“希望杯”数学邀请赛培训题(初二)

合集下载

第8-21届希望杯全国数学邀请赛(初二)试题

第8-21届希望杯全国数学邀请赛(初二)试题

第八届“希望杯”全国数学邀请赛初二第1试第八届“希望杯”全国数学邀请赛初二第2试第九届“希望杯”全国数学邀请赛初二第1试第九届“希望杯”全国数学邀请赛初二第2试第十届“希望杯”全国数学邀请赛初二第1试第十届“希望杯”全国数学邀请赛初二第2试第十一届“希望杯”全国数学邀请赛初二第1试第十一届“希望杯”全国数学邀请赛初二 第2试一、选择题:1.-20001999, -19991998, -999998, -1000999这四个数从小到大的排列顺序是(AA )-20001999<-19991998<-1000999<-999998 (B )-999998<-1000999<-19991998<-20001999(C )-19991998<-20001999<-1000999<-999998 (D )-1000999<-999998<-20001999<-199919982.一个三角形的三条边长分别是a , b , c (a , b , c 都是质数),且a +b +c =16,则这个三角形的形状是(A )直角三角形(B )等腰三角形(C )等边三角形(D )直角三角形或等腰三角形 3.已知25x =2000, 80y =2000,则y1x 1+等于 (A )2 (B )1 (C )21(D )23 4.设a +b +c =0, abc >0,则|c |ba |b |ac |a |c b +++++的值是 (A )-3 (B )1 (C )3或-1 (D )-3或15.设实数a 、b 、c 满足a <b <c (ac <0),且|c |<|b |<|a |,则|x -a |+|x -b |+|x +c |的最小值是 (A )3|c b a |++ (B )|b | (C )c -a (D )―c ―a 6.若一个等腰三角形的三条边长均为整数,且周长为10,则底边的长为 (A )一切偶数 (B )2或4或6或8 (C )2或4或6 (D )2或4 7.三元方程x +y +z =1999的非负整数解的个数有(A )20001999个 (B )19992000个 (C )2001000个 (D )2001999个 8.如图1,梯形ABCD 中,AB //CD ,且CD =3AB ,EF //CD ,EF 将梯形 ABCD 分成面积相等的两部分,则AE :ED 等于( )。

2007年第十八届“希望杯”全国数学邀请赛初二培训题(含答案)-

2007年第十八届“希望杯”全国数学邀请赛初二培训题(含答案)-

第十八届(2007年)“希望杯”全国数学邀请赛培训题“希望杯”命题委员会(未署名的题,均为命题委员会命题)初中二年级一、选择题(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后的圆括号内)1.有下面的四个叙述:①整式加整式还是整式;②整式减整式还是整式;③整式乘整式还是整式;④整式除整式还是整式.其中正确叙述的个数为().(A)4 (B)3 (C)2 (D)12.若x是有理数,分式1||2x-的值为正整数,则x的个数为()(A)2 (B)4 (C)6 (D)无数个3.将分式2aa b+中的a扩大2倍,6扩大4倍,而分式的值不变,则()(A)a=0 (B)b=0 (C)a=0,且b=0 (D)a=0或b=04.已知x与y+2成反比例,当x=1时,y=4,那么y=1时,x的值是()(A)0 (B)1 (C)2 (D)45.若实数a,b,c满足a2+b2≠0,a3+a2c-ab c+b2c+b3=0,则a+b+c的值是()(A)-1 (B)0 (C)1 (D)26.若实数a,b,c满足1a+1b+1c=1a b c++,则a+b,b+c,c+a中等于零的()(A)有且只有1个(B)至少有1个(C)最多有1个(D)不可能有2个7.设f=2x-3x-2,g=x-2,考察下面四个叙述:①f+g是整式;②f-g是整式;③f×g是整式;④当x≠2时,f÷g是整式.其中正确叙述的个数为()(A)4 (B)3 (C)2 (D)18.如果≠0成立,那么下列各式中正确的是()(A)a+b≥0 (B)a+b>0 (C)a+b≤0 (D)a+b<09.甲、乙两人从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象如图,根据图中提供的信息,•有下列叙述:①他们都行驶了18千米;②甲在途中停留了0.5小时;③乙比甲晚出发了0.5小时;④相遇后,甲的速度小于乙的速度;⑤甲、乙两人同时到达目的地.其中,符合图象的叙述有()个.(A)2 (B)3 (C)4 (D)5(第9题) (第10题) (第15题)10.已知直线y=2x+a与y=2a-x的图象的交点在如图所示的阴影长方形区域内(•含长方形边界),则a的取值范围是()(A)0≤a≤32(B)65≤a≤95(C)65≤a≤32(D)0≤a≤9511.甲车追超过前方的乙车,经过时间t后在A处追上,若甲、乙各提速a%,则()(A)甲车追上乙车所用的时间增加了a%; (B)甲车追上乙车所用的时间减少了a% (C)甲车仍在A处追上乙车; (D)甲车驶过A处后才追上乙车12.某人用1000元钱购进一批货物,第二天售出,获利10%,•过几天后又以上次售出的价格的90%购进一批同样的货物,由于卖不出去,•两天后他将其按第二次购进价的九价再QQ :- 3 -出售,这样他在两次交易中( )(A )刚好盈亏平衡 (B )盈利1元 (C )盈利9元 (D )亏损1.1元13.某足球赛,记分规律如下:胜一场积3分,平一场积1分,负一场积0分,A 队经过12场比赛后,积19分,若队员出赛一场的出场费为500元/人,胜一场奖金1000元/人,•平一场奖金500元/人,那么A 队队员在12场比赛后的最高收益可能是( )(A )13500元/人 (B )14000元/人 (C )13000元/人 (D )12500元/人14.小明和小刚用掷两枚骰子的方法来确定点P (x ,y )在坐标系上的位置,他们规定:小明掷得的点数为x ,小刚掷得的点数为y ,•那么他们各掷一次所确定的点落在已知直线y=-2x+6上的概率为( )(注:骰子是骨制的一个白色小正方体,它的六个面上分别刻有1个,2个,3个,4个,5个,6个红色小圆点,将其随意掷放于一个平面上,骰子必有一面向上,•这个面上红色圆点的个数就叫做点数).(A )16 (B )112 (C )118 (D )1915.如图,晴朗的夏天,太阳当空,•一只小鸟以不变的速度水平地飞过一个斜坡上空,则小鸟在斜坡上的影子移动的速度( )(A )越来越大 (B )越来越小(C )不变 (D )一定和小鸟的飞行速度一样大16.当5个整数从小到大排列时,中位数是4,如果这5个整数的惟一众数是6,则这5个整数的和最大是( ).(A )20 (B )21 (C )22 (D )2317.某市出租车的起步价为12元(行程在3公里以内),行程到达3公里之后,•每增加1公里需加付m 元(不足1公里亦按1公里计价),•张老师坐这种出租车从学校到离学校n 公里的教育局开会,沿途未遇红灯,下车时付车费28元,则m 与n 的关系是m=( ) (注:[n]表示不大于n 的最大整数,如[3,2]=3,[4]=4.)(A )16162828()()3()3[]3[]2[]3[]2B C D n n n n ------ 18.用200元钱买A 、B 、C 、D 四种商品共10件,若A 、B 、C 、D 的单价依次是13元,17元,22元,35元,则( )(A )A 、B 、C 、D 各买了2,3,4,1件 (B )A 、B 、C 、D 各买了4,2,2,2件(C )以上两种情况都可能 (D )以上三种情况都不可能19.如图,直线AE ∥BF ,点P 在AE 上方,点M 、N 分别在AE 、BF 上,若PC 平分∠MPN 交AE 、BF 于C 、D 两点,∠PCE=α,则∠1=∠2的大小为( )(A )α (B )2α (C )3α (D )4α(第19题) (第22题) (第25题)20.周长为30,各边长互不相等且都是整数的三角形的个数为( )(A )11 (B )12 (C )7 (D )821.如果△ABC 的垂心G (三条高的交点)在△ABC 的内部,并且在BC 边的中线AD 上,那么△ABC 一定是( )(A )直角三角形 (B )等腰三角形(C )等边三角形 (D )等腰直角三角形22.如图5,△ABC 中,∠A=60°,AC=16,S △ABC AB=( )(A )554(B )55 (C )45 (D )23.有下面四个判断性语句:①平行四边形的四个内角之和为360°;②有两个内角相等的四边形是平行四边形;QQ :- 5 -③平行四边形的四个内角中有两对是相等的;④四个内角中有两对相等的四边形是平行四边形.(A )4 (B )3 (C )2 (D )124.对凸四边形ABCD ,给出下列4个条件:①AB ∥CD ; ②AD ∥BC ; ③AB=CD ; ④∠BAD=∠DCB .现从以上4个条件中任选2个条件为一组,能推出四边形ABCD•为平行四边形的概率是( )(A )13 (B )12 (C )23 (D )5625.如图,以Rt △ABC 的两直角边AB 、BC 为边,•在△ABC•外部作等边△ABE•和△BCF ,EA 、FC 的延长线交于M 点,则点B 一定是△EMF 的((A )垂心 (B )重心 (C )内心 (D )外心26.Assume that in Fig . 7 ABCD is a square ,and •point •E •is •on •theline BC ,CE=AC .we connect A and E ,AE intersects CD at point •F ,•then •thedegree of ∠AFC is ( )(A )150° (B )125° (C )135° (D )112.5°(英汉词典:Fig .是figure (图、图形)的缩写;to cormect 连接;to intersect …at 相交于;degree 度、度数)(第26题) (第27题) (第28题) (第30题)27.如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连结DF ,则∠CDF 等于( )(A )80° (B )70° (C )65° (D )60°28.如图,顺次连接凸四边形ABCD 的中点,得到四边形EFGH .要使四边形EFGH•是正方形,应补充的条件是( )(A )四边形ABCD 是等腰梯形 (B )四边形ABCD 是平行四边形(C )四边形ABCD 是菱形 (D )AC=BD ,且AC ⊥BD29.将一把折扇逐渐打开,会发现打开部分的扇形面积随圆心角的变化而变化,•那么能正确描述这种变化的函数是( )(A )正比例函数 (B )反比例函数(C )一次函数y=kx+b (b ≠0) (D )以上都不是30.如图是一间卧室地面瓷砖的图案,在这间卧室地下藏有一宝物,•则藏在白色瓷砖和灰色瓷砖下的可能性是( )(A )藏在白色瓷砖下的可能性大(B )藏在灰色瓷砖下的可能性大(C )藏在两种瓷砖下的可能性一样大(D )藏在灰色瓷砖下与藏在白色瓷砖下的可能性之比是3:2二、填空题31.计算:20082+20072+20062-2008×2007-2007×2006-2006×2008=________.32.已知则x 2007=2,则(x 2006+x 2005+x 2004+…+x+1)(x-1)=__________.33.设a ,b ,c 是实数,则能使(a+b+c )(1a +1b +1c )=1成立的条件是______或_______.(•写出两个满足条件即可)34.Ifm and n are positive integers satisfying m 2+27mn+n 2=729 and m+•n>mn ,then the value of m+n is_________.(英汉词典:positive integer 正整数;to satisfy 满足;value 值、数值)35.计算:(+2=________.36.已知A=××,B=(2007×2008×2009)2007200820093++,则A•与B•的大小关系是A_____B .(填“>”、“<”或“=”)QQ :- 7 -37.设B =,则A_______B .(填“>”、“<”或“=”) 38.39.If a and •b •are •constant .•and •the •set •of •solutions •of •theinequality ax+b>0 is x<13,then the set of solutions of the inequalityba<0 is________. (英汉词典:constant 常数;set 集合;solution 解、解答;inequality 不等式)40.一次智力测试有25道题,答对一题得4分,不答扣2分,答错扣4分,小明要想在这次智力测试中的得分不低于60分,他至少要答对________道题.41.设正数a ,b ,c ,x ,y 满足:a ≠c ,22222222221,x xy y x xy y a b c c b a++=++=1,则代数式222111a b c++的值为________. 42.若以x 为未知数的方程42ax x -+=3无解,则a=_______. 43.已知m 与n 使m m m n m n ++-的值等于-14,则n m的值是_________. 44.当x=2时,多项式75312a b c d x x x x ++++的值是3,那么当x=-2时,多项式的值是_______. 45.若实数a ,b 满足1a -1b -1a b +=0,则2222b a a b-的值等于________. (拟题:夏建平 江苏省江阴市要塞中学)46.如果以x ,y 为元的二元一次方程12ax y x ay +=⎧⎨+=⎩有解,那么a 不等于________.52.如图,△P1OA1,△P2A1A2是等腰直角三角形,点P1,P2在函数y=4x(x>0)的图象上,•斜边OA,AA都在x轴上,则点A的坐标是________.(第52题) (第53题) (第55题) 53.In the following traffic marks,the number of marks whose•figuresaxially-symmetric is___________.(英汉词典:traffic交通;•mark•标志;•number•个数;•figure•图形;•axially-symmetric(轴对称)54.仅将两个全等的非等腰的直角三角形的一条边重合,拼接成新的图形,•拼成的图形可能是下列各种图形中的一种或几种:①矩形;②菱形;③直角梯形;④平行四边形;⑤等腰三角形;⑥等腰梯形.则正确结论的序号是_______.(把所有正确的图形的序号都填上)55.如图所示,平行四边形ABCD中,过BD的中点O的直线交AB、CD于M、N,•交DA、BC 延长线于E、F,则图中有全等三角形________对.56.如图,在一个由4×4个小正方形组成的正方形网格中,•阴影部分面积与正方形ABCDQQ :- 9 -的面积比是_______;周长的比是________.(第56题) (第58题) (第59题) (第60题)57.在平面直角坐标系内点A 、B 的坐标分别为(-3,-2),(3,a ),点B 在第一象限,•且A 、B 两点间的距离为10,那么a 等于______.58.在建筑工地上,工人用如图所示的装置能将重物运往高处:•绳子绕过定滑轮,一端系着重物,在地面的工人手拿绳子的另一端,沿着垂直于滑轮轴的方向,向前走一段距离,重物便上升到定滑轮外,被高处的工人卸下,已知重物上升的距离是5米,则地面上的工人向前行走的距离为________米.59.图中的两个滑块A 、B 由一个连杆连接,可以在竖直和水平的滑道内滑动,•开始时,滑块A 距0点15厘米,滑块B 距0点20厘米,A 、B 的距离为25厘米,那么滑块B 滑到C 点时,滑块A 共滑动了_________厘米.60.如图,△ABC 的边AB 长为2,AB 边上的中线CD 长为1,AC 、BC,则△ABC 的面积为_________.61.a 、b 、c 是三角形的三边,它们满足ac 2+b 2c-b 3=abc ,若三角形的一个内角是120°,那么a :b :c=_______.62.设a ,b ,c 是△ABC 的三条边,满足c a b a b c b c a c a b <<+-+-+-,则三边中最长的边是________.63.如图,0是△ABC 外部一点,AO 交BC 于A 点,BO ,CO 的延长线分别交AC ,AB•的延长线于点B ,C ,则111AO BO CO AA BB CC ++的值为_________.(第63题) (第64题) (第65题) (第66题)64.如图,已知梯形ABCD中,AD∥BC,∠A=90°,E为CD的中点,BE=132,梯形ABCD•的面积为30,则AB+BC+DA的值为________.65.如图,边长为2的正方形ABCD中,若∠PAQ=45°,则△PCQ的周长是_____.66.如图,A,B两个平行四边形草坪有公共部分(阴影处),A,B•草坪面积之和为160m2,A的面积为120m2,B的面积为74m,则重叠部分的面积是_______m2.67.若凸4n+2边形AA…A(A为正整数)的每个内角都是30°的整数倍,且∠A=∠A=∠A=90°,则n的值是________.?68.服装店进了某款式的时装,开始按比进价提高30%的价格销售,但是无人问津,•于是决定打折降价销售.•如果要使利润率不低于10%,••那么打折的幅度不能低于_________.(保留两位有效数字)69.红光中学去年有120人参加“希望杯”全国数学邀请赛,•今年的参赛人数增加了50%,考场数比去年多了3个,而且平均每个考场安排的考生增加了2人,今年安排的考场有_________个.70.直角三角形三边长均为整数,其中一条直角边长为35,•则它的周长的最大值是________,最小值是_______.(拟题:刘朝晖广东省中山市第一中学初中部)71.生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,•若现在所需要的时间为b小时,则_______<b<______.(用关于a的表达式表示)72.1=12,2+3+4=32,3+4+5+6+7=52,QQ :- 11 -……从中找出一般规律是________.73.一种商品的进价为90元,原售价定为m 元,售出一半之后,剩余的一半按8折出售,全部售出后共获利10%,则原售价定为m=________元.74.某学校八年级的数学竞赛小组进行了一次数学测验,如图所示是反映这次测验情况的频率分布直方图,那么该小组共有______人;70.5~90.5这一分数段的频率是______.(第74题) (第76题) (第77题) 75.用[a ,b]表示自然数a ,b 的最小公倍数,(a ,b )表示□,b 的最大公约数,若[•a ,b]=1085-(a ,b ),那么当a>b 时,a-b 的最小值是________. 76.如图,△ABC 中,∠C=90°,EC=13AC ,CD=13BC ,BE=8,AD=EC+CD=6,则S △BCD =______. (拟题:刘朝晖 广东省中山市第一中学初中部)77.如图,E 是平行四边形ABCD 的边CD 上任一点,AE 的延长线与BC 的延长线交于点F ,连结BE 、DF ,则S △BCE _______S △DEF .(填“>”、“<”或“=”) (拟题:李廷江 贵州省修文县第二中学)78.若4x 2+1+kx 是关于x 的完全平方式,则k 2-2k+2的值为________. (拟题:窦桐生 吉林省磐石市明城中学 ) 79.解方程:20052007200820042004200620072003x x x x x x x x +++++=+++++得x=_________.(拟题:钟金子 福建省安溪恒兴中学) 三、解答题80.某班有语文、数学两个课外兴趣小组,•其中参加语文组的人数是全班人数的23,既参加语文组又参加数学组的人数是参加数学组人数的23,另外有4•位同学既不参加语文组,也不参加数学组,如果这4位同学参加语文组,•那么参加数学组与参加语文组的人数恰好相等,问全班有多少同学?既参加语文组又参加数学组的人数是多少?81.某工厂计划生产A、B两种产品,为取得最大生产利润,事先做了市场调查,根据厂内实际情况和市场需要得到有关数据如下表:现在工厂可以筹集到的资金用于原料及消耗的是元/月,用于工资支出的是元/月,问如何确定两种产品的月产量,可以使工厂得到的总利润达到最大?并求这个最大利润值.82.如图,从直线COD上一点O引两条射线OE,OF,使∠GOF=∠FOE=∠EOD=60°,•在射线QQ:OF,OG,OE上各取一点A,B,C,使∠CAB=60°,若OA=m,求△ABC面积的最大值.83.从2006年元旦起,公民的月工资、薪金个人所得税的起征点由原来的800•元调整为1600元,如果公民的月工资、薪金超过1600元,则税款按下表累加计算:根据上表,请:(1)写出所纳款税y(元)与该月收入x(元)之间的函数关系式;(2)作出所纳款税y(元)与该月收入x(元)之间的函数图象;(3)若李先生月薪金4000元,他应交纳的个人所得税是多少元?84.用红色刻度线将一根木棍分成135等份,•再用黑色刻度线将这根木棍分成40等份,沿- 13 -两种刻度线将这一木棍锯成短木棍.问共有多少种不同长度的短木棍?85.100条线段的长度分别为1,2,3,…,99,100,从中取出一些线段,•要使取出的线段中的任意三条都能构成一个三角形,问最多能取出多少条线段?第十八届(2007年)“希望杯”全国数学邀请赛初二培训题(1~85题)QQ:答案.解析一、选择题- 15 -。

历届1-24“希望杯”全国数学邀请赛八年级-真题及答案

历届1-24“希望杯”全国数学邀请赛八年级-真题及答案
而选(A). 4.由图6可知:当∠BDA=60°时,∠CDB
5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点, 组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的 四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于 1的正三角形.故选(D). 二、填空题
12.如果 2x 3x 1, 那么 3 (x 2)3 (x 3)2 等于[ ]
A.2x+5 B.2x-5; C.1 D.1
9.已知 x2 2xy 2y 1
y2 1
y 1 等于一个固定的值,
x2 1
2y2 xy y x 1 x 1
则这个值是( ) A.0. B.1.
C.2.
D.4.
把f1990化简后,等于 ( )
A. x . B.1-x. C. 1 . D.x.
x 1
x
二、填空题(每题1分,共10分)
1. 1302 662 ________.
9.方程x2+|x|+1=0有[ ]个实数根.
A.4; B.2; C.1; D.0 10.一个两位数,用它的个位、十位上的两个数之和的3倍减去-2,仍得原数,这个两
位数是[ ] A.26; B.28; C.36; D.38 11.若11个连续奇数的和是1991,把这些数按大小顺序排列起来,第六个数是[ ] A.179; B.181; C.183; D.185
∠A'BE=∠A'CF=45°. 又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C. 在△A'FC和△A'EB中,
∴SA'EBF=S△A'BC.
∴两个正方形的重合部分面积必然是一个定值. 3.可能的四位数有9种:

第 27届“希望杯”全国数学邀请赛初二1试解析

第 27届“希望杯”全国数学邀请赛初二1试解析

第27届“希望杯”全国数学邀请赛初二1试解析一、选择题1、【解析】A ,B 选项SSA 不能判定全等;C 明显不是判定全等的条件,D 项正确,选D .2、【解析】由3-=x y 与k kx y -=,得ky k x -+-=-+=122121,,∵交点为整点,∴k 可取1-,0,2,3,共计4个不同的值,故选B .3、【解析】由题可得混合后男女生的比为23:22)1112(:)1210(=++,故选D .4、【解析】解不等式2|1|>+x ,得1>x 或3-<x ;解不等式)0(||≥≤a a x ,得a x a ≤≤-,∵它们的解集没有公共部分,∴1≤a 且3-≥-a ,∴10≤≤a ,故选A .5、【解析】解不等式组,得5<x 且21m x ->,∵要满足不等式组只有四个整数解,∴需要满足以下关系:1210<m -≤,解得11≤-m <,故选C .6、【解析】∵ED AE =,∴A EDA ∠=∠,∴A A EDA DEB ∠=∠+∠=∠2;∵DB ED =,∴A DEB DBE ∠=∠=∠2,∴A DBE A CDB ∠=∠+∠=∠3;∵CD BC =,∴A CBD CDB ∠=∠=∠3,∴A CBD DBE ABC ∠=∠+∠=∠5;∵AC AB =,∴A ABC C ∠=∠=∠5,∴︒=∠=∠+∠+∠18011A ABC C A ,∴11180︒=∠A ,故选D .7、【解析】当0=n 时,4205==A ;当1=n 时,44411==A ;当2=n 时,47619==A ;当3=n 时,411629==A ……,要使得p A +的平方根是有理数,需满足p A +是一个平方数,观察发现,有且仅有各项的分子加上5,就使各数均成为平方数,故45=p ,答案是D .8、【解析】∵504201625.0=⨯,63)42(504=⨯÷,∴动点p 回到A 点;∵7251820151⋯=÷⨯,即动点p 再从A 往原方向移动7个单位到AD 中点,故选D .9、【解析】不妨从1开始,取1,2,3,5,8,13共六个数,其中没有任何3条线段可以构成三角形,如果往其中加入任意一个141-的其它数,那么必有3可以构成一个三角形;故n 最小可取值为7,选A .10、【解析】不妨设)(2x k a C ,)00(>,>k a ,则ak BC BC a OB 2'===,,设'AA 的中点为D ,延长'AA 交'BC 于E ;∵A 点在xy 1=上,∴1=⋅DO AD ;易证CBO Rt ODA Rt △∽△,∴有22a k OB BC AD DO ==,∴222ak DO =,∴a k DO =,k a D A AD ==',∴k a a D A OB E A -=-='',a k a OB AD AE +=+=,a k a k BC DO BC EB EC 2+=+=+=,ak a k EB BC EC -=-=2'';∴10'=+ECA AEC S S △△,即10))((21))((2122=--+++a k a k k a a a k a k a k a ,整理得20222=+k ,∴92=k ,∵0>k ,∴3=k ,∴6)(21)(212122=+=+⋅=⋅=k k a k a a k AE BC S ABC△,故选B .二、A 组填空题11、【解析】∵1>ab ,1>bc ,1>ca ,∴1)(2>abc ,∴1>abc 或1-<abc ,∴1)(2016>abc A =,故1>A .12、【解析】∵A ,B 关于原点对称,∴21x x -=,21y y -=,∴221221253y x y x y x =-;∵422=y x ,∴8222=y x ,即8531221=-y x y x .13、【解析】∵0)11()3()12(=--+--k y k x k ,∴0)113()12(=-+---y x y x k ∴⎩⎨⎧=-+=--0113012y x y x ,解得⎩⎨⎧==32y x ,∵无论k 取何值,当32==y x ,时,关于x 的一次函数的值恒为零,∴不论k 取何值,关于x 的一次函数0)11()3()12(=--+--k y k x k 的图象必经过点)32(,.14、【解析】设a =+⋯⋯+++2016131211,原式20161)201611()20161)(1(=-----=a a a a .15、【解析】根据题意,三角形三边长可以有以下情形:16153,,,16144,,,15145,,,16135,,,15136,,,16126,,,14137,,,15127,,,16117,,,14128,,,15118,,,16108,,,13129,,,14119,,15109,,,131110,,,故有16个.16、【解析】原式2223223)1)(1()1)(1(1)1(+-+=+-+=+-++-=a a a a a a a a a a a ,∵31131=+-=+a ,33663)113324()1(222-=++--=+-a a ,∴108363)33663(3)1)(1(22-=-=+-+a a a ,∴10836312345-=+-++-a a a a a .17、【解析】易证BCE Rt AFE Rt △≌△,∴1==CE FE ,∴2222=-==AE AF AE BE ,∴122+=+=CE AE AC ,∴2422)122(2121+=⨯+⨯=⋅=BE AC S ABC △.18、【解析】40722⋯=÷,617)32(22⋯=÷+,147)432(222⋯=÷++,577)5432(2222⋯=÷+++,6127)65432(22222⋯=÷++++677)765432(222222⋯=÷+++++,297)8765432(2222222=÷++++++4407)98765432(22222222⋯=÷+++++++,∵62877)12016(⋯=÷-,∴a 除以7所得的余数是6.19、【解析】设梯形两条对角线分别为a ,b ,根据题意有16=+b a ,14422=+b a ,∴56=ab ∴28562121=⨯==ab S 梯形.20、【解析】∵20162016)2016)(2016(2222=-+=-+++x x x x x x ,∴y y x x ++=-+2016201622,∴y x -=,∴0=+y x .三、B 组填空题21、【解析】如图,易证BEC Rt ADB Rt △≌△,∴2==AD BE ,1==DB EC ,∴)25(,C ;∴)25(')32('--,,,C A ,设直线''C A 的解析式为b kx y +=,则有⎩⎨⎧-=+-=+2532b x b x ,解得⎪⎪⎩⎪⎪⎨⎧-==31131b k ,∴直线''C A 的解析式为31131-=x y .22、【解析】所有多边形的内角和是︒=︒⨯+36000360)199(;边数最多的多边形最多有103499=+条边.23、【解析】依题意有⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=+++4141664313927212481d c b a d c b a d c b a d c b a ,解得241-=a ,125=b ,∴83=+b a ,∴85)(1=+-=+b a d c .24、【解析】∵ABC △是△Rt ,∴①222c b a =+,∵0111=+--ba b a ,∴②ab a b =-22,②①+得③ab c b +=222,①②-得④ab c a -=222;④③⨯得2222245210(b a b a =-+,∴252+=ab 或252--=ab 舍去,将252+=ab 代入④解得2=a 或2-=a 舍去;∴1521+==ab S ABC △.25、【解析】如图,将CDM △绕点D 顺时针旋转︒60得到EDN △,连接AM ,MN ,则EN CM =,∵ND MD =,︒=∠60MDN ,∴MDN △是等边三角形,∴MN MD =;∵CM 与AM 关于BD 对称,∴CM AM =,∴当E 、N 、M 、A 共线时,AE NE AM MN MC MD =++=+2(最小),此时︒=∠=∠=∠60DMN BMA BMC ,作DA EF ⊥交AD 的延长线于F ,则︒=∠90F ,由旋转可得︒=∠60CDE ,2==ED CD ,∴︒=︒-︒=∠306090EDF ,∴在DEF Rt △中,2221==DE FE ,∴2622=-=EF DE DF ,∴262+=+=DF AD AF ;∴AEF Rt △中,22EF AF AE +=22)22()262(++=13+=.故答案为:13+,︒60.。

第二十四届“希望杯”全国数学邀请赛 初二(八年级)第2试试题及答案

第二十四届“希望杯”全国数学邀请赛 初二(八年级)第2试试题及答案

第24届“希望杯”全国数学邀请赛初二 第二试2013年4月15日 上午8:30至10:30一、 选择题(本大题共10小题,每小题4分,菜40分。

)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内。

1、红丝带是关注艾滋病防治问题的国际性标志,人胶将红丝带剪成小段,并用别针将折叠好的红丝带加紧在胸前,如图1所示,红丝带重叠部分形成的图形是( ) (A )正方形 (B )矩形 C )菱形 (D )梯形2、设a 、b 、C 是不为零的实数,那么||||||a b c x a b c =+-的值有( ) (A )3种 (B )4种 (C )5种 (D )6种3、ABC ∆的边长分别是21a m =-,21b m =+,()20c m m =>,则ABC ∆是( ) (A )等边三角形 (B )钝角三角形 (C )直角三角形 (D )锐角三角形4、古人用天干和地支记序,其中天干有10个;甲乙丙丁戊己庚辛壬癸,地支有12个;子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行; 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁…… 子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,我国的农历纪年就是按这个顺序得来的,如公历2007年是农历丁亥年,那么从今年往后,农历纪年为甲亥年的那一年在公历中( )(A )是2019年, (B )是2031年, (C )是2043年, (D )没有对应的年号5、实数 a 、b 、m 、n 满足a<b, -1<n<m, 若1a mb M m +=+,1a nbN n+=+,则M 与N 的大小关系是( )(A )M>N (B)M=N (C)M<N (D)无法确定的。

6、若干个正方形和等腰直角三角形拼接成如图2所示的图形,若最大的正方形的边长是7cm ,则正方形A 、B 、C 、D 的面积和是( )(A )214cm (B )242cm (C )249cm (D )264cm7、已知关于x 的不等式组230320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( )(A )23≤a ≤32 (B)43≤a ≤32 (C)43<a ≤32 (D)43≤a <328 、The number of intersection point of the graphs of function||k y x=and function (0)y kx k =≠ is( ) (A)0 (B)1 (C)2 (D)0 or 2.9、某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图3所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( ) (A )16小时 (B )7158小时 (C )151516小时 (D )17小时 )10、某公司组织员工一公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘;每只船坐10人,那么其余的船坐满后内参有一只船不空也不满,参加划船的员工共有( )(A )48人 (B )45人 (C )44人 (D )42人二、填空题(本大题共10小题,每小题4分,共40分)11、已知a b c ⋅⋅o 为ABC ∆三边的长,则化简|a b c -+|+2()a b c -+的结果是___ 12、自从扫描隧道显微镜发明后,世界上便诞生了一间新科学,这就是“纳米技术”,已知1毫米微米,1微米纳米,那么2007纳米的长度用科学记数法表示为__米。

“希望杯”数学邀请赛培训题(初二年级)附答案

“希望杯”数学邀请赛培训题(初二年级)附答案

“希望杯”数学邀请赛培训题初中二年级选择题(以下每个题的四个选择支中,仅有一个是正确的)1,已知,0〉-a b 且0≥a ,那么||222b a b ab a +-+- ( ) (A )化简为0 (B )化简为-b 2(C )化简为-a 2 (D )不能再化简2.已知a 是任意实数,有4个不等式:①a a 〉2;②a a 〉2;③22〉+a a ;④a a 〉+12,那么不等式关系一定成立的有( )个。

(A )1 (B )2 (C )3 (D )43.已知关于x 的方程4)2(3)32(2-++=++m x x m m 有唯一解,那么m 的值的情况是( )。

(A )2-=m (B )0=m (C )2-≠m 或0≠m (D )2-≠m 且0≠m4.已知关于x 的方程22)1(a ax x a -=+的解是负数,那么a 的值的情况是( )(A )1-≠a (B )1〈a (C )1〈a 且0≠a (D )1〉a5.已知寻于任意有理数b a ,,关于y x ,的二元一次方程b a y b a x b a +=+--)()(都有一组公共解,则公共解为( ) (A )⎩⎨⎧==00y x (B )⎩⎨⎧-==10y x (C )⎩⎨⎧=-=01y x (D )⎩⎨⎧==11y x6.设,2002200120012002,2001200020002001==N M 则N M 与的关系是( )(A )N M = (B )N M 〉 (C )N M 〈 (D )1=MN7.若b a ,为有理数且满足,322〈b a 那么22)()3(b a b a ++与3的大小关系是( )(A )3)()3(22〈++b a b a (B )3)()3(22〉++b a b a(C )3)()3(22=++b a b a (D )无法确定的8.已知a 为正数,且[],1)(=+++b b b a a a 则b a +的值是( ) (A )43 (B )2 (C )1 (D )219.5个有理数中,若其中任意4个数的和都大于另一个数,那么这5个有理数中( )(A )最多有4个是0 (B )最多有2个是0(C )最多有3个是0 (D )最多有1个是010.把自然数n 的各位数字之和记为),(n S如++===+===42)(,247;1183)(,38n S n n S n 7=13,若对于某些自然数满足 ,2007)(=-n S n 则n 的最大值是( )(A )2025 (B )2023 (C )2021 (D )201911.已知四个方程①0232=++x ;②0234=-x ;③03514=-+-x x ;④24=+-x x ,其中有实数解的方程的个数是( )个。

15到20届希望杯初二第一试试题及培训题

15到20届希望杯初二第一试试题及培训题

第十五届希望杯初二第1试试题一、选择题:(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。

1、小伟自制了一个孔成像演示仪,如图1所示,在一个圆纸筒的两端分别用半秀明纸和黑纸封住,并用针在黑纸的中心刺出一个小孔。

小伟将有黑纸的一端正对着竖直放置的“”形状的光源,则他在半透明纸上观察到的像的形状是( )(A)(B)(C)(D)2、代数式的化简结果是( )(A)(B)(C)(D)3、已知是实数,且,那么( )(A)31(B)21(C)13(D)13或21或314、已知(>)是两个任意质数,那么下列四个分数( )①;②;③;④中总是最简分数的有( )(A)1个(B)2个(C)3个(D)4个5、Given are real numbers, and , then the valueof is ( )(A)4(B)6(C)3(D)4or66、某出版社计划出版一套百科全书,固定成本为8万元,每印制一套需增加成本20元。

如果每套定价100元,卖出后有3成给承销商,出版社要盈利10%,那么该书至少应发行(精确到千位)( )(A)2千套(B)3千套(C)4千套(D)5千套7、△ABC的三个内角∠A、∠B、∠C,满足3∠A>5∠B,3∠C≤∠B,则这个三角形是( )(A)锐角三角形(B)直角三角形(C)钝角三角形(D)等边三角形8、如图2,正方形ABCD的面积为256,点E在AD上,点F在AB的延长线上,EC⊥FC,△CEF的面积是200,则BF的长是( )(A)15(B)12(C)11(D)109、如图3,在四边形ABCD中,∠ABC=∠ADC=90°,点E、F分别是对角线AC、BD的中点,则( )(A)(B)(C)(D)10、表示不大于的最大整数,如[3.15]=3,[-2.7]=-3,[4]=4,则( )( )(A)1001(B)2003(C)2004(D)1002二、A组填空题(每小题4分,共40分。

第14届“希望杯”全国数学邀请赛试卷(初二1)试题和详解

第14届“希望杯”全国数学邀请赛试卷(初二1)试题和详解

6,midline for hypotenuse(斜边)is 1,then
AC•BC= _________ . 17、如图,两点 A、B 在直线 MN 外的同侧,A 到 MN 的距离 AC=8,B 到 MN 的距离 BD=5, CD=4,P 在直线 MN 上运动,则|PA﹣PB|的最大值等于 _________ .
18、如图,等腰梯形 ABCD 中,AB∥CD,∠DAB=60°,AC 平分∠DAB,且 AC=2 ABCD 的周长等于 _________ .
3边形 ABCDEF、 PQRSTU, 其中点 P 位于正六边形 ABCDEF 的中心, 如果它们的面积均为 1,则阴影部分的面积是 _________ .
1 2

A、90° B、100° C、110° D、120° 10、2002 年 9 月 28 日,“希望杯”组委会第二次赴俄考查团启程,途经哈巴罗夫斯克和莫斯 科,两地航程约 9000 千米,往返飞行所用的时间并不相同,这是因为在北半球的高纬度地 区,有一股终年方向恒定的西风,人们称它为“高空西风带”.已知往返飞行的时间相差 1.5 小时,飞机在无风天气的平均时速为每小时 1000 千米,那么西风速度最接近( ) A、60 千米/小时 B、70 千米/小时 C、80 千米/小时 D、90 千米/小时 二、填空题(共 15 小题,满分 100 分) 11、设 0<x<1<y<2,则
������﹣������ ≥ 0 ������﹣������ ≥ 0

1 ������﹣1 1 ������﹣������ + ������﹣������ + ������﹣ ������ =0+0+ ������ =1﹣������.
故选 A. 点评:本题主要考查了二次根式的意义和性质.

第20届希望杯全国数学邀请赛初二年级组第2试试题及答案解析

第20届希望杯全国数学邀请赛初二年级组第2试试题及答案解析

第19届“希望杯”全国数学邀请赛初二第2试试题一、选择题(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内.)1.篆刻是中国独特的传统艺术,篆刻出来的艺术品叫印章,印章的文字刻成凸状的称为“阳文”,刻成凹状的称为“阴文”.如图1的“希望”即为阳文印章在纸上盖出的效果,此印章是下列选项中的(阴影表示印章中的实体部分,白色表示印章中镂空的部分) A 。

B 。

C 。

D 。

2.如果1x y <<-,那么代数式11y yx x+-+的值是() A .0B .正数C .负数D .非负数 图1 3.将x 的整数部分记为[]x ,x 的小数部分记为()x ,易知[]{}{}()01x x x x =+<<.若3535x =--+,那么[]x 等于() A .-2 B .-1C .0D .14.某种产品由甲、乙、丙三种元件构成.根据图2,为使生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人的数量所对应的扇形的圆心角的大小依次是()组装一件成品需要的元件的数量1名工人1小时生产某种元件的数量202040305050种类丙乙甲数量A .12018060︒︒︒,,B .108144108︒︒︒,,C .9018090︒︒︒,,D .7221672︒︒︒,,5.面积是48的矩形的边长和对角线的长都是整数,则它的周长等于( )A .20B .28C .36D .406.In the rectangular coordinates ,abscissa and ordinate of the intersection point of the lines y x k =- and 2y kx =+ are integers for integer k ,then the number of the possible values of k is ()A .4B .5C .6D .7(英汉词典:abscissa 横坐标,ordinate 纵坐标,intersection point 交点,integer 整数) 7.将一张四边形纸片沿两组对边的中点连线剪开,得到四张小纸片,如图3所示.用这四张小纸片一定可拼成一个( ) A .梯形 B .矩形 C .菱形D .平行四边形8.若不等式组4101x m x x m -+<+⎧⎨+>⎩,的解集是4x >,则()A .92m ≤B .5m ≤C .92m =D .5m =9.如图4所示,四边形ABCD 中,90A C ∠=∠=︒,60ABC ∠=︒,410AD CD ==,,则BD 的长等于()A .413B .83C .12D .10310.任何一个正整数n 都可以写成两个正整数相乘的形式,对于两个乘数的差的绝对值最小的一种分解()n p q p q =⨯≤可称为正整数n 的最佳分解,并规定()pF n q=.如:12=1⨯12=2⨯6=3⨯4,则3(12)4F =. 则以下结论图3104DCBA图4①1(2)2F =; ②3(24)8F =;③若n 是一个完全平方数,则()1F n =;④若n 是一个完全立方数,即3n a =(a 是正整数),则1()F n a=.中,正确的结论有( )A .4个B .3个C .2个D .1个二、填空题11.将一根钢筋锯成a 段,需要b 分钟,按此速度将同样的钢筋锯成c 段(a b c ,,都是大于1的自然数),需要__________________分钟.(用a b c ,,表示)12.给机器人下一个指令[]()00s A s A ︒︒,,≥≤≤180,它将完成下列动作: ①先在原地向左旋转角度A ;②再朝它面对的方向沿直线行走s 个单位长度的距离.现以机器人站立的位置为坐标原点,取它面对的方向为x 轴的正方向,取它的左侧为y 轴的正方向.要想让机器人移动到点(-5,5)处,应下指令:___________________. 13.已知实数x y z ,,满足1233x y z x y zx y z ++===+++,则x y z ++=_________________或______________.14.已知实数x y ,满足234x y -=,并且01x y ,≥≤,则x y -的最大值是_____________,最小值是_________________.15.汽车燃油价税费改革从2009年元旦起实施:取消养路费,同时汽油消费税每升提高0.8元.若某车一年的养路费是1440元,百千米耗油8升,在“费改税”前后该车的年支出与年行驶里程的关系分别如图5中的12l l 、所示,则1l 与2l 的交点的横坐标m =___________.(不考虑除养路费和燃油费以外的其他费用)16.Given 32()f x ax bx cx d =+++,if when x takes the value of its inverse number ,theOl 1l 2m 图5年支出/元1440年行驶里程/千米corresponding value of ()f x is also the inverse number ,and (2)f =0,thenc da b+=+_______________. (英汉词典:inverse number 相反数)17.8人参加象棋循环赛,规定胜1局得2分,平1局得1分,败者不得分,比赛结果是第二名的得分与最后4名的得分之和相同,那么第二名得__________________分. 18.若正整数a b ,使等式()()12a b a b a ++-+=2009成立,则a =____________,b =_____________.19.如图6所示,长为2的三条线段'AA ,''BB CC ,交于O 点,并且'''60B OA C OB A OC ∠=∠=∠=︒,则三个三角形的面积的和123S S S ++_______________3.(填“<”、“=”或“>”) 20.已知正整数x y ,满足2249x y +=,则x =_____________,y=________________.三、解答题(每题都要写出推算过程.)21.在分母小于15的最简分数中,求不等于25但与25最接近的那个分数.22.如图7哀兵必胜示,一次函数33y x =-+的图像与x 轴、y 轴分别交于点A B ,,以线段AB 为直角边在第一象限内作Rt ABC △,且使30ABC ∠=︒.⑴求ABC △的面积;图6S 3S 2S 1O C'C AB'BA'yxPO CBA30°图7⑵如果在第二象限内有一点32P m ⎛⎫⎪ ⎪⎝⎭,, 试用含m 的代数式表示四边形AOPB 的面积,并求当APB △与ABC △面积相等时m 的值; ⑶是否存在使QAB △是等腰三角形并且在坐标轴上的点Q ?若存在,请写出点Q 所有可能的坐标;若不存在,请说明理由.23.点(40)(03)A B ,,,与点C 构成边长分别是3,4,5的直角三角形,如果点C 在反比例函数ky x=的图像上,求k 可能取的一切值.参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 DCABBADCAC提 示1.印章在纸上盖出的效果与印章的图形成镜面对称,如图8所示,右侧的印章图形沿轴翻转180︒后,将与左侧的效果重合.故选D .2.因为 1x y <<-, 所以 0100x x x y <+<-<,,, 则101(1)(1)y y xy x xy y x yx x x x x x ++----==<+++, 即该代数式的值是负数,选C .3.因为()2516255135222±±±±===,所以 515122 1.41222x -+-=-==-≈-,所以 []2x =-,选A .4.为使生产效率最高,在相同的时间内生产甲、乙、两两件的数量之比是5:4:2,而1名工人在单位时间内生产这三种元件的数量之比是5:3:2,所以生产甲、乙、丙元件的工人数量之比是542::532,即41::13,也即3:4:3,在扇形图中对应的扇形的圆心角依次是108︒,144︒,108︒.故选B .5.5.设矩形的边长分别是a b ,,对角线的长是c ,则222a b c +=已知矩形的面积是44832ab ==⨯,a b ,都是整数,不妨设a b ,≤则()a b ,可能是 (1,48),(2,24),(3,16),(4,12),(6,8),分别代入222a b c +=,只有当68a b ==,时,c 才是整数10,其他情况得到的c 的值都不是整数. 所以,矩形的边长分别是6,8,周长是28,选B .。

2018年第十八届“希望杯”全国数学邀请赛初二培训题(含答案)

2018年第十八届“希望杯”全国数学邀请赛初二培训题(含答案)

第十八届(2018年)“希望杯”全国数学邀请赛培训题“希望杯”命题委员会(未署名的题,均为命题委员会命题)初中二年级一、选择题(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后的圆括号内)1.有下面的四个叙述:①整式加整式还是整式;②整式减整式还是整式;③整式乘整式还是整式;④整式除整式还是整式.其中正确叙述的个数为().(A)4 (B)3 (C)2 (D)12.若x是有理数,分式1||2x-的值为正整数,则x的个数为()(A)2 (B)4 (C)6 (D)无数个3.将分式2aa b+中的a扩大2倍,6扩大4倍,而分式的值不变,则()(A)a=0 (B)b=0 (C)a=0,且b=0 (D)a=0或b=04.已知x与y+2成反比例,当x=1时,y=4,那么y=1时,x的值是()(A)0 (B)1 (C)2 (D)45.若实数a,b,c满足a2+b2≠0,a3+a2c-ab c+b2c+b3=0,则a+b+c的值是()(A)-1 (B)0 (C)1 (D)26.若实数a,b,c满足1a+1b+1c=1a b c++,则a+b,b+c,c+a中等于零的()(A)有且只有1个(B)至少有1个(C)最多有1个(D)不可能有2个7.设f=2x-3x-2,g=x-2,考察下面四个叙述:①f+g是整式;②f-g是整式;③f×g是整式;④当x≠2时,f÷g是整式.其中正确叙述的个数为()(A)4 (B)3 (C)2 (D)18.如果≠0成立,那么下列各式中正确的是()(A)a+b≥0 (B)a+b>0 (C)a+b≤0 (D)a+b<09.甲、乙两人从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象如图,根据图中提供的信息,•有下列叙述:①他们都行驶了18千米;②甲在途中停留了0.5小时;③乙比甲晚出发了0.5小时;④相遇后,甲的速度小于乙的速度;⑤甲、乙两人同时到达目的地.其中,符合图象的叙述有()个.(A)2 (B)3 (C)4 (D)5(第9题) (第10题) (第15题)10.已知直线y=2x+a与y=2a-x的图象的交点在如图所示的阴影长方形区域内(•含长方形边界),则a的取值范围是()(A)0≤a≤32(B)65≤a≤95(C)65≤a≤32(D)0≤a≤9511.甲车追超过前方的乙车,经过时间t后在A处追上,若甲、乙各提速a%,则()(A)甲车追上乙车所用的时间增加了a%; (B)甲车追上乙车所用的时间减少了a% (C)甲车仍在A处追上乙车; (D)甲车驶过A处后才追上乙车12.某人用1000元钱购进一批货物,第二天售出,获利10%,•过几天后又以上次售出的价格的90%购进一批同样的货物,由于卖不出去,•两天后他将其按第二次购进价的九价再出售,这样他在两次交易中()(A)刚好盈亏平衡(B)盈利1元(C)盈利9元(D)亏损1.1元13.某足球赛,记分规律如下:胜一场积3分,平一场积1分,负一场积0分,A队经过12场比赛后,积19分,若队员出赛一场的出场费为500元/人,胜一场奖金1000元/人,•平一场奖金500元/人,那么A队队员在12场比赛后的最高收益可能是()(A)13500元/人(B)14000元/人(C)13000元/人(D)12500元/人14.小明和小刚用掷两枚骰子的方法来确定点P(x,y)在坐标系上的位置,他们规定:小明掷得的点数为x,小刚掷得的点数为y,•那么他们各掷一次所确定的点落在已知直线y=-2x+6上的概率为()(注:骰子是骨制的一个白色小正方体,它的六个面上分别刻有1个,2个,3个,4个,5个,6个红色小圆点,将其随意掷放于一个平面上,骰子必有一面向上,•这个面上红色圆点的个数就叫做点数).(A)16(B)112(C)118(D)1915.如图,晴朗的夏天,太阳当空,•一只小鸟以不变的速度水平地飞过一个斜坡上空,则小鸟在斜坡上的影子移动的速度()(A)越来越大(B)越来越小(C)不变(D)一定和小鸟的飞行速度一样大16.当5个整数从小到大排列时,中位数是4,如果这5个整数的惟一众数是6,则这5个整数的和最大是().(A)20 (B)21 (C)22 (D)2317.某市出租车的起步价为12元(行程在3公里以内),行程到达3公里之后,•每增加1公里需加付m元(不足1公里亦按1公里计价),•张老师坐这种出租车从学校到离学校n 公里的教育局开会,沿途未遇红灯,下车时付车费28元,则m与n的关系是m=()(注:[n]表示不大于n的最大整数,如[3,2]=3,[4]=4.)(A )16162828()()3()3[]3[]2[]3[]2B C D n n n n ------ 18.用200元钱买A 、B 、C 、D 四种商品共10件,若A 、B 、C 、D 的单价依次是13元,17元,22元,35元,则( )(A )A 、B 、C 、D 各买了2,3,4,1件 (B )A 、B 、C 、D 各买了4,2,2,2件(C )以上两种情况都可能 (D )以上三种情况都不可能19.如图,直线AE ∥BF ,点P 在AE 上方,点M 、N 分别在AE 、BF 上,若PC 平分∠MPN 交AE 、BF 于C 、D 两点,∠PCE=α,则∠1=∠2的大小为( )(A )α (B )2α (C )3α (D )4α(第19题) (第22题) (第25题)20.周长为30,各边长互不相等且都是整数的三角形的个数为( )(A )11 (B )12 (C )7 (D )821.如果△ABC 的垂心G (三条高的交点)在△ABC 的内部,并且在BC 边的中线AD 上,那么△ABC 一定是( )(A )直角三角形 (B )等腰三角形(C )等边三角形 (D )等腰直角三角形22.如图5,△ABC 中,∠A=60°,AC=16,S △ABC AB=( )(A )554(B )55 (C )45 (D )23.有下面四个判断性语句:①平行四边形的四个内角之和为360°;②有两个内角相等的四边形是平行四边形;③平行四边形的四个内角中有两对是相等的;④四个内角中有两对相等的四边形是平行四边形.(A)4 (B)3 (C)2 (D)124.对凸四边形ABCD,给出下列4个条件:①AB∥CD;②AD∥BC;③AB=CD;④∠BAD=∠DCB.现从以上4个条件中任选2个条件为一组,能推出四边形ABCD•为平行四边形的概率是()(A)13(B)12(C)23(D)5625.如图,以Rt△ABC的两直角边AB、BC为边,•在△ABC•外部作等边△ABE•和△BCF,EA、FC的延长线交于M点,则点B一定是△EMF的((A)垂心(B)重心(C)内心(D)外心26.Assume that in Fig. 7 ABCD is a square,and •point •E •is •on •theline BC,CE=AC.we connect A and E,AE intersects CD at point •F,•then •thedegree of ∠AFC is()(A)150°(B)125°(C)135°(D)112.5°(英汉词典:Fig.是figure(图、图形)的缩写;to cormect连接;to intersect…at相交于;degree度、度数)(第26题) (第27题) (第28题) (第30题)27.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于()(A)80°(B)70°(C)65°(D)60°28.如图,顺次连接凸四边形ABCD的中点,得到四边形EFGH.要使四边形EFGH•是正方形,应补充的条件是()(A)四边形ABCD是等腰梯形(B)四边形ABCD是平行四边形(C)四边形ABCD是菱形(D)AC=BD,且AC⊥BD29.将一把折扇逐渐打开,会发现打开部分的扇形面积随圆心角的变化而变化,•那么能正确描述这种变化的函数是()(A)正比例函数(B)反比例函数(C)一次函数y=kx+b(b≠0)(D)以上都不是30.如图是一间卧室地面瓷砖的图案,在这间卧室地下藏有一宝物,•则藏在白色瓷砖和灰色瓷砖下的可能性是()(A)藏在白色瓷砖下的可能性大(B)藏在灰色瓷砖下的可能性大(C)藏在两种瓷砖下的可能性一样大(D)藏在灰色瓷砖下与藏在白色瓷砖下的可能性之比是3:2二、填空题31.计算:20082+20072+20062-2008×2007-2007×2006-2006×2008=________.32.已知则x2007=2,则(x2006+x2005+x2004+…+x+1)(x-1)=__________.33.设a,b,c是实数,则能使(a+b+c)(1a+1b+1c)=1成立的条件是______或_______.(•写出两个满足条件即可)34.Ifm and n are positive integers satisfying m2+27mn+n2=729 and m+•n>mn,then the value of m+n is_________.(英汉词典:positive integer正整数;to satisfy满足;value值、数值)35.计算:(+2=________.36.已知A=20072007×20082008×20092009,B=(2007×2008×2009)2007200820093++,则A•与B•的大小关系是A_____B.(填“>”、“<”或“=”)37.设B =,则A_______B .(填“>”、“<”或“=”)38.39.If a and •b •are •constant .•and •the •set •of •solutions •of •theinequality ax+b>0 is x<13,then the set of solutions of the inequalityba<0 is________. (英汉词典:constant 常数;set 集合;solution 解、解答;inequality 不等式)40.一次智力测试有25道题,答对一题得4分,不答扣2分,答错扣4分,小明要想在这次智力测试中的得分不低于60分,他至少要答对________道题.41.设正数a ,b ,c ,x ,y 满足:a ≠c ,22222222221,x xy y x xy y a b c c b a++=++=1,则代数式222111a b c++的值为________. 42.若以x 为未知数的方程42ax x -+=3无解,则a=_______. 43.已知m 与n 使m m m n m n ++-的值等于-14,则n m的值是_________. 44.当x=2时,多项式75312a b c d x x x x ++++的值是3,那么当x=-2时,多项式的值是_______. 45.若实数a ,b 满足1a -1b -1a b +=0,则2222b a a b-的值等于________. (拟题:夏建平 江苏省江阴市要塞中学214432)46.如果以x ,y 为元的二元一次方程12ax y x ay +=⎧⎨+=⎩有解,那么a 不等于________.52.如图,△P1OA1,△P2A1A2是等腰直角三角形,点P1,P2在函数y=4x(x>0)的图象上,•斜边OA,AA都在x轴上,则点A的坐标是________.(第52题) (第53题) (第55题) 53.In the following traffic marks,the number of marks whose•figuresaxially-symmetric is___________.(英汉词典:traffic交通;•mark•标志;•number•个数;•figure•图形;•axially-symmetric(轴对称)54.仅将两个全等的非等腰的直角三角形的一条边重合,拼接成新的图形,•拼成的图形可能是下列各种图形中的一种或几种:①矩形;②菱形;③直角梯形;④平行四边形;⑤等腰三角形;⑥等腰梯形.则正确结论的序号是_______.(把所有正确的图形的序号都填上)55.如图所示,平行四边形ABCD中,过BD的中点O的直线交AB、CD于M、N,•交DA、BC 延长线于E、F,则图中有全等三角形________对.56.如图,在一个由4×4个小正方形组成的正方形网格中,•阴影部分面积与正方形ABCD 的面积比是_______;周长的比是________.(第56题) (第58题) (第59题) (第60题)57.在平面直角坐标系内点A 、B 的坐标分别为(-3,-2),(3,a ),点B 在第一象限,•且A 、B 两点间的距离为10,那么a 等于______.58.在建筑工地上,工人用如图所示的装置能将重物运往高处:•绳子绕过定滑轮,一端系着重物,在地面的工人手拿绳子的另一端,沿着垂直于滑轮轴的方向,向前走一段距离,重物便上升到定滑轮外,被高处的工人卸下,已知重物上升的距离是5米,则地面上的工人向前行走的距离为________米.59.图中的两个滑块A 、B 由一个连杆连接,可以在竖直和水平的滑道内滑动,•开始时,滑块A 距0点15厘米,滑块B 距0点20厘米,A 、B 的距离为25厘米,那么滑块B 滑到C 点时,滑块A 共滑动了_________厘米.60.如图,△ABC 的边AB 长为2,AB 边上的中线CD 长为1,AC 、BC,则△ABC 的面积为_________.61.a 、b 、c 是三角形的三边,它们满足ac 2+b 2c-b 3=abc ,若三角形的一个内角是120°,那么a :b :c=_______.62.设a ,b ,c 是△ABC 的三条边,满足c a b a b c b c a c a b <<+-+-+-,则三边中最长的边是________.63.如图,0是△ABC 外部一点,AO 交BC 于A 点,BO ,CO 的延长线分别交AC ,AB•的延长线于点B ,C ,则111AO BO CO AA BB CC ++的值为_________.(第63题) (第64题) (第65题) (第66题)64.如图,已知梯形ABCD中,AD∥BC,∠A=90°,E为CD的中点,BE=132,梯形ABCD•的面积为30,则AB+BC+DA的值为________.65.如图,边长为2的正方形ABCD中,若∠PAQ=45°,则△PCQ的周长是_____.66.如图,A,B两个平行四边形草坪有公共部分(阴影处),A,B•草坪面积之和为160m2,A的面积为120m2,B的面积为74m,则重叠部分的面积是_______m2.67.若凸4n+2边形AA…A(A为正整数)的每个内角都是30°的整数倍,且∠A=∠A=∠A=90°,则n的值是________.?68.服装店进了某款式的时装,开始按比进价提高30%的价格销售,但是无人问津,•于是决定打折降价销售.•如果要使利润率不低于10%,••那么打折的幅度不能低于_________.(保留两位有效数字)69.红光中学去年有120人参加“希望杯”全国数学邀请赛,•今年的参赛人数增加了50%,考场数比去年多了3个,而且平均每个考场安排的考生增加了2人,今年安排的考场有_________个.70.直角三角形三边长均为整数,其中一条直角边长为35,•则它的周长的最大值是________,最小值是_______.(拟题:刘朝晖广东省中山市第一中学初中部528400)71.生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,•若现在所需要的时间为b小时,则_______<b<______.(用关于a的表达式表示)72.1=12,2+3+4=32,3+4+5+6+7=52,……从中找出一般规律是________.73.一种商品的进价为90元,原售价定为m 元,售出一半之后,剩余的一半按8折出售,全部售出后共获利10%,则原售价定为m=________元.74.某学校八年级的数学竞赛小组进行了一次数学测验,如图所示是反映这次测验情况的频率分布直方图,那么该小组共有______人;70.5~90.5这一分数段的频率是______.(第74题) (第76题) (第77题) 75.用[a ,b]表示自然数a ,b 的最小公倍数,(a ,b )表示□,b 的最大公约数,若[•a ,b]=1085-(a ,b ),那么当a>b 时,a-b 的最小值是________. 76.如图,△ABC 中,∠C=90°,EC=13AC ,CD=13BC ,BE=8,AD=EC+CD=6,则S △BCD =______. (拟题:刘朝晖 广东省中山市第一中学初中部528400)77.如图,E 是平行四边形ABCD 的边CD 上任一点,AE 的延长线与BC 的延长线交于点F ,连结BE 、DF ,则S △BCE _______S △DEF .(填“>”、“<”或“=”) (拟题:李廷江 贵州省修文县第二中学550200)78.若4x 2+1+kx 是关于x 的完全平方式,则k 2-2k+2的值为________. (拟题:窦桐生 吉林省磐石市明城中学 132301) 79.解方程:20052007200820042004200620072003x x x x x x x x +++++=+++++得x=_________.(拟题:钟金子 福建省安溪恒兴中学362400) 三、解答题80.某班有语文、数学两个课外兴趣小组,•其中参加语文组的人数是全班人数的23,既参加语文组又参加数学组的人数是参加数学组人数的23,另外有4•位同学既不参加语文组,也不参加数学组,如果这4位同学参加语文组,•那么参加数学组与参加语文组的人数恰好相等,问全班有多少同学?既参加语文组又参加数学组的人数是多少?81.某工厂计划生产A、B两种产品,为取得最大生产利润,事先做了市场调查,根据厂内实际情况和市场需要得到有关数据如下表:现在工厂可以筹集到的资金用于原料及消耗的是300000元/月,用于工资支出的是110000元/月,问如何确定两种产品的月产量,可以使工厂得到的总利润达到最大?并求这个最大利润值.82.如图,从直线COD上一点O引两条射线OE,OF,使∠GOF=∠FOE=∠EOD=60°,•在射线OF,OG,OE上各取一点A,B,C,使∠CAB=60°,若OA=m,求△ABC面积的最大值.83.从2006年元旦起,公民的月工资、薪金个人所得税的起征点由原来的800•元调整为1600元,如果公民的月工资、薪金超过1600元,则税款按下表累加计算:根据上表,请:(1)写出所纳款税y(元)与该月收入x(元)之间的函数关系式;(2)作出所纳款税y(元)与该月收入x(元)之间的函数图象;(3)若李先生月薪金4000元,他应交纳的个人所得税是多少元?84.用红色刻度线将一根木棍分成135等份,•再用黑色刻度线将这根木棍分成40等份,沿两种刻度线将这一木棍锯成短木棍.问共有多少种不同长度的短木棍?85.100条线段的长度分别为1,2,3,…,99,100,从中取出一些线段,•要使取出的线段中的任意三条都能构成一个三角形,问最多能取出多少条线段?第十八届(2007年)“希望杯”全国数学邀请赛初二培训题(1~85题)答案.解析一、选择题1.①②③正确,④错误,如整式(x+2)除以整式(2x+1),得到21x +,它不是整式,故选(B ). 2.原分式即12||x -,要使该式的值为正整数,只须2-│x │的值为1,12,13,…,1n (n是正整数)即可,•所以x 的值有无数个,故选(D ) 3.将分式2a a b+中的a 扩大2倍,b 扩大4倍,得到424a a b +,由题意知424a a b +=2aa b +,所以a=0,或2a+2b=2a+4b ,•解得b=0,故选(D ). 4.由已知得x=2ky +,因为x=1时,y=4,所以1=42k +,解得k=6,则当y=1时,x=612+=2.故选(C ). 5.a 3+a 2c -a bc+b 2c+b 3=(a 3+b 3)+a 2c-a bc+b 2c=(a+6)(a 2-ab+b 2)+c (a 2-a b+b 2)=(a 2-ab+b 2)(•a+b+c )=0.因为a 2-a b+b 2=a 2-ab+b 2+24b -24b =(a -2b )2+34b 2≥0,因为题设a2+b2≠0,即a,b不同时为零,所以a2-ab+b2>0,从而只能是a+b+c=0,•故选(B).6.由已知1a+1b=1a b c++-1c=()(),()()a b a b a bc a b c ab c a b c-++-+=++++即,所以a+b=0或ab=-c(a+b+c).由ab=-c(a+b+c),得c2+c(a+b)+ab=0,即(c+a)(c+b)=0,所以c+a=0或c+b=0.因此,a+b=0或c+a=0或c+b=0,即三个式子中至少有1个成立,故选(B).另解验证法.当a+c=0且b+c=0时,得a=-c,b=-c,代入到原式左侧,得1a+1b+1c=1a.代入原式右侧得1a b c++=1a,所以a+b,b+c,c+a中有可能有2个式子同时为零,排除(A),(C),(D),故选(B).7.①②③正确.因式分解f,得f=2x2-3x-2=(2x+1)(x-2),f÷g=2x+1,即f÷g是整式,④正确,故选(A).8.令a=b=-1,则成立,所以排除(A)和(B).令a=-1,b=1,则D).当a<0,b<0时,a+b<0.当a<0,b>0时,因为≥0,所以a+b≤0.当a>0,b>0时,当a>0,b<0时,≠故选(C).9.①,②,③,④正确,⑤错误,故选(C).10.先求直线y=2x+a与y=2a-x的图象的交点.解方程组2,3253a x y x a y a xa y ⎧=⎪=+⎧⎪⎨⎨=-⎩⎪=⎪⎩得 因为,交点在长方形区域范围内,所以10325233a a ⎧≤≤⎪⎪⎨⎪≤≤⎪⎩解得65≤a ≤32,故选(C ). 11.设开始时甲、乙的速度分别为v 1、v 2,它们相距s ,则t=12sv v -,A 处到乙车出发点的距离为S=v 2t .若甲、乙各提速a%,则甲车追上乙车的时间为 t ′=12(1%)(1%)1%s ta v a v a =+-++ 此时乙车行驶的距离为S ′=(1+a%)v 2t′=v 2t =s . 故选(C ).12.以1000元购货,售出后获利10%,即获利100•元;•第二次以上次售出的价格的90%购进一批同样的货物,即花费1100元的90%,即990元购货,这次售出是按990•元的九折出售,亏损990元的10%,即亏损99元,两次交易合计盈利1元,故选(B ).13.设A 队胜x 场,平y 场,负z 场,则12319x y z x y ++=⎧⎨+=⎩由y=19-3x 代入①,得x+19-3x+z=12,7=2x-z ,所以z 是奇数. 当z=1,x=4,y=7时,收益为12×500+4×1000+7×500=13500(元); 当z=3,x=5,y=4时,收益为12×500+5×1000+4×500=13000(元); 当z=5,x=6,y=1时,收益为12×500+6×1000+1×500=12500(元).所以当A 队胜4场,平7场,负1场时,队员收益最高为13500元/人,故选(A ).14.两枚骰子确定的点P (x ,y )共有36种,能落在直线y=2x+6上的有2种,即x=1,y=4;x=2,y=2.所以P 能落在直线y=2x+6上的概率为213618=,故选(C ). 15.太阳光是平行光,如图所示,假设小鸟从A →B 和从B →C 的时间相同,•则AB=BC ,由平行线截线段成比例如A ′B ′=B ′C ′,所以小鸟在斜坡上的影子移动的速度不变.若=A ′B ′=AB ,则影子移动的速度将等于小鸟飞行的速度,•但这与太阳光照射角度有关,故选(C ).16.设这5个整数从小到大排列依次是a ,b ,c ,d ,e ,已知中位数是4,则c=4,•又这5个数的惟一众数是6,则d=e=6,a ≠b ,所以a<b<4.要使5个整数的和最大, 则应取a=•2,b=3.所以这5个整数可能的最大和是2+3+4+6+6=21.故选(B ). 17.由题意知 28-12=m ([n]+1-3),所以m=16[]2n -,故选(B ).18.设A 买了x 件,B 买了y 件,c 买了z 件,D 买了w 件,依题意有10,131********.x y z w x y z w +++=⎧⎨+++=⎩由②得13(x+y+z+w )+4y+9z+22w=200.将①代入上式,得4+9+22w ≤4y+9z+22w=70,所以22w ≤57,于是w ≤2,当w=1时,4y+9z=48.显然y 是3的倍数,z 是4的倍数,令y=3y ′,z=4z ′,则12y ′+36z ′=48, 所以y•′+3z ′=4,y ′=z ′=1,y=3,z=4,于是得到一组答案:x=2,y=3,z=4,w=1,当w=2时,4y+9z=26, 显然,z 是偶数.令z=2z ′,则4y+18z ′=26,即2y+9z ′=13,显然z ′是整数,所以z ′=1,y=2, 于是得到另一组答案:x=4,y=2,z=2,w=2,故选(C ).19.如图,由AE ∥BF ,角平分线性质及三角形外角的性质知道:∠1+∠2=∠1+•∠3=∠1+(a+β)=(∠1+β)+a=a+a=2a .故选(B ).20.不妨设a<b<c ,则由a+b+c=30,知a+b=30-c ,又由三角形边的性质知a+b>c ,•于是30-c>c ,得c<15.又c>3033a b c ++==10,所以10<c<15, 又因为c 为整数,所以c=11,12,13,14. 当c=11时,b=10,a=9.当c=12时,b=11,a=7;b=10,a=8.当c=13时,B=12,a=5,b=11,a=6;•B=10,a=7;b=9,a=8.当c=14时,b=13,a=3;b=12,a=4;b=11,a=5;b=10,a=6;b=9,a=7. 满足条件的三角形共有12个,故选(B ).21.已知点G 在△ABC 内部,所以△ABC 不是直角三角形.由于G 点是△ABC 的垂心,•所以AB ⊥BC ,又G 点在BC 的中线AD 上,所以AD ⊥BC ,即BC 边的中线与高重合,△ABC 是等腰三角形.故选(B ).22.从C 作CH ⊥AB ,H 为垂足,在Rt △ACH 中,∠A=60°,∠1=30°,AC=16,•所以AH=12AC=8.所以ABC 的面积S △ABC所以12·AB · 解得AB=55,故选(B ).23.①和③是正确的,②和④是错误的,故选(C).24.从4个条件中任选2个条件,共有6种选法,其中①②,①③,①④,②④这4种组合都可以推出四边形ABCD是平行四边形,而选②③,③④,四边形ABCD•不一定是平行四边形,所以概率P=46=23.故选(C).25.连结EC、AF,如图?所示,由于△ABE,△BCF是等边三角形,并且∠ABC=90°,易证△EFB≌△ECB≌△AFB,于是CE=AF=EF,所以△CEF和△FAE是等腰三角形,•且EB平分∠FEC,FB平分∠AFE,所以FB⊥AE,EB⊥CF,所以B是△EMF的垂心,故选(A).26.译文:如图7所示,四边形ABCD是正方形,点E在BC上,且CE=AC,连结A,E交CD 于点F,则∠AFC的度数是()(A)150°(B)125°(C)135°(D)112.5°因为ABCD为正方形,AC是对角线,则∠1=45°,∠2=135°,•因为CE=•CA,•所以△ACE 是等腰三角形,∠E=22.5°,所以∠3=∠FCE+∠E=112.5°,故选(D).27.连结FB,如图,因为EF垂直平分AB,ABCD是菱形,•所以AF=•FB=•FD.•在菱形ABCD中,∠1=∠2=∠3=12∠BAD=40°,又因为AB∥CD,所以∠CDA=180°-80°=100°,所以∠CDF=100°-40°=60°,故选(D).28.连结AC,BD,如图所示,由E,F,G,H是所在边的中点,得EH∥FG•∥BD,•且EH=FG=12 BD,及EF∥HG∥AC,且EF=HG=12AC,•可知四边形EFGH•是平行四边形.•要使四边形EFGH是正方形,则必须:①EF=EH,即AC=BD;②EF⊥EH,即AC⊥BD.故选(D).29.扇形面积S随圆心角的增大而增大,且扇形面积是圆的一部分,设扇形的圆心角为x°,则扇形面积S=22360260x R R x ππ=,其中,变量x 前面的2360R π是常数,故选(A ). 30.因为白色瓷砖和灰色瓷砖面积相同,所以宝物藏在两种瓷砖下的可能性一样大,故选(D ). 二、填空题31.3 32.1 33.答案不惟一 34.9 35.14 36.> 37.> 38.0 39.x<-340.20 41.1200742.-3 43.±3 44.-2 45.±1 47.1000048.5 49..±.252.(0) 53.354.①④⑤ 55.5 56.5;8 4 57.6 58..35 60611;1 62.b 63.2 64.17 65.4 66.34 67.1 68.8.5折 69.18或15 70.1260;84 71.0.85a ;0.92a72.n+(n+1)+…+(3n-2)=(2n-1)2(n 是正整数) 73.110 74.25;0.64 75.216.5 76.6.5 77. 78.10或26 79.-2005解析:31.令a=2008,b=2007,c=2006,则原式=a 2+b 2+c 2-ab-bc-ca=12[(a-b )2+(b-c )2+(c-a )2]=3 32.根据:当n 是正整数时,(x n +x n-1+…+x 2+x+1)(x-1)=x n+1-1,知原式=x 2007-1=1. 33.a+b ,b+c ,c+a 中有一个或两个是0即可,如:a=-b ;或a=c=1,b=-1.34.译文:如果m ,n 是正整数,满足m 3+27mn+n 3=729,m+n>mn ,则m+n 的值是_____.因为m+n>mn ,所以m+n-mn-1>-1,即(m-1)(n-1)<1,而m ,n 是正整数, 所以(m-1)(n-1)=0,m=1或n=1,若m=n=1,不符合题意,舍去.所以m ,n 中有且只有一个是1,不妨设n=1,则m 3+27m+1=729,得m 2+27m-728=0, 即(m-512)+(27m-216)=0,(m-8)(m+8m+64)+•27(m-8)=0,(m-8)(m 2+8m+91)=0,所以m=8或m 2+8m+91=0,而m 2+8m+91=0无实根,故只能m=8,于是m+n=9. 35则原式+22-2+2()+2=1436.可以构造商式比较大小,由于A>0,B>0,所以20072008200920092007200820092009(200720082009)2007A B ⨯⨯==⨯⨯>1,所以A>B .37.20082008011A A B =+=+==-=<<<即又A>0,B>0, 所以A>B 38.原式=0 39.译文:如果a ,b 为常数,且不等式ax+b>0的解集是x<13,则不等式bx-a<0•的解集为不等式ax+b>0,即ax>-b 题设它的解是:x<13,所以a<0,且-b a =13即a=-3b ,所以b>0 则不等式bx-a<0的解集为x<ab=-3,即x<-3 40.考虑极端情况,假设小明答题只有答对和答错两种情况,且他答对x 道题,•由题设条件可得4x-4(25-x )≥60, 解得x ≥20,所以他至少要答对20道题. 41.由题设的22222222221,1x xy y x xy y a b c c b a++=++=,两式相减,得222222x y y x a c --+=0. 所以(x 2-y 2)(2211a c-)=0 因为a ≠c ,且a ,c 为正数 所以2211a c -≠0, 所以x 2-y 2=0.由x ,y 均为正数,且将222111a b c ++=12007. 42.若方程42axx -+=3有解,则应有x ≠-2, 于是有4-ax=3x+6, x=-23a+.显然,必须a ≠-3.因此,当a=-3时,方程无解. 43.题设,m m m n m n ++-=-14, 即2222m m n-=-14, 也即222m n m -=-8,即1-(n m )2=-8, (n m )2=9,nm=±3.44.当x=2时,753753113222222a b c d a b c d x x x x ++++=++++=所以7532222a b c d +++=52,753753753121(2)(2)(2)(2)21()2222a b c d x x x x a b c d a b c d ++++=++++----=++++当x=2时, =-2. 45.在1a -1b =1a b+的两边同乘以(a+b ),得a b a ba b ++-=1, 即(1+b a )-(a b +1)=1,也即b a -ab=1.又b a +a b =4a b=2222b a a b -=(b a -a b )(ba +ab )=46.由ax+y=1得y=1-ax ,代入x+ay=2,得x+a (1-ax )=2,(1-a 2)x=2-a ,因为方程组有解,所以此方程有解,所以1-a 2≠0,这时,方程组有解x=22212,11a a y a a--=--,又,•若a 2=1时,如果方程组有解,则在ax+y=1两边同乘以a ,得到a 2x+ay=a ,即x+ay=a ,所以a=2,与a 2=1矛盾,综上,知:仅当a ≠±1时,原方程组有解 47.由(n-2)a n-2-(n-1)a n-1+1=0,(2≤n ≤100)得a 1=1,a 3-2a 2=-1,2a 4-3a 3=-1,3a 5-4a 4=-1,……98100-9999=-1.以上各式相加,得98a 100-2(a 2+a 3+…+a 99)=98,以a 100=199代入,得a 2+a 3+…+a 99=9800,•于是a 1+a 2+…+a 100=1+9800+199=10000. 48.由题可知xy=1,x=1y,代入到题设的等式,得 19x 2+145+219x =2007, 19(x 2+21x )=1862, x 2+21x =98, x 2+21x +2=100,(x+1x )2=100,所以x+1x=±10,2()10,a ba b -+=±-也即=±10,±5(a-b )=a+b , 取正数5a-5b=a+b ,则2a=3b ,最小,a=3,b=2,a=b=5; 取负数-5a+5b=a+b ,则3a=2b ,最小,a=2,b=3,a+b=5. 49.由x 3+y 3+z 3=3xyz 得 x 3+y 3+z 3-3xyz=0, (x+y )3+z 3-3x 2y-3xy 2=0.[(x+y )+z]3-3(x+y )2-3(x+y )z 2-3x 2y-3x y 2-3xyz=0,(x+y+z )3-3(x+y )z (x+y+z )-3xy (x+y+z )=0, (x+y+z )3-(x+y+z )(3x+3xz+3yz )=0, (x+y+z )(x 2+y 2+z 2-xy-xz-yz )=0, (x+y+z )(2x+2y+2z-2xy-2xz-2yz )=0. (x+y+z )[(x-y )2+(y-z )2+(z-x )2]=0. 因为x ,y ,z 互不相等, 所以x+y+z=0 ①又因为②①+②得①-②得所以(2x+z )2(2y+z )2=(2+(250.由条件得ab=2,则(a+b )2=a 2+2ab+b 2=8,所以a+b=±51=2x,则=2x,则若比例式为1x ,则. 52.依题意,设P 1(m ,4m ),P 2(n ,4n ),则m=4m,m 2=4.所以m=2(m>0), 所以OA 1=4, 所以4+4n=n ,n 2-4n=4, (n-2)2=8.所以,所以,所以OA 2=n+4n所以点A 的坐标是(0).53.译文:在下列交通标志中,是轴对称图形的标志有_______个. 只有第三个不是轴对称图形,所以轴对称图形有3个. 54.如图,可得矩形、平行四边形和等腰三角形,填①④⑤.55.因为ABCD 是平行四边形,O 是BD 的中点,则△AEM ≌△CFN ,△DEO ≌△BFO ,△BMO ≌△DNO ,△ABD ≌△CDB ,△EDN ≌△FBM ,• 共有5对全等三角形.56.设小正方形的边长为1,则正方形ABCD 的面积为16,周长为16, •阴影部分的面积是16-4×12×3×1=10,周长是 所以,面积比=5:8,4.57.由条件得(a+2)2+62=102,所以(a+2)2=46,a+2=8,a=6. 58.如图所示,已知AC=2AB=10米,∠ABC=90°,•所以地面上的工人行走的距离是.59(厘米).当滑块B 滑到0点时,滑块A 距0点25厘米,故滑块A 向上滑动了10厘米.当滑块B 由0点滑到C 点时,滑块A 由最高点滑到0点,即向下滑动了25厘米, 所以滑块A 共滑动了35厘米. 60.设AC=b ,BC=a ,AB=c , 由AB=2,CD=1, 知∠ACB=90°, 于是a 2+b 2=c 2 所以(a+b )2-2ab =c 2而,c=2所以2-2ab=22,得因此,S △ABC =12 61.由题设条件可知a c 2+bc 2-b 3-abc=b 2(c-b )+ac (c-b )=(c-b )(b 2+ac )=0 所以c=b .因此三角形为等腰三角形,又一个内角是120°,所以其底角是30°,则a :b :2:1:1.62.因为a ,b ,c 是三角形的三条边,所以a ,b ,c 及a+b-c ,b+c-a ,c+a-b 均为正数, 所以111a b c b c a c a bc a b a b b c a cc a ba b b c a cc a ba b c a b c a b cc a b+++-+->>+++->->-+++>>++++++>>c<a<b .即,三边中最长的边是b . 63.可转化为面积求解.设△AA 2B ,△BOA 2,△BC 2O ,△B 2CO ,△OA 2C ,△AA 2C 的面积分别为S 1,S 2,S 3,S 4,S 5,S 6,△ABC 的面积为S ,如图33所示,并利用以下三个结论:(1)等高三角形面积的比等于对应底边的比(如图34).11212,S S AD ADS DB S S AB==+ (2)合比定理,若,a c a c a c b d b d b d+===+则 (3)分比定理. 若,a c a c a cb d b d b d-===-则 ?则(见扫描卷) 将上面三式相加,得1112AO BO CO SAA BB CC S++==2 64.延长BE 交AD 的延长线于F ,如图所示,因为AD ∥BC ,E•为CD•的中点,•所以△DFE ≌△CBE,于是BC=DF,BE=EF.? S=S因为BE=132,所以BF=13,在Rt△ABF中,AB2+AF2=BF2=132?12AB·AF=S=30于是(AB+AF)2=AB2+AF2+2AB·AF=132+120=289=172 所以AB+BC+DA=AB+AF=1765.如图36,延长CB到M,使BM=DQ,连AM,因为AD=AB,∠D=∠ABM=90°,所以△ADQ≌△ABM,AM=AQ,∠MAB=∠DAQ,因为∠BAP+∠DAQ=45°,所以∠MAB+∠BAP=45°,所以∠MAP=∠PAQ又因为AP=AP所以△MAP≌△QAP,MP=PQ,所以△POQ周长=PC+CQ+PQ=PC+BP+CQ+DQ=4.66.设重叠部分的面积是xm2,则120+(74-x)=160,所以x=34.? 67.由n是正整数,知道凸4n+2边形的边数至少是6.因为∠A,∠A,∠A都是90°,•所以此多边形的外角和是270°.因此,除了∠A ,∠A ,∠A 外,若存在某一角∠A ≤90°(i=4, 5,…,4n+2), 则此多边形外角和大于360°,与“凸多边形外角和等于360•°”矛盾,又题设该多边形的内角都是30°的整数倍,所以除了∠A ,∠A 和∠A 外,•其余角只能是120°或150°.设∠A ,∠A ,…,∠A 中有k 个120°,t 个150°(k ,t 为非负整数),那么 k+t=(4n+2)-3=4n-1,t=4n-k-1,因为[(4n+2)-2]·180°=3×90°+k ·120°+(4n-k-1)·150°.整理得4n=4-k ,由于n 是正整数,k 非负,所以只能是k=0,n=1.68.设该时装的进价是a ,则原售价是(1+30%)a ,设后来打x 折销售,根据题意有 (130%)10x a a a+⨯-×100%≥10%解得x ≥11013≈8.5 所以打折的幅度不能低于8.5折.69.设今年安排考场x 个,则120120(150%)23x x++=- 解得x=18或x=15.经检验,x=18和x=15都是原方程的根,所以,今年安排的考场有18个或15个.70.设另一直角边和斜边长分别为y ,z ,则352+y 2=z2 即(z+y )(z-y )=52·72,设周长为1,则1=35+z+y,又z+y>35,所以z+y最大为52·72,最小为72.?所以1.5.7+35=1260,1=49+35=84.71.由题意,得(1-15%)a<b<(1-8%)a,即0.85a<b<0.92a.72.由于1=12,2+3+4=32,3+4+5+6+7=52,……所以第n个式子从n开始,且有2n-1个连续自然数相加,即第n个式子为 n+(n+1)+…+(n+2n-2)=(32)(21)2n n n+--=(2n-1)2(n是正整数).即一般规律为n+(n+1)+…+(3n-2)=(2n-1)2(n是正整数).73.设商品共有a件,售出一半后,收入为12am元,其余的一半按m元的8折出售,即售价为0.8m元,收入为0.4am元,总收入为0.9am元,依题意有0.9am=1.1a×90,所以m=110.74.总人数是 4+6+10+5=25(人).在70.5~90.5这一分数段的人数是16人,占25人的64%,所以频率为0.64.75.设a=(a,b)a,b=(a,b)b,(a,b)=1,则[a,b]=(a,b)ab,即(a,b)ab=1085-(a,b).1085=5×7×31是(a,b)的倍数,所以(a,b)的可能值是1,5,7,31,35,•155,•217,1085.(1)当(a,b)=1时,?? a=a,b=b,ab=1085=271×4,a-b=267.(2)当(a,b)=5时,5ab=1085-5,ab=216=2×3,所以a=3,b=2,a-b=5(3-2)=95.(3)当(a,b)=7时,ab=154=11×7×2,当a=14,b=11时,a-b最小,a-b=21.由于a-b=(a,b)(a-b)≥(a,b),所以当(a,b)≥31时,a-b的值一定大于21,所以a-b的最小值为21.76.设EC=x,CD=y,则有AC=3x,BC=3y.在Rt△ACD中,有(3x)2+y2=62,①在Rt△BCE中,有(3y)2+x2=82.②①+②得10(x2+y2)=100,x 2+y 2=10,又x+y=6,所以xy=222()()361022x y x y +-+-==13 所以S △BCD =12xy=6.5 ? 77.连AC ,如图37所示,在梯形ABCE 中,S=S ,? 在梯形ACFD 中,S=S? 而S-S=S-S? 即S=S? 所以S=S78.因为4x 2+1+kx=(2x )2+kx+1是关于x 的完全平方式,所以 ±2·2x ·1=kx ,解得 k=±4.当k=4时,k-2k+2=10;当k=-4时,k-2k+2=26.79.原方程可化为1111200420062007200311112006200720032004(2007)(2006)(2004)(2003)(2006)(2007)(2003)(2004)11(2006)(2007)(2003)(2004)x x x x x x x x x x x x x x x x x x x x +=+++++-=-+++++-++-+=++++=++++ =(x+2006)(x+2007)=(x+2003)(x+2004)x 2+4013x+4026042=x 2+4007x+40140126x=-12030x=-2005经检验,x=-2005是原方程的根.三、解答题80.设全班共有x 人,有y 人既参加语文组又参加数学组,则有23x 人参加语文组,•有32y 人参加数学组,依题意得 23()448322324432x y y xx y x y⎧+-+=⎪=⎧⎪⎨⎨=⎩⎪+=⎪⎩解得即全班有48人,既参加语文组又参加数学组的人数是24人.81.设A 和B 两种产品的月产量分别为x ,y 件,则最大利润z=600x+800y ,且x ,y 满足条件0300020003000005001000110000x y x y x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩由z=600x+800y=a (3000x+2000y )+b (500x+1000y )解得 a=110,b=35所以 z=110(3000x+2000y )+35(500x+1000y )≤96000此时3000200030000040500100011000090x y x x y y +==⎧⎧⎨⎨+==⎩⎩解得即 A 产品每月生产40件,B产品每月生产90件.每月可获得的最大利润是96000元.82.在射线OE上取一点M,使AO=AM,如图38所示,则△OAM为等边三角形,过C作CN∥AM,则∠NCO=∠NCB+∠2=60°,又因为∠1+∠NCB=60°,所以∠1=∠2,在△ACN和△BCO中,因为∠1=∠2,∠ANC=∠BOC=120°,NC=CO,所以△ACN≌△BCO.所以BC=AC,所以△ABC是等边三角形.当B、C点各在OG、OE射线上运动时,欲保证△ABC是等边三角形,只有AC或AB•与AO 重合时面积最大(△AOC中,∠ACO>∠AOC,AO>AC).所以△ABC面积的最大值是△AOM m2.83.(1)当0≤x<1600时,y=0;当1600≤x<2100时,y=(x-1600)×5%;当2100≤x<3600时,y=(x-2100)×10%+500×5%;当3600≤x<6600时,y=(x-3600)×15%+1500×10%+500×5%;……(2)如图39所示.(3)当x=4000时,y=(4000-3600)×15%+1500×10%+500×5%=235(元).84.(135,40)=5(最大公约数).135=27×5,40=8×5.将木棍分成5个相等的截段,则每一截段上的红刻度线将它(截段)分成27等份,•黑刻度线将它分成8等份,且5个截段中的红、黑刻度线的分布完全相同,因此只需要考虑一个截段即可,不妨假定一个截段的长度为27×8,则相邻两红线的长度为8,•相邻两黑线的长度为27,注意到27=3×8+3,2×27=6×8+63×27=10×8+1,4×27=13×8+4,5×27=16×8+7,6×27=20×8+2,7×27=23×8+5,8×27=27×8+0.这8个等式表明,对于任意正整数k,0≤k≤7,我们可以找到两个正整数p,q,使得1≤p≤8,1≤q≤27,p×27=q×8=k.上式说明,在一个截段中锯下来的短木棍的长度有1,2,3,4,5,6,7,8共8种,而不可能有比8更长的短木棍(两红段间距为8),其它四个截段也一样.85.设取出一组线段,其中的任意三条都能构成一个三角形,•记这组线段中最短的两条长为x,y,最长的一条长为z,则1≤x<y<z≤100,由于x,y,z构成三角形,故z+y>z.。

新希望杯八年级数学试题及答案

新希望杯八年级数学试题及答案

八年级试题(A 卷)(时间:120分钟 满分:120分)一、选择题(每小题4分,共32分) 1.若()422015+=mA ,则A 的算术平方根是( )A.(m 2+2015)4B.(m 2+2015)2C.m 2+2015D.m+20152.已知等腰三角形的两边长分别为a 、b ,且0243163=-++-+b a b a ,则此三角形的周长是( )A.13B.17C.13或17D.14或163.将一副三角板如下图叠放在一起,则∠1的度数是( )A.105°B.110°C.115°D.120°4.如图,在3×4的正方形网格中,已有3个方格涂色,若再选择一个方格涂色,且使得4个涂色的方格组成轴对称图形,可选择的方格共有( )A.1个B.2个C.3个D.4个5.已知201531+n 是整数,若n 是正整数,则n 的最小值是( )A.31B.59C.65D.1246.某超市购进50千克的散装糖果,决定包装后出售,方式一:1.5千克/盒,包装成本1.2元/个;方式二:1千克/盒,包装盒成本1元/个.根据需要1千克装的糖果数量不能少于1.5千克装的一半,且糖果全部包装完,那么包装盒的总成本最低是( )A.43.4元B.43.1元C.42.8元D.42.5元7.如图,在四边形ABCD 中,对角线AC 、BD 交于点O ,且BO=DO ,点P 在△BCD 内部,下列说法:①S △AOD=S △AOB ;②BC +CD >PB +PD ;③AC +BD >AB +CD ;④AC +BD >AD >CD ,其中正确的有( ) A.1个 B.2个 C.3个 D.4个8.如图,等边三角形ABC 边长为6,点P 从B 点开始在BC 上向点C 运动,运动到点C 停止,以AP 为边在直线BC 的同侧作等边三角形APQ ,得到点Q ,则点Q 的运动路径长( ) A.6 B.33 C.24 D.23π二、填空题:(每小题5分,共40分)9.化简:.________________)2015(201522=+--x x )(10.已知正n 边形的一个内角是一个外角的5倍,则n=____________.11.如图,△ABC 是格点三角形,点D 是异于点A 的一个格点,则使△DBC 和△ABC 全等的D 点共有__________个.12.方程3100820151210071=+-+-xx x 的解是___________________.13.如图,等边三角形的边长为1,现将其各边n(n >2)等分,并以相邻分点为顶点向外作小等边三角形,再将相邻分点之间的线段去掉,得到一个锯齿图形,当n=k 时,锯齿图形的周长为___________.(用含k 的代数式表示).14.将1、2、3、4、5这五个数排成一列,要求第一个数和最后一个数都是偶数,且其中任意三个相邻的数之和都能被这三个数中的第一个数整除,这样的排列方法共有_____________种.15.对于实数m 、n ,定义运算m ※n=m(1-n),下面是关于这种运算的几个结论:①2※3=-4;②若m ※n=0,则n=0;③m ※n=(1-n )※(1-m);④若m+n=1,则(m ※n )-(n ※n)=0.其中正确的是___________. 16.如图,已知点A(1,1),点B (7,3),点P 为x 轴上一个动点,当PA+PB 的值最小时,点P 的坐标为_______________.三、解答题(10+12+12+14=48分)17..)32(32,2,29的值)求(若+--==-y x xy y x18.如图,△ABC 为等边三角形,点D 是BC 延长线上一点,且CD <BC ,BD 的垂直平分线交AC 于E ,过点E 作EF ∥BC 交AB 于F.(1)求证:△AEF 为等边三角形; (2)若BC=3CD ,求ECAE的值.19.某数学俱乐部组织60名会员租车进行自驾游,共有两种车型可供选择,A 型车共有8个座位,B 型车有4个座位,要求租用的车不能空座,也不能超载. (1)共有多少种不同的租车方案?(2)若A 型车的租金是400元/天,B 型车的租金是260元/天,请设计最划算的租车方案,并说明理由.20.已知:直角三角形斜边上的中线等于斜边的一半,如图1,在△ABC 中,∠CAB=90°,D 是BC 的中点,连接AD ,则AD=CD=BD.(1)如图2,过点D作DE⊥AB于E,以E为边作等边三角形AEF,以DF为边作等边三角形DFG,连接AG,求证:AG平分∠FAB.(2)如图3,过点C作CH⊥AF于H,连接DH,求证:DH=FG.1 2 3 4 5 6 7 8C B AD B C D A9 10 11 12 13 14 15 1610 1/2-8060X12 3 1008KK 66-6 ①③④⎪⎭⎫ ⎝⎛0,25。

希望杯试题及答案初二

希望杯试题及答案初二

希望杯试题及答案初二一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2的平方等于3B. 3的平方等于9C. 4的平方等于16D. 5的平方等于25答案:B2. 一个长方形的长是10厘米,宽是5厘米,那么它的周长是多少厘米?A. 30B. 40C. 50D. 60答案:B3. 一个数加上它的相反数等于多少?A. 0B. 1C. 2D. -1答案:A4. 下列哪个选项是二次方程?A. x + 2 = 0B. x^2 + 2x + 1 = 0C. 2x - 3 = 0D. x^3 - 4x^2 + 4x = 0答案:B5. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 3D. 以上都是答案:D6. 下列哪个选项是正确的不等式?A. 2x > 3B. 2x < 3C. 2x = 3D. 2x ≤ 3答案:A7. 一个圆的半径是3厘米,那么它的面积是多少平方厘米?A. 9πB. 18πC. 27πD. 36π答案:C8. 下列哪个选项是正确的分数?A. 3/2B. 2/3C. 1/2D. 4/5答案:D9. 一个等腰三角形的两个底角都是45度,那么它的顶角是多少度?A. 90B. 45C. 135D. 180答案:A10. 下列哪个选项是正确的函数关系?A. y = 2x + 3B. y = x^2 + 2x + 1C. y = x/2D. y = x^3 - 2x^2 + 3x答案:A二、填空题(每题4分,共20分)1. 一个数的平方根是4,那么这个数是______。

答案:162. 一个数的立方根是2,那么这个数是______。

答案:83. 一个数的倒数是1/2,那么这个数是______。

答案:24. 一个数的绝对值是6,那么这个数可以是______。

答案:6或-65. 一个等腰三角形的顶角是120度,那么它的底角是______。

答案:30度三、解答题(每题10分,共50分)1. 解方程:3x - 5 = 10答案:x = 52. 计算:(2x^2 - 3x + 1) - (x^2 + 2x - 3)答案:x^2 - 5x + 43. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

第希望杯初二第2试试题及答案

第希望杯初二第2试试题及答案

第二十一届“希望杯”全国数学邀请赛初二第 2 试一、选择题(每题 4 分,共 40 分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后边圆括号内.1.计算21259,得数是()A.9 位数B.10 位数C. 11 位数D.12 位数2.若xy 1 ,则代数式9xy18的值()239x y18A.等于7B.等于5C.等于5或不存在D.等于7或不存在57753( x a) 2 ≥ 2(1 2x a)3. The integer solutions of the inequalities about x :x b b x are 1,2,332then the number of integer pairs(a,b)is()A. 32B.35C. 40D.48(英汉字典: integer整数)4.已知三角形三个内角的度数之比为x : y : z ,且 x y z ,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形 D .等腰三角形5.如图 1 ,三个凸六边形的六个内角都是120 ,六条边的长分别为 a ,b ,c ,d ,e, f ,则以下等式中建立的是()bacf de图1A.a b c d e f B.a c e b d fB . a b d eC . a c b d6.在三边互不相等的三角形中,最长边的长为 a ,最长的中线的长为 m ,最长的高线的长为 h ,则()A . a m hB . a h mC . m a hD . h m a7.某次足球竞赛的计分规则是:胜一场得 3 分,平一场得 1 分,负一场得 0 分,某球队参赛 15场,积 33 分,若不考虑竞赛次序,则该队胜、平、负的状况可能有()A .15 种B .11 种C .5 种D .3 种8.若 xy0 ,x y0 ,11与 x y 成反比,则 x y2与 x 2 y 2 ()x yA .成正比B .成反比C .既不可正比,也不可反比D .关系不确立9.如图 2,已知函数 y2 k ,点 A 在正 y 轴上,过点 A 作 BC ∥ x 轴,交两个函( x 0) ,y(x 0)xx数的图象于点 B 和 C ,若 AB : AC 1:3 ,则 k 的值是()yCABO x图2A . 6B .3C . 3D . 610 .10 个人围成一圈做游戏,游戏的规则是:每一个人内心都想一个数,并把自己想的数告诉与他相邻的两个人, 而后每一个人将与他相邻的两个人告诉他的数的均匀数报出来,若报出来的数如图 3所示,则报出来的数是3 的人内心想的数是( )A .2B . 2C .4D . 4110 29384756图 3二、填空题(每题4 分,共 40 分)11 .若 x 2 2 7 x 2 0 , 则 x 4 24x 2.12 .如图 4 ,已知点 A( a ,b) , O 是原点, OAOA 1 ,OA OA 1 ,则点 A 1 的坐标是.yA ( a ,b )A 1O x图 413 .已知 ab0 ,而且 a b 0 ,则ab1 1 b 22____________.(填“ ”、“ ”、“≥ ”或“ ≤ ”)aab14 .若 a 2b 2a 2 b2 0 ,则代数式 a a b b a b的值是.15 .将代数式 x 3 2a 1 x 2 a 2 2a 1 x a 2 1 分解因式,得16 . A 、B 、C 三辆车在同一条直路上同向行驶,某一时辰, A 在前, 10 分钟后, C 追上 B ;又过了 5 分钟, C 追上 A .则再过.C 在后, B 在 A 、C 正中间,分钟, B 追上 A .17 .边长是整数,周长等于 20 的等腰三角形有 种,此中面积最大的三角形底边的长是.18 .如图 5 ,在 △ ABC 中, AC BD ,图中的数听说明 ABC .A30°B40° CD 图519 .如图 6,直线 y31 与 x 轴、 y 轴分别交于 A 、B ,以线段 AB 为直角边在第一象限内作x3等腰直角 △ ABC , BAC90 .在第二象限内有一点P a , 1,且 △ABP 的面积与 △ ABC 的面积2相等,则 △ ABC 的面积是; a ___________________yCBPO Ax 图 620 .Given the area of△ ABC is S 1 ,and the length of its three sides are311,9 3,101313respectively . And the perimeter of △ABCis 18 ,its area is S 2 .Then the relationship between S 1 and S 2 isS 1S 2 .( fill in the blank with“ ”,“= ”or “ ”)(英汉字典: area 面积; length长度; perimeter 周长)三、解答题每题都要写出计算过程.21 .(此题满分 10 分)解方程:2 x34 4 x 3 .42 x 334 x【分析】 令2x 3a ,4xb ,43则a1 b 1 ,ab 整理得ab 10 ,aab所以 a b 或 ab1,即3x 34 x , ①4 3或2 x3 4 x 1 ,②43由①得x7 ,10由②得 x0 或 x52经查验,知7 ,0,5都是原方程的解.10222.(此题满分15分)如图7,等腰直角△ABC 的斜边 AB 上有两点 M、N ,且知足MN 2BN 2AM 2,将△ABC绕着 C 点顺时针旋转90 后,点M、N的对应点分别为T、S .⑴请画出旋转后的图形,并证明△MCN△MCS⑵求MCN 的度数.BBNN MC AM SC A r图 7【分析】⑴将△ ABC 绕着C点顺时针旋转90,如图.依据旋转前后的对应关系,可知BN AS ,CN CS , NBC SAC45所以MAS MAC SAC90.由色股定理,得MS 2AM 2AS2AM 2BN 2MN2,所以M N.M S又因为CN CS ,CM 是公共边,所以△MCN △MCS .⑵因为 CN 顺时针旋转 90后获得 CS ,所以NCS90,上边已证得△MCN △MCS ,故MCN MCS 145.NCS223 .(此题满分 15 分)已知长方形的边长都是整数,将边长为 2 的正方形纸片放入长方形,要求正方形的边与长方形的边平行或重合,且随意两个正方形重叠部分的面积为0,放入的正方形越多越好.⑴假如长方形的长是4,宽是 3 ,那么最多能够放入多少个边长为 2 的正方形?长方形被覆盖的面积占整个长方形面积的百分比是多少?⑵假如长方形的长是 n(n ≥ 4) ,宽是 n 2 ,那么最多能够放入多少个边长为2 的正方形?长方形被覆盖的面积占整个长方形面积的百分比是多少?⑶关于随意知足条件的长方形,使长方形被覆盖的面积小于整个长方形面积的55% 求长方形边长的全部可能值.(已知0.55 0.74 )【分析】 ⑴ 最多能够放入 2 个正方形,长方形被覆盖的面积占整个长方形面积的百分比是2 22 2 .4 366.7%3⑵当 n 是偶数时, n 2 也是偶数,最多能够放入1 个正方形,长方形被覆盖的面n( n 2)4 积占整个长方形面积的百分比是 100% .当 n 是奇数时, n2 也是奇数,最多能够放入1 3) 个正方形,长方形被覆盖的(n 1)(n4面积占整个长方形面积的百分比是 n 1 n 3n n2100% .⑶设长方形的宽与长分别是x ,y .若 x ,y 都是偶数,则长方形被覆盖的面积占整个长方形面积的100% ,不切合题意.若 x ,y 中一个是偶数 2a ,一个是奇数 2b 1 ( a ,b 是正整数),则4ab 4ab2b0.55 .xy2a (2b 1) 2b 1解得 b 0.61.没有知足此结果的正整数b ,这类状况也不切合题意.所以, x ,y 都是奇数.x 2a 1 ,令 y 2b 1 , a ≤ b ,a ,b 是正整数,则有4ab0.55 .2a 1 2ba4ab4a4a2因为2a2a 1 2b a11,12a12a 12a22ba22a所以0. 55.2a 12a得0. 7 ,4a 1.,42a 1因为 a 是正整数,所以 a 1代入①式,得4b0. 55, 3 ( 2b1)解得 b 2.4 ,因为 b 是正整数,所以 b 1 或 2故有x 3 ,y3或 5.即长方形长为 5,宽为 3,或长与宽都是 3.第二十一届“希望杯”全国数学邀请赛参照答案及评分标准初二第 2 试一、选择题(每题4 分.)题号1 21 3 4 5 6 7 8 9 10答案BDBCCADADB二、填空题(每题 4 分,第 17 、19 题,每空 2 分.)题号111213141516 17 1819 20答案 -4b ,a≥1x 1 x a 1 x a 115 4;6402;3421. 21259 23 109 8 109 ,∴得数是 10 位数.2.∵xy 1 ,∴ y 3 x 32 329x 33 189 x y 18 x21x42 7 x22将其代入代数式,得315x 30 5 x 29 x y 189x3 18x2当 x2 时,原式7;当 x 2 时,原式的值不存在.53x 3a 2 ≥ 4 x 2 2ax ≥ 1a113.原不等式7 b2 x 2b 3b 3x1 7a ≤ xx 5b5于是 01a ≤ 1 , 31b≤ 4所以 a 有 7个不一样的取值, b 有 5 个不一样的取值,75于是整数对 a , b 共有7535个.4.∵x y z ,∴x y z 2 z ,即1802z,∴z90,三角形为钝角三角形.5.如图,补三个等边三角形,则 a b c c d e a f e ,于是a b d e.a b ca cdfee6.利用直角三角形中斜边大于直角边易得结论a m h .7.设该球队胜、平、负的场数分别为x 、y、 15 x y ,则 3x y33 .x ≥ 0y ≥ 0 x ,于是 0 ≤ y ≤ 6 ,又y能整除 3 ,于是 y 0 , 3 , 6 .y ≤ 153x y 33对应的 x 11 , 10 , 9 ,共3种状况.8.∵11与 x y 成反比,∴x y11m ,此中 m 为非零常数.x y x y于是yx m 2 ,所以y为定值.x y x2y2而 x y22y y1, x2y2x2 1 ,联合y为定值xxx x x所以 x y2与x2y2成正比.9. B 与 C 的纵坐标相等,即k2,∴k2AC6AC AB AB10.假定报出来的数是 3 的人内心想的数是 x ,则报出来的 12345678910数4 x x8 x 4 x12 x内心想的数于是 4x 12x20 ,解得 x2 .11. x 4 24x 22 7 x 224 2 7 x 228 x 28 7 x4 48 7x 4828x 2 56 7x 5222 8 2 x7 25 6x 752.412. 过 A 、 A 1 作 x 轴的垂线,利用弦图简单获得A 1 b , a .aba 2ba 211a b13.a bba b∵b 2a 2b 2aba 2,ab11ba2222而a2b2 ≥ 2 a 2 b 22bab a∴ab a b ≥1 1a b ,即ab1 1 .b 2a 2a bb 2 a 2 ≥ a b14. ∵a 2 b 2a 2 b 2a 2b21 , b 1110 ,∴a于是 a a b b a b 12 10 1 .15.x 3 2 a 1 x 2 a 2 2 a 1 x2a 1x 3 2ax 2 a 2 1 x x 2 2ax a 2 1x 1 x 22axa1 a 1x 1 x a 1 x a116. 设当 B 在 A 、C 正中间是 ABBC1,则 C 相对 B 的速度为1,C 相对 A 的速度为 2 ,1015所以 B 相对 A 的速度为1,故 B 追上 A 需要时间为 30 分钟.30于是再过 15 分钟, B 追上 A .17. 设等腰三角形的腰长为x ,则底边长为 20 2x ,于是 0 20 2xxx ,有 5 x 10 ,∴x 的可能取值有 6 , 7 , 8 , 9,共 4 种.其面积为10 1022 x10 ,∴当 x7 时三角形面积最大,此时底边长为6 .x18. 在 BC 上取一点 E ,使得 CE CA ,简单证明 △ AEB ≌△ ADC ,于是 ABC 40 .19. ∵ A 3 , 0 ,B 0,1,∴ AB 2于是 S △ ABC 12AB22∵S△ ABP1 1 1 a1 3 11 3 a 12 ,解得 a3 4 .2 2222220. △ ABC 的面积不小于三边长分别为 3 , 9 , 10 的三角形面积,于是S △ABC ≥ 11 11 3 11 9 11 10262 ;而 △A B C 的面积不大于周长为 18 的正三角形面积,于是3 2S 2 ≤18243 .49 33∴S 1 S 2 .。

第十六届“希望杯”全国数学邀请赛初二 第2试

第十六届“希望杯”全国数学邀请赛初二 第2试

个循 环小数 , 么 a的取值有 哪几 个 ? 那 2 . 图 6 正三 角形 A C的边长 为 a D 3如 , B ,

图5
是B C的 中点, P是 A C边上 的点 , 连结 船 和
P D得到AP D. : B 求
() 点 P运 动 到 A 1当 C的 中 点 时 , B 的 AP D
2 . 果正整 数 有 以下 性质 : 的八分之 0如

是 平方 数 , 的九分 之一是 立方数 , 它的二 .
十 五分之 一是五 次方数 , 么 就 称为 “ 那 希望 数 ” 则 最小 的希望数 是 ,
出推 算过程 . )
三、 解答题 ( 每题 1 分 , 3 分 . 0 共 0 要求 : 写 2. 5 1图 是一个 长为 4 0 的环形 跑道 , 0米 其
( 中版 ) 初
维普资讯
数海泛舟



7 :
2.) 21如果 是小于2 ( 0的质数, 且÷可化

为一 个循环 小数 , 么 的取 值有哪 几个 ? 那



( 如果 2 ) 是小于2 的 0 合数, 且÷可化为
所 以P g的最 小值 为 g= 2 P= 4 , , . 此时, 乙跑 过 的路 程 为 2 0×4+ 2 0= 10 ( ) 5 0 20米 . 所 以乙跑 了 10 2 0米后 , 两人 首次在 点处相遇 . 2. ) 2( 小于 2 1 0的质数有 2 3、, , 1 1 ,7 1 . , , 7 1 ,3 1 ,9除了 2和 5以外 , 余各数 的倒 数均可化 为 5 其 循环 小数 .
数海泛舟
{yvl— 2一。。 IY + X + I + l . Z x l一 z l + 一 —, +b 一 Lz 一 2

【精品】八年级希望杯决赛真题与标准答案.doc

【精品】八年级希望杯决赛真题与标准答案.doc

4.已知三角形三个内角的度数之比为x : y : z ,且x+yvz, 则这个三角形是()(A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )等腰三角形.5.如图1, 一个凸六边形的六个内角都是120。

,六条边的长分a, b, c, d, e, f,则下列等式中成立的是)(D)a+c=b+d.(英汉词典:integer 整数)(A)a+b+c=d+e+f .(B)a+c+e=b+d+f . (C)a+b=d+e.6. 在三边互不相等的三角形中,最长边的长为a,最长的中线的长为m,最长的高线的长 为h,则() (A )a>m>h .(B )a>h>m .(C )m>a>h.(D )h>m>a .7. 某次足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得O 分,某球队参赛15场,积33分,若不考虑比赛顺序,则该队胜、平、负的情况可能有()(A ) 15 种.(B ) 11 种.(C )5 种.(D )3 种.第二十一届“希望杯”全国数学邀请赛初二 第2试(2010 年 4 月 11 U 上午 9:00 至 11:00)得分—一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将 表示正确答案的英文字母写在每题后面的圆括号内. 1 .计算2,2X 59,得数是()(A )9位数. (B ) 10位数. (C ) 11位数.(D) 12位数.2.若三=1,Or + v — ]8则代数式 一的值()9x-y-\S 7 (A )等于;・55 7(B )等于+(C )等写或不存在.(D )等专或不存在.3. The integer solutions of the inequalities about x3(x — q) + 22 2(1 — 2x — ci)x b b — xarcl,2,3,--- < -----then the number of integer pairs (a,b) (A)32.(B)35.(C)40.(D)48.(A)2.(B)— 2. (C)4.(D) 一4.8.若 xy *O,x+y *0,—+ —与 x+y 成反比,则(x + y)2与亍+)=()工 )'(A )成正比.(B )成反比.(C )既不成正比,也不成反比. (D )的关系不 确定.2k9.如图2,已知函数y - —(X > 0),y = —(x < 0),点A 在正y 轴上,过点A 作BC//x 轴, x x交两个函数的图象于点B 和C,若AB:AC = 1:3,则k 的值是()(A )6.(B )3.(C )— 3.(D )— 6.10. 10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图3所示,则报出来的数是3的人心里想的数是()110 2 9 3二、填空题(每小题4分,共40分.) 11 .若 了 _ 2A /7X + 2 = 0,则 X 4—24X 2=12. 如图4,已知点A (a, b ), 0是原点,OA=OA|, OA ± OA },则点A 〕的坐标是 13.已 知 ab + 0 , 并 且 a + b >。

第二十三届“希望杯”全国数学邀请赛_初二_1试试题及答案.doc

第二十三届“希望杯”全国数学邀请赛_初二_1试试题及答案.doc

第二十三届“希望杯”全国数学邀请赛初二 第1试2012年3月11日 上午8:30至10:00 得分_______一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将正确答案前的英文字母写在下面的表格内.1.如果0<m <1,那么m 一定小于它的( )(A)相反数 (B)倒数 (C)绝对值 (D)平方2.在277,355,544,633这四个数中,最大的数是( )(A)277 (B)355 (C)544 (D)6333.若a+b=2012,b ≠a 十1,则ba b a b b a ++--+-222212的值等于( ) (A)2012 (B)2011 (C)20112012 (D)20122011 4.方程3112112=---x x ( ) (A)只有一个根x=1 (B)只有一个根x=2 (C)有两个根x 1=l ,x 2=2 (D)无解. rz+,+o=10,5.方程组⎪⎩⎪⎨⎧=+=-+=++40250310y x z y x z y x ( )(A)无解 (B)有1组解 (C)有2组解 (D)有无穷多组解.6. As in the figure 1, there are four circle with radius of 2. The four circles are apart from each other. Link their centers to form a quadrilateral, thenthe total area of the shaded parts in the figure is( )(A) 2π (B) 4π (C) 6π (D) 8π7.在平面直角坐标系中.先将直线y=3x -2关于x 轴作轴对称变换,再将所得直线关于y 轴作轴对称变抉,则经两次变换后所得直线的表达式是( )(A)y=2x 一3 (B)y=3x 一2 (C)y=2x +3 (D)y=3x +28.一次函数y=(m 2一4)x +(1一m)和y=(m+2)x+(m 2—3)的图象分别与y 轴交于点P 和Q ,这两点关于x 轴对称,则m 的值是( ) (A)2 (B)2或一1 (C)l 或一1 (D)-19.如图2,在周长是lOcm 的□ABCD 中,AB≠AD,AC 、BD 相交于点O ,点E 在AD 边上,且OE ⊥BD ,则△ABE 的周长是( )(A)2cm (B)3cm (C)4cm (D)5cm10.x 1,x 2,x 3,…,x 100是自然数,且x 1<x 2<x 3<…x 100,若x 1+x 2+…+x 100=7001,那么x 1+x 2+…+x 50的最大值是( )(A)2225 (B)2226 (C)2227 (D)2228二.A 组填空题(每小题4分,共40分)11.有下列命题:①矩形既是中心对称图形,又是轴对称图形; ②平行四边形是中心对称图形,不是轴对称图形;④等腰梯形是轴对称图形,不是中心对称图形;④有一个锐角是30°的直角三角形不是中心对称图形,也不是轴对称图形.其中正确命题的序号是______________.(把所有正确的命题的序号都填上)12.若n 是正整数,且x 2n =5 , 则()()nn x x 22342÷=______________. 13.已知整数a ,b 满足6ab=9a 一10b +16.则a +b 的值是____________.14. The original railway from A to B is 310 km, and now a 280km long high-speed railwayis built. The train speed on the high -speed railway is twice the original speed, so the traveling time from A to B is 2 hours shorter. Then the original train speed on the original railway is_________km/hottr.15.如图3,已知△ABC 中,AD 平分∠BAC .∠C=20°,AB +BD=AC ,则∠B 的度数是____________.16.若△ABC 的三个内角满足3∠A >5∠B ,3∠C <2∠B ,则△ABC 必是___________三角形.(填“锐角”、“直角”或“钝角”)17.若关于x 的分式方程22121=-+--xx mx 有整数解,m 的值是_____________________. 18.已知a 十x 2=2011,b +x 2=2012,c +x 2=2013,且abc=24,则c b a ab c ac b bc a 111---++=______________. 19.若x 是自然数,x +13和x -76都是完全平方数,那么x=_____________.20.如图4,在□ABCD 中,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,点P 在线段GF 上,则△PHE 与□ABCD 的面积的比值是_____________.三、B 组填空趣(每小题8分,共40分.)21.直线y=3x+k+2与直线y=-x+2k 的交点在第二象限,且k 是正整数,则k 的值是_____________;交点的坐标是__________.22.一个三角形的三条边的长分别是5,7,10,另一个三角形的三条边的长分别是5,3x 一2,2y +1,若这两个三角形全等,则x +y 的值是__________或_____________.23.点A 和B 在直线643+-=x y 上,点A 的横坐标是2,且AB=5.当线段AB 绕点A 顺时针旋转90°后,点B 的坐标是____________或____________.24.等腰直角△ABC 中,∠ACB=90°,点D 和E 在AB 边上,AD=3,BE=4,∠DCE=45°,则DE=_______或_________.25.袋中有红、黄、黑三种颜色的球各若干个,黄色球上标有数字5,黑色球上标有数字6,红色球上标的数字看不清.现从袋中拿出8个球,其中黄色球和黑色球的个数分别少于红色球的个数.已知8个球上的数字和是39,那么红色球上标的数字是______________;拿出黑色球的个数是_________________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档