变压器状态维修及故障诊断

变压器状态维修及故障诊断
变压器状态维修及故障诊断

编订:__________________

审核:__________________

单位:__________________

变压器状态维修及故障诊

Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.

Word格式 / 完整 / 可编辑

文件编号:KG-AO-8920-97 变压器状态维修及故障诊断

使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。

随着科学技术和经济的飞速发展,以及电力市场体制机制的不断完善,变压器的重要性也越来越显现出来,电力系统中最重要的配件之一就是变压器,因为重要,所以发生故障的概率较高,需要经常进行故障诊断和维修,而变压器的运行状态是否安全关系到电网的安全运行。因此,对于变压器状态的随时检测,应引起很高的重视,制定出一套合理的状态维修机制,是一项具有科学实用价值和重大理论的研究内容。本文主要对变压器一些主要或典型的故障进行研究,从而对如何进行维修来深入探讨。

状态维修是在根据变压器的状态和其在运行时参数变化的分析之后,找出存在的问题的检修方式,看这些问题是否需要维修,如果需要,就对这些问题进行维修,有很强的针对性和时效性。状态维修的目的

是延长变压器的使用寿命,提高维修的针对性,使设备保持良好的运行状态。而造成变压器故障的原因很多,变压器的安装容量越大,那么它的电力等级就越高,变压器的故障也就出现的频繁,造成损失就越大。虽然科技在不断发展,但关于变压器还是会发生一些事故,因此对变压器的安全需要极大关注。

变压器故障诊断

变压器出现的故障比较复杂且牵扯多面,尤其在运行时,一旦发生故障,很难判断出现了哪方面的问题。但变压器的一般故障类型可以分好几种,发生故障最频繁的是变压器出口短路故障,对变压器的影响也是最严重的,这些一般是过热或者放电的缘故,本文将着重分析以下几种故障类型。

1.1.出口短路故障

变压器出口短路故障是指当出口短路时,低压绕组可以同时通过很大的、超过额定值数十倍的短路电流,就会产生相当大的热量,使变压器发热,在这种情况下,假如短路电流小,保护及时,遭到的破坏就

小;假如短路电流大,而保护又不及时,绕组便会严重变形,如果再继续运行的话,就会导致很多故障。

1.2.铁芯故障

变压器进行变换电压和能量传递的主要设备之一是铁芯,而铁芯又经常容易发生故障。可能是铁芯本身的原材料选用不当或工艺不良以及铁芯接触不良等原因造成的,也可能是铁芯自身有损毁的原因。变压器在正常运行时,铁芯仅有一个点接地是正常的安全接地,如果多点接地,那么铁芯在高压电场中就会放电,可能导致绕组过热,破坏油的绝缘强度,可能会把铁芯烧毁。

1.3.绕组故障

电力变压器的绕组是核心部件,在变压器中涉及电气量。绕组发生的故障也比较多,它的故障主要发生在绕组绝缘、绕组接地短路、绕组受潮、系统短路造成的绕组机械损伤、线匝间的匝间短路、绕组断裂以及不论是单相还是各相绕组间的短路等。

1.4.分接开关故障

分接开关在变压器中的高压回路中发挥作用,它分为有载开关和无载分接开关的故障,当上分接头相间绝缘的距离不够并且绝缘材料上有受潮的油泥时,可能会有相间短路故障的发生;若是接触不良或电阻大,则会发生放电等故障。

有载分接开关故障主要在拨轮、触头等地方,因外力造成的绝缘性能下降;或是滚轮卡住使有载分接开关卡在过渡位置造成的短路;以及有载分接开关的变形。

变压器状态维修

2.1.如何进行状态维修

首先要对变压器进行检查,找出需要维修的内容和项目,进行科学有针对性地选择维修方法,同时需要定期对变压器进行检修,来提高设备的安全性,降低维修的成本。完善检测系统、检修系统,信息管理系统。

状态维修把“安全第一”始终放在第一位,来提高变压器的安全性和管理水平,要通过随时检验,发

现问题和故障,才能对设备进行维修,才能保证安全的原则。

2.2.变压器状态维修的三个阶段

对于变压器的维修大致要经过故障诊断、定期维修、状态维修三个阶段。故障诊断是在变压器出现故障后进行检查,会造成工作效率低下、维修费用多。

定期检修时根据变压器的特性和专家对变压器故障的经验,在事先计划好的一定周期内对设备进行检查、维修,但在检修时也一定要注意要“适当”的维修,对于密封的东西、绕组、铁芯等,要适时并仔细的维修,因为不当或频繁的维修可能会得到适得其反的效果,也会导致变压器的故障。

状态维修是指在前面的基础上,预测变压器在未来的状态,预知设备可能出现的故障,综合分析得出的变压器状态,来分析用何种维修方式。

2.3.检测诊断技术和状态维修

检测变压器的状况分为变压器状态的检测、故障分析、设备状态的预测、检修的计划、计划实施。

2.3.1.基于模糊处理技术,较准确找到故障。变压器结构较复杂,因此故障诊断中有许多不确定因素,不论是铁芯、绕组、绝缘、电压等,因此模糊处理技术中,知道一个大致范围的故障区,而后综合多方面的技术和经验来对变压器进行维修。

2.3.2.现在变压器的状态维修方法大多数还是决策树方法,搜集监测指标与故障之间的关系。下面列举两个例子。

某电厂在检测完变压器后,分析油色谱发现一氧化碳和甲烷含量较少,铁芯接地但没有电流,铁芯段间的绝缘电阻正常。经决策树分析后认为是变压器中油流受阻碍过热而导致的故障,在现实中检测也是如此。

某变压器时而工作,时而不工作,没有引起重视,结果导致很多故障,最后查到最根本的原因是变压器的热量大,绕组严重变形,但并非是绕组的故障,而是出口短路故障。这也告诉了我们在变压器刚开始遇到问题时,就应该引起我们足够的重视。

变压器是电力系统中最重要的部件之一,同时也是故障率比较高的设备,因此,在变压器的运行过程中,需要对其随时进行状态维修及故障诊断,不仅是出于安全性的考虑,更是涉及到人们的生活安全。由于变压器在系统中的重要性,本文主要对变压器的状态进行检测,来制定准确及时的状态维修,或是最好事先进行一定的预测,来判断哪个地方最容易出现故障,来运用现代发达的科学技术和人工智能技术来对变压器的状态进行跟踪检测和维修。

请在这里输入公司或组织的名字

Enter The Name Of The Company Or Organization Here

火力发电厂主变压器常见故障分析及处理 褚荣荣

火力发电厂主变压器常见故障分析及处理褚荣荣 摘要:变压器是电力系统中一个关键的设备,在电力系统中承担着电压变换、 电能的传输与分配,对于电力系统稳定的运行有着重要的作用。如果是大型的变 压器,它的造价昂贵、运行责任重大,一旦发生严重故障,那么变压器的检修时 间长、难度比较大,对于经济方面也会造成很大的损失。如其切除变压器会对电 力系统造成一定的损害。只有变压器安全的运行,才能保证电力系统运行稳定。 基于此,本文对火力发电厂主变压器常见故障分析及处理进行探讨。 关键词:火力发电厂;主变压器;常见故障;处理 变压器是维系火力发电厂正常运行的主要设备之一,一旦发生故障,整个发 电厂的电力运输工作也会受到很大的影响。因此,每个火力发电厂都配备有专业 的检查维修人员定期维护和排除故障,但前提是专业人员必须熟悉掌握和了解变 压器常见的故障,按照“预防性试验规程”定期进行检测,及时进行正确处理,保 障火力发电厂的正常运行。 1电力变压器概述 在整个电网中,发电厂发出的电力往往需经远距离传输才能到达用电地区, 在传输的过程中,传输电压越高,线路损耗越少,经济效益越高;另外在经过高 压线路传输之后,电能分配到各个用户需要降低到各种等级的低电压。故而,电 力变压器成为电网中电能传输的枢纽,对其运行可靠性和安全性均有较高要求。 2火力发电厂主变压器常见故障分析及处理 2.1漏油故障 渗漏油是变压器常见的问题,虽然不会致使变压器停止运行,但是也会造成 安全隐患的出现。这种问题主要由于胶垫出现了老化等现象而导致的。而密封点、阀门和焊接等问题的出现也是其中之一。 第一,陈旧变压器密封胶垫老化和龟裂,较陈旧的变压器在运行方面一定会 存在较长时间,在密封胶垫的常用材料上会选择丁腈橡胶。在密封性的相关要求上,此材料不能够满足,并且运行阶段,温度会不均衡,将龟裂和老化等现象提 前显现,弹性也会同时失去,让渗漏的现象频频发生。因此,在材料的选择上一 定要慎重,要将耐油性好的。耐高温较优质的材料选择出来,例如:丙烯酸酯橡 胶就可以在油温在150°的情况下不断运作,耐老性、耐有机溶剂、抗紫外线以及 耐臭氧性都非常显著。由此可见,想要将渗漏油的故障有效排除,就要对密封材 料的更换方面严格细致。 第二,没有对密封点进行有效的紧固,没有油的地方会使得胶垫的老化产生 加速现象,空气进入到变压器的本体。一旦发现,首先校正套管导电杆,更换密封 胶垫,拆掉铜排上缠绕过紧的绝缘材料,以护套形式包裹伸缩节,有效恢复伸缩节的 伸缩性能。 第三,气体继电器的法兰渗漏油,一些变压器在运行的时间上相对较长,处 于油箱和储油柜之间气体继电器,在它的两侧会存在着法兰,在一定程度上会经 过螺栓与管路合理连接。因为对于管路而言,伸缩性是相对较差的,气体继电器 在安装两侧的法兰时,很容易发生受力不均匀的现象,在安装不正规的情况下, 会很容易导致胶垫的密封不严格,或者密封胶垫的过程中,扭曲变形的情况经常 发生,渗漏油的现象由此产生。这样的故障,在气体继电器和储油柜之间,应该 安装具备优质伸缩性的金属型波纹管,波纹管若能正确的安装,会使两侧法兰的 相应受力情况逐渐均匀改善。

变压器故障检测系统毕业论文

变压器故障检测系统 摘要 大型电力变压器是电力系统中重要的和昂贵的设备之一,其运行状态直接影响系统的安全性。目前,电力系统的检修体制正由定期检修向状态检修转变,而状态检修是以了解设备的运行状态为基础的。要了解设备状态,就需要对设备信息进行分析诊断。本文的工作就是在这一背景下开展的,其意义在于为电力变压器的检修提供技术支持。本文是从变压器的故障原因、类型以及分析入手,介绍了现今国外主要研究的基于变压器油中气体的故障诊断方法。 在系统的硬件部分,本文以ATmega8单片机为核心,将采集来的电压、电流、温度和气体等模拟量信号经过A/D转换器转换为数字量信号后送入单片机系统中进行处理,通过处理的结果来判断变压器是否含有故障以及故障的类型等。同时本系统也设置了电流保护、差动保护和气体保护等继电保护来防止因短路故障或不正常运行状态照成变压器的损坏,提高供电可靠性。在系统的软件部分,本文运用C语言编写软件程序,使之能够识别并处理从传感器传来的电信号,然后通过人机交互界面显示出来,近而使人能够很轻易判断故障类型。 关键词:变压器故障油气体分析单片机继电保护

Transformer malfunction detection system Abstract In the electrical power system, the large-scale power transformer is one of the important and expensive equipment, it’s running status direct influence system security. At present, the electrical power system overhaul system is transforming by the preventive maintenance to the condition overhaul, but the condition overhaul is take understands the equipment the running status as the foundation.Must understand the equipment condition, needs to carry on the analysis diagnosis to the equipment information. This article work is develops under this background, its significance lies in for the power transformer condition overhaul provides the technical support.This article is from the transformer breakdown reason, the type and the analysis obtains, introduced the nowadays domestic and foreign main research based on the transformer oil in the gas breakdown diagnosis method. Are partial in the system hardware, this article take the ATmega8 MCU as a core, use the gather simulation signal likes voltage, electric current, temperature, gas and so on, to transform after ADC for the digital quantity, and then signal sends in the MCU system to process,

变压器常见故障大汇总及案例分析

电力变压器常见故障的分析与处理 变压器是靠电磁感应原理工作的,改变电压、联络电网、传输和分配电能;电力变压器是变电站核心设备,结构复杂,运行环境恶劣,发生故障和事故对电网和供电可靠性影响大,需要针对具体情况立即采取措施;变压器故障的分析判别牵扯的学科领域多,既要有电工、高电压、绝缘材料、化学分析等基础知识,还要熟悉自动化、热学等;变压器的故障种类多,表现形式千差万别,需要熟悉结构原理、熟悉现场运行条件、熟悉每台设备特点等,具体问题,具体分析。 第一章:大型变压器显性故障的特征与现场处理 显性故障:是指故障的特征和表现形式比较直观明显的故障,在此,结合现场实际,对大型变压器显性故障的原因和特征进行了叙述和分析,介绍了现场常见的处理办法,也是一些比较简单的办法。 一、外观异常和故障类型: 变压器在运行过程中发生异常和故障时,往往伴随相应外观特征,通过这些简单的外部现象,可以发现一些缺陷并对异常和故障进行定性分析,提出进一步分析或处理的方案。而且可以对一些比较复杂的故障确定检修和试验方案.以下从几个方面进行分析和处理:

1、防爆筒或压力释放阀薄膜破损。 当变压器呼吸不畅,进入变压器油枕隔膜上方的空气,在温度升高时,急剧膨胀,压力增加,若引起薄膜破损还会伴有大量的变压器油喷出;主要有以下原因和措施: 1)呼吸器因硅胶多或油封注油多、管路异物而堵塞。硅胶应占呼吸器的2/3,油封中有1/3的油即可,可用充入氮气的办法对管路检查2)(油枕)安装检修时紧固薄膜的螺栓过紧或油枕法兰不平,(压力释放阀)外力损伤或人员误碰。更换损坏的薄膜或油枕. 3)变压器内部发生短路故障,产生大量气体。一般伴随瓦斯继电器动作;可先从瓦斯继电器中取气样,若点火能够燃烧,需取油样色谱分析和进行电气检查,确定故障性质,故障原因未查明,消除缺陷前变压器不能投运。 4)弹性元件膨胀器内部卡涩.更换或由制造厂处理. 5)隔膜结构的油枕在检修或安装时注油方法不当,未按规定将油枕上部的气体排净。停电将变压器油注满油枕,再将变压器油放至合适的油位高度。 6)胶囊结构的油枕因油位低等原因,胶囊堵塞油枕与变压器本体的管路联结口。在管路联结口处装一支架,防止胶囊直接堵塞联结口。 2、套管闪络放电。 套管闪络放电会使其本身发热、老化,引发变压器出口短路事故;低压套管尤其严重;其主要原因和措施有:

差动保护的工作原理

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

变压器状态维修及故障诊断

编订:__________________ 审核:__________________ 单位:__________________ 变压器状态维修及故障诊 断 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8920-97 变压器状态维修及故障诊断 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 随着科学技术和经济的飞速发展,以及电力市场体制机制的不断完善,变压器的重要性也越来越显现出来,电力系统中最重要的配件之一就是变压器,因为重要,所以发生故障的概率较高,需要经常进行故障诊断和维修,而变压器的运行状态是否安全关系到电网的安全运行。因此,对于变压器状态的随时检测,应引起很高的重视,制定出一套合理的状态维修机制,是一项具有科学实用价值和重大理论的研究内容。本文主要对变压器一些主要或典型的故障进行研究,从而对如何进行维修来深入探讨。 状态维修是在根据变压器的状态和其在运行时参数变化的分析之后,找出存在的问题的检修方式,看这些问题是否需要维修,如果需要,就对这些问题进行维修,有很强的针对性和时效性。状态维修的目的

变压器的常见故障及处理方法

浅议变压器常见故障及处理 令狐采学 摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。 关键词:变压器原理结构参数异常处理 引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。而实际中由于发电机结构上的限制,通常只能发出10kv 的电压,因此,必须经过变压器的升压才可以完成电能的输送。变压器也理所应当成为电力系统中核心设备之一。如果变压器出现了故障,就会在很大程度上影响电能的输送以及正常的变电运行,所以能够掌握和分析变压器常见的故障和异常现象,及主要原因,提出防范解决措施,就显得尤为重要。 电力变压器是利用电磁感应原理制成的一种静止的电力设备。它可以将某一电压等级的交流电能转换成频率相同的另一种或几种电压等级的交流电能,是电力系统中重要电气设备。下面将从变压器的分类、结构、异常现象和原因分析等几个方面进行介绍: 一、变压器的分类、结构及主要参数

(一)、变压器的分类 根据用途的不同,变压器可以分为电力变压器(220kv以上的是超高压变压器、35-110kv的是中压变压器、10kv为配电变压器)、特种变压器(电炉变压器、电焊变压器)、仪用互感器(电压、电流互感器)。 根据相数分为,单相变压器和三相变压器。 根据冷却方式分为,油浸自冷式、强迫风冷式、强迫油冷式和水冷式变压器。 根据分接开关的种类分为有载调压变压器和无载调压变压器。 根据绕组数分为,单绕组变压器、双绕组变压器和三绕组变压器。 (二)、变压器的结构 虽然变压器的种类依据不同方式进行分类,有很多种,但是一般常用的变压器的结构都很相似: 1、绕组:变压器的电路部分。 2、铁芯:变压器的磁路部分。 3、油箱:变压器的外壳,内装满变压器油(绝缘、散热)。 4、油枕:对油箱里的油起到缓冲作用,同时减小油箱里的油与空气的接触面积,不易受潮和氧化。 5、呼吸器:利用硅胶吸收空气中的水分。 6、绝缘套管:变压器的出线从油箱内穿过油箱盖时必须经过绝缘套管以使带电的引线与接地的油箱绝缘。

变压器差动保护

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高 =220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KV A, I1’:流过变压器高压侧的一次电流; I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2”I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地) 单相接地故障以及匝间、层间短路故障;

四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。以p点为 例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2,最小制动电流 Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流I1=6A,180度,低压侧电流I2=6A,0度,固定I1升 I2,当I2升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(I1+I2)/2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 判此电流为非故障电流,进行谐波闭锁。500kv一下等级的变压器之

变压器的常见故障分析及维护措施实用版

YF-ED-J1765 可按资料类型定义编号 变压器的常见故障分析及维护措施实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

变压器的常见故障分析及维护措 施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 摘要: 在中国高速的现代化发展中,电 力工业的安全运行起着关键作用。本文主要从 变压器的常见故障的原因进行分析,并对变压 器的维护提出一点建议。 关键词:变压器故障原因输电线路 变压器是电力系统的重要设备,其状态好 坏,直接影响电网的安全进行。由于变压器在设 计、制造、安装和进行维护等方面原因使绝缘 存在缺陷,抗短路能力降低,因此近年来主变的 事故较多,其中威胁安全最严重的为绕组局部放

电性故障。根据国家电力公司对 2001 年全国110kV 及以上主变事故的调查,得知绕组的事故占总事故台数的 74.6%(福建省网为80%)。因此,提高变压器安全运行是极其重要的。 1 变压器故障原因分析 多种因素都可能影响到绝缘材料的预期寿命,负责电气设备操作的人员应给予细致地考虑。这些因素包括:误用、振动,过高的操作温度、雷电或涌流、过负荷、对控制设备的维护不够、清洁不良、对闲置设备的维护不够、不恰当的润滑以及误操作等。 1.1 雷击 雷电波看来比以往的研究要少,这是因为改变了对起因的分类方法。现在,除非明确属于

变压器常见故障分析

电力变压器状态监测与故障诊断 内容摘要; 电力变压器是电力系统中最关键的设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。在运行中,配电变压器经常发生故障。本文简要介绍了电力变压器的分类和结构组成,并针对配电变压器故障率高这一实际情况,着重分析了配电变压器常见的故障和异常现象及主要原因,分析了这些故障对变压器的危害及针对这些故障进行了分析,对消除故障的方法进行了归纳总结,同时提出了一些具体的防范解决措施,为防止和减少配电变压故障的发生。 特别介绍我在工作中遇到的一些变压器故障(局部放电)进行的探索及通过一些方法进行认证的过程。 关键词:变压器、故障诊断、故障处理、局部放电

目录 内容摘要 ............................................................ I 引言 (1) 1 电力变压器简要介绍 (2) 1.1 电力变压器的分类 (2) 1.2 电力变压器的主体结构 (2) 1.2.1 油浸电力变压器 (2) 1.2.2 干式变压器 (3) 2 电力变压器常见的故障类型及故障产生原因 (4) 2.1 变压器发生故障的原因 (4) 2.1.1 制造工艺存在缺陷 (4) 2.1.2 、缺乏良好的管理及维护 (5) 2.1.3 、绝缘老化 (5) 2.2 变压器故障按严酷程度分类 (5) 2.3 变压器故障按部位分类分析 (5) 2.3.1 、绕组故障分析 (5) 2.3.2 、铁心故障分析 (6) 2.3.3 、分接开关故障分析 (6) 2.3.4 、引线故障分析 (7) 2.3.5 、套管故障分析 (7) 2.3.6 、绝缘故障分析 (7) 2.3.7 、密封不良 (8) 2.4 从变压器的异常声音判断故障 (8) 2.5 变压器温度异常导致原因 (9) 2.6 喷油爆炸导致原因 (10) 2.7 油位显著下降及严重漏油导致原因 (10) 2.8 油色异常,有焦臭味导致原因 (10) 3 变压器中的局部放电的预防及局部放电产生后处理 (11) 4 结论 (16) 参考文献: (17)

变压器差动保护

第二节变压器差动保护 1.概述 电气主设备内部故障的主保护方案之一是差动保护,差动保护在发电机上的应用是比较简单的,但是作为变压器内部故障的主保护,差动保护将有许多特点和困难。 变压器有两个和更多个电压等级,构成差动保护所用电流互感器的额定参数各不相同,由此产生的差动保护不平衡电流将比发电机大得多。 变压器每相原副边电流之差(正常运行时的励磁涌流)将作为变压器差动保护不平衡电流的一种来源,特别是当变压器过励磁运行时,励磁电流可达变压器额定电流的水平,势必引起差动保护误动作。更有甚者,在空载变压器突然合闸时,或者变压器外部短路被切除而变压器端电压突然恢复时,暂态励磁电流(即励磁涌流)的大小可与短路电流相比拟,在这样大的不平衡电流下,要求差动保护不误动,是一个相当复杂困难的技术问题。 正常运行中的变压器,根据电力系统的要求,需要调节分接头,这又将增大变压器差动保护的不平衡电流。 变压器差动保护能反应高、低压绕组的匝间短路,而匝间短路时虽然短路环中的电流很大,但流入差动保护的电流可能不大。 变压器差动保护还应能反应高压侧(中性点直接接地系统)经高阻接地的单相短路,此时故障电流也较小。 综上所述,差动保护用于变压器,一方面由于各种因素产生较大和很大的不平衡电流,另一方面又要求能反应具有流出电流的轻微匝间短路,可见变压器差动保护要比发电机差动保护复杂得多。 2.配置原则 对变压器引出线、套管及内部的短路故障,应装设相应的保护装置,并应符合下列规定: (1) 10MVA及以上的单独运行变压器和6.3MVA及以上的并列运行变压器,应装设纵联差动 保护。6.3MVA及以下单独运行的重要变压器,亦可装设纵联差动保护。 (2) 10MVA以下的变压器可装设电流速断保护和过电流保护。2MVA及以上的变压器,当电 流速断灵敏系数不符合要求时,宜装设纵联差动保护。 (3) 0.4MVA及以上,一次电压为10kV及以下,线圈为三角-星形连接的变压器,可采用两 相三继电器式的过流保护。 (4) 以上所述各相保护装置,应动作于断开变压器的各侧断路器。 3.要求达到的性能指标 (1) 具有防止区外故障误动的制动特性; (2) 具有防止励磁涌流引起误动的功能; (3) 宜具有TA断线判别功能,并能选择闭锁差动或报警,当电流超过额定电流的 1.5~2倍 时可自动解除闭锁; (4) 动作时间(2倍整定值时)不大于50ms; (5) 整定值允差±5%。 4.原理及其微机实现 4.1四方 4.1.1 保护原理 变压器差动包括主变差动、发变组差动、厂用变差动、起/备变差动、励磁变差动等,对于高压侧为500kV的一个半开关接线方式,发变组差动及主变差动保护应反应四侧的电流量。

变压器7种常见故障解析

变压器7种常见故障解析 变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。 1、绕组故障 主要有匝间短路、绕组接地、相间短路、断线及接头开焊等。产生这些故障的原因有以下几点: ①在制造或检修时,局部绝缘受到损害,遗留下缺陷; ②在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高绝缘老化; ③制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏; ④绕组受潮,绝缘膨胀堵塞油道,引起局部过热; ⑤绝缘油内混入水分而劣化,或与空气接触面积过大,使油的酸价过高绝缘水平下降或油面太低,部分绕组露在空气中未能及时处理。 由于上述种种原因,在运行中一经发生绝缘击穿,就会造成绕组的短路或接地故障。匝间短路时的故障现象使变压器过热油温增高,电源侧电流略有增大,各相直流电阻不平衡,有时油中有吱吱声和咕嘟咕嘟的冒泡声。轻微的匝间短路可以引起瓦斯保护动作;严重时差动保护或电源侧的过流保护也会动作。发现匝间短路应及时处理,因为绕组匝间短路常常会引起更为严重的单相接地或相间短路等故障。 2、套管故障 这种故障常见的是炸毁、闪落和漏油,其原因有: ①密封不良,绝缘受潮劣比,或有漏油现象; ②呼吸器配置不当或者吸入水分未及时处理; ③变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹; ④电容芯子制造上有缺陷,内部有游离放电; ⑤套管积垢严重。 3、铁芯故障 ①硅钢片间绝缘损坏,引起铁芯局部过热而熔化; ②夹紧铁芯的穿心螺栓绝缘损坏,使铁芯硅钢片与穿心螺栓形成短路; ③残留焊渣形成铁芯两点接地; ④变压器油箱的顶部及中部,油箱上部套管法兰、桶皮及套管之间。内部铁芯、绕组夹件等因局部漏磁而发热,引起绝缘损坏。 运行中变压器发生故障后,如判明是绕组或铁芯故障应吊芯检查。首先测量各相绕组的直流电阻并进

配电变压器常见故障分析

何金奎 (中铝山西分公司氧化铝一分厂,山西河津043300) 摘要:本文介绍了配电变压器常见的一些故障,并提出了相应的判断方法,为准确判定变压器常见故障提供了一定的借鉴。 关键词:变压器;故障判断; 响声;油温 配电变压器是电力设备的主体设备,关系到电网安全经济运行。随着系统容量的增大和电网规模的扩大,配电变压器故障给电网安全经济运行带来的影响越来越大;系统的稳定和经济运行也对变压器提出了越来越高的要求。因此,对配电变压器进行在线检测,及时掌握设备的状态,一直是电力工作者的梦想和追求。变压器的状态检测,就是通过对有关参数、信号的采集和分析,生产主管部门立即组织人员进行综合分析,诊断设备的状态,减少损失, 避免恶性事故的发生, 将传统的定期维护转为状态维护,从而提高电网的安全经济运行,改善对用户的服务质量。对变压器常见在线故障现象可通过以下几方面判断分析,进而采取相应的措施。 1 从变压器的声音判断故障 其方法是用木棒的一端顶在变压器的油箱上,另一端贴近耳边仔细听声音,据其异常声音可判断以下故障: (1)变压器过负荷:变压器过负荷严重时,会发出很高而且沉重的“嗡嗡”声。 (2)电压过高:当电源电压过高时,会使变压器过励磁,响声增大且尖锐。 (3)绕组发上短路:音响中夹有水的沸腾声,发出"咕噜、咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。此时,应立即停止变压器运行,进行检修。 (4)调压分接开关不到位或接触不良:当变压器投入运行时,分接开关不

到位,将发出较大的“啾啾”响声,严重时造成高压熔丝熔断;如果分接开关接触不良,就会产生轻微的“吱吱”火化放电声,一旦负荷加大,就有可能烧坏分接开关的触头。遇到这种情况,要及时停电修理。 (5)掉入异物和穿芯螺杆松动:当变压器夹紧铁心的穿芯螺杆松动,铁心上遗留有螺帽零件或变压器中掉入小金属物件时,变压器将发出“叮叮当当”的敲击声或“呼…呼…”的吹风声以及“吱啦、吱啦”的象磁铁吸动小垫片的响声,而变压器的电压、电流和温度却正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (6)变压器的铁心接地线断:当变压器的铁心接地断线时,变压器将产生“哗剥哗剥”的轻微放电声。 (7)内部放电:送电时听到“噼啪噼啪”的清脆及铁声,则是导电引线通过空气对变压器外壳的放电声;如果听到通过液体沉闷的“噼啪”声,则是导体通过变压器的油面对外壳的放电声。如属绝缘距离不够,则应停电吊心检查,加强绝缘或增设绝缘隔板。 (8)变压器高压套管脏污或裂损:当变压器的高压套管脏污,表面釉质脱落或裂损时,会发生表面闪络,听到“嘶嘶”或“哧哧”的响声,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。 (9)外部线路断线或短路:当线路在导线的连接处或T接处发生断线,在刮风时时接时断,接触时发生弧光或火花,这时变压器就发出像青蛙的“唧哇、唧哇”的叫声;当低压线路发生接地或出现短路事故时,变压器就发出“轰轰”的声音;如果短路点较近,变压器将发出像老虎的吼叫声。 (10)声响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: ①采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流 ①变压器两侧电流相位不同 电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。 ②电流互感器计算变比与实际变比不同 由于变比的标准化使得其实际变比与计算变比不一致,从而产生不平衡电流。

电力变压器常见故障及处理方法

仅供参考[整理] 安全管理文书 电力变压器常见故障及处理方法 日期:__________________ 单位:__________________ 第1 页共5 页

电力变压器常见故障及处理方法 1、在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是电网中最重要和最关键的设备、变压器如果发生严重事故,不但会导致自身损坏,还会中断电力供应,后患无穷。 2、常见故障及其诊断措施 2.1铁心多点接地 变压器铁心只允许有一点接地,若出现两点及以上接地,为多点接地。多点接地运行将导致铁心出现故障,危及变压器安全运行。应及时处理。 吊壳检查(1)铁心夹件垫脚与铁轭间的绝缘纸板是否脱落破损,按要求更换厚度相同的新纸板。 (2)紧固铁心夹件所有螺丝,防止铁心移位、变形。 (3)清除油中金属异物、金属颗粒及杂质,清除油箱各部位油泥,对变压器进行真空滤油、注油、彻底清除油中水分及杂质。 2.2变压器渗油 变压器渗油会影响变压器的安全,造成不必要的停运及事故隐患,因此,我们有责任解决变压器渗油问题。 油箱焊接渗油:平面接缝处渗油可直接进行焊接、拐角及加强筋连接处渗油则渗漏点难找准,补焊后往往由于内应力的作用再次渗漏油。对于这样的漏点可加用铁板进行补焊,两面连接处,可将铁板裁成仿锤状进行补焊;三面连接处可根据实际位置将铁板裁成三角形补焊。 高压套管升高座或进入孔法兰渗油:主要原因是胶垫安装不合适造成的。处理方法为:对法兰紧固螺丝,将施胶枪嘴拧入该螺丝孔,然后用高压将密封胶注入法兰间隙,直至各法兰螺丝帽有胶挤出为止。 第 2 页共 5 页

低压侧套管渗油:原因是受母线拉伸和低压侧引线引出偏短,胶珠压在螺纹上造成的,可按规定对母线加装软连接;如低压引出线偏短,可重新调整引出线长度;如引出线无法调整,可在安装胶珠的各密封面加密封胶;为了增大压紧力可将瓷质压力帽换成铜质压力帽。 2.3接头过热 载流接头是变压器的重要组成部分,接头连接不好,将引起发热甚至烧断,严重影响变压器的正常运行和电网的安全运行,因此,接头过热问题一定要及时解决。铜铝连接,变压器的引出线头都是铜制的,在室外和潮湿的环境中,不能将铝导体用螺栓与铜端头连接。因为当铜与铝的接触面间渗入含有溶解盐的水份。即电解液时,在电耦的作用下,会产生电解反应,铝被强烈电腐蚀。触头很快遭到破坏,引起发热造成事故,为避免上述现象的发生,就必须采用一头为铝、另一头为铜的特殊过渡接头。普通连接,在变压器上是较多见的,它们都是过热的重点部位,对平面接头,对接面加工成平面,清除平面上的杂质,并抹导电膏,确保接触良好。 油浸电容式套管发热:处理的方法可以用定位套固定方式的发热套管,先拆开将军帽,若将军帽引线接头丝扣烧损,应用牙攻进行修理,确保丝扣配合良好,然后在定位套和将军帽之间垫一个和定位套截面大小一致、厚度适宜的薄垫片,重新安装将军帽,使将军帽在拧紧情况下,正好可以固定在套管顶部法兰上。引线接头和将军帽丝扣公差配合应良好,否则应更换。确保在拧紧的情况下,丝扣之间应有足够的压力,减少接触电阻。 作为一名电力检修工人,发现并及时处理设备缺陷是我的职责,彻底处理好每一项设备隐患是我的荣耀,我会一直朝着这个目标努力工作 第 3 页共 5 页

变压器故障诊断常识及方法

电力变压器常见故障分析及处理 一、常见故障分析 1、内部声音异常 正常运行的变压器,会发出均匀的电磁交流声,在变压器运行不正常时,有时会出现声音异常或声音不均匀。造成该现象的主要原因:变压器过负荷运行时,内部会发出很沉重的声音,在内部零件发生松动的情况下,会有不均匀的强烈噪声发出。假如未夹紧铁芯最外层硅钢片,则会在运行时产生震动,发出噪音。此外,变压器发出异响还有可能是由于变压器顶盖螺丝松动所致。 变压器内部过电压时,会导致铁芯接地线断路,或一二次绕组对外壳闪络,在外壳及铁芯感应出高电压,使变压器内部发出噪音。假如变压器内部发生击穿或者接触不良,会由于放电而发出吱吱的声音。若发生短路或接地,将有较大的短路电流出现在变压器绕组中,使其发出大且异常的声音。若设备有可能产生谐波,或将大容量的用电设备接在变压器负载上,则易产生较大的启动电流会使变压器发出异常噪音。 2、瓦斯保护故障 一种情况是发生了瓦斯保护信号动作。瓦斯保护其动作灵敏可靠,变压器内部大部分故障都可被瓦斯保护有效监视。在瓦斯保护信号动作发生后,即可恢复到正常音响信号,对变压器的运行情况严密监视。 一般来讲,有几种原因可以引起瓦斯保护动作:一是在变压器进行滤油或加油时,没有及时排出带入变压器内部的空气,变压器运行时油温升高,逐渐排出内部空气,引发瓦斯保护动作;二是变压器发生穿越性短路,或者由于内部故障产生气体而引发瓦斯保护动作。 当发生瓦斯保护信号动作时,若检查中未发现异常,就要立刻对瓦斯继电器中的气体进行收集,并分析试验。假如气体不燃烧且无色无味,则可认为变压器内部被空气侵入,这种情况下,变压器是正常运行的,只需立即将瓦斯继电器中的气体放出即可,同时注意观察信号动作时间间隔是否越来越长,直至不久消失。假如气体是可燃的,则可证明变压器发生了内部故障,应将变压器立刻停止运行,并进行电气试验,查找事故原因,送去检修。 另一种情况是发生了瓦斯保护动作与跳闸。发生此情况的原因有以下几种:首先是有严重故障发生在变压器内部;此外还有保护装置二次回路发生了故障;假如变压器是大修后或者新近安装投入运行的,有可能因为变压器油中含有的空气过快分离而造成保护动作与跳闸;还有一种原因是由于变压器内的油位下降速度过快而引起。在发生瓦斯保护动作与跳闸后,值班人员应立即解除工作变压器,对其外部实施检查。检查其防爆门是否完整、是否有绝缘油喷溅现象、外壳是否鼓起、油位是否正常等。然后分析收集的气体,对变压器内部故障的性质进行鉴定,检修完毕,并经试验合格后,方可再次投运。 3、自动跳闸故障 发生自动跳闸故障时,应进行外部检查,查明保护动作情况。假如在检查之后,确认是由于人员误动作或者外部故障,而不是内部故障引起的,则可越过内

变压器的常见故障与对策分析报告

毕业论文中文摘要 在供配电系统中,变压器占有着很重要的地位,因此,提高变压器工作的可靠性对于保证安全供电具有非常重要的意义。然而,近年来由于大部分变压器使用年限较久,加之不少变压器长年累月运行在较恶劣的环境中,变压器出现的安全事故频频发生,而且呈现不断上升的趋势,严重影响着生产的安全、可靠、长周期运行。为此,本文就将通过对变压器的常见故障进行分析,并且提出相应的处理措施,以此来保证变压器的正常、安全运行。 关键词:变压器;故障;对策

毕业论文 引言 电力系统的安全运行关系到国民经济建设以及人们的正常生活,因此对电力设备的运行可靠性的要求在不断地提高。在现代电气设备的运行和维护中,变压器是输变电系统中最重要的设备之一。 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。变压器作为电力系统重要的变电设备,担负着电压变换和电能传输任务,其运行状态将直接影响到供电的可靠性和整个系统的正常运行。变压器一旦发生事故,造成的直接和间接经济损失都是难以估量的。因此对变压器的常见故障进行分析,并提出一些具体的、行之有效的方法来解决变压器的故障,是我国当前电力企业所面临的重要任务之一。 一、变压器的常见故障分析

·变压器的故障主要分为部和外部两种故障。部故障指变压器油箱里面发生的各种故障,主要靠瓦斯和差动保护动作切除变压器;外部故障指油箱外部绝缘套管及其引出线上发生的各种故障,一般情况下由差动保护动作切除变压器。速动保护(瓦斯和差动)无延时动作切除故障变压器,设备是否损坏主要取决于变压器的动稳定性。而在变压器各侧母线及其相连间隔的引出设备故障时,若故障设备未配保护(如低压侧母线保护)或保护拒动时,则只能靠变压器后备保护动作跳开相应开关使变压器脱离故障。因后备保护带延时动作,所以变压器必然要承受一定时间段的区外故障造成的过电流,在此时间段变压器是否损坏主要取决于变压器的热稳定性。因此,变压器后备保护的定值整定与变压器自身的热稳定要求之间存在着必然的联系。根据生产和日常生活实践,通过总结,我们可以将变压器的常见故障归结为以下四类: 1.1绕组故障 绕组故障主要有匝间短路、绕组接地、相间短路、断线及接头开焊等。产生这些故障的原因有以下几点。 1、在制造或检修时,局部绝缘受到损害,遗留下缺陷。 2、在运行中因散热不良或长期过载,绕组有杂物落入,使温度过高绝缘老化。 3、制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏。 4、绕组受潮,绝缘膨胀堵塞油道,引起局部过热。

35kv变压器差动保护分析

摘要变压器的差动保护是反应变压器各端电流互感器二次电流流入差动继电器的电流差而动作的。在保护范围内无故障时,差动继电器内不平衡电流应接近于零。但在某些情况下,保护范围内无故障时差动继电器内仍有较大的不平衡电流。本文对变压器差动保护的这个特点进行介绍,并简单分析了变压器差动保护两种误动作的原因。 关键词变压器差动保护不平衡电流误动原因分析 引言差动保护是用某种通信通道将电气设备两端的保护装置纵向联接起来,并将两端的电气量进行比较,从而判断保护是否动作。根据基尔霍夫定律,保护范围内流入与流出的电流应该相等(变压器应该归算到同侧)。当保护范围内发生故障时,其流入与流出的电流就不相等了。差动保护就是根据这个不平衡电流动作的。因此,这种保护方法有很高的动作选择性和灵敏度,适用于保护大容量、强电流、高电压及对灵敏度要求高的电气设备。所以,这种方法广泛用于保护大容量、高电压的变压器,并以其优越的保护性能成为大容量、高电压变压器的主要保护方法。然而值得注意的是,由于变压器在结构和运行上具有一些特点,因此在实际运行中保护范围内无故障时,差动保护装置也具有较大的不平衡电流,这种不平衡电流可能引起差动保护装置的误动作。另外,即使考虑了变压器差动保护的这些特点并加以修正,由于这种保护装置的复杂性在有些情况下也常出现一些误动作现象。本文将就变压器差动保护两种误动作的原因加以简单的分析。 一、变压器差动保护的特点 1、变压器励磁涌流的存在 变压器励磁电流(激磁电流)仅流经变压器的某一侧,因此通过电流互感器反应到差动回路中将形成不平衡电流。稳态运行时,变压器的励磁电流不大,只有额定电流的2-5%。在差动范围外发生故障时,由于电压降低,励磁电流减小。所以这两种情况下所形成的不平衡电流都很小,对变压器的差动保护影响不大。 但是,当变压器空载投入和外部故障切除后电压恢复的情况下,则可能出现很大的励磁电流即励磁涌流。这个现象的存在是由于变压器铁心饱和及剩磁的存在引起的,具体分析如下:当二次侧开路而一次侧接入电网时,一次电路的方程为 u1=umcos(wt+α)=i1R1+N1dφ/dt (1) u1:一次电压, um:一次电压的峰值, α:合闸瞬间的电压初相角, R1:变压器一次绕组的电阻, N1:变压器一次绕组的匝数, φ:变压器一次侧磁通。 由于i1R1相对比较小 诜治鏊蔡 坛跏冀锥慰梢院雎圆患?lt;BR>所以 u mcos(wt+α)= N1dφ/dt dφ= ( um/ N1) cos(wt+α) dt 积分,得 φ=( um/ N1) sin(wt+α)+c φ=φm sin(wt+α)+c φm为主磁通峰值,c为积分常数。 设铁芯无剩磁当t=0时,φ=0 所以c=-φmsinα 所以空载合闸磁通为 φ=φm sin(wt+α) -φmsinα(2) 由(2)式可得空载合闸磁通的大小与电压的初相角α有关考虑最不利情况 当α=900时,电压过零

相关文档
最新文档