电容运转异步电动机工作原理

合集下载

单相异步电动机运行电容和启动电容接法

单相异步电动机运行电容和启动电容接法

单相异步电动机运行电容和启动电容接法
单相异步电动机运行电容和启动电容的接法有两种常见的方式:"串联接法"和"并联接法"。

1. 串联接法(运行电容和启动电容串联接法):
- 这种接法中,运行电容器和启动电容器连接在一起,并串联
连接到电机的起动线圈。

- 在电机启动的时候,启动电容器提供起动电流帮助电机启动,一旦电机达到正常运行速度后,启动电容器自动脱离电路。

- 运行电容器的作用是提供电机运行所需的支持电流,以维持
电机的运行。

2. 并联接法(运行电容和启动电容并联接法):
- 在这种接法中,运行电容器和启动电容器分别并联连接到电
机的运行线圈和起动线圈。

- 运行电容器是一直处于电机运行状态下的,它提供所需的功
率因数校正和线圈发热控制。

- 启动电容器则主要用于电机的起动,提供起动电流帮助电机
启动,一旦电机达到正常运行速度后,启动电容器自动脱离电路。

这两种接法的选择依赖于电机的具体应用和要求。

串联接法主要适用于低功率的单相异步电动机,而并联接法适用于较高功率的单相异步电动机。

三相异步电机原理

三相异步电机原理

三相异步电机原理三相异步电机是现代工业中应用最广泛的电动机之一,广泛应用于各个领域,如工厂生产线、船舶、汽车、空调等。

本文将介绍三相异步电机的基本原理及其工作过程。

三相异步电机是一种电磁式交流电动机,它将三相交流电源提供的电能转换为旋转力矩和机械能,实现机械设备的运转。

三相异步电机由定子和转子两部分组成,定子上绕有三相绕组,转子是通过电动机的转子电路与定子电路相互作用实现转动的。

定子绕组的三条绕组分别与三相交流电源相连,形成了一个旋转磁场。

当三相交流电源加到定子绕组时,由于相序不同,三相电流的相位差也不同,导致磁场旋转。

转子电路上的绕组受到定子磁场的旋转影响,形成了感应电流,这个感应电流与定子电流之间存在磁场相互作用力,从而使转子开始旋转。

在运行过程中,由于载荷的变化使转子的旋转速度产生变化。

由于转子电路中有导体,导体纵向和横向都有电流,因此在转子中产生了感应电动势,即转子感应电动势。

这种感应电动势会产生另一个磁通,与原有的旋转磁场相互作用,导致转子产生了绕组以外追赶旋转磁场的转动,使转子加速,直到达到额定运行速度。

二、三相异步电机的工作过程1. 单相异步电机的启动单相异步电机启动时,需要通过外部补助开关实现,通常使用的方法为光电器或电容器启动。

光电器启动是通过光电元件将电源分为两个相位,以启动单相异步电机。

电容器启动是通过连接一个电容器,形成一个相位差与单相电源正常相位的电源,实现单相异步电机的启动。

三相异步电机通常使用的方法是通过磁阻启动或启动器直接启动,启动之后转子与旋转磁场相互作用,形成转矩和旋转力矩,从而使电机旋转。

在运行过程中,电机的速度会逐渐达到额定速度,并进行稳定运行。

如果负载过载或负载不足,电机会受到外部影响,导致其转速变化,但会在瞬间自动恢复到额定速度。

三相异步电机通常是通过与停止器相连,或将三相电源切断以停止电机的运行。

在运行过程中,如果出现了异常情况,如过载、短路等,电机控制器会自动执行保护操作,以保证电机的稳定性和安全性。

电容运行式单相异步电动机正反转控制方法的探讨

电容运行式单相异步电动机正反转控制方法的探讨
反转 。
图9 两绕组不相同时正反转控制接线路 图
3 两绕组不相 同时正反转控制
当电容运行式单相异步 电动机 的主绕组和启
动 绕 组不 相 同时 ,不 能 采 用交 换 主 绕组 和 启 动绕
控制过程为 :合 上 Q s ,当 Q s : 合于左侧时 , 启动绕组 的首端接相线 ( L ) ,尾端经启动 电容接 中线 ( N ) ,电动机正转 ;当 Q S 合于右侧 时 ,启 动绕组的首端接 中线 ( N ) ,尾端经启动电容接相 线 ( L ) ,电动机反转 1 。
向 ,电动 机 顺 时针 方 向旋转 ,设 此 时 电动 机 旋转
的正反转控制分为两种情况 :一是两绕组相 同时
正反转控制 , 二是两绕组不相同时正反转控制u 】 。
方向为反转方 向。

,、一







图4 中线接端子 2
图5 中线按端子 4
参考文献 : [ 1 ]杜 责明 ,张森林. 电机与 电气控 制 [ M]. 武汉 :华 中 科技 大学 出版社 ,2 0 1 0 .
假设通过交换启动绕组的首 、尾端来实现单
相 异 步 电动机 的正 反转 控 制 。当启 动 绕组 的首 端 ( 3 号 端 )交 流 电源 的 相 线 ( L ) ,尾 端 ( 4号 端 )
而使单相异步 电动机能 自 行启动旋转运行。
I I V i u
在一起 ,接交流电源的相 线 ( L ) ,2 、4 端子之间接
启 动 电容 ,这 两 种 接 线法 实 质一 样 。 如 果 交 流 电 源 的 中线


。 /

单相异步电动机的工作原理

单相异步电动机的工作原理

单相鼠笼式异步电动机的工作原理单相鼠笼式异步动机由单相电源供电,它直接接到 220 伏单相交流电源上就能工作,但要采取一定的措施,否则启动不起来.我们日常生活用的一些家用电器,如空调器、 电冰箱、 洗衣 机、电扇等广泛应用着单相异步电动机.单相异步电动机的工作原理当给三相异步电动机的定子三相绕组通入三相交流电时,会形成一个旋转磁场,在旋转磁场的作用下,转子将获得启动转矩而自行启动.当三相异步电动机通入单相交流电时就不能产 生旋转磁场.下面来分析单相异步电动机定子绕组通入单相交流电时产生的磁场情况.如下图所示为一台简单的单相异步电动机原理图,定子铁心上布置有单相定子绕组,转子为鼠笼结构.交流电流波形电流正半周产生的磁场 电流负半周产生的磁场当向单相异步电动机的定子绕组中通入单相交流电后,由上图可见,当电流在正半周与负半周不断交变时,其产生的磁场大小与方向也在不断变化〔按正弦规律变化〕 ,但磁场的轴线 则沿纵轴方向固定不动,这样的磁场称为脉动磁场.当转子静止不动时转子导体的合成感应电动势和电流为 0,合成转矩为 0,因此转子没有启动转矩.故单相异步电动机如果不采取一定的措施,单相异步电动机不能自行启动,如果用 一个外力使转子转动一下,则转子能沿该方向继续转动下去.单相异步电动机根据其启动方法或者运行方法的不同,可分为单相电容运行电动机; 单相电45 90 225 315 360 270 135 180 t容启动电动机;单相罩极式电动机等.下面分别介绍.单相异步电动机容量普通较小,运行性能较差.图 1 单相电容运行异步电动机原理图<a>接线图<b>电流相量图图 1 是单相电容运行异步电动机工作原理图.单相电容式异步电动机的定子铁芯上嵌放两套绕组:主绕组 U1—U2 〔主绕组又称工作绕组〕和副绕组 Z1—Z2 〔副绕组又称启动绕组〕 . 两套绕组在空间的位置上互差 90 度电角度.在启动绕 Z1—Z2 中串入一个电容器 C 后再与工作绕组并联,然后接到单相电源上.设流过启动绕组 Z1-Z2 的电流为 iz,流过工作绕组 U1—U2 的电流以为 iu,当接上电源后,由于电容的充放电作用,iz 落后于 iu90 度,流过两套绕组的电流 iz 与 iu 在相位上相差 90 度,如图 2 所示.设电动机两个绕组接上交流电源后,电流为正值时,电流从绕组的头端进去尾端出来;电流为负值时,电流从绕组的尾端进去头端出来.从图 2 可看到:在 t=0 瞬间,iz=0,绕组 Z1—Z2 中无电流流过;而这瞬时 iu 为负的最大值,绕组 U1—U2 中电流由 U2 进 Ul 出.用右手定则可判断,此时电动机中会产生如图 2 所示磁场,其合成磁场方向向下.从图 2 可看到:在ωt=π/2 瞬间,iu=0,绕组 U1—U2 中无电流流过;这瞬间 iz 为正的最大值,绕组 Z1-Z2 中电流从 Z1 进Z2 出.此时电动机内磁场分布如图 2 所示,其合成磁场方向较 t=0 时刻顺时针方向旋转了 90 角度.在ωt=3 π/2 瞬间,iz=0,绕组 Z1—Z2 中无电流流过;这瞬间 iu 为正的最大值,绕组 U1 —U2 中电流从 U1 进 U2 出.此时电动机内磁场分布如图 2 所示,其合成磁场方向较t=π/2 时刻顺时针方向旋转了 90 角度.依此类推,可看到单相鼠笼式异步电动机中 iz 与 iu 两个电流在单相异步电动机中产生的合成磁场也是旋转磁场,如图 2 所示.单相鼠笼式异步电动机转子也是鼠笼式转子,即转子绕组是两端由短路环连接的鼠笼条. 鼠笼条反方向切割旋转磁场 ,产生感应电动势和感应电流 .在旋转磁场作用下,受电磁力使转子转动.只要改变工作绕组或者启动绕组的首端、尾端与电源的接线,就可改变旋转磁场旋转方向,控制电动机的正反转.单相机电正反原理只要把工作绕组或者启动绕组的两个接线对调一下就行,产生相反方向的磁场,机电就反转了.左边是单向运转的电路图.右边是正反转的电路图,如双桶洗衣机的洗涤机电.正反转的机电,普通将运行绕组与启动绕组做成一样,可以互换.单相机电有两个绕组:主绕组又称工作绕组或者运行绕组,副绕组又称启动绕组,有的小负载单相机电这两个绕组彻底一样,互相可以交换,但多数单相机电〔带较大负载的农用机电〕为了增大启动力矩,副绕组线圈细、匝数多、阻值大;副绕组与主绕组之间有一启动电容;只要交换两个绕组中的一个绕组的首尾接线就可反转,交换电源 L/N 是无效的.当两绕组彻底一样,机电可能是三端子接线,1,3 为两绕组的公共接线端,接交流电源的 L, 2/4 端子之间联有启动电容, 如果交流电源的 N 端接端子 2 为正转,则 N 改接端子 4 为反转;如果是四端子,见图四接线;图 3:三端子单相机电[两绕组相同]图四:四端子单相机电[两绕组相同]农用单相机电的主/副绕组不一样,不能采用上面交换主/副绕组的做法,否则,会烧坏机电, 普通应有四个端子:1/2 为主绕组,3/4 为副绕组,正转见图五:图五如果要反向转动,正确的做法是交换一个绕组的首尾接线,主副绕组的区分很简单,根据阻值就可判断出.<本文转自电子工程世界: eeworld ./mndz/2022/0317/article_15165.html>一、单相异步电动机的结构单相异步电动机中,专用机电占有很大比例,它们的结构各有特点,形式繁多.但就其共性而言,电动机的结构都由固定部份---定子、转动部份----转子、支撑部份---端盖和轴承等三大部份组成.1、机座2、铁心3、绕组4、端盖5、轴承6、电容7、铭牌1、机座机座结构随电动机冷却方式、防护型式、安装方式和用途而异.按其材料分类,有铸铁、铸铝和钢板结构等几种.铸铁机座,带有散热筋.机座与端盖联接,用螺栓紧固.铸铝机座普通不带有散热筋.钢板结构机座,是由厚为 1.5-2.5 毫米的薄钢板卷制、焊接而成,再焊上钢板冲压件的底脚.有的专用电动机的机座相当特殊,如电冰箱的电动机,它通常与压缩机一起装在一个密封的罐子里.而洗衣机的电动机,包括甩干机的电动机,均无机座,端盖直接固定在定子铁心上.2、铁心铁心包括定子铁心和转子铁心,作用与三相异步电动机一样,是用来构成电动机的磁路.3、绕组单相异步电动机定子绕组常做成两相:主绕组〔工作绕组〕和副绕组〔启动绕组〕 .两种绕组的中轴线错开一定的电角度. 目的是为了改善启动性能和运行性能.定子绕组多采用高强度聚脂漆包线绕制.转子绕组普通采用笼型绕组.常用铝压铸而成.4、端盖相应于不同的机座材料、端盖也有铸铁件、铸铝件和钢板冲压件.5、轴承轴承有滚珠轴承和含油轴承.电风扇电动机结构单相电容运转异步机电工作原理与故障分析 [复制]发表于 2022-1-22 14:56:14一、单相异步机电的定义与标识说明1、单相异步机电是指由单相电源供电的电动机,但它并不表示机电的定子上惟独一相绕组, 它是由空间上相差90°相位角的两套绕组构成,二者共同产生旋转磁场,在转子上产生转矩而旋转的电动机.2、YD〔S〕Kaa-bc 所代表的意义Y—异步; D〔S〕—单〔双〕轴; K—空调用; aa 代表功率名义值; b 代表极数; c 为设计序号或者其它意义以 YDK24-6 T 为例说明如下设计序列号为 T、功率名义值为 24W 、极数为 6 极的单轴伸空调用异步电动机.1、固定部份—定子;由定子铁芯、定子绕组和机座〔壳〕组成.定子铁芯是机电磁路的一部份,普通由 0.5mm 硅钢片叠压而成,片与片之间相互绝缘,以减少涡流损耗.定子绕组普通由高强度聚酯漆包线绕制而成.机座〔或者机壳〕普通由A3 钢板冲制而成,大机电〔单相〕则是钢板卷筒后在与铸铝端盖配合而成,三相机电普通均为铸铁机座.2、转动部份—转子:由转子铁芯、转子绕组〔纯铝〕、转轴〔45#碳结钢〕组成.单相电容运转异步机电与三相机电的区别:三相机电的绕组在空间按120°电角度分布,单相异步机电则按则按90°电角度分布,见下图.在单相机电中,由于单相绕组产生的是脉振磁场,机电没有起动转矩,不能起动,如右图表示:i=Icosωt要使单相机电具有起动转矩并旋转,就必须使其分相,普通的,单相机电分相有以下几种型式:1、电阻分相2、电容分相3、罩极分相空调风机用单相异步机电几乎均采用第二种方式,即要使单相机电既能运转又能独立启动, 就必须在机电定子铁芯中嵌放轴线在空间相隔90°电角度的两相绕组,其中一相绕组称为主绕组〔用 M 表示〕 .另一相称为副绕组或者起动绕组〔用 A 表示〕 .副绕组串接一移相元件电容器,形成事实上的两相电源.原理如下图示:在单相机电中,若定子上的主、副两相绕组彻底对称,两相绕组接到两相对称电源上,则与 4 页三相机电图示一样,也产生在空间旋转的圆形旋转磁场.可见对称两相绕组通入对称两相电流产生的旋转磁势与三相机电产生旋转磁势一样.其旋转速度与电源频率和机电极数有关:即 n=2×60f/p,其中"f"—电源频率〔Hz〕"p"—机电极对数"n"—磁场旋转转速,即机电同步转速〔r/min〕当机电中磁场以n速度旋转时,处于旋转磁场中的转子导条就会切割磁力线而产生感应电势和感应电流,感应电流在磁场的作用下产生电磁力和电磁力矩,行成一定的转速n’.普通情况下机电转速n’不等于旋转磁场转速n.因为n’= n 时,转子导条相对旋转磁场是静止的, 导条中就不会产生感应电势和感应电流,机电就不会产生电磁力矩,机电转速就会自然下降. 因转子速度始终低于旋转磁场速度,故称此种机电为"单相异步电动机".前面讲到,单相绕组产生的是一个脉振磁场,因此单相机电的启动转矩为零,即机电不能自行启动,要使单相机电能够自行启动,就必须如同三相异步机电一样,在机电内部产生一个旋转磁场.产生旋转磁场最简单的方法是在两相绕组中通入相位不同的两相电流.因此在单相异步机电中必须有两套绕组,一套为工作绕组,另一套为副绕组或者启动绕组,工作绕组或者主绕组 M 与副绕组A 的轴线在空间相隔90°电角度,副绕组串联一个适当的电容 C〔电容选配不当会使机电系统变差,如片面增大或者减小电容量,负序磁场可能加强,使输出功率减小性能变坏, 磁场可能会由圆形或者近似圆形变为椭圆形〕再与工作绕组并接于电源.由于副绕组串联了电容, 所以副绕组中的电流在相位上超前于主绕组电流,这样由单相电流分解成具有时间相位差的两相电流 M 和 A<也就是事实上的两相电流>,于是机电的两相绕组就能产生圆形或者椭圆形的旋转磁场.由于大多数情况下两相绕组总是不对称的,谐波分量较多,因此单相异步机电的性能总要比三相异步机电差得多.谐波对机电的影响主要有以下三个方面:1、使机电的附加损耗增加;2、引起机电振动并产生噪音;3、产生附加转矩,使机电的启动发生艰难〔某些位置较大、某些位置又较小、某些位置干脆就不能启动,削弱办法之一,就是采用斜槽转子.这就是我们看到的转子槽是斜的原因之一〕作为单相异步电动机其调速方法有三种:〔1〕变极调速;〔2〕降压调速;〔3〕抽头调速.在单相机电中,有倍极调速和非倍极调速之分.倍极调速机电普通定子上惟独一套绕组,用改变绕组端部联接方法获得不同的极对数以达到调整旋转磁场的转速.在极数比较大的变极调速中,定子槽中安放两套不同极数的独立绕组,实际上相当于两台不同极数的单速机电的组合,其原理和性能与普通单相异步机电一样降压调速方法不少,如串联电抗器〔吊扇〕、串联电容、自耦变压器和串联可控硅调压调速. 空调中最常用的调压调速是可控硅〔塑封〕调压调速.可控硅调速是改变可控硅导通角的方法,改变电动机端电压的波形,从而改变了电动机的端电压的有效值.可控硅导通角α1=180°时,机电端电压为额定值,α1<180°时电压波形如下图实线部份,机电端电压有效值小于额定值,α1 越小,电压越低,如下图:塑封 PG 机电就是可控硅降压调速.对于塑封 PG 机电,其绕组工作原理与抽头机电一致,但不同之处在于塑封 PG 机电的输入电压不是直接接到电源上的,而是通过可控硅的输出端施加电压于机电上的,其可控硅的输出电压是可调节的.其电气原理图见图 3,调速是利用机电输出转矩与机电输入电压成近似一次关系,通过改变机电输入电压来改变机电的输出转矩,起到调节机电转速的作用,其原理如下图示:该结构是在机电的轴上装有一个磁环,它普通有 6 极磁环与 2 极磁环 2 种.当机电转子旋转一圈时,磁环也旋转一圈,磁环与 PG 板中的霍尔元件相感应,6 极磁环会在 PG 板的 OUTPUT〔白〕脚中输出 3 个脉冲,2 极磁环会输出 1 个脉冲,这样根据输出脉冲的数量就可以知道机电的转速.在可控硅中设定有预定的转速值,将它与从 PG 块中采样取得的转速值相比较,当转速偏低时,则提高可控硅的输出电压〔可控硅导通角变大〕 ,当转速偏高时,则降低可控硅的输出电压〔可控硅导通角变小〕 ,这样通过 PG 信号的反馈调节可控硅输出电压就实现了对机电的平滑调速.由于可控硅的输出电压不会高于其输入电压,因此在机电设计时要保证机电达到高风档的转速时其可控硅的电压不高于工作的额定电压.如我国额定电压为 220VAC,则设计时的可控硅电压普通设计为 180VAC~200VAC 摆布.此参数值设定太低则造成机电材料浪费,且可控硅若损坏击穿后机电直通市网电压,其机电温升会较高;若此参数值设定过高则会造成市网电压降低时,有可能达不到设定的额定转速,影响空调的能力电容运转电动机在调速范围不大时,普遍采用定子绕组抽头调速.此时定子槽中放置有主绕组、副绕组与调速绕组,通过改变调速绕组与主、副绕组的联接方式,调整气隙磁场大小与椭圆度来实现调速的目的.普通电容运转单相机电,主绕组与副绕组嵌在不同的槽中,绕组与铁芯间由聚酯纤维无纺布〔DMDM 或者 DMD〕隔开,其在空间普通相差 90 度电角度,且副绕组通过串联一个工作电容器后与主绕组并接于电源.当机电通电后,主绕组与副绕组在气隙中共同形成一个有方向有幅值强度的旋转磁场.其方向与主、副绕组所处的空间位置等有关,它决定了机电的转向;其幅值强度则与主副绕组的参数设计有关,它决定了机电输出力矩的大小.该旋转磁场与转子鼠笼转子相互作用,使电动机按一定的方向旋转.若调换主副绕组的空间位置,则旋转磁场的旋转方向会相反,该反方向的旋转磁场与转子相互作用,使电动机的转向也会相反.抽头调速可分为 T 型抽头调速和 L 型抽头调速.L 型抽头调速又可分为主绕组抽头L-1 型和副绕组抽头 L-2 型. 目前最常用的是 T 型抽头调速和副绕组抽头L-2 型调速.原理路线图见下T 型抽头调速优点:中、低档运行绕组温升低;缺点:机电高档效率低,主绕组易形成匝间短路〔见企业技术标准 13 设计案例的 DC03.043-001"YDK29-8E 机电匝间短路案例分析"〕. L 型抽头调速优点:机电高档效力高,绕组不易形成匝间短路;缺点:中、低档运行绕组温升高.不论哪种调速,都各有优缺点,选用哪种除要考虑设计时要达到哪个结果,还要考虑机电的经济性,普通 L 型较经济〕 .A> 空载输入电流:是指机电在额定工作电压、额定电源频率、额定电容下、空载运行〔轴上输出功率为零〕情况下,流入电动机的电流称为空载电流.单位: A 或者mA.B>空载输入功率:是指机电在额定工作电压、额定电源频率、额定电容下、空载运行〔轴上输出功率为零〕情况下,输入电动机的功率.这部份功率消耗主要表现在磁场储能,定、转子绕组铜耗和铝耗,交变磁通在铁芯损耗,通风、轴承磨擦产生机械损耗.单位: W 〔瓦〕C>负载输入电流:是指电动机在额定工作电压、额定电源频率、额定电容、带额定负载运行在额定转速下,所输入机电的电流.单位: A 或者mA.D>额定负载输出功率:是指电动机在额定电压、额定电源频率、额定电容、带额定负载运行在额定转速下,轴伸所输出的有功功率.单位: W 〔瓦〕E>温升:指电动机在额定测试条件下运行,内部绕组与铁芯部份的温度相对于测试环境温度的升高值. 目前较常用的测试温升方法为绕组电阻法.F>噪音:机电噪音可分为机械噪音和电磁噪音.机械噪音通常由机电装配不良定、转子磨擦与轴承声等形成.电磁噪音通常由定、转子气隙不均匀或者磁场过于饱和造成,定、转子气隙不均匀受装配零部件同轴度的影响较大,磁场过于饱受所设计功率较大机电的材料限创造成.噪音用分贝 dB 表示.A〕整机噪音与振动:机电噪音值在某一频段存在峰值,此噪音峰值频段与整机固有频率相接近或者重合,形成共鸣、共振和整机噪音.整机预防与解决措施:在机电确认阶段将机电噪音峰值频段与整机固有频率错开〔这就是普通情况下一次送样不能成功的原因之一,也是我们一般遵循的,只要是系统中的对机电有影响的零部件如支架和风轮风叶等的改变,就必须装整机做噪音等测试〕机电,空调钣金件上加阻尼胶,调整风叶形状、增加机电支架刚性〔如04 年今年 3 月份汕头浮现较多 71S振动和噪音严重的问题,后将机电支架加强后上述现象全部消失〕、机电安装脚上加胶垫,调整空调板金件的形状、厚度,调整机电极数、定转子的槽配合、定转子直径、定转子气隙、转子斜槽度、铁芯长度、轴承距离等.B>转速不一致:风叶的变化〔不同厂家不同模号〕、蒸发器片距变化、风道的变化、测试环境的变化〔温度、湿度〕、机电工艺波动的原因〔铝环、定子端部高度控制、绕线模具变化、气隙变化、硅钢片材料变化等〕 .C>电磁声:定子椭圆、同轴度大、轴承距过大、端盖强度不够、磁路设计不对称.D>轴承声:装配过程轴承损坏、轴承油脂声、轴承与轴承室配合松动.E>磨擦声:定转子相擦、错片、异物、漆瘤与风轮风叶变形和转轴弯曲等.F>转速低:转子导条和端环截面过小、定转子气隙偏大;G>温升高:铁芯长度偏低、漆包线截面偏小〔即铁、铜耗过大〕、散热不良;H>机电冒烟:〔1〕绕组匝间短路;〔2〕焊接线不良导致接触电阻过大,机电发热;<3>电容器击穿,导致电路的容性成份消失,机电单相运行〔事实上机电无法运行,处于堵转状态〕;I〕机电漏电:机电内部或者引出线绝缘不良;J〕机电转速下降机电部份绕组匝间短路;电容器容量衰减;转子断条:K〕机电失速〔保护〕或者不转霍尔元件失效;可控硅击穿.即使霍尔元件正常,信号有反馈,但因可控硅已经击穿,电压已不可调;转子被异物卡滞或者机电无电和烧毁;在机电设计已是最优化状态下,下述要求可增加成本:1、负载不变情况下,要求提高转速〔即提高功率〕;M∝P/V M:力矩 P:功率 V:转速2、负载不变情况下,要求降低温升;1.气隙〔mm,普通选 0.25 到 0.35mm〕变小.气隙越小,谐波漏抗越大,导致最大转矩和启动转矩降低;同时杂耗增大、效率降低、温升增高;2.增多槽数.槽数多了,机电的漏抗减小,导致最大转矩和启动转矩有所增加,效率和功率因数有所增加,因为绕组分散,绕组接触铁芯的散热面积增加,温升会降低;3.定转子槽配合.如果槽配合选择不当,可引起较大的附加转矩〔使启动性能变坏,甚至启动不起来〕、附加损耗增大,导致温升增高;4.增加铁芯长度以降低磁密〔磁密很饱和时〕、增大漆包线直径以降低电密、使用铁损小的硅钢等从而降低温升.。

单相电容运转异步电动机标准系列

单相电容运转异步电动机标准系列

单相电容运转异步电动机标准系列单相电容运转异步电动机标准系列导言单相电容运转异步电动机是一种常见的电动机类型,广泛应用于家庭和工业领域。

它具有结构简单、可靠性高、成本低廉等优点,因此备受市场青睐。

在本文中,将对单相电容运转异步电动机的标准系列进行全面评估,并探讨其深度和广度。

一、单相电容运转异步电动机的基本原理1.1 工作原理单相电容运转异步电动机采用单相交流电作为供电源,通过引入辅助相位来启动和运转电动机。

辅助相位是通过外接电容器实现的,它能够产生辅助磁场,从而对电动机转子进行启动和运转。

单相电容运转异步电动机的基本原理是基于离心力和磁性力线的相互作用。

1.2 结构组成单相电容运转异步电动机主要由定子、转子、电容器和启动电路组成。

定子是电动机的固定部分,上面绕有多组绕组。

转子是电动机的旋转部分,由导体材料制成,可以在磁场中旋转。

电容器则用于产生辅助磁场,从而使电动机启动和运转。

二、单相电容运转异步电动机标准系列的评估2.1 核心参数单相电容运转异步电动机的标准系列中,核心参数包括额定功率、额定电压、额定转速和额定频率等。

这些参数决定了电动机的性能和适用范围。

其中,额定功率是电动机在额定条件下能够输出的功率;额定电压是电动机在额定条件下的工作电压;额定转速是电动机在额定电压和额定频率下的转速;额定频率是电动机的工作频率。

2.2 重要特性单相电容运转异步电动机的标准系列具有多项重要特性,包括高效节能、启动和停止可靠、运行平稳等。

高效节能是电动机在工作过程中能够实现较高的能效利用,降低能源消耗和运行成本。

启动和停止可靠是指电动机能够在各种工作条件下可靠启动和停止,避免因电机故障引起的停机或损坏。

运行平稳是指电动机在工作过程中转速平稳,振动和噪音较小,保证了电动机和设备的安全运行。

2.3 应用领域单相电容运转异步电动机的标准系列在家庭和工业领域有着广泛的应用。

在家庭领域,它常用于各种家用电器,如空调、洗衣机、电风扇等。

单相双值电容异步电动机的原理

单相双值电容异步电动机的原理

单相双值电容异步电动机的结构原理、工作原理、接线图
石如东2015年7月3日
单相双电容电动机称为单相双值电容异步电动机,属于电容分相原理单相电动机。

1、结构原理:
电容分相电动机的转子绕组是浇筑成型的鼠笼式,定子上饶有2组空间上相差90°的启动绕组B和工作绕组A,从而获得电角度ω为90°的两相交变电流,保证旋转磁场的形成条件。

(如图一所示)
2、工作原理:
电容分相电动机通过电容移相作用,将单相交流电分离出另一相相位差90度的交流电,获得两相交变电流并分别送入2个绕组。

工作原理流程如下:定子绕组通入电角度相差90°的两相电流→定子上形成旋转磁场→转子切割磁力线产生感应电流→感应电流产生旋转磁场→转子磁场与定子磁场相互作用→转子转动。

旋转磁场形成原理见图二
3、接线接线原理图:
图三为不分主副绕组的电动机接线图,图四为分主副绕组的电动机接线图。

毕业设计 单相电容运转异步电动机

毕业设计   单相电容运转异步电动机

哈尔滨理工大学毕业设计题目:单相电容运转异步电动机院、系:荣成学院电气工程系*名:***指导教师:***系主任:王哈力2013年06月14日哈尔滨理工大学毕业设计(论文)评语哈尔滨理工大学毕业设计(论文)任务书单相电容运转异步电动机摘要单相感应电动机是利用交流电的单相电源供电的一类电机。

广泛应用于家用电器, 电风扇、电冰箱、洗衣机等;空调设备、电动工具、医疗器械及轻工设备中。

单相电容运转电动机,其最大特点是额定运行时的力能指标优良,与同容量的其它单相感应电动机相比较,它的重量较轻、体积较小、效率和功率因数高。

它特别适用于轻载起动和要求长期运行的场合,如洗衣机、空调设备等,是产量最大、应用最广泛的一类单相感应电动机。

因此,对单相感应电动机,尤其是电容运转式单相感应电动机进行研究,对于提高人们生活质量,推动科技进步以及节约自然资源及能源等,有着极大的价值及现实意义。

电角其结构特点是接在单相交流电源上的主副两绕组,在空间错开2/度,主绕组电感大,副绕组电路中串入运转电容器,转子上有笼型绕组。

起动及运行过程中,主副两绕组同时工作。

堵转转矩小,堵转电流小,有较高的效率及功率因数。

关键词:单相电容运转电动机;笼型转子;设计目录摘要 (I)第1章绪论 (3)1.1 课题背景 (3)1.1单相感应电动机 (3)1.1.1 单相感应电动机的发展背景 (4)1.1.2 单相感应电动机的研究目的及意义 (5)第2章单相异步电动机的结构及原理 (6)2.1 单相异步电动机的基本结构 (6)2.2 单相异步电动机的工作原理 (11)第3章单相电容运转异步电动机的分析和计算一 (17)3.1 额定参数和主要尺寸 (17)3.2 主绕组参数计算 (19)3.2.1 转子参数计算 (23)3.2.2 磁路计算 (24)3.3 副绕组计算 (27)3.4性能计算 (28)3.6启动计算 (32)第4章单相电容运转异步电动机的分析和计算二 (36)4.1 额定参数和主要尺寸 (36)4.2 主绕组参数计算 (38)4.2.1 转子参数计算 (42)4.2.2 磁路计算 (43)4.3 副绕组计算 (46)4.4性能计算 (48)4.6启动计算 (51)结论 (56)参考文献 (59)附录A英文参考文献 (60)附录B英文参考文献翻译 (63)第1章绪论1.1课题背景1.1单相感应电动机单相异步电机是一种只需使用单相电源供电,实现将电能转化为机械能的装置。

相电容运转异步电机工作原理及故障

相电容运转异步电机工作原理及故障

二、单相异步电机的基本结构
1、固定部分—定子;由定子铁芯、定子绕组和机座(壳)组成。 定子铁芯是电机磁路的一部分,一般由0.5mm硅钢片叠压而成,片与片之间相互绝缘,以减少涡流损耗。 定子绕组一般由高强度聚酯漆包线绕制而成。 机座(或机壳)一般由A3钢板冲制而成,大电机(单相)则是钢板卷筒后在与铸铝端盖配合而成,三相电机一般均为铸铁机座。 2、转动部分—转子:由转子铁芯、转子绕组(纯 铝)、转轴(45#碳结钢)组成。
03
负载输入电流:是指电动机在额定工作电压、额定电源频率、额定电容、带额定负载运行在额定转速下,所输入电机的电流。单位:A或mA。
01
额定负载输出功率:是指电动机在额定电压、额定电源频率、额定电容、带额定负载运行在额定转速下,轴伸所输出的有功功率。单位:W(瓦)
02
空调电动机常见的技术问题及解决方法
整机噪音及振动:电机噪音值在某一频段存在峰值,此噪音峰值频段与整机固有频率相接近或重合,形成共鸣、共振和整机噪音。整机预防及解决措施:在电机确认阶段将电机噪音峰值频段与整机固有频率错开(这就是一般情况下一次送样不能成功的原因之一,也是我们一般遵循的,只要是系统中的对电机有影响的零部件如支架和风轮风叶等的改变,就必须装整机做噪音等测试)电机,空调钣金件上加阻尼胶,调整风叶形状、增加电机支架刚性(如04年今年3月份汕头出现较多71S振动和噪音严重的问题,后将电机支架加强后上述现象全部消失)、电机安装脚上加胶垫,调整空调板金件的形状、厚度,调整电机极数、定转子的槽配合、定转子直径、定转子气隙、转子斜槽度、铁芯长度、轴承距离等。
噪音:电机噪音可分为机械噪音和电磁噪音。机械噪音通常由电机装配不良定、转子摩擦及轴承声等形成。电磁噪音通常由定、转子气隙不均匀或磁场过于饱和造成,定、转子气隙不均匀受装配零部件同轴度的影响较大,磁场过于饱受所设计功率较大电机的材料限制造成。噪音用分贝dB表示。

单相电容起动异步电动机

单相电容起动异步电动机

单相电容起动异步电动机单相电容起动异步电动机是一种常见的电动机类型,常被应用于家庭和商业设备中。

它具有结构简单、使用方便、成本低廉等优点,被广泛应用于空调、洗衣机、风扇等家电产品中。

本文将围绕单相电容起动异步电动机展开深入研究,从原理、应用、优缺点等多个角度进行全面评估,旨在帮助读者全面了解这一关键技术。

一、单相电容起动异步电动机的原理1. 工作原理:单相电容起动异步电动机通过引入一个启动电容器来解决单相电流无法产生旋转磁场的问题。

启动电容器在启动阶段提供较大的电流,产生一个较强的旋转磁场,将电动机带动起来。

启动完成后,电容器会自动断开,电动机转入运行阶段。

2. 电路结构:单相电容起动异步电动机的电路包括主电容器、辅助启动电容器和起动电梯开关。

主电容器用于提供恒定电流,辅助启动电容器用于启动时增加电流,起动电梯开关用于控制电容器的连接和断开。

3. 相位差:由于单相电流无法产生旋转磁场,所以需要通过启动电容器引入一个相位差。

相位差可以使得初始电流产生旋转磁场,从而使电动机得以启动。

启动完成后,相位差逐渐减少至零。

二、单相电容起动异步电动机的应用1. 家电产品:单相电容起动异步电动机广泛应用于家电产品中,如空调、洗衣机、风扇等。

它们通常需要启动较大的负载,而单相电容起动异步电动机能提供足够的启动扭矩,使得这些家电产品可以顺利启动。

2. 商业设备:除了家电产品,单相电容起动异步电动机还被广泛应用于商业设备中,如水泵、机床等。

这些设备在启动时也需要较大的启动扭矩,而这正是单相电容起动异步电动机的一大优点。

三、单相电容起动异步电动机的优缺点1. 优点:- 结构简单:单相电容起动异步电动机由于只有一个启动电容器,结构相对简单,易于制造和维修。

- 使用方便:启动和运行过程自动化,用户只需一键启动,无需复杂的操作和调整。

- 成本低廉:相比其他类型的电动机,单相电容起动异步电动机的制造成本较低,因此价格也相对较低。

异步电动机工作原理

异步电动机工作原理

异步电动机工作原理
异步电动机工作原理是基于电磁感应的原理。

该电动机由一个定子和一个转子组成。

定子是由三个相互分离的绕组组成,每个绕组都连接到不同的电源相位上。

这样,在三相交流电源的作用下,定子上会产生旋转磁场。

转子是一个导体鼠笼,通常由铝或铜制成。

当定子上的旋转磁场作用于转子上时,根据电磁感应的原理,转子中会产生感应电动势。

根据洛伦兹力的作用,感应电动势会使转子开始旋转。

然而,由于转子中的感应电流在开始时是零,所以转子不能立即跟随旋转磁场的变化而转动。

由于转子的转速低于旋转磁场的速度,所以定子的磁场不断在转子中变化,从而产生感应电动势。

这个感应电动势可以看作是一个反作用磁场,阻碍转子继续加速。

当转子的转速与旋转磁场的速度接近时,感应电动势减小,转子转速减缓。

当转子的转速与旋转磁场的速度完全一致时,感应电动势为零,转子达到了稳定工作状态。

总之,异步电动机工作的原理是通过在定子上产生旋转磁场,从而感应转子中的电动势,最终带动转子实现旋转。

在工作过程中,转子的转速会逐渐接近旋转磁场的速度并达到稳定状态。

单相电容运转异步电动机

单相电容运转异步电动机

2.外置电容
类型:电容起动电机-PSC 。四极、全封闭型、单轴承 输出功率:10-25瓦 安装方式:水平安装(倾斜角度+/-15º以内),根据需要可以设计为垂直安装或任意角度安装。 电 源:230V ,60/50HZ,其他输入电压可定制 旋转方向:从引线端看顺时针,逆时针,或正反转,可按需要定制。 轴 :标准设计轴径1/4“,轴伸前端为1/4“x 20螺纹。铸铁机壳电机也可选择轴径5/16“,带扁位或不 带扁位设计。根据需要可以反向出轴。 连 接 线:标准18号引线。端部可以是1/2“拨头,插头,环形端子,1/4”接插件或特殊接线端子,可 按客户要求定制。 应用于蒸发器及冷凝器这两种商用制冷设备。
输出功率(W) 4 5 6
9 14 16
1550 1550 1550
60/50 60/50 60/50
பைடு நூலகம்
115 230 115
1 1 1
26.00‐30.00 32.00‐38.00 38.79‐47.86
0.23 0.13 0.36
NA 1.0/450V 4.8/450V
单相电容运转异步电动机

外形图:
单相电容运转异步电动机

规格参数表:
转速 (RPM) 1550 1550 1550 频率(Hz) 60/50 60/50 60/50 电压(V) 115 115 115 230 转速 数 1 1 1 输入功率(W) 电流(A) 内置电容 14.10‐18.50 15.50‐20.5 21.00‐25.00 0.12 0.15 0.13 0.07 2.0/220V 2.0/220V 2.36/220 V 0.59/4 50V 3.36/220 V NA NA 外置电容 NA NA NA

电容运转异步电动机标准

电容运转异步电动机标准

电容运转异步电动机标准
电容运转异步电动机标准有以下几点:
1.频率:电容运转异步电动机的标准频率通常为50Hz或60Hz,分
别对应于国际上大部分国家和地区的电网标准频率。

2.额定电压:电容运转异步电动机的标准额定电压通常为220V、
380V或660V,分别对应于家庭用电、工业用电和高压用电。

3.额定功率:电容运转异步电动机的标准额定功率通常从几十瓦到
几千千瓦不等,可根据具体应用需求选择。

4.额定转速:电容运转异步电动机的标准额定转速通常为1500转/
分钟或3000转/分钟,分别对应于4极和2极电机。

双电容单相电机正反转原理

双电容单相电机正反转原理

双电容单相电机正反转原理
双电容单相电机是分相启动式单相异步电动机,又称为双值电容电机。

双电容单相电机正反转原理是利用两个电容器来改变电机的相位,从而实现正反转控制。

在正转时,通过一个电容器将电机的起动电流延迟一定时间,使电机能够顺利启动。

在反转时,通过另一个电容器将电机的相位反转,使电机反转运行。

双电容单相电机正反转控制方法有:
1.利用转换开关控制正反转。

2.利用电路板控制正反转。

3.利用PLC控制正反转。

双电容单相电机有一个笼式转子和定子,定子中嵌有一个主绕组线圈U1~U2(别名,运行绕组)和副绕组线圈Z1~Z2(别名,启动绕组)。

双电容单相电机有两个电容器,一个是启动电容,另一个是运行电容。

电机启动后,转速达到电机的额定转速,离心开关会断开启动电容,最后只有运行电容工作。

感应异步电机工作原理

感应异步电机工作原理

感应异步电机工作原理
电机是靠电磁感应工作的,通过线圈或磁通的变化产生磁场。

异步电机是靠异步电动机工作的,它的定子和转子之间不存在机械上的联系,而只有电磁上的联系。

在异步电动机中,定子上有一个旋转磁场,它随转子一起旋转,且同步旋转;转子上有一个固定磁场,它随定子一起旋转且异步旋转。

在同步旋转的磁场中,转子也做同步转动;而在异步转动的磁场中,转子却不受同步转速限制,而作与同步转速不同的旋转。

这种异步电动机称为感应异步电动机。

在异步电动机中,定子绕组和转子绕组既是相对独立的,又是互相联系的。

它们都有各自的电阻、电容和电感。

由于定子绕组内电流为恒定值(即在任何情况下都保持恒定不变),所以它
在转子上所产生的感应电动势也为恒定值。

当转子绕组中流过交流电时,由于转子绕组中存在着切割磁力线运动(即电磁感应)而产生电磁转矩。

在感应电动机中,电磁转矩是一个与转速成正比而与定子电压平方成正比的变量。

所以只有在转子转速较高时,才能获得较大的转矩。

—— 1 —1 —。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容运转异步电动机工作原理
电容运转异步电动机是一种在单相交流电源下工作的感应电动机。

它利用电容器作为启动电容和运行电容,以产生相位差的方式实现单相电源对三相电动机的启动和工作。

在启动时,启动电容器提供一个相位差,使电动机产生旋转磁场,进而启动电动机。

在工作时,运行电容器对电动机的功率因数进行改善,提高电机的效率和性能。

这种电动机结构简单、可靠性高、使用范围广泛,常用于家用电器、小型机械和农业机械等领域。

相关文档
最新文档