高考数学三角函数公式
高考数学诱导公式全集,三角函数一网打尽
高考数学诱导公式全集,三角函数一网打尽高考题目中,三角函数难度不大,拿分比较简单,诱导公式是解决三角函数问题的前提,你都掌握了吗?一、高中数学诱导公式全集:常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
高考数学三角函数诱导公式(大全)
高考数学三角函数诱导公式(大全)导语:磋砣莫遗韶光老,人生惟有读书好下面是为大家的,数学公式,希望对大家有所帮助,欢送阅读,,更多相关的知识,请关注FLA学习网!1三角函数诱导公式之常用公式公式本质:所谓三角函数诱导公式,就是将角n?(π/2)±α的三角函数转化为角α的三角函数。
常用公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα k∈zcos(2kπ+α)=cosα k∈ztan(2kπ+α)=tanα k∈zcot(2kπ+α)=cotα k∈z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα推算公式:3π/2±α与α的三角函数值之间的关系:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-co sαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα诱导公式记忆口诀:“奇变偶不变,符号看象限”。
2020高考数学专项复习《三角函数和差公式》
1.同角三角函数的基本关系式 倒数关系:
tana・cota=1
sina・csca=1
cosa・seca=1
商的关系:
sina/cosa=tana=seca/csca
cosa/sina=cota=csca/seca
平方关系:
sinA2(a)+cosA2(a)=1
1+tanA2(a)=secA2(a)
cos3a=4cosA3(a)—3cosa
三倍角公式联想记忆
记忆方法:谐音、联想
正弦三倍角:3元 减4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正 弦”))
余弦三倍角:4元3角 减3元(减完之后还有“余”)
☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
和差化积公式
7.三角函数的和差化积公式
(因为cosA2(a)+sinA2(a)=1)
再把*分式上下同除cosA2(a),可得sin2a=tan2a/(1+tanA2(a))然后用a/2代替a即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
三倍角公式
6.三倍角的正弦、余弦和正切公式
sin3a=3sina—4sinA3(a) cos3a=4cosA3(a)—3cosa
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2同样的,我们还知道
cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2这样,我们就得到了积化和差的四个公式:
高考数学三角函数公式汇总
高考数学三角函数公式汇总本文为word格式,方便下载后编辑,模块丰富,可灵活组合高考数学三角函数公式汇总同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tan cot=1sin csc=1cos sec=1 sin/cos=tan=sec/csccos/sin=cot=csc/sec sin2+cos2=11+tan2=sec21+cot2=csc2(六边形记忆法:图形结构上弦中切下割,左正右余中间1记忆方法对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
)sin(-)=-sincos(-)=cos tan(-)=-tancot(-)=-cotsin(/2-)=coscos(/2-)=sintan(/2-)=cotcot(/2-)=tansin(/2+)=coscos(/2+)=-sin tan(/2+)=-cot cot(/2+)=-tan sin()=sincos()=-costan()=-tancot()=-cotsin()=-sincos()=-costan()=tancot()=cotsin(3/2-)=-cos cos(3/2-)=-sin tan(3/2-)=cot cot(3/2-)=tan sin(3/2+)=-cos cos(3/2+)=sin tan(3/2+)=-cot cot(3/2+)=-tan sin(2)=-sin cos(2)=costan(2)=-tancot(2)=-cotsin(2k)=sincos(2k)=costan(2k)=tancot(2k)=cotsin(+)=sincos+cossin sin(-)=sincos-cossin cos(+)=coscos-sinsin cos(-)=coscos+sinsin tan+tantan(+)=1-tan tantan-tantan(-)=1+tan tan2tan(/2)sin=1+tan2(/2)1-tan2(/2)cos=1+tan2(/2)2tan(/2)tan=1-tan2(/2)sin2=2sincoscos2=cos2-sin2=2cos2-1=1-2sin2 2tantan2=1-tan2sin3=3sin-4sin3cos3=4cos3-3cos3tan-tan3tan3=1-3tan2。
高考数学复习必备公式:三角函数公式
宋以后,京师所设小学馆和武学堂中的教员称谓皆称之为〝教谕〞。至元明清之县学一概循之不变。明朝中选翰林院的进士之师称〝教习〞。到清末,学堂兴起,各科教员仍沿用〝教习〞一称。其实〝教谕〞在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管束育生员者那么谓〝教授〞和〝学正〞。〝教授〞〝学正〞和〝教谕〞的副手一概称〝训导〞。于官方,特别是汉代以后,关于在〝校〞或〝学〞中教授经学者也称为〝经师〞。在一些特定的讲学场所,比如书院、皇室,也称教员为〝院长、西席、讲席〞等。cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
cosa*sinb=[sin(a+b)-sin(a-b)]/2
cosa*cosb=[cos(a+b)+-cos(a-b)]/2
5.积化和差
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]
高考数学复习必备公式:三角函数公式
三角函数公式:
1.万能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
高考数学必备三角函数公式
高考必备三角函数公式同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα·cotα=1sinα·cscα=1cosα·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”) 诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)sinα=2tan(α/2)/(1+tan2(α/2))cosα=(1-tan2(α/2))/(1+tan2(α/2))tanα=(2tan(α/2))/(1-tan2(α/2))半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2αtan2α=2tanα/(1-tan2α)sin3α=3sinα-4sin3αcos3α=4cos3α-3cosαtan3α=(3tanα-tan3α)/(1-3tan2α)三角函数的和差化积公式三角函数的积化和差公式sinα+sinβ=2sin(2/(α+βα-β))·cos(2/(α+βα-β))sinα-sinβ=2cos(2/(α+βα-β))·sin(2/(α+βα-β))cosα+cosβ=2cos(2/(α+βα-β))·cos(2/(α+βα-β))cosα-cosβ=-2sin(2/(α+βα-β))·sin(2/(α+βα-β))sinα·cosβ=-[sin(α+β)+sin(α-β)]/21cosα·sinβ=-[sin(α+β)-sin(α-β)]/21cosα·cosβ=-[cos(α+β)+cos(α-β)]/21sinα·sinβ=— -[cos(α+β)-cos(α-β)]2化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式) 来源:/article/view/id/682.html。
高考数学三角函数公式
高考数学三角函数公式一、基本公式:1. 三角函数的定义:正弦函数:sinθ = 对边/斜边余弦函数:cosθ = 邻边/斜边正切函数:tanθ = 对边/邻边2. 三角函数的基本关系:sinθ/cosθ = tanθsin^2θ + cos^2θ = 11 + tan^2θ = sec^2θ1 + cot^2θ = csc^2θ3. 三角函数的正负关系:在单位圆上,角度θ对应的坐标(x, y),则:sinθ的正负由y的正负决定;cosθ的正负由x的正负决定;tanθ的正负由y的正负决定,x为0时,tanθ不存在。
4. 三角函数的周期关系:sin(θ + 2πn) = sinθcos(θ + 2πn) = cosθtan(θ + πn) = tanθ(n为整数)5. 三角函数的特殊值:sin0° = 0, sin30° = 1/2, sin45° = √2/2, sin60° = √3/2, sin90° = 1 cos0° = 1, cos30° = √3/2, cos45° = √2/2, cos60° = 1/2, cos90° =tan0° = 0, tan30° = √3/3, tan45° = 1, tan60° = √3, tan90°不存在二、和差化积公式:1. sin(A ± B) = sinAcosB ± cosAsinB2. cos(A ± B) = cosAcosB ∓ sinAsinB3. tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)4. cot(A ± B) = (cotAcotB ∓ 1) / (cotB ± cotA)三、倍角公式:1. sin2θ = 2sinθcosθ2. cos2θ = cos^2θ - sin^2θ = 2cos^2θ - 1 = 1 - 2sin^2θ3. tan2θ = (2tanθ) / (1 - tan^2θ)四、半角公式:1. sin(θ/2) = ±√[(1 - cosθ) / 2]2. cos(θ/2) = ±√[(1 + cosθ) / 2]3. tan(θ/2) = ±√[(1 - cosθ) / (1 + cosθ)]五、和差化方公式:1. sinA + sinB = 2sin[(A + B)/2]cos[(A - B)/2]2. sinA - sinB = 2cos[(A + B)/2]sin[(A - B)/2]3. cosA + cosB = 2cos[(A + B)/2]cos[(A - B)/2]4. cosA - cosB = -2sin[(A + B)/2]sin[(A - B)/2]六、积化和差公式:1. sinAcosB = 1/2[sin(A + B) + sin(A - B)]2. cosAsinB = 1/2[sin(A + B) - sin(A - B)]3. cosAcosB = 1/2[cos(A + B) + cos(A - B)]4. sinAsinB = -1/2[cos(A + B) - cos(A - B)]以上即为高考数学中常用的三角函数公式,掌握这些公式可以帮助你更好地解答相关题目。
高考数学三角函数必背公式大全
高考数学三角函数必背公式大全高考数学三角函数必背公式1、设α为任意角,终边相同的角的同一三角函数的值相等sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)2、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα3、任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα4、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα5、诱导公式sin(-α)=-sinαcos(-α)=cosαtan(—a)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtanA=sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα6、和差化积公式2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB三角函数的性质三角函数性质是:如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期。
高考数学常用三角函数公式总结
高考数学常用三角函数公式总结数学知识点很多,只有进行总结,才能发现重点难点,下面就是小编给大家带来的,希望大家喜欢!高考数学公式总结高考数学三角函数公式sinα=∠α的对边/斜边cosα=∠α的邻边/斜边tanα=∠α的对边/∠α的邻边cotα=∠α的邻边/∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA2-SinA2=1-2SinA2=2CosA2-1tan2A=(2tanA)/(1-tanA2)(注:SinA2是sinA的平方sin2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a=tana·tan(π/3+a)·tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina三角函数辅助角公式Asinα+Bcosα=(A2+B2)’(1/2)sin(α+t),其中sint=B/(A2+B2)’(1/2)cost=A/(A2+B2)’(1/2)tant=B/AAsinα+Bcosα=(A2+B2)’(1/2)cos(α-t),tant=A/B降幂公式sin2(α)=(1-cos(2α))/2=versin(2α)/2cos2(α)=(1+cos(2α))/2=covers(2α)/2tan2(α)=(1-cos(2α))/(1+cos(2α))三角函数推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos2α1-cos2α=2sin2α1+sinα=(sinα/2+cosα/2)2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina2sin[(60+a)/2]cos[(60°-a)/2]2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa2cos[(a+30°)/2]cos[(a-30°)/2]{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)三角函数半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin2(a/2)=(1-cos(a))/2cos2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角函数三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)三角函数两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)三角函数和差化积sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)三角函数积化和差sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2三角函数诱导公式sin(-α)=-sinαcos(-α)=cosαtan(—a)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtanA=sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan’(α/2)]cosα=[1-tan’(α/2)]/1+tan’(α/2)]tanα=2tan(α/2)/[1-tan’(α/2)]其它公式(1)(sinα)2+(cosα)2=1(2)1+(tanα)2=(secα)2(3)1+(cotα)2=(cscα)2证明下面两式,只需将一式,左右同除(sinα)2,第二个除(cosα)2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0以及sin2(α)+sin2(α-2π/3)+sin2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0高考数学记忆方法一、分类记忆法遇到数学公式较多,一时难于记忆时,可以将这些公式适当分组。
高中高考数学三角函数公式汇总
高中高考数学三角函数公式汇总一、三角函数的基本概念和性质1.弧度与角度的换算公式:弧度=角度×π/180角度=弧度×180/π2.三角函数的定义:(1) 正弦函数 sin(x) = y / r(2) 余弦函数 cos(x) = x / r(3) 正切函数 tan(x) = y / x这里的x是直角三角形的一个锐角,y是对边的长度,x是邻边的长度,r是斜边的长度。
3.三角函数的周期性:(1) 正弦函数的周期是2π,即sin(x + 2π) = sin(x)(2) 余弦函数的周期是2π,即cos(x + 2π) = cos(x)(3) 正切函数的周期是π,即tan(x + π) = tan(x)4.三角函数的奇偶性:(1) 正弦函数是奇函数,即 sin(-x) = -sin(x)(2) 余弦函数是偶函数,即 cos(-x) = cos(x)(3) 正切函数是奇函数,即 tan(-x) = -tan(x)5.三角函数的相关性质:(1) 正弦函数与余弦函数的关系:sin^2(x) + cos^2(x) = 1(2) 正切函数与正弦函数的关系:tan(x) = sin(x) / cos(x)(3) 正切函数与余弦函数的关系:tan(x) = 1 / cot(x)二、基本角的三角函数值1.0°、30°、45°、60°和90°的三角函数值:(1) sin(0°) = 0, cos(0°) = 1, tan(0°) = 0(2) sin(30°) = 1/2, cos(30°) = √3/2, tan(30°) = √3/3(3) sin(45°) = √2/2, cos(45°) = √2/2, tan(45°) = 1(4) sin(60°) = √3/2, cos(60°) = 1/2, tan(60°) = √3(5) sin(90°) = 1, cos(90°) = 0, tan(90°) = 无穷大2.常用角的三角函数值:(1) sin(180° - x) = sin(x)(2) cos(180° - x) = -cos(x)(3) tan(180° - x) = -tan(x)三、和差角公式1.正弦函数的和差角公式:(1) sin(a + b) = sin(a)cos(b) + cos(a)sin(b)(2) sin(a - b) = sin(a)cos(b) - cos(a)sin(b)(1) cos(a + b) = cos(a)cos(b) - sin(a)sin(b)(2) cos(a - b) = cos(a)cos(b) + sin(a)sin(b)3.正切函数的和差角公式:(1) tan(a + b) = (tan(a) + tan(b)) / (1 - tan(a)tan(b))(2) tan(a - b) = (tan(a) - tan(b)) / (1 + tan(a)tan(b))四、倍角公式1.正弦函数的倍角公式:(1) sin(2a) = 2sin(a)cos(a)2.余弦函数的倍角公式:(1) cos(2a) = cos^2(a) - sin^2(a) = 2cos^2(a) - 1 = 1 - 2sin^2(a)3.正切函数的倍角公式:(1) tan(2a) = (2tan(a)) / (1 - tan^2(a))五、半角公式1.正弦函数的半角公式:(1) sin(a/2) = ±√[(1 - cos(a)) / 2]2.余弦函数的半角公式:(1) cos(a/2) = ±√[(1 + cos(a)) / 2](1) tan(a/2) = ±√[(1 - cos(a)) / (1 + cos(a))]六、三角函数的积化和差公式1.余弦函数的积化和差公式:(1) cos(a)cos(b) = (1/2)[cos(a + b) + cos(a - b)]2.正弦函数的积化和差公式:(1) sin(a)sin(b) = -(1/2)[cos(a + b) - cos(a - b)]3.正弦函数与余弦函数的积化和差公式:(1) sin(a)cos(b) = (1/2)[sin(a + b) + sin(a - b)]以上是高中高考数学里常见的三角函数公式汇总,希望能对你的学习有所帮助。
高考数学复习三角函数公式大全
三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:rx =αcos 正切:x y =αtan 余切:y x =αcot 正割:x r =αsec 余割:yr =αcsc 二、同角三角函数的基本关系式 倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =,αααsin cos cot =。
平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。
三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限) ⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=- 五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=)(*ααα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=-2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-万能公式告诉我们,单角的三角函数都可以用半角的正切..来表示。
高考数学备考:三角函数公式大全
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。上述两式相比可得
高考式
sinα=∠α的对边/斜边
cosα=∠α的邻边/斜边
tanα=∠α的对边/∠α的邻边
cotα=∠α的邻边/∠α的对边
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2是sinA的平方sin2(A) )
三倍角公式
sin3α=4sinα,学习方法?sin(π/3+α)sin(π/3-α)
cos3α=4cosα?cos(π/3+α)cos(π/3-α)
高考数学三角函数公式大全
高考数学三角函数公式大全同角三角函数的基本关系式倒数关系:商的关系:平方关系:tancot=1sincsc=1cossec=1sin/cos=tan=sec/csccos/sin=cot=csc/secsin2+cos2=11+ta n2=sec21+cot2=csc2(六边形记忆法:图形结构上弦中切下割,左正右余中间1记忆方法对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
)诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-)=-sincos(-)=costan(-)=-tancot(-)=-cotsin(/2-)=coscos(/2-)=sintan(/2-)=cotcot(/2-)=tansin(/2+)=coscos(/2+)=-sintan(/2+)=-cotcot(/2+)=-tansin(-)=sincos(-)=-costan(-)=-tancot(-)=-cotsin(+)=-sincos(+)=-costan(+)=tancot(+)=cotsin(3/2-)=-coscos(3/2-)=-sintan(3/2-)=cotcot(3/2-)=tansin(3/2+)=-coscos(3/2+)=sintan(3/2+)=-cotcot(3/2+)=-tansin(2-)=-sincos(2-)=costan(2-)=-tancot(2-)=-cotsin(2k+)=sincos(2k+)=costan(2k+)=tancot(2k+)=cot(其中kz)两角和与差的三角函数公式万能公式sin(+)=sincos+cossinsin(-)=sincos-cossincos(+)=coscos-sinsincos(-)=coscos+sinsintan(+)=(tan+tan)/(1- tantan)tan(-)=(tan-tan)/(1+tantan)sin=2tan(/2)/(1+tan2(/2))cos=(1-tan2(/2))/(1+tan2(/2))tan=(2tan(/2))/(1-tan2(/2))半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2=2sincoscos2=cos2-sin2=2cos2-1=1-2sin2tan2=2tan/(1-tan2)sin3=3sin-4sin3cos3=4cos3-3costan3=(3tan-tan3)/(1-3tan2)三角函数的和差化积公式三角函数的积化和差公式sin+sin=2sin(2/(+-))cos(2/(+-))sin-sin=2cos(2/(+-))sin(2/(+-))cos+cos=2cos(2/(+-))cos(2/(+-))cos-cos=-2sin(2/(+-))sin(2/(+-))sincos=-。
高考数学复习三角函数公式
盘点2019年高考数学复习三角函数公式三角函数是数学中常见的一类关于角度的函数。
以下为查字典数学网整理的三角函数公式,希望对考生复习有帮助。
同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tan cot=1sin csc=1cos sec=1 sin/cos=tan=sec/csccos/sin=cot=csc/sec sin2+cos2=11+tan2=sec21+cot2=csc2(六边形记忆法:图形结构上弦中切下割,左正右余中间1记忆方法对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
)诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-)=-sincos(-)=cos tan(-)=-tancot(-)=-cotsin(/2-)=coscos(/2-)=sintan(/2-)=cotsin(/2+)=cos cos(/2+)=-sin tan(/2+)=-cot cot(/2+)=-tan sin()=sincos()=-cos tan()=-tancot()=-cotsin()=-sincos()=-cos tan()=tancot()=cotsin(3/2-)=-cos cos(3/2-)=-sin tan(3/2-)=cot cot(3/2-)=tan sin(3/2+)=-cos cos(3/2+)=sin tan(3/2+)=-cot cot(3/2+)=-tan sin(2)=-sintan(2)=-tancot(2)=-cotsin(2k)=sincos(2k)=costan(2k)=tancot(2k)=cot(其中kZ)两角和与差的三角函数公式万能公式sin(+)=sincos+cossinsin(-)=sincos-cossincos(+)=coscos-sinsincos(-)=coscos+sinsintan(+)=(tan+tan)/(1-tan tan)tan(-)=(tan-tan)/(1+tan tan)sin=2tan(/2)/(1+tan2(/2))cos=(1-tan2(/2))/(1+tan2(/2))tan=(2tan(/2))/(1-tan2(/2))半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2=2sincoscos2=cos2-sin2=2cos2-1=1-2sin2tan2=2tan/(1-tan2)sin3=3sin-4sin3cos3=4cos3-3costan3=(3tan-tan3)/(1-3tan2)三角函数的和差化积公式三角函数的积化和差公式sin+sin=2sin(2/(+ -))cos(2/(+ -))sin-sin=2cos(2/(+ -))sin(2/(+ -))cos+cos=2cos(2/(+ -))cos(2/(+ -))cos-cos=-2sin(2/(+ -))sin(2/(+ -))sin cos=-[sin(+)+sin(-)]/21cos sin=-[sin(+)-sin(-)]/21cos cos=-[cos(+)+cos(-)]/21sin sin= -[cos(+)-cos(-)]唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
高考数学复习三角函数常用公式
高考数学复习三角函数常用公式常见的三角函数包括正弦函数、余弦函数和正切函数。
以下是三角函数常用公式,请打击学习经历。
两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtan B)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cot A)倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n-1)/n]=0cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0 以及sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^ 6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA ^4+7*tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA ^4-28*tanA^6+tanA^8)观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。
(完整版)高中高考数学三角函数公式汇总
高中数学三角函数公式汇总(正版)一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x=αcos 正切:xy=αtan 余切:y x =αcot正割:xr=αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =,αααsin cos cot =。
平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。
三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=- βαβαβαtan tan 1tan tan )tan(⋅-+=+βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -=二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。
高考数学中的三角函数的变形式与应用
高考数学中的三角函数的变形式与应用三角函数作为高中数学中的重要概念之一,在高考中也扮演着非常重要的角色。
在学习三角函数时,不同的变形式和应用也成为考试命题的热点,因此学生在备战高考时,需要掌握这些变形式和应用。
本文将介绍高考中常见的三角函数变形式和应用,并探讨如何在考试中运用。
一、三角函数的变形式1、和差化积和差化积是三角函数计算中最常用的变形式之一。
其基本公式为:$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$该公式的应用十分广泛,例如求解三角方程、三角变形、立体几何以及物理等方面均有应用。
在考试中,如果出现和差化积的计算题目,可以利用其公式进行求解。
2、倍角公式倍角公式是指将三角函数角度加倍时可能会出现的公式。
其基本公式为:$$\sin2x = 2\sin x \cos x$$$$\cos2x = \cos^2 x - \sin^2 x = 2 \cos^2 x - 1 = 1 - 2 \sin^2 x$$倍角公式在三角函数的化简中有很重要的作用,例如,可以利用倍角公式将一个含有 $\sin 2x$ 的式子化简成含有 $\sin x$ 和$\cos x$ 的式子。
在考试中,若有化简题目涉及到三角函数的倍角公式,可以运用公式进行转化,求得最终的结果。
3、半角公式半角公式是指将三角函数角度减半时可能会出现的公式。
其基本公式为:$$\sin\frac{x}{2} = \pm\sqrt{\frac{1-\cos x}{2}}$$$$\cos\frac{x}{2} = \pm\sqrt{\frac{1+\cos x}{2}}$$半角公式常常用于解三角形、计算不等式等问题,也常常用于代换和化简式子。
在考试中,若题目中出现 $\sin \frac{x}{2}$ 或$\cos \frac{x}{2}$ 的算式,可以利用半角公式进行计算。
数学高考一轮备考三角函数的诱导公式
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ
设a=(x,y),b=(x',y')。
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。三角函数的诱导公式就为大家介绍到这里,希望对你有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学三角函数公式
同角三角函数的基本关系式
倒数关系: 商的关系:平方关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1 sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”)
诱导公式(口诀:奇变偶不变,符号看象限。
)
sin(-α)=-sinα
cos(-α)=cosα tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)
两角和与差的三角函数公式万能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
sinα=2tan(α/2)/(1+tan2(α/2))
cosα=(1-tan2(α/2))/(1+tan2(α/2))
tanα=(2tan(α/2))/(1-tan2(α/2))
半角的正弦、余弦和正切公式三角函数的降幂公式
二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
tan2α=2tanα/(1-tan2α)
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
tan3α=(3tanα-tan3α)/(1-3tan2α)
三角函数的和差化积公式三角函数的积化和差公式
sinα+sinβ=2sin(2/(α+βα-β))·cos(2/(α+βα-β))
sinα-sinβ=2cos(2/(α+βα-β))·sin(2/(α+βα-β))
cosα+cosβ=2cos(2/(α+βα-β))·cos(2/(α+βα-β))
cosα-cosβ=-2sin(2/(α+βα-β))·sin(2/(α+βα-β))
sinα·cosβ=-[sin(α+β)+sin(α-β)]/2
1cosα·sinβ=-[sin(α+β)-sin(α-β)]/2
1cosα·cosβ=-[cos(α+β)+cos(α-β)]/2
1sinα·sinβ=— -[cos(α+β)-cos(α-β)]
2化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)。