拍5副、30盒乒乓球需要:30×5+5×(30−5)=150+125=275(元)在乙商店购买球拍5副、30盒乒乓球需要:(30×5+5×30)×90%=300×90%=270(元)因为270<275,所以我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算.答:我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算.20. 某超市计划购进甲、乙两种商品共1200件,这两种商品的进价、售价如下表:⑴超市如何进货,进货款恰好为46000元.⑵为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?【答案】⑴购进甲种商品400件,乙种商品800件.(2)9折.【解析】【分析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200-x)只,根据甲乙两种灯的总进价为46000元列出一元一次方程,解方程即可;(2)设乙型节能灯需打a折,根据利润=售价-进价列出a的一元一次方程,求出a的值即可.【详解】(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200-x)只,由题意,得25x+45(1200-x)=46000解得:x=400购进乙型节能灯1200-x=1200-400=800只.答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元.(2)设乙型节能灯需打a折,0.1×60a-45=45×20%,解得a=9,答:乙型节能灯需打9折.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.21. 我们已经学过有理数的加减乘除以及乘方运算,下面再给出有理数的一种新运算- “*运算”,定义是*()a b ab a b =-+.根据定义,解决下面的问题:(1)计算:3*4;(2)我们知道,加法具有交换律,请猜想“*运算”是否具有交换律,并说明你的猜想是否正确;(3)类比数的运算,整式也有“*运算”.若*34(2)*12x -的值为2,求x .【答案】(1)“*运算”具有交换律,理由是:*()a b ab a b =-+,*()()b a ba b a ab a b =-+=-+,**a b a b ∴=, 即“*运算”具有交换律;(2)*34(2)*12x -的值为2,338(42)[(1)]222x x ∴-+--+=, 35842222x x ---+=, 即65x =,56x =. 22.渔夫在静水划船总是每小时5里,现在逆水行舟,水流速度是每小时3里;一阵风把他帽子吹落在水中,假如他没有发现,继续向前划行;等他发觉时人与帽子相距2.5里;于是他立即原地调头追赶帽子,原地调转船头用了10分钟.计算:(1)求顺水速度,逆水速度是多少?(2)从帽子丢失到发觉经过了多少时间?(3)从发觉帽子丢失到捡回帽子经过了多少时间?【答案】(1)顺水速度是每小时8里,逆水速度是每小时2里;(2)从帽子丢失到发觉经过了0.5小时;(3)从发觉帽子丢失到捡回帽子经过2330小时【解析】(1)∵顺水速度=静水速度+水流速度,逆水速度=静水速度﹣水流速度,∴顺水速度是5+3=8,逆水速度是5﹣3=2,答:顺水速度是每小时8里,逆水速度是每小时2里;(2)设从帽子丢失到发觉经过了x小时.根据题意,得:()533 2.5x x-+=,解得:x=0.5,答:从帽子丢失到发觉经过了0.5小时;(3)设原地调转船头后到捡回帽子经过了y小时,则从发觉帽子丢失到捡回帽子经过(y+1060)小时.根据题意,得:(5+3)y=2.5+3×(y+10 60)解得:y=35.∴y+1060=2330答:从发觉帽子丢失到捡回帽子经过2330小时.方法或规律点拨本题主要考查了一元一次方程的应用,根据已知表示出小船与了、帽子行驶路程是解题关键.。

七年级数学上册第三单元《一元一次方程》-解答题专项经典练习(含解析)(2)

七年级数学上册第三单元《一元一次方程》-解答题专项经典练习(含解析)(2)

一、解答题1.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人?解析:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【分析】首先根据题中表格数据得出有一个班的人数大于35人,接着设大于35人的班有学生x 人,根据等量关系列出方程,求解即可.【详解】解:∵67604020⨯=40203650>∴所以一定有一个班的人数大于35人.设大于35人的班有学生x人,则另一班有学生(67-x)人,依题意得5060(67)3650x x+-=6730x-=答:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.解方程:2x13+=x24+-1.解析:x=-2.【分析】按去分母,去括号,移项,合并同类项,系数化为1的步骤进行求解即可.【详解】去分母得:4(2x+1)=3(x+2)-12,去括号得:8x+4=3x+6-12,移项得:8x-3x=6-12-4,合并同类项得:5x=-10, 系数化为1得:x=-2. 【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键.3.江南生态食品加工厂收购了一批质量为10000kg 的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多2000kg ,求粗加工的这种山货的质量. 解析:2000kg . 【详解】解:设粗加工的该种山货质量为x kg , 根据题意,得()3200010000x x ++=, 解得2000x =.答:粗加工的该种山货质量为2000kg . 4.解下列方程: (1)2(x -1)=6; (2)4-x =3(2-x); (3)5(x +1)=3(3x +1)解析:(1)x =4;(2)x =1;(3)x =12【分析】(1)方程去括号,移项合并,将未知数系数化为1,即可求出解; (2)方程去括号,移项合并,将未知数系数化为1,即可求出解; (3)方程去括号,移项合并,将未知数系数化为1,即可求出解; 【详解】(1)去括号, 得2x -2=6. 移项,得2x =8. 系数化为1,得x =4. (2)去括号,得4-x =6-3x. 移项,得-x +3x =6-4. 合并同类项,得2x =2. 系数化为1,得x =1. (3)去括号,得5x +5=9x +3. 移项,得5x -9x =3-5. 合并同类项,得-4x =-2. 系数化为1,得x =12. 【点睛】此题考查了解一元一次方程,其步骤为:去括号,移项合并,将未知数系数化为1,求出解.5.运用等式的性质解下列方程: (1)3x =2x -6; (2)2+x =2x +1; (3)35x -8=-25x +1. 解析:(1)x =-6;(2)x =1;(3)x =9 【分析】(1)根据等式的性质:方程两边都减2x ,可得答案;(2)根据等式的性质:方程两边都减x ,化简后方程的两边都减1,可得答案. (3)根据等式的性质:方程两边都加25x ,化简后方程的两边都加8,可得答案. 【详解】(1)两边减2x ,得3x -2x =2x -6-2x . 所以x =-6.(2)两边减x ,得2+x -x =2x +1-x . 化简,得2=x +1. 两边减1,得2-1=x +1-1 所以x =1. (3)两边加25x , 得35x -8+25x =-25x +1+25x . 化简,得x -8=1.两边加8,得x -8+8=1+8. 所以x =9. 【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 6.已知16y x =-,227y x =+,解析下列问题: (1)当122y y =时,求x 的值; (2)当x 取何值时,1y 比2y 小3-. 解析:(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解. 【详解】(1)由题意得:62(27)x x -=+ 解得215x =215x ∴=. (2)由题意得:27(6)3x x +--=- 解得18x18x ∴=.【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.7.设a ,b ,c ,d 为有理数,现规定一种新的运算:a b ad bc c d=-,那么当35727x -=时,x 的值是多少?解析:x =-2【分析】根据新定义的运算得到关于x 的一元一次方程,解方程即可求解. 【详解】解:由题意得:21 - 2(5 - x )=7 即21-10+2x =7 x =-2. 【点睛】本题考查了新定义,解一元一次方程,根据新定义的运算列出方程是解题关键. 8.王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税。

人教版七年级上册数学第三章《一元一次方程》:相遇与追击类问题应用题综合练习题2(含答案)

人教版七年级上册数学第三章《一元一次方程》:相遇与追击类问题应用题综合练习题2(含答案)

人教版七年级上册数学第三章《一元一次方程》:相遇与追击类问题应用题综合练习题21.某同学打算骑自行车到野生动物园去参观,出发时心里盘算,如果以每小时8千米的速度骑行,那么中午12点才能到达;如果以每小时12千米的速度骑行,那么10点就能到达;但最好是不快不慢恰好在11点到达,那么,他行驶的速度是多少最好呢?2.小明早上赶到距家1000米的学校上学,一天,小明以60米/分的速度出发,5分钟后,小明的爸爸发现了他忘了带课文书,于是爸爸立即以110米/分的速度去追小明,并且在途中追上他.求:(1)爸爸追上小明用了多长时间?(2)爸爸追上小明时距离学校还有多远?3.列方程解应用题:武广高铁客运专线于12月26日正式通车运行,这标志着我国步入高速铁路新时代.武广铁路客运专线,是世界上一次建成最长、时速最快的高速铁路,其高速动车组“和谐号”是我国自主研发、目前世界上最先进的高速动车组.它的运行,使得旅客从广州到武汉的乘车时间缩短了7小时,平均速度达到每小时350千米,是普通客车平均时速的3倍.你知道从广州到武汉的高铁客运专线约多少千米吗?4.A,B两站间的路程为448千米,一列慢车从A站出发,每小时行驶60千米,一列快车从B站出发,每小时行驶80千米,问:(1)两车同时开出,相向而行,出发后多少小时相遇?(2)两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车?5.如图,A、B两地相距176 km,其间一处因山体滑坡导致连接这两地的公路受阻.甲、乙两个工程队接到指令,要求于早上8时,分别从A、B两地同时出发赶往滑坡点疏通公路.10时,甲队赶到立即开始作业,半小时后乙队赶到,并迅速投入“战斗”,与甲队共同作业.若滑坡受损公路长1 km,甲队行进的速度是乙队的倍多5 km,求甲、乙两队赶路的速度.6.小明和小亮的家以及他们所在的学校都在一条东西走向的马路旁,其中,小明家在学校西边3千米处,小亮家在学校的东边(见图).一天放学后,小亮邀小明到自己家观看自己新配置的电脑.他们约定,小亮直接从学校步行回自己家,小明先回自己家取自行车(取车时间忽略不计),然后骑车去小亮家.设小明和小亮的步行速度相同,小明骑自行车的速度是步行速度的4倍.如果小明在距离小亮家西边0.2千米处追上小亮,求小亮家到学校的距离.。

人教版七年级数学上册第三章《一元一次方程》应用题拔高训练(二)

人教版七年级数学上册第三章《一元一次方程》应用题拔高训练(二)

第三章《一元一次方程》应用题专项拔高训练1.有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价的8折以96元出售,很快就卖掉了,则这次生意的赢亏情况为()A.亏4元B.亏24元C.赚6元D.不亏不赚2.某商品进价200元,标价300元,打n折(十分之n)销售时利润率是5%,则n的值是()A.5 B.6 C.7 D.83.甲、乙两运动员在长为400m的环形跑道上进行匀速跑训练,两人同时从起点出发,同向而行,若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后500s内,两人相遇的次数为()A.0 B.1 C.2 D.34.互联网“微商”经营已经成为大众创业的一种新途径,某互联网平台上一件商品的标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为()A.80元B.90元C.100元D.110元5.如图是某月的日历表,在此日历表上可以用一个长方形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的和为32,则这9个数的和为()A.32 B.126 C.135 D.1446.某款服装进价120元/件,标价x元/件,商店对这款服装推出“买两件,第一件原价,第二件打六折”的促销活动,按促销方式销售两件该款服装,商店仍获利48元,则x的值为()A.185 B.190 C.180 D.1957.某长方形的长与宽的和是12,长与宽的差是4,这个长方形的长宽分别为()A.10和2 B.8和4 C.7和5 D.9和38.将一笔资金按一年定期存入银行,设年利率为2%,到期支取时,得本息和7 140元,则这笔资金是()A.6 000元B.6 500元C.7 000元D.7 100元9.一个两位数的十位数字与个位数字之和是7,如果这两位数加上45,恰巧等于原数的个位数字与十位数字对调后所得的两位数,则原来的两位数为()A.25 B.16 C.61 D.3410.如图是某商品价格标签的一部分.那么它的原价是()A.25元B.24元C.26元D.27元11.甲与乙比赛登楼,他俩从36层的某大厦底层(0层)出发,当甲到达6层时,乙刚到达5层,按此速度,当甲到达顶层时,乙可达()A.31层B.30层C.29层D.28层12.某船顺流而下的速度是20千米/时,逆流航行的速度为16千米/时,则船在静水中的速度是()千米/时.A.2 B.4 C.18 D.3613.甲、乙两班分别有48人和52人,现从外校转来30人,插入甲、乙两班,已知插入后,甲班学生人数与乙班学生人数相等,插入甲班多少人()A.13 B.15 C.17 D.1914.有一个两位数,十位上的数字比个位上的数字大3,把个位数字与十位数字对调之后所得数与原数之和是77,则这个两位数是()A.41 B.42 C.51 D.5215.甲乙两人骑摩托车从相距170千米的A,B两地相向而行,2小时相遇,如果甲比乙每小时多行5千米,则乙每小时行()A.30千米B.40千米C.50千米D.45千米16.张华同学以八折的优惠价格购买了一件物品,节省了10元,那么他买这件物品实际用了()A.30元B.40元C.50元D.75元17.布凯姆(Bookem)城有一组十分奇怪的限速规定:在离城1公里处有一个120公里/小时的标牌,在离城公里处有一个60公里/小时的标牌,在离城公里处有一个40公里/小时的标牌,在离城公里处有一个30公里/小时的标牌,在离城公里处有一个24公里/小时的标牌,在离城公里处有一个20公里/小时的标牌.如果你从120公里/小时的标牌处出发一直以限定时速行驶,那么到达布凯姆城需要的时间是()A.30秒B.1分13.5秒C.1分42秒D.2分27秒18.一个水池,单独打开进水管,3小时可将水池注满,单独打开出水管,4小时可将水池中的水放完,若同时打开两管,则需几小时才能将水池注满()A.7小时B.9小时C.12小时D.以上答案都不对19.张大爷经营一家小商店,一天,一位顾客拿来一张50元的人民币买烟,因为没钱找,张大爷到隔壁的书店换了零钱回来.一盒烟16元,张大爷找了顾客34元钱.过了一会,书店的老板找来,原来刚才那张50元钱是假币,张大爷只好把50元假币收回来.若张大爷卖一盒烟能赚2元钱,在这笔买卖中张大爷赔了()A.100元B.102元C.48元D.84元20.某商场的服装按原价九折出售,要使销售总收入不变,那么销售量应增加()A.B.C.D.21.一艘轮船从A港到B港顺水航行,需6小时,从B港到A港逆水航行,需8小时,若在静水条件下,从A港到B港需()A.7小时B.7小时C.6小时D.6小时22.在一张挂历上,任意圈出同一列上的三个数的和不可能是()A.14 B.33 C.66 D.6923.日历中,2×2的正方形中,最小的数为x,则最大数表示为()A.x+7 B.x+1 C.x+2 D.x+824.王华把400元存入银行,年利率为6.66%,到期时王华得到利息133.20元,她一共存了()A.6年B.5年C.4年D.3年25.甲、乙两种衣服售价均为60元,其中一件衣服赢利20%,另一件衣服亏损20%.当商家同时卖出这两种衣服各一件时()A.不赢不亏B.赢利5元C.亏损5元D.赢利6元参考答案1.根据题意:设未知进价为x,可得:x•(1+20%)•(1﹣20%)=96解得:x=100;有96﹣100=﹣4,即亏了4元.故选:A.2.解:商品是按标价的n折销售的,根据题意列方程得:(300×0.1n﹣200)÷200=0.05,解得:n=7.则此商品是按标价的7折销售的.故选:C.3.解:设甲、乙同向而跑,经过xs时间甲乙能相遇,依题意有:(5﹣4)x=400,解得x=400.由于1<=<2.所以两人相遇的次数为1.故选:B.4.解:设这件商品的进价为x元,根据题意得:200×0.6﹣x=20%x,解得:x=100.答:这件商品的进价为100元.故选:C.5.解:设这9个数中最大的数为x,依题意有x﹣16+x=32,解得x=24.所以x﹣16+x﹣15+x﹣14+x﹣9+x﹣8+x﹣7+x﹣2+x﹣1+x=9x﹣72=144.故选:D.6.解:设标价x元/件,依题意有x+0.6x﹣120×2=48,解得x=180.故选:C.7.解:设这个长方形的长是x,根据题意列方程得:x﹣(12﹣x)=4,解得x=8,则宽就是12﹣8=4.这个长方形的长宽分别为8和4.故选:B.8.解:设这笔资金为x元,由题意得,x×(1+2%)=7140,解得:x=7 000.故选:C.9.解:设十位数字为x,则个位数字为(7﹣x),由题意,得10x+(7﹣x)+45=10(7﹣x)+x,解得:x=1,7﹣x=7﹣1=6,故原来的两位数为16.故选:B.10.解:设原价x元/台,由题意得:60%x=15,解得:x=25.即:原价为25元.故选:A.11.解:设乙可达x层.根据两人的速度比不变,可列方程:5:4=35:x﹣1,解得x=29选C.12.解:设船在静水中的速度是x千米/时,20﹣x=x﹣16,解得x=18,故选:C .13.解:插入甲班x 人,依题意有48+x =52+(30﹣x ),解得x =17.答:插入甲班17人.故选:C .14.解:设原个位数字为x ,则十位数字为3+x ,由题意得:(10x +3+x )+10(3+x )+x =77,解之得:x =2,则原数为10(3+2)+2=52.答:这个两位数是52.故选:D .15.解:设乙每小时行x 千米,则甲每小时走(x +5)千米,则2x +2(x +5)=170,解得x =40,故选:B .16.解:设实际价格为x 元,则原价为x ÷80%,∴x ÷80%=x +10,解得x =40.故选:B .17.解:t 1=,t 2=,t 3=,t 4=,t 5=,t 6=, 则t =t 1+t 2+t 3+t 4+t 5=1分13.5秒.故选:B .18.解:设需x 小时才能将水池注满,列方程得=1解得:x =12,则需12小时才能将水池注满.故选:C .19.解:一盒烟16元,张大爷卖一盒烟能赚2元钱,则烟的进价=16﹣2=14元;张大爷找给顾客34元钱和属于赔钱的范围,则张大爷在这次买卖中赔的钱数=14+34=48(元).故选:C.20.解:设销售量增加x,根据题意得:90%(1+x)=1解得:x=故选:C.21.解:设静水行完全程需t小时.则﹣=﹣解得:t=.故选:C.22.解:设圈出的第一个数为x,则第二数为x+7,第三个数为x+14,∴三个数的和为:x+(x+7)+(x+14)=3(x+7),∴三个数的和为3的倍数,由四个选项可知只有A不是3的倍数.故选:A.23.解:日历中最小的数在正方形的左上方,最大的数在右下方;又知日历中横行上相邻两个数相差为1,右边的比左边的大1,日历中竖列上相邻两个数相差为7,下边的比上边的大7;那么最小数右边与它相邻的数是(x+1),最大的数是在(x+1)的下方,它们相隔为7,所以最大数应表示为(x+8).故选:D.24.解:设一共存了x年,由题意得:400×6.66%×x=133.20,解得x=5,故选:B.25.解:设盈利20%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.20x=60,解得:x=50,类似地,设另一件亏损衣服的进价为y元,它的商品利润是﹣20%y元,列方程y+(﹣20%y)=60,解得:y=75.那么这两件衣服的进价是x+y=125元,而两件衣服的售价为120元.∴120﹣125=﹣5元,所以,这两件衣服亏损5元.故选:C.。

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案) (71)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案) (71)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案)一、解答题1.小明用的练习本可以到甲、乙两家商店购买,已知两商店该练习本的标价都是每本1元.甲商店的优惠方案是购买10本以内(包括10本)没有优惠,购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠方案是从购买第一本起按标价的80%出售.(1)若小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款______元,当小明到乙商店购买时,须付款______元;(2)买多少本练习本时,两家商店付款相同?(3)若小明要购买50本练习本,应到哪家商店购买较便宜?【答案】(1)(0.7x+3),0.8x;(2)买30本练习本时,两家商店付款相同;(3)应选择甲商店.【解析】【分析】(1)若设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款10+(x-10)•70%=0.7x+3,当到乙商店购买时,须付款0.8x;(2)利用(1)中关系式相等得出答案;(3)把50代入(1)中关系式,从而求解.【详解】解:(1)若设小明要购买x(x>10)本练习本,甲商店:10+(x-10)•70%=(0.7x+3);乙商店:0.8x;故答案为:(0.7x+3),0.8x;(2)当x≤10时,甲商店一定比乙商店贵;∴x>10∴0.7x+3=0.8x,解得:x=30;答:买30本练习本时,两家商店付款相同;(3)∴0.7×50+3=38;0.8×50=40>38.∴应选择甲商店.【点睛】此题考查一元一次方程的实际运用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.重温例题:小丽在水果店花18元买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元.小丽买了苹果和橘子各多少千克?解决问题:(1)设所购买的苹果质量为xkg.请你将下列同学的探究过程补充完整.①小明同学列出了下表,并根据相等关系“买苹果的金额+买橘子的金额=18元”,可得方程:______.②小红、小王、小颖三位同学分别给出了不同于小明同学的表格和方程,请补充完整.(友情提醒:表格中的空格表达式不同于小明所填的,所列方程不要化简.)i小红根据相等关系“所买苹果的质量+橘子的质量=6kg”,得方程______.ii小王根据相等关系“苹果的单价×其质量=苹果购买金额”,得方程______.iii小颖根据相等关系“橘子的单价×其质量=橘子购买金额”,得方程______.(2)设苹果购买金额为y元,下列方程正确的是______.(填写正确的序号)①1863.2 2.6y y-+=;②y+2.6(6-183.2y-)=18;③3.2(6-182.6y-)=y;④3.2(6-182.6y-)=18-y.【答案】(1)3.2x+2.6(6-x)=18 x+18 3.22.6x-=6 18 3.22.6x- 3.2x=18-2.6(6-x)18-2.6(6-x) 2.6(6-x)=18-3.2x18-3.2x; (2) ①③【解析】【分析】(1)根据“苹果质量+橘子质量=6kg,苹果单价×苹果质量=苹果购买金额和橘子的单价×其质量=橘子购买金额”填表、列出方程即可;(2)分别根据“苹果质量+橘子质量=6kg和苹果单价×苹果质量=苹果购买金额”可得答案.【详解】(1)①设小丽买了x千克的苹果,则她买橘子(6-x)千克.由题意得:3.2x+2.6(6-x)=18;故答案为:3.2x+2.6(6-x)=18;②i补全表格如下:根据相等关系“所买苹果的质量+橘子的质量=6kg”,得方程:x+18 3.22.6x-=6,故答案为:x+18 3.22.6x-=6;ii补全表格如下:根据相等关系“苹果的单价×其质量=苹果购买金额”,得方程:3.2x=18-2.6(6-x),故答案为:3.2x=18-2.6(6-x).iii补全表格如下:根据相等关系“橘子的单价×其质量=橘子购买金额”,得方程:2.6(6-x)=18-3.2x,故答案为:2.6(6-x)=18-3.2x.(2)设苹果购买金额为y元,所列方程正确的是①③,故答案为:①③.【点睛】本题主要考查由实际问题抽象出一元一次方程,解题的关键是审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.3.汽车从甲地到乙地,若每小时行使45千米,则要比原计划延误半小时到达;若每小时行驶50千米,则就可以比原计划提前半小时到达.请你根据以上信息,就汽车行驶的“路程”或“时间”提出一个用一元一次方程解决的问题,并写出解答过程.(1)问题:______; (2)解答:【答案】(1)求汽车从甲地到乙地的路程;(2)450km . 【解析】 【分析】(1)根据题意提出数学问题,满足题意即可;(2)设汽车从甲地到乙地的路程为xkm ,由题意列出方程,求出方程的解即可得到结果.【详解】求汽车从甲地到乙地的路程解:(1)问题:求汽车从甲地到乙地的路程; 故答案为:求汽车从甲地到乙地的路程; (2)设汽车从甲地到乙地的路程为xkm , 则11452502x x -=+, 解得:x=450,答:汽车从甲地到乙地的路程为450km . 【点睛】此题考查了一元一次方程的应用,弄清题意是解本题的关键.4.如图,边长为4的正方形ABCD 中,动点P 以每秒1个单位的速度从点B出发沿线段BC方向运动,动点Q同时以每秒4个单位的速度从点A出发沿正方形的边AD﹣DC﹣CB方向顺时针做折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t秒.(1)当点P在BC上运动时,PB=;(用含t的代数式表示)(2)当点Q在AD上运动时,AQ=;(用含t的代数式表示)(3)当点Q在DC上运动时,DQ=,QC=;(用含t的代数式表示)(4)当t等于多少时,点Q运动到DC的中点?(5)当t等于多少时,点P与点Q相遇?【答案】(1)t,(2)4t,(3)4t﹣4,8﹣4t,(4)当t等于1.5时,点Q 运动到DC的中点.(5)125【解析】【分析】(1)由路程=速度×时间,可得BP的值;(2)由路程=速度×时间,可得AQ的值;(3)由DQ=点Q的路程﹣AD的长度,可得DQ的值;由QC=CD﹣DQ,可求QC的长;(4)由路程=速度×时间,可得t的值;(5)由点P路程+点Q路程=AD+CD+BC,可求t的值.【详解】(1)∵动点P以每秒1个单位的速度从点B出发沿线段BC方向运动,∴BP=1×t=t,故答案为t,(2)∵动点Q同时以每秒4个单位的速度从点A出发,∴AQ=4×t=4t,故答案为4t,(3)∵DQ=4t﹣AD∴DQ=4t﹣4,∵QC=CD﹣DQ∴QC=4﹣(4t﹣4)=8﹣4t故答案为4t﹣4,8﹣4t(4)根据题意可得:4t=4+2t=1.5答:当t等于1.5时,点Q运动到DC的中点.(5)根据题意可得:4t+t=4×3t=125时,点P与点Q相遇.答:当t等于125【点睛】本题四边形综合题,考查了正方形的性质,一元一次方程的应用,正确理解题意列出方程是本题的关键.5.有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中有250m墙面未来得及粉刷,同样时间内5名二级技工粉刷了10房间之外,还多粉刷了另外的240m墙面,每名一级技工比二级技工一天多粉刷210m墙面,求每名一级技工一天粉刷墙面面积.【答案】2122m【解析】【分析】设每个一级技工每天刷xm2,则每个二级技工每天刷(x-10)m2,根据每个房间需要粉刷墙面相等列出方程解答即可.【详解】解:设每名一级技工一天粉刷墙面面积为2xm.根据题题得,()51040 350810xx--+=解得:122x=答:每名一级技工一天粉刷墙面面积为2122m.【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.6.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c ﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【答案】(1)点P对应的数为﹣6或﹣4;(2)AB﹣BC的值不变,AB﹣BC=6.【解析】【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x<﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB=PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.【详解】∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.(1)设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【点睛】本题考查了一元一次方程的应用、数轴以及绝对值的非负性,解题的关键是:(1)分x<﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况,找出关于x的一元一次方程;(2)利用两点间的距离公式求出AB﹣BC=6.7.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为30元,乙平均每本书的价格为15元,优惠后甲乙两人的书费共283.5元(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场7.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【答案】(1)甲购书6本,乙购书9本;(2)办卡购书比不办卡购书共节省27.25元.【解析】【分析】(1)设甲购书x本,则乙购书为(15﹣x)本,再根据总价格列出方程即可;(2)先计算7.5折后的价格,加上办卡的费用,与原来的价格差即为节省的钱数.【详解】(1)甲购书x本,则乙购书为(15﹣x)本,由题意得:30x×0.9+15(15﹣x)×0.9=283.5解得:x=6.当x=6时,15﹣x=9.答:甲购书6本,乙购书9本.(2)购书7.5折的应付款表示为283.5÷0.9×0.75=236.25办卡节省的费用为283.5﹣236.25﹣20=27.25.答:办卡购书比不办卡购书共节省27.25元.【点睛】本题考查了一元一次方程应用中的打折销售问题,明确等量关系,并正确列出方程是解题的关键.8.已知|a+4|+(b﹣2)2=0,数轴上A、B两点所对应的数分别是a和b(1)填空:a=,b=(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由(3)点P以每秒2个单位的速度从A点出发向左运动,同时点Q以3个单位每秒的速度从B点出发向右运动,点M以每秒4个单位的速度从原点O 点出发向左运动.若N为PQ的中点,当PQ=16时,求MN的长.【答案】(1)﹣4;2(2)0或8(3)8【解析】【分析】(1)根据非负数“几个非负数和为0,则这几个数都为0”列出方程解答;(2)分两种情况:点C在A、B之间;点C在B的右侧.列出方程进行解答;(3)设运动时间为t秒,根据PQ=16,列出t的方程求得t,进一步再求得运动后的M、N点表示的数.【详解】解:(1)由题意得,a+4=0,b﹣2=0,解得,a=﹣4,b=2,故答案为:﹣4;2.(2)设C点表示的数为x,根据题意得,①当点C在A、B之间时,有c+4=2(2﹣c),解得,c=0;②当点C在B的右侧时,有c+4=2(c﹣2),解得,c=8.故点C表示的数为0或8;(3)设运动的时间为t秒,根据题意得,2t+3t+AB=16,即2t+3t+6=16,解得,t=2,∴运动2秒后,各点表示的数分别为:P:﹣4﹣2×2=﹣8,Q:2+3×2=8,M:0﹣4×2=﹣8,N:(-8+8)÷2=0,∴MN=0﹣(﹣8)=8.【点睛】本题主要考查了一元一次方程的应用,数轴上点表示的数,动点问题,两点间的距离,非负数的性质,关键是正确列出一元一次方程.(2)有两种情况,要考虑全面.9.(1)2020年9月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为(2)如图2,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为96?如果存在,请求出这四个数中的最小的数字;如果不存在,请说明理由(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2.若|a1﹣a2|=6,请求出正方形框中位于最中心的数字m的值.【答案】(1)3x+3;3y+21(2)存在被框住的4个数的和为96,其中最小的数为20(3)16【解析】【分析】(1)根据三个数的大小关系,列出另两个数,再相加化简便可;(2)设最小数为a,并用a的代数式表示所框出的四个数的和,再根据四个数和为96列出方程,再解方程,若方程有符合条件的解,则存在,否则不存在;(3)且m表示出a1和a2,再由|a1﹣a2|=6列出方程求解.【详解】解:(1)如果任意圈出一横行左右相邻的三个数,设最小的数为x,则三数的和为:x+(x+1)+(x+2)=x+x+1+x+2=3x+3;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,则三数和为:y+(y+7)+(y+14)=y+y+7+y+14=3y+21.故答案为:3x+3;3y+21.(2)设所框出的四个数最小的一个为a,则另外三个分别是:(a+1)、(a+7)、(a+8),则a+(a+1)+(a+7)+(a+8)=96,解得,a=20,由图2知,所框出的四个数存在,故存在被框住的4个数的和为96,其中最小的数为20;(3)根据题意得,a1=m+(m﹣1)+(m+1)+(m﹣7)+(m﹣6)+(m﹣8)=6m﹣21,a2=(m+7)+(m+6)+(m+8)=3m+21,∵|a 1﹣a 2|=6,∴|(6m ﹣21)﹣(3m+21)|=6,即|3m ﹣42|=6,解得,m =12(因12位于最后一竖列,不可能为9数的中间一数,舍去)或m =16,∴m =16.【点睛】本题主要考查了列代数式,一元一次方程的应用.难度不大,弄清日历横行相邻数相差1,竖列相邻两数相差7,运用这个规律和题目中的等量关系正确列出方程是解答后两题的关键.解完方程后,要验证其解符不符合实际情况,这一点很重要.10.列方程解应用题一列火车匀速行驶,经过一条长300米的隧道需要15秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是5秒,求这列火车的长度.【答案】150米【解析】【分析】设这列火车的长度是x 米,根据火车行驶的速度不变由行程问题的数量关系路程÷时间=速度建立方程求解即可.【详解】设火车的长度为x 米. 根据题意,得x x 300515+=,,解方程,得x150答:火车的长度为150米.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,行程问题的数量关系的运用,解答时根据火车行驶的速度不变建立方程是关键.。

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案) (81)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案) (81)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案)一、解答题1.如图,点O为原点,A.B为数轴上两点,AB=15,且OA:OB=2.(1)A、B对应的数分别为___、___;(2)点A.B分别以4个单位/秒和3个单位/秒的速度相向而行,则几秒后A.B相距1个单位长度?(3)点A.B以(2)中的速度同时向右运动,点P从原点O以7个单位/秒的速度向右运动,是否存在常数m,使得4AP+3OB−mOP为定值,若存在请求出m值以及这个定值;若不存在,请说明理由。

秒;(3)当m=3【答案】(1)A、B对应的数分别为−10、5;(2)2或167时,4AP+3OB−mOP为定值55.【解析】【分析】(1)根据题意求出OA、OB的长,根据数轴的性质解答;(2)分点A在点B的左侧、点A在点B的右侧两种情况,列方程解答;(3)根据题意列出关系式,根据定值的确定方法求出m即可.【详解】(1)设OA=2x,则OB=x,由题意得,2x+x=15,解得,x=5,则OA=10、OB=5,∴A、B对应的数分别为−10、5,故答案为:−10;5;(2)设x秒后A. B相距1个单位长度,当点A在点B的左侧时,4x+3x=15−1,解得,x=2,当点A在点B的右侧时,4x+3x=15+1,解得,x=16,7秒后A. B相距1个单位长度;答:2或167(3)设t秒后4AP+3OB−mOP为定值,由题意得,4AP+3OB−mOP=4×[7t−(4t−10)]+3(5+3t)−7mt=(21−7m)t+55,∴当m=3时,4AP+3OB−mOP为定值55.【点睛】此题考查一元一次方程的应用,数轴,解题关键在于根据题意列出方程.2.热点链接:某地周六购物节有购物津贴、定金膨胀等优惠:购物津贴优惠:凡购物金额在400元及以上者均有优惠津贴,每400元减50元(400整数倍后,余额小于400的部分不优惠),例如原标价1000元,可优惠100元;定金膨胀优惠:对某指定商品提前付100元定金,则周六购物节当天实付可抵200元(在购物津贴优惠之后的基础上抵扣)。

新人教版初中数学七年级数学上册第三单元《一元一次方程》测试题(有答案解析)(2)

新人教版初中数学七年级数学上册第三单元《一元一次方程》测试题(有答案解析)(2)

一、选择题1.某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( ) A .(1-15%)(1+20%)a 元 B .(1-15%)20%a 元C .(1+15%)(1-20%)a元D .(1+20%)15%a 元2.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )3.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个 4.下列各代数式中,不是单项式的是( )A .2m -B .23xy -C .0D .2t5.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n6.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( ) A .-7B .-1C .5D .117.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ).A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -18.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2-B .13C .23D .329.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++10.一个多项式与²21x x -+的和是32x -,则这个多项式为( ) A .253x x -+ B .21x x -+- C .253x x -+- D .2513x x --11.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差12.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元 A .(115%)(120%)a ++ B .(115%)20%a + C .(115%)(120%)a +-D .(120%)15%a +二、填空题13.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______. 14.观察如图,发现第二个和第三个图形是怎样借助第一个图形得到的,概括其中的规律在第n 个图形中,它有n 个黑色六边形,有_______个白色六边形.15.单项式2335x yz -的系数是___________,次数是___________.16.观察下列图形它们是按一定规律排列的,依照此规律,第 20 个图形共有________________ 个★.17.观察下列式子: 1×3+1=22; 7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2 019个式子为__________. 18.观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.19.图中阴影部分的面积为______.20.关于a ,b 的多项式-7ab-5a 4b+2ab 3+9为______次_______项式.其次数最高项的系数是__________.三、解答题21.设A =2x 2+x ,B =kx 2-(3x 2-x+1). (1)当x= -1时,求A 的值;(2)小明认为不论k 取何值,A-B 的值都无法确定.小红认为k 可以找到适当的数,使代数式A-B 的值是常数.你认为谁的说法正确?请说明理由. 22.先化简,再求值 (1)()223421332a a a a -+-+-,其中23a =- (2)()()22352542m mn mn m -+--+,其中22m mn -=23.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x =﹣2,求所挡的二次三项式的值.24.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)25.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列;(2)请指出该多项式的次数,并写出它的二次项和常规项. 26.当0.2x =-时,求代数式22235735x x x x -+-+-的值。

(常考题)人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(答案解析)(2)

(常考题)人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(答案解析)(2)

一、选择题1.(0分)[ID :68205]某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .20001200(22)x x =-B .212002000(22)x x ⨯=-C .220001200(22)x x ⨯=-D .12002000(22)x x =-2.(0分)[ID :68201]已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x 元,下列方程正确的是( )A .6(x+2)+4x =18B .6(x ﹣2)+4x =18C .6x+4(x+2)=18D .6x+4(x ﹣2)=183.(0分)[ID :68195]定义运算“*”,其规则为2*3a b a b +=,则方程4*4x =的解为( ) A .3x =- B .3x = C .2x =D .4x = 4.(0分)[ID :68194]小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( )A .B .C .D .5.(0分)[ID :68161]某种商品每件的标价是330元,按标价的8折销售时,仍可获利10%,则这种商品每件的进价为( )A .300元B .250元C .240元D .200元 6.(0分)[ID :68159]古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( )A .5袋B .6袋C .7袋D .8袋 7.(0分)[ID :68250]若三个连续偶数的和是24,则它们的积为( )A .48B .240C .480D .120 8.(0分)[ID :68246]已知方程16x -1=233x + ,那么这个方程的解是( ) A .x =-2 B .x =2 C .x =-12 D .x =129.(0分)[ID :68243]一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是( )A .54B .72C .45D .62 10.(0分)[ID :68241]若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6- 11.(0分)[ID :68232]关于y 的方程331y k +=与350y +=的解相同,则k 的值为( ) A .-2 B .34 C .2 D .43- 12.(0分)[ID :68228]已知方程(1)30m m x -+=是关于x 的一元一次方程,则m 的值是( )A .±1B .1C .-1D .0或113.(0分)[ID :68223]对于ax+b=0(a ,b 为常数),表述正确的是( )A .当a≠0时,方程的解是x=b aB .当a=0,b≠0时,方程有无数解C .当a=0,b=0,方程无解D .以上都不正确.14.(0分)[ID :68217]如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( )A .ab+2x 2B .ab ﹣2x 2C .ab+4x 2D .ab ﹣4x 2 15.(0分)[ID :68212]把方程112x =变形为2x =,其依据是( )A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律二、填空题16.(0分)[ID :68353]已知三个数的比是2:4:7,这三个数的和是169,这三个数分别是____,____,____17.(0分)[ID :68344]方程 2243x -=的解是__________ 18.(0分)[ID :68337]一条河的水流速度为3km/h ,船在静水中的速度为xkm/h ,则船在这条河中顺水行驶的速度是____km/h ;19.(0分)[ID :68323]若关于x 的方程1253n ax bx x x +-+=+是一元一次方程,则a n +=_________ ,b_________.20.(0分)[ID :68319]对于实数a ,b ,c ,d ,规定一种运算 a bc d =ad -bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x =_____.21.(0分)[ID :68316]对任意四个有理数a ,b ,c ,d ,定义:a bad bc c d =-,已知24181-=x x ,则x =_____.22.(0分)[ID :68308]一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为_____. 23.(0分)[ID :68303]一般情况下2323m n m n ++=+不成立,但也有数可以使得它成立,例如:m =n =0.使得2323m n m n ++=+成立的一对数m 、n 我们称为“相伴数对”,记为(m ,n ).若(x ,1)是“相伴数对”,则x 的值为_____.24.(0分)[ID :68270]将一个底面直径是10cm 、高为40cm 的圆柱锻压成底面直径为16cm 的圆柱,则锻压后圆柱的高为________cm.25.(0分)[ID :68268]已知关于x 的方程3223x m -=+的解是x m =,则m 的值为_________.26.(0分)[ID :68266]校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x 场,则可列方程为__________________.27.(0分)[ID :68275]小亮用40元钱买了5千克苹果和2千克香蕉,找回4元.已知每千克香蕉的售价是每千克苹果售价的2倍,则每千克苹果的售价是________元.三、解答题28.(0分)[ID :68427]解方程:(1)36156x x -=--;(2)45173x x +=-;(3) 2.57.5516y y y --=-;(4)11481.5533z z +=-. 29.(0分)[ID :68397]一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,,则两队合作,几个月可以完工?30.(0分)[ID :68455]已知16y x =-,227y x =+,解析下列问题:(1)当122y y =时,求x 的值;(2)当x 取何值时,1y 比2y 小3-.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.B2.B3.D4.B5.C6.A7.C8.A9.B10.B11.C12.C13.D14.D15.B二、填空题16.5291【分析】根据比例设这三个数分别为2x4x7x再根据这三个数的和是169列方程即可求解【详解】设这三个数分别为2x4x7x则2x+4x+7x=169解得x=13所以这三个数分别为265291故17.x=9【分析】根据解一元一次方程的步骤先去分母再移项合并同类项系数化为1即可求解;【详解】解:2x-6=122x=12+62x=18x=9故答案为x=9【点睛】本题考查解一元一次方程的步骤解题关键是18.x+3【分析】根据顺水速度=静水中的速度+水速即可列出代数式【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题解决问题的关键是读懂题意找到所求的量之19.4或0≠-1【分析】根据一元一次方程的定义可知二次项系数为0则求出n的值再根据二次项系数为0一次项系数不等于0求出a的值即可【详解】解:根据一元一次方程的定义可知二次项系数为0则解得n=1或-3把代20.22【分析】由题中的新定义可知此种运算为对角线乘积相减的运算化简所求的式子得到关于x的方程然后解方程即可求出x的值【详解】解:∵=27∴(x+1)(x-1)-(x+2)(x-3)=27∴x2-1-(21.3【分析】首先看清这种运算规则将转化为一元一次方程2x-(﹣4x)=18然后通过去括号移项合并同类项系数化为1解方程即可【详解】由题意得2x-(﹣4x)=186x=18解得:x =3故答案为:3【点睛22.【分析】设火车的长度为x米则火车的速度为根据列车的速度×时间=列车长度+隧道长度列方程求解即可【详解】设火车的长度为x米则火车的速度为依题意得:45×=600+x解得:x=300故答案为:300【点23.﹣【分析】利用新定义相伴数对列出方程解方程即可求出x的值【详解】解:根据题意得:去分母得:15x+10=6x+6移项合并得:9x=﹣4解得:x=﹣故答案为:﹣【点睛】本题考查解一元一次方程正确理解相24.625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积根据圆柱的体积计算公式表示出体积列出方程解答即可【详解】解:设锻压后圆柱的高为x厘米由题意得:解得:x=15625答:锻压后25.5【解析】【分析】此题用m替换x解关于m的一元一次方程即可【详解】∵x=m∴3m−2=2m+3解得:m=5故答案为:5【点睛】本题考查一元一次方程的解的定义方程的解就是能够使方程左右两边相等的未知数26.3x+(8-x)=18【解析】【分析】根据题意列出相应的方程即可【详解】根据题意得:3x+(8-x)=18故答案为:3x+(8-x)=18【点睛】此题考查了由实际问题抽象出一元一次方程弄清题意是解本27.4【解析】【分析】直接设每千克苹果的售价是x元则每千克香蕉售价2x元利用40元钱买了5千克苹果和2千克香蕉找回4元得出方程求出答案【详解】设每千克苹果的售价是x元则每千克香蕉售价2x元根据题意可得:三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【分析】首先根据题目中已经设出每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,由1个螺钉需要配2个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程【详解】设每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,利用一个螺钉配两个螺母.由题意得:2×1200x=2000(22-x),故选:B.【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于根据题意列出方程.2.B解析:B【分析】等量关系为:6本练习本总价+4支水性笔总价钱=18.【详解】解:水性笔的单价为x 元,那么练习本的单价为(x ﹣2)元,则6(x ﹣2)+4x =18,故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,列方程解应用题的关键是找出题目中的相等关系.3.D解析:D【分析】根据新定义列出关于x 的方程,解之可得.【详解】∵4*x=4, ∴234x ⨯+=4, 解得x=4,故选:D .【点睛】 本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.4.B解析:B【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A 、设最小的数是x .x+x+7+x+7+1=19∴x=43,故本选项错误; B 、设最小的数是x .x+x+6+x+7=19,∴x=2,故本选项正确.C 、设最小的数是x .x+x+1+x+7=19,∴x=11,故本选项错误.3D、设最小的数是x.x+x+1+x+8=19,∴x=10,故本选项错误.3故选:B.【点睛】本题考查一元一次方程的应用,需要学生具备理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.5.C解析:C【分析】设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.【详解】设这种商品每件的进价为x元,根据题意得:330×80%−x=10%x,解得:x=240,则这种商品每件的进价为240元.故选C.【点睛】此题考查一元一次方程的应用,找准题目中的等量关系是解题的关键.6.A解析:A【解析】【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得到方程:2(x-1)-1-1=x+1,解得:x=5, 答:驴子原来所托货物的袋数是5, 故选A.【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.7.C解析:C【分析】设出一个偶数,表示出另外两个数,列出方程解出这三个数,再计算它们的积.【详解】解:设中间的偶数为m ,则(m-2)+m+(m+2)=24,解得m=8.故三个偶数分别为6,8,10.故它们的积为:6×8×10=480.故选:C .【点睛】本题考查了一元一次方程的应用.找到三个连续偶数间的数量关系是解题的关键. 8.A解析:A【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】两边同乘以6去分母,得62(23)x x -=+,去括号,得646x x -=+,移项,得646x x -=+,合并同类项,得510x -=,系数化为1,得2x =-,故选:A .【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.9.B解析:B【分析】首先设个位上的数为x ,则十位数字为()31x +,根据题意可得等量关系:十位上的数与个位上的数的和=9,列出方程,再解方程即可.【详解】设个位上的数为x ,则十位数字为()31x +,由题意得:x +(3x +1)=9,解得:x =2,十位数字为:6+1=7,这个两位数是:72.故选:B.【点睛】考查一元一次方程的应用,读懂题目,找出题目中的等量关系是解题的关键. 10.B解析:B【分析】由已知可得4x +=2,解方程可得.【详解】由已知可得4x +=2,解得x=-2.故选B.【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程. 11.C解析:C【分析】分别解出两方程的解,两解相等,就得到关于k 的方程,从而可以求出k 的值.【详解】 解第一个方程得:133k y -=, 解第二个方程得:53y =-, ∴133k -=53-, 解得:k=2.故选C .【点睛】 本题解决的关键是能够求解关于y 的方程,要正确理解方程解的含义. 12.C解析:C【分析】直接利用一元一次方程的定义进而分析得出答案.【详解】∵方程(1)30m m x -+=是关于x 的一元一次方程, ∴1m =,10m -≠,解得:1m =-.故选:C .【点睛】本题主要考查了一元一次方程的定义,正确把握一元一次方程的定义是解题关键. 13.D解析:Dax+b=0(a,b为常数),当a=0时,就不是一元一次方程,当a=0时,是一元一次方程.分两种情况进行讨论.【详解】A、当a≠0时,方程的解是x=-ba,故错误;B、当a=0,b≠0时,方程无解,故错误;C、当a=0,b=0,方程有无数解,故错误;D、以上都不正确.故选D.【点睛】此题很简单,解答此题的关键是:正确记忆一元一次方程的一般形式中,一次项系数不等于0.14.D解析:D【分析】用长方形的面积减去四周四个小正方形的面积列式即可.【详解】∵长方形的面积为ab,4个小正方形的面积为4x2,∴剩余部分的面积为:ab-4x2,故选D.【点睛】本题考查了列代数式,根据题意用字母表示长长方形和正方形的面积是解题关键.15.B解析:B【分析】根据等式的基本性质,对原式进行分析即可.【详解】将原方程两边都乘2,得2x ,这是依据等式的性质2.故选B.【点睛】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.二、填空题16.5291【分析】根据比例设这三个数分别为2x4x7x再根据这三个数的和是169列方程即可求解【详解】设这三个数分别为2x4x7x则2x+4x+7x=169解得x=13所以这三个数分别为265291故解析:52 91根据比例设这三个数分别为2x,4x,7x,再根据这三个数的和是169列方程即可求解.【详解】设这三个数分别为2x,4x,7x,则2x+4x+7x=169,解得x=13,所以这三个数分别为26,52,91.故答案为:26,52,91.【点睛】此题主要考查列一元一次方程解应用题,根据比例设未知数是解题关键.17.x=9【分析】根据解一元一次方程的步骤先去分母再移项合并同类项系数化为1即可求解;【详解】解:2x-6=122x=12+62x=18x=9故答案为x=9【点睛】本题考查解一元一次方程的步骤解题关键是解析:x=9【分析】根据解一元一次方程的步骤先去分母,再移项,合并同类项,系数化为1即可求解;【详解】解:224 3x-=2x-6=122x=12+62x=18x=9故答案为x=9.【点睛】本题考查解一元一次方程的步骤,解题关键是:移项变号.18.x+3【分析】根据顺水速度=静水中的速度+水速即可列出代数式【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题解决问题的关键是读懂题意找到所求的量之解析:x+3【分析】根据顺水速度=静水中的速度+水速,即可列出代数式.【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题,解决问题的关键是读懂题意,找到所求的量之间的关系.19.4或0≠-1【分析】根据一元一次方程的定义可知二次项系数为0则求出n 的值再根据二次项系数为0一次项系数不等于0求出a的值即可【详解】解:根据一元一次方程的定义可知二次项系数为0则解得n=1或-3把代解析:4或0 ≠-1【分析】根据一元一次方程的定义可知,二次项系数为0,则12+=n ,求出n 的值,再根据二次项系数为0,一次项系数不等于0,求出a 的值即可.【详解】解:根据一元一次方程的定义可知,二次项系数为0,则12+=n ,解得n=1或-3, 把12+=n 代入方程得:2253-+=+ax bx x x ,整理得:()()23150-+--+=a x b x , ∴a-3=0,-b-1≠0,解得:a=3,b≠-1,∴a+n=4或0,故答案为:4或0;≠,-1.【点睛】本题是对一元一次方程定义的考查,熟练掌握一元一次方程是解决本题的关键. 20.22【分析】由题中的新定义可知此种运算为对角线乘积相减的运算化简所求的式子得到关于x 的方程然后解方程即可求出x 的值【详解】解:∵=27∴(x+1)(x-1)-(x+2)(x-3)=27∴x2-1-(解析:22【分析】由题中的新定义可知,此种运算为对角线乘积相减的运算,化简所求的式子得到关于x 的方程,然后解方程即可求出x 的值.【详解】解:∵(1)(2)(3)(1)x x x x ++--=27,∴(x +1)(x -1)-(x +2)(x -3)=27,∴x 2-1-(x 2-x -6)=27,∴x 2-1-x 2+x +6=27,∴x =22;故答案为:22.【点睛】本题考查了新定义运算,及灵活运用新定义的能力,根据新定义把所给算式转化为一元一次方程是解答本题的关键.21.3【分析】首先看清这种运算规则将转化为一元一次方程2x -(﹣4x)=18然后通过去括号移项合并同类项系数化为1解方程即可【详解】由题意得2x -(﹣4x)=186x =18解得:x =3故答案为:3【点睛解析:3【分析】 首先看清这种运算规则,将24181-=x x 转化为一元一次方程2x -(﹣4x) =18,然后通过去括号、移项、合并同类项、系数化为1,解方程即可.【详解】由题意得,2x -(﹣4x) =186x =18解得:x =3故答案为:3【点睛】本题主要考查解一元一次方程,关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.22.【分析】设火车的长度为x 米则火车的速度为根据列车的速度×时间=列车长度+隧道长度列方程求解即可【详解】设火车的长度为x 米则火车的速度为依题意得:45×=600+x 解得:x=300故答案为:300【点解析:【分析】设火车的长度为x 米,则火车的速度为15x ,根据列车的速度×时间=列车长度+隧道长度列方程,求解即可.【详解】设火车的长度为x 米,则火车的速度为15x ,依题意得: 45×15x =600+x 解得:x =300.故答案为:300.【点睛】本题考查了一元一次方程的应用,学生理解题意的能力,根据隧道顶部一盏固定灯在火车上垂直照射的时间为15秒钟,可知火车的速度为15x ,根据题意可列方程求解. 23.﹣【分析】利用新定义相伴数对列出方程解方程即可求出x 的值【详解】解:根据题意得:去分母得:15x+10=6x+6移项合并得:9x =﹣4解得:x =﹣故答案为:﹣【点睛】本题考查解一元一次方程正确理解相解析:﹣49. 【分析】 利用新定义“相伴数对”列出方程,解方程即可求出x 的值.【详解】解:根据题意得:11235x x , 去分母得:15x+10=6x+6,移项合并得:9x =﹣4, 解得:x =﹣49. 故答案为:﹣49. 【点睛】 本题考查解一元一次方程,正确理解“相伴数对”的定义是解本题的关键.24.625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积根据圆柱的体积计算公式表示出体积列出方程解答即可【详解】解:设锻压后圆柱的高为x 厘米由题意得:解得:x=15625答:锻压后解析:625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积,根据圆柱的体积计算公式表示出体积列出方程解答即可.【详解】解:设锻压后圆柱的高为x 厘米,由题意得:221016()40()22x ππ⨯=解得:x=15.625.答:锻压后圆柱的高为15.625厘米.故答案为:15.625.【点睛】此题考查一元一次方程的实际运用,关键是掌握体积公式,并找准题中的等量关系. 25.5【解析】【分析】此题用m 替换x 解关于m 的一元一次方程即可【详解】∵x =m ∴3m−2=2m+3解得:m =5故答案为:5【点睛】本题考查一元一次方程的解的定义方程的解就是能够使方程左右两边相等的未知数解析:5【解析】【分析】此题用m 替换x ,解关于m 的一元一次方程即可.【详解】∵x =m ,∴3m−2=2m+3,解得:m =5.故答案为:5.【点睛】本题考查一元一次方程的解的定义.方程的解就是能够使方程左右两边相等的未知数的值.26.3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可【详解】根据题意得:3x+(8-x )=18故答案为:3x+(8-x )=18【点睛】此题考查了由实际问题抽象出一元一次方程弄清题意是解本解析:3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可.【详解】根据题意得:3x+(8-x )=18,故答案为:3x+(8-x )=18,【点睛】此题考查了由实际问题抽象出一元一次方程,弄清题意是解本题的关键.27.4【解析】【分析】直接设每千克苹果的售价是x 元则每千克香蕉售价2x 元利用40元钱买了5千克苹果和2千克香蕉找回4元得出方程求出答案【详解】设每千克苹果的售价是x 元则每千克香蕉售价2x 元根据题意可得: 解析:4【解析】【分析】直接设每千克苹果的售价是x 元,则每千克香蕉售价2x 元,利用40元钱买了5千克苹果和2千克香蕉,找回4元得出方程求出答案.【详解】设每千克苹果的售价是x 元,则每千克香蕉售价2x 元,,根据题意可得:5×x+2×2x=40-4,解得:x=4.即:每千克香蕉售价4元.故答案为:4.【点睛】此题主要考查了一元一次方程的应用,正确表示出两种水果的价格是解题关键.三、解答题28.(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 【分析】(1)先移项,再合并同类项,最后系数化为1即可.(2)先移项,再合并同类项,最后系数化为1即可.(3)先移项,再合并同类项,最后系数化为1即可.(4)先移项,再合并同类项,最后系数化为1即可.【详解】(1)移项,得36156x x +=-+.合并同类项,得99x =-.系数化为1,得1x =-.(2)移项,得41753x x -=--. 合并同类项,得1223x =-. 系数化为1,得66x =-.(3)移项,得 2.57.5165y y y --+=. 合并同类项,得65y =.系数化为1,得56y =. (4)移项,得11841.5533z z -=--. 合并同类项,得7410z =-. 系数化为1,得407z =-. 【点睛】 本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 29.5【分析】设两队合作x 个月完成,甲队原来的工作效率为112,将工作效率提高40%以后为112(1+40%),乙队原来的工作效率为115,将工作效率提高25%以后为115(1+25%),根据工作效率×工作时间=工作总量1,列出方程,解方程即可【详解】 解:设两队合作x 个月完成,由题意,得[112(1+40%)+115(1+25%)]x =1, 解得x =5.答:两队合作,5个月可以完工.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.30.(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解.【详解】(1)由题意得:62(27)x x -=+解得215x = 215x ∴=. (2)由题意得:27(6)3x x +--=-解得18x 18x ∴=. 【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.。

新人教版七年级数学第三章一元一次方程单元试题(2)含答案解析

新人教版七年级数学第三章一元一次方程单元试题(2)含答案解析

○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前第三章一元一次方程(2)考试范围:第三章一元一次方程;考试时间:100分钟;命题人:天涯剑客QQ:2403336035题号 一 二 三 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题 共42分)评卷人得分一、选择题(1--6题每题2分,7--16每题3分,共计42分)1.下列运用等式的性质对等式进行的变形中,正确的是( ). A .若x y ,则55x yB .若ab ,则ac bc C .若a b c c,则23abD .若x y ,则xy aa2.若 与kx -1=15的解相同则k 的值为( ). A.2 B.8 C.-2 D.6 3.下列方程①x-2=x3,②x=0,③y +3=0,④x +2y =3,⑤x 2=2x,⑥x x 61312=+中是一元一次方程的有( ).A .2个B .3个C .4个D .5个4.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了 A .70元 B .12020 C .150元 D .300元 5.把方程21-331-23+=+x x x 去分母正确的是 A .)1(3-18)1-2(218+=+x x x B .)1(3)12(3+-=-+x x xC .)1(18)12(18+-=-+x x xD .)1(33)12(23+-=-+x x x6.若37-213m m 与+互为相反数,则m 的值为( ) A 、43 B 、34 C 、43- D 、34-7.一个商店把彩电按标价的九折出售,仍可获利2020若该彩电的进价是2400元,则彩电标价是( ) A .32020 B .3429元 C .2667元 D .3168元8.用“●”“■”“”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为( ).A 、5B 、4C 、3D 、29.某商店在某一时间以每件50元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该家商店( ) A 、亏损6.7元 B 、盈利6.7元 C 、不亏不盈 D 、以上都不正确10.若,,都是不等于零的数,且,则( )A .2B .-1C .2或-1D .不存在 11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是A .2(1)313x xB .2(1)313x xC .23(1)13x xD .23(1)13x x12.日历上竖列相邻的三个数,它们的和是39,则第一个数是( ) A.6 B.12 C.13 D.14 13.如果是方程31的解,那么关于的方程的解是( ) A.-10 B.0 C.34D.414.若与互为相反数,则a=( )A .B .10C .D .﹣1015.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是【 】A .7岁B .8岁C .9岁D .10岁16.相传有个人不讲究说话艺术常引起误会。

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案) (41)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案) (41)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案)一、解答题1.某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?【答案】A种教具买了75件,B种教具买了63件.【解析】【分析】设A种教具买了x件,根据题意,列出一元一次方程,即可求解.【详解】设A种教具买了x件,则B种教具买了(138-x)件,由题意得:30x+50(138-x)=5400,解得:x=75,138-x=138-75=63,∴A种教具买了75件,B种教具买了63件.【点睛】本题主要考查一元一次方程的实际应用,根据题意,设未知数,列出一元一次方程,是解题的关键2.若一数轴上存在两动点,当第一次相遇后,速度都变为原来的两倍,第二次相遇后又都能恢复到原来的速度,则称这条数轴为魔幻数轴.如图,已知一魔幻数轴上有A,O,B三点,其中A,O对应的数分别为﹣10,0,AB为47个单位长度,甲,乙分别从A,O两点同时出发,沿数轴正方向同向而行,甲的速度为3个单位/秒,乙的速度为1个单位/秒,甲到达点B 后以当时速度立即返回,当甲回到点A时,甲、乙同时停止运动.问:(1)点B对应的数为,甲出发秒后追上乙(即第一次相遇)(2)当甲到达点B立即返回后第二次与乙相遇,求出相遇点在数轴上表示的数是多少?(3)甲、乙同时出发多少秒后,二者相距2个单位长度?(请直接写出答案)【答案】(1)点B对应的数为37,甲出发5秒后追上乙(即第一次相遇);(2)相遇点在数轴上表示的数是21;(3)甲、乙同时出发4秒或5.5秒或12.75秒或13.5秒后,二者相距2个单位长度.【解析】【分析】(1)根据两点间的距离可求点B对应的数,可设甲出发x秒后追上乙(即第一次相遇),根据速度差×时间=路程差,列出方程求解即可;(2)先求出第二次与乙相遇需要的时间,进一步可求相遇点在数轴上表示的数;(3)分第一次相遇前后相距2个单位长度,第二次相遇前后相距2个单位长度,进行讨论即可求解.【详解】解:(1)点B对应的数为:﹣10+47=37,设甲出发x秒后追上乙(即第一次相遇),依题意有:(3﹣1)x=10,解得:x=5.故甲出发5秒后追上乙(即第一次相遇);(2)﹣10+5×3=﹣10+15=5,37﹣5=32,32×2÷(3×2+1×2)=8(秒),5+1×2×8=21.故相遇点在数轴上表示的数是:21;(3)第一次相遇前后相距2个单位长度,5﹣2÷(3﹣1)=5﹣1=4(秒)5+2÷(3×2﹣1×2)=5+0.5=5.5(秒)第二次相遇前后相距2个单位长度,5+8﹣2÷(3×2+1×2)=12.75(秒)5+8+2÷(3+1)=13.5(秒)故甲、乙同时出发4秒或5.5秒或12.75秒或13.5秒后,二者相距2个单位长度.【点睛】考查了一元一次方程的应用、数轴,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.3.在同一直线上的三点A,B,C,若满足点C到另两个点A,B的距离之比是2,则称点C是其余两点的亮点(或暗点).具体地,当点C在线段AB上时,若CACB =2,则称点C是[A,B]的亮点;若CBCA=2,则称点C是[B,A]的亮点;当C在线段AB的延长线上时,若CACB=2,称点C是[A,B]的暗点.例如,如图1,数轴上点A,B,C,D分别表示数﹣1,2,1,0.则点C是[A,B]的亮点,又是[A,D]的暗点;点D是[B,A]的亮点,又是[B,C]的暗点(1)如图2,M,N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.[M,N]的亮点表示的数是,[N,M]的亮点表示的数是;[M,N]的暗点表示的数是,[N,M]的暗点表示的数是;(2)如图3,数轴上点A所表示的数为﹣20,点B所表示的数为40.一只电子蚂蚁P从B出发以2个单位每秒的速度向左运动,设运动时间为t秒.①求当t为何值时,P是[B,A]的暗点;②求当t为何值时,P,A和B三个点中恰有一个点为其余两点的亮点.【答案】(1)2,0;10,﹣8;(2)①60秒;②t=10或20或45或90秒【解析】【分析】(1)设其亮点或暗点表示的未知数,再根据定义列出方程;(2)根据新定义列出进行解答便可.【详解】解:(1)设[M ,N ]的亮点表示的数是x ,根据定义有224x x+=-, 解得x =2;设[N ,M ]的亮点表示的数是y ,根据定义有422y y -=+, 解得y =0;设[M ,N ]的暗点表示的数是z ,根据定义有224z z +=-, 解得z =10;设[N ,M ]的暗点表示的数是k ,根据定义有422k k -=--, 解得k =﹣8;故答案为:2;0;10;﹣8.(2)①当P 为[B ,A ]暗点时,P 在BA 延长线上且PB =2PA =120,t =120÷2=60秒①P 为[A ,B ]亮点时,PA =2PB ,40﹣2t ﹣(﹣20)=2×2t ,t =10; P 为[B ,A ]亮点时,2PA =PB ,2[40﹣2t ﹣(﹣20)]=2t ,t =20; A 为[B ,P ]亮点时,AB =2AP ,60=2[﹣20﹣(40﹣2t )],t =45; A 为[P ,B ]亮点时,2AB =AP ,120=﹣20﹣(40﹣2t ),t =90;综上,t =10或20或45或90.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据新定义分情况列出方程进行求解.4.某市居民用电电费目前实行梯度价格表)(1)若月用电150千瓦时,应交电费元,若月用电250千瓦时,应交电费元;(2)若居民王大爷家12月应交电费150元,请计算他们家12月的用电量;(3)若居民李大爷家11、12月份共用电480千瓦时(其中11月份用电量少于12月份),共交电费262.6元.请直接写出李大爷家这两个月的用电量.【答案】(1)75,132;(2)280度;(3)11月用电78度,12月用电402度【解析】【分析】(1)根据表格中电费收取方法计算即可得到结果;(2)根据题意确定出他们家12月的用电量范围,设为x度,由表格中的电费收取方式列出方程,求出方程的解即可得到结果;(3)设12月用电y度,则11月用电(480﹣y)度,根据11月份用电量少于12月份,得出y>240,分类讨论y的范围确定出x的值即可.【详解】解:(1)根据题意得:0.5×150=75,180×0.5+0.6×(250﹣180)=132;故答案为:75;132;(2)设12月用电量为x度,由题意,当用电量为400度时,电费222元;当用电量为180度时,电费90元;①181≤x≤400,180×0.5+(x﹣180)×0.6=150,解得:x=280,即用电280度;(3)设12月用电y度,则11月用电(480﹣y)度,由题意,y>240,①当y>400时,11月用电在180度内,(480﹣y)×0.5+180×0.5+(400﹣180)×0.6+(x﹣400)×0.8=262.6,解得:x=402,则11月用电78度,12月用电402度;①当300<y≤400时,11月用电在180度内,12月用电在181﹣400度,(480﹣y)×0.5+180×0.5+(y﹣180)×0.6=262.6,解得:y=406>400,舍去;①当240<y≤300时,两个月用电量都在181﹣400度,180×0.5+(y﹣180)×0.6+180×0.5+(480﹣y﹣180)×0.6=262.6,方程无解,综上,11月用电78度,12月用电402度.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系列方程求解.5.阅读理解:若A,B,C为数轴上三点且点C在点A,点B之间,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.知识运用:(1)如图2,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.数________所表示的点是(M,N)的好点;数________所表示的点是(N,M)的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40.现有一动点Р从点B 出发,以每秒10个单位的速度向左运动.当时间t 等于多少秒时,P ,A ,B 中恰有一个点为其余两点的好点?【答案】(1)2;0;(2)2秒,4秒,9秒,18秒【解析】【分析】(1)设所求数为x ,根据好点的定义分别列出方程x-(-2)=2(4-x )和4-x=2[x-(-2)],解方程即可;(2)根据好点的定义可知分4种情况:①P 为【A ,B 】的好点;②P 为【B ,A 】的好点;③A 为【B ,P 】的好点;④A 是【P ,B 】的好点.设点P 表示的数为y ,根据好点的定义列出方程,进而得出t 的值.【详解】(1)设所求数为x ,由题意得x-(-2)=2(4-x ),解得x=2,所以数2所表示的点是【M ,N 】的好点; 2[x-(-2)]=4-x ,解得x=0,所以数0所表示的点是【N ,M 】的好点;(2)当P 是【A ,B 】的好点时,y-(-20)=2(40-y ),解得y=20, 4020210t -==秒; 当P 是【B ,A 】的好点时,40-y=2[y-(-20)],解得y=0,400410t -==秒; 当A 是【B ,P 】的好点时,40-(-20)=2(-20-y ),解得y=-50,40(50)910t --==秒; 当A 是【P ,B 】的好点时,-20-y=2[40-(-20)],解得y=-140, 40(140)1810t --==秒. ∴当时间等于2秒,4秒,9秒,18秒时,P ,A ,B 中恰有一个点为其余两点的好点.【点睛】本题主要考查一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解好点的定义,找出合适的等量关系列出方程,再求解.6.一个车队共有20辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,行驶时车与车的间隔均相等,甲停在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为4.87米.(1)求行驶时车与车的间隔为多少米?(2)若乙在街道一侧的人行道上与车队同向而行,速度为v 米/秒,当第一辆车的车头到最后一辆车的车尾经过他身边共用了40秒,求v 的值.【答案】(1)车与车的间隔距离为5.4米;(2)5v =.【解析】【分析】(1)首先统一单位,由题意得等量关系:20辆小轿车的总长+20辆车之间的车距=20秒×车的行驶速度,根据等量关系列出方程,再解即可;(2)计算出车队的总长度,再利用总路程为200m得出等式求出答案.【详解】(1)设车与车的间隔距离为x米,x+⨯=⨯,1920 4.872010x=.解得 5.4答:行驶时车与车的间隔为5.4米.(2)车队总长度:20×4.87+5.4×19=200(米),()-⨯=由题意可知:,1040200vv=.解得5答:v的值为5..【点睛】此题主要考查了一元一次方程的应用,利用路程、速度、时间之间的关系得出方程是解题关键.7.阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为1a,排在第二位的数称为第二项,记为2a,依此类推,排在第n位的数称为第n项,记为n a.所以,数列的一般形式可以写成:1a,2a,3a,…,n a.一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.如:数列1,3,5,7,…为等差数列,其中1a1=,2a3=,公差为3a2=.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d 为______,第5项是______.(2)如果一个数列1a ,2a ,3a ,…,n a …,是等差数列,且公差为d ,那么根据定义可得到:21a a =d -,32a a d -=,43a a d -=,…,n n 1a a d --=,….所以21a =a +d ,()3211a a d a d d a 2d =+=++=+,()4311a a d a 2d d a 3d =+=++=+,……,由此,请你填空完成等差数列的通项公式:n 1a =a +(______)d .(3)4041-是不是等差数列5-,7-,9-…的项?如果是,是第几项?【答案】(1)5;25;(2)1n -;(3)-4041是等差数列5-,7-,9-…的项,它是此数列的第2019项.【解析】【分析】(1)根据公差的定义进行求解可得答案,继而根据等差数列的定义即可求得第5项;(2)2a ,3a ,4a 与1a 和d 的关系即可求得答案;(3)根据题意先求出通项公式,继而可求得答案.【详解】(1)根据题意得,d=105=5-;3a 15=,43a =a +d=15+5=20,54a =a +d=20+5=25,故答案为:5;25.(2)21a a d =+()3211a a d a d d a 2d =+=++=+,()4311a a d a 2d d a 3d =+=++=+,……()n 1a a n 1d ∴=+-,故答案为:n 1-;(3)根据题意得,等差数列5-,7-,9-…的项的通项公式为:n a =52(n 1)---,则52(n 1)=4041----,解之得:n=2019,4041∴-是等差数列5-,7-,9-…的项,它是此数列的第2019项.【点睛】本题考查的是阅读理解题,涉及了规律型——数字的变化类、一元一次方程的应用等知识,弄清题意,根据题中的概念以及方法进行求解是关键.8.“今有善行者行一百步,不善行者行六十步”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步,假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?【答案】(1)走路快的人在前面,300步;(2)500步.【解析】【分析】(1)设当走路慢的人再走600步时,走路快的人的走x步,根据同样时间段内,走路快的人能走100步,走路慢的人只能走60步.列方程求解即可;(2)设走路快的人走y步才能追上走路慢的人,根据同样时间段内,走路快的人能走100步,走路慢的人只能走60步,及追及问题可列方程求解.【详解】(1)设当走路慢的人再走600步时,走路快的人的走x步,由题意得x:600=100:60,∴x=1000,∴1000-600-100=300,答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步;(2)设走路快的人走y步才能追上走路慢的人,y,由题意得y=200+60100∴y=500,答:走路快的人走500步才能追上走路慢的人.【点睛】本题考查了应用一元一次方程求解古代行程数学问题,本题中等难度.9.在国庆节来临之际,许多商场利用打折的优惠措施吸引顾客,某件衬衫的标价为x元,现商场以八折优惠出售.(1)该件衬衫的实际售价为元(用含x的式子表示)(2)若打八折销售该衬衫仍可获利20元,打六折则要亏损10元,求该衬衫的进价是多少元?【答案】(1)0.8x;(2)100元【解析】【分析】(1)利用打折与售价的关系进而得出答案;(2)利用进价不变,进而得出的等式求出即可.【详解】解:(1)由题意可得:该衬衫现在售价为:0.8x元/件;故答案为:0.8x;(2)设该衬衫的售价是x元,根据题意可得:0.8x﹣20=0.6x+10,解得:x=150,则150×0.8﹣20=100(元).答:该衬衫每件的进价是100元.【点睛】此题主要考查了一元一次方程的应用,根据题意结合进价与售价的关系求出是解题关键.10.有一个关于数学的故事,蓬蓬国王为了获得贫穷老百的支持,图一个“乐善好施”的好名声,决定施舍每个男人1美元,每个女人0.4美元.为了不使自己花费过多,他想来想去,最后想出了一个方法,决定在正午12时去一个贫困的山村.他十分清楚,在那时,村庄里有60%的男人都外出打猎去了,外出打猎的都不用给钱.已知该村庄里共有1200人,请问:(1)若该村庄男人共有400人,则国王会用去多少美元?(2)若该村庄女人共有400人,则国王会用去多少美元?(3)有人说国王用去的钱数与村庄里男人和女人的具体数目无关,你认为正确吗?为什么?【答案】(1)480;(2)480;(3)正确,理由见解析【解析】【分析】根据题意(1)若该村庄男人共有400人,则国王会用去⨯-⨯+-⨯=+(美元).(2)若该村庄女人共有400(160%)1(1200400)0.4160320400人,则国王会用去(1200400)(160%)14000.4320160-⨯-⨯+⨯=+(美元).(3)设村庄里男人有x人,则女人有(1200)x-人,国王用去的钱为⨯-⨯+-⨯=+⨯-=(美元).解方程(160%)1(1200)0.40.412000.40.4480x x x x可得.【详解】解:(1)若该村庄男人共有400人,则国王会用去⨯-⨯+-⨯=+=(美元).400(160%)1(1200400)0.4160320480(2)若该村庄女人共有400人,则国王会用去(1200400)(160%)14000.4320160480-⨯-⨯+⨯=+=(美元).(3)正确.设村庄里男人有x人,则女人有(1200)x-人,国王用去的钱为x x x x⨯-⨯+-⨯=+⨯-=(美元).所以国(160%)1(1200)0.40.412000.40.4480王用去的钱数与村庄里男人和女人的具体数目无关,都是480美元.【点睛】考核知识点:有理数运算的运用,一元一次方程的运用.根据题列出方程求解是关键.。

七年级数学上册3.3解一元一次方程第二课时习题

七年级数学上册3.3解一元一次方程第二课时习题
第2页
解含有分母一元一次方程
1.(3 分)若5x6-1与23互为倒数,则 x 的值为( C )
A.1
B.-1
C.2
D.-2
2.(3 分)方程x+3 1-56x=1 的解是( D )
1 A.3
B.-13
4 C.3
D.-43
第3页
3.(3 分)将方程x+4 2=2x+6 3的两边同乘____1_2___可得到 3(x+2)=2(2x+3),这种方法叫
x=80
第10页
16.(10 分)某同学在解方程2x-3 1=x+3 a-2 去分母时,方程右边的-2 没有乘 3,因而 求得的方程的解为 x=2,试求 a 的值,并求出原方程的正确的解. 解:根据该同学的做法,去分母,得 2x-1=x+a-2,解得 x=a-1,因为 x=2 是方程的解, 所以 a=3,把 a=3 代入原方程,得2x-3 1=x+3 3-2,解得 x=-2
第8页
二、填空题(每小题 4 分,共 8 分) 13.(2015·嘉兴)公元前 1700 年的古埃及纸草书中,记载着一个数学问题:“它的全部, 加上它的七分之一,其和等于 19.”此问题中“它”的值为________. 14.某书上有一道方程题:2+3⊕x+1=x,⊕处的数字是在印刷时被墨水盖住了,查后
=-5;⑤系数化为 1,得 x=154.其中错误的步骤为__①___⑤___.
7.(3 分)当 x=______时,式子3-22x与2-3 x互为相反数.
第5页
8.(9 分)解下列方程:
(1)5x6-1=73;
x=3
(2)x-2 1=x+3; x=-7
(3)13(x+1)=17(2x+3). x=2
第11页
17.(10 分)已知关于 x 的方程 9x-3=kx+14 有整数解,求整数 k 的值.

人教版七年级数学上册第3章《一元一次方程》单元检测题(2)及答案

人教版七年级数学上册第3章《一元一次方程》单元检测题(2)及答案

人教版七年级数学上册第3章《一元一次方程》单元检测题一、选择题(本大题共10小题,共30.0分)1.已知关于x的方程a+x=5−(2a+1)x的解也是方程−x=x+2的解,则a的值是()A. −5B. −6C. −7D. −82.下列解方程移项正确的是()A. 由3x−2=2x−1,得3x+2x=1+2B. 由x−1=2x+2,得x−2x=2−1C. 由2x−1=3x−2,得2x−3x=1−2D. 由2x+1=3−x,得2x+x=3+13.若3x2m−5+7=1是关于x的一元一次方程,则m的值是()A. 1B. 2C. 3D. 44.已知下列各式:①2x+1=5;②2x+y=5;③(−2)+5=3;④3y−4;⑤13x+2=−x2,其中是方程的有()A. 5个B. 4个C. 3个D. 2个5.若x=3是方程2x+3(n−1)=4的解,则n的值为()A. 13B. 23C. 1D. 26.如果a=b,则下列变形正确的是()A. 3a=3+bB. −a2=−b2C. 5−a=5+bD. a+b=07.如果x=y,那么根据等式的性质下列变形不正确的是()A. x+2=y+2B. 3x=3yC. 5−x=y−5D. −x3=−y38.若某工人每小时生产38个零件,在规定时间内还有15个不能完成,若每小时生产42个零件,则可超额完成5个,问:规定时间是多少?设规定时间为x小时,则可列方程为()A. 38x−15=42x+5B. 38x+15=42x−5C. 42x+38x=15+5D. 42x−38x=15−59.如图:已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2017次相遇在边()上.A. ABB. BCC. CDD. DA10.下列给出的x的值,是方程x−6=2x+5的解的是()A. x=−13B. x=−1 C. x=−11 D. x=113二、填空题(本大题共10小题,共30.0分)11.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利18元,则这件夹克衫的成本价为______元.12.关于x的方程(2m−6)x|m−2|−2=0是一元一次方程,则m=______.13.一家商店将某件服装按成本价提高30%后,又以8折优惠卖出,结果每件仍获利12元,那么这件商品的成本价为______ 元.14.若x=2是方程2x+m−1=5的解,则m=______ .15.甲班有50人,乙班有46人,现从甲班抽调x人到乙班,使甲、乙两班人数相等,则可列方程:________________.16.关于x的方程ax+1=4的解是x=1,则a=____.17.已知某数x,若比它的34大1的数是5,求x.则可列出方程______ .18.已知x=3是方程ax−6=a+10的解,则a=______.19.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab−(a+b),若3☆x=5,则x=______.20.分式变形xx+2=Ax2−4中的整式A=______,变形的依据是______.三、计算题(本大题共6小题,共36.0分)21.解方程:2x−3x+12=4−5x−23.22.列方程解应用题:甲、乙两站相距360千米,一列慢车从甲站开出,每小时行50千米,一列快车从乙站开出,每小时行70千米,两车同时开出,相向而行,多长时间相遇?23.解方程:4x−25−x+62=224.当x=2时,代数式2x2+(3−c)x+c的值是12,求当x=−3时这个代数式的值.25.某校招聘木工维修一批旧课桌,现有甲、乙两名木工参加竞聘.已知甲比乙每天少维修5张课桌,甲单独工作18天或乙单独工作12天均能完成维修工作,木工甲每天工资100元,木工乙每天工资120元.(1)这批需要维修的课桌有多少张?(2)为缩短工期,学校决定同时聘用两人合作维修,但两人合作6天后,甲因有事,由乙单独完成余下的工作,那么学校共应付出多少工资?26.一件工作,甲单独完成需5小时,乙单独完成需3小时,先由甲,乙两人合做1小时,再由乙单独完成剩余任务,共需多少小时完成任务?四、解答题(本大题共4小题,共32.0分)27.某工厂安排600名工人生产A、B两种型号的机器共69台,已知7名工人能生产一台A型机器,10名工人能生产一台B型机器.若要同时完成两种机器的生产任务,应安排生产A型机器和B型机器的工人各多少人?28.已知x=−2是方程a(x+3)=12a+x的解,求32a−(52a−1)+3(4−a)的值.29.某超市用6800元购进A、B两种羽毛球拍共60副,这两种球拍的进价、标价如下表.(1)这两种球拍各购进了多少副?(2)若A型球拍按标价的9折出售,B型球拍按标价的8折出售,那么这批球拍全部售出后,超市共可获利多少元?30.现有甲、乙两个体育用品商店出售乒乓球拍和乒乓球,球拍每块价格为48元,乒乓球每个价格为2元,已知甲店制定的优惠方法是买一块球拍送6个乒乓球,乙店按总价的90%收费,某球队需要买球拍4块,乒乓球若干(不少于24个).(1)当购买多少个乒乓球时,两个商店的收费一样多?(2)当需要购买240个乒乓球时,选择哪家商店购买更优惠?请说明理由.答案和解析1.【答案】C【解析】【分析】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.首先解方程−x=x+2求得x的值,然后代入a+x=5−(2a+1)x得到关于a的方程,求得a的值.【解答】解:解方程−x=x+2得x=−1,把x=−1代入a+x=5−(2a+1)x得a−1=5+(2a+1),解得a=−7.故选C.2.【答案】C【解析】【分析】此题考查了解一元一次方程,移项时注意要变号.根据移项要变号判断即可.【解答】解:A、由3x−2=2x−1,得3x−2x=2−1,不符合题意;B、由x−1=2x+2,得x−2x=2+1,不符合题意;C、由2x−1=3x−2,得2x−3x=1−2,符合题意;D、由2x+1=3−x,得2x+x=3−1,不符合题意,故选:C.3.【答案】C【解析】【试题解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).则x的次数是1,即可得到关于m的方程,即可求解.本题考查了一元一次方程的概念和解法.解题的关键是掌握一元一次方程的未知数的指数为1.【解答】解:∵3x2m−5+7=1是关于x的一元一次方程,∴2m−5=1,解得:m=3,故选:C.4.【答案】C【解析】【试题解析】【分析】本题主要考查方程的概念.方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.根据方程的定义进行判定.【解答】解:①是含有未知数的等式,所以是方程;②是含有未知数的等式,所以是方程;③是等式,不含未知数,所以不是方程;④含有未知数,不是等式,所以不是方程;⑤是含有未知数的等式,所以是方程;综上,是方程的有①②⑤,共3个.故选C.5.【答案】A【解析】【分析】此题考查的知识点是一元一次方程的解,本题的关键是理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.根据方程的解的定义,把x=3代入方程2x+3(n−1)=4,再解关于n的一元一次方程,即可求出n的值.【解答】解:∵x=3是方程2x+3(n−1)=4的解,∴2×3+3n−3=4,解得:n=13.故选A.6.【答案】B【解析】解:A、根据等式的性质,3a=3b,错误;B、根据等式的性质,−a2=−b2,正确;C、根据等式的性质,5−a=5−b,错误;D、根据等式的性质,a−b=0,错误;故选B根据等式的基本性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式,针对每一个选项进行判断即可解决.此题主要考查了等式的性质,关键是熟练掌握等式的性质定理.7.【答案】C【解析】解:A、x+2=y+2,正确;B、3x=3y,正确;C、5−x=5−y,原来的变形错误;D、−x3=−y3,正确;故选:C.利用等式的性质变形得到结果,即可作出判断.本题考查了等式的性质,熟记等式的性质是解题的关键.8.【答案】B【解析】【分析】此题主要考查了由实际问题抽象出一元一次方程,根据任务的零件个数不变得出方程是解题关键.设规定时间为x小时,根据“每小时生产38个零件,在规定时间内还差15个不能完成;若每小时生产42个,则可超额完成5个”表示出零件个数得出方程即可.【解答】解:设规定时间为x小时,则38x+15=42x−5.故选B.9.【答案】D【解析】【分析】本题主要考查行程问题中的相遇问题及按比例分配的运用,难度较大,注意先通过计算发现规律然后再解决问题.此题利用行程问题中的相遇问题,设出正方形的边长,乙的速度是甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答.解:因为正方形的边长为4,乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为8,甲行的路程为2×4×11+3=2,乙行的路程为2×4×31+3 =6,在AD边相遇;②第一次相遇到第二次相遇甲乙行的路程和为16,甲行的路程为4×4×11+3=4,乙行的路程为4×4×31+3 =12,在CD边相遇;③第二次相遇到第三次相遇甲乙行的路程和为16,甲行的路程为4×4×11+3=4,乙行的路程为4×4×31+3 =12,在BC边相遇;④第三次相遇到第四次相遇甲乙行的路程和为16,甲行的路程为4×4×11+3=4,乙行的路程为4×4×31+3 =12,在AB边相遇;⑤第四次相遇到第五次相遇甲乙行的路程和为16,甲行的路程为4×4×11+3=4,乙行的路程为4×4×31+3 =12,在AD边相遇;…因为2017=504×4+1,所以它们第2017次相遇在边AD上.故选D.10.【答案】C【解析】解:移项得,x−2x=5+6,合并同类项得,−x=11,x的系数化为1得,x=−11.故选:C.先移项,再合并同类项,把x的系数化为1即可.本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.11.【答案】90【解析】解:设这件夹克衫的成本价为x元,由题意,得x(1+50%)×80%−x=18,解得:x=90.答:这件夹克衫的成本价为90元.故答案为90.设这件夹克衫的成本价为x元,则标价就为1.5x元,售价就为1.5x×0.8元,由利润=售价−进价建立方程求出其解即可.本题考查了销售问题的数量关系利润=售价−进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.12.【答案】1【解析】解:由题意得:|m−2|=1,且2m−6≠0,解得:m=1,故答案为:1.根据一元一次方程的定义可得|m−2|=1,且2m−6≠0,再解即可.此题主要考查了一元一次方程的定义,只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.13.【答案】300【解析】解:设商品的成本价为x元,由题意得:(1+30%)x⋅80%=x+12,解得:x=300.答:这件商品的成本价为300元.故答案为:300.首先设商品的成本价为x元,由题意得等量关系:标价×打折=成本价+12元,根据等量关系列出方程即可.此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,再设出未知数,列出方程即可.14.【答案】2【解析】解:把x=2代入方程得:4+m−1=5,解得:m=2,故答案为:2把x=2代入方程计算即可求出m的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.【答案】50−x=46+x【解析】【分析】本题考查了在实际问题抽象出一元一次方程.根据题意甲班抽调x后剩下(50−x)人,乙班的人数为(46+x)人,根据题意列出等式即可.【解答】解:根据题意甲班抽调x后剩下(50−x)人,乙班的人数为(46+x)人,依题意得:50−x=46+x.故答案为50−x=46+x.16.【答案】3【解析】解:根据题意,将x=1代入ax+1=4,得:a+1=4,解得:a=3,故答案为:3.将x=1代入方程得到关于a的方程,解之可得.本题主要考查一元一次方程的解,解题的关键是熟练掌握方程的解的定义.17.【答案】34x +1=5【解析】解:由题意得:34x +1=5,故答案为:34x +1=5.首先表示这个数的34为34x ,再表示比这个数的34大1的数是34x +1,然后根据“是5”可得方程.此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系. 18.【答案】8【解析】解:∵x =3是方程ax −6=a +10的解,∴x =3满足方程ax −6=a +10,∴3a −6=a +10,解得a =8.故答案为:8.将x =3代入方程ax −6=a +10,然后解关于a 的一元一次方程即可.本题主要考查了一元一次方程的解.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值. 19.【答案】4【解析】【分析】已知等式利用题中的新定义化简,计算即可求出x 的值.此题考查了解一元一次方程,弄清题中的新定义是解本题的关键.【解答】解:根据题中的新定义得:3x −(3+x)=5,去括号得:3x −3−x =5,移项合并得:2x =8,解得:x =4,故答案为:4.20.【答案】x 2−2x 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变【试题解析】【分析】本题主要考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,依据x2−4=(x+2)(x−2),即可得到分式变形xx+2=Ax2−4中的整式A=x(x−2)=x2−2x.【解答】解:∵x2−4=(x+2)(x−2),∴分式变形xx+2=Ax2−4中的整式A=x(x−2)=x2−2x,依据是分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.故答案为:x2−2x,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.21.【答案】解:去分母,得:12x−3(3x+1)=24−2(5x−2)去括号,得,12x−9x−3=24−10x+4合并,得;13x=31x=3113.【解析】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.方程去分母,去括号,移项合并,把x系数化为1,即可求出解.22.【答案】解:设x小时相遇,根据题意有:50x+70x=360解这个方程得:x=3.答:用了3小时相遇.【解析】此题的等量关系:快车走的路程+慢车走的路程=360,据此列方程求解.此题考查的知识点是一元一次方程的应用,关键是分析找出相等关系列出方程求解.23.【答案】解:4x−25−x+62=22(4x−2)−5(x+6)=208x−4−5x−30=203x=54【解析】本题考查解一元一次方程的知识,题目难度不大,但是出错率很高,是失分率很高的一类题目,同学们要在按步骤解答的基础上更加细心的解答.这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.24.【答案】解:把x=2代入2x2+(3−c)x+c=12,得:8+2(3−c)+c=12,解得:c=2,则这个代数式为2x2+x+2,则当x=−3时,原式=2×(−3)2−3+2=18−3+2=17.【解析】此题考查了代数式求值,解一元一次方程,熟练掌握运算法则是解本题的关键.把x=2代入代数式使其值为12,求出c的值,进而确定出所求代数式,再将x=−3代入,即可得解.25.【答案】解:(1)设甲每天维修x张课桌,则乙每天维修(x+5)张课桌,根据题意得:18x=12(x+5),解得:x=10,∴18x=180,答:这批需要维修的课桌有180张;(2)设乙完成工作的时间为y天,根据题意得:6×10+15y=180,解得:y=8,则学校应付出的工资为100×6+120×8=600+960=1560元.【解析】(1)设甲每天维修x张课桌,则乙每天维修(x+5)张课桌,根据题意列出方程,求出方程的解即可得到所求;(2)设乙完成工作的时间为y天,根据题意列出方程,求出方程的解即可得到所求.此题考查了一元一次方程的应用,弄清题意是解本题的关键.26.【答案】解:设由甲、乙两人合做1小时,再由乙单独完成剩余部分,还需x小时完成,由题意,得:(15+13)×1+13x=1,解得:x=75,即剩余部分由乙单独完成,还需75小时完成,则共需1+75=125小时完成任务,答:先由甲,乙两人合做1小时,再由乙单独完成剩余任务,共需125小时完成任务.【解析】设由甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需x小时完成,根据总工作量=各部分的工作量之和建立等量关系列出方程,求出其解就可以了.本题是一道工程问题的运用题,考查了工作总量等于工作效率乘以工作时间的运用,一元一次方程的解法的运用,解答时根据条件建立方程是关键.27.【答案】解:设应安排生产A型机器的为x人,则生产B型机器的人数为(600−x)人,x 7+600−x10=69,解得x=210,∴生产B型机器的人数为600−210=390人答:应安排210人生产A型,390人生产B型.【解析】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.设应安排生产A 型机器的为x人,则生产B型机器的人数为(600−x)人,根据一共生产69台机器即可得出关于x的一元一次方程,解之即可得出结论.28.【答案】解:∵x=−2是方程a(x+3)=12a+x的解,∴a=12a−2,解得a=−4,∴把a=−4代入32a−(52a−1)+3(4−a)得:原式=−6−(−10−1)+3×8=−6+11+24=29.【解析】本题考查了一元一次方程的解和代数式的值,先求出a的值,再求出代数式的值.根据方程的解满足方程a(x+3)=12a+x,可得关于a的一元一次方程,根据解方程,可得a的值,根据代数式代入a求值,可得答案.29.【答案】解:(1)设A型球拍购进x副,则B型球拍购进(60−x)副,由题意得:60x+140(60−x)=6800,解得:x=20,则60−x=40.答:A、B型球拍分别购进20副和40副.(2)20×(0.9×100−60)+40×(0.8×200−140)=20×30+40×20=600+800=1400(元).答:这批球拍全部售出后,超市共可获利1400元.【解析】【试题解析】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.(1)设A型球拍购进x副,则B型球拍购进(60−x)副,根据总进价为6800元,列方程求解;(2)用(售价−进价)×数量,分别求出A、B两种羽毛球拍的利润,再相加即可求出获利.30.【答案】解:(1)设当购买x个乒乓球时,两个商店的收费一样多,由题意得:4×48+(x−24)×2=(4×48+2x)×90%,解得:x=144.答:当购买144个乒乓球时,两个商店的收费一样多;(2)甲店花费:4×48+(240−24)×2=624(元),乙店花费:(4×48+240×2)×90%=604.8(元),∵624>604.8,∴在乙店购买更优惠.【解析】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.(1)首先设当购买x个乒乓球时,两个商店的收费一样多,由题意得等量关系:4块球拍钱+(x−24)个乒乓球钱=(4块球拍钱+x个乒乓球钱)×90%,根据等量关系列出方程,再解即可;(2)分别计算出购买240个乒乓球时在甲店的花费和乙店的花费,再比较即可.。

人教版数学七年级上册3.3《解一元一次方程(二)》同步练习(有答案)

人教版数学七年级上册3.3《解一元一次方程(二)》同步练习(有答案)

《解一元一次方程(二)》同步练习一、选择题1.解方程1443312=---x x 时,去分母正确的是( ) A .1129)12(4=---x x B .12)43(348=---x xC .1129)12(4=+--x xD .12)43(348=-+-x x2.将方程5)24(32=--x x 去括号正确的是( )A .52122=--x xB .56122=--x xC .56122=+-x xD .5632=+-x x3.将方程131212=--+x x 去分母正确的是( ) A .62216=+-+x x B .62236=--+x xC .12236=+-+x xD .62236=+-+x x4.解方程256133x x x -=--+,去分母所得结果正确的是( ) A .x x x -=+-+15132 B .x x x 315162-=+-+C .x x x -=--+15162D .x x x 315132-=+-+5.下列解方程的过程中正确的是( )A .将5174732+-=--x x 去分母得)17(4)75(52+-=--x x B .由102.07.015.03.0=--x x 得10027015310=--x x C .)28(2)73(540+=--x x 去括号得41671540+=--x xD .552=-x ,得225-=x 6.下列方程,解是0=x 的是( )A .8.034.057x x =- B .13423--=-x x C .()[]{}98765432=---x D .x x 322)73(72-=+ 7.方程)1(332+=-y y 的解是( )A .-6B .6C .54 D .0 8.式子33+x 的值比式子512-x 的值大1,则x 为( ) A .3 B .4 C .5 D .6 9.若代数式23-y 的值比312-y 的值大1,则y 的值是( ) A .15 B .13 C .-13 D .-1510.方程60)1(4)2(4=+--x x 的解是( )A .7=xB .76=x C .76-=x D .7-=x 11.若213+x 比322-x 小1,则x 的值为( ) A .513 B .-135 C .-513 D .135 12.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做一天,然后甲、乙合作完成此项工作,若甲乙共做了x 天,所列方程为( )A .1641=++x x B .1614=++x x C .1614=-+x x D .161414=+++x x 13.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①1431040-=+m m ②4314010+=+n n ③4314010-=-n n ④1431040+=+m m 其中符合题意的是( ) (A )①② (B )③④ (C )①③ (D )②④14.若方程)23()12(3+-=++a x a x 的解是0,则a 的值等于( )A .51B .53C .-51D .-53 15.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5千米,则乙的时速是( )A .12.5千米/时B .15千米/时C .17.5千米/时D .20千米/时二、填空题1.____=m 时,式子212-m 的值是3; 2.如果4是关于x 的方程a a x x a 2)(353++=-的解,则____=a ;3.若x y x y -=+=8,3521,当1y 比2y 大于1时,____=x ;4.关于x 的方程054)2(2=-++k kx x k 是一元一次方程,则____=k5.若)9(312y --与)4(5-y 的值相等,则____=y6.当____=x 时,31-x 的值比21+x 的值大-3 7.当____=m 时,方程3445-=+x x 和方程)2(2)1(2-=-+m m x 的解相同.8.要使21+m 与23-m 不相等,则m 不能取的值是_______ 9.方程332=-x 与方程0331=--x a 有相同的解,则____=a . 10.某数x 的21倍比另一数y 的23倍多5,则____=y . 11.一个两位数,两个数位上的数字之和为12,且个位数字比十位数字大2,则这个两位数为________________;12.某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则它最后的单价是___________.13.甲能在11天内完成此项工作,乙的工作效率比甲高10%,那么乙完成这项工作的天数为_______天.14.某超市规定,如果购买不超过50元的商品时,按全额收费,购买超过50元的商品时,超过部分按九折消费,某顾客在一次消费中向售货员交纳了212元,那么在此消费中该顾客购买的是价值________________元的商品.15.下面是甲商场电脑产品的进货单,其中进价一栏被墨迹污染.读了进货单后,请你求出这台电脑的进价,是__________元.元三、计算题1.解下列方程(1)521215++=--y y y (2)13.02.18.12.06.02.1=-+-x x (3)5162.15.032.08+-=--+x x x (4)23241233431=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 2.解下列方程(1)250)104(2)3010(5-=--+x x(2)2233)5(54--+=--+x x x x (3)1612213-+=-x x (4)⎥⎦⎤⎢⎣⎡+-=⎪⎭⎫ ⎝⎛---4)3(551014224123x x x x (5)5:63:2=m(6)7:23:4t =(7))1(27)1(4)1(31)1(3+--=--+x x x x (8))1(32)1(2121-=⎥⎦⎤⎢⎣⎡--x x x 3.利用等式的性质解方程:(1))1(9)14(3)2(2x x x -=--- (2)37615=-y(3)14126110312-+=+--x x x (4)x x 5.12)73(72-=+ (5)103.02.017.07.0+-=x x (6)y y 535.244.2=-- 4.列方程求解:(1)已知6--x 的值与71互为倒数,求x ; (2)x 等于什么数时,133-+x 等于1752++x 的值? (3)x 取何值时,235x -和[])53(521--x x 互为相反数? (4)a 为何值时,关于x 的方程03=+a x 的解比方程0432=--x 的解大2? 5.已知2021at t v S +=,如果81,4,13===a t S ,求0v . 6.若4=y 是方程)(532m y m y -=-+的解,求13-m 的值. 四、应用题1.小王在超市中买了单价是2.8元的某品牌鲜奶若干袋,过了一段时间再去超市,发现这种鲜奶正进行让利销售,每袋让利0.3元,于是他比上次多买了2袋,却只比上次多花了2元钱,问上次买了多少袋这样的鲜奶?2.冷饮厅中A 种冰激凌比B 种冰激凌贵1元,小明和同学要了3个B 种冰激凌、2个A 种冰激凌,一共花了16元.两种冰激凌每个多少钱?3.班级的书架宽88厘米,某一层上摆满一种历史书和一种文学书,共90本.小明量得一本历史书厚0.8厘米,一本文学书厚1.2厘米.你知道这层书架上历史书和文学书各有多少本吗?4.一个两位数,十位上的数比个位上的数小1,十位与个位上的数的和是这个两位数的51,求这个两位数. 5.元旦期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到7折和9折,共付款386元,这两种商品的原销售价之和为500元.问,这两种商品的原销售价分别为多少钱?6.一个蓄水池装有甲、乙、丙三个进水管.单独开放甲管,45分钟可以注满全池;单独开放乙管,60分钟可以注满全池;单独开放丙管,90分钟可以注满全池.现将三管一齐开放,多少分钟可以注满水池?7.某中学开展校外植树活动,六年级学生单独种植,需要7.5小时完成;七年级学生单独种植,需要5小时完成.现在六年级、七年级学生先一起种植1小时,再由七年级学生单独完成剩余部分.共需多少时间完成?8.朝阳中学在预防“非典”的活动中,初二(2)班45名同学被平均分配到甲、乙、丙三处打扫环境卫生.甲处的同学最先完成打扫任务,班卫生委员根据实际情况及时把甲处的同学全部调到乙、丙两处支援,调动后乙处的人数恰好为丙处人数的1.5倍.问从甲处调往乙、丙两处各多少人?9.国家从多方面保障农民的根本利益,重视农业的发展.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,共用去了44 000元.其中种茄子每亩用了1700元,获纯利2 400元;种西红柿每亩用了1800元,获纯利2 600元.你知道王大伯今年一共获纯利多少元吗?10.我国古代数学问题:有大小两种盛米的桶,已经知道5个大桶加上1个小桶可以盛3斛米,1个大桶加上5个小桶可以盛2斛米.问1个大桶、1个小桶分别可以盛多少斛米?选自《九章算术》卷七“盈不足”.“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”11.我国古代数学问题:好马每天走240里,劣马每天走150里.劣马先走12天,好马几天可以追上劣马?选自《算学启蒙》.“良马日行二百四十里,劣马日行一百五十里.努马先行一十二日,问良马几何日追及之.”12.在城市中公交车的发车间隔时间是一定的.小明放学后走在回家的路上,他发现每隔6分钟从后面开来一辆公交车,每隔2分钟从前面开来一辆公交车,他想,公交车到底是几分钟发车一辆呢?你能帮他计算一下吗?13.某工程队每天安排120个劳力修建水库,平均每天每个劳力能挖土5方或运土3方,为了使挖出的土及时运走,问应如何安排挖土和运土的劳力?14.一个两位数,十位数字比个位数字的4倍多1,将两个数字调换顺序后所得数比原数小63,求原数.15.某商店为了促销G牌空调机,2000年元旦那天购买该机可分期付款,在购买时先付一笔款,余下部分及它的利息(年利率为5.6%)在2001年元旦付清,该空调机售价每台8224元.若两次付款数相同,问每次应付款多少元?16.某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元.问该文具每件的进货价是多少元?17.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.在安全检查中,对4道门进行了测试.当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,1分钟内可以通过200名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤(尽管有老师组织),出门的效率将降低10%;安全检查规定,在紧急情况下全大楼的师生应在5分钟内通过这4道门安全撤离.假设每间教室可容纳50名学生,此校教师是学生数的10%,教师通过门的速度快于学生,问:建造的这4道门是否符合安全规定?参考答案一、选择题1.B 2.C 3.D 4.B 5.D 6.D 7.A 8.A 9.C10.D 11.C 12. A 13.B 14.D 15.B二、填空题1.27 2.-16 3.1 4.-2 5.25 6.413 7.38- 8.1 9.2 10.310-x 11.57 12.0.99a 13.10 14.答案:230.利用等量关系50元+九折消费=212元.设购买的是价值x 元的商品,则212%90)50(50=⨯-+x去括号整理得2079.0=x ,解得230=x (元).15.4470(设进价为x 元,则2101085850+=⨯x ,解得4470=x 三、计算题1.(1)两边乘以10得)2(210)1(52++=--y y y去括号,得95-=y 所以,59-=y(2)转化为1312182612=-+-x x 简化为14636=-+-x x 解得32=x (3)转化为5162.153********+-=--+x x x 去分母,得)16(212)3010(2)8010(5+-=--+x x x去括号整理得48032-=x ,解得15-=x(4)两边同乘以3,去掉中括号得632412334=-⎪⎭⎫ ⎝⎛-x 32-移到右边再乘以43,去掉小括号得 54123=-x 解得27=x 2.(1)10-=x (2)6=x (3)72-=x (4)4=x (5)8.1=m (6)314=t (7)5-=x (8)511=x 3.(1)10-=x (2)3=y (3)61=x (4)0=x (5)1714=x (6)4=y 4.(1)13,1)6(71-==--x x (2)36,1752133=++=-+x x x (3)10,0)]53(5[21235==--+-x x x x (4)解03=+a x 得,3a x -=,解0432=--x 得,6-=x ,依题意得2)6(3=---a ,∴12=a 5.3,48121413020=⨯⨯+=v v 6.将4=y 代入方程得)4(5324m m -=-+ 整理得m m 5202-=-,所以,29=m , 则22513=-m 四、应用题1.设上次买了x 袋鲜奶,则128.2)2)(3.08.2(=+=+-x x x2.设A 种冰激凌每个x 元,则8.3=x3.设书有x 本,则5088)90(2.18.0==-+x x x4.设个位数字为x ,则5])1(10[511=+-=-+x x x x x ,此数为45 5.设甲种商品的原售价为x 元,则320%38)500%(90%70==-+x x x6.设x 分可以注满水池,则201904560==++x x x x 7.设共需x 小时完成,则313)1(51515.711=-=⎪⎭⎫ ⎝⎛+-x x 8.设甲种调往乙处x 人,则12)1515(5.115=-+=+x x x9.设种茄子x 亩,则1044000)5(18001700==-+x x x ,总获利为:630002600)1025(240010=⨯-+⨯10.设1个小桶盛y 斛米,则247,3)52(5==+-y y y ,大桶可盛米:241352=-y 11.设好马x 天可以追上劣马,则1.20240)12(150==+⨯x x x12.设公交车x 分钟发车一辆,则32266=-=-x x x13.设安排x 人挖土,则安排)120(x -人运土,则75120,45),120(35=-=-=x x x x (人)14.设个位数字为x ,则十位数字为14+x .2,63])14(10[1410=-=++-++x x x x x ,所以原数是92.15.分析:设第一次付款x 元,则第二次付款%)6.51)(8224(+-x 元,由两次付款数相同,可得 %)6.51)(8224(+-=x x .解:设第一次付款x 元,则%)6.51)(8224(+-=x x解得4224=x答:每次应付款4224元.说明:本题是分期付款问题,是一道紧扣生活实际和社会热点的好题.16.分析:利用等量关系盈利=售价-进价.解:设每件文具进货价为x 元,则标价为)2(+x 元,则x x -⨯+=%70)2(2.0, 整理后,2.13.0=x ,所以,4=x (元).因此,该文具每件的进价为4元.17.(1)设平均每分钟一道正门可以通过x 名学生,则一道侧门可以通过)200(x -名学生,则560)]200(2[2=-+x x解得120=x (名) 80200=-x 名所以,平均每分钟一道正门可以通过120名学生,一道侧门可以通过80名学生(2)这栋楼可容纳50×8×4=1 600(名)师生总和为1 600+1 600×10%=1 760(名)5分钟4道门能通过(120+80)×2×5=2 000(名)拥护时可通过2 000×(1-10%)=1 800(名)而17601800>且教师出门又快于学生所以,建造的4道门符合规定.。

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案) (4)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案) (4)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案)小明从家里骑自行车到学校,每小时骑20km ,可早到25分钟,每小时骑15km 就会迟到20分钟.问他家到学校的路程是多少?【答案】他家到学校的路程是45km . 【解析】 【分析】设小明到学校的时间为x 小时.根据路程不变列出方程,并解答. 【详解】设小明到学校的时间为x 小时,252060201560x x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭解得83x =.他家到学校的路程为2560820453⎛⎫⨯-= ⎪⎝⎭km答:他家到学校的路程是45km . 【点睛】本题考查了由实际问题列一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.32.张师傅在铺瓷砖时发现,用8块大小一样的小长方形瓷砖恰好可以拼成一个大的长方形,如图①.然后,他用这8块瓷砖又拼出一个正方形,如图②,中间恰好空出一个边长为1的小正方形(阴影部分).(1)请你根据图①写出小长方形的长与宽之比为;(2)请你根据图②列出方程,求出小长方形的长与宽.【答案】(1) 5:3;(2)小长方形的长是5,宽是3.【解析】【分析】(1)直接利用已知图形边长之间的关系得出小长方形的长与宽之比;(2)观察图形,用两个不同的式子表示正方形的边长,得到方程从而得解.【详解】解:(1)如图(1)所示,5个小长方形的宽=3个小长方形的长,则小长方形的长与宽之比是:5:3.故答案是:5:3;(2)设这8个大小一样的小长方形的长为5x,则宽为3x, 由题意,得251523⨯+=+⨯x x xx x+=10111x=1则小长方形的长为5x=5,宽为3x=3.【点睛】本题考查了一元一次方程的应用.解题关键是仔细观察图形弄清题意,找到合适的等量关系,列出方程.33.下面是伟大的数学家欧拉亲自编的一道题:父亲临终时立下遗嘱,按下述方式分配遗产,老大分得100克朗和剩下的十分之一,老二分得200克朗和剩下的十分之一,老三分得300克朗和剩下的十分之一,老四分得400克朗和剩下的十分之一,… …,依次类推分给其余的孩子,最后发现遗产全部分完后所有孩子分得的遗产相等,遗产总数、孩子人数和每个孩子分得的遗产各是多少?【答案】遗产总数为8100克朗,共有孩子9人,每个孩子分得遗产900克朗.【解析】 【分析】设遗产总数为x 克朗,用代数式分别表示出老大和老二分得到的遗产,根据题意分得到的遗产相等,列出方程即可解答;【详解】解:设遗产总数为x 克朗,则老大分得1100(100)10x +-,老二分得()112001001002001010x x ⎡⎤+----⎢⎥⎣⎦, 根据题意可得,1100(100)10x +-=()112001001002001010x x ⎡⎤+----⎢⎥⎣⎦,解得x =8100(克朗), 则老大分得1100(100)10x +-=900(克朗), 81009009÷=(人),答:遗产总数为8100克朗,共有孩子9人,每个孩子分得遗产900克朗.【点睛】本题主要考查了一元一次方程的应用,掌握一元一次方程是解题的关键.34.七(3)班共有学生48人,其中男生人数比女生人数的2倍少15人,问这个班男、女学生各有多少人?【答案】男生有27人,女生有21人.【解析】【分析】根据总人数等于男生人数加女生人数列方程即可求解;【详解】解:设女生有x人,则男生有(2x-15)人,根据题意可得,+-=,x x(215)48解得:x=21,则2x-15=27,答:男生有27人,女生有21人.【点睛】本题主要考查了一元一次方程的应用,掌握一元一次方程是解题的关键.35.已知数轴上有A,B,C三点,分别代表﹣30,﹣10,10,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)甲,乙经过多少秒在数轴上相遇,并求出相遇点表示的数?(2)多少秒后,甲到A ,B ,C 的距离和为48个单位?(3)在甲到A 、B 、C 的距离和为48个单位时,若甲调头并保持速度不变,则甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.【答案】(1)4,14-;(2)3或7;(3)能,38- 【解析】 【分析】(1)设x 秒后甲与乙相遇,根据甲与乙的路程差为40,可列出方程求解即可;(2)设y 秒后甲到A 、B 、C 的距离和为48个单位,分甲位于AB 或BC 之间两种情况讨论,即可求解;(3)设甲调头a 秒后与乙在数轴上相遇,需要分类讨论:甲从A 向右运动3秒时返回和甲从A 向右运动7秒时返回两种情况,分别表示出甲、乙表示的数,结合线段间的和与差的关系列出方程并解答.【详解】解:(1)设x 秒后甲与乙相遇, 则4640x x +=, 解得4x =,4416⨯=, 301614-+=-.故甲、乙在数轴上的点14-相遇;(2)设y 秒后,甲到A 、B 、C 的距离和为48个单位, 当甲位于AB 之间时:()()420440448y y y +-+-=,解得:3y =;当甲位于BC 之间时:()()442040448y y y +-+-=, 解得:7y =;答:3或7秒后,甲到A 、B 、C 的距离和为48个单位; (3)设甲调头a 秒后与乙相遇, 若甲从A 向右运动3秒时返回,甲表示的数为:30434a -+⨯-;乙表示的数为:10636a -⨯-, 由题意得:3043410636a a -+⨯-=-⨯-, 解得:5a =;相遇点表示的数为:30434538-+⨯-⨯=-. 若甲从A 向右运动7秒时返回,甲表示的数为:30474a -+⨯-;乙表示的数为:10676a -⨯-, 由题意得:3047410676a a -+⨯-=-⨯-, 解得:15a =-;此时甲在表示-2的点上, 乙在表示-32的点上, 乙在甲的左侧,甲追及不上乙,因而不可能相遇,故15a =-应舍去;答:甲从A 向右运动3秒时返回,甲、乙能在数轴上相遇,相遇点表示的数为38-.【点睛】本题考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,要注意分类讨论的思想.36.下面为某年11月的日历:(1)在日历上任意圈出一个竖列上相邻的3个数;①设中间的一个数为a ,则另外的两个数为 、 ; ①若已知这三个数的和为42,则这三天都在星期 ; (2)在日历上用一个小正方形任意圈出其中的9个数,设圈出的9个数的中心的数为b,若这9个数的和为153,求21b -的值.【答案】(1)①7a -,7a +;②一;(2)288 【解析】 【分析】(1)①观察日历发现从上至下,数值是逐个增加7,据此可得出a 数上下两个数;②根据①中列出的三个数代数式,得出三数和的代数式求解即可;(2)根据(1)中的规律,再结合前后数相差1的规律,得出9个数的代数式,再得出9个数和的代数式,求得b 后代入式子求值即可.【详解】(1)①观察日历发现从上至下,数值是逐个增加7 ∵中间的一个数为a∴上面的数为:7a -,下面的数为:7a + 故填:7a -,7a +; ②由题得:7742a a a -+++= 解得:14a =,77a -=,721a += 对照日历可知:这三天都在星期一;(2)根据(1)中的规律,再结合前后数相差1的规律,得出9个数的代数式如下所示:将这9个数的代数式的相加得:876116789b b b b b b b b b b -+-+-+-+++++++++= ∴9153b = 解得:17b = ∴221171288b -=-= 【点睛】本题主要考查列代数式,找数字规律,观察数据找出规律是关键.37.如图,在数轴上点 A 表示数 −20 ,点 C 表示数 30 ,我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB,点B与点C之间的距离记作BC…(1)点A与点C之间的距离记作AC,则AC的长为________;若数轴上有一点D满足CD=AD,则D点表示的数为___________;(2)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值;①若点A向左运动,点C向右运动,2AB−m×BC的值不随时间t的变化而改变,则2AB−m×BC的值为_____________(直接写出答案).;②-45.【答案】(1)50;5;(2)①t=10或83【解析】【分析】(1)在数轴上表示两点所组成的线段长度用右边点所表示的数减去左边点所表示的数即可.(2)当数轴上想表示两个点之间的距离,根据绝对值的意义可用绝对值进行处理.动点在数轴上运动,在已知运动的方向和速度之后,就可以利用原来所在的数如果向右移动就加上向右移动的距离,如果向左移动,就减去向左移动的距离.【详解】解:(1)∵A表示的数为-20,C表示的数为30,∴AC=30-(-20)=50;∵CD=AD∴点D为AC的中点∴D所表示的数为20302-+=5,故答案为50;5(2)①根据题意,A所表示的数为-20+2t,C所表示的数为30-3t,B所表示的数为1+t,AB=|-20+2t-(1+t)|=|-21+t|,BC=|30-3t-(1+t)|=|29-4t|,∵AB=BC∴|-21+t|=|29-4t|,-21+t=29-4t,解得t=10,-21+t=4t-29解得t=83.∴当AB=BC时,t=10或83.②根据题意,A所表示的数为-20-2t,B所表示的数为1+t,C所表示的数为30+3t,AB=1+t-(-20-2t)=21+3t,BC=30+3t-(1+t)=29+2t,∴2AB-m×BC=2(21+3t)-m×(29+2t)=42+6t-29m-2mt,∵2AB-m×BC的值不随时间t的变化而改变,∴6t-2mt=0,∴m=3,∴42+6t-29m-2mt=-45,∴2AB-m ×BC=-45.故答案为-45.【点睛】本题考查了数轴上两点之间的距离表示方法,数轴上的中点公式,动点在数轴上运动,在已知运动的方向和速度之后,就可以利用原来所在的数如果向右移动就加上向右移动的距离,如果向左移动,就减去向左移动的距离为解题关键,根据等量关系列出方程求解是解题的关键.38.加工一批零件,甲单独做需要20天完成,乙单独做需要15天完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章一元一次方程习题3
姓名: 学号: 分数:
一、选择题(36分)
1、下列四个式子中,是一元一次方程的是
A 、2x -6
B 、x -1=0
C 、2x +y=5
D 、
3
21+x =1 2、下列等式变形中,结果不正确...
的是( ) A .如果a=b, 那么a +2b=3b , B .如果a b =,那么a -m=b -m
C .如果a=b , 那么ac 2=bc 2
D .如果3x=6y -1,那么x=2y -1
3、下列方程中,解为x=4的方程是( )
A .13-=-x
B .x x =-26
C .1372x +=
D .425
4-=-x x 4、解方程3x -2=3-2x 时,正确且合理的移项是( )
A 、-2+3x=-2x+3
B 、-2+2x=3-3x
C 、3x -2x=3-2
D 、 3x+2x=3+2
5、在解方程21x --3
32x +=1时,去分母正确的是 A 、3(x -1)-2(2+3x )=1 B 、3(x -1)-2(2x +3)=6
C 、3x -1-4x +3=1
D 、3x -1-4x +3=6
6、某商场上月的营业额是a 万元,本月比上月增长15%,那么本月的营业额是( )
(A )()%151∙+a 万元 (B )a ∙%15万元 (C )()a %151+万元(D )()a 2%151+万元
7、方程 m y y 253+=-的解为3=y ,则m 的值为( )
A 、21
B 、-2
1 C 、3 D 、-3 8、若a 、b 互为相反数(a ≠0),则关于x 的方程ax +b=0的解是( )
A 、x=1
B 、x =-1
C 、x =1或x =-1
D 、不能确定
9、某幼儿园阿姨给小朋友分苹果,每人分3个则剩1个;每人分4个则差2个;问有多少个苹果?设有x 个苹果,则可列方程为( )
A 、3x +1=4x -2
B 、4231+=-x x
C 、4231-=+x x
D 、4
132-=+x x 10.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价 ( )
A.40%
B.20% C25% D.15%
11、甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需( ).
(A )9天 (B )10天
(C )11天 (D )12天
12、已知a 是一个两位数,b 是一个三位数,将a 写在b 的前面组成一个五位数,则这个五位数可以表示为( )
A 、ab
B 、10+b
C 、100a +b
D 、1000a +b
二、填空题(14分)
13.已知轮船逆水前进的速度为m 千米/时,水流速度为2千米/时,则轮船在静水中的速度是__________。

14.我校球类联赛期间买回排球和足球共16个,花去900元钱,已知排球每个42元,足球每个80元,则排球买了________个。

15.三个连续奇数的和是75,这三个数分别是__________________。

16.若x = -3是方程 x-a = 6 的解,则a = 。

17.已知三支笔的价格依次相差0.60元,这三支笔共7.2元,则三支笔的价格分别是_______________________.
18、若92=x ,则x 得值是 ;若83-=a ,则a 得值是 .
19.请你写出一个解为1x =-的一元一次方程 。

三、解答题(50分)
1、解方程(16分)
(1)325(2)x x -=-+ (2)0)12(5)53(2=--+x x
(3)
321123x x -+-= (4) 2
13121--=+x x
2.某公司今年的产值是330万元,今年比去年的产值增长10%.去年的产值是多少万元?
(6分)
3.西藏某旅游景点,某周共售出1000张门票,门票收入共为6950元,已知成人票每张8元,学生票每张5元.这一周学生票售出多少张?(6分)
4.甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙车队数比甲车队车数的2 倍还多1辆,应从甲车队调多少辆车到乙车队?(8分)
5.爷爷与孙子下棋,爷爷赢一盘记1分,孙子赢一盘记3分,两人下了12盘(未出现和棋)后,得分相同,他们各赢了多少盘?(8分)
6.一个通讯员骑摩托车要在规定的时间内把文件送到。

他骑摩托车的速度是每小时36千米,结果早到20分钟,若每小时30千米,就迟到12分钟。

求规定时间是多少?这段路程是多少?(8分)。

相关文档
最新文档