(整理)版高考数学一轮复习21函数及其表示精品学案.
高考数学一轮复习 21函数及其表示课件 理
(2)函数的定义域、值域
在函数 y=f(x),x∈A 中,x 叫做自变量,x 的取值范围 A 叫做 函数的 定义域 ;与 x 的值相对应的 y 值叫做函数值,函数
值的集合{f(x)|x∈A}叫做函数的 值域 .显然,值域是集合
单击此处进入 活页限时训练
第1讲 函数及其表示
基础梳理 1.函数的基本概念 (1)函数的定义:设A、B是非空数集,如果按照某种确定的对 应关系f,使对于集合A中的 任意 一个数x,在集合B中都 有 唯一 确定的数f(x)和它对应,那么称f:A→B为从集合A 到集合B的一个函数,记作:y=f(x),x∈A.
(2)函数的定义域、值域 在函数y=f(x),x∈A中,x叫自变量,x的取值范围A叫做
5.函数y=f(x)的图象如图所示.那么,f(x)的定义域是 ________;值域是________;其中只与x的一个值对应的y值的 范围是________.
考向一 求函数的定义域
【例1】►求下列函数的定义域:
(1)f(x)= lo|xg-2x2-|-11;
(2)f(x)=
lnx+1 -x2-3x+4.
以-x代x得,2f(-x)-f(x)=lg(-x+1).②
由①②消去f(-x)得
f(x)=23lg(x+1)+13lg(1-x),x∈(-1,1).
求函数解析式的方法主要有:(1)代入法;(2)换元
法;(3)待定系数法;(4)解函数方程等.
•11、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/1/182022/1/18January 18, 2022 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •16、一个人所受的教育超过了自己的智力,这样的人才有学问。 •17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2022年1月2022/1/182022/1/182022/1/181/18/2022 •18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2022/1/182022/1/18
2025年高考数学一轮复习-2.1-函数的概念及其表示【课件】
1.设函数 则满足 的 的取值范围是( )
A. B. C. D.
解析:选D.根据题意作出函数 的图象如图所示,结合图象知,满足 ,则 或 所以 .故选D.
√
2.已知函数 若 ,则实数 的值为_______.
4或
解析:当 时, ,所以 ;当 时, ,所以 .所以实数 的值为4或 .
A. B. C. D.
3.(2022·高考北京卷)函数 的定义域是_______________.
解析:由题意得 解得 .
√
4.已知函数 若 ,则实数 的值为____.
解析:因为 ,且 ,所以 ,故 .依题知 ,解得 .
1.直线 与函数 的图象至多有1个交点.
2.分段函数若函数在其定义域的______子集上,因对应关系不同而分别用几个____________来表示,这种函数称为分段函数.[提醒] 分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
解析法
图象法
列表法
不同
不同的式子
【练一练】
1.判断正误(正确的打“√”,错误的打“×”)
2.已知定义在 上的函数 满足 ,若当 时, ,则当 时, _ __________.
解析:因为 ,所以 ,所以 .
考点三 分段函数(多维探究)
[高考考情] 分段函数常作为考查函数知识的载体,因其考查函数知识较全面而成为高考命题的热点,多以选择题或填空题的形式呈现,重点考查求值、解方程与不等式,涉及函数的零点、图象及性质等,难度中低档.
(1)函数 与 是同一个函数.( )
√
(2)若两个函数的定义域与值域都相同,则这两个函数是同一个函数.( )
×
高三数学一轮复习优质教案5:2.1 函数及其表示教学设计
2.1 函数及其表示考情分析考点新知①本节是函数部分的起始部分,以考查函数概念、三要素及表示法为主,同时考查学生在实际问题中的建模能力.②本节内容曾以多种题型出现在高考试题中,要求相对较低,但很重要,特别是函数的解析式仍会是2015年高考的重要题型.①理解函数的概念,了解构成函数的要素.②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.③了解简单的分段函数,并能简单应用.1. 函数的定义一般地,设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的一个元素y和它对应,这样的对应叫做从A到B 的一个函数,通常记为y=f(x),x∈A.2. 函数的三要素函数的构成三要素为定义域、值域、对应法则.由于值域是由定义域和对应法则决定的,所以如果两个函数的定义域和对应法则完全一致,我们就称这两个函数是同一函数.3. 函数的表示方法表示函数的常用方法有列表法、解析法、图象法.4. 分段函数在定义域内不同部分上,有不同的解析式,像这样的函数通常叫做分段函数.分段函数的定义域是各段自变量取值集合的并集,值域是各段上函数值集合的并集.5. 映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A 中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B 为从集合A到集合B的一个映射.『备课札记』题型1函数的概念例1判断下列对应是否是从集合A到集合B的函数.(1) A=B=N*,对应法则f:x→y=|x-3|,x∈A,y∈B;(2) A=『0,+∞),B=R,对应法则f:x→y,这里y2=x,x∈A,y∈B;(3) A=『1,8』,B=『1,3』,对应法则f:x→y,这里y3=x,x∈A,y∈B;(4) A={(x,y)|x、y∈R},B=R,对应法则:对任意(x,y)∈A,(x,y)→z=x+3y,z ∈B.『解析』(1) 对于A中的元素3,在f的作用下得到0,但0不属于B,即3在B中没有元素与之对应,所以不是函数.(2) 集合A中的一个正数在集合B中有两个元素与之对应,所以不是函数.(3) 由y3=x,即y=3x,因为A=『1,8』,B=『1,3』,对应法则f:x→y,符合函数对应.(4) 由于集合A不是数集,所以此对应法则不是函数.备选变式(教师专享)下列说法正确的是______________.(填序号)①函数是其定义域到值域的映射;②设A=B=R,对应法则f:x→y=x-2+1-x,x∈A,y∈B,满足条件的对应法则f构成从集合A到集合B的函数;③函数y=f(x)的图象与直线x=1的交点有且只有1个;④映射f:{1,2,3}→{1,2,3,4}满足f(x)=x,则这样的映射f共有1个.『答案』①④『解析』②中满足y=x-2+1-x的x值不存在,故对应法则f不能构成从集合A 到集合B的函数;③中函数y=f(x)的定义域中若不含x=1的值,则其图象与直线x=1没有交点.题型2函数的解析式例2求下列各题中的函数f(x)的解析式.(1) 已知f(x+2)=x+4x,求f(x);(2) 已知f ⎝⎛⎭⎫2x +1=lgx ,求f(x);(3) 已知函数y =f(x)满足2f(x)+f ⎝⎛⎭⎫1x =2x ,x ∈R 且x≠0,求f(x); (4) 已知f(x)是二次函数,且满足f(0)=1,f(x +1)=f(x)+2x ,求f(x). 『解析』(1) (解法1)设t =x +2,则x =t -2,即x =(t -2)2, ∴ f(t)=(t -2)2+4(t -2)=t 2-4, ∴ f(x)=x 2-4(x≥2).(解法2)∵ f(x +2)=(x +2)2-4, ∴ f(x)=x 2-4(x≥2). (2) 设t =2x +1,则x =2t -1,∴ f(t)=lg 2t -1,即f(x)=lg 2x -1(x>1).(3) 由2f(x)+f ⎝⎛⎭⎫1x =2x ,① 将x 换成1x ,则1x 换成x ,得2f ⎝⎛⎭⎫1x +f ()x =2x,② ①×2-②,得3f(x)=4x -2x ,得f(x)=43x -23x.(4) ∵ f(x)是二次函数,∴ 设f(x)=ax 2+bx +c(a≠0).由f(0)=1,得c =1. 由f(x +1)=f(x)+2x ,得a(x +1)2+b(x +1)+1=(ax 2+bx +1)+2x , 整理,得(2a -2)x +(a +b)=0,由恒等式原理,知⎩⎪⎨⎪⎧2a -2=0,a +b =0⎩⎪⎨⎪⎧a =1,b =-1, ∴ f(x)=x 2-x +1. 变式训练求下列函数f(x)的解析式.(1) 已知f(1-x)=2x 2-x +1,求f(x); (2) 已知f ⎝⎛⎭⎫x -1x =x 2+1x2,求f(x);(3) 已知一次函数f(x)满足f(f(x))=4x -1,求f(x);(4) 定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x +1),求f(x). 『解析』(1) (换元法)设t =1-x ,则x =1-t , ∴ f(t)=2(1-t)2-(1-t)+1=2t 2-3t +2, ∴ f(x)=2x 2-3x +2.(2) (配凑法)∵ f ⎝⎛⎭⎫x -1x =x 2+1x 2=⎝⎛⎭⎫x -1x 2+2, ∴ f(x)=x 2+2.(3) (待定系数法)∵ f(x)是一次函数, ∴ 设f(x)=ax +b(a≠0),则f(f(x))=f(ax +b)=a(ax +b)+b =a 2x +ab +b. ∵ f(f(x))=4x -1,∴ ⎩⎪⎨⎪⎧a 2=4,ab +b =-1,解得⎩⎪⎨⎪⎧a =2,b =-13或⎩⎪⎨⎪⎧a =-2,b =1,∴ f(x)=2x -13或f(x)=-2x +1.(4) (消去法)当x ∈(-1,1)时,有 2f(x)-f(-x)=lg(x +1),①以-x 代替x 得2f(-x)-f(x)=lg(-x +1),② 由①②消去f(-x)得,f(x)=23lg(x +1)+13lg(1-x),x ∈(-1,1).题型3 分段函数例3 已知实数a≠0,函数f(x)=⎩⎪⎨⎪⎧2x +a ,x<1,-x -2a ,x≥1.(1) 若a =-3,求f(10),f(f(10))的值; (2) 若f(1-a)=f(1+a),求a 的值.『解析』(1) 若a =-3,则f(x)=⎩⎪⎨⎪⎧2x -3,x<1,-x +6,x≥1.所以f(10)=-4,f(f(10))=f(-4)=-11. (2) 当a>0时,1-a<1,1+a>1,所以2(1-a)+a =-(1+a)-2a ,解得a =-32,不合,舍去;当a<0时,1-a>1,1+a<1,所以-(1-a)-2a =2(1+a)+a ,解得a =-34,符合.综上可知,a =-34.备选变式(教师专享)如图所示,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B(起点)向点A(终点)运动,设点P 运动的路程为x ,△ABP 的面积为y.(1) 求y 与x 之间的函数关系式; (2) 画出y =f(x)的图象.『解析』(1)y =⎩⎨⎧2x ()0≤x≤4,8()4<x≤8,-2x +24()8<x≤12.(2)y =f ()x 的图象如图.1. 函数是特殊的映射,其特殊性在于集合A 与B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射;而映射不一定是函数从A 到B 的一个映射,A 、B 若不是数集,则这个映射不是函数.2. 函数是一种特殊的对应,要检验给定的两个变量是否具有函数关系,只需要检验:① 定义域和对应法则是否给出;② 根据给出的对应法则,自变量在定义域中的每一个值,是否都有唯一确定的函数值.3. 函数解析式的求解方法通常有:配凑法,换元法,待定系数法及消去法.用换元法求解时要特别注意新元的范围,即所求函数的定义域;而消去法体现的方程思想,即根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).。
高三数学一轮 2.1函数及其表示导学案 理 北师大版
第二章 函 数 学案4 函数及其表示导学目标: 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法等)表示函数.3.了解简单的分段函数,并能简单应用.自主梳理1.函数的基本概念 (1)函数定义设A ,B 是非空的 ,如果按照某种确定的对应关系f ,使对于集合A 中的 ,在集合B 中 ,称f :A →B 为从集合A 到集合B 的一个函数,x 的取值范围A 叫做函数的__________,__________________叫做函数的值域.(2)函数的三要素__________、________和____________. (3)函数的表示法表示函数的常用方法有:________、________、________. (4)函数相等如果两个函数的定义域和__________完全一致,则这两个函数相等,这是判定两函数相等的依据.(5)分段函数:在函数的________内,对于自变量x 的不同取值区间,有着不同的____________,这样的函数通常叫做分段函数.分段函数是一个函数,它的定义域是各段取值区间的________,值域是各段值域的________.2.映射的概念 (1)映射的定义设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中 确定的元素y 与之对应,那么就称对应f :A →B 为从集合A到集合B 的 .(2)由映射的定义可以看出,映射是 概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合,A 、B 必须是 数集.自我检测1.(2011·佛山模拟)设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列4个图形,其中能表示集合M 到N 的函数关系的有( )A .0个B .1个C .2个D .3个2.(2010·湖北)函数y =1log 0.5x -的定义域为( )A .(34,1)B .(34,+∞)C .(1,+∞)D .(34,1)∪(1,+∞)3.(2010·湖北)已知函数f(x)=⎩⎪⎨⎪⎧log 3x ,x >02x, x ≤0,则f(f (19))等于( )A .4 B.14C .-4D .-144.下列函数中,与函数y =x 相同的函数是( )A .y =x 2xB .y =(x )2C .y =lg 10xD .y =2log 2x5.(2011·衡水月考)函数y =lg(ax 2-ax +1)的定义域是R ,求a 的取值范围.探究点一 函数与映射的概念例1 (教材改编)下列对应关系是集合P 上的函数的是________.(1)P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; y =x 2,x ∈P ,y ∈Q ;(2)P ={-1,1,-2,2},Q ={1,4},对应关系:f :x →y =x 2,x ∈P ,y ∈Q ;(3)P ={三角形},Q ={x |x >0},对应关系f :对P 中三角形求面积与集合Q 中元素对应.变式迁移1 已知映射f :A →B .其中B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是 ( )A .k >1B .k ≥1C .k <1D .k ≤1 探究点二 求函数的定义域例2 (1)求函数y =x +1+x -0-x的定义域;(2)已知函数f (2x +1)的定义域为(0,1),求f (x )的定义域.变式迁移2 已知函数y =f (x )的定义域是[0,2],那么g (x )=f x 21+x +的定义域是________________________________________________________________________.探究点三 求函数的解析式例3 (1)已知f (2x+1)=lg x ,求f (x );(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );(3)已知f (x )满足2f (x )+f (1x)=3x ,求f (x ).变式迁移3 (2011·武汉模拟)给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式.探究点四 分段函数的应用例4 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c , x ≤0,2, x >0.若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4变式迁移 4 (2010·江苏)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1, x <0,则满足不等式f (1-x 2)>f (2x )的x 的范围是________________.1.与定义域有关的几类问题第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值范围;第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义;第三类是不给出函数的解析式,而由f (x )的定义域确定函数f [g (x )]的定义域或由f [g (x )]的定义域确定函数f (x )的定义域.第四类是已知函数的定义域,求参数范围问题,常转化为恒成立问题来解决. 2.解析式的求法求函数解析式的一般方法是待定系数法和换元法,除此还有代入法、拼凑法和方程组法.(满分:75分)一、选择题(每小题5分,共25分)1.下列各组中的两个函数是同一函数的为 ( )(1)y 1=x +3x -5x +3,y 2=x -5;(2)y 1=x +1x -1,y 2=x +1x -1;(3)f (x )=x ,g (x )=x 2;(4)f (x )=3x 4-x 3,F (x )=x 3x -1;(5)f 1(x )=(2x -5)2,f 2(x )=2x -5.A .(1)(2)B .(2)(3)C .(4)D .(3)(5)2.函数y =f (x )的图象与直线x =1的公共点数目是 ( ) A .1 B .0 C .0或1 D .1或23.(2011·洛阳模拟)已知f (x )=⎩⎪⎨⎪⎧x +x ≤-,x 2-1<x,2x x,若f (x )=3,则x 的值是( )A .1B .1或32C .1,32或± 3D. 34.(2009·江西)函数y =x +-x 2-3x +4的定义域为( )A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]5.(2011·台州模拟)设f :x →x 2是从集合A 到集合B 的映射,如果B ={1,2},则A ∩B 为 ( )A .∅B .{1}6.下列四个命题:(1)f (x )=x -2+1-x 有意义;(2)函数是其定义域到值域的映射;(3)函数y =2x (x ∈N )的图象是一条直线;(4)函数y =⎩⎪⎨⎪⎧x 2, x ≥0,-x 2,x <0的图象是抛物线.其中正确的命题个数是________.7.设f (x )=⎩⎪⎨⎪⎧ 3x +1 x x 2 x ,g (x )=⎩⎪⎨⎪⎧2-x 2xx ,则f [g (3)]=________,g [f (-12)]=________.8.(2010·陕西)已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =______.三、解答题(共38分)9.(12分)(1)若f (x +1)=2x 2+1,求f (x )的表达式; (2)若2f (x )-f (-x )=x +1,求f (x )的表达式;(3)若函数f (x )=xax +b,f (2)=1,又方程f (x )=x 有唯一解,求f (x )的表达式.10.(12分)已知f (x )=x 2+2x -3,用图象法表示函数g (x )=f x +|f x2,并写出g (x )的解析式.11.(14分)(2011·湛江模拟)某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x (百台),其总成本为G (x )万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R (x )(万元)满足R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x -0.8, 0≤x ≤5,10.2, x >5.假定该产品产销平衡,那么根据上述统计规律:(1)要使工厂有盈利,产品x 应控制在什么范围?(2)工厂生产多少台产品时盈利最大?此时每台产品的售价为多少?答案 自主梳理 1.(1)数集 任意一个数x 都有唯一确定的数f(x)和它对应 定义域 函数值的集合{f(x)|x∈A} (2)定义域 值域 对应关系 (3)解析法 列表法 图象法 (4)对应关系 (5)定义域 对应关系 并集 并集 2.(1)都有唯一 一个映射 (2)函数 非空自我检测1.B [对于题图(1):M 中属于(1,2]的元素,在N 中没有象,不符合定义;对于题图(2):M 中属于(43,2]的元素的象,不属于集合N ,因此它不表示M 到N 的函数关系;对于题图(3):符合M 到N 的函数关系;对于题图(4):其象不唯一,因此也不表示M 到N 的函数关系.]2.A 3.B 4.C5.解 函数y =lg(ax 2-ax +1)的定义域是R ,即ax 2-ax +1>0恒成立. ①当a =0时,1>0恒成立;②当a ≠0时,应有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0, ∴0<a <4.综上所述,a 的取值范围为0≤a <4. 课堂活动区例1 解题导引 函数是一种特殊的对应,要检验给定的两个变量之间是否具有函数关系,只需要检验:①定义域和对应关系是否给出;②根据给出的对应关系,自变量在其定义域中的每一个值,是否都有唯一确定的函数值.(2)解析 由于(1)中集合P 中元素0在集合Q 中没有对应元素,并且(3)中集合P 不是数集,所以(1)和(3)都不是集合P 上的函数.由题意知,(2)正确.变式迁移1 A [由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根.∴Δ=4(1-k )<0,∴k >1时满足题意.]例2 解题导引 在(2)中函数f (2x +1)的定义域为(0,1)是指x 的取值范围还是2x +1的取值范围?f (x )中的x 与f (2x +1)中的2x +1的取值范围有什么关系?解 (1)要使函数有意义,应有⎩⎪⎨⎪⎧x +1≥0,x -1≠0,2-x >0,2-x ≠1,即⎩⎪⎨⎪⎧x ≥-1,x ≠1,x <2,解得⎩⎪⎨⎪⎧-1≤x <2,x ≠1.所以函数的定义域是{x |-1≤x <1或1<x <2}. (2)∵f (2x +1)的定义域为(0,1), ∴1<2x +1<3,所以f (x )的定义域是(1,3).变式迁移2 (-1,-910)∪(-910,2]解析 由⎩⎪⎨⎪⎧0≤x 2≤2x +1>01+x +得-1<x ≤2且x ≠-910.即定义域为(-1,-910)∪(-910,2].例3 解题导引 函数解析式的类型与求法(1)若已知函数的类型(如一次函数、二次函数),可用待定系数法.(2)已知复合函数f (g (x ))的解析式,可用换元法,此时要注意变量的取值范围. (3)已知f (x )满足某个等式,这个等式除f (x )是未知量外,还出现其他未知量,如f (-x )、f (1x)等,要根据已知等式再构造其他等式组成方程组,通过解方程组求出f (x ).解 (1)令2x +1=t ,则x =2t -1,∴f (t )=lg 2t -1,∴f (x )=lg 2x -1,x ∈(1,+∞).(2)设f (x )=ax +b ,(a ≠0)则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17, ∴⎩⎪⎨⎪⎧a =2,b +5a =17, ∴a =2,b =7,故f (x )=2x +7.(3)2f (x )+f (1x)=3x , ①把①中的x 换成1x,得2f (1x )+f (x )=3x, ②①×2-②,得3f (x )=6x -3x,∴f (x )=2x -1x.变式迁移3 解 (1)令t =x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,即f (x )=x 2-1,x ∈[1,+∞).(2)设f (x )=ax 2+bx +c (a ≠0),∴f (x +2)=a (x +2)2+b (x +2)+c , 则f (x +2)-f (x )=4ax +4a +2b =4x +2. ∴⎩⎪⎨⎪⎧ 4a =4,4a +2b =2. ∴⎩⎪⎨⎪⎧a =1,b =-1. 又f (0)=3,∴c =3,∴f (x )=x 2-x +3.例4 解题导引 ①本题可以先确定解析式,然后通过解方程f (x )=x 来确定解的个数;也可利用数形结合,更为简洁.②对于分段函数,一定要明确自变量所属的范围,以便于选择与之相应的对应关系. ③分段函数体现了数学的分类讨论思想,相应的问题处理应分段解决.C [方法一 若x ≤0,则f (x )=x 2+bx +c . ∵f (-4)=f (0),f (-2)=-2,∴⎩⎪⎨⎪⎧-2+b -+c =c ,-2+b -+c =-2, 解得⎩⎪⎨⎪⎧b =4,c =2.∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2, x ≤0,2, x >0.当x ≤0,由f (x )=x ,得x 2+4x +2=x , 解得x =-2,或x =-1;当x >0时,由f (x )=x ,得x =2. ∴方程f (x )=x 有3个解.方法二 由f (-4)=f (0)且f (-2)=-2,可得f (x )=x 2+bx +c 的对称轴是x =-2,且顶点为(-2,-2),于是可得到f (x )的简图(如图所示).方程f (x )=x 的解的个数就是函数图象y =f (x )与y =x 的图象的交点的个数,所以有3个解.]变式迁移4 (-1,2-1)解析 函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1, x <0的图象如图所示:f (1-x 2)>f (2x )⇔⎩⎪⎨⎪⎧1-x 2>2x1-x 2>0,解得-1<x <2-1.课后练习区1.C [(1)定义域不同;(2)定义域不同;(3)对应关系不同;(4)定义域相同,且对应关系相同;(5)定义域不同.]2.C [有可能是没有交点的,如果有交点,那么对于x =1仅有一个函数值.]3.D [该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4),∴f (x )=x 2=3,x =±3,而-1<x <2,∴x = 3.]4.C5.D [由已知x 2=1或x 2=2,解之得,x =±1或x =±2,若1∈A ,则A ∩B ={1},若1∉A ,则A ∩B =∅,故A ∩B =∅或{1}.] 6.1解析 (1)x ≥2且x ≤1,不存在;(2)函数是特殊的映射;(3)该图象是由离散的点组成的;(4)该图象是两个不同的抛物线的两部分组成的,不是抛物线.故只有(2)正确.7.7 31168.29.解 (1)令t =x +1,则x =t -1,∴f (t )=2(t -1)2+1=2t 2-4t +3,∴f (x )=2x 2-4x +3.………………………………………………………………………………………………(4分)(2)∵2f (x )-f (-x )=x +1,用-x 去替换式子中的x ,得2f (-x )-f (x )=-x +1,……(6分)即有⎩⎪⎨⎪⎧2f x -f -x =x +12f -x -f x =-x +1,解方程组消去f (-x ),得f (x )=x3+1.……………………………………………………(8分)(3)由f (2)=1得22a +b =1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x (1ax +b -1)=0,解此方程得x =0或x =1-ba ,…(10分)又∵方程有唯一解,∴1-b a =0,解得b =1,代入2a +b =2得a =12,∴f (x )=2xx +2.……………………………………………………………………………(12分)10.解 函数f (x )的图象如图所示,……………………………………(6分)g (x )=⎩⎪⎨⎪⎧x 2+2x -3x ≤-3或x0 -3<x…………………………………………………(12分)11.解 依题意,G (x )=x +2,设利润函数为f (x ),则f (x )=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8,0≤x ≤5,8.2-x , x >5.………………………………………………(4分)(1)要使工厂赢利,则有f (x )>0.当0≤x ≤5时,有-0.4x 2+3.2x -2.8>0,得1<x <7,所以1<x ≤5.………………………………………………………………(8分) 当x >5时,有8.2-x >0, 得x <8.2,所以5<x <8.2.综上所述,要使工厂赢利,应满足1<x <8.2,即产品应控制在大于100台小于820台的范围内.……………………………………………………………………………………(10分)(2)当0≤x ≤5时,f (x )=-0.4(x -4)2+3.6. 故当x =4时,f (x )有最大值3.6.…………………………………………………………(12分)而当x >5时,f (x )<8.2-5=3.2.所以当工厂生产400台产品时,赢利最大,x =4时,每台产品售价为R4=2.4(万元/百台)=240(元/台).……………………………………………………………………………(14分)。
高三数学一轮复习精品教案4:2.1 函数及其表示教学设计
2.1 函数及其表示基础盘查一 函数的有关概念 (一)循纲忆知1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念. 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.(二)小题查验 1.判断正误(1)函数是建立在其定义域到值域的映射( )(2)函数y =f (x )的图象与直线x =a 最多有2个交点( ) (3)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数( )(4)若两个函数的定义域与值域相同,则这两个函数是相等函数( ) (5)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射( ) 『答案』(1)√ (2)× (3)√ (4)× (5)× 2.(人教A 版教材复习题改编)函数f (x )=x -4|x |-5的定义域是________________. 『答案』『4,5)∪(5,+∞)3.已知函数y =f (n ),满足f (1)=2,且f (n +1)=3f (n ),n ∈N *,则f (4)=________. 『答案』54基础盘查二 分段函数 (一)循纲忆知了解简单的分段函数,并能简单应用(函数分段不超过三段). (二)小题查验 1.判断正误(1)函数f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,是分段函数( )(2)若f (x )=⎩⎨⎧ 1-x 2,-1≤x ≤1,x +1,x >1或x <-1,则f (-x )=⎩⎨⎧1-x 2,-1≤x ≤1,-x +1,x >1或x <-1( )『答案』(1)√ (2)√2.分段函数的定义域等于各段函数的定义域的________,其值域等于各段函数的值域的________.『答案』并集 并集3.已知函数f (x )=⎩⎪⎨⎪⎧4x ,x ≤1,-x ,x >1,若f (x )=2,则x =________.『答案』12考点一 函数的概念|(基础送分型考点——自主练透)『必备知识』1.函数的定义设A 、B 为两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ).2.函数的三要素『题组练透』1.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =x -12B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100『答案』D2.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4『解析』选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象,故选B.『类题通法』两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x 表示,但也可用其他字母表示,如:f (x )=2x -1,g (t )=2t -1,h (m )=2m -1均表示同一函数.考点二 函数的定义域问题|(常考常新型考点——多角探明)『多角探明』函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,研究函数问题必须树立“定义域优先”的观念.求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴.常见的命题角度有:(1)求给定函数解析式的定义域; (2)求抽象函数的定义域; (3)已知定义域确定参数问题.角度一:求给定函数解析式的定义域 1.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.『解析』由⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0⇒⎩⎪⎨⎪⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2』. 『答案』(0,2』2.(2013·安徽高考)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 『解析』要使函数有意义,需⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0,即⎩⎪⎨⎪⎧x +1x >0,x 2≤1,即⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1,解得0<x ≤1,所以定义域为(0,1』. 『答案』(0,1』角度二:求抽象函数的定义域3.若函数y =f (x )的定义域是『1,2 014』,则函数g (x )=f x +1x -1的定义域是( )A .『0,2 013』B .『0,1)∪(1,2 013』C .(1,2 014』D .『-1,1)∪(1,2 013』『解析』选B 令t =x +1,则由已知函数的定义域为『1,2 014』,可知1≤t ≤2 014.要使函数f (x +1)有意义,则有1≤x +1≤2 014,解得0≤x ≤2 013,故函数f (x +1)的定义域为『0,2013』.所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 013,x -1≠0,解得0≤x <1或1<x ≤2 013.故函数g (x )的定义域为『0,1)∪(1,2 013』.故选B.4.若函数f (x 2+1)的定义域为『-1,1』,则f (lg x )的定义域为( ) A .『-1,1』 B .『1,2』 C .『10,100』D .『0,lg 2』『解析』选C 因为f (x 2+1)的定义域为『-1,1』,则-1≤x ≤1,故0≤x 2≤1,所以1≤x 2+1≤2.因为f (x 2+1)与f (lg x )是同一个对应法则,所以1≤lg x ≤2,即10≤x ≤100,所以函数f (lg x )的定义域为『10,100』.故选C.角度三:已知定义域确定参数问题 5.(2015·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.『解析』函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.『答案』『-1,0』『类题通法』简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)已知f (x )的定义域是『a ,b 』,求f (g (x ))的定义域,是指满足a ≤g (x )≤b 的x 的取值范围,而已知f (g (x ))的定义域是『a ,b 』,指的是x ∈『a ,b 』.考点三 求函数的解析式|(重点保分型考点——师生共研)『必备知识』(1)函数的解析式是表示函数的一种方法,对于不是y =f (x )的形式,可根据题目的条件转化为该形式.(2)求函数的解析式时,一定要注意函数定义域的变化,特别是利用换元法求出的解析式,不注明定义域往往导致错误.『典题例析』(1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x );(4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1,求f (x ). 解:(1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2. (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1,x >1.(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R .(4)在f (x )=2f ⎝⎛⎭⎫1x x -1中, 用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x-1, 将f ⎝⎛⎭⎫1x =2f x x -1代入f (x )=2f ⎝⎛⎭⎫1x x -1中, 可求得f (x )=23x +13.『类题通法』求函数解析式常用的方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (3)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (4)消去法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).『演练冲关』1.已知f (x +1)=x +2x ,求f (x )的解析式.解:法一:设t =x +1,则x =(t -1)2,t ≥1,代入原式有 f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1.法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1,x +1≥1, 即f (x )=x 2-1,x ≥1.2.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根,∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1.考点四 分段函数|(重点保分型考点——师生共研)『必备知识』若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.『提醒』 分段函数虽然由几部分组成,但它表示的是一个函数.『典题例析』1.已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3『解析』选B 由题意得f (0)=a 0+b =1+b =2, 解得b =1.f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝⎛⎭⎫12-3+1=9, 从而f (f (-3))=f (9)=log 39=2.2.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.『解析』当a >0时,1-a <1,1+a >1. 这时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32.不合题意,舍去.当a <0时,1-a >1,1+a <1,这时f (1-a )=-(1-a )-2a =-1-a , f (1+a )=2(1+a )+a =2+3a .由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.『答案』-34『类题通法』分段函数“两种”题型的求解策略 (1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.『提醒』 当分段函数的自变量范围不确定时,应分类讨论.『演练冲关』(2015·榆林二模)已知f (x )=⎩⎪⎨⎪⎧12x +1, x ≤0,-x -12, x >0,使f (x )≥-1成立的x 的取值范围是________. 『解析』由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故x 的取值范围是『-4,2』. 『答案』『-4,2』。
高考数学一轮复习 2.1函数及其表示精品学案
高考数学一轮复习 2.1函数及其表示精品学案【知识特点】1.函数、导数及其应用是高中数学的重要内容,本章主要包括函数的概念及其性质,基本初等函数Ⅰ(指数函数、对数函数、幂函数),导数的概念,导数及其几何意义,导数与函数的单调性、最值,导数在实际问题中的应用等内容。
2.本章内容集中体现了函数与方程、数形结合、分类讨论的思想方法,函数的类型较多,概念、公式较多,具有较强的综合性。
【重点关注】1.函数的概念及其性质(单调性、奇偶性、周期性、对称性)是高考考查的主要内容,函数的定义域、解析式、值域是高考考查重点,函数性质的综合考查在历年考试中久考不衰,应重点研究。
2.函数的图象及其变换既是高考考查的重点,又是学生学习的一个难点,应注意区分各函数的图象及图象的变换,利用图象来研究性质。
3.导数的几何意义,导数在函数的最值及单调性方面的应用是高中数学的一个重点内容,也是高等数学的必修内容,是近几年高考的一大热点,复习时应引起足够的重视。
4.注意思想方法的应用。
数形结合思想、函数与方程的思想、分类讨论思想在各种题型中均有体现,应引起重视。
【地位与作用】一、函数在高考中的地位与作用从2009年、2010年和2011年的全国各地的高考试题中可以看出,近几年高考在函数中的考查有如下特点:1、知识点的考查情况①映射与函数:以考查概念与运算为主,部分涉及新定义运算;②定义域、值域、解析式是考查的重点,而且比较稳定,有时结合其它知识点(一本部分内容为背景),分段函数较多、花样翻新;③函数的单调性在历年考试中久考不衰,且比例有上升趋势,和导函数联系较多;④函数的奇偶性主要和单调性、不等式、最值、三角函数等综合,与周期性、对称性、抽象函数等问题联系较多;⑤反函数出现在选择题、填空题中,考反函数概念运算可能性较大,若出现在解答题中,则必定与单调性、奇偶性、不等式、导函数等知识综合,难度较大;⑥二次函数问题是每年的必考题,一方面直接考查二次函数,另一方面是利用二次函数的性质解题,三个“二次”问题(即二次函数、二次方程、二次不等式)是函数考试题中永恒的主题⑦指数函数与对数函数以基本概念、性质为主设计试题,考查指数、对数的定义域、值域、单调性和运算,选择、填空题属中等难度,若解答题涉及到指、对数函数,往往难度会上升;⑧函数的图像与最值每年必考,体现“形是数的直观反映,数是形的抽象概括”,是数学思想方法中的数相结合思想的最直接的表现形式,尤其是函数y=x+a/x(a>0)的图像和性质,从未间断过;⑨函数应用题与综合应用题是最能体现考生函数水平的试题:一次函数、二次函数、y=x+a/x(a>0)型、指数型、对数型与现实生活相结合,考查学生的建模能力,而函数与数列、不等式、导函数等众多知识的交汇已经成为函数综合应用中的典型问题。
高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2-1函数及其表示学案理
【2019最新】精选高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2-1函数及其表示学案理考纲展示► 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单地应用(函数分段不超过三段).考点1 函数的概念1.函数与映射的概念确定2.函数由定义域、________和值域三个要素构成.答案:对应关系3.相等函数:如果两个函数的________和________完全一致,则这两个函数相等,这是判断两函数相等的依据.答案:定义域对应关系[教材习题改编]以下属于函数的有________.①y=±x;②y2=x+1;③y=+;④y=x2-2(x∈N).答案:④解析:①②中,对于定义域内任意一个数x,可能有两个不同的y 值,不满足对应的唯一性,所以①②错误;③中,定义域是空集,而函数的定义域是非空的数集,所以③错误.函数与映射理解的误区:唯一性;非空数集.如图表示的是从集合A到集合B的对应,其中________是映射,________是函数.答案:①②④①②解析:函数与映射都要求对于集合A中的任一元素在集合B中都有唯一确定的元素与之对应,所以③不是映射也不是函数;①②④表示的对应是映射;①②是函数,由于④中集合A,B不是数集,所以不是函数.[典题1] (1)下列四个图象中,是函数图象是( )A.① B.①③④C.①②③ D.③④[答案] B[解析] ②中当x>0时,每一个x的值对应两个不同的y值,因此不是函数图象;①③④中每一个x的值对应唯一的y值,因此是函数图象.故选B.(2)下列各组函数中,表示同一函数的是( )A.f(x)=|x|,g(x)=x2B.f(x)=,g(x)=()2C.f(x)=,g(x)=x+1D.f(x)=·,g(x)=x2-1[答案] A[解析] A中,g(x)=|x|,∴f(x)=g(x);B中,f(x)=|x|(x∈R),g(x)=x(x≥0),∴两函数的定义域不同;C中,f(x)=x+1(x≠1),g(x)=x+1(x∈R),∴两函数的定义域不同;D中,f(x)=·(x+1≥0且x-1≥0),f(x)的定义域为{x|x≥1};g(x)=(x2-1≥0),g(x)的定义域为{x|x≥1或x≤-1}.∴两函数的定义域不同.故选A.(3)下列集合A到集合B的对应f中:①A={-1,0,1},B={-1,0,1},f:A中的数平方;②A={0,1},B={-1,0,1},f:A中的数开方;③A=Z,B=Q,f:A中的数取倒数;④A=R,B={正实数},f:A中的数取绝对值.是从集合A到集合B的函数的为________.[答案] ①[解析] ②中,由于1的开方数不唯一,因此f不是A到B的函数;③中,A中的元素0在B中没有对应元素;④中,A中的元素0在B中没有对应元素.[点石成金] 函数的三要素:定义域、值域、对应法则.这三要素不是独立的,值域可由定义域和对应法则唯一确定.因此当且仅当定义域和对应法则都相同时,函数才是同一函数.特别值得说明的是,对应法则是就效果而言的(判断两个函数的对应法则是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应法则算出的函数值是否相同)不是指形式上的.即对应法则是否相同,不能只看外形,要看本质;若是用解析式表示的,要看化简后的形式才能正确判断.考点2 函数的定义域对函数y=f(x),x∈A,其中x叫做自变量,x的取值范围A叫做定义域,与x的值对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做值域.(1)[教材习题改编]函数f(x)=+的定义域为( )A.[0,2)B.(2,+∞)C.[0,2)∪(2,+∞)D.(-∞,2)∪(2,+∞)答案:C (2)[教材习题改编]若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( )A BC D答案:B 定义域问题的两个易错点:忽略定义域;化简后求定义域.(1)已知长方形的周长为12,设一边长为x,则其面积y关于x的函数解析式为________.答案:y=x(6-x)(0<x<6)解析:因为长方形一边长为x,则另一边长为=6-x,所以y=x(6-x).又x>0,6-x>0,所以0<x<6.如果不考虑x的范围,会扩大x的范围,这样会使实际问题失去意义.(2)函数y=的定义域为________.答案:(-∞,1)∪(1,+∞)解析:要使函数有意义,应使x-1≠0,即x≠1,所以函数定义域为(-∞,1)∪(1,+∞).本题如果对解析式化简会有y===x+2,从而得函数定义域为R,所以在求解定义域时,不能对函数变形、化简,以免定义域发生变化.[考情聚焦] 函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,研究函数问题必须树立“定义域优先”的观念.求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴.主要有以下几个命题角度:角度一求给定函数解析式的定义域[典题2] (1)[2017·山东淄博月考]函数f(x)=的定义域是( )A.(0,2)B.(0,1)∪(1,2)D.(0,1)∪(1,2]C.(0,2][答案] D [解析] 要使函数有意义,则有即所以0<x≤2且x≠1,所以函数f(x)的定义域为(0,1)∪(1,2],故选D. (2)[2017·山东青州高三模拟]函数f(x)=ln(x-1)+的定义域为( )A .(1,2)B .[1,2)C .(1,2]D .[1,2][答案] A[解析] 函数f(x)=ln(x -1)+的定义域为⇒1<x<2,故选A.角度二求抽象函数的定义域[典题3] (1)若函数f(x2+1)的定义域为[-1,1],则f(lg x)的定义域为( )A .[-1,1]B .[1,2]C .[10,100]D .[0,lg 2][答案] C[解析] 因为f(x2+1)的定义域为[-1,1],则-1≤x≤1,故0≤x2≤1,所以1≤x2+1≤2.因为f(x2+1)与f(lg x)是同一个对应法则,所以1≤lg x≤2,即10≤x≤100, 所以函数f(lg x)的定义域为[10,100].(2)[2017·河北唐山模拟]已知函数f(x)的定义域是[0,2],则函数g(x)=f +f 的定义域是________.[答案] ⎣⎢⎡⎦⎥⎤12,32 [解析] 因为函数f(x)的定义域是[0,2],所以函数g(x)=f +f中的自变量x 需要满足⎩⎪⎨⎪⎧0≤x+12≤2,0≤x-12≤2,解得≤x≤,所以函数g(x)的定义域是.角度三已知定义域确定参数问题[典题4] [2017·安徽合肥模拟]若函数f(x)=的定义域为R,则a的取值范围为________.[答案] [-1,0][解析] 函数f(x)的定义域为R,所以2x2+2ax-a-1≥0对x∈R恒成立,即2x2+2ax-a≥20,x2+2ax-a≥0恒成立,因此有Δ=(2a)2+4a≤0,解得-1≤a≤0.[点石成金] 求函数定义域的两种方法函数的表示法表示函数的常用方法有:________、________、________.答案:解析法图象法列表法[典题5] (1)已知f=lg x,则f(x)=________.[答案] lg (x>1)[解析] 令t =+1(t >1),则x =,∴f(t)=lg ,即f(x)=lg (x >1).(2)已知f(x)是一次函数,且满足3f(x +1)-2f(x -1)=2x +17,则f(x)=________. [答案] 2x +7[解析] 设f(x)=ax +b(a≠0),则3f(x +1)-2f(x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∴解得⎩⎪⎨⎪⎧a =2,b =7,∴f(x)=2x +7.(3)已知f(x)满足2f(x)+f =3x ,则f(x)=________.[答案] 2x -(x≠0)[解析] ∵2f (x)+f =3x ,① 以代替①式中的x(x≠0),得2f +f(x)=.②①×2-②,得3f(x)=6x -,∴f(x)=2x -(x ≠0).(4)[2017·山东青岛一中检测]奇函数f(x)在(0,+∞)上的表达式为f(x)=x +,则在(-∞,0)上f(x)的表达式为f(x)=________.[答案] x --x[解析] 设x<0,则-x>0,∴f(-x)=-x +.又f(x)为奇函数,∴f(x)=-f(-x)=x -, 即x∈(-∞,0)时,f(x)=x -. [点石成金] 求函数解析式的方法1.已知f(+1)=x +2,则f(x)=________.答案:x2-1(x≥1)解析:令t =+1,∴t≥1,x =(t -1)2,则f(t)=(t -1)2+2(t -1)=t2-1,∴f(x)=x2-1(x ≥1).2.已知f(x)为二次函数且f(0)=3,f(x +2)-f(x)=4x +2,则f(x)的解析式为________. 答案:f(x)=x2-x +3解析:设f(x)=ax2+bx +c(a≠0), 又f(0)=c =3,∴f(x)=ax2+bx +3,∴f(x +2)-f(x)=a(x +2)2+b(x +2)+3-(ax2+bx +3)=4ax+4a +2b =4x +2. ∴∴⎩⎪⎨⎪⎧a =1,b =-1.∴f(x)=x2-x +3.考点4 分段函数及其应用1.分段函数的定义若函数在其定义域内,对于定义域内的不同取值区间,有着不同的________,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.答案:对应关系 2.分段函数的性质(1)分段函数的定义域是各段函数解析式中自变量的取值集合的________.(2)分段函数的值域是各段函数值的________,它的最大值取各段最大值中最大的,最小值取各段最小值中最小的.(3)分段函数的单调性,首先应该判断各段函数的单调性,若每一段函数单调性一致,再判断分界点处函数值的关系,若符合单调性定义,则该函数在整个定义域上单调递增或递减;若不符合,则必须分区间说明单调性.答案:(1)并集(2)并集[考情聚焦] 分段函数是一类重要的函数,是高考的命题热点,多以选择题或填空题的形式呈现,试题难度不大,多为中低档题.主要有以下几个命题角度:角度一求分段函数的函数值或取值范围[典题6] [2017·广东广州模拟]设函数f(x)=则f(f(4))=________;若f(a)<-1,则a的取值范围为________.[答案] 5 ∪(1,+∞)[解析] f(4)=-2×42+1=-31,f(f(4))=f(-31)=log2(1+31)=5.当a≥1时,由-2a2+1<-1,得a2>1,解得a>1;当a<1时,由log2(1-a)<-1,得log2(1-a)<log2,∴0<1-a<,∴<a<1.即a的取值范围为∪(1,+∞).角度二分段函数的图象与性质的应用[典题7] 对任意实数a ,b 定义运算“⊗”:a ⊗b =设f(x)=(x2-1)⊗(4+x),若函数y =f(x)+k 的图象与x 轴恰有三个不同交点,则k 的取值范围是( )A .(-2,1)B .[0,1]C .[-2,0)D .[-2,1)[答案] D[解析] 解不等式x2-1-(4+x)≥1,得x≤-2或x≥3.解x2-1-(4+x)<1,得-2<x<3.所以f(x)=⎩⎪⎨⎪⎧x +4,-∞,-2]∪[3,+,x2-1,-2,其图象如图实线所示.由图可知,当-2≤k<1时,函数y =f(x)+k 的图象与x 轴恰有三个不同交点,故选D.[点石成金] 分段函数应用的常见题型与破解策略间进行分别求解,然后整合.[方法技巧] 1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、解方程组法.[易错防范] 1.求函数的解析式时要充分根据题目的类型选取相应的方法,同时要注意函数的定义域,如已知f()=x +1,求函数f(x)的解析式时,通过换元的方法可得f(x)=x2+1,这个函数的定义域是[0,+∞),而不是(-∞,+∞).2.求分段函数应注意的问题:在求分段函数的值f(x0)时,首先要判断x0属于定义域的哪个子集,然后再代入相应的关系式.真题演练集训1.[2013·大纲全国卷]已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( )A .(-1,1)B .⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0)D .⎝ ⎛⎭⎪⎫12,1 答案:B解析:∵f(x)的定义域为(-1,0),∴-1<2x +1<0,∴-1<x<-. 2.[2015·新课标全国卷Ⅱ]设函数f(x)=则f(-2)+f(log212)=( )A .3B .6C .9D .12答案:C解析:∵ -2<1,∴ f(-2)=1+log2(2+2)=1+log24=1+2=3.∵ log212>1,∴ f(log212)=2log212-1==6.∴ f(-2)+f(log212)=3+6=9.故选C. 3.[2015·浙江卷]存在函数f(x)满足:对任意x∈R都有( )A.f(sin 2x)=sin xB.f(sin 2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|答案:D解析:取特殊值法.取x=0,,可得f(0)=0,1,这与函数的定义矛盾,所以选项A错误;取x=0,π,可得f(0)=0,π2+π,这与函数的定义矛盾,所以选项B错误;取x=1,-1,可得f(2)=2,0,这与函数的定义矛盾,所以选项C错误;取f(x)=,则对任意x∈R都有f(x2+2x)==|x+1|,故选项D正确.综上可知,故选D.4.[2014·山东卷]函数f(x)=的定义域为( )A.B.(2,+∞)C.∪(2,+∞)D.∪[2,+∞)答案:C解析:(log2x)2-1>0,即log2x>1或log2x<-1,解得x>2或0<x<,故所求的定义域是∪(2,+∞).5.[2014·上海卷]设f(x)=若f(0)是f(x)的最小值,则a的取值范围为( )B.[-1,0]A.[-1,2]D.[0,2]C.[1,2]答案:D解析:∵当x≤0时,f(x)=(x-a)2,又f(0)是f(x)的最小值,∴a≥0.当x>0时,f(x)=x++a≥2+a,当且仅当x=1时等号成立.要满足f(0)是f(x)的最小值,需2+a≥f(0)=a2,即a2-a-2≤0,解得-1≤a≤2,∴a的取值范围是0≤a≤2.故选D.6.[2016·江苏卷]函数y=的定义域是________.答案:[-3,1]解析:要使函数y=有意义,则3-2x-x2≥0,解得-3≤x≤1,则函数y=的定义域是[-3,1].课外拓展阅读已知定义域求参数问题[典例1] 已知函数y=的定义域为R,求实数k的值.[解] 函数y=的定义域即使k2x2+3kx+1≠0的实数x的集合.由函数的定义域为R,得方程k2x2+3kx+1=0无解.当k=0时,函数y==1,函数的定义域为R,因此k=0符合题意;当k≠0时,k2x2+3kx+1=0无解,即Δ=9k2-4k2=5k2<0,不等式不成立.所以实数k的值为0.归纳总结已知函数的定义域,逆向求解函数中参数的取值,需运用分类讨论以及转化与化归的思想方法.转化与化归的思想方法是通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.如本题中将求参问题转化为方程无解的问题.[典例2] 已知函数y=(a<0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.[解] 由题意知ax+1≥0,a<0,所以x≤-,即函数的定义域为.因为函数在(-∞,1]上有意义,所以(-∞,1]⊆,所以-≥1.又a<0,所以-1≤a<0,即a的取值范围是[-1,0).温馨提示函数在(-∞,1]上有意义,说明函数的定义域包含区间(-∞,1],使函数有意义的自变量的集合是定义域的子集.已知分段函数图象求解析式已知函数的图象求函数的解析式y=f(x),如果自变量x在不同的区间上变化时,函数y=f(x)的解析式也不同,应分类求解.此时应根据图象,结合已学过的基本函数的图象,选择相应的解析式,用待定系数法求解,其函数解析式一般为分段函数.要注意写解析式时各区间端点的值,做到不重也不漏.[典例3] 根据如图所示的函数y=f(x)的图象,写出函数的解析式.[解] 当-3≤x<-1时,函数y=f(x)的图象是一条线段(右端点除外),设f(x)=ax +b(a≠0),将点(-3,1),(-1,-2)代入,可得f(x)=-x -;当-1≤x<1时,同理可设f(x)=cx +d(c≠0),将点(-1,-2),(1,1)代入,可得f(x)=x -; 当1≤x<2时,f(x)=1.综上f(x)=⎩⎪⎨⎪⎧-32x -72,-3≤x<-1,32x -12,-1≤x<1,1,1≤x<2.方法探究由图象求函数的解析式,需充分挖掘图象中提供的点的坐标,合理利用待定系数法求解.对于分段函数,需观察各段图象的端点是空心点还是实心点,正确写出各段解析式对应的自变量的范围.。
高三数学一轮复习精品教案2:2.1函数及其表示教学设计
第一节函数及其表示1.函数与映射的概念2.函数的定义域、值域(1)在函数y=f(x),x∈A中,自变量x的取值范围(数集A)叫函数的定义域;函数值的集合{f(x)|x∈A}是函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.3.函数的表示方法表示函数的常用方法有解析法、图象法和列表法. 4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.1.(人教A 版教材习题改编)给出四个命题: ①函数是其定义域到值域的映射; ②f (x )=x -3+2-x 是一个函数; ③函数y =2x (x ∈N )的图象是一条直线; ④f (x )=lg x 2与g (x )=2lg x 是同一函数. 其中正确的有( )A .1个B .2个C .3个D .4个 『解析』 由函数的定义知①正确.∵满足f (x )=x -3+2-x 的x 不存在,∴②不正确.又∵y =2x (x ∈N )的图象是位于直线y =2x 上的一群孤立的点,∴③不正确. 又∵f (x )与g (x )的定义域不同,∴④也不正确. 『答案』 A2.下列函数中,与函数y =x 相同的是( ) A .y =x 2x B .y =(x )2C .y =lg 10xD .y =2log 2x『解析』 因为y =x 2x =x (x ≠0);y =(x )2=x (x ≥0);y =lg 10x =x (x ∈R );y =2log 2x =x (x >0),故选C. 『答案』 C3.函数y =x 2-2x 的定义域为{0,1,2,3},则其值域为________. 『解析』 列表如下:由表知函数的值域为{0,-1,3}. 『答案』 {0,-1,3}4.(2012·江西高考改编)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=________.『解析』 由题意知f (3)=23,f (23)=(23)2+1=139,∴f (f (3))=f (23)=139.『答案』1395.(2012·广东高考)函数y =x +1x 的定义域为________. 『解析』 要使函数有意义,需⎩⎪⎨⎪⎧x +1≥0,x ≠0.解得⎩⎪⎨⎪⎧x ≥-1,x ≠0. ∴原函数的定义域为{x |x ≥-1且x ≠0}. 『答案』{x |x ≥-1且x ≠0}求函数的定义域(1)(2013·大连模拟)求函数f (x )=lg (x 2-2x )9-x 2的定义域;(2)已知函数f (2x )的定义域是『-1,1』,求f (x )的定义域;『思路点拨』 (1)根据解析式,构建使解析式有意义的不等式组求解即可. (2)要明确2x 与f (x )中x 的含义,从而构建不等式求解. 『尝试解答』 (1)要使该函数有意义,需要⎩⎪⎨⎪⎧x 2-2x >0,9-x 2>0,则有:⎩⎪⎨⎪⎧x <0或x >2,-3<x <3,解得:-3<x <0或2<x <3,所以所求函数的定义域为(-3,0)∪(2,3). (2)∵f (2x )的定义域为『-1,1』, 即-1≤x ≤1, ∴12≤2x ≤2, 故f (x )的定义域为『12,2』.,1.题(2)中易理解错f (x )与f (2x )定义域之间的关系.2.(1)求函数的定义域往往归结为解不等式组的问题,取交集时可借助数轴,并注意端点值的取舍.(2)对抽象函数:①若函数f (x )的定义域为『a ,b 』,则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.②若已知函数f (g (x ))的定义域为『a ,b 』,则f (x )的定义域为g (x )在x ∈『a ,b 』时的值域.(1)(2013·佛山模拟)函数f (x )=ln (2+x -x 2)|x |-x的定义域为( )A .(-1,2)B .(-1,0)∪(0,2)C .(-1,0)D .(0,2)(2)已知函数f (x )的定义域为『1,2』,则函数g (x )=f (2x )(x -1)0的定义域为________.『解析』 (1)f (x )有意义,则⎩⎪⎨⎪⎧2+x -x 2>0,|x |-x ≠0.解之得⎩⎪⎨⎪⎧-1<x <2,x <0,∴-1<x <0,∴f (x )的定义域为(-1,0).(2)要使函数g (x )=f (2x )(x -1)0有意义,则必须有⎩⎪⎨⎪⎧1≤2x ≤2x -1≠0,∴12≤x <1,故函数g (x )的定义域为『12,1)『答案』 (1)C (2)『12,1)求函数的解析式(1)已知f (2x+1)=lg x ,求f (x );(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x ); (3)已知f (x )+2f (1x )=x (x ≠0),求f (x ).『审题视点』 (1)用换元法,令2x+1=t ;(2)本题已给出函数的基本特征,即二次函数,可采用待定系数法求解. (3)用1x代入,构造方程求解.『尝试解答』 (1)令t =2x +1,则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1. (2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2, f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1, 即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32.∴f (x )=12x 2-32x +2.(3)∵f (x )+2f (1x )=x ,∴f (1x )+2f (x )=1x.解方程组⎩⎨⎧f (x )+2f (1x )=x ,f (1x )+2f (x )=1x ,得f (x )=23x -x3(x ≠0).,求函数解析式常用以下解法:(1)待定系数法:若已知函数的类型,可用待定系数法;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (3)构造法:已知关于f (x )与f (1x )或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x ).(1)已知f (1-cos x )=sin 2x ,求f (x )的解析式;(2)已知2f (x )-f (-x )=lg(x +1),x ∈(-1,1),求f (x )的解析式. 『解析』 (1) 令t =1-cos x ,则cos x =1-t ,0≤t ≤2, ∴f (t )=1-(1-t )2=-t 2+2t , 即f (x )=-x 2+2x (0≤x ≤2). (2)∵2f (x )-f (-x )=lg(x +1), ∴2f (-x )-f (x )=lg(1-x ).解方程组⎩⎪⎨⎪⎧2f (x )-f (-x )=lg (x +1)2f (-x )-f (x )=lg (1-x )得f (x )=23lg(x +1)+13lg(1-x )(-1<x <1).分段函数及其应用(1)(2013·郑州模拟)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16(2)已知函数f (x )=⎩⎪⎨⎪⎧-x -1(-1≤x <0),-x +1(0<x ≤1).则f (x )-f (-x )>-1的解集为( )A .(-∞,-1)∪(1,+∞)B .『-1,-12)∪(0,1』C .(-∞,0)∪(1,+∞)D .『-1,-12』∪(0,1)『思路点拨』 (1)由x ≥A 时,f (x )=15知,4<A ,从而可列方程组求解. (2)分-1≤x <0和0<x ≤1两种情况求解.『尝试解答』 (1)因为组装第A 件产品用时15分钟,所以cA=15,① 所以必有4<A ,且c 4=c2=30.② 联立①②解得c =60,A =16. (2)①当-1≤x <0时,0<-x ≤1,此时f (x )=-x -1,f (-x )=-(-x )+1=x +1, ∴f (x )-f (-x )>-1化为-2x -2>-1, 得x <-12,则-1≤x <-12.②当0<x ≤1时,-1≤-x <0,此时,f (x )=-x +1,f (-x )=-(-x )-1=x -1, ∴f (x )-f (-x )>-1化为-x +1-(x -1)>-1, 解得x <32,则0<x ≤1.故所求不等式的解集为『-1,-12)∪(0,1』.『答案』 (1)D (2)B ,1.解答本题(2)时,因自变量范围不确定应分类求解.2.应用分段函数时,首先要确定自变量的值属于哪个区间,其次选定相应关系代入计算求解,特别要注意分段区间端点的取舍,当自变量的值不确定时,要分类讨论.3.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值范围.(2013·济南模拟)设函数y =f (x )在R 上有定义.对于给定的正数M ,定义函数f M (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤M ,M ,f (x )>M ,则称函数f M (x )为f (x )的“孪生函数”.若给定函数f (x )=2-x 2,M =1,则f M (0)的值为( )A .2B .1 C.2 D .-2『解析』 由题设,f (x )=2-x 2≤1,得当x ≤-1或x ≥1时,f M (x )=2-x 2;当-1<x <1时,f M (x )=1.∴f M (0)=1. 『答案』 B一种方法求复合函数y =f (g (x ))的定义域的方法(1)若y =f (x )的定义域为(a ,b ),则解不等式得a <g (x )<b 即可求出y =f (g (x ))的定义域;(2)若y =f (g (x ))的定义域为(a ,b ),则求出g (x )的值域即为f (x )的定义域.两个防范1.解决函数问题,必须优先考虑函数的定义域. 2.用换元法解题时,应注意换元前后的等价性. 三个要素函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等.函数是特殊的映射,映射f :A →B 的三要素是集合A 、B 和对应关系f .从近两年高考试题看,函数的定义域、分段函数与分段函数有关的方程、不等式是考查的重点内容,题型以选择题、填空题为主,既重视三基,又注重思想方法的考查,预计2014年仍以分段函数及应用为重点,同时应特别关注与分段函数有关的方程的问题.思想方法之一 数形结合求解分段函数问题(2012·天津高考)已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________.『解析』 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1(x >1或x <-1),-x -1(-1≤x <1).在直角坐标系中作出该函数的图象,如图中实线所示.根据图象可知, 当0<k <1或1<k <4时有两个交点. 『答案』 (0,1)∪(1,4)易错提示:(1)没有化简函数解析式,从而无法画出函数图象求解. (2)不知道直线恒过定点(0,-2),无法确定k 的取值范围.防范措施:(1)解析式含有绝对值符号的函数,一般要去掉绝对值符号,把函数化为分段函数,利用几何直观求解.(2)直线方程中x 或y 的系数含有参数时,直线恒过定点,可通过该点旋转直线寻找满足条件的k 的取值范围.1.(2012·福建高考)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( )A.1 B.0C.-1 D.π『解析』根据题设条件,∵π是无理数,∴g(π)=0,∴f(g(π))=f(0)=0.『答案』B2.(2012·安徽高考)下列函数中,不满足f(2x)=2f(x)的是() A.f(x)=|x| B.f(x)=x-|x|C.f(x)=x+1 D.f(x)=-x『解析』将f(2x)表示出来,看与2f(x)是否相等.对于A,f(2x)=|2x|=2|x|=2f(x);对于B,f(2x)=2x-|2x|=2(x-|x|)=2f(x);对于C,f(2x)=2x+1≠2f(x);对于D,f(2x)=-2x=2f(x),故只有C不满足f(2x)=2f(x),所以选C.『答案』C。
高三数学第二章函数+导数高考一轮复习教案2.1函数及其表示
2.1函数及其表示一、学习目标:考纲点击:理解函数的有关概念热点提示:1.函数是高考数学的核心内容,在历年高考中,函数知识覆盖面广、综合性强,在难中易各类考题中都会出现。
而在江苏高考中,函数题的难度一般偏大,同其他省比有其独特性。
2、本节是函数的起始部分,以考查函数的概念、三要素及表示法为主,同时函数的图像,分段函数的考查是热点,另外,实际问题中的建模能力也经常考查。
本节复习重点:函数的定义域和表达式二、知识要点:1.函数的概念定义:设A,B 是___________,如果按照某种对应法则f,对于集合A 中的______,在集合B 中都有______元素y 和它对应,这样的对应叫做从A 到B 的一个函数记作____________. 其中,x 叫做______,x 的取值范围A 叫做函数的_______;与x 的值相对应的y 的值叫做______,函数值的集合{ f(x) |x ∈A}叫做函数的_______.2.函数的三要素:①_________;②__________________;③_________ 。
注:两个函数当且仅当_______和________,都相同时,才称作相同的函数.3.常用的函数表示法(1)解析法:;(2)列表法:;(3)图象法:。
4.分段函数5.复合函数若y =f (u),u=g(x ),x ∈ (a ,b ),u∈ (m,n),那么y =f [g(x )]称为复合函数,u 称为中间变量,它的取值范围是g(x )的值域。
三、课前检测:1. (09山东理)定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为________2.(09福建文)下列函数中,与函数y= 有相同定义域的是( ) A .()ln f x x = B.1()f x x =C. ()||f x x =D.()x f x e = 3. (09江西理)函数y =的定义域为________4. (09北京文)已知函数3,1,(),1,x x f x x x ⎧≤=⎨->⎩若()2f x =,则x = .5. .(09安徽理)已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是 .四.经典例题:热点考向一:求函数定义域例1:(1)求函数02)4(1||21)(-+-+-=x x x x f 的定义域。
高三数学一轮复习精品教案8:2.1 函数及其表示教学设计
2.1 函数及其表示目标定位1. 了解映射的概念,在此基础上加深对函数概念的理解。
2.能根据函数的二要素判断两个函数是否为同一函数。
3.理解分段函数的意义。
4.掌握函数的三种表示方法。
知识梳理1. 设集合A是一个非空的数集,对A内任意数x,按照确定的法则f,都有,则这种对应关系叫做集合A的一个函数。
记作:。
2.确定一个函数只需两个要素:。
3.设A、B是两个非空的集合,如果按照某种对应法则f,对A内任意一个元素x,在B 内,则称f是集合A到集合B的映射。
4.函数的三种表示方法是:。
课堂互动知识点1 函数的概念函数的定义有各种不同的形式,不管哪种形式其中最核心的内容都是“对于任意的一个数x,按照确定的法则f,都有惟一确定的数值y与它对应”,“惟一”是其中的关键字。
在处理有关函数的概念的问题时,必须切实把握“惟一”二字。
『例题1』下列各图象不能表示函数图象的是『分析』根据函数的定义,对于任意的一个数x,按照确定的法则f,都有惟一确定的数值y与它对应,而在D中对于的x可能有两个y值与它对应,所以D不能表示函数图象。
『答案』D『点评』在解决考查函数的概念的题目时,必须把握两点:一是定义域非空数集(当然值域也非空数集);二是对于任意的一个数x,按照确定的法则f,都有惟一确定的数值y与它对应(必须是惟一的)。
巩固练习 以下四组函数中,表示同一函数的是A .2)(|,|)(t t g x x f ==B .22)()(,)(x x g x x f ==C .1)(,11)(2+=--=x x g x x x f D .1)(,11)(2-=-⋅+=x x g x x x f 知识点2 函数的表示法函数的表示方法是函数的外在表现形式,在三种形式中最重要的是解析法、图象法(这两种表示方法必须既要能读懂,又要能用它们熟练地表示函数),列表法在以前的考查中主要是能读懂列表法表示的函数和列表法画函数图象,一般不要求学生用列表的方法表示函数。
高考数学一轮总复习 2.1函数及其表示课件
高频考点
考点一 函数的概念
【例1】 有以下判断:
①f(x)=|xx|与g(x)=1-1
x≥0 表示同一函数; x<0
②函数y=f(x)的图象与直线x=1的交点最多有1个;
③f(x)=x2-2x+1与g(t)=t2-2t+1是同一函数;
④若f(x)=|x-1|-|x|,则ff12=0. 其中正确判断的序号是________.
解析 f(3)=23,f(f(3))=232+1=193.
答案 D
6.(2014·浙江卷)设函数f(x)=
x2+x,x<0, -x2,x≥0.
若f(f(a))≤2,
则实数a的取值范围是________.
解析 由题意得ff2aa<+0,fa≤2, 或f-af2≥a0≤,2, 解得f(a)≥-2. 由aa<2+0,a≥-2, 或a-≥a02≥,-2, 解得a≤ 2.
听课记录
对于①,由于函数f(x)=
|x| x
的定义域为{x|x∈R且x≠0},而
1 x≥0,
函数g(x)= -1 x<0
的定义域是R,所以二者不是同函数;对于②,
2.函数的构成要素为: 定义域、对应关系和值域 .由于值
域是由定义域和对应关系决定的,所以,如果两个函数的 定义域
相同,并且 对应关系 完全一致,我们就称这两个函数 相等 .
3.函数的表示法有 解析法、图象法、列表法
.
知识点二 映射
设A,B是两个非空集合,如果按照某种对应关系f,对于A中
的 任意 一个元素x,在B中 有且仅有一个元素 y与x对应,那么 称f是集合A到集合B的映射.这时映射f也可记为:f: A→B , x→f(x),其中A叫做映射f的 定义域 (函数定义域的推广),由所 有函数值f(x)构成的集合叫做映射f的 值域 ,通常记作f(A).
高考数学一轮复习总教案:2.1函数的概念及表示法
第二章 函 数高考导航 考试要求重难点击 命题展望1.了解构成函数的三要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际生活中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单运用.4.理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.5.会运用函数的图象理解和研究函数的性质.6.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.7.理解指数函数的概念及其单调性,掌握指数函数通过的特殊点.8.理解对数的概念及其运算性质,知道用换底公式能将一般对数化成自然对数或常用对数;了解对数在简化运算中的作用.9.理解对数函数的概念及其单调性,掌握对数函数通过的特殊点.10.了解指数函数y =ax 与对数函数y =logax (a >0且a≠1)互为反函数.11.了解幂函数的概念,结合函数y =x , y =x2, y =x3 ,y =x 1, y =21x 的图象,了解它们的变化情况.12.结合二次函数的图象,了解函数的零点与方程的根的联系,判断一元二次方程根的存在性和根的个数.13.根据具体函数图象,能够用二分法求相应方程的近似解. 14.了解指数函数、对数函数以及幂函数的增长特征;知道直线上升、指数增长、对数增长等不同函数类型增长的含义. 15.了解指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型的广泛应用. 本章重点:1.函数的概念及其三要素; 2.函数的单调性、奇偶性及其几何意义;3.函数的最大(小)值;4.指数函数与对数函数的概念和性质;5.函数的图象及其变换;6.函数的零点与方程的根之间的关系;7.函数模型的建立及其应用. 本章难点:1.函数概念的理解;2.函数单调性的判断;3.函数图象的变换及其应用;4.指数函数与对数函数概念的理解及其性质运用;5.研究二次函数的零点与一元二次方程的根的关系;6.函数模型的建立及求解.高考对函数的考查,常以选择题和填空题来考查函数的概念和一些基本初等函数的图象和性质,解答题则往往不是简单地考查概念、公式和法则的应用,而是常与导数、不等式、数列、三角函数、解析几何等知识及实际问题结合起来进行综合考查,并渗透数学思想方法,突出考查函数与方程、数形结合、分类与整合、化归与转化等数学思想方法.知识网络2.1函数的概念及表示法典例精析题型一 求函数的解析式【例1】 (1)已知f(x +1)=x2+x +1,求f(x)的表达式; (2)已知f(x)+2f(-x)=3x2+5x +3,求f(x)的表达式. 【解析】(1)设x +1=t ,则x =t -1,代入得f(x)=(t -1)2+(t -1)+1=t2-t +1,所以f(x)=x2-x +1. (2)由f(x)+2f(-x)=3x2+5x +3,x 换成-x ,得f(-x)+2 f(x)=3x2-5x +3,解得f(x)=x2-5x +1.【点拨】已知f(x),g(x),求复合函数f[g(x)]的解析式,直接把f(x)中的x 换成g(x)即可,已知f[g(x)],求f(x)的解析式,常常是设g(x)=t ,或者在f[g(x)]中凑出g(x),再把g(x)换成x.【变式训练1】已知f(x x+-11)=2211x x +-,求f(x)的解析式.【解析】设x x +-11=t ,则x =t t +-11,所以f(t)=22)11(1)11(1t t t t +-++--=212t t +, 所以f(x)=212x x+(x≠-1).题型二 求函数的定义域【例2】(1)求函数y =229)2lg(x x x --的定义域;(2)已知f(x)的定义域为[-2,4],求f(x2-3x)的定义域. 【解析】(1)要使函数有意义,则只需要⎩⎨⎧>->-,09,0222x x x 即⎩⎨⎧<<-<>,33,02x x x 或解得-3<x <0或2<x <3,故所求的定义域为(-3,0)∪(2,3). (2)依题意,只需-2≤x2-3x≤4,解得-1≤x≤1或2≤x≤4,故f(x2-3x)的定义域为[-1,1]∪[2,4]. 【点拨】有解析式的函数的定义域是使解析式有意义的自变量的取值范围,往往列不等式组求解.对于抽象函数f[g(x)]的定义域要把g(x)当作f(x)中的x 来对待. 【变式训练2】已知函数f(2x)的定义域为[-1,1],求f(log2x)的定义域.【解析】因为y =f(2x)的定义域为[-1,1],即-1≤x≤1时2-1≤2x≤21,所以y =f(x)的定义域为[12,2].令12≤log2x≤2,所以2≤x≤22=4,故所求y =f(log2x)的定义域为[2,4].题型三 由实际问题给出的函数【例3】 用长为l 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底部长为2x ,求此框围成的面积y 与x 的函数关系式,并指出其定义域.【解析】由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,而矩形的长AB =2x ,设宽为a ,则有2x +2a +πx =l ,即a =2l -2πx -x ,半圆的半径为x , 所以y =22πx +(2l -π2x -x)·2x =-(2+π2)x2+lx.由实际意义知2l -π2x -x >0,因x >0,解得0<x <π+2l.即函数y =-(2+π2)x2+lx 的定义域是{x|0<x <π+2l}.【点拨】求由实际问题确定的定义域时,除考虑函数的解析式有意义外,还要考虑使实际问题有意义.如本题使函数解析式有意义的x 的取值范围是x ∈R ,但实际问题的意义是矩形的边长为正数,而边长是用变量x 表示的,这就是实际问题对变量的制约.【变式训练3】一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示,设小矩形的长、宽分别为x 、y ,剪去部分的面积为20,若2≤x≤10,记y =f(x),则y =f(x)的图象是( ) 【解析】由题意得y =10x(2≤x≤10),选A. 题型四 分段函数【例4】 已知函数f(x)=⎩⎨⎧≥+<+).0(1),0(32x x x x(1)求f(1)+f(-1)的值; (2)若f(a)=1,求a 的值;(3)若f(x)>2,求x 的取值范围.【解析】(1)由题意,得f(1)=2,f(-1)=2,所以f(1)+f(-1)=4. (2)当a <0时,f(a)=a +3=1,解得a =-2;当a≥0时,f(a)=a2+1=1,解得a =0.所以a =-2或a =0. (3)当x <0时,f(x)=x +3>2,解得-1<x <0; 当x≥0时,f(x)=x2+1>2,解得x >1. 所以x 的取值范围是-1<x <0或x >1.【点拨】分段函数中,x 在不同的范围内取值时,其对应的函数关系式不同.因此,分段函数往往需要分段处理.【变式训练4】已知函数f(x)=⎪⎩⎪⎨⎧>+-≤<.10,621,100|,lg |x x x x 若a ,b ,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)【解析】不妨设a <b <c ,由f(a)=f(b)=f(c)及f(x)图象知110<a <1<b <10<c <12,所以-lg a =lg b =-12c +6,所以ab =1,所以abc 的范围为(10,12),故选C.总结提高1.在函数三要素中,定义域是灵魂,对应法则是核心,因为值域由定义域和对应法则确定,所以两个函数当且仅当定义域与对应法则均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.2.若一个函数在其定义域不同的子集上,解析式不同,则可用分段函数的形式表示.3.函数的三种表示法各有利弊,一般情况下,研究函数要求出函数的解析式,通过解析式来解题.求函数解析式的方法有:配方法、观察法、换元法和待定系数法等.。
高考数学一轮复习学案:2.1 函数及其表示(含答案)
高考数学一轮复习学案:2.1 函数及其表示(含答案)2.1函数及其表示函数及其表示最新考纲考情考向分析1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念2.在实际情境中,会根据不同的需要选择恰当的方法如图象法.列表法.解析法表示函数3.了解简单的分段函数,并能简单应用函数分段不超过三段.以基本初等函数为载体,考查函数的表示法.定义域;分段函数以及函数与其他知识的综合是高考热点,题型既有选择.填空题,又有解答题,中等偏上难度.1函数与映射函数映射两个集合A,B设A,B是两个非空数集设A,B是两个非空集合对应关系fAB如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称fAB为从集合A到集合B的一个函数称fAB为从集合A到集合B的一个映射函数记法函数yfx,xA映射fAB2.函数的有关概念1函数的定义域.值域在函数yfx,xA中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合fx|xA叫做函数的值域2函数的三要素定义域.对应关系和值域3函数的表示法表示函数的常用方法有解析法.图象法和列表法3分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数知识拓展简单函数定义域的类型1fx为分式型函数时,定义域为使分母不为零的实数集合;2fx 为偶次根式型函数时,定义域为使被开方式非负的实数的集合;3fx为对数式时,函数的定义域是真数为正数.底数为正且不为1的实数集合;4若fxx0,则定义域为x|x0;5指数函数的底数大于0且不等于1;6正切函数ytanx的定义域为xxk2,kZ.题组一思考辨析1判断下列结论是否正确请在括号中打“”或“”1对于函数fAB,其值域就是集合B.2若两个函数的定义域与值域相同,则这两个函数相等3函数fx的图象与直线x1最多有一个交点4若AR,Bx|x0,fxy|x|,其对应是从A到B的映射5分段函数是由两个或几个函数组成的题组二教材改编2P74T72函数fxx3log26x的定义域是________答案3,63P25B组T1函数yfx的图象如图所示,那么,fx的定义域是________;值域是________;其中只有唯一的x值与之对应的y 值的范围是________答案3,02,31,51,24,5题组三易错自纠4已知函数fxx|x|,若fx04,则x0的值为______答案2解析当x0时,fxx2,fx04,即x204,解得x02.当x0,4a24a21,且fa3,则f6a等于A74B54C34D14答案A解析函数fx2x12,x1,log2x1,x1且fa3,若a1,则2a123,即有2a111,则log2a13,解得a7,则f6af1211274.2xx广东汕头.河北石家庄二中联考设函数fxx2x,x0,则使fx12的x的集合为__________答案1,2,22解析由题意知,若x0,则2x12,解得x1;若x0,则|log2x|12,解得x122或x122.故x的集合为1,2,22.分类讨论思想在函数中的应用典例1设函数fx3x1,x1,2x,x1,则满足ffa2fa的a的取值范围是A.23,1B0,1C.23,D1,2xx全国设函数fxx1,x0,2x,x0,则满足fxfx121的x的取值范围是______思想方法指导1求分段函数的函数值,首先要确定自变量的范围,通过分类讨论求解;2当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围解析1令fat,则ft2t,当t0,gtg10,3t12t无解当t1时,2t2t成立,由fa1可知,当a1时,有3a11,a23,23a1;当a1时,有2a1,a0,a1.综上,a23,故选C.2当x12时,fxfx122x122x2x21;当0x12时,fxfx122xx1212xx122x1;当x0时,fxfx12x1x1212x32,由fxfx121,得2x321,即x14,即14x0.综上,x14,.答案1C214,。
高三数学一轮复习精品教案1:2.1函数及其表示教学设计
2.1 函数及其表示1.函数映射的概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图像法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.1.解决函数的一些问题时,易忽视“定义域优先”的原则.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A 、B 若不是数集,则这个映射便不是函数. 3.误把分段函数理解为几种函数组成. 『试一试』1.(2013·苏锡常镇一调)已知常数t 是负实数,则函数f (x )=12t 2-tx -x 2的定义域是________. 『解析』因为f (x )=12t 2-tx -x 2=-x +3t x +4t ,则(-x +3t )(x +4t )≥0.又t <0,所以x ∈『3t ,-4t 』. 『答案』『3t ,-4t 』2.(2013·扬州期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f (f (0))=________.『解析』因为f (0)=30=1,所以f (f (0))=f (1)=log 21=0. 『答案』0求函数解析式的四种常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (4)解方程组法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ). 『练一练』1.设g (x )=2x +3,g (x +2)=f (x ),则f (x )等于________. 『解析』f (x )=g (x +2)=2(x +2)+3=2x +7. 『答案』2x +72.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (x )=________.『解析』由题意得⎩⎪⎨⎪⎧ 1+b +c =0,9+3b +c =0,解得⎩⎪⎨⎪⎧b =-4,c =3.∴f (x )=x 2-4x +3. 『答案』x 2-4x +3考点一函数与映射的概念1.下列四组函数中,表示同一函数的是________.(填写序号)①y =x -1与y =x -12②y =x -1与y =x -1x -1 ③y =4lg x 与y =2lg x 2 ④y =lg x -2与y =lgx 100『答案』④2.以下给出的同组函数中,是否表示同一函数?为什么? (1)f 1:y =xx ;f 2:y =1.(2)f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:(3)f 1:y =2x ;f 2:如图所示.『解析』(1)不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R .(2)同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式. (3)同一函数.理由同(2).『备课札记』 『类题通法』两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x 表示,但也可用其他字母表示,如:f (x )=2x -1,g (t )=2t -1,h (m )=2m -1均表示同一函数.考点二函数的定义域问题函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分.归纳起来常见的命题角度有:1求给定函数解析式的定义域; 2已知f x 的定义域,求f g x 的定义域;3已知定义域确定参数问题.角度一 求给定函数解析式的定义域 1.(1)(2013·山东高考改编)函数f (x )=1-2x +1x +3 的定义域为________. (2)(2013·安徽高考)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 『解析』(1)由题意,自变量x 应满足⎩⎪⎨⎪⎧1-2x ≥0,x +3>0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)要使函数有意义,需⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0,即⎩⎪⎨⎪⎧x +1x >0,x 2≤1,即⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1,解得0<x ≤1,所以定义域为(0,1』.『答案』(1)(-3,0』 (2)(0,1』角度二 已知f (x )的定义域,求f (g (x ))的定义域2.已知函数f (x )的定义域是『-1,1』,求f (log 2x )的定义域. 『解析』∵函数f (x )的定义域是『-1,1』,∴-1≤log 2x ≤1, ∴12≤x ≤2.故f (log 2x )的定义域为⎣⎡⎦⎤12,2. 『备课札记』 角度三 已知定义域确定参数问题 3.(2014·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.『解析』函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥1,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. 『答案』『-1,0』 『类题通法』简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f (x )的定义域为『a ,b 』,则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.考点三求函数的解析式『典例』 (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式. (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式.(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ).(4)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式. 『解析』 (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R ).(4)当x ∈(-1,1)时,有 2f (x )-f (-x )=lg(x +1). ①以-x 代x ,得2f (-x )-f (x )=lg(-x +1). ② 由①②消去f (-x ),得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).『备课札记』 『类题通法』求函数解析式常用的方法有(1)待定系数法;(2)换元法(换元后要注意新元的取值范围); (3)配凑法; (4)解方程组法. 『针对训练』1.已知f (x +1)=x +2x ,求f (x )的解析式. 『解析』法一:设t =x +1, 则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1).2.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式. 『解析』设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.考点四分段函数『典例』 (2011·江苏高考)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.『解析』 当a >0时,1-a <1,1+a >1. 这时f (1-a )=2(1-a )+a =2-a , f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32.不合题意,舍去.当a <0时,1-a >1,1+a <1,这时f (1-a )=-(1-a )-2a =-1-a , f (1+a )=2(1+a )+a =2+3a .由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.『答案』 -34『备课札记』 『类题通法』分段函数“两种”题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.提醒:当分段函数的自变量范围不确定时,应分类讨论. 『针对训练』设函数f (x )=⎩⎨⎧2-x ,x ∈-∞,1,x 2,x ∈[1,+∞,若f (x )>4,则x 的取值范围是______.『解析』当x <1时,由f (x )>4,得2-x >4,即x <-2; 当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2. 综上可得x <-2或x >2. 『答案』(-∞,-2)∪(2,+∞)『课堂练通考点』1.(2013·南京一模)函数y =2x -x 2的定义域是________.『解析』由2x -x 2≥0得0≤x ≤2,故函数的定义域为『0,2』 『解析』『0,2』2.(2013·苏北四市二调)若函数f (x )=⎩⎪⎨⎪⎧2x , x <0,-2-x , x >0,则函数y =f (f (x ))的值域是________.『解析』当x <0时,f (x )=2x ∈(0,1),故y =f (f (x ))=-2-f (x )∈⎝⎛⎭⎫-1,-12;当x >0时,f (x )=-2-x ∈(-1,0),故y =f (f (x ))=2f (x )∈⎝⎛⎭⎫12,1,从而原函数的值域为⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫12,1. 『答案』⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫12,1 3.函数y =(x +1)0+ln(-x )的定义域为________.『解析』由题意知,⎩⎪⎨⎪⎧ x +1≠0,-x >0,⇒⎩⎪⎨⎪⎧x ≠-1x <0⇒x ∈(-∞,-1)∪(-1,0).『答案』(-∞,-1)∪(-1,0)4.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 『解析』由f (1)=f (2)=0,得⎩⎪⎨⎪⎧ 12+p +q =0,22+2p +q =0,所以⎩⎪⎨⎪⎧p =-3,q =2. 故f (x )=x 2-3x +2.所以f (-1)=(-1)2+3+2=6. 『答案』6 5.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))与g (f (2)); (2)求f (g (x ))与g (f (x ))的表达式. 『解析』(1)g (2)=1,f (g (2))=f (1)=0; f (2)=3,g (f (2))=g (3)=2.(2)当x >0时,f (g (x ))=f (x -1)=(x -1)2-1=x 2-2x ; 当x <0时,f (g (x ))=f (2-x )=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.同理可得g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x <-1或x >1,3-x 2,-1<x <1.。
高三数学一轮复习精品学案3:2.1 函数及其表示
2.1 函数及其表示导学目标: 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法等)表示函数.3.了解简单的分段函数,并能简单应用.自主梳理1.函数的基本概念(1)函数定义设A,B是非空的,如果按照某种确定的对应关系f,使对于集合A中的,在集合B中,称f:A→B为从集合A到集合B的一个函数,x的取值范围A叫做函数的__________,__________________叫做函数的值域.(2)函数的三要素__________、________和____________.(3)函数的表示法表示函数的常用方法有:________、________、________.(4)函数相等如果两个函数的定义域和__________完全一致,则这两个函数相等,这是判定两函数相等的依据.(5)分段函数:在函数的________内,对于自变量x的不同取值区间,有着不同的____________,这样的函数通常叫做分段函数.分段函数是一个函数,它的定义域是各段取值区间的________,值域是各段值域的________.2.映射的概念(1)映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的.(2)由映射的定义可以看出,映射是概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合,A、B必须是数集.自我检测1.(2011·佛山模拟)设集合M={x|0≤x≤2},N={y|0≤y≤2},给出下列4个图形,其中能表示集合M到N的函数关系的有()A .0个B .1个C .2个D .3个 2.(2010·湖北)函数y =1log 0.54x -3的定义域为( )A .(34,1)B .(34,+∞)C .(1,+∞)D .(34,1)∪(1,+∞)3.(2010·湖北)已知函数f(x)=⎩⎪⎨⎪⎧log 3x ,x >02x , x ≤0,则f(f (19))等于( )A .4 B.14C .-4D .-144.下列函数中,与函数y =x 相同的函数是( ) A .y =x 2x B .y =(x )2C .y =lg 10xD .y =2log 2x5.(2011·衡水月考)函数y =lg(ax 2-ax +1)的定义域是R ,求a 的取值范围.探究点一 函数与映射的概念例1 (教材改编)下列对应关系是集合P 上的函数的是________.(1)P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; y =x 2,x ∈P ,y ∈Q ;(2)P ={-1,1,-2,2},Q ={1,4},对应关系:f :x →y =x 2,x ∈P ,y ∈Q ;(3)P ={三角形},Q ={x |x >0},对应关系f :对P 中三角形求面积与集合Q 中元素对应.变式迁移1 已知映射f :A →B .其中B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是 ( )A .k >1B .k ≥1C .k <1D .k ≤1 探究点二 求函数的定义域例2 (1)求函数y =x +1+x -10lg 2-x 的定义域;(2)已知函数f (2x +1)的定义域为(0,1),求f (x )的定义域.变式迁移2 已知函数y =f (x )的定义域是『0,2』,那么g (x )=f x 21+lg x +1的定义域是________________________________________________________________________. 探究点三 求函数的解析式例3 (1)已知f (2x+1)=lg x ,求f (x );(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ); (3)已知f (x )满足2f (x )+f (1x )=3x ,求f (x ).变式迁移3 (2011·武汉模拟)给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式.探究点四 分段函数的应用例4 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c , x ≤0,2, x >0.若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4变式迁移4 (2010·江苏)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1, x <0,则满足不等式f (1-x 2)>f (2x )的x 的范围是________________.1.与定义域有关的几类问题第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值范围; 第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义;第三类是不给出函数的解析式,而由f (x )的定义域确定函数f 『g (x )』的定义域或由f 『g (x )』的定义域确定函数f (x )的定义域.第四类是已知函数的定义域,求参数范围问题,常转化为恒成立问题来解决. 2.解析式的求法求函数解析式的一般方法是待定系数法和换元法,除此还有代入法、拼凑法和方程组法.答案 自主梳理1.(1)数集 任意一个数x 都有唯一确定的数f(x)和它对应 定义域 函数值的集合{f(x)|x ∈A} (2)定义域值域 对应关系 (3)解析法 列表法 图象法 (4)对应关系(5)定义域 对应关系 并集 并集 2.(1)都有唯一 一个映射 (2)函数 非空自我检测1.B 『对于题图(1):M 中属于(1,2』的元素,在N 中没有象,不符合定义; 对于题图(2):M 中属于(43,2』的元素的象,不属于集合N ,因此它不表示M 到N 的函数关系;对于题图(3):符合M 到N 的函数关系;对于题图(4):其象不唯一,因此也不表示M 到N 的函数关系.』2.A 3.B 4.C5.『答案』函数y =lg(ax 2-ax +1)的定义域是R ,即ax 2-ax +1>0恒成立. ①当a =0时,1>0恒成立;②当a ≠0时,应有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0,∴0<a <4.综上所述,a 的取值范围为0≤a <4. 课堂活动区例1 解题导引 函数是一种特殊的对应,要检验给定的两个变量之间是否具有函数关系,只需要检验:①定义域和对应关系是否给出;②根据给出的对应关系,自变量在其定义域中的每一个值,是否都有唯一确定的函数值.(2)『答案』由于(1)中集合P 中元素0在集合Q 中没有对应元素,并且(3)中集合P 不是数集,所以(1)和(3)都不是集合P 上的函数.由题意知,(2)正确.变式迁移1 A 『由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根.∴Δ=4(1-k )<0,∴k >1时满足题意.』例2 解题导引 在(2)中函数f (2x +1)的定义域为(0,1)是指x 的取值范围还是2x +1的取值范围?f (x )中的x 与f (2x +1)中的2x +1的取值范围有什么关系?『答案』(1)要使函数有意义, 应有⎩⎪⎨⎪⎧x +1≥0,x -1≠0,2-x >0,2-x ≠1,即⎩⎪⎨⎪⎧x ≥-1,x ≠1,x <2,解得⎩⎪⎨⎪⎧-1≤x <2,x ≠1.所以函数的定义域是{x |-1≤x <1或1<x <2}. (2)∵f (2x +1)的定义域为(0,1), ∴1<2x +1<3,所以f (x )的定义域是(1,3).变式迁移2 (-1,-910)∪(-910,2』『答案』由⎩⎪⎨⎪⎧0≤x 2≤2x +1>01+lg x +1≠0得-1<x ≤2且x ≠-910.即定义域为(-1,-910)∪(-910,2』.例3 解题导引 函数解析式的类型与求法(1)若已知函数的类型(如一次函数、二次函数),可用待定系数法.(2)已知复合函数f (g (x ))的解析式,可用换元法,此时要注意变量的取值范围. (3)已知f (x )满足某个等式,这个等式除f (x )是未知量外,还出现其他未知量,如f (-x )、f (1x)等,要根据已知等式再构造其他等式组成方程组,通过解方程组求出f (x ). 『答案』(1)令2x +1=t ,则x =2t -1,∴f (t )=lg2t -1, ∴f (x )=lg2x -1,x ∈(1,+∞). (2)设f (x )=ax +b ,(a ≠0)则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,∴⎩⎪⎨⎪⎧a =2,b +5a =17, ∴a =2,b =7,故f (x )=2x +7.(3)2f (x )+f (1x )=3x , ①把①中的x 换成1x,得2f (1x )+f (x )=3x, ②①×2-②,得3f (x )=6x -3x ,∴f (x )=2x -1x.变式迁移3 『答案』(1)令t =x +1, ∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1, 即f (x )=x 2-1,x ∈『1,+∞). (2)设f (x )=ax 2+bx +c (a ≠0), ∴f (x +2)=a (x +2)2+b (x +2)+c , 则f (x +2)-f (x )=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧ 4a =4,4a +2b =2. ∴⎩⎪⎨⎪⎧a =1,b =-1.又f (0)=3,∴c =3,∴f (x )=x 2-x +3.例4 解题导引 ①本题可以先确定解析式,然后通过解方程f (x )=x 来确定解的个数;也可利用数形结合,更为简洁.②对于分段函数,一定要明确自变量所属的范围,以便于选择与之相应的对应关系. ③分段函数体现了数学的分类讨论思想,相应的问题处理应分段解决. C 『方法一 若x ≤0,则f (x )=x 2+bx +c . ∵f (-4)=f (0),f (-2)=-2,∴⎩⎪⎨⎪⎧-42+b ·-4+c =c ,-22+b ·-2+c =-2,解得⎩⎪⎨⎪⎧ b =4,c =2.∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2, x ≤0,2, x >0.当x ≤0,由f (x )=x ,得x 2+4x +2=x , 解得x =-2,或x =-1; 当x >0时,由f (x )=x ,得x =2. ∴方程f (x )=x 有3个解.方法二 由f (-4)=f (0)且f (-2)=-2,可得f (x )=x 2+bx +c 的对称轴是x =-2,且顶点为(-2,-2),于是可得到f (x )的简图(如图所示).方程f (x )=x 的解的个数就是函数图象y =f (x )与y =x 的图象的交点的个数,所以有3个解.』变式迁移4 (-1,2-1)『答案』函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1, x <0的图象如图所示:f (1-x 2)>f (2x )⇔⎩⎪⎨⎪⎧1-x 2>2x1-x 2>0,解得-1<x <2-1.。
高三数学一轮复习精品学案1:2.1 函数及其表示
2.1 函数及其表示『课前小测摸底细』1.设集合.试问:从到的映射共有________个.2.『2015高考四川,理13』某食品的保鲜时间y (单位:小时)与储存温度x (单位:)满足函数关系(为自然对数的底数,k 、b 为常数)。
若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是 小时.3. 『2015届四川省成都市第七中学高考热身考试理科』已知函数的图像如图所示,则的解析式可能是()A .B .C .D . 4.『基础经典试题』下列各组函数中,表示同一个函数的是( ) A. 与 B. 与C. 与D. 与5.『改编自2013年安徽卷』定义在上的函数满足.若当 时.,则当时,=________________. {,,},{0,1}A a b c B ==A B C b kx e y += 718.2=e CC C )(x f )(x f 3121)(x x x f --=3121)(x x x f +-=31()21f x x x =-+31()21f x x x =++211-=-x y x 1=+y x 1=y 0=y x 21=-y x 1=-y x =y x log (01)=>≠且x a y a a a R ()f x (1)2()f x f x +=10x -≤≤(1)()2x x f x +=-01x ≤≤()f x『考点深度剖析』本节是函数的起始部分,以考查函数的概念、三要素及表示法为主,同时函数的图像、分段函数的考查是热点,另外,实际问题中的建模能力偶有考查.特别是函数的表达式及图像,仍是2016年高考考查的重要内容.『经典例题精析』考点1 映射与函数的概念『1-1』给出四个命题:①函数是其定义域到值域的映射;②是函数;③函数的图象是一条直线;④与是同一个函数.其中正确的有( )A .1个B .2个C .3个D .4个『1-2』下列对应法则f 为A 上的函数的个数是( )①;②;③A .0B .1C .2D .3『1-3』已知,求.『课本回眸』1.符号表示集合到集合的一个映射,它有以下特点:(1)对应法则有方向性, 与不同;(2)集合中任何一个元素,在下在集合中都有唯一的元素与对应;(3)象不一定有原象,象集与间关系是.2.函数是特殊的映射,它特殊在要求集合和都是非空数集.函数三要素是指定义域、值域、对应法则.同一函数必须满足:定义域相同、对应法则相同.3.要注意与的区别与联系,表示时,函数的值,它是一个常数,()32f x x x =-+-2(N)y x x ∈=2()x f x x=()g x x =2Z N A B f x y x →+=,=,:=Z A B Z f x y x →=,=,:={}[11]00A B f x y →=-,,=,:=4,6()(2),6x x f x f x x -≥⎧=⎨+<⎩(3)f :f A B →A B :f A B →:f B A →A f B C B C B ⊆A B ()f a ()f x ()f a x a =()f x而是自变量的函数,对于非常数函数,它是一个变量,是的一个特殊值.4.区间是某些数集的一种重要表示形式,具有简单直观的优点.应注意理解其含义并准确使用.5.函数的表示方法有三种:解析法、图象法、列表法.『方法规律技巧』1.判断一个对应是否为映射,关键看是否满足“集合中元素的任意性,集合中元素的唯一性”.2. 判断一个对应f :A →B 是否为函数,一看是否为映射;二看,是否为非空数集.若是函数,则是定义域,而值域是的子集.3. 函数的三要素中,若定义域和对应关系相同,则值域一定相同.因此判断两个函数是否相同,只需判断定义域、对应关系是否分别相同.『新题变式探究』『变式一』下列四组函数中,表示为同一函数的是( )A .B .与C .D . 『变式二』在下列图形中,表示y 是x 的函数关系的是________.『变式三』已知函数的值域为,则定义域为.考点2 求函数的解析式『2-1』已知一次函数满足,求.『2-2』已知,求.『2-3』定义在内的函数满足,求.()f x x ()f a ()f x A B A B A B 2(),()f x x g x x ==x x f -=2)(2)(-=x x g 21(),()11x f x g x x x -==+-2()11,()1f x x x g x x =+⋅-=-()23,f x x x A =-∈{1,1,3}-A ()f x (())41f f x x =-()f x 2(1)21f x x x -=-+()f x (1,1)-()f x 2()()lg(1)f x f x x --=+()f x『课本回眸』1.已知函数类型,可用待定系数法;2.已知复合函数的表达式,求可用换元法或配凑法;3.涉及抽象函数等式问题,往往通过建立方程组,运用“消去法”.『方法规律技巧』1.已知函数类型,用待定系数法求解析式.2.已知函数图象,用待定系数法求解析式,如果图象是分段的,要用分段函数表示.3.已知求,或已知求,用代入法、换元法或配凑法.4.若与或满足某个等式,可构造另一个等式,通过解方程组求解.5.应用题求解析式可用待定系数法求解.6.求函数解析式一定要注意函数的定义域,否则极易出错.『新题变式探究』『变式一』已知,求. 『变式二』已知,求 考点3 分段函数及其应用『3-1』作出函数的图象. 『3-2』已知函数,那么的值是( )A .B .C .D .『3-3』『2014浙江高考理第15题』设函数若,则实数的取值范围是______『课本回眸』1.分段函数是一个函数,而不是几个函数;2.分段函数的定义域是各段“定义域”的并集,其值域是各段“值域”的并集.[(()]f g x ()f x ()f x [()]f g x [()]f g x ()f x ()f x 1()f x()f x -()1f x x =+2()f x 2211()f x x x x -=+()f x ||()x f x x x=+1,1(),1x e x f x x x ⎧-≤=⎨>⎩(2)f 0121e -2()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f ()()2≤a f f a『方法规律技巧』1.因为分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值时,一定要注意自变量的值所在子集,再代入相应的解析式求值.2.“分段求解”是处理分段函数问题解的基本原则.『新题变式探究』『变式一』设函数,则不等式的解集是( )A.B.C.D.『变式二』已知函数,则 .三、易错试题常警惕易错典例:已知函数且),则的值域是 ( ) A . B . C . D .易错分析:本题易忽视定义域的重要作用,误选.温馨提示:函数三要素是指定义域、值域、对应法则.当函数的定义域、对应法则确定后,其值域也随之确定.246,0()6,0x x x f x x x ⎧-+≥=⎨+<⎩()(1)f x f >2log ,0,()3,0,x x x f x x >⎧⎪=⎨⎪⎩≤14f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦xx x f 2)(2+=12(≤≤-x x Z ∈()f x []0,3[]1,3-{}0,1,3{}1,0,3-B答案『课前小测摸底细』1.『答案』82.『答案』243.『答案』A4.『答案』D5.『答案』.考点1 映射与函数的概念『1-1』『答案』A『1-2』『答案』B『1-3』『答案』『变式一』『答案』A『变式二』『答案』①②『变式三』『答案』考点2 求函数的解析式『2-1』『答案』或 ()(1)f x x x =-3{1,2,3}1()23f x x =-()21f x x =-+『2-2』『答案』『2-3』『答案』, 『新题变式探究』『变式一』『答案』『变式二』『答案』考点3 分段函数及其应用『3-1』『答案』『3-2』『答案』D『3-3』『答案』『课本回眸』『新题变式探究』2()232f x x x =-+21()lg(1)lg(1)33f x x x =++-x ∈(1,1)-22()1f x x =+2()2f x x =+2a ≤『变式一』『答案』A 『变式二』『答案』1 9。
高三数学一轮复习精品学案2:2.1 函数及其表示
2.1 函数及其表示考纲要求1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单地应用.知识梳理:1.函数与映射的概念函数映射两集合A,B设A,B是两个非空____设A,B是两个非空____对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的____一个____,在集合B中____________的____和它对应如果按某一个确定的对应关系f,使对于集合A中的____一个______在集合B中__________的______与之对应名称称________为从集合A到集合B的一个函数称对应______为从集合A到集合B的一个映射记法y=f(x),(x∈A,y∈B)对应f:A→B是一个映射2.函数的有关概念(1)函数的定义域、值域.在函数y=f(x),x∈A中,x叫做自变量,__________叫做函数的定义域;与x的值相对应的y值叫做函数值,__________叫做函数的值域,显然,值域是集合B的子集.(2)函数的三要素:__________、__________和__________.3.函数的表示方法表示函数的常用方法有__________、__________和__________.4.分段函数若函数在其定义域的不同子集上,因__________不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的__________,其值域等于各段函数的值域的__________,分段函数虽由几个部分组成,但它表示的是一个函数.基础自测:1.设f,g都是从A到A的映射(其中A={1,2,3}),其对应关系如下表:x 1 2 3 f 3 1 2 g321则f (g (3))等于( ). A .1 B .2 C .3 D .不存在2.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数的是( ). A .f :x →y =12xB .f :x →y =13xC .f :x →y =23xD .f :x →y =x3.下列各函数中,表示同一个函数的是( ). A .f (x )=lg x 2,g (x )=2lg xB .f (x )=lg x +1x -1,g (x )=lg(x +1)-lg(x -1)C .f (u )=1+u1-u,g (v )=1+v1-vD .f (x )=x ,g (x )=x 2 4.(2012山东高考)函数f (x )=1ln x +1+4-x 2的定义域为( ). A .『-2,0)∪(0,2』 B .(-1,0)∪(0,2』 C .『-2,2』 D .(-1,2』5.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,-x ,x >1,若f (x )=2,则x 等于( ).A .log 32B .-2C .log 32或-2D .2 探究突破: 一、函数的概念『例1-1』已知a ,b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( ).A .-1B .0C .1D .±1『例1-2』设函数f (x )(x ∈N )表示x 除以2的余数,函数g (x )(x ∈N )表示x 除以3的余数,则对任意的x ∈N ,给出以下式子:①f (x )≠g (x );②g (2x )=2g (x ); ③f (2x )=0;④f (x )+f (x +3)=1.其中正确的式子编号是__________.(写出所有符合要求的式子编号). 『例1-3』以下给出的同组函数中,是否表示同一函数?为什么? (1)f 1:y =xx;f 2: y =1.(2)f 1:y =|x |;f 2:y =⎩⎪⎨⎪⎧x ,x >0,-x ,x <0.(3)f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2,f 2:x x ≤1 1<x <2 x ≥2 y123(4)f 1:y =2x ;f 2:如图所示.方法提炼1.要检验两个变量之间是否存在函数关系,只需检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值,是否都能找到唯一的函数值y 与之对应.2.判断两个函数是否相同,要先看定义域是否一致,若定义域一致,再看对应法则是否一致,由此即可判断.二、求函数的解析式 『例2-1』若函数f (x )=xax +b(a ≠0),f (2)=1,又方程f (x )=x 有唯一解,则f (x )=__________.『例2-2』若2f (x )-f (-x )=x +1,求f (x ).『例2-3』已知y =f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x +x 2. (1)求x >0时,f (x )的解析式;(2)若关于x 的方程f (x )=2a 2+a 有三个不同的解,求a 的取值范围. 方法提炼函数解析式的求法:1.凑配法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;2.待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; 3.换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; 4.方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).提醒:因为函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域,否则会导致错误.请做演练巩固提升1三、分段函数及其应用『例3』(2012江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间『-1,1』上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为__________. 方法提炼解决分段函数问题的基本原则是分段进行,即自变量的取值范围属于哪一段范围,就用这一段的解析式来解决.请做演练巩固提升3考题研析:忽略分段函数中自变量的取值范围而致误『典例』设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2,x >0,若f (-2)=f (0),f (-1)=-3,求关于x 的方程f (x )=x 的解.错『答案』当x ≤0时,f (x )=x 2+bx +c . 因为f (-2)=f (0),f (-1)=-3,所以⎩⎪⎨⎪⎧ -22-2b +c =c ,-12-b +c =-3,解得⎩⎪⎨⎪⎧b =2,c =-2.所以f (x )=⎩⎪⎨⎪⎧x 2+2x -2,x ≤0,2,x >0.当x ≤0时,由f (x )=x 得x 2+2x -2=x 得x =-2或x =1. 当x >0时,由f (x )=x 得x =2. 所以方程f (x )=x 的解为:-2,1,2.分析:(1)条件中f (-2),f (0),f (-1)所适合的解析式是f (x )=x 2+bx +c ,所以可构建方程组求出b ,c 的值.(2)在方程f (x )=x 中,f (x )用哪个解析式,要进行分类讨论.正『答案』当x ≤0时,f (x )=x 2+bx +c , 因为f (-2)=f (0),f (-1)=-3,∴⎩⎪⎨⎪⎧-22-2b +c =c ,-12-b +c =-3,解得⎩⎪⎨⎪⎧b =2,c =-2. ∴f (x )=⎩⎪⎨⎪⎧x 2+2x -2,x ≤0,2,x >0.当x ≤0时,由f (x )=x 得,x 2+2x -2=x , 得x =-2或x =1.由于x =1>0,所以舍去. 当x >0时,由f (x )=x 得x =2, 所以方程f (x )=x 的解为-2,2.答题指导:1.对于分段函数问题,是高考的热点.在解决分段函数问题时,要注意自变量的限制条件.2.就本题而言,当x ≤0时,由f (x )=x 得出两个x 值,但其中的x =1不符合要求,错解中没有舍去此值,因而导致了增解.分段函数问题分段求解,但一定注意各段的限制条件.巩固提升:1.已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=( ). A .lg 1x B .lg 1x -1C .lg 2x -1D .lg 1x -22.已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=__________. 3.(2012陕西高考)设函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,⎝ ⎛⎭⎪⎫12x ,x <0,则f (f (-4))=______.4.设g (x )是定义在R 上、以1为周期的函数.若函数f (x )=x +g (x )在区间『0,1』上的值域为『-2,5』,则f (x )在区间『0,3』上的值域为__________.5.对a ,b ∈R ,记min{a ,b }=⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,函数f (x )=min ⎩⎨⎧⎭⎬⎫12x ,-|x -1|+2(x ∈R )的最大值为________.——★ 参 考 答 案 ★——基础梳理自测 知识梳理1.数集 集合 任意 数x 都有唯一确定 数f (x ) 任意 元素x 都有唯一确定 元素y f :A →B f :A →B2.(1)x 的取值范围A 函数值的集合{f (x )|x ∈A } (2)定义域 值域 对应关系 3.解析法 列表法 图象法 4.对应法则 并集 并集 基础自测1.C 『解析』由题中表格可知g (3)=1, ∴f (g (3))=f (1)=3.故选C.2.C 『解析』依据函数的概念,集合A 中任一元素在集合B 中都有唯一确定的元素与之对应,选项C 不符合.3.C 『解析』选项A 和B 定义域不同,选项D 对应法则不同. 4.B 『解析』由⎩⎪⎨⎪⎧ln(x +1)≠0,x +1>0,4-x 2≥0得⎩⎪⎨⎪⎧x ≠0,x >-1,-2≤x ≤2,所以定义域为(-1,0)∪(0,2』. 5.A 『解析』当x ≤1时,3x =2, ∴x =log 32;当x >1时,-x =2,∴x =-2(舍去). ∴x =log 32. 考点探究突破『例1-1』 C 『解析』a =1,b =0, ∴a +b =1.『例1-2』 ③④ 『解析』当x 是6的倍数时,可知f (x )=g (x )=0,所以①不正确;容易得到当x =2时,g (2x )=g (4)=1,而2g (x )=2g (2)=4,所以g (2x )≠2g (x ),故②错误;当x ∈N 时,2x 一定是偶数,所以f (2x )=0正确;当x ∈N 时,x 和x +3中必有一个为奇数、一个为偶数,所以f (x )和f (x +3)中有一个为0、一个为1,所以f (x )+f (x +3)=1正确.『例1-3』『答案』(1)不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R .(2)不同函数.f 1(x )的定义域为R ,f 2(x )的定义域为{x ∈R |x ≠0}.(3)同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式.(4)同一函数.理由同(3).『例2-1』2x x +2 『解析』由f (2)=1得22a +b =1,即2a +b =2;由f (x )=x 得xax +b=x , 变形得x ⎝⎛⎭⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又∵方程有唯一解, ∴1-ba=0,解得b =1, 代入2a +b =2得a =12,∴f (x )=2xx +2.『例2-2』『答案』∵2f (x )-f (-x )=x +1,用-x 去替换式子中的x , 得2f (-x )-f (x )=-x +1.即有⎩⎪⎨⎪⎧2f (x )-f (-x )=x +1,2f (-x )-f (x )=-x +1.解方程组消去f (-x ),得f (x )=x3+1.『例2-3』『答案』(1)任取x >0,则-x <0, ∴f (-x )=-2x +(-x )2=x 2-2x . ∵f (x )是奇函数, ∴f (x )=-f (-x )=2x -x 2. 故x >0时,f (x )=2x -x 2.(2)∵方程f (x )=2a 2+a 有三个不同的解, ∴-1<2a 2+a <1. ∴-1<a <12.『例3』-10 『解析』因为f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,函数f (x )的周期为2,所以f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12,根据f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,得到3a +2b =-2,又f (1)=f (-1),得到-a +1=b +22,即2a +b =0,结合上面的式子解得a =2,b =-4,所以a +3b =-10.演练巩固提升1.C 『解析』令t =2x +1,则x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1, 故选C.2.2 『解析』因为f (x )=lg x ,f (ab )=1,所以lg ab =1,所以f (a 2)+f (b 2)=lg a 2+lg b 2=lg a 2b 2=2lg ab =2.3.4 『解析』∵f (-4)=⎝⎛⎭⎫12-4=16, ∴f (f (-4))=f (16)=16=4.4.『-2,7』 『解析』设x 1∈『0,1』,f (x 1)=x 1+g (x 1)∈『-2,5』. ∵函数g (x )是以1为周期的函数,∴当x 2∈『1,2』时,f (x 2)=f (x 1+1)=x 1+1+g (x 1)∈『-1,6』. 当x 3∈『2,3』时,f (x 3)=f (x 1+2)=x 1+2+g (x 1)∈『0,7』. 综上可知,当x ∈『0,3』时,f (x )∈『-2,7』.5.1 『解析』y =f (x )是y =12x 与y =-|x -1|+2两者中的较小者,数形结合可知,函数的最大值为1.。
新课版高考数学一轮复习2.1函数及其表示学案
新课改版高考数学一轮复习 第二章 函数的概念与基本初等函数Ⅰ第一节函数及其表示 突破点一 函数的定义域[基本知识]1.函数的概念设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .2.函数的有关概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.[基本能力]一、判断题(对的打“√”,错的打“×”) (1) 对于函数f :A →B ,其值域是集合B . ( )(2)与x 轴垂直的直线和一个函数的图象至多有一个交点.( ) (3)函数y =1与y =x 0是同一个函数.( ) 答案:(1)√ (2)√ (3)× 二、填空题1.函数f (x )=2x-1+1x -2的定义域为______________. 解析:由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0且x ≠2.答案:[0,2)∪(2,+∞)2.已知函数f (x )=2x -3,x ∈{x ∈N|1≤x ≤5},则函数f (x )的值域为____________. 解析:∵x =1,2,3,4,5,∴f (x )=2x -3=-1,1,3,5,7.∴f (x )的值域为{-1,1,3,5,7}. 答案:{-1,1,3,5,7}3.下列f (x )与g (x )表示同一函数的是________.(1)f (x )=x 2-1与g (x )=x -1·x +1;(2)f (x )=x 与g (x )=x 3+xx 2+1;(3)y =x 与y =(x )2; (4)f (x )=x 2与g (x )=3x 3. 答案:(2)[全析考法]考法一 求函数的定义域常见基本初等函数定义域的基本要求 (1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =x 0的定义域是{x |x ≠0}.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R. (6)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(7)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x | x ≠k π+π2,k ∈Z .[例1] (1)(2019·合肥八中期中)函数f (x )=x +1-2x的定义域是( )A .(-3,0)B .(-3,0]C .(-∞,-3)∪(0,+∞)D .(-∞,-3)∪(-3,0)(2)(2019·东北师大附中摸底)已知函数f (x )的定义域是[0,2],则函数g (x )=f ⎝ ⎛⎭⎪⎫x +12+f ⎝ ⎛⎭⎪⎫x -12的定义域是( ) A.⎣⎢⎡⎦⎥⎤12,1 B.⎣⎢⎡⎦⎥⎤12,2 C.⎣⎢⎡⎦⎥⎤12,32 D.⎣⎢⎡⎦⎥⎤1,32 [解析] (1)∵f (x )=x +1-2x,∴要使函数f (x )有意义,需使⎩⎪⎨⎪⎧x +3>0,1-2x>0,解得-3<x <0,即函数的定义域为(-3,0).故选A.(2)由题意得⎩⎪⎨⎪⎧0≤x +12≤2,0≤x -12≤2,∴⎩⎪⎨⎪⎧-12≤x ≤32,12≤x ≤52,∴12≤x ≤32.故选C. [答案] (1)A (2)C [方法技巧]1.根据具体的函数解析式求定义域的策略已知解析式的函数,其定义域是使解析式有意义的自变量的取值集合,求解时只要根据函数解析式列出自变量满足的不等式(组),得出不等式(组)的解集即可.2.求抽象函数的定义域的策略(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.3.求函数定义域应注意的问题(1)不要对解析式进行化简变形,以免定义域发生变化;(2)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.考法二 已知函数的定义域求参数[例2] (2019·安阳模拟)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是( )A .[0,4)B .(0,4)C .[4,+∞)D .[0,4][解析] 由题意可得mx 2+mx +1≥0恒成立.当m =0时,1≥0恒成立;当m ≠0时,则⎩⎪⎨⎪⎧m >0,m 2-4m ≤0,解得0<m ≤4.综上可得0≤m ≤4.[答案] D [方法技巧]已知函数的定义域求参数问题的解题步骤(1)调整思维方向,根据已知函数,将给出的定义域问题转化为方程或不等式的解集 问题.(2)根据方程或不等式的解集情况确定参数的取值或范围.[集训冲关]1.[考法一]函数f (x )=-x 2+9x +10-2x -的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使原函数有意义,则⎩⎪⎨⎪⎧-x 2+9x +10≥0,x -1>0,x -1≠1,解得1<x ≤10且x ≠2,所以函数f (x )=-x 2+9x +10-2x -的定义域为(1,2)∪(2,10],故选D.2.[考法一]若函数f (x +1)的定义域是[-1,1],则函数f (log 12x )的定义域为________.解析:∵f (x +1)的定义域是[-1,1],∴f (x )的定义域是[0,2].令0≤log 12x ≤2,解得14≤x ≤1,∴函数f (log 12x )的定义域为⎣⎢⎡⎦⎥⎤14,1. 答案:⎣⎢⎡⎦⎥⎤14,13.[考法二]已知函数y =1kx 2+2kx +3的定义域为R ,则实数k 的取值范围是________.解析:当k =0时,y =13,满足条件;当k ≠0时,由⎩⎪⎨⎪⎧k >0,4k 2-12k <0,得0<k <3.综上,0≤k <3.答案:[0,3)突破点二 函数的表示法[基本知识]1.函数的表示方法函数的表示方法有三种,分别为解析法、列表法和图象法.同一个函数可以用不同的方法表示.2.应用三种方法表示函数的注意事项1.已知f (x )是一次函数,满足3f (x +1)=6x +4,则f (x )=________. 解析:设f (x )=ax +b (a ≠0),则f (x +1)=a (x +1)+b =ax +a +b , 依题设得3ax +3a +3b =6x +4,∴⎩⎪⎨⎪⎧3a =6,3a +3b =4,∴⎩⎪⎨⎪⎧a =2,b =-23,则f (x )=2x -23.答案:2x -232.已知x ≠0,函数f (x )满足f ⎝⎛⎭⎪⎫x -1x =x 2+1x2,则f (x )=________.解析:f ⎝⎛⎭⎪⎫x -1x =x 2+1x2=⎝ ⎛⎭⎪⎫x -1x 2+2,所以f (x )=x 2+2. 答案:x 2+23.已知函数f (2x +1)=3x +2,且f (a )=4,则a =________.解析:因为f (2x +1)=32(2x +1)+12,所以f (x )=32x +12.又f (a )=4,所以32a +12=4,a =73.答案:73[典例感悟]1.已知f (x )是一次函数,且f [f (x )]=4x +3,则f (x )的解析式为________________. 解析:由题意设f (x )=ax +b (a ≠0),则f [f (x )]=f (ax +b )=a (ax +b )+b =a 2x +ab +b =4x +3,∴⎩⎪⎨⎪⎧a 2=4,ab +b =3,解得⎩⎪⎨⎪⎧a =-2,b =-3或⎩⎪⎨⎪⎧a =2,b =1.故所求解析式为f (x )=-2x -3或f (x )=2x +1. 答案:f (x )=-2x -3或f (x )=2x +12.已知f (x +1)=x +2x ,则f (x )的解析式为________________. 解析:法一:设t =x +1(t ≥1),则x =(t -1)2,∴f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1, ∴f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1,∴f (x )=x 2-1(x ≥1). 答案:f (x )=x 2-1(x ≥1)3.已知f (0)=1,对任意的实数x ,y ,都有f (x -y )=f (x )-y (2x -y +1),则f (x )的解析式为________________.解析:令x =0,得f (-y )=f (0)-y (-y +1)=1+y 2-y , ∴f (y )=y 2+y +1, 即f (x )=x 2+x +1. 答案:f (x )=x 2+x +1[方法技巧]求函数解析式的3种方法1.下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x解析:选C 选项A ,f (2x )=|2x |=2|x |,2f (x )=2|x |,故f (2x )=2f (x );选项B ,f (2x )=2x -|2x |=2x -2|x |,2f (x )=2x -2|x |,故f (2x )=2f (x );选项C ,f (2x )=2x +1,2f (x )=2x +2,故f (2x )≠2f (x );选项D ,f (2x )=-2x ,2f (x )=-2x ,故f (2x )=2f (x ).故选C.2.(2019·南阳第一中学模拟)已知f (1-cos x )=sin 2x ,则f (x 2)的解析式为________________________.解析:因为f (1-cos x )=sin 2x =1-cos 2x ,令1-cos x =t ,t ∈[0,2],则cos x =1-t ,所以f (t )=1-(1-t )2=2t -t 2,t ∈[0,2].则f (x 2)=-x 4+2x 2,x ∈[-2,2].答案:f (x 2)=-x 4+2x 2,x ∈[-2,2]3.已知函数f (x )满足f (x )=2f ⎝ ⎛⎭⎪⎫1x+x ,则f (x )的解析式为________________.解析:由f (x )=2f ⎝ ⎛⎭⎪⎫1x +x ,得f ⎝ ⎛⎭⎪⎫1x =2f (x )+1x,联立得⎩⎪⎨⎪⎧f x =2f ⎝ ⎛⎭⎪⎫1x +x , ①f ⎝ ⎛⎭⎪⎫1x =2f x +1x, ②①+②×2得f (x )=x +4f (x )+2x,则f (x )=-23x -13x .答案:f (x )=-23x -13x突破点三 分段函数[基本知识]1.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.2.分段函数的相关结论(1)分段函数虽由几个部分组成,但它表示的是一个函数.(2)分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.[基本能力]一、判断题(对的打“√”,错的打“×”) (1)分段函数是两个或多个函数.( ) (2)若f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,f (a )+f (-1)=2,则a =1.( )答案:(1)× (2)×二、填空题1.若f (x )=⎩⎪⎨⎪⎧2x ,x >0,f x +,x ≤0,则f (-5)=________.解析:f (-5)=f (-5+2)=f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=2×1=2.答案:22.(2019·西安质检)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x+1,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14的值是________.解析:由题意可得f ⎝ ⎛⎭⎪⎫14=log 214=-2, ∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14=f (-2)=3-2+1=109.答案:1093.函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≤2,45x ,x >2.若f (x 0)=8,则x 0=________.解析:当x 0≤2时,f (x 0)=x 20+2=8,即x 20=6,∴x 0=-6或x 0=6(舍去); 当x 0>2时,f (x 0)=45x 0=8,∴x 0=10.综上可知,x 0=-6或x 0=10. 答案:-6或10[全析考法]考法一 分段函数求值问题[例1] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x+b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3, ②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝ ⎛⎭⎪⎫12x+1,x ≤0,则f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9,f (f (-3))=f (9)=log 39=2,故选B.[答案] B [方法技巧]分段函数求值的解题思路求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.考法二 分段函数与方程、不等式问题[例2] (1)(2019·长春模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3(2)函数f (x )=⎩⎪⎨⎪⎧12x -1,x ≥0,1x ,x <0,若f (a )≤a ,则实数a 的取值范围是________.[解析] (1)当a >0时,由f (a )+f (1)=0得2a+2=0,无实数解;当a ≤0时,由f (a )+f (1)=0得a +1+2=0,解得a =-3,满足条件,故选A.(2)当a ≥0时,由f (a )=12a -1≤a ,解得a ≥-2,即a ≥0;当a <0时,由f (a )=1a ≤a ,解得-1≤a ≤1,即-1≤a <0.综上所述,实数a 的取值范围是[-1,+∞).[答案] (1)A (2)[-1,+∞) [方法技巧]解分段函数与方程或不等式问题的策略求解与分段函数有关的方程或不等式问题,主要表现为解方程或不等式.应根据每一段的解析式分别求解.若自变量取值不确定,则要分类讨论求解;若自变量取值确定,则只需依据自变量的情况直接代入相应的解析式求解.解得值(范围)后一定要检验是否符合相应段的自变量的取值范围.[集训冲关]1.[考法一]已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,1-log 2x ,x >0,则f (f (3))=( )A.43 B.23 C .-43D .-3解析:选A 因为f (3)=1-log 23=log 223<0,所以f (f (3))=f ⎝⎛⎭⎪⎫log 223=222log +13=224log 3=43,故选A.2.[考法二]设函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≥2,log 2x ,x <2,若f (m )=7,则实数m 的值为( )A .0B .1C .-3D .3解析:选D ①当m ≥2时,由f (m )=7得m 2-2=7,解得m =3或m =-3(舍去),则m =3;②当m <2时,由f (m )=7得log 2m =7,解得m =27>2,舍去.综上可得,实数m 的值是3.故选D.3.[考法二]已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,-3x ,x <0,若a [f (a )-f (-a )]>0,则实数a 的取值范围为( )A .(1,+∞)B .(2,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-2)∪(2,+∞)解析:选D 当a ≥0时,不等式可化为a (a 2+a -3a )>0, 即a 2+a -3a >0,即a 2-2a >0,解得a >2或a <0(舍去); 当a <0时,不等式可化为a (-3a -a 2+a )>0, 即-3a -a 2+a <0,即a 2+2a >0, 解得a <-2或a >0(舍去).综上,实数a 的取值范围为(-∞,-2)∪(2,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013版高三数学一轮精品复习学案:函数、导数及其应用【知识特点】1.函数、导数及其应用是高中数学的重要内容,本章主要包括函数的概念及其性质,基本初等函数Ⅰ(指数函数、对数函数、幂函数),导数的概念,导数及其几何意义,导数与函数的单调性、最值,导数在实际问题中的应用等内容。
2.本章内容集中体现了函数与方程、数形结合、分类讨论的思想方法,函数的类型较多,概念、公式较多,具有较强的综合性。
【重点关注】1.函数的概念及其性质(单调性、奇偶性、周期性、对称性)是高考考查的主要内容,函数的定义域、解析式、值域是高考考查重点,函数性质的综合考查在历年考试中久考不衰,应重点研究。
2.函数的图象及其变换既是高考考查的重点,又是学生学习的一个难点,应注意区分各函数的图象及图象的变换,利用图象来研究性质。
3.导数的几何意义,导数在函数的最值及单调性方面的应用是高中数学的一个重点内容,也是高等数学的必修内容,是近几年高考的一大热点,复习时应引起足够的重视。
4.注意思想方法的应用。
数形结合思想、函数与方程的思想、分类讨论思想在各种题型中均有体现,应引起重视。
【地位与作用】一、函数在高考中的地位与作用从近几年的全国各地的高考试题中可以看出,近几年高考在函数中的考查有如下特点:1、知识点的考查情况①映射与函数:以考查概念与运算为主,部分涉及新定义运算;②定义域、值域、解析式是考查的重点,而且比较稳定,有时结合其它知识点(一本部分内容为背景),分段函数较多、花样翻新;③函数的单调性在历年考试中久考不衰,且比例有上升趋势,和导函数联系较多;④函数的奇偶性主要和单调性、不等式、最值、三角函数等综合,与周期性、对称性、抽象函数等问题联系较多;⑤反函数出现在选择题、填空题中,考反函数概念运算可能性较大,若出现在解答题中,则必定与单调性、奇偶性、不等式、导函数等知识综合,难度较大;⑥二次函数问题是每年的必考题,一方面直接考查二次函数,另一方面是利用二次函数的性质解题,三个“二次”问题(即二次函数、二次方程、二次不等式)是函数考试题中永恒的主题⑦指数函数与对数函数以基本概念、性质为主设计试题,考查指数、对数的定义域、值域、单调性和运算,选择、填空题属中等难度,若解答题涉及到指、对数函数,往往难度会上升;⑧函数的图像与最值每年必考,体现“形是数的直观反映,数是形的抽象概括”,是数学思想方法中的数相结合思想的最直接的表现形式,尤其是函数y=x+a/x(a>0)的图像和性质,从未间断过;⑨函数应用题与综合应用题是最能体现考生函数水平的试题:一次函数、二次函数、y=x+a/x (a>0)型、指数型、对数型与现实生活相结合,考查学生的建模能力,而函数与数列、不等式、导函数等众多知识的交汇已经成为函数综合应用中的典型问题。
2、常考题型及分值情况函数在选择、填空、解答三种题型中每年都有考题,所占分值30分以上,占全卷的20%以上。
在高考中占有重要地位。
3、命题热点及生长点情况近年来有关函数内容的高考命题趋势是:①全方位. 近几年来的高考题中,函数的所有知识点都考过,虽然近几年不强调知识点的覆盖率,但每一年函数知识点的覆盖率依然没有减少。
②多层次. 在每年的高考题中,函数题抵挡、中档、高档难度都有,且选择、填空、解答题题型齐全。
抵挡难度一般仅涉及函数本身的内容,诸如定义域、值域、单调性、周期性、图像、反函数,且对能力的要求不高;中、高档难度题多为综合程度较大的问题,或者是函数与其它知识结合,或者是多种方法的渗透。
③巧综合. 为了突出函数在中学中的主要地位,近几年来高考强化了函数对其它知识的渗透,加大了以函数为载体的多种方法、多种能力的综合程度。
④变角度. 出于“立意”和创新情况的需要,函数试题设置问题的角度和方式也不断创新。
重视函数思想的考查,加大了函数应用题、探索题和信息题的考查力度,从而使函数考题显得新颖、生动、灵活。
二、导数在高考中的地位与作用导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。
在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值,估计2013年高考继续以上面的几种形式考察不会有大的变化:(1)考查形式为:选择题、填空题、解答题各种题型都会考察,选择题、填空题一般难度不大,属于高考题中的中低档题,解答题有一定难度,一般与函数及解析几何结合,属于高考的中低档题;(2)2013年高考可能涉及导数综合题,以导数为数学工具考察:导数的物理意义及几何意义,复合函数、数列、不等式等知识。
定积分是新课标教材新增的内容,主要包括定积分的概念、微积分基本定理、定积分的简单应用,由于定积分在实际问题中非常广泛,因而2013年的高考预测会在这方面考察,预测2013年高考呈现以下几个特点:(1)注意基本概念、基本性质、基本公式的考察及简单的应用;高考中本讲的题目一般为选择题、填空题,考查定积分的基本概念及简单运算,属于中低档题;(2)定积分的应用主要是计算面积,诸如计算曲边梯形的面积、变速直线运动等实际问题要很好的转化为数学模型。
第一节、函数及其表示【高考新动向】一、考纲点击1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
3.了解简单的分段函数,并能简单应用。
二、热点、难点提示1.函数的概念、表示方法、分段函数是近几年高考的热点;2.常和对数、指数函数的性质等相结合考查,有时也会命制新定义问题; 3.题型以选择题和填空题为主,与其他知识点交汇则以解答题的形式出现。
【考纲全景透析】 一、函数与映射的概念 函数 映射 两集合设A B 、是两个非空数集 设A B 、是两个非空集合 对应关系:f A B →如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应。
如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应。
名称称:f A B →为从集合A 到集合B 的一个函数称:f A B →为从集合A 到集合B 的一个映射 记法()y f x =,x A ∈对应:f A B →是一个映射注:函数与映射的区别:函数是特殊的映射,二者区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集。
二、函数的其他有关概念 (1)函数的定义域、值域在函数()y f x =,x A ∈中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值{()|}f x x A ∈的集合叫做函数的值域(2)一个函数的构成要素 定义域、值域和对应关系 (3)相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数。
注:若两个函数的定义域与值域相同,是否为相等函数?(不一定。
如果函数y=x 和y=x+1,其定义域与值域完全相同,但不是相等函数;再如y=sinx 与y=cosx ,其定义域为R ,值域都为[-1,1],显然不是相等函数。
因此凑数两个函数是否相等,关键是看定义域和对应关系) (4)函数的表示方法表示函数的常用方法有:解析法、图象法和列表法。
(5)分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数。
分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是个函数。
【热点难点全析】一、求函数的定义域、值域 1、确定函数的定义域的原则(1)当函数y=f(x)用列表法给出时,函数的定义域是指表格中实数x 的集合; (2)当函数y=f(x)用图象法给出时,函数的定义域是指图象在x 轴上的投影所覆盖的实数的集合;(3)当函数y=f(x)用解析式给出时,函数的定义域是指使解析式有意义的实数的集合; (4)当函数y=f(x)由实际问题给出时,函数的定义域由实际问题的意义确定。
2、确定函数定义域的依据(1)若f(x)是整式,则定义域为全体实数;(2)若f(x)是分式,则定义域为使分式的分母不为零的x 取值的集合; (3)当f(x)是偶次根式时,定义域是使被开方式取非负的x 取值的集合;(4)当f(x)是非正数指数幂时,定义域是使幂的底数不为0的x 取值的集合;(5)若已知函数f(x)的定义域为[a,b],其复合函数f(g(x))定义域由不等式a ≤g(x)≤b 解出; (6)若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x ∈[a,b]时的值域。
3、求简单函数值域的方法(1)观察法;(2)图象观察法;(3)单调性法;(4)分离常数法;(5)均值不等式法;(6)换元法.4、例题解析〖例1〗(2012·大连模拟)求函数()-=2lg x 2x f x 的定义域;(2)已知函数f(2x)的定义域是[-1,1],求f(x)的定义域; (3)求下列函数的值域. ①y=x2+2x,x ∈[0,3], ②y=log3x+logx3-1,③.-=2x 1y 2 分析:(1)根据解析式,构建使解析式有意义的不等式组求解即可; (2)要明确2x 与f(x)中x 的含义,从而构建不等式求解;(3)根据解析式的特点,分别选用①图象观察法;②均值不等式法;③单调性法求值域. 解答:(1)要使该函数有意义,需要⎧-⎪⎨-⎪⎩22x 2x 09x 0>,>则有:⎧⎨-⎩x 0x 23x 3<或>,<<解得:-3<x <0或2<x <3,所以所求函数的定义域为 (-3,0)∪(2,3). (2)∵f(2x)的定义域为[-1,1], 即-1≤x ≤1,12∴≤≤x 22,故f(x)的定义域为[1,22].(3)①y=(x+1)2-1在[0,3]上的图象如图所示,由图象知:0≤y≤32+2×3=15,所以函数y=x2+2x,x∈[0,3]的值域为[0,15].②=+-331y log x1log x,定义域为(0,1)∪(1,+∞),当0<x<1时,,≤-=-y13当x>1时,,≥=y11综上可知,其值域为(-∞,-3]∪[1,+∞). ③因为x2-1≥-1,又y=2x在R上为增函数,∴-=2x1y2≥2-1=12.故值域为[12,+∞).【规律方法】求函数定义域的方法(1)求具体函数y=f(x)的定义域:(2)求抽象函数的定义域:①若已知函数f(x)的定义域为[a,b ],其复合函数f(g(x))的定义域由不等式a ≤g(x)≤b 求出. ②若已知函数f(g(x))的定义域为[a,b ],则f(x)的定义域为g(x)在x ∈[a,b ]时的值域. 提醒:定义域必须写成集合或区间的形式.〖例2〗设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( A ).),3()1,3(+∞⋃-B.),2()1,3(+∞⋃-C.),3()1,1(+∞⋃-D.)3,1()3,(⋃--∞解析 由已知,函数先增后减再增 当0≥x ,2)(≥x f 3)1(=f 令,3)(=x f 解得3,1==x x 。