北师大七年级数学(下)第四章《三角形》测试题
(常考题)北师大版初中数学七年级数学下册第四单元《三角形》检测(含答案解析)
一、选择题1.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .12.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 3.如图,ABD △与AEC 都是等边三角形,AB AC ≠.下列结论中,①BE CD =;②60BOD ∠=︒;③BDO CEO ∠=∠.其中正确的有( ).A .0个B .1个C .2个D .3个4.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 5.有下列长度的三条线段,能组成三角形的是( )A .2cm ,3cm ,4cmB .1cm ,4cm ,2cmC .1cm ,2cm ,3cmD .6cm ,2cm ,3cm 6.如图,在△ABC 中,已知点D ,E ,F 分别为边AC ,BD ,CE 的中点,且阴影部分图形面积等于4平方厘米,则△ABC 的面积为( )平方厘米A .8B .12C .16D .187.如图,点C ,D 分别在线段OA ,OB 上,AD 与BC 相交于点E ,若OC OD =,A B ∠=∠,则图中全等三角形的对数为( )A .5对B .4对C .3对D .2对8.如图,两座建筑物AB ,CD 相距160km ,小月从点B 沿BC 走向点C ,行走ts 后她到达点E ,此时她仰望两座建筑物的顶点A 和D ,两条视线的夹角正好为90︒,且EA ED =.已知建筑物AB 的高为60m ,小月行走的速度为1/m s ,则小月行走的时间t 的值为( )A .100B .80C .60D .509.如图,四边形ABCD 是长方形,点F 是DA 长线上一点,G 是CF 上一点,并且ACG AGC ∠=∠,GAF F ∠=∠.若15ECB ∠=︒,则ACF ∠的度数是( )A .15︒B .20︒C .30D .45︒10.如图,已知AOB ∠,观察图中尺规作图的痕迹,可以判定111COD C O D ≌,其判定的依据是( )A .SSSB .SASC .ASAD .AAS 11.下列四个图形中,有两个全等的图形,它们是( )A .①和②B .①和③C .②和④D .③和④ 12.如图,已知ABC ADE △≌△,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .80︒B .70︒C .40︒D .30二、填空题13.如图,在△ABC 中E 是BC 上的一点,BC =3BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF ﹣S △BEF =____.14.如图,AC=BC ,请你添加一个条件,使AE=BD .你添加的条件是:________.15.如果三角形的三边长分别为5,8,a ,那么a 的取值范围为__.16.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)17.如图,已知△ABC 的面积为18,BP 平分∠ABC ,且AP ⊥BP 于点P ,则△BPC 的面积是_____.18.如图,已知四边形ABCD 中,10AB =厘米,8BC =厘米,12CD =厘米,B C ∠=∠,点E 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.当点Q 的运动速度为______厘米/秒时,能够使BEP △与CPQ 全等.19.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD ,CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.添加的条件是:____.(写出一个即可)20.如图,点E ,F 在线段AD 上,且AE DF =,//AB DC ,AB DC =,连接BE ,BF ,CE ,CF ,则图中共有_____对全等三角形.三、解答题21.作图题(1)如图,已知线段m ,n .求作△ABC ,请在右面的空白处作△ABC ,作∠ACB =90°,AC =m ,AB =n (尺规作图,不写作法,保留作图痕迹).(2)婷婷将(1)中自己画的△ABC 剪下来,放在同桌悦悦所画的△ABC 上,发现两三角形完全重合,这一过程验证了三角形全等的哪一种判定定理: (直接写出答案,不写过程).22.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.(1)过点A 画线段BC 的垂线,垂足为E ;(2)过点A 画线段AB 的垂线,交线段CB 的延长线于点F ;(3)线段BE 的长度是点 到直线 的距离;(4)线段AE 、BF 、AF 的大小关系是 .(用“<”连接)23.如图,已知在ABC 中,AB AC =,90BAC ∠=︒,别过B 、C 两点向过A 的直线作垂线,垂足分别为E 、F .求证:EF BE CF =+.24.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.25.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.26.已知22a m n =+,2b m =,c mn =,且m >n >0.(1)比较a ,b ,c 的大小;(2)请说明以a ,b ,c 为边长的三角形一定存在.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据全等三角形的判定定理得出△ACD ≌△ACB ,△ABO ≌△ADO ,再根据全等三角形的性质即可得出结论.【详解】解:在△ABC 和△ADC 中,∵AB AD BC CD AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠BAC=∠DAC , ∠DCA=∠BCA∴点O 到CB 、CD 的距离相等.故②正确在△ABO 与△ADO 中AB AD BAC DAC OA OA ⎧⎪∠∠⎨⎪⎩===,∴△ABO ≌△ADO (SAS ),∴BO=DO ,∠BOA=∠DOA∵∠BOA+∠DOA=180°∴∠BOA=∠DOA=90°,即BD AC ⊥故①④正确;∵AD≠CD∴BDA BDC ∠≠∠,故③错误所以,正确的结论是①②④,共3个,故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键. 2.D解析:D【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A 、添加BD =CE ,可以利用“边角边”证明△ABD 和△ACE 全等,再根据全等三角形对应角相等得到∠DAB =∠EAC ,故本选项不符合题意;B 、添加AD =AE ,根据等边对等角可得∠ADE =∠AED ,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB =∠EAC ,故本选项不符合题意;C 、添加BE =CD 可以利用“边角边”证明△ABE 和△ACD 全等,再根据全等三角形对应角相等得到∠BAE=∠CAD ,可得∠DAB =∠EAC ,故本选项不符合题意;D 、添加DA =DE 无法求出∠DAB =∠EAC ,故本选项符合题意.故选:D .【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.3.C解析:C【分析】利用SAS 证明△DAC ≌△BAE ,利用三角形内角和定理计算∠BOD 的大小即可.【详解】△与AEC都是等边三角形,∵ABD∴AD=AB,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠CAB =∠EAC+∠CAB,∴∠DAC =∠BAE,∴△DAC≌△BAE,∴BE=CD,∴结论①正确;∵△DAC≌△BAE,∴∠ADC =∠ABE,∴∠BOD=180°-(∠BDO+∠DBO),∵∠BDO+∠DBO=60°-∠ADC +60°+∠ABE=120°,∴∠BOD=180°-120°=60°,∴结论②正确;∠=∠,无法证明BDO CEO∴结论③错误;故选C.【点睛】本题考查了等边三角形的性质,全等三角形的证明和性质,三角形内角和定理,熟练运用等边三角形的性质证明三角形的全等是解题的关键.4.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】+=,不满足三边关系,不能画出三角形,故选项错误;解:A,AB BC CAB,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D,可以利用直角三角形全等判定定理HL证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.5.A解析:A【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的之差一定小于第三边;进行解答即可.【详解】A 、2+3>4,能围成三角形;B 、1+2<4,所以不能围成三角形;C 、1+2=3,不能围成三角形;D 、2+3<6,所以不能围成三角形;故选:A .【点睛】本题主要考查了三角形的三边关系的应用,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.6.C解析:C【分析】根据三角形的中线将三角形分成面积相等的两个三角形进行解答即可.【详解】解:∵F 是EC 的中点, ∴142AEF AFC AEC S S S ∆∆∆===, ∴8AEC S ∆=,∵ E 是BD 的中点 ,∴ABE AED S S ∆∆=,BEC ECD S S ∆∆=,∵8AED ECD AEC S S S ∆∆∆+==,∴8ABE BEC AEC S S S ∆∆∆+==,∴228=16ABC ABE BEC AEC AEC S S S S S ∆∆∆∆∆=++==⨯,故选:C .【点睛】本题考查了三角形的中线与三角形的面积关系,熟练掌握三角形的中线将三角形分成面积相等的两个三角形是解答的关键. 7.B解析:B【分析】由条件可证△AOD ≌△BOC ,可得OA=OB ,则可证明△ACE ≌△BDE ,可得AE=BE ,则可证明△AOE ≌△BOE ,可得∠COE=∠DOE ,可证△COE ≌△DOE ,可求得答案.【详解】解:在△AOD和△BOC中OC=OD∠AOD=∠BOC∠=∠A B∴△AOD≌△BOC(SAS)∴OA=OB∵OC=OD,OA=OB,∴AC=BD,在△ACE和△BDE中∠A=∠B∠AEC=∠BEDAC=BD∴△ACE≌△BDE(AAS),∴AE=BE∴AE=BE,在△AOE和△BOE中OA=OB∠A=∠BAE=BE∴△AOE≌△BOE(SAS),∴∠COE=∠DOE,在△COE和△DOE中OC=OD∠COE=∠DOEOE=OE∴△COE≌△DOE(SAS),故全等的三角形有4对.故选:B.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AA和HL.8.A解析:A【分析】首先证明∠A=∠DEC,然后可利用AAS判定△ABE≌△ECD,进而可得EC=AB=60m,再求出BE的长,然后利用路程除以速度可得时间.【详解】解:∵∠AED=90°,∴∠AEB+∠DEC=90°,∵∠ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC ,在△ABE 和△DCE 中B C A DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ECD (AAS ),∴EC=AB=60m ,∵BC=160m ,∴BE=100m ,∴小华走的时间是100÷1=100(s ),故选:A .【点睛】本题主要考查了全等三角形的应用,关键是正确判定△ABE ≌△ECD .9.C解析:C【分析】根据矩形的性质得到AD ∥BC ,∠DCB =90°,根据平行线的性质得到∠F =∠ECB =15°,根据三角形的外角的性质得到∠ACF =∠AGC =∠GAF +∠F =2∠F ,于是得到结论.【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∠DCB =90°,∴∠F =∠ECB =15°,∴∠GAF =∠F =15°,∴∠ACF =∠AGC =∠GAF +∠F =2∠F =30°,故选C .【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.10.A解析:A【分析】由作法易得OD =O 1D 1,OC =O 1C 1,CD =C 1D 1,根据SSS 得到三角形全等.【详解】解:在△COD 和△C 1O 1D 1中,111111CO C O DO D O CD C D =⎧⎪=⎨⎪=⎩,∴111COD C O D ≌(SSS ).故选:A .【点睛】本题考查了全等三角形的判定方法SSS 的运用,熟练掌握三角形全等的判定是正确解答本题的关键.11.B解析:B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B .【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.12.A解析:A【分析】由全等三角形的性质可得到∠BAC=∠EAD ,在△ADE 中可求得∠EAD ,则可求得∠BAC .【详解】解:∵∠E=70°,∠D=30°,∴∠EAD=180°-∠E-∠D=180°-70°-30°=80°,∵△ABC ≌△ADE ,∴∠BAC=∠EAD=80°,故选:A .【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.二、填空题13.2【分析】S △ADF-S △BEF=S △ABD-S △ABE 所以求出三角形ABD 的面积和三角形ABE 的面积即可因为BC=3BE 点D 是AC 的中点且S △ABC=12就可以求出三角形ABD 的面积和三角形ABE解析:2【分析】S △ADF -S △BEF =S △ABD -S △ABE ,所以求出三角形ABD 的面积和三角形ABE 的面积即可,因为BC=3BE ,点D 是AC 的中点,且S △ABC =12,就可以求出三角形ABD 的面积和三角形ABE 的面积.【详解】解:∵点D是AC的中点,∴AD=12AC,∵S△ABC=12,∴S△ABD=12S△ABC=12×12=6.∵BC=3BE,∴S△ABE=13S△ABC=13×12=4,∵S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2,故答案为:2.【点睛】本题考查三角形的面积,解题的关键是要能根据已知条件求出三角形的面积并对要求的两个三角形的面积之差进行变化.14.∠A=∠B或CD=CEAD=BE∠AEC=∠BDC等【分析】根据全等三角形的判定解答即可【详解】解:因为AC=BC∠C=∠C所以添加∠A=∠B或CD=CEAD=BE∠AEC=∠BDC可得△ADC与△解析:∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC等【分析】根据全等三角形的判定解答即可.【详解】解:因为AC=BC,∠C=∠C,所以添加∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC,可得△ADC与△BEC全等,利用全等三角形的性质得出AD=BE,故答案为:∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.3<a<13【分析】根据三角形的三边关系解答【详解】由题意得:8-5<a<8+5∴3<a<13故答案为:3<a<13【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边解析:3<a<13【分析】根据三角形的三边关系解答.【详解】由题意得:8-5<a<8+5,∴3<a<13,故答案为:3<a<13.【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边.16.OA=OB (答案不唯一)【分析】全等三角形的判定方法有SASASAAASSSS 只要添加一个符合的条件即可【详解】解:OA=OB 理由是:在△AOC 和△BOD 中∴△AOC ≌△BOD (SAS )故答案为:O解析:OA=OB .(答案不唯一)【分析】全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,只要添加一个符合的条件即可.【详解】解:OA=OB ,理由是:在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ).故答案为:OA=OB .(答案不唯一)【点睛】本题考查了全等三角形的判定的应用,通过做此题培养了学生的发散思维能力和对全等三角形的判定方法的灵活运用能力,题目答案不唯一,是一道比较好的题目.17.9【分析】根据已知条件证得△ABP ≌△DBP 根据全等三角形的性质得到AP =PD 得出S △ABP =S △DBPS △ACP =S △DCP 推出S △PBC =S △ABC 代入求出即可【详解】解:如图延长AP 交BC 于点解析:9【分析】根据已知条件证得△ABP ≌△DBP ,根据全等三角形的性质得到AP =PD ,得出S △ABP =S △DBP ,S △ACP =S △DCP ,推出S △PBC=12S △ABC ,代入求出即可. 【详解】解:如图,延长AP 交BC 于点D ,∵BP 平分∠ABC∴∠ABP =∠DBP ,且BP =BP ,∠APB =∠DPB∴△ABP ≌△DBP (ASA )∴AP=PD,∴S△ABP=S△BPD,S△APC=S△CDP,∴S△PBC=12S△ABC=9,故答案为:9.【点睛】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.18.3或【分析】分两种情况讨论依据全等三角形的对应边相等即可得到点Q 的运动速度【详解】解:设点P运动的时间为t秒则BP=3tCP=8-3t∵点为的中点厘米∴AE=BE=5厘米∵∠B=∠C∴①当BE=CP解析:3或15 4【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度.【详解】解:设点P运动的时间为t秒,则BP=3t,CP=8-3t,∵点E为AB的中点,10AB 厘米,∴AE=BE=5厘米,∵∠B=∠C,∴①当BE=CP=5,BP=CQ时,△BPE与△CQP全等,此时,5=8-3t,解得t=1,∴BP=CQ=3,此时,点Q的运动速度为3÷1=3厘米/秒;②当BE=CQ=5,BP=CP时,△BPE与△CQP全等,此时,3t=8-3t,解得t=43,∴点Q的运动速度为5÷43=154厘米/秒;故答案为:3厘米/秒或154厘米/秒.【点睛】本题考查了全等三角形的性质和判定的应用,解决问题的关键是掌握全等三角形的对应边相等.19.AF=CB或EF=EB或AE=CE【分析】根据垂直关系可以判断△AEF与△CEB有两对对应角相等就只需要找它们的一对对应边相等就可以了【详解】∵AD⊥BCCE⊥AB垂足分别为DE∴∠BEC=∠AEC解析:AF=CB或EF=EB或AE=CE【分析】根据垂直关系,可以判断△AEF与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=∠ADB=∠ADC=90°,∵∠B+∠BAD=90°,∠B+∠BCE =90°,∴∠BAD=∠BCE,所以根据AAS添加AF=CB或EF=EB;根据ASA添加AE=CE.可证△AEF≌△CEB.故答案为:AF=CB或EF=EB或AE=CE.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.20.3【分析】易证△ABE≌△DCF从而可得出△ABF≌△DCE进而可得出△BEF≌△CFE【详解】∵AB∥DC∴∠A=∠D∵AB=CDAE=DF∴△ABE≌△DCF(SAS)∴AE=DFBE=CF∴A解析:3【分析】易证△ABE≌△DCF,从而可得出△ABF≌△DCE,进而可得出△BEF≌△CFE.【详解】∵AB∥DC∴∠A=∠D∵AB=CD,AE=DF∴△ABE≌△DCF(SAS)∴AE=DF,BE=CF∴AF=ED∴△ABF≌△DCE(SAS)∴BF=EC∵EF=EF∴△BEF≌△CFE(SSS)故答案为:3.【点睛】本题考查三角形全等的证明,需要注意SSA是不能证明全等的.三、解答题21.(1)见解析;(2)HL【分析】(1)①用直尺任意画一条线,用圆规的两脚量取等于m 长度的线段,交直线与A 、C 两点;②以C 为圆心,任意长半径作圆;③分别以圆与直线的交点为圆心,画两个等圆,连接两个等圆的交点,可作出直线的垂线;④以A 为圆心,线段n 长为半径作圆,交垂线于点B ;⑤连接AB 即可(2)根据两个直角三角形对应的斜边和一条直角边相等即可得到结论【详解】(1)如图,步骤①用直尺任意画一条线,用圆规的两脚量取等于m 长度的线段,交直线与A 、C 两点;②以C 为圆心,任意长半径作圆;③分别以圆与直线的交点为圆心,画两个等圆,连接两个等圆的交点,可作出直线的垂线;④以A 为圆心,线段n 长为半径作圆,交垂线于点B ;⑤连接AB 即可(2)90ACB ∠=︒,在Rt ACB 中,直角边AC m =,斜边AB n =∴在两个直角三角形中,斜边和一条直角边对应相等∴可用HL 证明两个三角形全等【点睛】本题考查了复杂作图,以及全等三角形的判定,解题关键是掌握垂线的画法,以及全等三角形的判定定理.22.(1)见解析;(2)见解析;(3)B ,AE ;(4)AE <AF <BF【分析】(1)根据垂线的做法画出图象;(2)根据垂线的做法画出图象;(3)根据点到直线距离的定义填空;(4)利用直角三角形的斜边和直角边的大小关系,得出结果.【详解】(1)如图所示;(2)如图所示;(3) ∵BE AE ⊥,∴线段BE 的长度是点B 到直线AE 的距离,故答案是:B ,AE ;(4)∵AE 是直角三角形AEF 的直角边,AF 是直角三角形AEF 的斜边,∴AE AF <,∵BF 是直角三角形ABF 的斜边,AF 是直角三角形ABF 的直角边,∴AF BF <,∴AE AF BF <<,故答案是:AE AF BF <<.【点睛】本题考查作垂线和直角三角形的性质,解题的关键是掌握作垂线的方法和直角三角形的直角边和斜边的大小关系.23.见解析【分析】证明△BEA ≌△AFC ,得到AE=CF ,BE=AF ,即可得到结论.【详解】证明:BE EA ⊥,CF AF ⊥,90BAC BEA AFC ∴∠=∠=∠=︒,90EAB CAF ∴∠+∠=︒,90EBA EAB ∠+∠=︒,CAF EBA ∴∠=∠,在ABE △和AFC △中,BEA AFC EBA CAF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BEA AFC ∴△≌△.AE CF ∴=,BE AF =.EF AF AE BE CF ∴=+=+..【点睛】此题考查全等三角形的判定及性质,熟记三角形的判定定理是解题的关键.24.(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.25.见详解【分析】先证明ACE △≅DBF ,从而得∠DBF=∠ACE ,进而即可得到结论.【详解】∵AB DC =,∴+AB BC DC BC =+,即:AC=DB ,∵//AE FD ,∴∠A=∠D ,又∵AE FD =,∴ACE △≅DBF (SAS ),∴∠DBF=∠ACE ,∴CE ∥BF .【点睛】本题主要考查全等三角形的判定和性质定理以及平行线的判定和性质定理,熟练掌握SAS 证明三角形全等,是解题的关键.26.(1)a >b >c ;(2)见解析【分析】(1)a 、b 、c 两两作差可得出a 、b 、c 之间的大小关系;(2)对于任意一个三角形的三边a ,b ,c ,满足任意两边之和大于第三边,任意两边之差小于第三边.【详解】(1)∵a -b =m 2+n 2-m 2=n 2>0;a -c =m 2+n 2-mn =(m -n )2+mn >0;b -c = m 2-mn =m (m -n )>0∴a >b >c ;(2)由(1)a >b >c 可得,a +b >c∵a -b = m 2+n 2-m 2=n 2<mn∴a -b <c∴以a 、b 、c 为边长的三角形一定存在.【点睛】本题主要考查了利用差比法比较代数式的大小和用三角形三边关系证明三角形的存在.。
北师大版数学七年级下册第4章《三角形》单元测试试题 附答案解析
北师大版七年级下册第4章《三角形》单元测试题(满分120分)班级:________姓名:________座位:________成绩:________一.选择题(共10小题,满分30分)1.一个三角形的两边长分别是2和4,则第三边的长可能是()A.1B.2C.4D.72.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.3.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线B.高线C.中线D.无法确定4.如图,在△ABC中,点D在BC的延长线上,若∠A=60°,∠B=40°,则∠ACD的度数是()A.140°B.120°C.110°D.100°5.如图,在△ABC中,CD平分∠ACB,DE∥BC.已知∠A=74°,∠B=46°,则∠BDC 的度数为()A.104°B.106°C.134°D.136°6.如图,AB=AC,若要使△ABE≌△ACD.则添加的一个条件不能是()A.∠B=∠C B.∠ADC=∠AEB C.BD=CE D.BE=CD7.如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,如图所示的这种方法,是利用了三角形全等中的()A.SSS B.ASA C.AAS D.SAS8.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等.其中正确的结论个数是()A.1B.2C.3D.49.如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD =42°,则∠BFD=()A.45°B.54°C.56°D.66°10.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.7二.填空题(共6小题,满分24分)11.下列4个图形中,属于全等的2个图形是.(填序号)12.如图,某人将一块三角形玻璃打碎成两块,带块(填序号)能到玻璃店配一块完全一样的玻璃,用到的数学道理是.13.如图,Rt△ABC中,∠C=90°,∠B=25°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD 的度数是.14.如图,在△ABC中,AC=BC,过点A,B分别作过点C的直线的垂线AE,BF.若AE =CF=3,BF=4.5,则EF=.15.边长为整数、周长为20的三角形的个数为.16.如图,Rt△ABC中,∠BAC=90°,AB=6,AC=3,G是△ABC重心,则S△AGC=.三.解答题(共8小题,满分66分)17.如图,在一个三角形的一条边上取四个点,把这些点与这条边所对的顶点连接起来.问图中共有多少个三角形.请你通过与数线段或数角的问题进行类比来思考.18.如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.19.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.20.如图,已知B,D在线段AC上,且AD=CB,BF=DE,∠AED=∠CFB=90°求证:(1)△AED≌△CFB;(2)BE∥DF.21.如图,已知锐角△ABC,AB>BC.(1)尺规作图:求作△ABC的角平分线BD;(保留作图痕迹,不写作法)(2)点E在AB边上,当BE满足什么条件时?∠BED=∠C.并说明理由.22.如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.23.如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO 和∠ABO的角平分线,BC延长线交OM于点G.(1)若∠MON=60°,则∠ACG=°;若∠MON=90°,则∠ACG=°;(2)若∠MON=n°.请求出∠ACG的度数;(用含n的代数式表示)(3)如图2,若∠MON=n°,过C作直线与AB交F.若CF∥OA时,求∠BGO﹣∠ACF的度数.(用含n的代数式表示)24.如图1所示,在Rt△ABC中,∠C=90°,点D是线段CA延长线上一点,且AD=AB,点F是线段AB上一点,连接DF,以DF为斜边作等腰Rt△DFE,连接EA,EA满足条件EA⊥AB.(1)若∠AEF=20°,∠ADE=50°,BC=2,求AB的长度;(2)求证:AE=AF+BC;(3)如图2,点F是线段BA延长线上一点,探究AE、AF、BC之间的数量关系,并证明你的结论.参考答案一.选择题(共10小题)1.【解答】解:设第三边的长为x,由题意得:4﹣2<x<4+2,2<x<6,故选:C.2.【解答】解:BC边上的高应从点A向BC引垂线,只有选项D符合条件,故选:D.3.【解答】解:由于BD=CD,则点D是边BC的中点,所以AD一定是△ABC的一条中线.故选:C.4.【解答】解:∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=100°,故选:D.5.【解答】解:∵∠A=74°,∠B=46°,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=∠ACD=∠ACB=×60°=30°,∴∠BDC=180°﹣∠B﹣∠BCD=104°,故选:A.6.【解答】解:A、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;C、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;故选:D.7.【解答】解:观察图形发现:AC=DC,BC=BC,∠ACB=∠DCB,所以利用了三角形全等中的SAS,故选:D.8.【解答】解:①全等三角形的形状相同、大小相等,正确;②全等三角形的对应边相等、对应角相等,正确;③面积相等的两个三角形是全等图形,错误;④全等三角形的周长相等,正确.故选:C.9.【解答】解:∵AD是△ABC的高,∴∠ADB=90°,∵∠BAD=42°,∴∠ABD=180°﹣∠ADB﹣∠BAD=48°,∵BE是△ABC的角平分线,∴∠ABF=∠ABD=24°,∴∠BFD=∠BAD+∠ABF=42°+24°=66°,故选:D.10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22﹣BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=为整数,∴BC边长为偶数,∴BC=4,6,8,10,故选:A.二.填空题(共6小题)11.【解答】解:根据全等三角形的判定(SAS)可知属于全等的2个图形是①③,故答案为:①③.12.【解答】解:第①块只保留了原三角形的一个角和部分边,根据这两块中的任一块不能配一块与原来完全一样的;第②块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带②去.故答案为:②,ASA.13.【解答】解:∵Rt△ABC中,∠C=90°,∠B=25°,∴∠CAB=90°﹣∠B=90°﹣25°=65°,由作图过程可知:MN是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=25°,∴∠CAD=∠CAB﹣∠DAB=65°﹣25°=40°.答:∠CAD的度数是40°.故答案为:40°.14.【解答】解:∵过点A,B分别作过点C的直线的垂线AE,BF,∴∠AEC=∠CFB=90°,在Rt△AEC和Rt△CFB中,,∴Rt△AEC≌Rt△CFB(HL),∴EC=BF=4.5,∴EF=EC+CF=4.5+3=7.5,故答案为:7.5.15.【解答】解:边长为整数、周长为20的三角形分别是:(9,9,2)(8,8,4)(7,7,6)(6,6,8)(9,6,5)(9,7,4)(9,8,3)(8,7,5),共8个.故答案为:8.16.【解答】解:延长AG交BC于E.∵∠BAC=90°,AB=6,AC=3,∴S△ABC=•AB•AC=9,∵G是△ABC的重心,∴AG=2GE,BE=EC,∴S△AEC=×9=4.5,∴S△AGC=×S△AEC=3,故答案为3三.解答题(共8小题)17.【解答】解:如图所示,图中三角形的个数有△ABC,△ACD,△ADE,△AEF,△AFG,△ABD,△ABE,△ABF,△ABG,△ACE,△ACF,△ACG,△ADF,△ADG,△AEG.18.【解答】解:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SSS).19.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6cm,BE=7×2=14cm,∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.20.【解答】证明(1)∵∠AED=∠CFB=90°,在Rt△AED和Rt△CFB中,∴Rt△AED≌Rt△CFB(HL).(2)∵△AED≌△CFB,∴∠BDE=∠DBF,在△DBE和△BDF中,∴△DBE≌△BDF(SAS),∴∠DBE=∠BDF,∴BE∥DF.21.【解答】解:(1)如图,线段BD即为所求.(2)结论:BE=BC.理由:∵BD平分∠ABC,∵BE=BC,BD=BD,∴△BDE≌△BDC(SAS),∴∠BED=∠C.22.【解答】解:(1))∠1与∠B相等,理由:∵,△ABC中,∠ACB=90°,∴∠1+∠F=90°,∵FD⊥AB,∴∠B+∠F=90°,∴∠1=∠B;(2)若BC=BD,AB与FB相等,理由:∵△ABC中,∠ACB=90°,DF⊥AB,∴∠ACB=∠FDB=90°,在△ACB和△FDB中,,∴△ACB≌△FDB(AAS),∴AB=FB.23.【解答】解:(1)∵∠MON=60°,∴∠OBA+∠OAB=120°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×120°=60°,∴∠ACB=180°﹣60°=120°,∴∠ACG=60°;∵∠MON=90°,∴∠OBA+∠OAB=90°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×90°=45°,∴∠ACB=180°﹣45°=135°;故答案为:60,45;(2)在△AOB中,∠OBA+∠OAB=180°﹣∠AOB=180°﹣n°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=(∠OBA+∠OAB)=(180°﹣n°),即∠ABC+∠BAC=90°﹣n°,∴∠ACB=180°﹣(∠ABC+∠BAC)=180°﹣(90°﹣n°)=90°+n°,∴∠ACG=180°﹣(90°+n°)=90°﹣n°;(3)∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠ABC=ABO,∠BAC=∠OAC=,∵CF∥AO,∴∠ACF=∠CAG,∵∠BGO=∠BAG+∠ABG,∴∠BGO﹣∠ACF=∠BAG+∠ABG﹣∠ACF=2∠BAC+∠ABG﹣∠BAC=∠ABG+∠BAC=90°﹣n°.24.【解答】解:(1)在等腰直角三角形DEF中,∠DEF=90°,∵∠1=20°,∴∠2=∠DEF﹣∠1=70°,∵∠EDA+∠2+∠3=180°,∴∠3=60°,∵EA⊥AB,∴∠EAB=90°,∵∠3+∠EAB+∠A=180°,∴∠4=30°,∵∠C=90°,∴AB=2BC=4;(2)如图1,过D作DM⊥AE于M,在△DEM中,∠2+∠5=90°,∵∠2+∠1=90°,∵DE=FE,在△DEM与△EF A中,,∴△DEM≌△EF A,∴AF=EM,∵∠4+∠B=90°,∵∠3+∠EAB+∠4=180°,∴∠3+∠4=90°,∴∠3=∠B,在△DAM与△ABC中,,∴△DAM≌△ABC,∴BC=AM,∴AE=EM+AM=AF+BC;(3)如图2,过D作DM⊥AE交AE的延长线于M,∵∠C=90°,∴∠1+∠B=90°,∵∠2+∠MAB+∠1=180°,∠MAB=90°,∴∠2+∠1=90°,∠2=∠B,在△ADM与△BAC中,,∴△ADM≌△BAC,∵EF=DE,∠DEF=90°,∵∠3+∠DEF+∠4=180°,∴∠3+∠4=90°,∵∠3+∠5=90°,∴∠4=∠5,在△MED与△AFE中,,∴△MED≌△AFE,∴ME=AF,∴AE+AF=AE+ME=AM=BC,即AE+AF=BC.。
北师大版七年级数学下册第四章三角形同步测试题
北师大版七年级数学测试卷(考试题)第4章三角形一、选择题1.下列说法正确的是()A. 全等三角形是指形状相同的三角形B. 全等三角形是指面积相等的两个三角形C. 全等三角形的周长和面积相等D. 所有等边三角形是全等三角形2.已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是()A. 2B. 9C. 10D. 113.下列各组图形中,一定是全等图形的是()A. 两个周长相等的等腰三角形B. 两个面积相等的长方形C. 两个斜边相等的直角三角形D. 两个周长相等的圆4.下列各组长度的三条线段能组成三角形的是()A. 1cm,2cm,3cmB. 1cm,1cm,2cmC. 1cm,2cm,2cmD. 1cm,3cm,5cm5.画△ABC的边AB上的高,下列画法中,正确的是()A. B.C. D.6.有长为2cm、3cm、4cm、6cm的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是A. 1个B. 2个C. 3个D. 4个7.在如图所示的长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C的个数是()A. 2B. 3C. 4D. 58.如图所示,∠1+∠2+∠3+∠4的度数为()A. 100°B. 180°C. 360°D. 无法确定9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是()A. ∠A=∠1+∠2B. 2∠A=∠1+∠2C. 3∠A=2∠1+∠2D. 3∠A=2(∠1+∠2)10.将一副直角三角尺按如图所示摆放,则图中锐角∠α的度数是()A. 45°B. 60°C. 70°D. 75°11.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A. B. C. D.12.我国的纸伞工艺十分巧妙。
(常考题)北师大版初中数学七年级数学下册第四单元《三角形》检测题(含答案解析)
一、选择题1.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( ) ①13∠=∠;②180BAE CAD ∠+∠=︒; ③若//BC AD ,则230∠=︒; ④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个2.芜湖长江三桥是集客运专线、市域轨道交通、城市主干道路于一体的公铁合建桥梁,2020年9月29日公路段投入运营,其侧面示意图如图所示,其中AB CD ⊥,现添加以下条件,不能判定ABC ABD △≌△的是( )A .ACB ADB ∠=∠ B .AB BD =C .AC AD = D .CAB DAB ∠=∠3.如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .1.5B .2C .22D .104.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA 5.已知三角形的一边长为8,则它的另两边长分别可以是( )A .4,4B .17,29C .3,12D .2,96.如图,AB DE =,A D ∠=∠,要说明ABC DEF △≌△,需添加的条件不能是( )A .//AB DE B .//AC DF C .AC DE ⊥D .AC DF =7.直角ABC 、DEF 如图放置,其中90ACB DFE ∠=∠=︒,AB DE =且AB DE ⊥.若DF a =,BC b =,CF c =.则AE 的长为( )A .a c +B .b c +C .a b c +-D .a b c -+8.如图,若DEF ABC ≅,点B 、E 、C 、F 在同一条直线上,9BF =,5EC =,则CF 的长为( )A .1B .2C .2.5D .3 9.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是( )A .4、5、6B .3、4、5C .2、3、4D .1、2、310.下列条件不能判定两个直角三角形全等的是( ) A .两条直角边对应相等 B .斜边和一锐角对应相等 C .斜边和一直角边对应相等D .两个锐角对应相等11.如图,ABC ADE ≅,BC 的延长线交DA 于F ,交DE 于G ,∠D =25°,∠E =105°,∠DAC =16°,则∠DGB 的度数为( )A .66°B .56°C .50°D .45°12.如图,已知AC ⊥BD ,垂足为O ,AO = CO ,AB = CD ,则可得到△AOB ≌△COD ,理由是( )A .HLB .SASC .ASAD .SSS二、填空题13.如图,已知AC DB =,添加一个条件________,可以得到ABC DCB △≌△.14.如图,在ABC 和DEF 中,点B F C E ,,,在同一直线上,,//BF CE AB DE =,请添加一个条件,使ABC DEF ≅,这个添加的条件可以是________.15.己知三角形的三边长分别为2,x ﹣1,3,则三角形周长y 的取值范围是__. 16.如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,OF ⊥OE 于点O ,若∠AOD =70°,则∠AOF =______度.17.等腰三角形一边长是10cm ,一边长是6cm ,则它的周长是_______________cm . 18.如图,在△ABC 中,点D 在边BC 上,已知点E ,F 分别是AD ,CE 边上的中点,且△BEF 的面积为6,则△ABC 的面积等于_____.19.已知三角形ABC 的三边长分别是,,a b c ,化简a b c b a c +----的结果是_________________;20.如图,在AOB ∠的两边上,分别取OM=ON ,在分别过点M 、N 作OA 、OB 的垂线,交点P ,画射线OP ,则OP 平分AOB ∠的依据是____________三、解答题21.如图,将两块含45°角的大小不同的直角三角板△COD 和△AOB 如图①摆放,连结AC ,BD .(1)如图①,猜想线段AC 与BD 存在怎样的数量关系和位置关系,请写出结论并证明; (2)将图①中的△COD 绕点O 顺时针旋转一定的角度(如图②),连结AC ,BD ,其他条件不变,线段AC 与BD 还存在(1)中的关系吗?请写出结论并说明理由.(3)将图①中的△COD 绕点O 逆时针旋转一定的角度(如图③),连结AC ,BD ,其他条件不变,线段AC 与BD 存在怎样的关系?请直接写出结论.22.如图1,在ABC 中,过点B 作BD AB ⊥,且BD AB =,连接CD .(问题原型)(1)若90ACB ∠=︒,且8AC BC ==,过点D 作的BCD △的BC 边上的高DE ,易证ABC BDE △≌△,从而得到BCD △的面积为______.(变式探究)(2)如图2,若90ACB ∠=︒,BC a =,用含a 的代数式表示BCD △的面积,并说明理由.(拓展应用)(3)如图3,若AB AC =,8BC =,则BCD △的面积为______.23.已知△ABC 和△ADE 均为等腰三角形,且∠BAC =∠DAE ,AB =AC ,AD =AE . (1)如图1,点E 在BC 上,求证:BC =BD+BE ;(2)如图2,点E 在CB 的延长线上,(1)的结论是否成立?若成立,给出证明;若不成立,写出成立的式子并证明.(3)如图3,点E 在BC 的延长线上,直接写出线段BC 、CD 、CE 三者之间的关系.24.如图,在五边形ABCDE 中,AB DE =,AC AD =.(1)请你添加一个与角有关的条件,使得ABC DEA ≌,并说明理由; (2)在(1)的条件下,若65CAD ∠=︒,110B ∠=︒,求BAE ∠的度数.25.如图,在△ABC 中,∠BAC 的平分线AD 交BC 于点D ,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,连接EF .写出两个结论(∠BAD =∠CAD 和DE =DF 除外),并选择一个结论进行证明. (1)____________; (2)____________.26.如图,Rt ABC 与Rt DEF △的顶点A ,F ,C ,D 共线,AB 与EF 交于点G ,BC 与DE 相交于点H ,90B E ∠=∠=︒,AF CD =,AB DE =.(1)求证:Rt ABC Rt DEF ≌; (2)若1GF =,求线段HC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用同角的余角相等可判断①,利用角的和差与直角三角形的性质可判断②,利用平行线的性质先求解CAD ∠,再利用结论②可判断③,由150CAD ∠=︒,先求解230∠=︒, 如图,记,AB DE 交于,G 再求解90AGE ∠=︒, 再利用三角形的外角的性质求解4∠, 从而可判断④. 【详解】 解:90BAC DAE ∠=∠=︒, 122390∴∠+∠=∠+∠=︒, 13∴∠=∠,故①符合题意,19090180BAE CAD BAE DAE BAC DAE ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒, 故②符合题意;//,BC AD180C CAD ∴∠+∠=︒, 45C ∠=︒, 135CAD ∴∠=︒,218018013545CAD ∴∠=︒-∠=︒-︒=︒, 故③不符合题意; 150180CAD BAE CAD ∠=︒∠+∠=︒,, 30BAE ∴∠=︒, 如图,记,AB DE 交于,G60E ∠=︒,180306090AGE ∴∠=︒-︒-︒=︒,45,B C ∠=∠=︒4904545.AGE B ∴∠=∠-∠=︒-︒=︒ 4.C ∴∠=∠ 故④符合题意,综上:符合题意的有①②④. 故选:.C 【点睛】本题考查的是角的和差,余角与补角,平行线的性质,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.2.B解析:B 【分析】根据已知条件可得∠ABC=∠ABD=90°,AB=AB ,结合全等三角形的判定定理依次对各个选项判断. 【详解】解:∵AB CD ⊥, ∴∠ABC=∠ABD=90°, ∵AB=AB ,∴若添加ACB ADB ∠=∠,可借助AAS 证明ABC ABD △≌△,A 选项不符合题意; 若添加AB BD =,无法证明ABC ABD △≌△,B 选项符合题意;若添加AC AD =,可借助HL 证明ABC ABD △≌△,C 选项不符合题意; 若添加CAB DAB ∠=∠,可借助ASA 证明ABC ABD △≌△,D 选项不符合题意; 故选:B . 【点睛】本题考查全等三角形的判定.熟练掌握全等三角形的判定定理,并能结合题上已知条件选取合适的定理是解题关键.3.B解析:B 【分析】根据已知条件可以得出∠E=∠ADC=90︒,进而得出∆CEB ≅∆ADC ,就可以得出BE=DC ,进而求出DE 的值. 【详解】∵BE ⊥CE ,AD ⊥CE , ∴∠E=∠ADC=90︒, ∴∠EBC+∠BCE=90︒, ∵∠BCE+∠ACD=90︒, ∴∠EBC=∠DCA ,在∆CEB 和∆ADC 中,∠E=∠ADC ,∠EBC=∠DCA ,BC=AC , ∴∆CEB ≅∆ADC(AAS), ∴BE=DC=1,CE=AD=3, ∴DE=EC-CD=3-1=2, 故选:B . 【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解决问题的关键.4.A解析:A 【分析】利用垂直得到90PMO PNO ∠=∠=,再由OM ON =,OP OP =即可根据HL 证明()HL ≌PMO PNO △△,由此得到答案.【详解】∵PM OA ⊥,PN OB ⊥, ∴90PMO PNO ∠=∠=. ∵OM ON =,OP OP =,∴()HL ≌PMO PNO △△, ∴POA POB ∠=∠, 故选:A . 【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据题中的已知条件确定对应相等的边或角,由此利用以上五种方法中的任意一种证明两个三角形全等.5.D解析:D 【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”进行判断即可. 【详解】A 、∵4+4=8,∴构不成三角形;B 、29−17=12>8,∴构不成三角形;C 、∵12−3=9>8,∴构不成三角形;D 、9−2=7<8,9+2=11>8,∴能够构成三角形, 故选:D . 【点睛】此题考查了三角形的三边关系,熟练掌握三角形三边关系“任意两边之和大于第三边,任意两边之差小于三边”是解题的关键.6.C解析:C 【分析】直接根据三角形证明全等的条件进行判断即可; 【详解】A 、∵AB ∥DE ,∴∠ABC=∠DEC ,∴根据ASA 即可判定三角形全等,故此选项不符合题意;B 、∵AC ∥DF ,∴∠DFE=∠ACB ,∴根据AAS 即可判定三角形全等,故此选项不符合题意; C 、AC ⊥DE ,不符合三角形全等的证明条件,故此选项符合题意;D 、∵AC=DF ,∴根据SAS 即可判定三角形全等,故此选项不符合题意; 故选:C . 【点睛】本题考查了三角形证明全等所需添加的条件,正确掌握知识点是解题的关键;7.C解析:C 【分析】先利用AAS 证明ABC DEF ≅,再根据全等三角形的性质进行线段和差计算即可. 【详解】 解:90ACB ∠=︒,DE AB ⊥,90A B ∴∠+∠=︒,90A E ∠+∠=︒,B E ∴∠=∠,在ABC 与DEF 中90B E ACB DFE AB DE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()ABC DEF AAS ∴≅△△;AC DF =∴,BC EF =,∵DF a =,BC b =,CF c =,AE AC EF CF =+-, ∴AE a b c =+- 故选C . 【点睛】本题主要考查了全等三角形的判定与全等三角形的性质,确定用AAS 定理进行证明是关键.8.B解析:B 【分析】根据全等三角形的对应边相等得到BE=CF ,计算即可. 【详解】解:∵△DEF ≌△ABC , ∴BC=EF , ∴BE+EC=CF+EC , ∴BE=CF ,又∵BF=BE+EC+CF=9,EC=5 ∵CF=12(BF-EC)=12(9-5)=2. 故选:B . 【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.9.D解析:D 【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可. 【详解】D 、4+5>6,能组成三角形,故此选项错误; B 、3+4>5,能组成三角形,故此选项错误; A 、2+3>4,能组成三角形,故此选项错误; D 、1+2=3,不能组成三角形,故此选项正确; 故选:D . 【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10.D解析:D【分析】根据三角形全等的判定对各选项分析判断后利用排除法求解.【详解】解:A 、可以利用边角边判定两三角形全等,故本选项不合题意;B 、可以利用角角边判定两三角形全等,故本选项不合题意;C 、根据斜边直角边定理判定两三角形全等,故本选项不合题意;D 、三个角对应相等不能证明两三角形全等,故本选项符合题意;故选:D .【点睛】本题考查了直角三角形全等的判定方法;本题主要利用三角形全等的判定,运用好有一对相等的直角这一隐含条件是解题的关键.11.A解析:A【分析】先根据全等三角形的性质可得105ACB E ∠=∠=︒,再根据三角形的外角性质可得AFC ∠的度数,然后根据对顶角相等可得DFG ∠的度数,最后根据三角形的内角和定理即可得.【详解】ABC ADE ≅,105E ∠=︒,105ACB E ∴∠=∠=︒,ACB DAC AFC ∠=∠+∠,16DAC ∠=︒,10516AFC ︒=︒+∴∠,解得89AFC ∠=︒,89DFG AFC ∴∠=∠=︒,在DFG 中,180GB F D D D G ∠∠=+∠+︒,25D ∠=︒,2518089DGB ∴∠+︒+=︒︒,解得66DGB ∠=︒,故选:A .【点睛】本题考查了全等三角形的性质、三角形的外角性质、三角形的内角和定理、对顶角相等,熟练掌握全等三角形的性质是解题关键.12.A解析:A【分析】根据三角形全等的判定定理进行判断.【详解】A. AC⊥BD,垂足为O,AO=CO,AB=CD,所以由HL可得到△AOB≌△COD,所以A正确;B.错误;C.错误;D.错误.【点睛】本题考查了三角形全等的判定定理,熟练掌握定理是本题解题的关键.二、填空题13.(答案不唯一)【分析】要使△ABC≌△DCB由于BC是公共边若补充一组边相等则可用SSS判定其全等;【详解】解:添加AB=DC∵AC=BDBC=BCAB=DC∴△ABC≌△DCB(SSS)∴加一个适=(答案不唯一)解析:AB DC【分析】要使△ABC≌△DCB,由于BC是公共边,若补充一组边相等,则可用SSS判定其全等;【详解】解:添加AB=DC,∵ AC=BD,BC=BC,AB=DC,∴△ABC≌△DCB(SSS),∴加一个适当的条件是AB=DC,故答案为:AB=DC.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,根据已知图形以及判定方法选择添加的条件是正确解答本题的关键.14.(答案不唯一)【分析】根据等式的性质可得BC=EF根据平行线的性质可得再添加AB=DE可利用SAS判定【详解】添加AB=DE∵BF=CE∴BF+FC=CE+FC即BC=EF∵AB//DE∴∠B=∠E=(答案不唯一)解析:AB DE【分析】∠=∠,再添加AB=DE可利用SAS 根据等式的性质可得BC=EF,根据平行线的性质可得B E≅.判定ABC DEF【详解】添加AB=DE,∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB//DE,∴∠B =∠E ,在△ABC 和△DEF 中AB ED B E BC EF =⎧⎪∠=∠⎨⎪=⎩, ∴ABC DEF ≅ (SAS ),故答案为AB DE =(答案不唯一)【点睛】 本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL15.6<y <10【详解】根据三角形的三边关系得3-2<x-1<2+3解得:1<x-1<5所以三角形周长y 的取值范围:1+2+3<y <2+3+5即6<y <10故答案为6<y <10【点睛】本题考查三角形三边解析:6<y <10【详解】根据三角形的三边关系,得3-2<x-1<2+3,解得:1<x-1<5,所以三角形周长y 的取值范围:1+2+3<y <2+3+5,即6<y <10,故答案为6<y <10.【点睛】本题考查三角形三边的关系,解决此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.16.145【分析】由已知角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小从而得到∠AOF 的值【详解】解:∵∵OE 平分∠AOC ∴∵OF ⊥OE 于点O ∴∠EOF =90°∴∠AOF =∠AOE+∠EOF =55解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°,故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.17.26或22【分析】因为等腰三角形的底边和腰不确定6cm可以为底边也可以为腰长故分两种情况:当6cm为腰时底边为10cm先判断三边能否构成三角形若能求出此时的周长;当6cm为底边时10cm为腰长先判断解析:26或22【分析】因为等腰三角形的底边和腰不确定,6cm可以为底边也可以为腰长,故分两种情况:当6cm为腰时,底边为10cm,先判断三边能否构成三角形,若能,求出此时的周长;当6cm 为底边时,10cm为腰长,先判断三边能否构成三角形,若能,求出此时的周长.【详解】解:若6cm为等腰三角形的腰长,则10cm为底边的长,6cm,6cm,10cm可以构成三角形,此时等腰三角形的周长=6+6+10=22(cm);若10cm为等腰三角形的腰长,则6cm为底边的长,10cm,10cm,6cm可以构成三角形,此时等腰三角形的周长=10+6+10=26(cm);则等腰三角形的周长为26cm或22cm.故答案为:26或22.【点睛】本题考查了等腰三角形的定义和三角形的三边关系.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.18.24【分析】由EF分别为ADCE的中点可得BECEBF分别为△ABD△ACD△BEC的中线根据中线的性质可知将相应三角形分成面积相等的两部分据此即可解答【详解】解:∵由于EF分别为ADCE的中点∴S解析:24【分析】由E、F分别为AD、CE的中点可得BE、CE、BF分别为△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,据此即可解答.【详解】解:∵由于E、F分别为AD、CE的中点,∴S△ABE=S△DBE,S△DCE=S△AEC,S△BEF=S△BCF,∴S△BEC=2S△BEF=12,∴S△ABC=2S△BEC=24.故答案为:24.【点睛】本题考查了三角形中线的性质,属于常考题型,熟知三角形的中线将相应的三角形分成面积相等的两部分是解题的关键.19.【分析】先根据三角形的三边关系定理可得再根据绝对值运算整式的加减即可得【详解】由三角形的三边关系定理得:则故答案为:【点睛】本题考查了三角形的三边关系定理绝对值运算整式的加减熟练掌握三角形的三边关系 解析:22b c -【分析】先根据三角形的三边关系定理可得,a b c a c b +>+>,再根据绝对值运算、整式的加减即可得.【详解】由三角形的三边关系定理得:,a b c a c b +>+>,0,0a b c b a c ∴+->--<, 则()a b c b a c a b c a c b +----=+--+-,a b c a c b =+---+,22b c =-,故答案为:22b c -.【点睛】本题考查了三角形的三边关系定理、绝对值运算、整式的加减,熟练掌握三角形的三边关系定理是解题关键.20.全等三角形判定(斜边和直角边对应相等)【分析】利用判定方法HL 证明Rt △OMP 和Rt △ONP 全等进而得出答案【详解】解:在Rt △OMP 和Rt △ONP 中∴Rt △OMP ≌Rt △ONP (HL )∴∠MOP =解析:全等三角形判定(斜边和直角边对应相等HL )【分析】利用判定方法“HL”证明Rt △OMP 和Rt △ONP 全等,进而得出答案.【详解】解:在Rt △OMP 和Rt △ONP 中,OM ON OP OP⎧⎨⎩==, ∴Rt △OMP ≌Rt △ONP (HL ),∴∠MOP =∠NOP ,∴OP 是∠AOB 的平分线.故答案为HL【点睛】本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定三、解答题21.(1)AC=BD ,AC ⊥BD ,证明见解析;(2)存在,AC=BD ,AC ⊥BD ,证明见解析;(3)AC=BD ,AC ⊥BD【分析】(1)延长BD交AC于点E.易证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠ADE=∠BDO,可证∠AED=∠BOD=90º即可;(2)延长BD交AC于点F,交AO于点G.易证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠AGF=∠BGO,可得∠AFG=∠BOG=90º即可;(3)BD交AC于点H,AO于M,可证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠AMH=∠BMO,可得∠AHM=∠BOH=90º即可.【详解】(1)AC=BD,AC⊥BD,证明:延长BD交AC于点E.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠COA=∠BOD=90º,∴△AOC≌△BOD(SAS),∴AC=BD,∴∠OAC=∠OBD,∵∠ADE=∠BDO,∴∠AED=∠BOD=90º,∴AC⊥BD;(2)存在,证明:延长BD交AC于点F,交AO于点G.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC-∠DOA,∠BOD=∠BOA-∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AGF=∠BGO,∴∠AFG=∠BOG=90º,∴AC⊥BD;(3)AC=BD,AC⊥BD.证明:BD交AC于点H,AO于M,∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC+∠DOA,∠BOD=∠BOA+∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AMH=∠BMO,∴∠AHM=∠BOH=90º,∴AC⊥BD.【点睛】本题考查三角形旋转变换中对应相等的位置与数量关系,掌握三角形全等的证明方法,及其角度计算是解题关键.22.(1)32;(2)212BCD S a =△,理由见解析;(3)16. 【分析】(1)如图1中,由AAS 定理可证△ABC ≌△BDE ,就有DE=BC=8.进而由三角形的面积公式得出结论;(2)如图2中,过点D 作BC 的垂线,与BC 的延长线交于点E ,由AAS 定理可证得△ABC ≌△BDE ,就有DE=BC=a .进而由三角形的面积公式得出结论.(3)如图3中,过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E ,由等腰三角形的性质可以得出BF=12BC ,由条件可以得出△AFB ≌△BED 就可以得出BF=DE ,由三角形的面积公式就可以得出结论.【详解】解:(1)∵在ABC 中,90ACB ∠=︒,过点B 作BD AB ⊥且过点D 作的BCD △的BC 边上的高DE ,∴90DEB ACB ABD ∠=∠=∠=︒∴90ABC DBE ∠+∠=︒∵90DBE BDE ∠+∠=︒∴ABC BDE ∠=∠.在Rt ABC △与Rt BDE △中,ACB DEB ABC BDE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()Rt Rt ABC BDE AAS ≌△△,8DE CB == ∴18823212BCD S CB DE ⋅⨯=⨯==△ 故答案为:32(2)212BCD S a =△ 理由:过点D 作DE CB ⊥延长线于点E∴90DEB ACB ∠=∠=︒∵BD AB ⊥,1290∠+∠=︒∵290A ∠+∠=︒∴1A ∠=∠. 在Rt ABC △与Rt BDE △中,1ACB DEB A AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()Rt Rt ABC BDE AAS ≌△△,DE CB a ==∴21122BCD S CB DE a =⋅=△ (3)如图3中,∵AB AC = ∴BF=12BC=12×8=4. 过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E ,∴∠AFB=∠E=90°,∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD.在△AFB和△BED中,AFB EFAB EBD AB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFB≌△BED(AAS),∴BF=DE=4.∵S△BCD=12BC•DE,∴S△BCD=184162⨯⨯=∴△BCD的面积为16.故答案为:16【点睛】本题考查了直角三角形的性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,三角形的面积公式的运用,解答时证明三角形全等是关键.23.(1)见解析;(2)(1)的结论不成立,成立的结论是BC=BD﹣BE,证明见解析;(3)BC=CD-CE【分析】(1)证得∠DAB=∠EAC,证明△DAB≌△EAC(SAS),由全等三角形的性质得出BD=CE,则可得出结论;(2)证明△DAB≌△EAC(SAS),得出BD=CE,则成立的结论是BC=BD-BE;(3)证明△DAC≌△EAB(SAS),得出BE=CD,则成立的结论是BC=BD-BE.【详解】解:(1)证明:∵∠BAC=DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=BE+CE=BD+BE;(2)解:(1)的结论不成立,成立的结论是BC =BD ﹣BE证明:∵∠BAC =∠DAE ,∴∠BAC+∠EAB =∠DAE+∠EAB ,即∠DAB =∠EAC ,又∵AB =AC ,AD =AE ,∴△DAB ≌△EAC (SAS ),∴BD =CE ,∴BC =CE ﹣BE =BD ﹣BE(3)∵∠BAC =∠DAE ,∴∠BAC+∠EAC =∠DAE+∠EAC ,即∠BAE =∠DAC ,又∵AB =AC ,AD =AE ,∴△BAE ≌△CAD (SAS ),∴BE =CD ,∴BC =CD ﹣CE【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键. 24.(1)添加一个角有关的条件为BAC EDA ∠=∠,使得ABC DEA ≌,理由见解析;(2)BAE ∠的度数为135︒.【分析】(1)根据已知条件,选择SAS 原理,可确定添加的角;(2)利用三角形全等,∠B 的度数,可求∠BAC+∠DAE ,问题可解.【详解】(1)添加一个角方面的条件为BAC EDA ∠=∠,使得ABC DEA ≌.在ABC 和DEA △中∵AB DE =,BAC EDA ∠=∠,AC DA =,∴()SAS ABC DEA ≌△△; (2)在(1)的条件下∵ABC DEA ≌,∴ACB DAE ∠=∠,若65CAD ∠=︒,110B ∠=︒,则18070ACB BAC B ∠+∠=︒-∠=︒,∴70DAE BAC ACB BAC ∠+∠=∠+∠=︒,∴7065135BAE DAE BAC CAD ∠=∠+∠+∠=︒+︒=︒,即BAE ∠的度数为135︒.【点睛】本题考查了三角形全等,熟练掌握全等三角形判定原理和性质是解题的关键.25.(1)∠ADE=∠ADF ;证明见解析;(2)AE=AF ;证明见解析.【分析】(1)∠ADE=∠ADF ,根据DE ⊥AB ,DF ⊥AC 及AD 为∠BAC 的角平分线,即可证得∠ADE=∠ADF;(2)AE=AF,根据(1)可知证明△AED≌△AFD,即可证得AE=AF.【详解】(1)结论1:∠ADE=∠ADF,证明如下:∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90︒,∵AD为∠BAC的角平分线,∴∠EAD=∠FAD,∴∠ADE=∠ADF;(2)结论2:AE=AF,证明如下:由(1)可知:△AED≌△AFD,∴AE=AF.【点睛】本题考查全等三角形的性质和判定,解题的关键是灵活运用全等三角形的判定和性质解决问题.26.(1)见详解;(2)1【分析】(1)先证明AC=DF,再根据HL证明Rt ABC Rt DEF≌;(2)先证明∠AFG=∠DCH,从而证明∆AFG≅∆DCH,进而即可求解.【详解】(1)∵AF CD=,∴AF+CF=CD+CF,即AC=DF,在Rt ABC与Rt DEF△中,∵AC DF AB DE=⎧⎨=⎩,∴Rt ABC≅Rt DEF△(HL);(2)∵Rt ABC≅Rt DEF△,∴∠A=∠D,∠EFD=∠BCA,∵∠AFG=180°-∠EFD,∠DCH=180°-∠BCA,∴∠AFG=∠DCH,又∵AF CD=,∴∆AFG≅∆DCH,∴HC=GF =1.【点睛】本题主要考查全等三角形的判定和性质,熟练掌握HL和ASA证明三角形全等,是解题的关键.。
北师大版七年级下册数学第四章三角形 测试题及答案
北师大版七年级下册数学第四章三角形测试卷一、单选题1.图中三角形的个数是( )A.8 B.9 C.10 D.112.下面四个图形中,线段BE是⊿ABC的高的图是()A.B.C.D.3.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.2cm,3cm,6cm4.三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.钝角三角形C.锐角三角形D.不确定5.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是( )A.3个B.4个C.5个D.6个6.下面说法正确的个数有()①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=12∠C,那么△ABC是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.A.3个B.4个C.5个D.6个7.在△ABC中,∠B、∠C的平分线相交于点P,设∠A=x°,用x的代数式表示∠BPC的度数,正确的是()A.90+12x B.90+12x C.90+2x D.90+x8.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.180°C.160°D.120°9.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个B.2个C.3个D.4个10.给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有( )A.1个B.2个C.3个D.4个二、填空题11.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD=_________.12.如图,为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是__.13.把一副常用的三角板如图所示拼在一起,那么图中∠ADE是_________度.14.如图,∠1=_____.15.若三角形三个内角度数的比为2:3:4,则相应的外角比是_____________.16.如图,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =_________度.17.如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a 的取值范围是________________18.如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角的度数是_____________.19.如图,ABC 中,100A ∠=,BI 、CI 分别平分ABC ∠,ACB ∠,则BIC ∠=________,若BM 、CM 分别平分ABC ∠,ACB ∠的外角平分线,则M ∠=________.20.如图△ABC 中,AD 是BC 上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是24,则△ABE 的面积是________.三、解答题21.小华从点A 出发向前走10m ,向右转36°然后继续向前走10m ,再向右转36°,他以同样的方法继续走下去,他能回到点A 吗?若能,当他走回到点A 时共走多少米?若不能,写出理由.22.一个零件的形状如图,按规定∠A=90º ,∠ C=25º,∠B=25º,检验已量得∠BDC=150º,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由.23.如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,(1)若∠ABC=30°,∠ACB=50°,求∠DAE的度数(2)写出∠DAE与∠C-∠B的数量关系,并证明你的结论24.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E, ∠A=35°, ∠D=50°,求∠ACD的度数.参考答案1.B【解析】试题解析:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.故选B.2.A【解析】分析:根据三角形的高的定义,过顶点向对边作垂线,顶点与垂足之间的线段为三角形的高,观察各选项直接选择答案即可.解答:解:根据三角形高线的定义,只有A选项符合.故选A.3.B【解析】【分析】根据三角形任意两边的和大于第三边,进行分析判断.【详解】解:A、1+2<4,不能组成三角形;B、4+6>8,能组成三角形;C、5+6<11,不能够组成三角形;D、2+3<5,不能组成三角形.故选:B.【点睛】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.4.B【解析】【分析】此题依据三角形的外角性质,即三角形的外角与它相邻的内角互为邻补角,可判断出此三角形有一内角为钝角,从而得出这个三角形是钝角三角形的结论.【详解】因为三角形的一个外角与它相邻的内角和为180°,而题中说这个外角小于它相邻的内角,所以可知与它相邻的这个内角是一个大于90°的角即钝角,则这个三角形就是一个钝角三角形.故选:B.【点睛】本题主要考查三角形的外角性质,解题的关键是熟练掌握三角形的外角与它相邻的内角互为邻补角.5.A【解析】【分析】由“直角三角形的两锐角互余”,结合题目条件,得∠C=∠BDF=∠BAD=∠ADE.【详解】解:∵AD是斜边BC上的高,DE⊥AC,DF⊥AB,∴∠C+∠B=90°,∠BDF+∠B=90°,∠BAD+∠B=90°,∴∠C=∠BDF=∠BAD,∵∠DAC+∠C=90°,∠DAC+∠ADE=90°,∴∠C=∠ADE,∴图中与∠C(除之C外)相等的角的个数是3,故选A.【点睛】本题的关键是利用已知条件得出等角的余角相等,利用平行线的性质得出角相等.6.C【解析】试题分析:①∵三角形三个内角的比是1:2:3,∴设三角形的三个内角分别为x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小题正确;②∵三角形的一个外角与它相邻的一个内角的和是180°,∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;③∵直角三角形的三条高的交点恰好是三角形的一个顶点,∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;④∵∠A=∠B=1∠C,2∴设∠A=∠B=x,则∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小题正确;⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,∴三角形一个内角也等于另外两个内角的和,∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.故选D.考点:1.三角形内角和定理;2.三角形的外角性质.7.A【解析】分析:根据三角形内角和定理可求得∠ABC+∠ACB的度数,再根据角平分线的定义可求得∠PBC+∠PCB的度数,最后根据三角形内角和定理即可求解.详解:如图:∵∠A=x°,∴∠ABC+∠ACB=180°−x°,∵∠B,∠C的平分线相交于点P,∴∠PBC+∠PCB=12(180°−x°),∴∠BPC=180°−12(180°−x°)=90°+12x°,故选A.点睛:本题考查了三角形内角和定理.8.B【解析】【分析】本题考查了角度的计算问题,因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【详解】解:设∠AOD=x,∠AOC=90︒+x,∠BOD=90︒-x,所以∠AOC+∠BOD=90︒+x+90︒-x=180︒.故选B.【点睛】在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.9.C【解析】解:能够构成三角形三边的组合有13cm、10cm、5cm和13cm、10cm、7cm和10cm、5cm、7cm共3种,故选C.10.C【解析】【分析】分析所给的命题是否正确,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】∵三条线段组成的封闭图形叫三角形,∴①不正确;∵三角形相邻两边组成的角叫三角形的内角,∴②正确;∵三角形的角平分线是线段,∴③不正确;∵三角形的高所在的直线交于一点,这一点可以是三角形的直角顶点,∴④不正确.∵任何一个三角形都有三条高、三条中线、三条角平分线,∴⑤正确;∵三角形的三条角平分线交于一点,这个点叫三角形的内心,∴⑥正确;综上,可得正确的命题有3个:②、⑤,⑥.故选C.【点睛】主要主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.90.【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和即可求解.【详解】∠BCD是三角形ABC的外角,所以603090.BCD A B ∠=∠+∠=+=故答案为90.【点睛】考查三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.12.三角形具有稳定性【解析】【分析】用木条固定矩形门框,即是分割为两个三角形,故可用三角形的稳定性解释.【详解】解:加上木条后矩形门框分割为两个三角形,而三角形具有稳定性.故答案为三角形具有稳定性.【点睛】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.13.135°【解析】【分析】看图得△DEB 为等腰直角三角形的三角板,得∠EDB 的度数,由∠ADB 为平角,进而求出∠ADE 的度数.【详解】∵∠EDB=45°,∠ADB=180°,∴∠ADE=135°.【点睛】本题考察三角板的类型判断和角度计算,解题的关键为正确判断三角板的类型和知道三角板各个角的度数.14.120°【解析】∵∠2=180°-140°=40°,∴∠1=80°+40°=80°+∠2=120°.15.7:6:5【解析】【分析】三角形三个内角度数的比为2:3:4,三个角的和是180度,因而设一个角是2x度,则另外两角分别是3x度,4x度,就可以列出方程,求出三个角的度数.根据外角与相邻的内角互补,求出三个外角的度数,从而求出相应的外角比.【详解】解:设一个角是2x度,则另外两角分别是3x度,4x度,根据题意,得:2x+3x+4x=180,解得x=20,因而三个角分别是:40度,60度,80度.则相应的外角的度数是:140度,120度,100度,则相应的外角比是7:6:5.故答案为7:6:5【点睛】已知几个数据的和与比值,求这几个数,可以设参数方程求解,这类题目的解法是需要熟记的内容.16.74°【解析】【详解】试题分析:首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,∴∠ACE=12∠ACB=35°. ∵CD ⊥AB 于D , ∴∠CDA=90°, ∠ACD=180°﹣∠A ﹣∠CDA=50°.∴∠ECD=∠ACD ﹣∠ACE=15°. ∵DF ⊥CE , ∴∠CFD=90°, ∴∠CDF=180°﹣∠CFD ﹣∠DCF=75°.考点:三角形内角和定理.17.a>5【解析】因为−2<2<5,所以a−2< a+2< a+5,所以由三角形三边关系可得a−2+a+2>a+5,解得a>5.18.72°、72°、36°【解析】【分析】此题先根据已知三角形的一个外角等于与它相邻的内角的4倍,互为邻补角的两个角和为180°,从而求出这个外角与它相邻的内角的度数为144°、36°.又知这个外角还等于与它不相邻的一个内角的2倍,所以可以得到这两个与它不相邻的内角分别为:72°、72°,则这个三角形各角的度数分别是36°,72°,72°.【详解】∵三角形的一个外角等于与它相邻的内角的4倍,∴可设这一内角为x ,则它的外角为4x ,∴有4180x x +=,则36,4144.x x ==又∵这个外角还等于与它不相邻的一个内角的2倍,∴这两个与它不相邻的内角分别为:72°、72°. ∴这个三角形各角的度数分别是72°、72°、36°. 故答案为72°、72°、36°. 【点睛】考查三角形的外角性质以及三角形内角和定理,比较基础,难度不大.19.140 40【分析】首先根据三角形内角和求出∠ABC+∠ACB的度数,再根据角平分线的性质得到∠IBC=1 2∠ABC,∠ICB=12∠ACB,求出∠IBC+∠ICB的度数,再次根据三角形内角和求出∠I的度数即可;根据∠ABC+∠ACB的度数,算出∠DBC+∠ECB的度数,然后再利用角平分线的性质得到∠1=12∠DBC,∠2=12ECB,可得到∠1+∠2的度数,最后再利用三角形内角和定理计算出∠M的度数.【详解】∵∠A=100°.∵∠ABC+∠ACB=180°﹣100°=80°.∵BI、CI分别平分∠ABC,∠ACB,∴∠IBC=12∠ABC,∠ICB=12∠ACB,∴∠IBC+∠ICB=1 2∠ABC+12∠ACB=12(∠ABC+∠ACB)=12×80°=40°,∴∠I=180°﹣(∠IBC+∠ICB)=180°﹣40°=140°;∵∠ABC+∠ACB=80°,∴∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB)=360°﹣80°=280°.∵BM、CM分别平分∠ABC,∠ACB的外角平分线,∴∠1=12∠DBC,∠2=12ECB,∴∠1+∠2=12×280°=140°,∴∠M=180°﹣∠1﹣∠2=40°.故答案为:140°;40°.【点睛】本题主要考查了三角形内角和定理,以及角平分线的性质,关键是根据三角形内角和定理计算出∠ABC+∠ACB的度数.20.6【详解】三角形的中线将三角形分成面积相等的两部分,则△ABD 的面积=12△ABC 的面积=12,△ABE 的面积=12△ABD 的面积=6.考点:中线的性质21.可以走回到A 点,共走100米【解析】试题分析:他要想回到原点需要走成正多边形,根据多边形的外角和定理求出多边形的边数,从而求出路程.试题解析:解:根据题意可知,360°÷36°=10,所以他需要转10次才会回到起点,它需要经过10×10=100m 才能回到原地. 所以小华能回到点A .当他走回到点A 时,共走100m .22.零件不合格.理由见解析.【解析】【分析】根据三角形外角的性质求出∠BDC 的度数,与测量所得的度数对比即可得出结论.【详解】如图,∠CDE 是△ADC 的外角,∠BDE 是△ABD 的外角,∵∠CDE =∠C +∠CAD ,∠BDE =∠B +∠DAB ,∴∠BDC =∠CDE +∠BDE =∠C +∠CAD +∠B +∠DAB ,即252590140,BDC B C A ∠=∠+∠+∠=++=检验已量得150BDC ∠=,就判断这个零件不合格.【点睛】考查三角形外角的性质,作出辅助线,求出∠BDC 的度数是解题的关键.23.(1)10°;(2)∠DAE=12(∠C-∠B),证明见解析.【解析】【分析】(1)利用三角形内角和定理求得∠BAC=100°,根据角平分线定义可知∠EAC=12∠BAC,再利用三角形内角和先求出∠DAC,再求得∠DAE;(2)按照(1)中思路,进行推导即可解决问题. 【详解】(1)解:∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AE平分∠BAC,∴∠EAC=12∠BAC=50°∵AD是高,∴∠ADC=90°,∴∠DAC=180°-∠ADC-∠C=180°-90°-50°=40°∴∠DAE=∠EAC-∠DAC=50°-40°=10°(2)解:∠BAC=180°-∠B-∠C,∵AE平分∠BAC,∴∠EAC=12∠BAC=12(180°-∠B-∠C)∵AD是高,∴∠ADC=90°,∴∠DAC=180°-∠ADC-∠C=180°-90°-∠C=90°-∠C,∴∠DAE=∠EAC-∠DAC=12(180°-∠B-∠C)-(90°-∠C)=12(∠C-∠B)【点睛】本题主要考查三角形内角和定理的运用,还涉及了角平分线定义,熟练掌握以上知识点是解题关键.24.83°.【解析】试题分析:由DF⊥AB,在Rt△BDF中可求得∠B;再由∠ACD=∠A+∠B可求得.试题解析:∵DF⊥AB,∴∠B+∠D=90°,∴∠B=90°-∠D=90°-42°=48°,∴∠ACD=∠A+∠B=35°+48°=83°.。
北师大版数学七年级下册第四章 三角形练习习题(含答案)
第四章三角形一、单选题1.下列长度的三条线段能组成三角形的是()A.4,4,10B.6,8,9C.5,6,11D.3,4,82.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.3.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°4.如果两个三角形全等,那么下列结论不正确的是()A.这两个三角形的对应边相等B.这两个三角形都是锐角三角形C.这两个三角形的面积相等D.这两个三角形的周长相等5.如果△ABC≌△DEF△△DEF的周长为13△DE=3△EF=4,则AC的长为()A.13B.3C.4D.66.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A .∠BCA=∠F;B .∠B=∠E;C .BC∥EF ;D .∠A=∠EDF7.如图,已知AE=AD ,AB=AC ,EC=DB ,下列结论:△△C=△B ;△△D=△E ;△△EAD=△BAC ;△△B=△E ;其中错误的是( )A .△△B .△△C .△△D .只有△8.请仔细观察用直尺和圆规作一个角A O B '''∠等于已知角AOB ∠的示意图,请你根据所学的图形的全等这一章的知识,说明画出A O B AOB '''∠=∠的依据是( )A .SASB .ASAC .AASD .SSS9.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别是点D 、E ,若5AD =,2BE =,则DE 的长是( )A .7B .4C .3D .110.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题 11.已知三角形的两边长分别为2和7,则第三边x 的范围是_______.12.如图,在△ABC 中E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =18,则S △ADF -S △BEF =____.13.如图,ABD CDB ∆∆≌,若456AB AD BD =,=,= ,则BC =______,CD =______.14.已知:如图,在长方形ABCD 中,6,10AB AD ==延长BC 到点E ,使4CE =,连接DE ,动点F 从点B 出发,以每秒2个单位长度的速度沿BC CD DA --向终点A 运动,设点F 的运动时间为t 秒,当t 的值为_______时,ABF V 和DCE V 全等.三、解答题15.阅读材料:若22228160m mn n n -+-+=,求m ,n 的值.解:因为22228160m mn n n -+-+=所以222(2)(816)0m mn n n n -++-+=所以22()(4)0m n n +--= 所以2()0m n -=,2(4)0n -=所以4m =,4n =根据你的观察,研究下列问题:(1)已知22610210a ab b b ++++=,求-a b 的值; (2)已知ABC ∆的三边长a 、b 、c 都是整数,且满足22246110a b a b +--+=,求ABC ∆的周长.16.△△△A△D△E△△△△△△△△△△△BAD△△ACE△△△△△(1)BD=DE+CE△(2)△ABD△△△△△△△,BD△CE△17.已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠BAD=∠BCD,DE=BF.求证:(1)AD=BC;(2)AE∥CF18.等边△ABC中,点E在AB上,点D在CA的延长线上,且ED=EC.试探索以下问题:(1)如图1,当E为AB中点时,试确定线段AD与BE的大小关系,请你直接写出结论:AD BE;(2)如图2,若点E为线段AB上任意一点,(1)中结论是否成立,若成立,请证明结论,若不成立,请说明理由.答案1.B2.A3.C4.B5.D6.B7.D8.D9.C10.B11.59x <<12.313.5 414.2或1115.解:(1)∵22610210a ab b b ++++=,∴22269210a ab b b b +++++=,∴22(3)(1)0a b b +++=,∴30a b +=,10b +=,计算得出b=-1,a=3,则-a b =4;(2)∵22246110a b a b +--+=,22242690a a b b -++-+=,∴222(1)(3)0a b -+-=,∴10a -=,30b -=,计算得出b=3,a=1,由三角形三边关系(三角形两边之和大于第三边,两边之差小于第三边)得到:c=3, ∴三角形ABC 的周长=a+b+c=1+3+3=7.16.解:(1)∵△BAD ≌△ACE△∴BD=AE△AD=CE△∴BD=AE=AD+DE=CE+DE△即BD=DE+CE△(2)△ABD 满足∠ADB=90°时,BD ∥CE△理由是:∵△BAD ≌△ACE△∴∠E=∠ADB=90°△∴∠BDE=180°−90°=90°=∠E△∴BD ∥CE△17.(1)证明://Q AD CB , ADB CBD ∴∠=∠,在ADB △和CBD V 中,BAD BCD ADB CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴≅V V ADB CBD (AAS ), ∴AD BC =;(2)证明:∵ADB CBD ∠=∠,∴ADE CBF ∠=∠,在ADE V 和CBF V 中,DE BF ADE CBF AD BC =⎧⎪∠=∠⎨⎪=⎩,∴ADE CBF ≅V V (SAS ), ∴E F ∠=∠,∴//AE CF .18.解:(1)等边△ABC 中,∠BAC=∠BCA=60° ∵ED=EC ,E 为AB 中点∴∠ECD=∠D=30°∴∠DEA=∠D=30°∴AD=AE=EB .故答案为:AD=BE ;(2)过点E 作EF ∥AC 交BC 于点F ,∴∠EFB=∠ACB ,∠BEF=∠BAC ,∠FEC=∠ECA , ∵△ABC 是等边三角形,∴∠ACB=∠BAC=∠B=60°,∴∠EFB=∠BEF=∠B=60°,∴△BEF 是等边三角形,∴BE=EF ,∵ED=EC ,∴∠D=∠ECA ,∴∠D=∠FEC ,∵∠BFE=∠BAC=60°,∴∠EAD=∠CFE=120°,在△AED 和△FCE 中,D FEC EAD CFE ED EC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AED ≌△FCE (AAS ),∴AD=FE ,∴AD=BE。
北师大版七年级数学下册第四章《三角形》质量检测试卷(解析版)
第四章《三角形》质量检测卷(解析版)(全卷满分100分限时90分钟)一.选择题:(每小题3分,共36分)1. 满足下列条件的△ABC中,不是直角三角形的是()A. ∠B+∠A=∠CB. ∠A:∠B:∠C=2:3:5C. ∠A=2∠B=3∠CD. 一个外角等于和它相邻的一个内角【答案】B【解析】本题考查了直角三角形的判定根据三角形的内角和是及邻补角是,对各选项进行分析即可。
A、∵∠B+∠A=∠C,∴∠C=90°,∴△ABC是直角三角形;B、∵∠A:∠B:∠C=2:3:5,∴∠C=90°,∴△ABC是直角三角形;C、∵∠A=2∠B=3∠C,∴∠A≠90°,∴△ABC不是直角三角形;D、∵一个外角等于和它相邻的内角,∴每一个角等于90°,∴△ABC是直角三角形;故选C.2..下列说法正确的是()A.三角形的角平分线是射线B.三角形的中线是线段C.三角形的高是直线D.直角三角形仅有一条高线【答案】B【解析】三角形的角平分线,中线,高都是线段,故A,C错误,B正确;任何三角形都有三条高线,故D错误.故选B.3.若一个三角形的两边长分别为3和7,则第三边长可能是( )A. 6B. 3C. 2D. 11 【答案】A【解析】试题解析:设第三条边长为x,根据三角形三边关系得:7-3<x<7+3,即4<x<10.结合各选项数值可知,第三边长可能是6.故选A.4.在下列长度的四根木棒中,能与长为4cm、9cm的两根木棒钉成一个三角形的是( )A. 4cmB. 5cmC. 9cmD. 13cm【解析】试题解析:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9-4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有C选项符合条件.故选C.5.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在( )A. 三角形内部B. 三角形的一边上C. 三角形外部D. 三角形的某个顶点上【答案】A【解析】三角形三条角平分线所在的直线一定交于一点,这一点是三角形的内心即内切圆的圆心,此点在三角形(锐角三角形、直角三角形、钝角三角形)内部.故选:A.6.三角形的一个外角是锐角,则此三角形的形状是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 无法确定【答案】B【解析】本题主要考查了三角形的形状根据外角是锐角,可得相邻的内角是钝角,即可判断。
北师大版七年级数学下学期《第4章三角形》单元练习题含答案
第 4 章三角形一.选择题(共10 小题)1.在△ ABC 中作 AB 边上的高,以下图中不正确的选项是)(A .B.C.D.F,且AB= 6,BC= 5,2.如图,△ ABC 的中线 BD 、 CE 订交于点O,OF ⊥ BC,垂足为AC= 3, OF =2,则四边形ADOE 的面积是()A .9B .6C. 5D. 33.以下各组线段中,能构成三角形的是()A .2, 4, 6B .2, 3, 6C. 2, 5, 6D. 2, 2, 64.如下图, l1∥ l 2,则以下式子中值为180°的是()A .α+β+γB .α+β﹣γC.β+γ﹣αD.α﹣β+γ5.以下条件中不可以判断三角形全等的是()A.两角和此中一角的对边对应相等B.三条边对应相等C.两边和它们的夹角对应相等D.三个角对应相等6.如图, C 为线段 AE 上一动点(不与点A、 E 重合),在 AE 同侧分别作正三角形ABC 和正三角形 CDE ,AD 与 BE 交于点 O,AD 与 BC 交于点 P,BE 与 CD 交于点 Q,连结 PQ,以下七个结论:①AD = BE;② PQ∥AE ;③ AP =BQ;④ DE= DP;⑤∠AOB= 60°;⑥ △ PCQ 是等边三角形;⑦ 点C在∠ AOE的均分线上,此中正确的有()A .3 个B .4 个C. 5 个D. 6 个7.如图,已知点A、D、C、F 在同向来线上,AB= DE ,AD=CF ,且∠ B=∠ E= 90°,判定△ ABC≌△ DEF 的依照是()A .SASB .ASA C. AAS D. HL8.如图,在△ OAB 和△ OCD 中, OA=OB,OC= OD ,OA> OC,∠ AOB=∠ COD =40°,连结 AC, BD 交于点 M,连结 OM.以下结论:① AC= BD ;②∠ AMB= 40°;③ OM 均分∠ BOC ;④ MO 均分∠ BMC .此中正确的个数为()A .4B .3C. 2D. 19.如图, AB ∥ FC ,E 是 DF 的中点,若AB= 20, CF= 12,则 BD 等于()A .12B .8C. 6D. 1010.如图,工人师傅常用“卡钳”这类工具测定工件内槽的宽.卡钳由两根钢条AA′、BB′构成, O 为 AA′、 BB′的中点.只需量出A′B′的长度,由三角形全等就能够知道工件内槽 AB 的长度.那么判断△OAB≌△ OA′ B′的原因是()A .SASB .ASA C. SSS D. AAS二.填空题(共 5 小题)11.一个三角形的三边长分别为x,4, 6,那么 x 的取值范围.12.如图,自行车的主框架采纳了三角形构造,这样设计的依照是三角形拥有.13.如图,在△ ABC 中, AD⊥ BC,AE 均分∠ BAC,若∠ BAE= 30°,∠ CAD = 20°,则∠B=.14.如图, AB= 6cm, AC= BD = 4cm.∠ CAB=∠ DBA,点 P 在线段 AB 上以 2cm/s 的速度由点 A 向点 B 运动,同时,点Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为t ( s).设点 Q 的运动速度为xcm/s,若使得△ ACP 与△ BPQ 全等,则 x 的值为.15.如图,已知A D 和 BC 订交于点O 且 AD =BC,分别连结AC,AB,BD,已知 AC= BD,∠ ABC=20°,则∠ AOB 的度数为.三.解答题(共 5 小题)16.如图,∠ BAD =∠ CAE= 90°, AB= AD , AE= AC, AF⊥ CB,垂足为F.(1)求证:△ ABC≌△ ADE;(2)求∠ FAE 的度数;(3)求证: CD =2BF+DE .17.把下边的推理过程增补完好,并在括号内注明原因.如图,点B、D 在线段 AE 上, BC∥EF, AD = BE, BC=EF ,试说明:( 1)∠ C=∠ F;( 2) AC∥DF .解:( 1)∵ AD= BE(已知)∴ AD+DB =DB +BE()即 AB= DE∵ BC∥ EF(已知)∴∠ ABC=∠()又∵ BC= EF(已知)∴△ ABC≌△ DEF ()∴∠ C=∠ F,∠ A=∠ FDE ()∴ AC∥ DF ()18.已知:如图,点A, F,C,D 在同向来线上,AF =DC,AB∥ DE ,AB= DE ,求证: BC∥EF.19.如图,在△A BC 中,∠ ACB= 45°,过点A 作 AD ⊥ BC 于点 D ,点 E 为 AD 上一点,且ED = BD.(1)求证:△ ABD ≌△ CED;(2)若 CE 为∠ ACD 的角均分线,求∠ BAC 的度数.20.如图,△ ABC 和△ EBD 中,∠ ABC =∠ DBE = 90°, AB= CB,BE= BD ,连结 AE,CD , AE 与 CD 交于点 M, AE 与 BC 交于点 N.(1)求证: AE= CD;(2)求证: AE⊥ CD;( 3)连结 BM ,有以下两个结论:① BM均分∠ CBE;② MB均分∠ AMD.此中正确的有(请写序号,少选、错选均不得分).参照答案一.选择题(共10 小题)1.C.2.C.3.C.4. B.5.D.6.D.7.D.8.:B.9.B.10.A.二.填空题(共 5 小题)11.:2< x< 1012.稳固性.13.50°.14.2 或.15.140°三.解答题(共 5 小题)16.证明:( 1)∵∠ BAD =∠ CAE= 90°,∴∠ BAC+∠ CAD =90°,∠ CAD +∠DAE = 90°,∴∠ BAC=∠ DAE ,在△ BAC 和△ DAE 中,,∴△ BAC≌△ DAE (SAS);(2)∵∠ CAE= 90°, AC= AE,∴∠ E= 45°,由( 1)知△ BAC≌△ DAE ,∴∠ BCA=∠ E= 45°,∵AF⊥ BC,∴∠CFA=90°,∴∠ CAF= 45°,∴∠ FAE=∠ FAC+∠CAE= 45°+90 °= 135°;(3)延伸 BF 到 G,使得 FG= FB,∵ AF⊥ BG,∴∠ AFG=∠ AFB = 90°,在△ AFB 和△ AFG 中,,∴△ AFB ≌△ AFG ( SAS),∴AB=AG,∠ABF =∠G,∵△ BAC≌△ DAE ,∴AB= AD ,∠ CBA=∠ EDA, CB= ED,∴AG= AD,∠ ABF =∠ CDA,∴∠ G=∠ CDA ,∵∠ GCA=∠ DCA= 45°,在△ CGA 和△ CDA 中,,∴△ CGA≌△ CDA( AAS),∴CG= CD,∵CG=CB+BF+FG=CB+2BF =DE+2BF ,∴ CD = 2BF +DE .17.解:( 1)∵ AD = BE(已知)∴AD+DB =DB +BE(等式的性质)即 AB= DE∵ BC∥ EF(已知)∴∠ ABC=∠ E(两直线平行,同位角相等)又∵ BC= EF(已知)∴△ ABC≌△ DEF ( SAS)∴∠ C=∠ F,∠ A=∠ FDE (全等三角形的对应角相等);故答案为:等式的性质; E;两直线平行,同位角相等; SAS;全等三角形的对应角相等;( 2)∵∠ A=∠ FDE ,∴ AC∥ DF (同位角相等,两直线平行).故答案为:同位角相等,两直线平行.18.证明:∵ AB∥ DE,∴∠ A=∠ D,∵AF= CD ,∴ AC= DF ,在△ ABC 和△ DEF 中,∴△ ABC≌△ DEF (SAS),∴∠ BCA=∠ EFD ,∴BC∥ EF.19.( 1)证明:∵ AD⊥BC,∠ ACB= 45°,∴∠ ADB=∠ CDE= 90°,△ ADC 是等腰直角三角形,∴AD= CD,∠ CAD =∠ ACD = 45°,在△ ABD 与△ CED 中,,∴△ ABD≌△ CED( SAS);(2)解:∵ CE 为∠ ACD 的角均分线,∴∠ ECD=∠ ACD = 22.5°,由( 1)得:△ ABD ≌△ CED,∴∠ BAD=∠ ECD= 22.5°,∴∠ BAC=∠ BAD +∠ CAD =22.5° +45°= 67.5°.20.( 1)证明:∵∠ ABC=∠ DBE,∴∠ ABC+∠ CBE=∠ DBE +∠ CBE,即∠ ABE=∠ CBD ,在△ ABE 和△ CBD 中,,∴△ ABE≌△ CBD ,∴AE= CD .(2)∵△ ABE≌△ CBD ,∴∠ BAE=∠ BCD ,∵∠ NMC = 180°﹣∠ BCD ﹣∠ CNM ,∠ ABC= 180°﹣∠ BAE﹣∠ ANB,又∠ CNM =∠ ABC,∵∠ABC=90°,∴∠ NMC = 90°,∴ AE⊥ CD .(3)结论:②原因:作BK⊥ AE 于 K, BJ⊥ CD 于 J.∵△ ABE≌△ CBD ,∴AE= CD , S△ABE= S△CDB,∴?AE?BK = ?CD?BJ,∴BK= BJ,∵作 BK⊥AE 于 K , BJ⊥ CD 于 J,∴BM 均分∠ AMD .不如设①建立,则△ ABM ≌△ DBM ,则 AB= BD ,明显可不可以,故① 错误.故答案为② .。
北师大版七年级数学下册 第四章 三角形 达标检测卷(含详细解答)
北师大版七年级数学下册第四章达标检测卷(考试时间:120分钟满分:120分)班级:________ 姓名:________ 分数:________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共18分)1.下列图形中与已知图形全等的是( )2.若三角形有两个内角的和是85°,那么这个三角形是 ( )A.钝角三角形 B.直角三角形C.锐角三角形 D.不能确定3.(襄州区期末)如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,如图所示的这种方法,是利用了三角形全等中的( ) A.SSS B.ASA C.AAS D.SAS第3题图4.已知三角形的三边分别为4,a,8,那么该三角形的周长c的取值范围是( ) A.4<c<12 B.12<c<24C.8<c<24 D.16<c<245.根据下列条件,能画出唯一△ABC的是 ( )A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=45°D.∠A=30°,∠B=60°,∠C=90°6.(东营中考)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( )A.50° B.30° C.20° D.15°第6题图7.如图,在△ABC中,BD⊥AC,EF∥AC,交BD于点G,那么下列结论错误的是( ) A.BD是△ABC的高 B.CD是△BCD的高C.EG是△ABD的高 D.BG是△BEF的高第7题图第8题图8.(金华中考)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD9.★如图,在△PAB中,∠A=∠B,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN=42°,则∠P的度数为 ( )A.44° B.66° C.96° D.92°第9题图第10题图10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论中正确的个数是()①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.A.1 B.2 C.3 D.4第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是.第11题图第12题图12.(朔州月考)如图,CD是△ABC的中线,若AB=8,则AD的长为.13.已知四边形ABCD各边长如图所示,且四边形OPEF≌四边形ABCD.则PE的长为.第13题图第14题图14.如图所示,A,B,C,D是四个村庄,B,D,C在一条东西走向公路的沿线上,BD=1 km,DC=1 km,村庄A,C和A,D间也有公路相连,且公路AD是南北走向,AC=3 km,只有AB之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE=1.2 km,BF=0.7 km,则建造的斜拉桥长至少有 km.15.(河南中考)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为.16.如图,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CD交CD的延长线于点E,AD=2.4 cm,DE=1.7 cm,则BE的长为 cm.17.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为.第17题图第18题图18.★(锡山区期末)如果三角形的两个内角α与β满足3α+β=90°,那么我们称这样的三角形为“准直角三角形”.如图,B,C为直线l上两点,点A在直线l外,且∠ABC=45°.若P是l上一点,且△ABP是“准直角三角形”,则∠APB 的所有可能的度数为.三、解答题(共66分)19.(6分)如图,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BE=CF,试说明:AB∥DE.20.(8分)如图,已知线段a,b,∠α,求作三角形ABC,使AC=b,BC=2a,∠C=180°-α.(不写作法,保留作图痕迹)21.(8分)如图,AM平分∠CAD,CN平分∠ACB,△ACB≌△CAD,请你判断AM和CN的位置关系,并说明理由.22.(8分)如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C =70°,求∠AEC和∠DAE的度数.23.(10分)如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)试说明:△ABE≌△CBD;(2)试说明:∠1=∠3.24.(12分)(南岗区校级期中)已知AD是△ABC的角平分线(∠ACB>∠B),P是射线AD上一点,过点P作EF⊥AD,交射线AB于点E,交直线BC于点M.(1)如图①,∠ACB=90°,试说明:∠M=∠BAD;(2)如图②,∠ACB为钝角,P在AD延长线上,连接BP,CP,BP平分∠EBC,CP 平分∠BCF,∠BPD=50°,∠CPD=21°,求∠M的度数.25.(14分)如图①,点M为直线AB上一动点,△PAB,△PMN都是等边三角形,连接BN.(1)试说明:AM=BN;(2)分别写出点M在如图②和图③所示位置时,线段AB,BM,BN三者之间的数量关系,不需证明.①②③参考答案第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共18分)1.下列图形中与已知图形全等的是( B)2.若三角形有两个内角的和是85°,那么这个三角形是 ( A)A.钝角三角形 B.直角三角形C.锐角三角形 D.不能确定3.(襄州区期末)如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,如图所示的这种方法,是利用了三角形全等中的( D) A.SSS B.ASA C.AAS D.SAS第3题图4.已知三角形的三边分别为4,a,8,那么该三角形的周长c的取值范围是( D) A.4<c<12 B.12<c<24C.8<c<24 D.16<c<245.根据下列条件,能画出唯一△ABC的是 ( C)A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=45°D.∠A=30°,∠B=60°,∠C=90°6.(东营中考)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( C)A.50° B.30° C.20° D.15°第6题图7.如图,在△ABC中,BD⊥AC,EF∥AC,交BD于点G,那么下列结论错误的是( C) A.BD是△ABC的高B.CD是△BCD的高C.EG是△ABD的高D.BG是△BEF的高第7题图第8题图8.(金华中考)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( A)A.AC=BDB.∠CAB=∠DBAC.∠C=∠DD.BC=AD9.★如图,在△PAB中,∠A=∠B,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN=42°,则∠P的度数为 ( C)A.44° B.66° C.96° D.92°第9题图第10题图10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论中正确的个数是( D)①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.A.1 B.2 C.3 D.4第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是__三角形的稳定性__.第11题图第12题图12.(朔州月考)如图,CD是△ABC的中线,若AB=8,则AD的长为__4__.13.已知四边形ABCD各边长如图所示,且四边形OPEF≌四边形ABCD.则PE的长为__10__.第13题图第14题图14.如图所示,A,B,C,D是四个村庄,B,D,C在一条东西走向公路的沿线上,BD=1 km,DC=1 km,村庄A,C和A,D间也有公路相连,且公路AD是南北走向,AC=3 km,只有AB之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE=1.2 km,BF=0.7 km,则建造的斜拉桥长至少有__1.1__km.15.(河南中考)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__75°__.16.如图,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CD交CD的延长线于点E,AD=2.4 cm,DE=1.7 cm,则BE的长为__0.7___cm.17.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为__60°.第17题图第18题图18.★(锡山区期末)如果三角形的两个内角α与β满足3α+β=90°,那么我们称这样的三角形为“准直角三角形”.如图,B ,C 为直线l 上两点,点A 在直线l 外,且∠ABC =45°.若P 是l 上一点,且△ABP 是“准直角三角形”,则∠APB 的所有可能的度数为__15°或22.5°或120°__.三、解答题(共66分)19.(6分)如图,点B ,E ,C ,F 在同一条直线上,AB =DE ,AC =DF ,BE =CF ,试说明:AB ∥DE.解:∵BE =CF ,∴BC =EF ,在△ABC 与△DEF 中,⎩⎪⎨⎪⎧AB =DE ,AC = DF ,BC=EF ,∴△ABC ≌△DEF(SSS),∴∠ABC =∠DEF ,∴AB ∥DE.20.(8分)如图,已知线段a ,b ,∠α,求作三角形ABC ,使AC =b ,BC =2a ,∠C =180°-α.(不写作法,保留作图痕迹)解:如图,△ABC 即为所求.21.(8分)如图,AM 平分∠CAD ,CN 平分∠ACB ,△ACB ≌△CAD ,请你判断AM 和CN 的位置关系,并说明理由.解:AM ∥CN.理由:∵△ACB ≌△CAD ,∴∠ACB =∠CAD.∵AM 和CN 分别平分∠CAD 和∠ACB ,∴∠ACN =12 ∠ACB ,∠CAM =12 ∠CAD ,∴∠ACN =∠CAM ,∴AM ∥CN.22.(8分)如图,AD 是△ABC 的BC 边上的高,AE 平分∠BAC ,若∠B =42°,∠C=70°,求∠AEC 和∠DAE 的度数.解:∵∠B =42°,∠C =70°,∴∠BAC =180°-∠B -∠C =68°.∵AE 平分∠BAC ,∴∠EAC =12 ∠BAC =34°.∵AD 是高,∠C =70°,∴∠DAC =90°-∠C =20°,∴∠DAE =∠EAC -∠DAC =34°-20°=14°,∴∠AEC =90°-∠DAE =76°.23.(10分)如图,点E 在CD 上,BC 与AE 交于点F ,AB =CB ,BE =BD ,∠1=∠2.(1)试说明:△ABE ≌△CBD ;(2)试说明:∠1=∠3.解:(1)∵∠1=∠2,∴∠1+∠CBE =∠2+∠CBE ,即∠ABE =∠CBD ,在△ABE 和△CBD 中,⎩⎪⎨⎪⎧AB =CB ,∠ABE =∠CBD ,BE =BD ,∴△ABE ≌△CBD(SAS);(2)∵△ABE ≌△CBD ,∴∠A =∠C ,∵∠AFB =∠CFE ,∴∠1=∠3.24.(12分)(南岗区校级期中)已知AD 是△ABC 的角平分线(∠ACB >∠B),P 是射线AD 上一点,过点P 作EF ⊥AD ,交射线AB 于点E ,交直线BC 于点M.(1)如图①,∠ACB =90°,试说明:∠M =∠BAD ;(2)如图②,∠ACB 为钝角,P 在AD 延长线上,连接BP ,CP ,BP 平分∠EBC ,CP 平分∠BCF ,∠BPD =50°,∠CPD =21°,求∠M 的度数.解:(1)∵EF ⊥AD ,∴∠APF =∠MCF =90°.∵∠AFP =∠MFC ,∴∠M =∠PAF.∵∠BAD =∠CAD ,∴∠M=∠BAD.(2)∵∠BPD=50°,∠CPD=21°,∴∠BPC=71°,∴∠PBC+∠PCB=109°.∵∠BCF=2∠PCB,∠EBC=2∠PBC,∴∠EBC+∠BCF=218°,∴∠ABC+∠ACB=360°-218°=142°,∴∠BAC=180°-142°=38°,∴∠DCP=∠FCP=∠CPD+∠CAD=40°,∴∠MDP=∠DPC+∠DCP=61°.∵EF⊥AP,∴∠MPD=90°,∴∠M=90°-61=29°.25.(14分)如图①,点M为直线AB上一动点,△PAB,△PMN都是等边三角形,连接BN.(1)试说明:AM=BN;(2)分别写出点M在如图②和图③所示位置时,线段AB,BM,BN三者之间的数量关系,不需证明.①②③解:(1)∵△PAB和△PMN是等边三角形,∴∠BPA =∠MPN =60°, AB =BP =AP ,PM =PN =MN ,∴∠BPA -∠MPB =∠MPN -∠MPB , ∴∠APM =∠BPN.在△APM 和△BPN 中,⎩⎪⎨⎪⎧AP =BP ,∠APM =∠BPN ,PM =PN ,∴△APM ≌△BPN(SAS), ∴AM =BN.(2)图②中,BN =AB +BM ; 图③中,BN =BM -AB.。
北师大版数学七年级下册第四章 三角形练习习题(包含答案)
第四章三角形一、单选题1.下列长度的三条线段能组成三角形的是()A.4,4,10B.6,8,9C.5,6,11D.3,4,82.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.3.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°4.如果两个三角形全等,那么下列结论不正确的是()A.这两个三角形的对应边相等B.这两个三角形都是锐角三角形C.这两个三角形的面积相等D.这两个三角形的周长相等5.如果△ABC≌△DEF△△DEF的周长为13△DE=3△EF=4,则AC的长为()A.13B.3C.4D.66.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A .∠BCA=∠F;B .∠B=∠E;C .BC∥EF ;D .∠A=∠EDF7.如图,已知AE=AD ,AB=AC ,EC=DB ,下列结论:△△C=△B ;△△D=△E ;△△EAD=△BAC ;△△B=△E ;其中错误的是( )A .△△B .△△C .△△D .只有△8.请仔细观察用直尺和圆规作一个角A O B '''∠等于已知角AOB ∠的示意图,请你根据所学的图形的全等这一章的知识,说明画出A O B AOB '''∠=∠的依据是( )A .SASB .ASAC .AASD .SSS9.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别是点D 、E ,若5AD =,2BE =,则DE 的长是( )A .7B .4C .3D .110.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题 11.已知三角形的两边长分别为2和7,则第三边x 的范围是_______.12.如图,在△ABC 中E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =18,则S △ADF -S △BEF =____.13.如图,ABD CDB ∆∆≌,若456AB AD BD =,=,= ,则BC =______,CD =______.14.已知:如图,在长方形ABCD 中,6,10AB AD ==延长BC 到点E ,使4CE =,连接DE ,动点F 从点B 出发,以每秒2个单位长度的速度沿BC CD DA --向终点A 运动,设点F 的运动时间为t 秒,当t 的值为_______时,ABF V 和DCE V 全等.三、解答题15.阅读材料:若22228160m mn n n -+-+=,求m ,n 的值.解:因为22228160m mn n n -+-+=所以222(2)(816)0m mn n n n -++-+=所以22()(4)0m n n +--= 所以2()0m n -=,2(4)0n -=所以4m =,4n =根据你的观察,研究下列问题:(1)已知22610210a ab b b ++++=,求-a b 的值; (2)已知ABC ∆的三边长a 、b 、c 都是整数,且满足22246110a b a b +--+=,求ABC ∆的周长.16.△△△A△D△E△△△△△△△△△△△BAD△△ACE△△△△△(1)BD=DE+CE△(2)△ABD△△△△△△△,BD△CE△17.已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠BAD=∠BCD,DE=BF.求证:(1)AD=BC;(2)AE∥CF18.等边△ABC中,点E在AB上,点D在CA的延长线上,且ED=EC.试探索以下问题:(1)如图1,当E为AB中点时,试确定线段AD与BE的大小关系,请你直接写出结论:AD BE;(2)如图2,若点E为线段AB上任意一点,(1)中结论是否成立,若成立,请证明结论,若不成立,请说明理由.答案1.B2.A3.C4.B5.D6.B7.D8.D9.C10.B11.59x <<12.313.5 414.2或1115.解:(1)∵22610210a ab b b ++++=,∴22269210a ab b b b +++++=,∴22(3)(1)0a b b +++=,∴30a b +=,10b +=,计算得出b=-1,a=3,则-a b =4;(2)∵22246110a b a b +--+=,22242690a a b b -++-+=,∴222(1)(3)0a b -+-=,∴10a -=,30b -=,计算得出b=3,a=1,由三角形三边关系(三角形两边之和大于第三边,两边之差小于第三边)得到:c=3, ∴三角形ABC 的周长=a+b+c=1+3+3=7.16.解:(1)∵△BAD ≌△ACE△∴BD=AE△AD=CE△∴BD=AE=AD+DE=CE+DE△即BD=DE+CE△(2)△ABD 满足∠ADB=90°时,BD ∥CE△理由是:∵△BAD ≌△ACE△∴∠E=∠ADB=90°△∴∠BDE=180°−90°=90°=∠E△∴BD ∥CE△17.(1)证明://Q AD CB , ADB CBD ∴∠=∠,在ADB △和CBD V 中,BAD BCD ADB CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴≅V V ADB CBD (AAS ), ∴AD BC =;(2)证明:∵ADB CBD ∠=∠,∴ADE CBF ∠=∠,在ADE V 和CBF V 中,DE BF ADE CBF AD BC =⎧⎪∠=∠⎨⎪=⎩,∴ADE CBF ≅V V (SAS ), ∴E F ∠=∠,∴//AE CF .18.解:(1)等边△ABC 中,∠BAC=∠BCA=60° ∵ED=EC ,E 为AB 中点∴∠ECD=∠D=30°∴∠DEA=∠D=30°∴AD=AE=EB .故答案为:AD=BE ;(2)过点E 作EF ∥AC 交BC 于点F ,∴∠EFB=∠ACB ,∠BEF=∠BAC ,∠FEC=∠ECA , ∵△ABC 是等边三角形,∴∠ACB=∠BAC=∠B=60°,∴∠EFB=∠BEF=∠B=60°,∴△BEF 是等边三角形,∴BE=EF ,∵ED=EC ,∴∠D=∠ECA ,∴∠D=∠FEC ,∵∠BFE=∠BAC=60°,∴∠EAD=∠CFE=120°,在△AED 和△FCE 中,D FEC EAD CFE ED EC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AED ≌△FCE (AAS ),∴AD=FE ,∴AD=BE。
北师大数学七年级下《第四章三角形》章节检测题含答案
北师大版数学七年级下册第四章三角形章节检测题一、选择题1.在下列长度的四根木棒中,能与长为4 cm,9 cm的两根木棒钉成一个三角形的是( )A.4 cm B.5 cm C.9 cm D.13 cm2.在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是( )A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形3.下列说法中正确的是( )A.面积相等的两个图形是全等图形B.周长相等的两个图形是全等图形C.所有正方形都是全等图形D.能够完全重合的两个图形是全等图形4.如图,AB∥FC,DE=EF,AB=15,CF=8,则BD等于( )A.8 B.7 C.6 D.55.如图,为测量B点到河对面的目标A之间的距离,他们在B点同侧选择了一点C,测得∠ABC=70°,∠ACB=40°,然后在M处立了标杆,使∠CBM=70°,∠BCM=40°,那么需要测量________才能测得A,B之间的距离( )A.AB B.AC C.BM D.CM6.如图,∠A=∠B,∠C=α,DE⊥AC,FD⊥AB,则∠EDF等于( )A.α B.90°-12α C.90°-α D.180°-2α7.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为( )A.95° B.85° C.90° D.100°二、填空题8.如图,直线l1∥l2,若∠1=130°,∠2=60°,则∠3=_______.9.如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连接AD,CD.若∠B=65°,则∠ADC的大小为________.10.如图是一副三角板叠放的示意图,则∠α=________.11.如图,在△ABC中,AD是BC边上的高,点E在线段BD上,且AE平分∠BAC,若∠B=40°,∠C=78°,则∠EAD=____°.12.一角为80°的三角形中,另两角的角平分线相交所成的锐角是________.13.如图,在△ABC中,BD是边AC上的中线,E是BC的中点,连接DE.如果△BDE的面积为2,那么△ABC的面积为____.三、解答题14.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)15.(·河北)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB =DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.16.如图,在△ABC中,BE,CF分别是AC,AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.求证:AG=AD.17.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20步有一棵树C,继续前行20步到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长就是河宽AB.请你证明他们做法的正确性.18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.(2)延长AC 至点E ,使CE =AC ,求证:DA =DE.答案:一、1---7 CDDBC BB二、8. 70°9. 65°10. 75°11. 19 °12. 50°13. 8三、14. 解:答案不唯一,如添加AC =DF ,证明:∵BF =EC ,∴BF -CF =EC -CF ,即BC =EF ,在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,∠1=∠2,BC =EF ,∴△ABC ≌△DEF15. 解:(1)∵BF =CE ,∴BF +CF =CE +CF ,即BC =EF ,又∵AB =DE ,AC =DF ,∴△ABC ≌△DEF(SSS) (2)AB ∥DE ,AC ∥DF.理由:∵△ABC ≌△DEF ,∴∠ABC =∠DEF ,∠ACF =∠DFE ,∴AB ∥DE ,AC16. 解:∵BE ,CF 分别是AC ,AB 两条边上的高,∴∠ABD +∠BAC =90°,∠GCA +∠BAC =90°,∴∠GCA =∠ABD ,在△GCA 和△ABD 中,∵GC =AB ,∠GCA =∠ABD ,CA =BD ,∴△GCA ≌△ABD ,∴AG =AD17. 解:做法正确.证明:在△ABC 和△EDC 中,∴△ABC ≌△EDC(ASA),∴AB =DE18. 解:(1)∵在Rt △ABC 中,∠ACB =90°,∠B =30°,∴∠CAB =60°.又∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30° (2)∵∠ACD +∠ECD =180°,且∠ACD =90°,∴∠ECD =90°,∴∠ACD =∠ECD.在△ACD 与△ECD 中,⎩⎪⎨⎪⎧AC =EC ,∠ACD =∠ECD ,CD =CD ,∴△ACD ≌△ECD(SAS),∴DA =DE。
北师大版数学七年级下册第四章三角形 达标测试卷(含答案)
第四章三角形达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列四组图形中,是全等图形的是()2.如图,在△ABC中,过点A作AD⊥BC于点D,则下列说法正确的是() A.CD是△ABC的高B.BD是△ABC的高C.AD只是△ABC的高D.AD是图中三个三角形的高(第2题)(第3题)(第4题)3.如图所示,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠BAD的度数为()A.40°B.45°C.50°D.55°4.如图,在△ABC中,AB=5,AC=3,AD为BC边上的中线,则△ABD与△ACD 的周长之差为()A.2 B.3 C.4 D.55.如图,要测量河中礁石A离岸边点B的距离,采取的方法如下:顺着河岸的方向任作一条线段BC,作∠CBA′=∠CBA,∠BCA′=∠BCA,可得△A′BC ≌△ABC,所以A′B=AB,所以测量A′B的长即可得到AB的长.判定图中两个三角形全等的依据是()A.SAS B.ASA C.SSS D.AAS (第5题)(第7题)6.已知a,b,c分别为△ABC的三边长,并满足|a-4|+(c-3)2=0.若b为奇数,则△ABC的周长为()A.10 B.8或10C.10或12 D.8或10或127.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于() A.90°B.135°C.270°D.315°8.如图,AB=AD,AC=AE,∠DAB=∠CAE=50°,以下四个结论:①△ADC ≌△ABE;②CD=BE;③∠DOB=50°;④CD平分∠AC B.其中结论正确的个数是()A.1 B.2 C.3 D.4(第8题)(第9题)二、填空题(共5小题,每小题3分,计15分)9.如图,把手机放在一个支架上面,可以使它稳固起来,这是利用了三角形的____________.10.如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是______________.(第10题)(第12题)(第13题)11.一张三角形纸片上,小明只能折叠出它的一条高,可以推断,这个三角形纸片的形状是__________三角形.12.如图,点D在△ABC内,且∠BDC=120°,∠1+∠2=55°,则∠A的度数为________.13.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E 在BC上,且BE=BD,连接AE,DE,DC.若∠CAE=30°,则∠BDC=________.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)图中有几个三角形?用符号表示这些三角形.(第14题)15.(5分)已知a,b,c是△ABC的三边,a=4,b=6,若三角形的周长是小于18的偶数.求c边的长并判断△ABC的形状.16.(5分)如图,已知△ABC,求作△A′B′C′,使A′B′=AB,∠B′=∠B,B′C′=BC.(尺规作图,不写作法,保留作图痕迹,作在右侧方框内)(第16题)317.(5分)如图,∠ACD=140°,∠A=60°,求∠B,∠ACB的度数.(第17题)18.(5分)如图,AD是△ABC的边BC上的中线,已知AB=6 cm,AC=5 cm.△ABD 的周长为14 cm,求△ACD的周长.(第18题) 19.(5分)如图,△ABC≌△ADE,点E在边BC上,试说明∠BED=∠BAD.(第19题)20.(5分)如图,点A,B,C,D在同一直线上,AM=CN,BM=DN,AC=BD.试说明BM∥DN .(第20题)21.(6分)如图,在△ABC中,∠A=90°,CD∥BA交BD于点D,已知∠1=32°,∠D=29°,试说明BD平分∠ABC .(第21题)522.(7分)如图,树AB与树CD之间相距13 m,小华从点B沿BC走向点C,行走一段时间后,他到达点E,此时他仰望两棵大树的顶点A和D,且两条视线的夹角正好为90°,EA=ED.已知大树AB的高为5 m,小华行走的速度为1 m/s,求小华行走到点E的时间.(第22题)23.(7分)如图,点A,B,D,E在同一直线上,AD=EB,∠A=∠E.请你添加一个条件,使得AC=EF.(第23题)(1)你添加的条件是____________________;(2)请你写出说明过程.24.(8分)如图,小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向以相同的步子走了30步到达一棵树C处,接着再向前走了30步到达D处,然后向正南方向直行,当小刚看到电线塔、树与自己现处的位置E在一条直线上时,他共走了140步.(1)根据题意,画出示意图;(2)如果小刚一步大约是50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.(第24题)725.(8分)如图,已知AB∥DE,点B,C,D在一条直线上,AC⊥CE,∠B=90°,AB=CD.(1)△ABC与△CDE全等吗?为什么?(2)你还能得到哪些线段的相等关系?为什么?(第25题)26.(10分)[问题情景]如图①:在四边形ABCD中,AB=AD,∠BAD=120°,E,F分别是BC,CD上的点,且∠EAF=60°,试探究图中线段BE,EF,DF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG,先判定△ABE≌△ADG,再判定△AEF≌△AGF,可得出结论:________________.【探索延伸】如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由.【学以致用】如图③,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出△DEF的周长.(第26题)9答案一、1.C 2.D 3.A 4.A 5.B 6.C 7.C 8.C 点拨:设AB 与CD 交于点F .因为∠DAB =∠CAE ,所以∠DAB +∠BAC =∠CAE +∠BAC , 所以∠DAC =∠BAE .在△ADC 和△ABE 中,⎩⎨⎧AD =AB ,∠DAC =∠BAE ,AC =AE ,所以△ADC ≌△ABE (SAS), 所以CD =BE ,∠ADC =∠ABE . 因为∠AFD =∠BFO , 所以∠BOD =∠BAD =50°, 故①②③正确, 故选C.二、9.稳定性 10.ASA 11.直角或钝角 12.65°13.75° 点拨:延长AE 交DC 边于点F ,如图.(第13题)因为∠ABC =90°,所以∠CBD =90°.在△ABE 与△CBD 中,⎩⎨⎧BE =BD ,∠ABE =∠CBD =90°,AB =CB ,所以△ABE ≌△CBD ,所以∠AEB =∠BDC . 易知∠BAC =∠ACB =45°, 又因为∠CAE =30°,所以∠AEB=180°-∠AEC=∠ACB+∠CAE=45°+30°=75°,所以∠BDC=75°.三、14.解:图中有6个三角形,分别是△ABD,△ABE,△ACB,△ADE,△ADC,△AEC.15.解:因为a,b,c是△ABC的三边,a=4,b=6,所以2<c<10.因为三角形的周长是小于18的偶数,所以2<c<8,且c边的长为偶数,所以c=4或6.当c=4或6时,△ABC的形状都是等腰三角形.16.解:如图,△A′B′C′即为所求.(第16题)17.解:因为∠ACD=140°,所以∠ACB=180°-∠ACD=40°,又因为∠A=60°,所以∠B=180°-∠A-∠ACB=180°-60°-40°=80°.18.解:因为AD是△ABC的中线,所以BD=CD,所以△ABD与△ACD的周长之差为(AB+BD+AD)-(AC+CD+AD)=AB+BD+AD-AC-CD-AD=AB-AC =6-5=1(cm).因为△ABD的周长为14 cm,所以△ACD的周长为14-1=13(cm).19.解:因为△ABC≌△ADE,所以∠C=∠AED,∠BAC=∠DAE,所以∠BAC-∠BAE=∠DAE-∠BAE,11即∠CAE =∠BAD .因为∠AEB =∠AED +∠BED =180°-∠AEC =∠CAE +∠C ,所以∠CAE =∠BED ,所以∠BED =∠BAD .20.解:因为AC =BD ,所以AC +BC =BD +BC ,即AB =CD .在△ABM 和△CDN 中,⎩⎨⎧AB =CD ,BM =DN ,AM =CN ,所以△ABM ≌△CDN ,所以∠MBA =∠D ,所以BM ∥DN .21.解:因为CD ∥BA ,所以∠ABD =∠D =29°.因为∠A =90°,∠1=32°,所以∠ABC =90°-32°=58°,所以∠DBC =∠ABC -∠ABD =58°-29°=29°,所以∠ABD =∠DBC ,所以BD 平分∠ABC .22.解:由题意,得AB ⊥BC ,CD ⊥BC ,∠AED =90°,BC =13 m ,AB =5 m ,所以∠B =∠C =90°,∠A +∠AEB =∠CED +∠AEB =90°,所以∠A =∠CED .在△ABE 和△ECD 中,⎩⎨⎧∠B =∠C =90°,∠A =∠CED ,AE =ED ,所以△ABE ≌△ECD (AAS),所以AB =CE =5 m ,所以BE =BC -CE =8 m ,则小华行走到点E 的时间为8÷1=8(s).1323.解:(1)∠C =∠F (答案不唯一)(2)因为AD =EB ,AB +BD =DE +BD ,所以AB =DE .在△ABC 和△EDF 中,⎩⎨⎧∠A =∠E ,∠C =∠F ,AB =DE ,所以△ABC ≌△EDF ,所以AC =EF .24.解:(1)如图所示.(第24题)(2)小刚在点A 处时他与电线塔的距离约为40米.理由如下:由题意得,DE =140-30-30=80(步).在△DEC 和△ABC 中,⎩⎨⎧∠D =∠A =90°,DC =AC ,∠DCE =∠ACB ,所以△DEC ≌△ABC (ASA),所以DE =AB .因为DE ≈80×50÷100=40(米),所以AB ≈40米.答:小刚在点A 处时他与电线塔的距离约为40米.25.解:(1)△ABC ≌△CDE ,理由如下:因为AB ∥DE ,所以∠B +∠D =180°,因为∠B =90°,所以∠D =90°=∠B .因为AC ⊥CE ,所以∠ACB +∠DCE =90°.因为∠ACB +∠A =90°,所以∠A =∠DCE .在△ABC 与△CDE 中,⎩⎨⎧∠A =∠DCE ,AB =CD ,∠B =∠D ,所以△ABC ≌△CDE .(2)BC =DE ,AC =CE ,理由如下:由(1)知△ABC ≌△CDE ,所以BC =DE ,AC =CE .26.解:【问题情景】EF =BE +DF【探索延伸】结论EF =BE +DF 仍然成立.理由:如图,延长FD 到点G ,使DG =BE ,连接AG .因为∠B +∠ADF =180°,∠ADF +∠ADG =180°,所以∠B =∠ADG .在△ABE 和△ADG 中,⎩⎨⎧DG =BE ,∠B =∠ADG ,AB =AD ,所以△ABE ≌△ADG ,所以AE =AG ,∠BAE =∠DAG ,因为∠EAF =12∠BAD ,所以∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF , 所以∠EAF =∠GAF .在△AEF 和△AGF 中,⎩⎨⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,所以△AEF ≌△AGF ,所以EF =FG ,因为FG =DG +DF =BE +DF ,所以EF =BE +DF .【学以致用】△DEF 的周长为10.(第26题)15。
北师大版数学七年级下册数学第四章三角形测试题(原题版 )
【北师大版七年级数学(下)单元测试卷】第四章 三角形一、选择题:(每小题3分共36分)1.如图,已知ABE ACD ∆≅∆,若50B ∠=o ,120AEC ∠=o ,则DAC ∠的度数为( )A .120oB .70oC .60oD .50o2.如图,DE ∥BC ,BE 平分∠ABC ,若∠1=70°,则∠CBE 的度数为( )A .20°B .35°C .55°D .70°3.如图,BE =CF ,AE ⊥BC ,DF ⊥BC ,要根据“HL ”证明Rt △ABE ≌Rt △DCF ,则还需要添加一个条件是( )A .AE =DFB .∠A =∠DC .∠B =∠CD .AB =DC4.如图,△ABC 中,CE 平分∠ACB 的外角,D 为CE 上一点,若BC=a ,AC=b ,DB=m ,AD=n ,则m ﹣a 与b ﹣n 的大小关系是( )A .m ﹣a >b ﹣nB .m ﹣a <b ﹣nC .m ﹣a=b ﹣nD .m ﹣a >b ﹣n 或m﹣a <b ﹣n的度数为()A.25°B.30°C.35°D.40°6.如图,在平面直角坐标系中,将直角三角形的直角顶点固定在点P(8,8)处,转动直角三角形,若两条直角边分别与x轴正半轴交于点A,y轴正半轴交于点B,则OA +OB的值为()A.10 B.16 C.8 D.无法确定7.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个B.2个C.3个D.4个8.下面四个图形中,线段BE是⊿ABC的高的图是()A.B.C.D.9.如图,△ABC≌△DEF,∠A=50°,∠B=100°,则∠F的度数是( )A.100°B.60°C.50°D.30°10.下列四组条件中, 能使△ABC≌△DEF的条件有( )①AB = DE, BC = EF, AC = DF; ②AB = DE, ∠B = ∠E, BC = EF;③∠B = ∠E, BC = EF, ∠C = ∠F; ④AB = DE, AC = DF, ∠B = ∠E.A.1组B.2组C.3组D.4组11.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.∠C=∠D B.∠CAB=∠DBA C.AC=BD D.BC=AD12.如图,∠EOF内有一定点P,过点P的一条直线分别交射线OE于A,射线OF于B.当满足下列哪个条件时,△AOB的面积一定最小()A.OA=OB B.OP为△AOB的角平分线C.OP为△AOB的高D.OP为△AOB的中线二、填空题:(每小题3分共12分)13.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12(AB+AD),若∠D=115°,则∠B=________.14.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=25°,则∠EAC的度数=_______.15.如图,在四边形ABCD中,AB=CB,AD=CD.若∠A=108°,则∠C的大小=_______(度).16.如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是______.三、解答题:(共52分)17.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,且AB=13 cm,BC=12 cm,AC=5 cm,求:(1)△ABC的面积;(2)CD的长.18.某大学计划为新生配备如图1所示的折叠凳.图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30 cm,由以上信息能求出CB的长度吗?请你说明理由.19.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DA=DE.20.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.21.如图,沿AC方向开山修路,为了加快施工进度,要在山的另一边同时施工,工人师傅在AC上取一点B,在小山外取一点D,连接BD,并延长使DF=BD,过F点作AB的平行线段MF,连接MD,并延长,在其延长线上取一点E,使DE=DM,在E点开工就能使A、C、E成一条直线,请说明其中的道理;22.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)试说明:BD=CE;(2)试说明:∠M=∠N.23.如图,已知△ABC中,AB=AC,∠BAC=90°,分别过B,C向经过点A的直线EF作垂线,垂足为E,F.(1)如图1,当EF与斜边BC不相交时,请证明EF=BE+CF;(2)如图2,当EF与斜边BC相交时,其他条件不变,写出EF、BE、CF之间的数量关系,并说明理由;(3)如图3,猜想EF、BE、CF之间又存在怎样的数量关系,写出猜想,不必说明理由.。
北师大版七年级数学下册 第四章 三角形 达标测试卷(word打印版+详细答案)
北师大版七年级数学下册第四章三角形达标测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于() A.6 B.8 C.10 D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10 B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10 D.∠A=60°,∠B=50°,AB=5 5.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14 B.17 C.22 D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1 B.2 C.3 D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF -S△BEF等于()A.1 B.2 C.3 D.410.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成7个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成()个互不重叠的小三角形.A.2n B.2n+1 C.2n-1 D.2(n+1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED的长就是AB的长.判定△EDC≌△ABC的理由是____________.13.如图,E点为△ABC的边AC的中点,CN∥AB,若MB=6 cm,CN=4 cm,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12(AB+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C点拨:因为BF⊥AC于点F,所以△ABC中AC边上的高是线段BF,故选C.3.A点拨:因为△ABC≌△EDF,所以AC=EF.所以AE=CF.因为AF=20,EC=8,所以AE=CF=6.故选A.4.D5.B点拨:由已知条件AB∥ED可得,∠B=∠D,由CD=BF可得,BC=DF,再补充条件AB=ED,可得△ABC≌△EDF,故选B.6.C7.C8.B9.B点拨:易得S△ABE=13×12=4,S△ABD=12×12=6,所以S△ADF-S△BEF=S△ABD-S△ABE=2.10.B点拨:△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0;△ABC的三个顶点和它内部的点P1,P2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成的互不重叠的小三角形的个数=3+2(n-1)=2n+1.二、11.60°12.ASA点拨:由题意可知,∠ECD=∠ACB,∠EDC=∠ABC=90°,CD=CB,故可用ASA说明两个三角形全等.13.10 cm点拨:由CN∥AB,点E为AC的中点,可得∠EAM=∠ECN,AE =CE.又因为∠AEM=∠CEN,所以△AEM≌△CEN.所以AM=CN=4 cm.所以AB=AM+MB=4+6=10(cm).14.SSS15.1<c<7;3<m<17点拨:由三角形的三边关系得第三边的取值范围为4-3<c<4+3,即1<c<7.同理,得四边形EFMN对角线EM的取值范围为4-3<EM<4+3,即1<EM<7.所以10-7<m<10+7,即3<m<17.16.5点拨:由已知可得,∠ADC=∠BDF=∠BEC=90°,所以∠DAC=∠DBF.又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90° 点拨:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65° 点拨:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在△CAF 和△CAE 中,⎩⎨⎧∠AFC =∠AEC ,∠CAF =∠CAE ,AC =AC ,所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =12(AB +AD ),所以AF =12(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF=BE .在△FDC 和△EBC 中,⎩⎨⎧CF =CE ,∠CFD =∠CEB ,DF =BE ,所以△FDC ≌△EBC (SAS).所以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△ACN ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△ACN :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB =∠EAD .所以∠EAM =∠CAN .在△AEM 和△ACN 中,⎩⎨⎧∠E =∠C ,AE =AC ,∠EAM =∠CAN ,所以△AEM ≌△ACN (ASA). 选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD⊥AB,所以∠BCD+∠B=90°.所以∠ECF=∠B.在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.。
(常考题)北师大版初中数学七年级数学下册第四单元《三角形》测试(答案解析)
一、选择题1.如图△ABC ≌△ADE ,若∠B=80°,∠C=30°,∠DAC=25°,则∠EAC 的度数为( )A .45°B .40°C .35°D .25°2.如图,点C ,D 分别在线段OA ,OB 上,AD 与BC 相交于点E ,若OC OD =,A B ∠=∠,则图中全等三角形的对数为( )A .5对B .4对C .3对D .2对3.如图,△ABC 和△AED 共顶点A ,AD =AC ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,甲说:“一定有△ABC ≌△AED .”乙说:“△ABM ≌△AEN .”那么( )A .甲、乙都对B .甲、乙都不对C .甲对、乙不对D .甲不对、乙对 4.已知三角形的一边长为8,则它的另两边长分别可以是( )A .2,9B .17,29C .3,12D .4,4 5.如图,ABC A BC '≌,110A '∠=︒,30ABC ∠=︒,则ACB =∠( )A .40︒B .20︒C .30D .45︒6.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 7.下列各组数中,不可能成为一个三角形三边长的是( ) A .2,3,4 B .5,7,7 C .5,6,12 D .6,8,10 8.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 9.图中的小正方形边长都相等,若MNP MFQ ≌,则点Q 可能是图中的( )A .点DB .点C C .点BD .点A 10.在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是( ) A .4cmB .5cmC .9cmD .13cm 11.如图,已知ABC ADE △≌△,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .80︒B .70︒C .40︒D .3012.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( )A .1个B .2个C .3个D .4个二、填空题13.如图,在△ABC 中,∠BAC =100°,AD ⊥BC 于D 点,AE 平分∠BAC 交BC 于点E .若∠C =26°,则∠DAE 的度数为_____.14.已知12l l //,一个含45︒角的直角三角板按如图所示放置,230∠=︒,则1∠=_____.15.如图,已知ABC FDE △≌△,若105F ∠=︒,45C ∠=︒,则B ∠=________度.16.如图,在ABC 和DEF 中,点B F C E ,,,在同一直线上,,//BF CE AB DE =,请添加一个条件,使ABC DEF ≅,这个添加的条件可以是________.17.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.18.如图,∠ABC =90°,∠CBD =45°,BP 平分∠ABD ,则∠ABP 的度数是_____°.19.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.20.已知:AD 、AE 分别是ABC 的高,中线,6BE =,4CD =,则DE 的长为_________.三、解答题21.如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB // DE ,AB = DE ,∠A = ∠D .(1)求证:ABC DEF ≌;(2)若BF = 11,EC = 5,求BE 的长.22.如图,在△ABC 中,∠ACB =70 °,∠B =65°,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E .(1)求证:AE =CE .(2)求证:△AEF ≌△CEB .23.如图,AD CB =,AB CD =.求证:ABC CDA ∠=∠.24.在正方形网格中,网格线的交点叫做格点,三个顶点均在格点上的三角形叫做格点三角形.(1)在图1中计算格点三角形ABC 的面积是__________;(每个小正方形的边长为1) (2)ABC 是格点三角形.①在图2中画出一个与ABC 全等且有一条公共边BC 的格点三角形;②在图3中画出一个与ABC 全等且有一个公共点A 的格点三角形.25.如图,AD 是ABC 的角平分线,AB AC >,求证:AB AC BD CD ->-.26.沛沛沿一段笔直的人行道行走,边走边欣赏风景,在由C 走到D 的过程中,通过隔离带的空隙P ,刚好浏览完对面人行道宣传墙上的一条标语,具体信息如下:如图,AB//PM //CD ,相邻两平行线间的距离相等AC ,BD 相交于P ,PD CD ⊥垂足为D .已知16CD =米.请根据上述信息求标语AB 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】∵△ABC≌△ADE,∴∠D=∠B=80°,∠E=∠C=30°,∴∠DAE=180°−∠D−∠E=70°,∴∠EAC=∠EAD−∠DAC=45°,故选A.点睛:本题主要考查全等三角形的性质,掌握全等三角形的对应角相等、对应边相等是解题的关键.2.B解析:B【分析】由条件可证△AOD≌△BOC,可得OA=OB,则可证明△ACE≌△BDE,可得AE=BE,则可证明△AOE≌△BOE,可得∠COE=∠DOE,可证△COE≌△DOE,可求得答案.【详解】解:在△AOD和△BOC中OC=OD∠AOD=∠BOC∠=∠A B∴△AOD≌△BOC(SAS)∴OA=OB∵OC=OD,OA=OB,∴AC=BD,在△ACE和△BDE中∠A=∠B∠AEC=∠BEDAC=BD∴△ACE≌△BDE(AAS),∴AE=BE∴AE=BE,在△AOE和△BOE中OA=OB∠A=∠BAE=BE∴△AOE≌△BOE(SAS),∴∠COE=∠DOE,在△COE和△DOE中OC=OD∠COE=∠DOEOE=OE∴△COE≌△DOE(SAS),故全等的三角形有4对.故选:B.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AA和HL.3.A解析:A【分析】利用AAS判定△ABC≌△AED,则可得到AB=AE,再利用ASA判定△ABM≌△AEN.【详解】∵∠1=∠2,∴∠1+∠MAC=∠2+∠MAC,∴∠BAC=∠EAD,在△BAC和△EAD中,B E BAC EAD AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△EAD ,∴甲说的正确;∵△BAC ≌△EAD (AAS ),∴AB=AE ,在△BAM 和△EAN 中,12B E AB AE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BAM ≌△EAN (ASA ),∴乙说的正确;故选A .【点睛】本题考查了三角形全等的判定方法,根据题目的特点,补充适当条件,活用判定定理是解题的关键.4.A解析:A【分析】根据三角形三边关系判断即可;【详解】9211+=>8,927-=<8,故A 正确;172946+=>8,291712-=>8,故B 错误;12315+=>8,1239-=>8,故C 错误;448+=,故D 错误;故答案选A .【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.5.A解析:A【分析】根据全等三角形对应角相等即可求解;【详解】∵ABC A BC '∆≅∆ ,∴ ∠A=∠A '=110°,∵∠ABC=30°,∴∠ACB=180°-110°-30°=40°,故选:A .【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应角相等是解题的关键; 6.D解析:D【分析】根据全等三角形的判定,利用ASA 、SAS 、AAS 即可得答案.【详解】解:∵∠B=∠DEF ,AB=DE ,∴添加∠A=∠D ,利用ASA 可得△ABC ≌△DEF ;添加BC=EF ,利用SAS 可得△ABC ≌△DEF ;添加∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ;添加AC DF =,不符合任何一个全等判定定理,不能证明△ABC ≌△DEF ;故选:D .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS 、ASA 、SAS 、AAS 和HL 是解题的关键.7.C解析:C【分析】判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A .∵2+3>4,∴能组成三角形,故A 错误;B .∵5+7>7,∴不能组成三角形,故B 错误;C .∵5+6<12,∴不能组成三角形,故C 正确;D .∵6+8>10,∴能组成三角形,故D 错误;故选:C .【点睛】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.8.D解析:D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA , ∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG 和△BEF 中BE BE EF EG =⎧⎨=⎩∴ △BEG ≌△BEF ,∴BG=BF ,在△CEG 和△AFE 中EF EG AE CE=⎧⎨=⎩ ∴△CEG ≌△AFE ,∴ AF=CG ,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;9.A解析:A【分析】根据全等三角形的判定即可解决问题.【详解】解:观察图象可知△MNP≌△MFD.故选:A.【点睛】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.10.C解析:C【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:设三角形的第三边为x,则9-4<x<4+9即5<x<13,∴当x=7时,能与4cm、9cm长的两根木棒钉成一个三角形,故选:C.【点睛】本题考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.11.A解析:A【分析】由全等三角形的性质可得到∠BAC=∠EAD,在△ADE中可求得∠EAD,则可求得∠BAC.【详解】解:∵∠E=70°,∠D=30°,∴∠EAD=180°-∠E-∠D=180°-70°-30°=80°,∵△ABC≌△ADE,∴∠BAC=∠EAD=80°,故选:A.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.12.C解析:C【分析】∆≅∆,则可对④进行判断;利用全等三角形的性质可对①根据“SAS”可证明CDE BDF进行判断;由于AE与DE不能确定相等,则根据三角形面积公式可对②进行判断;根据∠=∠,则利用平行线的判定方法可对③进行判断.全等三角形的性质得到ECD FBD【详解】∆的中线,解:AD是ABC∴=,CD BD∠=∠,=,CDE BDFDE DF∴∆≅∆,所以④正确;CDE BDF SAS()∴=,所以①正确;CE BF∵与DE不能确定相等,AE∴∆和CDE∆面积不一定相等,所以②错误;ACE∆≅∆,CDE BDF∴∠=∠,ECD FBD//∴,所以③正确;BF CE故选:C.【点睛】本题考查了全等三角形的判定,熟悉全等三角形的5种判定方法是解题的关键.二、填空题13.14°【分析】利用垂直的定义得到∠ADC=90°再根据三角形内角和计算出∠CAD=64°接着利用角平分线的定义得到∠CAE=50°然后计算∠CAD﹣∠CAE 即可【详解】解:∵AD⊥BC∴∠ADC=9解析:14°【分析】利用垂直的定义得到∠ADC=90°,再根据三角形内角和计算出∠CAD=64°,接着利用角平分线的定义得到∠CAE=50°,然后计算∠CAD﹣∠CAE即可.【详解】解:∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°﹣∠C=64°,∵AE平分∠BAC,∴∠CAE=12∠BAC=12×100°=50°,∴∠DAE=∠CAD﹣∠CAE=64°﹣50°=14°.故答案为14°.【点睛】本题考查了三角形内角和定理、角平分线的定义、垂线的定义,解题关键是熟练运用相关性质求角.14.75°【分析】利用外角求∠5再根据平行线的性质求∠1【详解】解:由题意可知∠4=45°∠2=∠3=30°∠5=∠2+∠3=75°∵∴∠1=∠5=75°故答案为:75°【点睛】本题考查了三角形外角的性解析:75°.【分析】利用外角求∠5,再根据平行线的性质求∠1.【详解】解:由题意可知∠4=45°,∠2=∠3=30°,∠5=∠2+∠3=75°,∵12l l//,∴∠1=∠5=75°,故答案为:75°.【点睛】本题考查了三角形外角的性质和平行线的性质,解题关键是熟练运用相关知识进行推理计算.15.30【分析】先根据全等三角形的性质得到∠BAC=∠F=105°然后根据三角形内角和计算∠B的度数【详解】解:∵△ABC≌△FDE∴∠BAC=∠F=105°∵∠BAC+∠B+∠C=180°∴∠B=18解析:30【分析】先根据全等三角形的性质得到∠BAC=∠F=105°,然后根据三角形内角和计算∠B的度数.【详解】解:∵△ABC≌△FDE,∴∠BAC=∠F=105°,∵∠BAC+∠B+∠C=180°,∴∠B=180°-105°-45°=30°.故答案为30.【点睛】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等.16.(答案不唯一)【分析】根据等式的性质可得BC=EF根据平行线的性质可得再添加AB=DE可利用SAS判定【详解】添加AB=DE∵BF=CE∴BF+FC=CE+FC即BC=EF∵AB//DE∴∠B=∠E解析:AB DE=(答案不唯一)【分析】根据等式的性质可得BC=EF,根据平行线的性质可得B E∠=∠,再添加AB=DE可利用SAS 判定ABC DEF≅.【详解】添加AB=DE,∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB//DE,∴∠B=∠E,在△ABC和△DEF中AB EDB E BC EF=⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF≅ (SAS),故答案为AB DE=(答案不唯一)【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL17.4cm【分析】由DE⊥AB可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm.【分析】由DE⊥AB,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB,然后根据AAS判断△ABC≌△EDB,根据全等三角形的对应边相等即可得到BD=BC,AC=BE,由E是BC的中点,得到BE=12BC=12BD=4.【详解】解:∵DE ⊥AB ,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中,ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.18.5【分析】根据角度的加减及角平分线的定义可以得到解答【详解】解:由题意∠ABD=∠ABC+∠CBD=90°+45°=135°∵BP 平分∠ABD ∴故答案为:675【点睛】本题考查角度的计算正确理解角平解析:5【分析】根据角度的加减及角平分线的定义可以得到解答.【详解】解:由题意,∠ABD=∠ABC+∠CBD=90°+45°=135°,∵BP 平分∠ABD ,∴113567.522ABP ABD ︒∠=∠==︒, 故答案为:67.5.【点睛】本题考查角度的计算,正确理解角平分线的定义并灵活应用是解题关键. 19.180°【详解】解:∵AB ∥CD ∴∠1=∠EFD ∵∠2+∠EFC=∠3∠EFD=180°-∠EFC ∴∠1+∠3—∠2=180°故答案为:180°解析:180°【详解】解:∵AB ∥CD∴∠1=∠EFD∵∠2+∠EFC=∠3∠EFD=180°-∠EFC∴∠1+∠3—∠2=180°故答案为:180°20.2或10【分析】由已知条件可推导出;再假设D 点所在的不同位置分别计算即可得到答案【详解】∵是的中线且∴假设点D 在CB 的延长线上如下图∵是的中线且∴∵∴和图形不符∴该假设不成立;假设点D 在点E 和点B 之 解析:2或10【分析】由已知条件,可推导出6EC BE ==;再假设D 点所在的不同位置,分别计算DE ,即可得到答案.【详解】∵AE 是ABC 的中线,且6BE =∴6EC BE ==假设点D 在CB 的延长线上,如下图∵AE 是ABC 的中线,且6BE =∴212BC BE ==∵4CD =∴CD BC <,和图形不符∴该假设不成立;假设点D 在点E 和点B 之间,如下图∵4CD =,6EC =∴CD EC <,和图形不符∴该假设不成立;假设点D 在点E 和点C 之间,如下图∴642DE EC CD =-=-=;假设点D 在点BC 延长线上,如下图∴6410DE EC CD =+=+=;故答案为:2或10.【点睛】本题考察了三角形中线和三角形高的知识;求解的关键是熟练掌握三角形中线和三角形高的性质,从而完成求解.三、解答题21.(1)见解析;(2)BE =3.【分析】(1)根据平行线的性质由AB ∥DE 得到∠ABC =∠DEF ,然后根据“ASA”可判断△ABC ≌△DEF ;(2)根据三角形全等的性质可得BC =EF ,由此可求出BE =CF ,则利用线段的和差关系求出BE .【详解】(1)证明:∵AB ∥DE ,∴∠ABC =∠DEF ,在△ABC 和△DEF 中A D AB DEABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA );(2)解:∵△ABC ≌△DEF ,∴BC =EF ,∴BC -EC =EF -EC ,即BE =CF ,∵BF =11,EC =5,∴BF -EC =6.∴BE +CF =6.∴BE =3.【点睛】本题考查了全等三角形的判定与性质,掌握全等三角形的判定与性质是解答此题的关键. 22.(1)见解析;(2)见解析【分析】(1)根据已知条件得到∠EAC =45 °,再根据等腰三角形的性质和垂直即可得解; (2)由于AD ⊥BC ,CE ⊥AB ,所以∠BAD =∠ECB =90°- ∠B ,根据已知条件证明即可;【详解】(1)∠ACB =70 °,∠B =65°,得∠EAC =45 °,又CE ⊥AB ,得∠ECA =45 °,所以AE =CE ;(2)由于AD ⊥BC ,CE ⊥AB ,所以∠BAD =∠ECB =90°- ∠B ,在△AEF 和△CEB 中,AEC BEC AE ECBAD ECB ∠=∠⎧⎪=⎨⎪∠=∠⎩, 所以△AEF ≌△CEB .【点睛】本题主要考查了全等三角形的判定与性质,结合等腰三角形的性质分析证明是解题的关键.23.见解析【分析】根据SSS 可证明△ABD ≌△CDB ,即可得∠ABD =∠CDB ,∠ADB =∠CBD ,进而可证明结论.【详解】在ABD ∆和CDB ∆中AB CD AD CB BD DB =⎧⎪=⎨⎪=⎩()ABD CDB SSS ∴∆≅∆ABD CDB ∴∠=∠ADB CBD ∠=∠ABC ABD CBD ∠=∠-∠CDA CDB ADB ∠=∠-∠ABC CDA ∴∠=∠【点睛】本题主要考查全等三角形的性质与判定,利用SSS 证明△ABD ≌△CDB 是解题的关键. 24.(1)6;(2)①见解析;②见解析【分析】(1)用割补法求解即可;(2)根据“SSS”画图即可;(3)根据“SSS”画图即可;【详解】解:(1)5×3-12×3×3-12×2×2-12×5×1=6, 故答案为:6;(2)①如图,'A BC 即为所求,②如图,''AB C 即为所求,【点睛】本题考查了“格点三角形的定义”以及全等三角形的判定方法,熟练掌握“SSS”是解答本题的关键.25.见解析【分析】在 AB 上取 AE = AC ,然后证明ADC ≌()SAS ADE △,根据全等三角形对应边相等得到DC DE =,再根据三角形的任意两边之差小于第三边证明即可.【详解】证明:如解图,在AB 上截取AE AC =,连接DE ,∵ AD 是ABC 的角平分线,∴ CAD EAD ∠=∠.在ADC 和ADE 中,,,,AC AE CAD EAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴ ADC ≌()SAS ADE △.∴ DC DE =.∵在BDE 中,BE BD ED >-,∵ AB AE BE -=,∴ AB AC BD CD ->-.【点睛】本题主要考查全等三角形的判定和全等三角形对应边相等的性质以及三角形的三边关系,作辅助线构造全等三角形是解题的关键.26.16米【分析】已知AB ∥CD ,根据平行线的性质可得∠ABP=∠CDP ,再由垂直的定义可得∠CDO=90︒,可得PB ⊥AB ,根据相邻两平行线间的距离相等可得PD=PB ,即可根据ASA 定理判定△ABP ≌△CDP ,由全等三角形的性质即可得CD=AB=16米.【详解】∵AB ∥CD ,∴∠ABP=∠CDP ,∵PD ⊥CD ,∴∠CDP=90︒,∴∠ABP=90︒,即PB ⊥AB ,∵相邻两平行线间的距离相等,∴PD=PB ,在△ABP 与△CDP 中,ABP CDP PD PBAPB CDP ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABP ≌△CDP (ASA ),∴CD=AB=16米.【点睛】本题考察平行线的性质和全等三角形的判定和性质,综合运用各定理是解题的关键.。
北师大版七年级数学下册 第四章 三角形 练习(包含答案)
第四章三角形一、单选题1.已知三角形的两边长分别为3和7,则第三边的中线长x的取值范围是( )A.2<x<5B.4<x<10C.3<x<7D.无法确定2.如图:一块三角形的草坪,现要从点A修一条小路AD,使小路AD两边的草坪的面积一样多,则AD为△ABC的()A.高B.角平分线C.中线D.不能确定3.下列说法正确的是()A.形状相同的两个三角形是全等三角形B.全等三角形的周长和面积分别相等C.所有等腰三角形都是全等三角形D.所有等边三角形都是全等三角形4.如果△ABC△△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长为()A.13B.3C.4D.65.如图为作一个角的角平分线的示意图,该作法的依据是全等三角形判定的基本事实,可简写为( )A .SSSB .SASC .ASAD .AAS6.在下列各组条件中,不能说明ABC DEF △≌△的是( )A .,,AB DE B EC F =∠=∠∠=∠ B .AC DF BC EF AD ==∠=∠,, C .,,AB DE A D B E =∠=∠∠=∠ D .,,AB DE BC EF AC DF === 7.如图,//AB CD ,AB CD =,点A 、E 、F 、C 在同一条直线上,请你添加一个条件,使得ABF CDE ∆≅∆,则不能添加的条件是( )A .AE CF =B .//BF DEC .BF DE =D .B D ∠=∠ 8.如图,点C 在△AOB 的OB 边上,用尺规作出了△NCE=△AOD,作图痕迹中,弧FG 是( )A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧C .以点E 为圆心,OD 为半径的弧D .以点E 为圆心,DM 为半径的弧9.已知三角形的三边长分别为2,a -1,4,则化简|a -3|+|a -7|的结果为( )A.2a-10B.10-2aC.4D.-410.如图,已知AB=AC,AF=AE,△EAF=△BAC,点C、D、E、F共线.则下列结论,其中正确的是()△△AFB△△AEC;△BF=CE;△△BFC=△EAF;△AB=BC.A.△△△B.△△△C.△△D.△△△△二、填空题11.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有________对12.如图,已知△ABD△△CBD,CD=2cm,DE=3cm,则AE的长为________________cm.13.如图,在△ABC中,AD△BC,BE△AC,垂足分别为点D、E,AD与BE交于点F,BF=AC,△ABE=22°,则△CAD的度数是________°.14.如图,△ABC 中,△ACB=90°,AC=6cm ,BC=8cm .点P 从A 点出发沿A→C→B 路径向终点运动,终点为B 点;点Q 从B 点出发沿B→C→A 路径向终点运动,终点为A 点.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,当一个点到达终点时另一个点也停止运动,在某时刻,分别过P 和Q 作PE△l 于E ,QF△l 于F .设运动时间为t 秒,则当t=______秒时,△PEC 与△QFC 全等.三、解答题15.我们知道若两个非负数的和为0,则这两个非负数各自为0,如下:22()(4)0m n n -+-=Q ,22()0(4)0m n n ∴-=-=,4,4n m ∴==根据你的观察,解决下面的问题:(1)已知22(2)(3)0x y y -++=,求,x y 的值;(2)已知ABC ∆的三边长,,a b c 都是互不相等的正整数,且满足22(3)(7)0a b -+-=,求ABC ∆的最大边c 的值.16.如图,已知△ABC△△DEF ,△A=30°,△B=50°,BF=2,求△DFE 的度数和EC 的长.17.如图,ABC V 是等边三角形,点D ,E 分别在AB 、AC 边上,且AE BD =. (1)求证:ABE BCD △≌△.(2)求EFC ∠的度数.18.如图,在ABC ∆中,D 是边AB 上一点,E 是边AC 的中点,作//CF AB 交DE 的延长线于点F .(1)证明:ADE CFE ∆≅∆;(2)若AB AC =,5CE =,7CF =,求DB 的长答案1.A2.C3.B4.D5.A6.B7.C8.D9.C10.A11.312.513.23°.14.1或72或12. 15.解:(1)△22(2)(3)0x y y -++=△22(2)0(3)0x y y -=+=,△36y x =-=-,(2)由题意易知3,7a b ==,△,,a b c 是ABC ∆的三条边, △a b c a b -<<+,即4c 10<<,又△c 为最大边,△710c <<,c Q 为正整数,c ∴=8或9.16.△△A=30°,△B=50°,△△ACB=180°-△A -△B=180°-30°-50°=100°,△△ABC△△DEF ,△△DFE=△ACB=100°,EF=BC ,△EF -CF=BC -CF ,即EC=BF ,△BF=2,△EC=2. 17.证明:(1)△△ABC 是等边三角形,△AB=BC ,△A=△DBC=60°,AE=BD .△△ABE△△BCD (SAS );(2)△△ABE△△BCD ,△△ABE=△BCD .△△EFC=△FBC+△FCB=△FBC+△ABE=△ABC=60°.18.(1)证明:△E 是边AC 的中点△AE =CE又△CF △AB△A ACF ADF F ∠=∠∠=∠,在ADE ∆与CFE ∆中 ADF F A ACF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩△()ADE CFE AAS ∆∆≌; (2)△ADE CFE ∆∆≌,CF =7 △CF =AD =7△E 是边AC 的中点,CE =5 △AC =2CE =10△AB =AC△AB =10△1073DB AB AD =-=-=.。
北师大版七年级下册数学第四章三角形 测试题附答案
北师大版七年级数学下册第四章三角形测试题一、单选题1.一个三角形的两边长分别为3 cm和7 cm,则此三角形的第三边的长可能是()A.3 cm B.4 cm C.7 cm D.11 cm2.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形的有( )个A.1个B.2个C.3个D.4个3.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为()A.2cm B.3cm C.4cm D.5cm4.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为( ) A.4:3:2 B.3:2:4 C.5:3:1 D.3:1:55.如图所示,在△ABC中,∠B=40°,∠A=50°,将其折叠,使点A落在CB边上A′处,折痕为CD,则∠A′DB的度数为( )A.40°B.30°C.20°D.10°6.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°7.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A.SSS B.SAS C.ASA D.AAS8.如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是:( )A.带①去B.带②去C.带③去D.①②③都带去9.如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时∆''的位置,其中A C'交直线AD于点E,A B''分别交直线AD、AC于针方向旋转到A CB点F、G,则在图(2)中,全等三角形共有()A.5对B.4对C.3对D.2对10.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为().A.126°B.110°C.108°D.90°二、填空题11.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.12.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有________对13.三角形的三边长分别为5,1+2x,8,则x的取值范围是.14.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.15.在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E,在BC上,BE=BF,连结AE,EF和CF,此时,若∠CAE=30°,那么∠EFC=_______.16.如图,已知AC=DB,要使△ABC≌△DCB,则需要补充的条件为_____.17.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB=________.18.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.三、解答题19.在△ABC中,AB=2BC,AD、CE分别是BC、AB 边上的高,试判断AD和CE的大小关系,并说明理由.20.如图,已知∠A=20°,∠B=27°,AC⊥DE,求∠1,∠D的度数.21.已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.22.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.23.(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.24.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.25.如图1,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形,并将添加的全等条件标注在图上.请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC和∠BCA的平分线,AD、CE相交于点F,求∠EFA的度数;(2)在(1)的条件下,请判断FE与FD之间的数量关系,并说明理由;(3)如图3,在△ABC中,如果∠ACB不是直角,而(1 )中的其他条件不变,试问在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.参考答案1.C【解析】试题解析:设第三边长为xcm,根据三角形的三边关系可得:7-3<x<7+3,解得:4<x<10,故答案为C.考点:三角形三边关系.2.B【解析】【分析】根据三角形中任意两条边之和大于第三边,任意两条边之差小于第三边即可求解.【详解】解:①设三条线段分别为x,3x,4x,则有x+3x=4x,不符合三角形任意两边大于第三边,故不可构成三角形;②设三条线段分别为x,2x,3x,则有x+2x=3x,不符合三角形任意两边大于第三边,故不可构成三角形;③设三条线段分别为x ,4x ,6x ,则有x +4x <6x ,不符合三角形任意两边大于第三边,故不可构成三角形;④设三条线段分别为3x ,3x ,6x ,则有3x +3x =6x ,不符合三角形任意两边大于第三边,故不可构成三角形;能构成三角形的是⑤⑥.故本题答案选B.【点睛】本题利用了三角形三边的关系求解,掌握该知识点是解答本题的关键.3.B【解析】【分析】设大小处于中间的边长是xcm ,则最大的边是(x+1)cm ,最小的边长是(x-1)cm ,根据三角形的周长即可求得x ,进而求解.【详解】设大小处于中间的边长是xcm ,则最大的边是(x +1)cm ,最小的边长是(x −1)cm .则(x +1)+x +(x −1)=12,解得:x =4,则最短的边长是:4−1=3cm .故选B.【点睛】本题考查了三角形的周长,适当的设三边长是关键.4.C【解析】【分析】根据三角形外角和为0360,三角形内角和为0180,即可求解.【详解】解:设三个外角分别为2x ,3x ,4x ,三角形外角和为360°,所以2x +3x +4x =360°,所以x=40°,所以三个外角是80°,120°,160°,所以对应内角比为5:3:1,故选C.【点睛】本题考查了三角形外角和和内角和的相关知识,掌握该知识点是解答本题的关键.5.D【解析】∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°-50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D-∠B=50°-40°=10°.故选D.6.B【解析】【分析】先根据全等三角形的性质得∠ACB=∠A′CB′,两边减去∠A′CB即可得到∠ACA′=∠BCB′=30°.【详解】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB-∠A′CB=∠A′CB′-∠A′CB,即∠ACA′=∠B′CB,又∵∠B′CB=30°∴∠ACA′=30°.故选:B.【点睛】本题主要考查了全等三角形的性质.7.C【解析】【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8.C【解析】【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点睛】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.9.B【解析】试题分析:根据旋转的性质和全等三角形的判定,有∆'≌△ACE,A EF∆'≌△FDC,A CA∆''≌△ACD,GB CA CB∆'≌△AGF.共4对.故选B.10.C【解析】【分析】根据题意可设∠1=7x,∠2=2x,∠3=x,即可得到∠1,∠2,∠3,再利用三角形外角的性质得到∠EAC=108°,最后根据三角形的内角和定理计算即可.【详解】∵∠1:∠2:∠3=7:2:1,∴设∠1=7x,∠2=2x,∠3=x,由∠1+∠2+∠3=180°得:7x+2x+x=180°,解得x=18,故∠1=7×18=126°,∠2=2×18=36°,∠3=1×18=18°,∵△ABE和△ADC是△ABC分别是关于AB,AC边所在直线的轴对称图形,∴∠DCA=∠E=∠3=18°,∠2=∠EBA=∠D=36°,∠4=∠EBA+∠E=36°+18°=54°,∠5=∠2+∠3=18°+36°=54°,故∠EAC=∠4+∠5=54°+54°=108°在△EGF与△CAF中,∠E=∠DCA,∠DFE=∠CFA,∴∠α=∠EAC=108°.故选C.【点睛】此题考查轴对称的性质,三角形内角和定理和三角形外角的性质,解题关键在于掌握内角和定理.11.5<c<9 6或8 6【解析】【分析】(1).根据三角形的三边关系即可求出c的取值范围. (2).根据“偶数和偶数之和为偶数,偶数与奇数之和为奇数,奇数和奇数之和为偶数”即可解答. (3).用含有c的式子表示出周长为5的倍数,结合第三边c的取值范围,进而求出c的值.【详解】解:根据三角形的三边关系,可得7-2<c<7+2,即5<c<9,由于2+7=9是奇数,故当c为偶数时周长为奇数,即c的取值为6,8,当周长是5的倍数是,则有2+7+c=5n,且第三边取值范围为5<c<9,故周长的取值范围为14~18,故n=3,解得c=6.【点睛】本题主要考查了三角形的三边关系,偶数和偶数之和为偶数,偶数与奇数之和为奇数,奇数和奇数之和为偶数,掌握这两个知识点是解答本题的关键.12.3【解析】图中以BC为公共边的”共边三角形”有△ABC,△DBC,△EBC,共3对.故选B.13.1<x<6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6.考点:三角形三边关系.14.20【解析】试题分析:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20。
北师大版七年级数学下册第四章 三角形 章节测试(含答案)
第四章 全等三角形章节测试一、细心选一选(每小题3分,共36分)1.下列说法正确的是……………………………………( )A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等 2.下列各组线段能组成三角形的是……………………( )A.3cm ,3cm ,6cmB.7cm ,4cm ,5cmC.3cm ,4cm ,8cmD.4.2cm ,2.8cm ,7cm 3.下列图形中,与已知图形全等的是……………………( )4.如图,已知△ABC ≌△CDE,其中AB =CD ,那么下列结论中, 不正确的是……………………… ( ) A.AC =CEB.∠BAC =∠CDEC.∠ACB =∠ECDD.∠B =∠D5.下列条件中,不能判定三角形全等的是…………………( ) A.三条边对应相等 B.两边和一角对应相等 C.两角和其中一角的对边对应相等 D.两角和它们的夹边对应相等6. 如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有全等三角形………( ) A.1对 B.2对 C.3对 D.4对7.在△ABC 和△A ′B ′C ′中,已知AB = A ′B ′, ∠B =∠B ′要保证△ABC ≌△A ′B ′C ′, 可补充的条件是……( )A.∠B +∠A =900B.AC = A ′C ′C.BC =B ′C ′D. ∠A +∠A ′=9008.已知在△ABC 和△A ′B ′C ′中,AB = A ′B ′,∠B =∠B ′,补充下面一个条件,不能说明△ABC ≌△A ′B ′C ′的是……………………………………………………………………………………( ) A. BC =B ′C ′ B. AC = A ′C ′ C. ∠C =∠C ′ D. ∠A =∠A ′ 9.如图,已知AE =CF ,BE =DF .要证△ABE ≌△CDF ,还需添加的一个条件是………( )(A ) (B ) (C )(D )第3题图B DE第4题ABDCEA.∠BAC =∠ACDB.∠ABE =∠CDFC.∠DAC =∠BCAD.∠AEB =∠CFD10.如图AD 是△ABC 的角平分线,DE 是△ABD 的高,EF 是△ACD 的高,则…( ) A.∠B =∠C B.∠EDB =∠FDC C.∠ADE =∠ADF D. ∠ADB =∠ADC 11.如图AC 与BD 相交于点O ,已知AB =CD ,AD =BC ,则图中全等三角形有………( ) A.1对 B.2对 C.3对 D.4对 12.如图,D 、E 分别是AB ,AC 上一点,若∠B =∠C ,则在下列条件中,无法判定△ABE ≌△ACD 是………………………………( ) A.AD =AE B.AB =ACC.BE =CDD.∠AEB =∠ADC 二、专心填一填:(每小题3分,共24分)13.如图,△ABC ≌△DEF ,点B 和点E , 点A 和点D 是对应顶点, 则AB = ,CB = , ∠C = ,∠CAB = . 14.若已知两个三角形有两条边对应,则要视这两个三角形全等, 还需增加的条件可以是 或 .15.如图已知AC 与BD 相交于点O ,AO =CO ,BO =DO ,则AB =CD 请说明理由. 解:在△AOB 和△COD 中(BO DO(AO CO ==⎧⎪⎨⎪⎩已知)(对顶角相等已知) ∴△AOB ≌△COD ( )∴AB =DC ( )16.如图,已知AO =OB ,OC =OD ,AD 和BC 相交于点E , 则图中全等三角形有 对.17.在△ABC 和△DEF 中,AB =4, ∠A =350, ∠B =700,DE =4, ∠D = , ∠E 根据 判定△ABC ≌△DEF .ABC D F E 第9题AA AAA 第10题A BCDO第11题ABCE第12题D第13题ABC DEFABD CO第15题OABD第16题CE第18题A D18.如图,在△ABC和△DEF中AB=DC( BC=DA(=⎧⎪⎨⎪⎩已知)已知)()∴△ABC≌△DEF( )19.如图∠B=∠DEF,AB=DE,要证明△ABC≌△DEF,(1)若以“ASA”为依据,需添加的条件是;(2)若以“SAS”为依据,需添加的条件是.20.如图,△ABC中,AB=AC=13cm,AB的垂直平分线交AB于D,交AC于E,若△EBC的周长为21cm,则BC= cm.三、耐心答一答:(本题有6小题,共40分)21.(本题4分)已知∠α、∠β和线段a, 如图,用直尺和圆规作△ABC,使∠A=∠α,∠B=∠β,BC=a.22.(本题6分)已知AD平分∠CAB,且DC⊥AC, DB⊥AB,那么AB和AC相等吗?请说明理由.第19题B CAE CDAB CED第20题DCAB23.(本题6分)如图,已知BD =CD ,∠1=∠2. 说出△ABD ≌△ACD 的理由.24.(本题8分)如图,已知AB =DC ,AD =BC ,说出下列判断成立的理由: (1) △ABC ≌△CDA (2) ∠B =∠D25.(本题8分) 如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着须先画出四种不同的分法,把4×4的正方形分割成两个全等图形ABC12DB D图①画法1画法2画法3画法426.(本题8分)如图,△ABC 中,AD 垂直平分BC ,H 是AD 上一点,连接BH ,CH .(1)AD 平分∠BAC 吗?为什么?(2)你能找出几堆相等的角?请把他么写出来(不需写理由)ACBH D参考答案一、细心选一选:(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案D B B C D C C B D C D D二、专心填一填(每小题3分,共24分)13.DE,FE,∠F, ∠FE D. 14.3第三边相等,这两边的夹角相等15. ∠AOB=∠COD,SAS,全等三角形的对应边相等16.4 17.350, AAS18.AC,CA,公共边,SSS19.∠A=∠D20.8三、耐心答一答(本题有六小题,共40分)21.图略22.AB=AC23.略24.略25.画法1 画法2 画法3 画法426.(1)由△ADB≌△ADC(SAS)得∠BAD=∠CAD(4)4对,∠BHD=∠CHD, ∠ABD=∠ACD,∠HBD=∠HCD, ∠BDA=∠CDA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学(下)第四章《三角形》测试题
一、选择题(每题3分,共24分)
1.在△ABC中,∠A是锐角,那么△ABC是( )
A.锐角三角形B.直角三角形C.钝角三角形D.不能确定
2.如果三条线段的比是①1∶4∶6 ②1∶2∶3 ③3∶4∶5 ④3∶3∶5那么其中可构成三角形的比有_________种.( )
A.1 B.2 C.3 D.4
3.根据下列已知条件,能判断△ABC≌△A′B′C′的是( )
A.AB=A′B′BC=B′C′∠A=∠A′
B.∠A=∠A′∠C=∠C′AC=B′C′
C.∠A=∠A′∠B=∠B′∠C=∠C′
D.AB=A′B′BC=B′C′△ABC的周长等于△A′B′C′的周长
4.下列说法错误的是( )
A.两条直角边对应相等的两个直角三角形全等
B.斜边和一条直角边对应相等的两个直角三角形全等
C.两个锐角对应相等的两个直角三角形全等
D.一边一锐角对应相等的两个直角三角形全等
5.一定在△ABC内部的线段是()
A.锐角三角形的三条高、三条角平分线、三条中线
B.钝角三角形的三条高、三条中线、一条角平分线
C.任意三角形的一条中线、二条角平分线、三条高
D.直角三角形的三条高、三条角平分线、三条中线
6.下列说法中,正确的是()
A.一个钝角三角形一定不是等腰三角形,也不是等边三角形
B.一个等腰三角形一定是锐角三角形,或直角三角形
C.一个直角三角形一定不是等腰三角形,也不是等边三角形
D.一个等边三角形一定不是钝角三角形,也不是直角三角形
7.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()A.4对B.5对C.6对
D.7对
8.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定
9.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定
10.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()
(1)7 cm、5 cm、11 cm (2)4 cm、3 cm、7 cm
(3)5 cm、10 cm、4 cm (4)2 cm、3 cm、1cm
A.(1) B.(2) C.(3)D.(4)
二、填空题(每题3分,共24分)
9.在△ABC中,∠A=3∠B,∠A-∠C=30°,则∠A=___________,∠B=___________,∠C=___________.
10.在△ABC中,AB=6 cm,AC=8 cm那么BC长的取值范围是___________.
11.如图,已知OA=OB,点C在OA上,点D在OB上,OC=OD,AD与BC 相交于点E,那么图中全等的三角形共有___________对.
12.已知△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A、∠B、∠C的度数为
__________ .
13.已知三角形的两边长为3和m,第三边a的取值范围是___________.
14.等腰三角形的两边长为4和2,那么它的周长为___________.
15.五条长度分别是2,3,4,5,6的线段,任选3条可以组成____个三角形.它们的边长分别是 .
16.已知三角形三个内角的度数之比为:1∶3∶5,则这三个内角的度数
为。
三、(16分)作图题(不写作法,保留作图痕迹)
17.(6分)如图所示,△ABC,作出△ABC的三条高.
18.(10分)已知线段a,b,求作△ABC,使AB=BC=a,AC=b.
四、解答题(共44分)
19.(12分)在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF 是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.
20(10分)已知,M是AB的中点,MC=MD,∠1=∠2,若AC=8 cm,求BD的长度.
21.(10分)如图,已知△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高.求∠DBC的度数.
22.(12分)如图,在△ABC中,AB=AC,D是BC的中点,点E在AD上,找出图中全等的三角形,并说明它们为什么是全等的.
23.如图,AB∥CD,BC⊥AB,若AB=4cm,2
=
12cm
S,求△ABD中AB边上的
∆ABC
高.
24.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,
求∠BOC的度数.
25.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC 的平分线.求∠DAE的度数.
五、探究题(12分)
23.(12分)一个三角形的两边b=4,c=7,试确定第三边a的范围.当各边均为整数时,有几个三角形?有等腰三角形吗?等腰三角形的各边长各是多少?。