电梯控制系统设计方案
plc电梯控制系统设计例题
plc电梯控制系统设计例题本文将介绍一些PLC电梯控制系统的设计例题,帮助读者了解电梯控制系统的基本结构和原理,并掌握PLC编程技术和设计方法。
例题一:单层电梯控制系统设计设计一个单层电梯控制系统,实现电梯在不同楼层之间的运行和门的开关控制。
解决方案:该控制系统可以采用PLC作为控制器,搭配步进电机驱动电梯运行。
主要包括PLC控制器、上下行按钮、开关门按钮、步进电机、楼层显示器等组成。
PLC程序设计如下:1. 系统初始化,包括设定楼层总数、电梯初始位置、门的状态等。
2. 按钮输入检测,判断是否有楼层按钮被按下,如果有则确定运行方向。
3. 运行控制,根据电梯当前位置和目标位置确定运行方向和步数,控制步进电机驱动电梯运行。
4. 开关门控制,根据开关门按钮的输入信号控制电梯门的打开和关闭。
5. 楼层显示控制,根据电梯当前位置和楼层按钮的输入信号控制楼层显示器显示当前位置。
例题二:多层电梯控制系统设计设计一个多层电梯控制系统,实现多部电梯在多层之间的运行和门的开关控制。
解决方案:该控制系统需要考虑多部电梯之间的协调和优化,可以采用PLC 作为控制器,搭配变频器驱动电梯运行。
主要包括PLC控制器、上下行按钮、开关门按钮、变频器、电机、楼层显示器、调度算法等组成。
PLC程序设计如下:1. 系统初始化,包括设定楼层数、电梯数量、电梯初始位置、门的状态等。
2. 调度算法,根据乘客的呼叫和电梯的位置确定电梯的调度和运行方向。
3. 运行控制,根据电梯当前位置和目标位置确定运行方向和速度,控制变频器驱动电机运行。
4. 开关门控制,根据开关门按钮的输入信号控制电梯门的打开和关闭。
5. 楼层显示控制,根据电梯当前位置和乘客的呼叫信号控制楼层显示器显示当前位置。
以上是两个PLC电梯控制系统设计例题,希望能对读者有所帮助。
在实际应用中,需要根据具体情况进行调整和优化,提高电梯运行的效率和安全性。
plc五层电梯控制系统设计
PLC五层电梯控制系统设计1. 引言PLC(可编程逻辑控制器)是一种常用的工业控制设备,广泛应用于各个领域,包括电梯控制系统。
本文将介绍一种基于PLC的五层电梯控制系统设计方案。
2. 系统概述本电梯控制系统设计基于PLC控制器,能够实现电梯的安全运行和顺畅运行。
系统包括五层电梯控制逻辑设计,包括电梯的选择、调度、楼层显示等功能。
3. 五层电梯控制逻辑设计3.1 选择电梯电梯系统中可能存在多个电梯。
在发出上行或下行请求时,PLC控制器通过算法选择合适的电梯来响应请求。
选择电梯的算法可以基于电梯的当前楼层、运行方向和负载情况等因素进行决策。
选定电梯后,控制器将指令发送给该电梯。
3.2 调度电梯一旦选择了合适的电梯,PLC控制器将执行调度算法来确定电梯的运行顺序。
调度算法可以基于楼层请求的优先级和电梯的当前位置进行决策。
调度完成后,控制器将发送相应指令给电梯,使其按照正确的顺序运行到相应楼层。
3.3 控制电梯运行PLC控制器负责控制电梯的运行和停止。
根据接收到的指令,控制器将开启或关闭电梯的门,并控制电梯的上升和下降运动。
控制器还需要确保电梯在运行过程中不超过额定负载,并监控相关传感器以确保电梯的安全运行。
3.4 楼层显示电梯的楼层显示是用户与电梯交互的一个重要部分。
PLC控制器需要根据电梯的当前位置和运行方向来更新楼层显示。
楼层显示可以包括数字显示或者灯光指示器,用于指示当前运行到的楼层。
4. 总结本文介绍了基于PLC的五层电梯控制系统设计方案。
系统通过选择电梯、调度电梯、控制电梯运行和更新楼层显示等功能,实现了电梯的安全和顺畅运行。
PLC控制器作为系统的核心,负责控制和监控电梯的运行状态,为用户提供便捷的交通工具。
以上就是PLC五层电梯控制系统设计的相关内容。
通过合理的设计和实施,该系统能够提供可靠的电梯运行和舒适的使用体验。
电梯控制系统说明及方案(tcp联网)
电梯楼层控制系统方案编制单位:联系地址:邮箱:公司网站:全国免费服务电话:目录第一章公司简介 (3)第二章品牌及产品优势 (4)第三章电梯楼层控制系统描述 (5)第四章系统设计 (8)第五章电梯楼层控制系统示意图 (10)第六章电梯楼层控制系统设备组成 (13)第七章配套软件综述 (17)第八章公司简介和资质证书 (21)第九章施工、培训、服务 (22)第十章设备清单与部分工程案例 (24)第一章公司简介安防行业知名门禁梯控供应单位,是我国较早从事非接触式IC卡应用产品研究开发、组织生产、推广销售及服务为一体的安防设备高新科技类企业.作为国内领先的安防设备领导厂商之一,一直致力于打造民族安防品牌,使中国安防设备屹立于世界品牌之林。
强大的公司实力公司在创立最初,重视产品的开发,并统一意识走产品开发、创新路线。
公司产品从设计开始就严格执行ISO9001标准,严把质量关。
公司具有优秀的开发团队,具备完善的软件和硬件的开发设计能力,可为各种应用场所提供全面的系统解决方案,并对外提供二级开发包。
完善的产品体系经过多年的研发创新,陆续开发出完善的门禁梯控产品体系,主要包括:门禁梯控系统软件、门禁控制器、电梯楼层控制器、门禁一体机、门禁读卡器、梯控专用读卡器、电子锁及其他门禁梯控配套设备,形成比较完善的产品体系,更加方便工程需求,更加方便服务广大工程商。
健全的质量管理体系产品先后获得国家公安部的安防型试检测();企业生产标准登记备案;广东省电子产品检测证书。
覆盖全国的销售、服务网络属下北京、上海、哈尔滨、吉林、沈阳、天津、济南、乌鲁木齐、石家庄、太原、西安、郑州、合肥、武汉、长沙、南京、杭州、厦门、福州、大连、重庆、成都、昆明、南宁、贵阳、兰州等一级城市营销服务机构。
并开通全国免费服务电话:,为客户得到周到、全面的服务提供保障。
大量的典型案例各系列产品广泛运用到银行、监狱、军队、机场、公检法、交通、中高档住宅商业社区、大型工厂、国企、石油、化工、政府部门、酒店等领域的数千个工程项目中得到应用,并远销海外多个国家和地区,得到国内外客户的认可。
电梯控制系统施工方案
电梯控制系统施工方案一、引言电梯控制系统是现代城市交通运输中不可或缺的一部分,其稳定性与安全性对于人们的出行至关重要。
本文将介绍电梯控制系统的施工方案,包括项目背景、需求分析、系统设计、施工步骤等内容。
二、项目背景随着城市化进程的加快,人们对于高层建筑及公共场所的需求不断增加,电梯作为解决垂直交通问题的重要工具,在现代生活中得到了广泛应用。
然而,电梯控制系统作为电梯的核心部分,对于安全和效率的要求也越来越高。
因此,本项目旨在设计一套高效、可靠的电梯控制系统,以满足用户在不同场景下的需求,并提供良好的用户体验。
三、需求分析1. 功能需求•电梯调度:根据乘客的请求,将电梯分配到合适的楼层,以提高电梯的运行效率。
•紧急救援:在紧急情况下,能够快速响应并切断电梯的供电,保障乘客的安全。
•数据统计与分析:收集电梯的运行数据,并进行分析,以优化电梯的运行策略。
2. 性能需求•快速响应:电梯系统需要能够快速响应乘客的请求,以减少等待时间。
•高可靠性:电梯系统需要具备较高的稳定性和可靠性,以保障乘客的安全。
•低能耗:电梯系统需要在提供良好服务的同时,尽量减少能源的消耗。
3. 界面需求•易操作性:电梯系统的界面应简洁明了,方便用户进行操作。
•可视化展示:电梯系统应提供直观、清晰的数据展示界面,方便进行数据分析和决策。
四、系统设计1. 硬件设计•控制器:负责电梯的调度和运行控制。
•按钮面板:供乘客选择目标楼层。
•传感器:用于感知乘客的进出和电梯运行状态。
•电气系统:包括电动机、电源和线路等组成的电气设备。
2. 软件设计•控制算法:根据乘客需求和电梯状态进行调度和运行控制。
•数据存储和处理:用于存储电梯的运行数据,并进行分析和决策。
•用户界面:提供用户友好的操作界面和数据展示界面。
五、施工步骤1. 前期准备•完成项目立项和需求分析,制定施工方案和进度计划。
•确定所需材料和设备,并进行采购准备工作。
2. 硬件安装•安装电梯控制器和相关的电器设备。
电梯梯控系统施工方案百度
电梯梯控系统施工方案1. 引言电梯梯控系统是指通过密码、指纹等验证方式来管理电梯使用权限的一种系统。
本文将介绍电梯梯控系统施工方案,详细说明设计和实施的步骤。
2. 系统设计2.1 功能需求根据业主的需求,电梯梯控系统应具备以下功能:•身份验证:通过密码、指纹等方式验证用户身份。
•权限管理:设置不同用户的权限级别,例如普通用户和管理员。
•记录日志:记录每次使用电梯的用户信息和时间。
•报警功能:在紧急情况下,用户可以通过系统触发报警。
2.2 硬件选型根据功能需求,选用以下硬件设备:•电梯控制器:控制电梯的运行和权限验证。
•读卡器:用于读取用户的身份信息。
•感应器:用于检测乘客进出电梯。
•门禁系统:控制电梯门的开关。
•报警装置:用于触发报警。
2.3 软件设计根据硬件设备的选型,设计相应的软件系统:•用户管理:管理用户信息,包括身份验证方式、权限等级等。
•记录管理:记录每次使用电梯的用户信息和时间。
•报警管理:处理用户触发的报警事件。
3. 施工实施3.1 硬件安装根据系统设计,进行硬件设备的安装和布线工作。
主要包括以下步骤:1.安装电梯控制器,并根据制造商提供的说明书连接相关设备。
2.安装读卡器和感应器,确保其位置合理且能够正常工作。
3.安装门禁系统,与电梯控制器进行连接,并调试门的开关功能。
4.安装报警装置,测试其触发和报警功能是否正常。
3.2 软件配置根据系统设计,进行软件的配置和设置。
主要包括以下步骤:1.安装用户管理软件,并添加用户信息,设置各用户的身份验证方式和权限等级。
2.配置记录管理软件,确保每次使用电梯的用户信息和时间都能被准确记录。
3.配置报警管理软件,测试报警装置是否能够正常触发报警。
3.3 联调测试进行系统的联调测试,确保硬件设备和软件系统能够正常协同工作。
主要包括以下步骤:1.检查硬件设备的连接是否正确,确保每个设备都能正常工作。
2.测试身份验证功能,使用不同的验证方式验证不同用户的身份。
基于PLC五层电梯控制系统设计毕业设计
基于PLC五层电梯控制系统设计毕业设计电梯是现代城市中常见的一种交通工具,能够方便快捷地将人们从一楼运送到其他楼层。
而电梯的控制系统是电梯正常运行的关键,因此,设计一个基于PLC五层电梯控制系统成为了一个综合能力的考核项目,本文将对其进行详细设计。
1.系统功能需求:(1)正常运行:电梯需要能够根据用户的需求,无故障地运行并停靠在用户选择的楼层;(2)安全可靠:电梯需要具备各种安全保护措施,如过载保护、故障保护、电气保护等,确保乘坐者的安全;(3)节能环保:电梯需要在使用过程中尽可能地降低能源消耗,并且能够在不影响正常运行的情况下自动进入省电模式。
2.系统设计方案:(1)硬件设计:选择PLC作为控制器,具备输入输出接口、计算能力、通信功能等。
连接传感器,如楼层传感器、门开关传感器、超载传感器等,用于感知外部环境。
(2)软件设计:编写电梯控制程序,采用状态机的方式来描述电梯的运行状态,根据楼层请求和传感器信号来实现电梯的运行和控制。
编写安全保护程序,当发生故障或超载时能及时停止运行,防止事故发生。
3.系统工作流程:(1)初始化:电梯处于待机状态,等待用户按下楼层按钮。
(2)运行状态:根据用户的楼层请求,电梯进入运行状态,控制电梯上升或下降到指定的楼层。
(3)停靠状态:当电梯到达用户选择的楼层后,触发门开关传感器,电梯停靠在该楼层,打开门,等待乘坐者上下电梯。
(4)故障保护:在电梯运行过程中,如发生故障或超载,电梯控制程序会实时检测到并响应,立即停止电梯运行,防止事故发生。
4.系统优化:(1)节能模式:当电梯长时间无人使用时,系统自动进入节能模式,关闭一部分电梯设备,降低能耗。
(2)自适应调度:根据电梯运行状态和楼层请求情况,动态调整电梯的运行策略,提高运行效率。
(3)可视化界面:通过触摸屏等设备,提供给用户一个直观的界面,显示电梯当前的状态和楼层信息。
通过以上设计方案,基于PLC的五层电梯控制系统能够满足电梯正常运行、安全可靠、节能环保等功能需求。
基于PLC的四层电梯控制系统设计
基于PLC的四层电梯控制系统设计1. 系统概述:基于PLC的四层电梯控制系统,是一种实时、高效、安全的电梯控制系统。
该系统主要由电梯控制器、PLC、控制终端、电动机等组成,并且采用了PLC控制技术,通过对电梯行驶方向、位置等参数的监测,实现电梯的精确定位和控制。
2. 系统设计:2.1 系统组成该电梯控制系统主要由以下组成部分:(1)PLC主控制器PLC主控制器是整个系统的核心部分,它通过处理外部输入信号和用户操作,决定电梯的运行状态和控制命令,并且实现对电梯各个位置的定位控制。
(2)控制终端控制终端通过PLC主控制器和电动机之间的连接,实现对电梯的控制和监测。
同时,它也是用户与电梯系统进行交互的主要界面。
(3)电动机及驱动系统电动机及驱动系统是电梯的动力来源,它通过PLC主控制器的控制,实现电梯的运行和停止。
(4)传感器传感器主要用于感知电梯的运行状态和位置信息,提供全面准确的数据给PLC主控制器,从而实现对电梯状态的精确控制。
2.2 系统设计方案该系统的工作流程如下:(1)当乘客按下外部调用电梯按钮之后,PLC控制器将读取外部输入信号,并根据该信号处理动作逻辑。
(2)PLC控制器将根据上一步的逻辑,决定电梯是否需要停靠来接乘客,并自主决定电梯行驶的方向。
(3)当电梯到达指定楼层后,PLC控制器将接收并处理内部请求信号,并决定是否停止开门,如果需要停止开门,电梯门会打开等待乘客上下。
(4)当乘客确认自己所需电梯,PLC就会自动判断该乘客应该搭乘哪部电梯,并通过相应的操作将乘客送到目的地。
(5)当电梯到达目的地时,PLC控制器将再次接收到请求信号,并将按照相应的逻辑,进行停靠、开关门等操作。
3. 系统特点:3.1 可靠性高该系统采用PLC控制技术,能够对电梯系统进行全面监测和控制,并能够实时判断电梯的状态,确保电梯系统的可靠性和安全性。
3.2 操作简单该系统使用简单,并且每层楼都配有电梯调用按钮和控制终端,乘客可以轻松调用电梯,同时也可以方便地选择自己所需的目的地。
基于PLC的电梯群控的方案设计
基于PLC的电梯群控的方案设计电梯群控是指通过集中管理和控制多台电梯的运行,提高电梯系统的效率和安全性。
而基于PLC(可编程逻辑控制器)的电梯群控方案,可以实现对电梯运行的全面管理和监控,提高电梯系统运行的可靠性和稳定性。
下面将详细介绍基于PLC的电梯群控的方案设计。
1.系统结构设计:基于PLC的电梯群控系统主要由五部分组成:控制中心、电梯PLC控制器、电梯操作盘、电梯轿厢和楼层选择器。
其中,控制中心作为整个系统的中枢,负责对电梯的控制和调度,与电梯PLC控制器进行通信。
电梯PLC控制器负责实时监测电梯的各项参数,并控制电梯的运行。
电梯操作盘用于乘客的呼梯和设定楼层。
电梯轿厢通过电梯PLC控制器接收到的指令进行运行。
楼层选择器负责显示当前楼层信息和接收乘客的呼梯需求。
2.控制中心的功能设计:控制中心是电梯群控系统的核心部分,它负责实时监测电梯的运行状态、楼层选择器的状态和乘客的呼梯需求,根据这些信息制定调度策略,并将指令发送给相应的电梯PLC控制器。
控制中心还对电梯运行过程中出现的异常情况进行监测和处理,如故障报警、紧急停车等。
3.电梯PLC控制器的功能设计:电梯PLC控制器负责实时监测电梯的状态,如轿厢位置、速度、负载等,并根据来自控制中心的指令控制电梯的运行。
在接收到呼梯指令后,电梯PLC控制器会将呼梯楼层的信息与当前电梯位置进行比较,选择合适的电梯进行响应。
同时,它还能够监测电梯运行中的故障情况,并及时报警,保障乘客的安全。
4.电梯操作盘和楼层选择器的功能设计:电梯操作盘用于乘客的呼梯和设定楼层,通过与控制中心的通信,将乘客的呼梯需求传送给控制中心。
楼层选择器负责显示当前楼层信息,并接收乘客的呼梯需求,将这些信息传送给控制中心。
5.系统通信设计:为了实现各个部分之间的信息传递和协调工作,设计合适的通信方式非常重要。
通常可以使用RS485或以太网等方式进行通信,以实现实时高效的数据传输。
基于PLC的电梯群控方案设计可以实现对电梯系统的全面管理和监控,提高电梯系统的运行效率和安全性。
梯控方案
梯控系统概述1、何为梯控系统?智能电梯管理系统又称电梯门禁系统(简称梯控系统),是采用先进卡片读写技术,自动控制技术,传感技术,利用计算机网络平台,对电梯使用进行全面的自动化管理,做到了只有合法人员按照特定的规则合理的使用,避免了电梯的混乱使用,提高电梯用户的安全性和节能性。
给物业管理也带来极大的便利。
2、电梯智能管理系统设计原则※建筑智能化系统工程设计管理暂行规定》建设部1997※《民用建筑电气设计规范》(JGJ/T16-92)建设部※《智能建筑设计标准》(DBJ08-4-95)上海市建委1996※《建筑和建筑群综合布线工程设计规范》中国工程建设标准协会1997※建筑和建筑群综合布线工程施工及验收规范》中国工程建设标准协会1997※《大楼通信综合布线系统》(UD/T926)邮电部1997※《火灾自动报警系统设计规范》国家计委1988※所有计算机硬件系统均符合下述标准:电磁学规范:FCC Class B或CISPR22 ClassB 安全规范:UL Listed(美国)或EN60950(国际)3、 IC卡电梯管理系统组成IC卡电梯管理系统就是设备之间不用联网,它既保留了联网型梯控系统的全部优点,同时解决了布线所带来的难题,因为所有系统不用布线,每个电梯是一个独立的控制单元,互不干扰,安装使用简单,这套系统用IC卡里的数据管理电梯门禁设备,物业公司通过软件和发卡机,对IC卡进行不同的授权来实现电梯门禁管理。
因此倍受高档小区的青睐。
下面就介绍一下IC卡电梯管理系统的组成发卡器IC卡电梯管理系统(梯控系统),它采用先进的非接触式IC卡读写技术,自动控制技术,传感技术,利用计算机网络平台,对电梯使用进行全面的管理,本系统抛弃了以往电梯控制器复杂的安装方法和控制模式,简单有效.所有控制器可以通过一张密钥卡脱机设置.可根据使用者的权限对其可以通行的通道和有效时间进行设置,安装简单方便. 本系统不仅适用于高层小区,写字楼,博物馆,办公楼等场所的电梯管理,还可以应用到其它出入口控制系统中,改造后的电梯具有优秀的保密性及安全性。
梯控系统施工方案
梯控系统施工方案梯控系统施工方案一、项目概述梯控系统是一种通过电子技术和通信技术实现对电梯的管理和控制的系统。
本项目旨在为客户提供一套安全、高效的梯控系统,并满足客户对电梯管理和控制的需求。
二、方案设计1. 梯控设备选型:根据客户需求,选用可靠的梯控设备供应商提供的设备,确保系统的稳定性和可靠性。
2. 布线设计:根据建筑的结构和布局,合理规划梯控设备的布线,保证信号传输的有效性和稳定性。
3. 控制中心搭建:梯控系统的控制中心是整个系统的核心,设计并搭建一个高可靠性的控制中心,保证系统的稳定运行。
4. 门禁管理系统集成:将门禁管理系统与梯控系统进行集成,实现对电梯和门禁的一体化管理和控制。
5. 报警系统集成:将报警系统与梯控系统进行集成,实现对电梯异常情况的及时报警和处理。
6. 数据管理系统集成:将数据管理系统与梯控系统进行集成,实现对电梯使用数据和报警数据的统一管理和分析。
7. 用户权限管理:设置不同用户的权限级别,实现对不同用户的不同权限的管理和控制。
三、施工步骤1. 制定施工计划:根据项目需求和合同约定,制定详细的施工计划,包括工期、施工顺序、施工资料准备等。
2. 材料采购和准备:根据设计方案和施工计划,采购梯控系统所需的材料,并进行质量检测和验收。
3. 梯控设备安装:按照设计方案和施工图纸,在电梯和建筑的相应位置安装梯控设备,并确保安装牢固、正确连接。
4. 布线和接线:根据设计方案,进行布线和接线工作,保证信号传输的畅通和稳定。
5. 控制中心搭建:搭建控制中心,安装相关软件和硬件设备,配置网络连接和数据库。
6. 系统调试和联调:对梯控系统进行调试和联调,确保各个部分的正常运行和协同工作。
7. 人员培训:对客户指定的人员进行梯控系统的使用培训,包括操作、维护和故障排除等。
8. 系统验收:完成施工后,按照合同约定进行系统验收和交付。
四、质量控制1. 严格按照设计方案和施工图纸进行施工,确保施工质量和安全。
毕业设计三层电梯PLC控制系统设计
毕业设计三层电梯PLC控制系统设计三层电梯PLC控制系统是一个非常重要的设计任务,本文将提供一个完整的设计方案,包括电梯系统的工作原理、硬件设计、PLC编程和测试方案。
1.电梯系统工作原理:电梯系统由控制系统、传感器、电机和电梯轿厢组成。
控制系统通过传感器检测电梯轿厢的位置,并根据乘客的操作信号控制电机的运行,使电梯能够安全、快速地运行。
2.硬件设计:2.1PLC选择:为了实现电梯系统的智能化控制,我们建议选择一款高性能、稳定可靠的PLC。
具体选择PLC的型号应根据项目需求进行决定。
2.2电机控制:电梯轿厢的运行主要通过电机实现。
我们可以使用变频器来控制电机的速度,并通过PLC输出控制信号给变频器。
2.3位置检测:电梯轿厢的位置可以通过霍尔传感器或光电传感器来检测。
这些传感器将传感器信号传输给PLC,从而实现对电梯位置的监控和控制。
2.4乘客操作:电梯的乘客操作可以通过按钮或触摸屏来实现。
按钮和触摸屏将操作信号传输给PLC,PLC通过判断信号类型以及当前电梯的状态来进行相应的控制。
3.PLC编程:根据电梯系统的需求,我们可以使用Ladder Diagram或者其他编程语言对PLC进行编程。
3.1初始化:当电梯系统刚启动时,PLC可以进行一系列的初始化操作,包括检测电梯轿厢的初始位置、设置电梯轿厢的初始方向以及初始化电梯轿厢上的按钮状态。
3.2电梯运行:在正常运行状态下,PLC会周期性地检测电梯位置,并根据乘客的操作信号来判断电梯的运行方向和目标楼层。
PLC会控制电机的运行,使电梯能够顺利到达目标楼层。
3.3紧急情况:在紧急情况下,如火灾或停电,PLC应能够切换到紧急模式。
在紧急模式下,PLC会使电梯立即停止并打开轿厢门。
4.测试方案:在设计完成后,我们需要对电梯系统进行各种测试以确保其正常运行。
4.1功能测试:测试电梯系统的各种功能,包括楼层选择、紧急停止、故障诊断等。
4.2安全性测试:测试电梯在紧急情况下的应急响应能力,包括火灾或停电情况下的反应速度和系统稳定性。
电梯控制系统课程设计
电梯控制系统课程设计一、课程目标知识目标:1. 让学生理解电梯控制系统的基础知识,掌握其工作原理和关键部件的功能。
2. 使学生掌握电梯控制系统的设计流程,了解不同类型电梯的控制策略。
3. 帮助学生了解电梯控制系统相关的安全规范和标准。
技能目标:1. 培养学生运用所学知识分析和解决实际电梯控制问题的能力。
2. 提高学生设计电梯控制系统的方案并进行模拟调试的能力。
3. 培养学生查阅资料、团队协作和沟通表达的能力。
情感态度价值观目标:1. 培养学生对电梯控制系统及工程技术领域的兴趣,激发他们的求知欲。
2. 培养学生严谨认真、一丝不苟的科学态度,提高他们的工程素养。
3. 引导学生关注电梯安全,增强社会责任感和使命感。
分析课程性质、学生特点和教学要求,将课程目标分解为以下具体学习成果:1. 学生能够描述电梯的基本结构、工作原理及关键部件的作用。
2. 学生能够根据实际需求,设计合适的电梯控制方案并进行模拟调试。
3. 学生能够通过查阅资料、团队协作,撰写电梯控制系统设计报告。
4. 学生能够在课堂上积极参与讨论,主动分享自己的观点和经验。
5. 学生能够关注电梯安全,提高安全意识,自觉遵守相关规范和标准。
二、教学内容本章节教学内容依据课程目标,紧密结合课本,确保科学性和系统性。
具体安排如下:1. 电梯基本结构与原理- 介绍电梯的组成部分,如曳引机、导轨、轿厢、对重等。
- 阐述电梯的工作原理,包括曳引、导向、轿厢和对重平衡等。
2. 电梯控制系统设计流程- 分析电梯控制系统的设计步骤,如需求分析、方案设计、硬件选型、软件编程等。
- 结合教材章节,讲解不同类型电梯的控制策略。
3. 电梯控制系统的安全规范与标准- 引导学生了解我国电梯安全规范和相关标准。
- 分析电梯控制系统在设计过程中应考虑的安全因素。
4. 电梯控制系统设计与模拟调试- 指导学生运用所学知识,设计简单的电梯控制方案。
- 组织学生进行模拟调试,验证方案的可行性。
电梯控制系统设计方案
电梯控制系统设计方案随着城市建设规模的不断扩大,电梯在现代生活中扮演着越来越重要的角色。
如何设计一套高效、安全的电梯控制系统成为了电梯制造商和建设者们头疼的问题。
本文将从需求分析、系统架构设计、算法选择等方面,来详细探讨电梯控制系统的设计方案。
一、需求分析在开始设计电梯控制系统之前,我们需要明确系统应该满足的需求。
电梯控制系统的主要目标是提高电梯的运行效率,减少乘客的等待时间。
针对这一需求,我们需要考虑以下几个方面:1.1 考虑到乘客体验,系统应该尽可能减少乘客在楼层等待的时间,提供快速、安全的电梯服务。
1.2 系统需要根据实际楼层情况,考虑到楼层的高度、电梯的运行速度等因素,合理地分配电梯资源。
1.3 系统应该具备良好的容错性,能够应对电梯故障、断电等紧急情况,保证乘客的安全。
1.4 系统还应该考虑到电梯的节能问题,通过优化电梯的运行策略,减少能源消耗。
二、系统架构设计在明确了需求之后,我们需要设计系统的整体架构。
一个典型的电梯控制系统包括以下几个核心组件:2.1 调度算法:负责根据乘客请求、电梯运行状态等信息,决定最优的电梯调度策略。
常用的调度算法包括先来先服务、最短寻找时间、最短寻找路径等。
2.2 电梯控制器:负责控制电梯的运行,同时和调度算法进行通信,接收调度指令并执行。
电梯控制器需要实时监测电梯运行状态,包括位置、速度等信息。
2.3 乘客界面:提供乘客呼叫电梯的接口,乘客可以通过按钮或者触摸屏等方式进行呼叫。
2.4 数据传输和存储:负责电梯状态数据的传输和存储,为调度算法提供实时的电梯运行信息。
三、算法选择在电梯控制系统的设计中,算法的选择至关重要。
不同的算法会对系统的性能产生很大的影响。
以下是几种常用的算法:3.1 先来先服务算法(FCFS):根据乘客的呼叫顺序,依次服务乘客的需求。
这种算法简单直观,但效率较低。
3.2 最短寻找时间算法(SSTF):根据电梯的当前位置和乘客的目标楼层,决定最短的运行路径。
电梯控制系统设计方案
电梯控制系统设计方案一、引言电梯是现代建筑中不可或缺的交通工具,其安全性和效率直接关系到使用者的生命财产安全以及舒适度。
为了确保电梯运行的安全可靠和高效快速,一个科学合理的电梯控制系统设计方案至关重要。
本文将详细介绍一个完善的电梯控制系统设计方案,以确保电梯运行的安全、高效和舒适。
二、1. 电梯控制器电梯控制器是整个电梯控制系统的核心,它通过对电梯的运行状况进行实时监测和控制,实现电梯的调度和运行。
电梯控制器应采用先进的微处理器技术,具有快速响应、稳定可靠的特点,能够准确控制电梯的速度、运行方向和停靠楼层等参数,确保电梯运行的安全性和效率。
2. 电梯调度算法电梯调度算法是电梯控制系统中至关重要的部分,它直接影响到电梯的等待时间和运行效率。
在设计电梯调度算法时,应当考虑到不同楼层的乘客需求、电梯当前的位置和运行状态等因素,通过合理的算法规划电梯的运行路径,减少等待时间和提高运行效率。
3. 电梯监控系统电梯监控系统是用于监测电梯运行状态和实时反馈信息的重要组成部分,它能够及时发现电梯的故障和异常情况,并通过报警系统提醒维修人员进行处理。
电梯监控系统应具有稳定可靠的性能,确保电梯运行的安全性和可靠性。
4. 电梯安全系统电梯安全系统是电梯控制系统中必不可少的一部分,它包括电梯的防坠落装置、紧急停车系统、救援系统等,旨在确保电梯运行过程中乘客和设备的安全。
电梯安全系统应能够及时响应各类紧急情况,并采取有效措施保障乘客的安全。
5. 电梯维护系统电梯维护系统是用于电梯的定期检修和维护的重要部分,它能够对电梯的各项参数进行监测和调整,及时发现和解决潜在故障,确保电梯的正常运行。
电梯维护系统应具有灵活的功能和便捷的操作界面,方便维修人员对电梯进行维护和管理。
三、总结综上所述,一个科学合理的电梯控制系统设计方案对于电梯运行的安全、高效和舒适至关重要。
通过采用先进的技术和系统设计,合理规划电梯控制器、调度算法、监控系统、安全系统和维护系统等部分,可以确保电梯在运行过程中保持安全、高效和可靠。
基于PLC的电梯控制系统设计-控制方案
基于PLC的电梯控制系统设计-控制方案1. 引言电梯是现代建筑中必不可少的交通工具之一。
在电梯系统中,控制方案起着至关重要的作用,决定了电梯的安全性、效率和性能。
本文介绍了基于可编程逻辑控制器(PLC)的电梯控制系统设计方案。
2. 系统架构基于PLC的电梯控制系统主要由三个子系统组成:楼层选择子系统、电梯调度子系统和电梯执行子系统。
2.1 楼层选择子系统楼层选择子系统负责接收乘客在楼层上选择电梯的请求,并将其发送给电梯调度子系统。
该子系统通常由按钮面板和楼层选择算法组成。
2.2 电梯调度子系统电梯调度子系统根据楼层选择子系统发送的请求,决定哪个电梯应该响应,并将相应的指令发送给电梯执行子系统。
该子系统通常包括调度算法和通信模块。
2.3 电梯执行子系统电梯执行子系统负责实际控制电梯的运行。
它接收来自电梯调度子系统的指令,并根据指令来控制电梯的运行方向、开关门等操作。
该子系统通常由电机驱动和传感器组成。
3. 控制逻辑电梯控制系统的控制逻辑包括以下几个方面:3.1 乘客请求处理当乘客在楼层上按下按钮时,楼层选择子系统接收到请求,并将其发送给电梯调度子系统。
电梯调度子系统根据调度算法决定哪个电梯应该响应该请求,并将相应的指令发送给电梯执行子系统。
3.2 电梯调度电梯调度子系统根据电梯的当前状态和乘客请求,决定电梯的调度优先级。
调度算法可以考虑因素如电梯的位置、当前负载和乘客的等待时间等。
3.3 电梯运行控制电梯执行子系统接收到电梯调度子系统发送的指令后,根据指令来控制电梯的运行方向、开关门等操作。
它可以通过电机驱动来控制电梯的运行,并通过传感器来监测电梯的状态。
4. 安全性考虑在电梯控制系统设计中,安全性是至关重要的考虑因素。
以下是几个常见的安全性考虑:4.1 速度限制电梯的运行速度应该限制在安全范围内,以避免意外事故的发生。
在设计电梯控制系统时,应该考虑设置最大速度,并在必要时使用速度传感器进行监测。
三层电梯PLC控制系统设计
三层电梯PLC控制系统设计一、引言随着城市化进程的加快,居民楼、商业中心和公共场所的电梯使用越来越广泛,因此电梯安全和效率成为人们关注的重点。
在这种背景下,电梯控制系统的设计和优化显得尤为重要。
本文将针对三层电梯的PLC控制系统设计进行详细阐述,以提高电梯运行的安全性和效率。
二、设计思路本文设计的三层电梯PLC控制系统,主要包括以下几个模块:按钮输入模块、电梯状态控制模块、电机控制模块和门控制模块。
其中,按钮输入模块负责接收乘客的指令,电梯状态控制模块负责判断电梯当前状态并进行相应的控制,电机控制模块负责控制电梯的运行方向和速度,门控制模块负责控制电梯门的开合。
整个系统的设计思路是基于有限状态机的思想,通过不同的状态切换实现电梯的安全和顺畅运行。
三、具体设计方案1.按钮输入模块按钮输入模块包括上行按钮、下行按钮和门控制按钮。
当乘客按下相应的按钮时,PLC将接收到按钮信号,并将其转换为相应的电梯指令。
在设计时,要考虑到按钮输入的抗干扰性和稳定性,以确保系统能够稳定运行。
2.电梯状态控制模块电梯状态控制模块主要负责判断电梯当前状态并进行相应的控制。
状态包括电梯的位置、运行方向和运行状态。
通过传感器检测电梯的位置和运动方向,并根据当前状态和乘客的指令进行状态切换和控制操作。
3.电机控制模块电机控制模块负责控制电梯的运行方向和速度。
根据电梯的当前状态和乘客的指令,确定电机的运行方向和速度,并通过PLC控制电机的启停和转向。
4.门控制模块门控制模块负责控制电梯门的开合。
通过传感器检测电梯门的状态,并根据指令控制电梯门的开合。
在设计时,要考虑到门的安全性和稳定性,以避免发生夹人等意外情况。
四、系统优化方案1.添加紧急停止按钮:为提高电梯的安全性,可以在电梯内外设置紧急停止按钮,一旦发生紧急情况,乘客可以通过按下按钮来停止电梯的运行。
2.增加故障检测功能:在系统中增加故障检测功能,及时发现系统故障并进行自动报警或停机处理,以减少事故的发生。
基于PLC的双速电机电梯控制系统设计
基于PLC的双速电机电梯控制系统设计电梯系统的总体控制方案电梯是现代高层建筑中必不可少的起重运输设备,本设计是采用PLC控制实现电梯运行中的各项控制要求;压缩模型是一个五层的客货两用电梯,采用交流伺服电动机作为拖动动力源,通过交流伺服电动机的正反转实现轿厢的上下运行;每一楼层均设有平层开关、上下行唤起信号按钮并设置有轿厢冲顶、冲底保护行程开关;运行中,轿厢开门,关门状态有不同的LED显示并采用七段LED数码管实现楼层显示;电梯模型与主控制器之间采用接插件连接;电梯运行状态由三档位钥匙开关实现,有司机,无司机或检修选择并能按下消防按钮使电梯进入消防状态;整个电梯运行程序可分为以下几个阶段:确定运行状态—→确定运行方向—→自动关门—→起动运行—→停站—→自动开门本设计的电梯控制系统的要求如下:1.有司机,无司机或检修工作状态的要求以上三种状态可以通过三位钥匙开关选择以实现各自的控制要求;其主要区别是在有司机工作状态下通过上、下行启动按钮来控制电梯;而在无司机状态下电梯开门后约4—6s自动开门,无需按钮动作;在检修状态可以通过按钮实现电动开、关门;按下带锁消防按钮,电梯进入消防工作状态;按下超载保护按钮或紧停按钮电梯便进入超载保护状态或启用急停保护功能;2. 自动定向要求在有、无司机状态利用第一登记指令或召唤信号所指层楼数N指或N召与轿厢所处的层数N′轿进行比较,以此确定电梯当前的运行方向;若N〉N′则电梯上行,反之则下行;在有司机状态下,指令信号有优先权,即当电梯停站时,从电梯自动开门开始到自动关门结束前,指令信号优先于召唤信号,在这段时间内,召唤信号不参与定向控制;3. 轿厢开门、关门要求电梯平层以后按下开门或关门按钮电梯自动开关门,如果无人按钮在延时一段时间后电梯自动开关门;4. 层楼控制要求通过层楼行程开关能反映并控制轿厢所处的层楼位,可采用七段数码管来显示;5. 启动运行控制要求1有司机工作状态:在电梯确定运行方向后,按下运行方向按钮电梯便按程序自动关门启动运行,同时显示其运行状态;2无司机工作状态:在确定运行方向后,只要门已关闭电梯便自动运行并显示,无需按方向按钮;3检修工作状态:轿厢上下行只能通过上下行按钮点动完成,同时轿厢可以在任何位置停留;6. 停站控制要求1指令信号停站:电梯运行中,当到达已登记层楼时,该层楼行程开关动作并起作用,电梯就立即停站;2召唤信号停站:电梯上行时,顺向召唤信号从低到高逐一停站,而与运行相反的向下召唤信号登记并保留,在完成上行最后一个指令或召唤信号后,电梯下行并按已登记的下行信号从高到低逐一停站;反向召唤信号停站的处理原则是:只出现一个反向召唤信号,如电梯停在基站,三楼有召唤下行则电梯能在三楼停站;如果有多个反向召唤信号则最远反向召唤信号可以停站,其他信号被登记保留,在电梯反向运行中逐一执行4;7. 指令信号的登记与消除要求指令信号的登记:当按下除停站外的某层楼按钮时,此指令信号被登记;指令信号的消除:电梯运行并到达某层楼,该层指令信号消除;8. 召唤信号的登记与消除要求召唤信号的登记:当按下除停站外某层楼召唤按钮时,此信号应被登记;召唤信号的消除:当电梯到达某层楼时,该层与电梯运行方向一致的登记信号即被消除;9. 指令专用功能在有司机工作状态下,按下指令专用按钮,电梯不应答召唤信号,电梯只能根据指令信号停站,但召唤信号被登记;10. 消防工作状态功能当按下消防工作状态按钮,电梯立即清除所有指令和召唤信号,立即关门返回基站,到达基站后恢复指令功能;11. 超载保护功能按下此按钮,表示电梯超载,轿厢禁止关门并不能运行,同时超载指示灯亮,直至超载消除方能正常运行;12. 紧停功能当电梯出现意外故障时,如轿厢冲顶或冲底,该停站未停站时,管理人员应立即按此按钮使电梯停止运行;交流双速电机交流电动机具有结构紧凑、维护简单的特点;双速交流电动机拖动系统采用开环方式控制,线路简单,价格较低,因此目前仍在电梯上经常使用;交流电动机的调速方法主要是通过改变极对数的不同而得到不同的速度;由电机学原理可知,对于交流感应电动机的转速公式如下: )1(601s pf n -= 式中:n ——交流感应电动机的同步转速r/min ;1f ——交流感应电动机定子供电频率1/s ;p ——交流感应电动机的磁极对数;s ——转差率;从上式可见,改变磁极数就可以改变电动机的转速;电梯用的交流电动机有单速、双速及三速;双速的磁极对数一般为:4级和16极,6极和24极,少数也有4极和24极或6极和36极7;图为4/2极的双速异步电动机定子绕组接线示意图;图a 将电动机定子绕组的U1、V1、W1三个接线端接三相交流电源,而将定子绕组的U2、V2、W2三个接线端悬空,三相定子绕组接成三角形;此时每相绕组中的①、②线圈串联,电流方向如图a 中箭头所示,电动机以四极运行为低速;若将电动机定子绕组的三个接线端子U1、V1、W1连在一起,而将U2、V2、W2接三相交流电流,则原来三相定子绕组的三角形线即变为双星形接线,此时每相绕组的①、②线圈相互并联,电流方向如图b 中箭头所示,于是电动机便以两极运行,此时为高速;图 4/2极双速电动机三相定子绕组接线示意图 图所示是交流双速电梯的一种拖动线路,该电路采用一级串联电抗启动,二级电阻电抗减速;a 三角形接线图交流双速电梯电机的主电路图中交流双速电机电梯主电路的工作原理如下:启动时,串入电抗XQ,进行降压启动;经一段时间后,1C接触器接通,电动机转入固有特性运转;减速时,KC断开,MC接通,慢速绕组串入阻抗XJ和电阻R运行,延时一定时间后,2C接通,短接R,电动机串入电抗XJ运行;再延时一段时间后,3C接通,电动机慢速运行,直到SC或XC断开,电动机停止运转;电梯系统的硬件设计系统的电气控制线路电梯的控制线路主要有:轿内指令线路、门厅召唤线路、定向选层线路、启动运行线路、平层线路、指层线路、开关门线路、安全保护线路;这些线路之间的关系如图所示;用这些控制线路可以构成各种运行方式:有司机/无司机控制、集选运行、下行集选运行、消防运行、并联运行、检修运行等;硬件选择PLC的选型PLC的种类非常繁多,不同种类之间的功能设置差异很大,这既给PLC机型的挑选提供了十分广阔的空间,同时也带来了一定的难度;机型选择的基本原则应是在功能满足要求的前提下,力争最好的性价比,并有一定的升级空间;考虑到本次设计的电梯系统只有4层,且开关量居多,模拟量较少;对于开关量控制为主的系统而言,一般PLC的响应速度足以满足控制的要求,在小型PLC中整体式比模块式的价格便宜,体积也小,但是在设计活动中,经常碰到一些估计的指标,在设计活动中需要进行局部调整,另外模块式PLC排除故障所需时间短;我们估算输入输出接口比较多;由于考虑到本次设计的电梯系统只有4层,考虑到工厂造价,我们采用离线编程的方式,以减小软硬件的开销;根据PLC I/O节点使用原则,即留出20%---30%的I/O点以做扩展时使用,4层电梯有32个输入信号,27个输出信号,为节省费用,达到预期的效果,本系统选用PLC型号为三菱FX2----128MR,这种机型的I/O 点数分别为64,其编辑指令超过1000条,有2000步的程序内存,并配有相应的编程软件MEDOC,不但可通过手持编辑器对其编辑,而且还可以通过计算机对其进行编辑;FX2系列是三菱公司1991年推出的一种整体式和模块式相结合的叠装式小型PC,它的执行速度为步,其编程指令超过100条,有2K 步RAM的程序容量;编程设备有手执式简易编程FX-20P-E,图形编程器GP-80EX-E;此外,还有利用编程软件MELSEC—MEDOC,FXMING在个人计算机上进行编程;电机选型大量应用于电梯的是双速电动机,分为双速双绕组鼠笼式或线绕式感应电动机两种;鼠笼式电机目前较多地使用于额定速度不大于1m/s的国产双速电梯上;这种电动机在定子每一槽内放两个独立绕组极数为4/16或6/24,速比为4:1,适用于~1m/s的电梯;双速双绕组绕线式感应电动机,除了定子绕组外,转子中也嵌入高速绕组和低速绕组,通过整流子与外部电阻相连;这种结构的电机在降低发热和提高效率方面均优于鼠笼式电机,但相对的成本也高;曳引电机的型号,根据电梯设计目标来选择,轿厢载重量为1000—1500kg,运行速度在1m/s以下;考虑到成本的问题,本设计采用YTD—225S型鼠笼式电机,额定功率为15/,转速为1500/375,由接于输出端口Y00、Y01的开关门接触器线圈KM1、KM2得失电对电机MD进行控制,实现电梯的开关门过程;内存容量估计用户的程序和数据都保存在内存之中,对所需的内存容量要有一个估算,估计的太小则会造成编程和使用的困难,估计得太大又会浪费资源;我们一般会从下面几个因数来估计内存大小:内存利用率:所谓内存利用率,就是一个程序段中的节点数与存放该程序段所代表的机器码所需内存字数的比值;对于同一个程序而言,高利用率可以降低内存的使用量,还可以缩短扫描时间,提高系统的响应速度;开关量输入和输出的点数:一般系统中,开关量输入与输出的比为6:4,根据经验公式,可以算出所需内存的字数:所需内存字数=开关量输入+输出总点数10=590模拟量输入和输出的点数:对于模拟量的处理需要用到数字传送和运算的功能,这部分指令的内存利用率比较低,因此需要更多的内存容量;下面是一般情况下的经验计算公式:只有模拟量输入时:内存字数=模拟量点数100=400模拟量输入/输出共存时:内存字数=模拟量点数200=800 所占内存约为40KB,但是考虑到实际情况,在本系统控制过程中不存在此种情况;程序编程质量:由于本人是初学者,缺乏实践经验,以及对机器和编程语言掌握不深,写出来的程序比较冗长,因此在选内存容量时,我多留了些容量;由此,估算为1000余条程序,而FX2---128MR编辑指令超过1000条,有2000步的程序内存,基本上满足了要求,PLC选型正确;输入输出模块和电源的选:PLC输入模块的功能主要是检测来自现场设备的输入信号,并将其转换成PLC内部可处理的电平信号;输入模块的类型选用交流形式的,由于信号的传送距离比较近,信号选用低电压形式,低压又分为5v,12v,24v,60v和68v,从可靠性角度考虑,我选用24v作为电平信号电压;PLC输出模块的功能主要是将内部输出电平,在输出前转换为可匹配外部负载设备的控制信号;晶闸管输出模块比较适合于开关频率高,电感性和低功率因数的负载设备,其缺点是价格高,过载能力差;而继电器输出模块的优点是使用电压范围宽,导通压降损失小,并且价格较低,但是它的寿命不长,而且响应速度慢,达不到我们设计的控制系统反应速度的要求,因此我们选用晶闸管输出模块;电梯系统的曳引电机的工作电压选用交流220v,轿箱门开关控制电机的工作电压我们选用交流220v,指示灯工作电压都选用24v;电梯系统的软件设计电梯控制系统的要求本设计中电梯控制系统的要求如下:1. 电梯运行到位后具有自动和手动开、关门的功能;2. 利用指示灯显示厅外呼叫信号、厅内指令信号和电梯到达楼层信号;3. 能自动判别电梯运行方向,并发出响应呼叫的指示信号;4. 电梯能在一定条件下进行起动、加速和换速;5. 具有故障和断电时自动抱闸保护、门锁防夹保护、手动自动报警功能;地址分配表确定I/O接口点数及地址分配表输入编号输入名称输出编号输出名称X000 手动开门按钮 Y000 开门输出X001 手动关门按钮 Y001 关门输出X002 开门行程开关 Y002 上行接触器X003 关门行程开关 Y003 下行接触器X004 有/无司机操作方式转换开关 Y004 快速接触器X005 上平层感应器触点 Y005 慢速接触器X006 门区感应器触点 Y006 上行方向指示灯X007 下平层感应器触点 Y007 下行方向指示灯X010 轿内五层指令按钮 Y010 轿内五层指示灯X011 轿内四层指令按钮 Y011 轿内四层指示灯X012 轿内三层指令按钮 Y012 轿内三层指示灯X013 轿内二层指令按钮 Y013 轿内二层指示灯X014 轿内一层指令按钮 Y014 轿内一层指示灯X015 门厅四层上召唤按钮 Y015 门厅四层上召唤指示灯表确定I/O接口点数及地址分配表续表输入编号输入名称输出编号输出名称X016 门厅三层上召唤按钮 Y016 门厅三层上召唤指示灯X017 门厅二层上召唤按钮 Y017 门厅二层上召唤指示灯X020 门厅一层上召唤按钮 Y020 门厅一层上召唤指示灯X021 门厅五层下召唤按钮 Y021 门厅五层下召唤指示灯X022 门厅四层下召唤按钮 Y022 门厅四层下召唤指示灯X023 门厅三层下召唤按钮 Y023 门厅三层下召唤指示灯X024 门厅二层下召唤按钮 Y024 门厅二层下召唤指示灯X025 五楼上行楼层感应触点 Y025 门厅五层指示灯X026 四楼上行楼层感应触点 Y026 门厅四层指示灯X027 三楼上行楼层感应触点 Y027 门厅三层指示灯X030 二楼上行楼层感应触点 Y030 门厅二层指示灯X031 一楼上行楼层感应触点 Y031 门厅一层指示灯X032 五楼下行楼层感应触点 Y034 超载报警X033 四楼下行楼层感应触点X034 三楼下行楼层感应触点X035 二楼下行楼层感应触点X036 一楼下行楼层感应触点X037 超载信号输入X040 上强迫换速开关X041 下强迫换速开关X042 司机上行选择按钮X043 司机下行选择按钮所用辅助继电器和时间继电器编号分配如下表:表辅助继电器和时间继电器编号及地址分配表编号名称编号名称M100—M104 5—1层楼层感应中间继电器 M135 门锁中间继电器M112—M116 5—1层指层中间继电器 M140 上平层感应中间继电器M123—M126 5—2层向下召唤中间继电器 M141 门区感应中间继电器M105—M111 5—1轿内指令中间继电器 M142 下平层感应中间继电器M117—M122 4—1层向上召唤中间继电器 M143 快速运行中间继电器M130 上行中间继电器 M144 换速消除中间继电器M131 下行中间继电器 T000 3s延时M132 司机上行中间继电器 T001 5s延时M133 司机下行中间继电器 T002 快速运行断开延时K4s延时M134 换速中间继电器电梯控制的程序设计一程序设计思路所设计的电梯模型共四层,电梯的每一层均有电梯升降指示灯,每层的搂厅均设有按钮召唤电梯;电梯内部设有按钮以便乘客选择要到达的楼层,还设有开关门按钮,方便乘客进出电梯;工作中的电梯控制系统的主要任务是对各种呼梯信号和当前电梯运行状态进行综合分析,再确定下一个工作状态;为实现电梯自动控制,要求控制系统具有自动定向,顺向截梯,反向保号,外呼指令记忆,停梯销号,自动开关门,自动报警,手动开关门,到层指示功能等;二主要程序设计流程图图五:开关门程序流程图开关门程序流程简介:当停层信号到达时,电梯停层,门电机正转,轿箱门打开,系统等待开门到位信号到达,接受到信号后,箱门保持打开延时状态;开门延时完毕后电梯开始关门,首先判断有无红外信号,若有,电梯延时2秒,没有信号则继续关门,直到关门到位,然后响应接下来的信号;主程序流程图简要介绍:电梯系统上电后,系统首先判断,电梯处于哪个楼层,若电梯处于一楼,然后判断电梯是否有向上召唤信号,若有响应信号,若没有,则保持电梯门关闭状态;当电梯处于二楼时,首先判断电梯处于上升状态还是下降状态,若处于上升状态时,记忆向下呼叫信号,响应上升信号;若电梯处于下降状态时,它将记忆向上呼叫的信号,响应向下呼叫的信号;若无呼叫信号存在,电梯则将保持门毕状态;当电梯处于三楼时,首先判断电梯处于上升状态还是下降状态,若处于上升状态时,记忆向下呼叫信号,响应上升信号;若电梯处于下降状态时,它将记忆向上呼叫的信号,响应向下呼叫的信号;若无呼叫信号存在,电梯则将保持门毕状态;当电梯处于四楼时,首先判断有无向下呼叫信号;有向上呼叫信号,向上运行灯亮;没有电梯将保持门毕状态;图六:主程序简易图根据电梯控制要求,将电梯控制程序分成以下八部分;1. 电梯启动控制电梯通常以快速启动,而在减速时断开快速绕组,接入慢速绕组;设置中间继电器M143来控制快速接触器;电梯启动控制的梯形图如下图所示,图中M135为门锁继电器的常开接点,保证门关好后方能启动;X040和X041分别为上、下强迫换速输入继电器,M130和M131分别为上行和下行继电器的常开接点,Y004和Y005为快速和慢速接触器;M134为换速继电器,当M134接通时,中间继电器M143断电,输出线圈Y004断电,接通慢速接触器Y005,电动机慢速运行;图电梯启动控制梯形图2. 电梯开关门动控制X000代表手动开门按钮,当电梯运行到位后,闭合X000,使输出线圈Y000有效,从而驱动开门接触器,电梯门被打开,直至门开到位,开门行程开关动作,即X002常闭触点断开,开门过程才结束;实现自动开门时,电梯减速运行到平层位置;时间继电器T000开始计时,计时到3秒时,T000输出线圈有效,从而打开电梯门;当按下关门按钮时,触点X001闭合,输出线圈Y001有效,从而驱动关门接触器,关闭电梯门;自动关门则借助于时间继电器T001,开门到位后经过5秒钟延时,使T001的触点闭合,实现自动关门;图电梯开关门控制梯形图3. 电梯换速控制电梯通常以快速启动,而在减速时断开快速绕组,接入慢速绕组;当电梯将要到达需要停止的楼层时,应发出换速信号,断开快速继电器,接通慢速继电器,然后制动;当电梯到达顶层或底层时,无论有无轿内指令都必须换速;M144为换速消除继电器;当电梯离开任一楼层时,M144接通,断开M134,这时电梯高速运行;M130、M131常闭接点支路为无方向换速控制,避免由于人为或其它原因使M105~M111全部断开时,电梯进入换速状态,以便在最近楼层平层停止;图电梯换速控制梯形图4. 电梯平层控制电梯平层控制的梯形图中X005、X006、X007分别为上平层感应输入继电器、门区感应输入继电器和下平层感应输入继电器;其工作原理为:如果电梯上行超越平层位置,SPG离开隔离板,使X005、M140断开,这时Y003由Y004、M140、M143和Y002的常闭接点和M142的常开接点而接通,电梯反向平层,直至M140接通;电梯位于平层位置后,M140、M141和M142均接通,Y002和Y003均断开,进行抱闸;T002为延时断开时间继电器,用于快速运行断开时的延时,保护电机绕组;图电梯平层控制梯形图5. 电梯的选向控制改变电梯的运行方向,实际上就是改变电动机的旋转方向;要改变三相感应电动机的旋转方向,只要将其中任意二相电相序交换即可;根据这一原理,电动机的正反转控制线路如图所示,上行接触器SC接通时,电动机正转;而当XC接通时,B、C两相对换,电动机反转;图电梯正反转控制梯形图无论是直流电梯还是交流电梯,都可以通过接通上、下行接触器来改变电梯的运行方向,选向控制的梯形图如下;输入触点X042、X043分别为司机控制的上行选向按钮、下行选向按钮,输出线圈Y002、Y003分别控制电梯上行接触器SC、下行接触器XC;中间继电器M130、M131分别表示电梯上行、电梯下行的运行状态,中间继电器M132、M133分别表示司机控制的电梯上行、电梯下行的运行状态;图电梯的选向控制梯形图6. 电梯楼层感应电路控制楼层感应电路控制梯形图如下,其中PLC 输入触点X025~X031为相应的上行楼层感应触点,X032~X036为相应的下行楼层感应触点;中间继电器M105~M111分别表示5~1层的指层信号状态,中间继电器M130、M131分别表示电梯运行方向为上行、下行;若电梯在1楼时,M104接通,M111接通,并保持;电梯上行到达2楼时,M103接通,M110接通,并保持同时切断M111;即电梯上行当升至某一层时,相应的楼层感应中间继电器接通指层中间继电器,实现楼层感应;与电梯上行的控制方法相同,当电梯下行时,相应的楼层感应中间继电器也接通指层中间继电器,实现楼层感应;图楼层感应电路的控制梯形图7. 轿内指令控制根据集选控制的要求设计的轿内指令控制的梯形图如下;其中PLC的输入触点X010~X014分别为5~1层的轿内指令按钮,M130、M131分别为电梯上行、下行运行继电器,M100~M104为前述的楼层感应继电器;轿内指令控制的工作原理是:进入轿厢内后,若按下第3层的指令按钮时,输入X012接通,中间继电器M114接通并自保,当电梯到达第3层时,楼层信号M102断开指令信号8;图轿内指令控制梯形图8. 门厅召唤电路控制门厅召唤电路的控制梯形图如下;其中输入触点X021~X024分别为5~2层门厅下召唤按钮,X015~X020分别为4~1层门厅上召唤按钮;M105~M111为轿内指令中间继电器,M130、M131分别为上行、下行运行继电器;控制门厅召唤电路工作原理为:若电梯位于1层,如果3层有厅上召唤信号,2楼有厅上、下召唤信号,即M125、M122、M124接通,电梯到达2楼时,M110接通,M125断开,2楼上召唤信号消除,而下召唤信号M122保持,即下召唤信号得到保留;图门厅召唤控制梯形图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电梯控制系统设计方案
电梯控制系统是一种对电梯运行进行管理和控制的系统,主要用于控制电梯的运行状态、楼层选择和安全保护等功能。
设计一个高效可靠的电梯控制系统对于提高电梯运行效率和乘客体验至关重要。
下面是一个电梯控制系统的设计方案:
首先,电梯控制系统需要有一个集中的控制中心,该控制中心可以通过接收和发送信号与电梯的各部件进行通信。
控制中心可以采用嵌入式控制器或者计算机等设备,具备较强的计算能力和通信能力。
其次,电梯控制系统需要有一套高效的调度算法,用于根据电梯所处的运行状态、乘客的楼层请求和当前的流量情况等信息,进行合理的电梯调度。
调度算法可以根据需求的不同,包括RUN、IDLE、UP、DOWN、OPEN、CLOSE等状态,并根据
具体的运算逻辑进行计算。
再次,电梯控制系统需要配备一套稳定可靠的传感器和执行器,用于检测电梯的运行状态和控制电梯的运行。
传感器可以包括楼层传感器、门开关传感器、重量传感器等,用于感知电梯当前的楼层、门的开闭状态和载客情况等。
执行器可以包括电机驱动器、门控制器等,用于控制电梯的运行和门的开闭。
最后,电梯控制系统需要具备一定的安全保护措施,保证乘客和电梯的安全。
安全保护措施可以包括故障检测和报警系统、紧急停车装置、开门安全装置等,用于在发生危险情况时及时采取措施,确保乘客的安全。
总的来说,一个高效可靠的电梯控制系统需要集成控制中心、调度算法、传感器和执行器以及安全保护措施等组成部分。
通过合理的设计和优化,可以使电梯的运行更加高效、安全和舒适,提升乘客的体验。